WO2018181859A1 - 抗がん剤誘発末梢神経障害の治療剤又は予防剤 - Google Patents

抗がん剤誘発末梢神経障害の治療剤又は予防剤 Download PDF

Info

Publication number
WO2018181859A1
WO2018181859A1 PCT/JP2018/013535 JP2018013535W WO2018181859A1 WO 2018181859 A1 WO2018181859 A1 WO 2018181859A1 JP 2018013535 W JP2018013535 W JP 2018013535W WO 2018181859 A1 WO2018181859 A1 WO 2018181859A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
administration
compound
carbon atoms
atom
Prior art date
Application number
PCT/JP2018/013535
Other languages
English (en)
French (fr)
Inventor
岳 森本
宏士朗 原
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2018181859A1 publication Critical patent/WO2018181859A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies

Definitions

  • the present invention relates to a therapeutic agent or preventive agent for peripheral neuropathy induced by an anticancer agent.
  • Anticancer drugs damage limb numbness (abnormal sensation), illusion, sensory dullness, pain or pain by damaging peripheral nerve cells (axon or nerve cell body) or myelin sheath (Schwann cell).
  • Sensory neuropathy showing symptoms such as deafness, motor neuropathy showing symptoms such as muscle weakness / atrophy, flaccid paralysis or reduction / disappearance of deep tendon reflexes, or constipation, abdominal pain, sweating disorders, dysuria or orthostatic low
  • peripheral neuropathy such as autonomic neuropathy showing symptoms such as blood pressure (Non-patent Document 1).
  • Non-patent Document 1 discloses a method for treating peripheral neuropathy. Although these symptoms of peripheral neuropathy are rarely life-threatening, they have a great impact on the daily life of patients and significantly reduce the quality of life.
  • Analgesics eg, pregabalin, gabapentin or ketamine
  • antiepileptic drugs eg, lamotrigine, carbamazepine, phenytoin, valproic acid or clonazepam
  • antidepressants to relieve symptoms of peripheral neuropathy induced by anticancer drugs For example, amitriptyline, imipramine, clomipramine or duloxetine
  • Chinese herbal medicine eg, Goshajinkigan or Shakuyakukanzoto
  • vitamin B preparation eg, B6 or B12
  • Non-patent Document 2 chemotherapeutic agent-induced peripheral neuropathy
  • Non-Patent Document 3 neuropathic pain treatment guidelines
  • duloxetine pregabalin, gabapentin, nortriptyline
  • amitriptyline is effective for peripheral neuropathy induced by anticancer agents
  • Cyclohexane derivatives represented by the following general formulas are analgesics and therapeutic agents for neuropathic pain (Patent Document 1), therapeutic agents for fibromyalgia (Patent Document 2), therapeutic agents for urinary storage disorder (Patent Document 3), and Alzheimer's disease treatment It is known to be effective as a drug (Patent Document 4), a neuropathic pain therapeutic drug (Patent Document 5) and a multiple sclerosis therapeutic drug (Patent Document 6).
  • R 4 represents a fluorine atom or R 5 and R 6 each independently represent a hydrogen atom, a hydroxyl group, a carboxyl group, or the like.
  • the present invention relates to a therapeutic or preventive agent for peripheral neuropathy induced by an anticancer agent (hereinafter referred to as “anticancer agent-induced peripheral neuropathy”), which is manifested as a side effect upon administration of an anticancer agent.
  • anticancer agent-induced peripheral neuropathy an anticancer agent
  • the purpose is to provide.
  • the present invention provides an agent for treating or preventing an anticancer agent-induced peripheral neuropathy comprising a cyclohexane derivative represented by the following general formula (I) or a pharmacologically acceptable salt thereof as an active ingredient.
  • A is a substituent represented by the general formula (IIa) or (IIb);
  • R 1 and R 2 are each independently a hydrogen atom, a chlorine atom, a haloalkyl group having 1 to 3 carbon atoms, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a cyano group
  • R 3 is a hydrogen atom or a chlorine atom
  • R 4 is a fluorine atom, a hydroxymethyl group or a hydroxyl group
  • R 5 and R 6 are each independently a hydrogen atom, a fluorine atom, a carbon number of 1 to 3 haloalkyl groups, carboxyl groups, methoxycarbonyl groups,
  • the present invention also provides a therapeutic or prophylactic agent for an anticancer drug-induced peripheral neuropathy comprising, as an active ingredient, a cyclohexane derivative represented by the following general formula (I) or a pharmacologically acceptable salt thereof: provide.
  • A is a substituent represented by the general formula (IIc) or (IId)
  • R 1 and R 2 are each independently a hydrogen atom, a chlorine atom, a haloalkyl group having 1 to 3 carbon atoms, an alkyl group or an alkoxy group having 1 to 4 carbon atoms having 1 to 4 carbon atoms
  • R 3 is R 4 is a fluorine atom, a hydroxymethyl group or a hydroxyl group
  • R 5 and R 6 are each independently a hydrogen atom, a fluorine atom, or a haloalkyl having 1 to 3 carbon atoms.
  • a group, a carboxyl group, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group or an alkylcarbonyloxy group having 2 to 5 carbon atoms, or together, an oxo group may be formed, and Y is an oxygen atom or It is a sulfur atom, and Z is a nitrogen atom or a methine group.
  • R 1 and R 2 are each independently a hydrogen atom, a chlorine atom, a haloalkyl group having 1 to 3 carbon atoms, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • R 5 and R 6 are each independently a hydrogen atom, a fluorine atom, a haloalkyl group having 1 to 3 carbon atoms, a carboxyl group, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, or a group having 2 to 5 carbon atoms.
  • R 7 and R 8 are preferably hydrogen atoms.
  • R 1 and R 2 are preferably each independently a trifluoromethyl group, a methyl group or a methoxy group
  • R 3 is a hydrogen atom
  • R 4 is a hydroxymethyl group or A hydroxyl group
  • R 5 and R 6 are each independently a hydrogen atom, a fluorine atom, a trifluoromethyl group, a carboxyl group, a methoxy group, a hydroxyl group, or an acetyloxy group (which may form an oxo group together) It is even more preferable.
  • the present invention also provides anticancer agent induction containing the cyclohexane derivative represented by the above general formula (I) or a pharmacologically acceptable salt thereof, and a pharmacologically acceptable excipient.
  • a pharmaceutical composition for treating or preventing peripheral neuropathy is provided.
  • the present invention also provides a cyclohexane derivative represented by the above general formula (I) or a pharmacologically acceptable salt thereof for use in the treatment or prevention of anticancer drug-induced peripheral neuropathy.
  • the present invention also provides use of the cyclohexane derivative represented by the above general formula (I) or a pharmacologically acceptable salt thereof for treating or preventing an anticancer agent-induced peripheral neuropathy.
  • the present invention also relates to the use of a cyclohexane derivative represented by the above general formula (I) or a pharmacologically acceptable salt thereof in the manufacture of a medicament for treating or preventing an anticancer agent-induced peripheral neuropathy.
  • I will provide a.
  • the present invention also relates to a method for treating or preventing an anticancer agent-induced peripheral neuropathy, which comprises a therapeutically effective amount of the cyclohexane derivative represented by the above general formula (I) or a drug thereof in a patient in need of treatment.
  • an anticancer agent-induced peripheral neuropathy which comprises a therapeutically effective amount of the cyclohexane derivative represented by the above general formula (I) or a drug thereof in a patient in need of treatment.
  • a method comprising administering a physically acceptable salt.
  • the cyclohexane derivative of the present invention or a pharmacologically acceptable salt thereof can suppress the symptoms of anticancer drug-induced peripheral neuropathy, and thus can be used as a therapeutic or prophylactic agent for anticancer drug-induced peripheral neuropathy.
  • the therapeutic or preventive agent for anticancer drug-induced peripheral neuropathy of the present invention comprises a cyclohexane derivative represented by the following general formula (I) or a pharmacologically acceptable salt thereof as an active ingredient. It is said.
  • A is a substituent represented by the following general formula (IIa) or (IIb);
  • R 1 and R 2 are each independently a hydrogen atom, a chlorine atom, a haloalkyl group having 1 to 3 carbon atoms, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a cyano group
  • R 3 is a hydrogen atom or a chlorine atom
  • R 4 is a fluorine atom, a hydroxymethyl group or a hydroxyl group
  • R 5 and R 6 are each independently a hydrogen atom, a fluorine atom, a carbon number of 1 to 3 haloalkyl groups, carboxyl groups, methoxycarbonyl groups
  • the therapeutic or preventive agent for peripheral neuropathy caused by the anticancer agent of the present invention contains a cyclohexane derivative represented by the following general formula (I) or a pharmacologically acceptable salt thereof as an active ingredient. It is characterized by.
  • A is a substituent represented by the general formula (IIc) or (IId)
  • R 1 and R 2 are each independently a hydrogen atom, a chlorine atom, a haloalkyl group having 1 to 3 carbon atoms, an alkyl group or an alkoxy group having 1 to 4 carbon atoms having 1 to 4 carbon atoms
  • R 3 is R 4 is a fluorine atom, a hydroxymethyl group or a hydroxyl group
  • R 5 and R 6 are each independently a hydrogen atom, a fluorine atom, or a haloalkyl having 1 to 3 carbon atoms.
  • a group, a carboxyl group, an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group or an alkylcarbonyloxy group having 2 to 5 carbon atoms, or together, an oxo group may be formed, and Y is an oxygen atom or It is a sulfur atom, and Z is a nitrogen atom or a methine group.
  • C1-C4 alkyl group refers to a straight-chain, branched or cyclic alkyl group having 1 to 4 carbon atoms. For example, methyl, ethyl, n-propyl, isopropyl, cyclo A propyl group, a cyclopropylmethyl group, an n-butyl group, a sec-butyl group or a tert-butyl group can be mentioned.
  • the “C 1-4 alkoxy group” means a linear, branched or cyclic alkyl-oxy group having 1 to 4 carbon atoms such as methoxy group, ethoxy group, n-propyloxy group, isopropyl group. Examples thereof include an oxy group, a cyclopropyloxy group, an n-butoxy group, a sec-butoxy group, and a tert-butoxy group.
  • haloalkyl group having 1 to 3 carbon atoms means that some or all of the hydrogen atoms on the straight chain alkyl group having 1 to 3 carbon atoms are halogen atoms (halogen atoms are fluorine atoms, chlorine atoms, bromine atoms) And a monochloromethyl group, a monofluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a trichloromethyl group, or a pentafluoroethyl group.
  • C2-C5 alkylcarbonyloxy group examples include acetyloxy group, ethanoyloxy group, propanoyloxy group, isopropanoyloxy group, butanoyloxy group, isobutanoyloxy group or pivaloyloxy group Is mentioned.
  • A is preferably general formula (IIa), Y is preferably an oxygen atom, and Z is preferably a methine group.
  • R 1 represents a hydrogen atom, a chlorine atom, a trifluoromethyl group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a methoxy group, an ethoxy group, or an n-propyloxy group.
  • an isopropyloxy group is preferable, a trifluoromethyl group, a methyl group, or a methoxy group is more preferable, and a methyl group is further preferable.
  • R 2 represents a hydrogen atom, a chlorine atom, a trifluoromethyl group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a methoxy group, an ethoxy group, or an n-propyloxy group. Or an isopropyloxy group is preferable, and a methoxy group is more preferable.
  • R 3 is preferably a hydrogen atom
  • R 4 is preferably a hydroxymethyl group or a hydroxyl group, more preferably a hydroxyl group.
  • R 5 represents a hydrogen atom, a fluorine atom, a trifluoromethyl group, a carboxyl group, a methoxy group, an ethoxy group, an n-propyloxy group, an isopropyloxy group, a hydroxyl group, or an acetyloxy group.
  • a propanoyloxy group, a butanoyloxy group or an isobutanoyloxy group is preferred, a hydrogen atom, a hydroxyl group or a carboxyl group is more preferred, and a hydroxyl group is further preferred.
  • R 6 is a hydrogen atom, fluorine atom, trifluoromethyl group, carboxyl group, methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, hydroxyl group, acetyloxy group , A propanoyloxy group, a butanoyloxy group or an isobutanoyloxy group is preferable, a hydrogen atom or a hydroxyl group is more preferable, and a hydrogen atom is further preferable.
  • R 5 and R 6 may be combined to form an oxo group.
  • cyclohexane derivatives (I) represented by the above general formula (I) (hereinafter referred to as cyclohexane derivatives (I)), preferred specific examples are shown in Tables 1-1 to 1-4, but these are not intended to limit the present invention. Absent.
  • Examples of the “pharmacologically acceptable salt” include inorganic acid salts such as hydrochloride, sulfate, phosphate or hydrobromide, oxalate, malonate, citrate, and fumaric acid. Salt, lactate, malate, succinate, tartrate, acetate, trifluoroacetate, maleate, gluconate, benzoate, ascorbate, methanesulfonate, p-toluenesulfonic acid Organic salt such as salt or cinnamate, inorganic base salt such as sodium salt, potassium salt, calcium salt, magnesium salt or ammonium salt, or methylamine salt, diethylamine salt, trimethylamine salt, triethylamine salt, pyridinium salt, triethanol Examples thereof include organic base salts such as amine salts, ethylenediamine salts, and guanidine salts. Furthermore, the cyclohexane derivative (I) or a pharmacologically acceptable salt thereof may form a
  • the cyclohexane derivative (I) or a pharmacologically acceptable salt thereof can be synthesized, for example, according to a method described in a known document (International Publication No. 2010/050570).
  • cyclohexane derivative (I) or a pharmacologically acceptable salt thereof is effective for the treatment or prevention of anticancer drug-induced peripheral neuropathy is determined using peripheral neuropathy models induced by various anticancer drugs. It can be evaluated (ILAR Journal, 2014, Vol. 54, p.273-281).
  • Anticancer agents include, for example, nucleic acid metabolism inhibitors, microtubule polymerization or depolymerization inhibitors, hormone antagonists, intracellular signal transduction inhibitors, malignant tumor-specific molecular targeted drugs, nonspecific immunostimulators, etc. Can be mentioned.
  • nucleic acid metabolism inhibitor examples include alkylating agents, antitumor antibiotics, topoisomerase inhibitors, platinum preparations, pyrimidine metabolism inhibitors, purine metabolism inhibitors, folic acid synthesis inhibitors, and the like.
  • microtubule polymerization or depolymerization inhibitor examples include vinca alkaloid anticancer agents and taxane anticancer agents.
  • hormone antagonists include antiestrogens and antiandrogens.
  • intracellular signal transduction inhibitors examples include proteosome inhibitors and cereblon inhibitors.
  • malignant tumor-specific molecular targeting drugs include tyrosine kinase inhibitors, antibody preparations, arsenic preparations and the like.
  • non-specific immunostimulants include streptococcal preparations and potato bamboo polysaccharide preparations.
  • the anticancer agent is a drug having an anticancer activity and is not particularly limited as long as it induces peripheral neuropathy by administration.
  • the nucleic acid metabolism inhibitor include oxaliplatin, cisplatin, carboplatin. , Nedaplatin, cytarabine, nelarabine, etc., and microtubule polymerization or depolymerization inhibitors include, for example, paclitaxel, docetaxel, cabazitaxel, vincristine, vinblastine, vinorelbine, vindesine, eribulin, etc., intracellular signal transduction inhibitors Examples thereof include bortezomib and carfilzomib, and examples of the malignant tumor-specific molecular targeting drug include brentuximab vedotin, trastuzumab emtansine, thalidomide, pomalidomide, lenalidomide and the like.
  • anticancer drug-induced peripheral neuropathy examples include sensory neuropathy, motor neuropathy, and autonomic neuropathy.
  • Examples of symptoms of anticancer drug-induced peripheral neuropathy include pain, numbness, sensory abnormalities, sensory paralysis, sensory paralysis, motor paralysis, orthostatic hypotension, and constipation.
  • the therapeutic agent or preventive agent for peripheral neuropathy caused by the anticancer agent described above is an anticancer agent-induced peripheral agent for mammals (eg, mouse, rat, hamster, rabbit, cat, dog, cow, sheep, monkey or human). It can be used as a pharmaceutical useful for the treatment or prevention of neuropathy.
  • mammals eg, mouse, rat, hamster, rabbit, cat, dog, cow, sheep, monkey or human. It can be used as a pharmaceutical useful for the treatment or prevention of neuropathy.
  • cyclohexane derivative (I) or a pharmacologically acceptable salt thereof is incorporated as it is or a pharmaceutically acceptable carrier. Orally or parenterally.
  • Examples of dosage forms for oral administration of a preparation containing cyclohexane derivative (I) or a pharmacologically acceptable salt thereof include tablets (including sugar-coated tablets and film-coated tablets), pills, granules, and powders. , Capsules (including soft capsules and microcapsules), syrups, emulsions or suspensions.
  • Examples of the dosage form for parenteral administration of a preparation containing cyclohexane derivative (I) or a pharmacologically acceptable salt thereof include injections, infusions, drops, and suppositories.
  • cyclohexane derivative (I) or a pharmacologically acceptable salt thereof may be used with an appropriate base (eg, butyric acid polymer, glycolic acid polymer, butyric acid-glycolic acid copolymer, butyric acid polymer) It is also effective to form a sustained-release preparation by combining with a mixture of glycolic acid polymer or polyglycerol fatty acid ester).
  • an appropriate base eg, butyric acid polymer, glycolic acid polymer, butyric acid-glycolic acid copolymer, butyric acid polymer
  • Preparation of the above-mentioned dosage form containing cyclohexane derivative (I) or a pharmacologically acceptable salt thereof can be carried out according to a known production method generally used in the pharmaceutical field. In this case, if necessary, it is produced by containing excipients, binders, lubricants, disintegrating agents, sweeteners, surfactants, suspending agents, emulsifiers and the like that are generally used in the pharmaceutical field. be able to.
  • Preparation of tablets containing the cyclohexane derivative (I) or a pharmacologically acceptable salt thereof can be carried out by containing excipients, binders, disintegrants, lubricants, etc., and pills and granules
  • the preparation of the agent can be carried out by containing an excipient, a binder, a disintegrant and the like.
  • Powders and capsules are prepared with excipients, syrups are prepared with sweeteners, and emulsions or suspensions are added with surfactants, suspending agents, emulsifiers and the like. be able to.
  • excipient examples include lactose, glucose, starch, sucrose, microcrystalline cellulose, licorice powder, mannitol, sodium bicarbonate, calcium phosphate or calcium sulfate.
  • binder examples include starch paste, gum arabic solution, gelatin solution, tragacanth solution, carboxymethylcellulose solution, sodium alginate solution, and glycerin.
  • disintegrant examples include starch and calcium carbonate.
  • Examples of the lubricant include magnesium stearate, stearic acid, calcium stearate, and purified talc.
  • sweetener examples include glucose, fructose, invert sugar, sorbitol, xylitol, glycerin, and simple syrup.
  • surfactant examples include sodium lauryl sulfate, polysorbate 80, sorbitan monofatty acid ester, and polyoxyl 40 stearate.
  • suspending agent examples include gum arabic, sodium alginate, sodium carboxymethyl cellulose, methyl cellulose, and bentonite.
  • emulsifier examples include gum arabic, tragacanth, gelatin, and polysorbate 80.
  • a coloring agent, preservative, fragrance, or the like commonly used in the pharmaceutical field a corrigent, a stabilizer, a thickener, etc. can be added.
  • the daily dose of the above preparation varies depending on the patient's condition and body weight, the type of compound, the route of administration, etc. For example, when administered orally, it is 1 mg to 1000 mg for an adult (body weight of about 60 kg). In the range, it is preferably administered in 1 to 3 divided doses. In the case of parenteral administration, in the case of an injection, it is preferably administered by intravenous injection in the range of 0.01 to 100 mg / kg body weight.
  • the above medicines may be used in combination with or in combination with other drugs in order to supplement or enhance the therapeutic effect or preventive effect or reduce the dose.
  • it can be used in combination with a drug that relieves the symptoms of anticancer drug-induced peripheral neuropathy.
  • Example 1 of cyclohexane derivative (I) or pharmacologically acceptable salt thereof for allodynia (cold allodynia) for cold stimulation and allodynia (mechanical allodynia) for tactile stimulation in a rat oxaliplatin-induced peripheral neuropathy model Effects of repeated administration: The effect of cyclohexane derivative (I) or a pharmacologically acceptable salt thereof on cold allodynia and mechanical allodynia caused by administration of oxaliplatin was examined.
  • oxaliplatin-induced peripheral neuropathy model was prepared.
  • 5% glucose solution (Otsuka Pharmaceutical Factory) was administered, and the first administration day was set as the 0th day of disease state induction.
  • test compound 3 1- (1- (4-methoxyphenyl) -5- (p-tolyl) -1H-pyrazol-3-yl) cyclohexane-cis-1,4-diol represented by the following chemical formula ( Hereinafter, “compound 3”) was used.
  • Compound 3 was synthesized according to the method described in known literature (International Publication No. 2010/050555).
  • compound 3 From day 0 of disease induction, compound 3 (3, 10 or 30 mg / kg) or its solvent (0.5% methylcellulose solution) was orally administered to rats twice daily for 18 days (the second administration was the first administration) Was administered 8 hours after administration (administration on the 18th day after induction of the pathological condition was only for the first time).
  • Compound 3 was used suspended in a 0.5% methylcellulose solution.
  • the first administration was performed before the oxaliplatin administration on the 0th day of induction of the disease state, and the first administration was performed before and after the evaluation on the allodynia evaluation day.
  • the group composition is: sham induction-solvent administration group (Sham group), disease state induction-solvent administration group (Vehicle group), disease state induction-3 mg / kg compound 3 administration group (3 mg / kg compound 3 administration group), disease state induction-10 mg / Kg compound 3 administration group (10 mg / kg compound 3 administration group) and pathological induction-30 mg / kg compound 3 administration group (30 mg / kg compound 3 administration group).
  • the efficacy evaluation for cold allodynia was performed before the induction of the disease state and on the 12th day of the induction of the disease state (before the first administration of Compound 3 and 1 hour after the first administration of Compound 3).
  • the efficacy against cold allodynia was evaluated by the Cold Plate test.
  • a Cold Plate apparatus UGO BASILE
  • the cut off time was 180 seconds.
  • the medicinal efficacy evaluation for mechanical allodynia was performed before the induction of the disease state and on the 18th day after the induction of the disease state (before the first administration of Compound 3 and 1 hour after the first administration of Compound 3).
  • the efficacy against mechanical allodynia was evaluated by the von Frey test.
  • the test method was carried out using von Frey filament (North Coast Medical) according to the method described in known literature (Chaplan et al., Journal of Neuroscience Methods, 1994, Vol. 53, p.55-63).
  • the reaction threshold was calculated.
  • FIG. 1 shows the results of evaluating the effect of Compound 3 on cold allodynia.
  • the vertical axis in FIG. 1 shows the escape latency in the Cold Plate test, and the higher the value, the better the cold allodynia (mean value ⁇ standard error; 10 cases in each group).
  • the horizontal axis is from the left before pathological induction (in the figure, “Day 0 (before pathological induction)”), before the first administration of Compound 3 on day 12 of pathological induction (in the figure, “Day 12 (before administration of Compound 3)”) And each administration group at 1 hour after the first administration of Compound 3 on the 12th day of pathogenesis (in the figure, “Day 12 (1 hour after administration of Compound 3)”), and the horizontal axis “0”, “3”, “10” and “30” indicate administration dose (mg / kg) of Compound 3.
  • “#” In the figure indicates a statistically significant difference (p ⁇ 0.05, Wilcoxon test) as compared with the Sham group, and “*” in the figure indicates a difference with the Vehicle group. The difference is statistically significant (p ⁇ 0.025, Shirley-Williams multiple comparison, one sided).
  • Compound 3 administration group was compared with Vehicle group on the 12th day (before administration of Compound 3 for the first time and 1 hour after administration of Compound 3 for the first time) by oral administration of Compound 3 twice daily. A significant extension of the escape latency was observed. That is, it was revealed that Compound 3 suppresses the onset of peripheral neuropathy (cold allodynia) induced by oxaliplatin.
  • FIG. 2 shows the results of evaluating the effect of Compound 3 on mechanical allodynia.
  • the vertical axis in FIG. 2 shows the 50% response threshold in the von Frey test, and the higher the value, the better the mechanical allodynia (mean ⁇ standard error; 10 cases in each group).
  • the horizontal axis is from the left before pathological induction (in the figure, “Day 0 (before pathological induction)”), before the first administration of Compound 3 on day 18 of pathological induction (in the figure, “Day 18 (before administration of Compound 3)”)
  • each administration group at 1 hour after the first administration of Compound 3 on the 18th day of pathogenesis is shown, and the horizontal axis “0”, “3”, “10” and “30” indicate administration dose (mg / kg) of Compound 3.
  • the compound 3 administration group was compared with the vehicle group on the 18th day (before administration of the first compound 3 and 1 hour after administration of the first compound 3) by oral administration of compound 3 twice daily. A significant increase in the 50% response threshold was observed. That is, it was revealed that Compound 3 suppresses the onset of peripheral neuropathy (mechanical allodynia) induced by oxaliplatin.
  • Example 2 Effect of a single administration of cyclohexane derivative (I) or a pharmacologically acceptable salt thereof on cold allodynia and mechanical allodynia in a rat oxaliplatin-induced peripheral neuropathy model: The effect of cyclohexane derivative (I) or a pharmacologically acceptable salt thereof on cold allodynia and mechanical allodynia caused by administration of oxaliplatin was examined.
  • the pathological induction was performed in the same manner as in Example 1.
  • Compound 3 (3, 10 or 30 mg / kg) or solvent (0.5% methylcellulose solution) was orally administered to rats once on the 12th or 18th day after induction of the disease state.
  • the group composition is: sham induction-solvent administration group (Sham group), disease state induction-solvent administration group (Vehicle group), disease state induction-3 mg / kg compound 3 administration group (3 mg / kg compound 3 administration group), disease state induction-10 mg / Kg compound 3 administration group (10 mg / kg compound 3 administration group) and pathological induction-30 mg / kg compound 3 administration group (30 mg / kg compound 3 administration group).
  • the efficacy evaluation for cold allodynia was evaluated in the same manner as in Example 1 and was performed on the 12th day of induction of the disease state (before administration of compound 3, 1 hour after administration of compound 3, and 3 hours after administration of compound 3).
  • the medicinal efficacy evaluation for mechanical allodynia was evaluated in the same manner as in Example 1 and was performed on the 18th day of induction of the disease state (before administration of Compound 3, 1 hour after administration of Compound 3 and 3 hours after administration of Compound 3).
  • the results of evaluating the effect of Compound 3 on cold allodynia are shown in FIG.
  • the vertical axis in FIG. 3 represents the escape latency in the Cold Plate test, and the higher the value, the better the cold allodynia (mean value ⁇ standard error; 8 cases in each group).
  • the horizontal axis is from the left before compound 3 administration (in the figure, “Day 12 (before administration)”), 1 hour after administration of compound 3 (in the figure, “Day 12 (1 hour after)”), and 3 hours after administration of compound 3 ( In the figure, each administration group in “Day 12 (after 3 hours)”) is shown, and “0”, “3”, “10” and “30” on the horizontal axis indicate administration doses of Compound 3 (mg / kg). .
  • the vehicle group On the 12th day after the induction of the disease state (before administration of Compound 3, 1 hour after administration of Compound 3 and 3 hours after administration of Compound 3), the vehicle group was observed to have a significant shortening of the escape latency compared to the sham group. That is, the onset of cold allodynia, which is a peripheral neuropathy induced by oxaliplatin, was confirmed.
  • the compound 3 administration group showed a significant increase in the escape latency compared to the Vehicle group. That is, it was revealed that Compound 3 suppresses peripheral neuropathy (cold allodynia) induced by oxaliplatin.
  • FIG. 4 shows the results of evaluating the effect of Compound 3 on mechanical allodynia.
  • the vertical axis in FIG. 4 shows the 50% response threshold in the von Frey test on the 18th day of disease induction (before administration of compound 3, 1 hour after administration of compound 3, and 3 hours after administration of compound 3). It shows that allodynia is improved (mean ⁇ standard error; 8 cases in each group).
  • the horizontal axis is from the left before compound 3 administration (in the figure, “Day 18 (before administration)”), 1 hour after administration of compound 3 (in the figure, “Day 18 (1 hour after)”), and 3 hours after administration of compound 3 ( In the figure, each administration group in “Day 18 (3 hours later)” is shown, and “0”, “3”, “10”, and “30” on the horizontal axis indicate administration doses (mg / kg) of Compound 3. .
  • Paclitaxel (4 mg / kg, solvent: cremophor / ethanol / saline (1: 1: 1); ChromaDex, Inc.) was measured every other day on SD rats (6 weeks old, male; Charles River, Japan).
  • a paclitaxel-induced peripheral neuropathy model was prepared by administering 4 times (administered intraperitoneally on days 1, 3, 5 and 7 after pathogenesis).
  • solvent: cremophor / ethanol / saline (1: 1: 2) was administered, and the first administration day was defined as the first day of disease induction.
  • Compound 3 ( 10 or 30 mg / kg) or its solvent (0.5% methylcellulose solution) was orally administered to rats twice daily for 14 days (the second administration was the first administration) 8 hours after administration). Compound 3 was used suspended in a 0.5% methylcellulose solution. On the first day of disease induction, the first administration was performed before paclitaxel administration.
  • the group composition is: sham induction-solvent administration group (Sham group), disease state induction-solvent administration group (Vehicle group), disease state induction-3 mg / kg compound 3 administration group (3 mg / kg compound 3 administration group), disease state induction-10 mg / Kg compound 3 administration group (10 mg / kg compound 3 administration group) and pathological induction-30 mg / kg compound 3 administration group (30 mg / kg compound 3 administration group).
  • the medicinal efficacy evaluation for mechanical allodynia was evaluated by the same method as in Example 1. Before the induction of the disease state, the day after the final administration of Compound 3 (the 15th day of the disease state induction) and 1 week after (the 22nd day of the induction of the disease state) Went to.
  • FIG. 5 shows the 50% response threshold in the von Frey test, and the higher the value, the better the mechanical allodynia (mean ⁇ standard error; 9-10 cases in each group).
  • the horizontal axis is from the left before the induction of the disease state (in the figure, “Day 0 (before the induction of the disease state)”), 15 days after the induction of the disease state (in the figure, “Day 15 (1 day after administration of Compound 3)”) and 22 days after the induction of the disease state ( In the figure, each administration group in “Day 22 (8 days after administration of Compound 3)”) is shown, and “0”, “3”, “10” and “30” on the horizontal axis are administration doses of Compound 3 (mg / kg) Indicates. “#” In the figure indicates a statistically significant difference (p ⁇ 0.05, Welch's t test) compared to the Sham group, and “*” in the figure indicates the Vehicle group. The difference is statistically significant (*: p ⁇ 0.025, Williams multiple comparison, one-sided).
  • Example 4 Effect of repeated administration of cyclohexane derivative (I) or a pharmacologically acceptable salt thereof on mechanical allodynia in a rat bortezomib-induced peripheral neuropathy model: The effect of cyclohexane derivative (I) or a pharmacologically acceptable salt thereof on mechanical allodynia caused by administration of bortezomib was examined.
  • Bortezomib-induced peripheral neuropathy model was prepared by administering the solution once (administered intraperitoneally on days 1, 4, 8 and 11 of pathological induction).
  • solvent: DMSO / Tween 80 / water for injection (1: 1: 18) was administered, and the first administration day was defined as the first day of disease induction.
  • Compound 3 ( 10 or 30 mg / kg) or its solvent (0.5% methylcellulose solution) was orally administered to rats twice daily for 14 days (the second administration was the first administration) 8 hours after administration).
  • Compound 3 was used suspended in a 0.5% methylcellulose solution.
  • the first administration was performed before bortezomib administration.
  • the group composition is: sham induction-solvent administration group (Sham group), disease state induction-solvent administration group (Vehicle group), disease state induction-3 mg / kg compound 3 administration group (3 mg / kg compound 3 administration group), disease state induction-10 mg / Kg compound 3 administration group (10 mg / kg compound 3 administration group) and pathological induction-30 mg / kg compound 3 administration group (30 mg / kg compound 3 administration group).
  • the medicinal efficacy evaluation for mechanical allodynia was evaluated by the same method as in Example 1. Before the induction of the disease state, the day after the final administration of Compound 3 (the 15th day of the disease state induction) and 1 week after (the 22nd day of the induction of the disease state) Went to.
  • FIG. 6 The evaluation results of the effect of Compound 3 on mechanical allodynia are shown in FIG.
  • the vertical axis of FIG. 6 shows the 50% response threshold in the von Frey test, and the higher the value, the better the mechanical allodynia (mean ⁇ standard error; 10 cases in each group).
  • the horizontal axis is from the left before the induction of the disease state (in the figure, “Day 0 (before the induction of the disease state)”), 15 days after the induction of the disease state (in the figure, “Day 15 (1 day after administration of Compound 3)”) and 22 days after the induction of the disease state ( In the figure, each administration group in “Day 22 (8 days after administration of Compound 3)”) is shown, and “0”, “3”, “10” and “30” on the horizontal axis are administration doses of Compound 3 (mg / kg) Indicates. “#” In the figure indicates a statistically significant difference (p ⁇ 0.05, Student's t test) compared to the Sham group, and “*” in the figure indicates the Vehicle group. The difference is statistically significant (*: p ⁇ 0.025, Williams multiple comparison, one-sided).
  • cyclohexane derivative (I) or a pharmacologically acceptable salt thereof has an inhibitory effect on anticancer drug-induced peripheral neuropathy.
  • the cyclohexane derivative of the present invention or a pharmacologically acceptable salt thereof can be used as a therapeutic or prophylactic agent for anticancer drug-induced peripheral neuropathy because it suppresses symptoms of anticancer drug-induced peripheral neuropathy. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Neurosurgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明は、抗がん剤によって誘発される末梢神経障害の治療又は予防に使用するための化合物を提供することを課題とする。本発明は、下記の化学式に代表されるシクロヘキサン誘導体又はその薬理学的に許容される塩を有効成分として含有する、抗がん剤によって誘発される末梢神経障害の治療剤又は予防剤を提供する。

Description

抗がん剤誘発末梢神経障害の治療剤又は予防剤
 本発明は、抗がん剤によって誘発される末梢神経障害の治療剤又は予防剤に関する。
 抗がん剤は、末梢神経の神経細胞(軸索又は神経細胞体)又は髄鞘(シュワン細胞)に傷害を与えることにより、四肢のしびれ(異常感覚)、錯感覚、感覚鈍磨、疼痛若しくは難聴等の症状を示す感覚神経障害、筋力低下・萎縮、弛緩性麻痺若しくは深部腱反射の低下・消失等の症状を示す運動神経障害、又は、便秘、腹痛、発汗障害、排尿障害若しくは起立性低血圧等の症状を示す自律神経障害等の末梢神経障害を引き起こすと考えられている(非特許文献1)。
 末梢神経障害のこれらの症状は、命にかかわることはほとんどないが、患者の日常生活に大きな影響を与え、生活の質を著しく低下させる(非特許文献1)。
 抗がん剤によって誘発される末梢神経障害の症状を和らげるため、鎮痛薬(例えば、プレガバリン、ガバペンチン又はケタミン)、抗てんかん薬(例えば、ラモトリジン、カルバマゼピン、フェニトイン、バルプロ酸又はクロナゼパム)、抗うつ薬(例えば、アミトリプチリン、イミプラミン、クロミプラミン又はデュロキセチン)、漢方薬(例えば、牛車腎気丸又は芍薬甘草湯)、ビタミンB製剤(例えば、B6又はB12)等が投与されるが、抗がん剤によって誘発される末梢神経障害を治療又は予防する有効な方法は確立されていない(非特許文献1)。
 上記薬剤のうち、デュロキセチンのみが臨床試験におけるエビデンスレベルが高く、米国臨床癌学会が策定した、化学療法剤誘発末梢神経障害治療ガイドライン(非特許文献2)で使用が推奨されている。一方で、国際疼痛学会及び欧州神経学会がそれぞれ策定した、神経障害性疼痛治療ガイドライン(非特許文献3~4)で使用が推奨される薬剤のうち、デュロキセチンを除いて、プレガバリン、ガバペンチン、ノルトリプチリン、アミトリプチリンはいずれも、抗がん剤によって誘発される末梢神経障害に有効であることを明確に示すエビデンスは存在しない(非特許文献5~6)。
 下記一般式で示されるシクロヘキサン誘導体は、鎮痛薬及び神経因性疼痛治療薬(特許文献1)、線維筋痛症治療薬(特許文献2)、蓄尿障害治療薬(特許文献3)、アルツハイマー病治療薬(特許文献4)、神経障害性疼痛治療薬(特許文献5)及び多発性硬化症治療薬(特許文献6)として有効であることが知られている。
Figure JPOXMLDOC01-appb-C000005
[式中、Aは、置換又は無置換の、1,5-ジアリール-1H-ピラゾール-3-イル基又は4,5-ジアリールオキサゾール-2-イル基等を表し、Rは、フッ素原子又はヒドロキシル基等を表し、R及びRは、それぞれ独立して、水素原子、ヒドロキシル基又はカルボキシル基等を表す。]
国際公開第2010/050577号 国際公開第2011/125836号 国際公開第2011/125838号 国際公開第2011/136318号 国際公開第2012/015027号 国際公開第2015/115509号
静岡県立静岡がんセンター、「抗がん剤治療と末梢神経障害(第3刷)」、2016年、p.1-36 Hershmanら、Journal of Oncology Practice、第10巻、2014年、p.e421-e424 Attalら、Pain、第18巻、2010年 Attalら、European Journal of Neurology、第17巻、2010年、p.1113-1123 Shindeら、Support Care Cancer、第24巻、2016年、p.547-553 Gewandterら、Pain、第158巻、2017年、p.30-33
 本発明は、抗がん剤投与時の副作用として発現する、抗がん剤によって誘発される末梢神経障害(以下、「抗がん剤誘発末梢神経障害」という。)の治療剤又は予防剤を提供することを目的とする。
 本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、特定のシクロヘキサン誘導体又はその薬理学的に許容される塩が、抗がん剤誘発末梢神経障害に対して抑制効果を有することを見出すに至った。
 すなわち、本発明は、下記の一般式(I)で示されるシクロヘキサン誘導体又はその薬理学的に許容される塩を有効成分として含有する、抗がん剤誘発末梢神経障害の治療剤又は予防剤を提供する。
Figure JPOXMLDOC01-appb-C000006
[式中、Aは、一般式(IIa)又は(IIb)で表される置換基であり、
Figure JPOXMLDOC01-appb-C000007
 R及びRは、それぞれ独立して、水素原子、塩素原子、炭素数1~3のハロアルキル基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基又はシアノ基であり、Rは、水素原子又は塩素原子であり、Rは、フッ素原子、ヒドロキシメチル基又はヒドロキシル基であり、R及びRは、それぞれ独立して、水素原子、フッ素原子、炭素数1~3のハロアルキル基、カルボキシル基、メトキシカルボニル基、エトキシカルボニル基、炭素数1~4のアルコキシ基、ヒドロキシル基又は炭素数2~5のアルキルカルボニルオキシ基であるか、一緒になってオキソ基を形成してもよく、R及びRは、それぞれ独立して、水素原子又はフッ素原子であり、Yは、酸素原子又は硫黄原子であり、Zは、窒素原子又はメチン基である。]
 また、本発明は、下記の一般式(I)で示されるシクロヘキサン誘導体又はその薬理学的に許容される塩を有効成分として含有する、抗がん剤誘発末梢神経障害の治療剤又は予防剤を提供する。
Figure JPOXMLDOC01-appb-C000008
[式中、Aは、一般式(IIc)又は(IId)で表される置換基であり、
Figure JPOXMLDOC01-appb-C000009
 R及びRは、それぞれ独立して、水素原子、塩素原子、炭素数1~3のハロアルキル基、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基であり、Rは、水素原子又は塩素原子であり、Rは、フッ素原子、ヒドロキシメチル基又はヒドロキシル基であり、R及びRは、それぞれ独立して、水素原子、フッ素原子、炭素数1~3のハロアルキル基、カルボキシル基、炭素数1~4のアルコキシ基、ヒドロキシル基又は炭素数2~5のアルキルカルボニルオキシ基であるか、一緒になってオキソ基を形成してもよく、Yは、酸素原子又は硫黄原子であり、Zは、窒素原子又はメチン基である。]
 上記のシクロヘキサン誘導体は、R及びRが、それぞれ独立して、水素原子、塩素原子、炭素数1~3のハロアルキル基、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基であり、R及びRが、それぞれ独立して、水素原子、フッ素原子、炭素数1~3のハロアルキル基、カルボキシル基、炭素数1~4のアルコキシ基、ヒドロキシル基又は炭素数2~5のアルキルカルボニルオキシ基であるか、一緒になってオキソ基を形成してもよく、R及びRが、水素原子であることが好ましい。
 上記のシクロヘキサン誘導体は、R及びRが、それぞれ独立して、トリフルオロメチル基、メチル基又はメトキシ基であることがより好ましく、Rが水素原子であり、Rがヒドロキシメチル基又はヒドロキシル基であり、R及びRがそれぞれ独立して水素原子、フッ素原子、トリフルオロメチル基、カルボキシル基、メトキシ基、ヒドロキシル基又はアセチルオキシ基(一緒になってオキソ基を形成してもよい)であることがさらに好ましい。
 また、本発明は、上記の一般式(I)で示されるシクロヘキサン誘導体又はその薬理学的に許容される塩、及び薬理学的に許容される賦形剤等を含有する、抗がん剤誘発末梢神経障害を治療又は予防するための医薬組成物を提供する。
 また、本発明は、抗がん剤誘発末梢神経障害の治療又は予防に使用するための、上記の一般式(I)で示されるシクロヘキサン誘導体又はその薬理学的に許容される塩を提供する。
 また、本発明は、抗がん剤誘発末梢神経障害を治療又は予防するための、上記の一般式(I)で示されるシクロヘキサン誘導体又はその薬理学的に許容される塩の使用を提供する。
 また、本発明は、抗がん剤誘発末梢神経障害を治療又は予防するための医薬の製造における、上記の一般式(I)で示されるシクロヘキサン誘導体又はその薬理学的に許容される塩の使用を提供する。
 また、本発明は、抗がん剤誘発末梢神経障害を治療又は予防する方法であって、治療の必要のある患者に治療有効量の上記の一般式(I)で示されるシクロヘキサン誘導体又はその薬理学的に許容される塩を投与することを含む方法を提供する。
 本発明のシクロヘキサン誘導体又はその薬理学的に許容される塩は、抗がん剤誘発末梢神経障害の症状を抑制できることから、抗がん剤誘発末梢神経障害の治療剤又は予防剤として利用できる。
 本明細書は、本願の優先権の基礎である日本国特許出願第2017-070431号及び日本国特許出願第2017-161780号の明細書及び/又は図面に記載される内容を包含する。
ラットオキサリプラチン誘発末梢神経障害モデルにおける冷的アロディニアに対する化合物3(3、10、30mg/kg)の反復投与による効果を示す図である。 ラットオキサリプラチン誘発末梢神経障害モデルにおける機械的アロディニアに対する化合物3(3、10、30mg/kg)の反復投与による効果を示す図である。 ラットオキサリプラチン誘発末梢神経障害モデルにおける冷的アロディニアに対する化合物3(3、10、30mg/kg)の単回投与による効果を示す図である。 ラットオキサリプラチン誘発末梢神経障害モデルにおける機械的アロディニアに対する化合物3(3、10、30mg/kg)の単回投与による効果を示す図である。 ラットパクリタキセル誘発末梢神経障害モデルにおける機械的アロディニアに対する化合物3(3、10、30mg/kg)の反復投与による効果を示す図である。 ラットボルテゾミブ誘発末梢神経障害モデルにおける機械的アロディニアに対する化合物3(3、10、30mg/kg)の反復投与による効果を示す図である。
 本発明の抗がん剤誘発末梢神経障害の治療剤又は予防剤は、下記の一般式(I)で示されるシクロヘキサン誘導体又はその薬理学的に許容される塩を有効成分として含有することを特徴としている。
Figure JPOXMLDOC01-appb-C000010
[式中、Aは、下記一般式(IIa)又は(IIb)で表される置換基であり、
Figure JPOXMLDOC01-appb-C000011
 R及びRは、それぞれ独立して、水素原子、塩素原子、炭素数1~3のハロアルキル基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基又はシアノ基であり、Rは、水素原子又は塩素原子であり、Rは、フッ素原子、ヒドロキシメチル基又はヒドロキシル基であり、R及びRは、それぞれ独立して、水素原子、フッ素原子、炭素数1~3のハロアルキル基、カルボキシル基、メトキシカルボニル基、エトキシカルボニル基、炭素数1~4のアルコキシ基、ヒドロキシル基又は炭素数2~5のアルキルカルボニルオキシ基であるか、一緒になってオキソ基を形成してもよく、R及びRは、それぞれ独立して、水素原子又はフッ素原子であり、Yは、酸素原子又は硫黄原子であり、Zは、窒素原子又はメチン基である。]
 また、本発明の抗がん剤による末梢神経障害の治療剤又は予防剤は、下記の一般式(I)で示されるシクロヘキサン誘導体又はその薬理学的に許容される塩を有効成分として含有することを特徴としている。
Figure JPOXMLDOC01-appb-C000012
[式中、Aは、一般式(IIc)又は(IId)で表される置換基であり、
Figure JPOXMLDOC01-appb-C000013
 R及びRは、それぞれ独立して、水素原子、塩素原子、炭素数1~3のハロアルキル基、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基であり、Rは、水素原子又は塩素原子であり、Rは、フッ素原子、ヒドロキシメチル基又はヒドロキシル基であり、R及びRは、それぞれ独立して、水素原子、フッ素原子、炭素数1~3のハロアルキル基、カルボキシル基、炭素数1~4のアルコキシ基、ヒドロキシル基又は炭素数2~5のアルキルカルボニルオキシ基であるか、一緒になってオキソ基を形成してもよく、Yは、酸素原子又は硫黄原子であり、Zは、窒素原子又はメチン基である。]
 「炭素数1~4のアルキル基」とは、炭素数1~4の直鎖状、分岐状又は環状のアルキル基を表し、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、シクロプロピルメチル基、n-ブチル基、sec-ブチル基又はtert-ブチル基が挙げられる。
 「炭素数1~4のアルコキシ基」とは、炭素数1~4の直鎖状、分岐状又は環状のアルキル-オキシ基を表し、例えば、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、シクロプロピルオキシ基、n-ブトキシ基、sec-ブトキシ基又はtert-ブトキシ基が挙げられる。
 「炭素数1~3のハロアルキル基」とは、炭素数1~3の直鎖状のアルキル基上の水素原子の一部又は全てがハロゲン原子(ハロゲン原子とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を表す)で置換されている基を表し、例えば、モノクロロメチル基、モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、トリクロロメチル基又はペンタフルオロエチル基が挙げられる。
 「炭素数2~5のアルキルカルボニルオキシ基」としては、例えば、アセチルオキシ基、エタノイルオキシ基、プロパノイルオキシ基、イソプロパノイルオキシ基、ブタノイルオキシ基、イソブタノイルオキシ基又はピバロイルオキシ基が挙げられる。
 上記の一般式(I)において、Aとしては、一般式(IIa)が好ましく、Yとしては、酸素原子が好ましく、Zとしては、メチン基が好ましい。
 上記の一般式(I)において、Rとしては、水素原子、塩素原子、トリフルオロメチル基、メチル基、エチル基、n-プロピル基、イソプロピル基、メトキシ基、エトキシ基、n-プロピルオキシ基又はイソプロピルオキシ基が好ましく、トリフルオロメチル基、メチル基又はメトキシ基がより好ましく、メチル基がさらに好ましい。
 上記の一般式(I)において、Rとしては、水素原子、塩素原子、トリフルオロメチル基、メチル基、エチル基、n-プロピル基、イソプロピル基、メトキシ基、エトキシ基、n-プロピルオキシ基又はイソプロピルオキシ基が好ましく、メトキシ基がより好ましい。
 上記の一般式(I)において、Rとしては、水素原子が好ましく、Rとしては、ヒドロキシメチル基又はヒドロキシル基が好ましく、ヒドロキシル基がより好ましい。
 上記の一般式(I)において、Rとしては、水素原子、フッ素原子、トリフルオロメチル基、カルボキシル基、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、ヒドロキシル基、アセチルオキシ基、プロパノイルオキシ基、ブタノイルオキシ基又はイソブタノイルオキシ基が好ましく、水素原子、ヒドロキシル基又はカルボキシル基がより好ましく、ヒドロキシル基がさらに好ましい。
 上記の一般式(I)において、Rとしては、水素原子、フッ素原子、トリフルオロメチル基、カルボキシル基、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、ヒドロキシル基、アセチルオキシ基、プロパノイルオキシ基、ブタノイルオキシ基又はイソブタノイルオキシ基が好ましく、水素原子又はヒドロキシル基がより好ましく、水素原子がさらに好ましい。また、RとRとが一緒になって、オキソ基を形成してもよい。
 また、上記の一般式(I)において、R及びRとしては、水素原子が好ましい。
 上記の一般式(I)で示されるシクロヘキサン誘導体(以下、シクロヘキサン誘導体(I))のうち、好ましい具体例を表1-1~表1-4に示すが、これらは本発明を限定するものではない。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 なお、シクロヘキサン誘導体(I)又はその薬理学的に許容される塩に不斉炭素が存在する場合には、全ての鏡像異性体及びそれらの混合物が、シクロヘキサン誘導体(I)又はその薬理学的に許容される塩に含まれる。
 さらに、シクロヘキサン誘導体(I)又はその薬理学的に許容される塩に立体異性体が存在する場合には、全ての立体異性体及びそれらの混合物が、シクロヘキサン誘導体(I)又はその薬理学的に許容される塩に含まれる。
 「薬理学的に許容される塩」としては、例えば、塩酸塩、硫酸塩、リン酸塩若しくは臭化水素酸塩等の無機酸塩、シュウ酸塩、マロン酸塩、クエン酸塩、フマル酸塩、乳酸塩、リンゴ酸塩、コハク酸塩、酒石酸塩、酢酸塩、トリフルオロ酢酸塩、マレイン酸塩、グルコン酸塩、安息香酸塩、アスコルビン酸塩、メタンスルホン酸塩、p-トルエンスルホン酸塩若しくはケイ皮酸塩等の有機酸塩、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩若しくはアンモニウム塩等の無機塩基塩又はメチルアミン塩、ジエチルアミン塩、トリメチルアミン塩、トリエチルアミン塩、ピリジニウム塩、トリエタノールアミン塩、エチレンジアミン塩若しくはグアニジン塩等の有機塩基塩が挙げられる。さらに、シクロヘキサン誘導体(I)又はその薬理学的に許容される塩は、水和物又は溶媒和物を形成してもよく、結晶多形もこれに含まれる。
 シクロヘキサン誘導体(I)又はその薬理学的に許容される塩は、例えば、公知文献(国際公開第2010/050577号)に記載の方法に従って合成することができる。
 シクロヘキサン誘導体(I)又はその薬理学的に許容される塩が抗がん剤誘発末梢神経障害の治療又は予防に有効であることは、各種抗がん剤により誘発した末梢神経障害モデルを用いて評価できる(ILAR Journal、2014年、第54巻、p.273-281)。
 抗がん剤としては、例えば、核酸代謝阻害剤、微小管重合又は脱重合阻害剤、ホルモン拮抗剤、細胞内シグナル伝達阻害剤、悪性腫瘍特異的分子標的薬、非特異的免疫賦活剤等が挙げられる。
 核酸代謝阻害剤としては、例えば、アルキル化剤、抗腫瘍性抗生物質、トポイソメラーゼ阻害剤、白金製剤、ピリミジン代謝阻害剤、プリン代謝阻害剤、葉酸合成阻害剤等が挙げられる。
 微小管重合又は脱重合阻害剤としては、例えば、ビンカアルカロイド系抗がん剤、タキサン系抗がん剤等が挙げられる。
 ホルモン拮抗剤としては、例えば、抗エストロゲン剤、抗アンドロゲン剤等が挙げられる。
 細胞内シグナル伝達阻害剤としては、例えば、プロテオソーム阻害剤、セレブロン阻害剤等が挙げられる。
 悪性腫瘍特異的分子標的薬としては、例えば、チロシンキナーゼ阻害剤、抗体製剤、砒素製剤等が挙げられる。
 非特異的免疫賦活剤としては、例えば、溶連菌製剤、かわらたけ多糖体製剤等が挙げられる。
 抗がん剤は、抗がん作用を有する薬剤のことであり、投与により末梢神経障害を誘発するものであれば特に限定されないが、核酸代謝阻害剤としては、例えば、オキサリプラチン、シスプラチン、カルボプラチン、ネダプラチン、シタラビン、ネララビン等が挙げられ、微小管重合又は脱重合阻害剤としては、例えば、パクリタキセル、ドセタキセル、カバジタキセル、ビンクリスチン、ビンブラスチン、ビノレルビン、ビンデシン、エリブリン等が挙げられ、細胞内シグナル伝達阻害剤としては、例えば、ボルテゾミブ、カルフィルゾミブ等が挙げられ、悪性腫瘍特異的分子標的薬としては、例えば、ブレンツキシマブ ベドチン、トラスツズマブエムタンシン、サリドマイド、ポマリドミド、レナリドミド等が挙げられる。
 抗がん剤誘発末梢神経障害としては、例えば、感覚神経障害、運動神経障害、自律神経障害が挙げられる。
 抗がん剤誘発末梢神経障害の症状としては、例えば、痛み、しびれ、感覚異常、感覚鈍麻、感覚麻痺、運動麻痺、起立性低血圧、便秘が挙げられる。
 上記の抗がん剤による末梢神経障害の治療剤又は予防剤は、哺乳動物(例えば、マウス、ラット、ハムスター、ウサギ、ネコ、イヌ、ウシ、ヒツジ、サル又はヒト)に対する抗がん剤誘発末梢神経障害の治療又は予防に有用な医薬品として用いることができる。
 上記の抗がん剤誘発末梢神経障害の治療剤又は予防剤の投与形態としては、シクロヘキサン誘導体(I)又はその薬理学的に許容される塩を、そのまま又は医薬として許容される担体を配合して、経口的又は非経口的に投与することができる。
 シクロヘキサン誘導体(I)又はその薬理学的に許容される塩を含有する製剤を経口投与する場合の剤形としては、例えば、錠剤(糖衣錠、フィルムコーティング錠を含む)、丸剤、顆粒剤、散剤、カプセル剤(ソフトカプセル剤、マイクロカプセル剤を含む)、シロップ剤、乳剤又は懸濁剤が挙げられる。また、シクロヘキサン誘導体(I)又はその薬理学的に許容される塩を含有する製剤を非経口投与する場合の剤形としては、例えば、注射剤、注入剤、点滴剤又は坐剤が挙げられる。また、シクロヘキサン誘導体(I)又はその薬理学的に許容される塩を適当な基剤(例えば、酪酸の重合体、グリコール酸の重合体、酪酸-グリコール酸の共重合体、酪酸の重合体とグリコール酸の重合体との混合物又はポリグリセロール脂肪酸エステル)と組み合わせて、徐放性製剤とすることも有効である。
 シクロヘキサン誘導体(I)又はその薬理学的に許容される塩を含有する上記の剤形の製剤の調製は、製剤分野で一般的に用いられている公知の製造方法に従って行うことができる。この場合、必要に応じて、製剤分野において一般的に用いられる賦形剤、結合剤、滑沢剤、崩壊剤、甘味剤、界面活性剤、懸濁化剤、乳化剤等を含有させて製造することができる。
 シクロヘキサン誘導体(I)又はその薬理学的に許容される塩を含有する錠剤の調製は、賦形剤、結合剤、崩壊剤、滑沢剤等を含有させて行うことができ、丸剤及び顆粒剤の調製は、賦形剤、結合剤、崩壊剤等を含有させて行うことができる。また、散剤及びカプセル剤の調製は賦形剤等を、シロップ剤の調製は甘味剤等を、乳剤又は懸濁剤の調製は、界面活性剤、懸濁化剤、乳化剤等を含有させて行うことができる。
 上記の賦形剤としては、例えば、乳糖、ブドウ糖、デンプン、ショ糖、微結晶セルロース、カンゾウ末、マンニトール、炭酸水素ナトリウム、リン酸カルシウム又は硫酸カルシウムが挙げられる。
 上記の結合剤としては、例えば、デンプンのり液、アラビアゴム液、ゼラチン液、トラガント液、カルボキシメチルセルロース液、アルギン酸ナトリウム液又はグリセリンが挙げられる。
 上記の崩壊剤としては、例えば、デンプン又は炭酸カルシウムが挙げられる。
 上記の滑沢剤としては、例えば、ステアリン酸マグネシウム、ステアリン酸、ステアリン酸カルシウム又は精製タルクが挙げられる。
 上記の甘味剤としては、例えば、ブドウ糖、果糖、転化糖、ソルビトール、キシリトール、グリセリン又は単シロップが挙げられる。
 上記の界面活性剤としては、例えば、ラウリル硫酸ナトリウム、ポリソルベート80、ソルビタンモノ脂肪酸エステル又はステアリン酸ポリオキシル40が挙げられる。
 上記の懸濁化剤としては、例えば、アラビアゴム、アルギン酸ナトリウム、カルボキシメチルセルロースナトリウム、メチルセルロース又はベントナイトが挙げられる。
 上記の乳化剤としては、例えば、アラビアゴム、トラガント、ゼラチン又はポリソルベート80が挙げられる。
 さらに、シクロヘキサン誘導体(I)又はその薬理学的に許容される塩を含有する製剤を上記の剤形に調製する場合には、製剤分野において一般的に用いられる着色剤、保存剤、芳香剤、矯味剤、安定剤、粘稠剤等を添加することができる。
 上記の製剤の1日あたりの投与量は、患者の状態や体重、化合物の種類、投与経路等によって異なるが、例えば、経口投与する場合には成人(体重約60kg)であれば1mg~1000mgの範囲で、1~3回に分けて投与することが好ましく、非経口投与する場合には、注射剤であれば体重1kgあたり0.01~100mgの範囲で静脈注射により投与することが好ましい。
 上記医薬は、その治療効果若しくは予防効果の補完又は増強あるいは投与量の低減のために、他の薬剤と適量配合又は併用して使用しても構わない。例えば、抗がん剤誘発末梢神経障害の症状を和らげる薬剤と併用することもできる。
 以下、本発明を実施例に基づき具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)ラットオキサリプラチン誘発末梢神経障害モデルにおける冷刺激に対するアロディニア(冷的アロディニア)及び触刺激に対するアロディニア(機械的アロディニア)に対するシクロヘキサン誘導体(I)又はその薬理学的に許容される塩の反復投与による効果:
 オキサリプラチンの投与によって発症する冷的アロディニア及び機械的アロディニアに対するシクロヘキサン誘導体(I)又はその薬理学的に許容される塩の効果を検討した。
 SDラット(7週齢、オス;日本チャールス・リバー)にオキサリプラチン(4mg/kg、エルプラット点滴静注液200g;ヤクルト)を1週間サイクル(1週間に2日連日で腹腔内に2回投与)で2又は3週間投与することで、オキサリプラチン誘発末梢神経障害モデルを作製した。対照(偽誘発)として、5%ブドウ糖液(大塚製薬工場)を投与し、初回の投与日を病態誘発0日目とした。
 被験化合物としては、下記の化学式で示される、1-(1-(4-メトキシフェニル)-5-(p-トリル)-1H-ピラゾール-3-イル)シクロヘキサン-シス-1,4-ジオール(以下、「化合物3」という。)を用いた。化合物3は、公知文献(国際公開第2010/050577号)に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000018
 病態誘発0日目から、化合物3(3、10又は30mg/kg)又はその溶媒(0.5%メチルセルロース溶液)をラットに18日間、1日2回連日経口投与(2回目の投与は1回目の投与から8時間後に投与)した(病態誘発18日目の投与は1回目のみ)。なお、化合物3は、0.5%メチルセルロース溶液に懸濁して用いた。病態誘発0日目はオキサリプラチン投与前に1回目の投与を行い、アロディニア評価日は評価前後に1回目の投与を行った。群構成は、偽誘発‐溶媒投与群(Sham群)、病態誘発‐溶媒投与群(Vehicle群)、病態誘発‐3mg/kg化合物3投与群(3mg/kg化合物3投与群)、病態誘発‐10mg/kg化合物3投与群(10mg/kg化合物3投与群)、病態誘発‐30mg/kg化合物3投与群(30mg/kg化合物3投与群)の5群とした。
 冷的アロディニアに対する薬効評価は、病態誘発前と病態誘発12日目(1回目の化合物3投与前及び1回目の化合物3投与1時間後)に行った。冷的アロディニアに対する薬効は、Cold Plate試験によって評価した。試験にはCold Plate装置(UGO BASILE)を用いた。一定の温度(8℃)に保たれたプレート上に動物を入れ、疼痛関連行動(足を上げる、足を振る、足をなめる、立ち上がる、ジャンプする)が確認されるまでの逃避潜時を測定した。なお、cut off timeは180秒とした。
 機械的アロディニアに対する薬効評価は、病態誘発前と病態誘発18日目(1回目の化合物3投与前及び1回目の化合物3投与1時間後)に行った。機械的アロディニアに対する薬効は、von Frey試験によって評価した。なお、試験方法は公知文献(Chaplanら、Journal of Neuroscience Methods、1994年、第53巻、p.55-63)に記載の方法に従い、von Freyフィラメント(North Coast Medical)を用いて行い、50%反応閾値を算出した。
 化合物3の冷的アロディニアに対する効果の評価の結果を図1に示す。図1の縦軸は、Cold Plate試験における逃避潜時を示し、数値が高いほど冷的アロディニアが改善されていることを示す(平均値±標準誤差;各群10例)。横軸は、左から病態誘発前(図中、「Day0(病態誘発前)」)、病態誘発12日目における1回目の化合物3投与前(図中、「Day12(化合物3投与前)」)及び病態誘発12日目における1回目の化合物3投与1時間後(図中、「Day12(化合物3投与1時間後)」)における各投与群を示し、横軸の「0」、「3」、「10」及び「30」は化合物3の投与用量(mg/kg)を示す。図中の「#」は、Sham群と比較して統計学的に有意(p<0.05、Wilcoxon検定)な差であることを示し、図中の「*」は、Vehicle群と比較して統計学的に有意(p<0.025、Shirley-Williams多重比較、片側)な差であることを示す。
 病態誘発12日目(1回目の化合物3投与前及び1回目の化合物3投与1時間後)において、Vehicle群は、Sham群と比較して、逃避潜時の有意な短縮が観察された。すなわち、オキサリプラチンにより誘発される末梢神経障害である冷的アロディニアの発症が確認された。
 化合物3の1日2回連日経口投与により、病態誘発12日目(1回目の化合物3投与前及び1回目の化合物3投与1時間後)において、化合物3投与群は、Vehicle群と比較して、逃避潜時の有意な延長が観察された。すなわち、化合物3は、オキサリプラチンにより誘発される末梢神経障害(冷的アロディニア)の発症を抑制することが明らかとなった。
 化合物3の機械的アロディニアに対する効果の評価の結果を図2に示す。図2の縦軸は、von Frey試験における50%反応閾値を示し、数値が高いほど機械的アロディニアが改善されていることを示す(平均値±標準誤差;各群10例)。横軸は、左から病態誘発前(図中、「Day0(病態誘発前)」)、病態誘発18日目における1回目の化合物3投与前(図中、「Day18(化合物3投与前)」)及び病態誘発18日目における1回目の化合物3投与1時間後(図中、「Day18(化合物3投与1時間後)」)における各投与群を示し、横軸の「0」、「3」、「10」及び「30」は化合物3の投与用量(mg/kg)を示す。図中の「#」は、Sham群と比較して統計学的に有意(p<0.05、Wilcoxon検定)な差であることを示し、図中の「*」は、Vehicle群と比較して統計学的に有意(*:p<0.025、Shirley-Williams多重比較、片側)な差であることを示す。
 病態誘発18日目(1回目の化合物3投与前及び1回目の化合物3投与1時間後)において、Vehicle群は、Sham群と比較して、50%反応閾値の有意な低下が観察された。すなわち、オキサリプラチンにより誘発される末梢神経障害である機械的アロディニアの発症が確認された。
 化合物3の1日2回連日経口投与により、病態誘発18日目(1回目の化合物3投与前及び1回目の化合物3投与1時間後)において、化合物3投与群は、Vehicle群と比較して、50%反応閾値の有意な上昇が観察された。すなわち、化合物3は、オキサリプラチンにより誘発される末梢神経障害(機械的アロディニア)の発症を抑制することが明らかとなった。
(実施例2)ラットオキサリプラチン誘発末梢神経障害モデルにおける冷的アロディニア及び機械的アロディニアに対するシクロヘキサン誘導体(I)又はその薬理学的に許容される塩の単回投与による効果:
 オキサリプラチンの投与によって発症する冷的アロディニア及び機械的アロディニアに対するシクロヘキサン誘導体(I)又はその薬理学的に許容される塩の効果を検討した。
 病態誘発は、実施例1と同様の方法にて実施した。化合物3(3、10又は30mg/kg)又は溶媒(0.5%メチルセルロース溶液)をラットに病態誘発12日目又は18日目に1回経口投与した。群構成は、偽誘発‐溶媒投与群(Sham群)、病態誘発‐溶媒投与群(Vehicle群)、病態誘発‐3mg/kg化合物3投与群(3mg/kg化合物3投与群)、病態誘発‐10mg/kg化合物3投与群(10mg/kg化合物3投与群)、病態誘発‐30mg/kg化合物3投与群(30mg/kg化合物3投与群)の5群とした。
 冷的アロディニアに対する薬効評価は、実施例1と同様の方法にて評価し、病態誘発12日目(化合物3投与前、化合物3投与1時間後及び化合物3投与3時間後)に行った。
 機械的アロディニアに対する薬効評価は、実施例1と同様の方法にて評価し、病態誘発18日目(化合物3投与前、化合物3投与1時間後及び化合物3投与3時間後)に行った。
 化合物3の冷的アロディニアに対する効果の評価の結果を図3に示す。図3の縦軸は、Cold Plate試験における逃避潜時を示し、数値が高いほど冷的アロディニアが改善されていることを示す(平均値±標準誤差;各群8例)。横軸は、左から化合物3投与前(図中、「Day12(投与前)」)、化合物3投与1時間後(図中、「Day12(1時間後)」)、化合物3投与3時間後(図中、「Day12(3時間後)」)における各投与群を示し、横軸の「0」、「3」、「10」及び「30」は化合物3の投与用量(mg/kg)を示す。図中の「#」は、Sham群と比較して統計学的に有意(p<0.05、Wilcoxon検定)な差であることを示し、図中の「*」は、Vehicle群と比較して統計学的に有意(*:p<0.025、Shirley-Williams多重比較、片側)な差であることを示す。
 病態誘発12日目(化合物3投与前、化合物3投与1時間後及び化合物3投与3時間後)において、Vehicle群は、Sham群と比較して、逃避潜時の有意な短縮が観察された。すなわち、オキサリプラチンにより誘発される末梢神経障害である冷的アロディニアの発症が確認された。
 病態誘発12日目(化合物3投与1時間後及び化合物3投与3時間後)において、化合物3投与群は、Vehicle群と比較して、逃避潜時の有意な延長が観察された。すなわち、化合物3は、オキサリプラチンにより誘発された末梢神経障害(冷的アロディニア)を抑制することが明らかとなった。
 化合物3の機械的アロディニアに対する効果の評価の結果を図4に示す。図4の縦軸は、病態誘発18日目(化合物3投与前、化合物3投与1時間後及び化合物3投与3時間後)のvon Frey試験における50%反応閾値を示し、数値が高いほど機械的アロディニアが改善されていることを示す(平均値±標準誤差;各群8例)。横軸は、左から化合物3投与前(図中、「Day18(投与前)」)、化合物3投与1時間後(図中、「Day18(1時間後)」)、化合物3投与3時間後(図中、「Day18(3時間後)」)における各投与群を示し、横軸の「0」、「3」、「10」及び「30」は化合物3の投与用量(mg/kg)を示す。図中の「#」は、Sham群と比較して統計学的に有意(p<0.05、Wilcoxon検定)な差であることを示し、図中の「*」は、Vehicle群と比較して統計学的に有意(*:p<0.025、Shirley-Williams多重比較、片側)な差であることを示す。
 病態誘発18日目(化合物3投与前、化合物3投与1時間後及び化合物3投与3時間後)において、Vehicle群は、Sham群と比較して、50%反応閾値の有意な低下が観察された。すなわち、オキサリプラチンにより誘発される末梢神経障害である機械的アロディニアの発症が確認された。
 病態誘発18日目(化合物3投与1時間後及び化合物3投与3時間後)において、化合物3投与群は、Vehicle群と比較して、50%反応閾値の有意な上昇が観察された。すなわち、化合物3は、オキサリプラチンにより誘発される末梢神経障害(機械的アロディニア)を抑制することが明らかとなった。
(実施例3)ラットパクリタキセル誘発末梢神経障害モデルにおける機械的アロディニアに対するシクロヘキサン誘導体(I)又はその薬理学的に許容される塩の反復投与による効果:
 パクリタキセルの投与によって発症する機械的アロディニアに対するシクロヘキサン誘導体(I)又はその薬理学的に許容される塩の効果を検討した。
 SDラット(6週齢、オス;日本チャールス・リバー)にパクリタキセル(4mg/kg、溶媒:クレモフォール/エタノール/生理食塩水(1:1:1);ChromaDex,Inc.)を1日おきに計4回(病態誘発1、3、5及び7日目に腹腔内に投与)投与することで、パクリタキセル誘発末梢神経障害モデルを作製した。対照(偽誘発)として、溶媒:クレモフォール/エタノール/生理食塩水(1:1:2)を投与し、初回の投与日を病態誘発1日目とした。
 病態誘発1日目から、化合物3(3、10又は30mg/kg)又はその溶媒(0.5%メチルセルロース溶液)をラットに14日間、1日2回連日経口投与(2回目の投与は1回目の投与から8時間後に投与)した。なお、化合物3は、0.5%メチルセルロース溶液に懸濁して用いた。病態誘発1日目はパクリタキセル投与前に1回目の投与を行った。群構成は、偽誘発‐溶媒投与群(Sham群)、病態誘発‐溶媒投与群(Vehicle群)、病態誘発‐3mg/kg化合物3投与群(3mg/kg化合物3投与群)、病態誘発‐10mg/kg化合物3投与群(10mg/kg化合物3投与群)、病態誘発‐30mg/kg化合物3投与群(30mg/kg化合物3投与群)の5群とした。
 機械的アロディニアに対する薬効評価は、実施例1と同様の方法にて評価し、病態誘発前、化合物3最終投与日の翌日(病態誘発15日目)及びその1週間後(病態誘発22日目)に行った。
 化合物3の機械的アロディニアに対する効果の評価結果を図5に示す。図5の縦軸は、von Frey試験における50%反応閾値を示し、数値が高いほど機械的アロディニアが改善されていることを示す(平均値±標準誤差;各群9~10例)。横軸は、左から病態誘発前(図中、「Day0(病態誘発前)」)、病態誘発15日目(図中、「Day15(化合物3投与1日後)」)及び病態誘発22日目(図中、「Day22(化合物3投与8日後)」)における各投与群を示し、横軸の「0」、「3」、「10」及び「30」は化合物3の投与用量(mg/kg)を示す。図中の「#」は、Sham群と比較して統計学的に有意(p<0.05、Welch’s t検定)な差であることを示し、図中の「*」は、Vehicle群と比較して統計学的に有意(*:p<0.025、Williams多重比較、片側)な差であることを示す。
 化合物3最終投与日の翌日(病態誘発15日目)及びその1週間後(病態誘発22日目)において、Vehicle群は、Sham群と比較して、50%反応閾値の有意な低下が観察された。すなわち、パクリタキセルにより誘発される末梢神経障害である機械的アロディニアの発症が病態誘発22日目まで持続的に確認された。
 化合物3最終投与日の翌日(病態誘発15日目)及びその1週間後(病態誘発22日目)において、化合物3投与群は、Vehicle群と比較して、50%反応閾値の有意な上昇が観察された。すなわち、化合物3は、パクリタキセルによる末梢神経障害(機械的アロディニア)の発症を抑制することが明らかとなった。
(実施例4)ラットボルテゾミブ誘発末梢神経障害モデルにおける機械的アロディニアに対するシクロヘキサン誘導体(I)又はその薬理学的に許容される塩の反復投与による効果:
 ボルテゾミブの投与によって発症する機械的アロディニアに対するシクロヘキサン誘導体(I)又はその薬理学的に許容される塩の効果を検討した。
 SDラット(6週齢、オス;日本チャールス・リバー)にボルテゾミブ(0.2mg/kg、溶媒:DMSO/Tween80/注射用水(1:1:18);AdooQ BioScience LLC)を数日おきに計4回(病態誘発1、4、8及び11日目に腹腔内に投与)投与することで、ボルテゾミブ誘発末梢神経障害モデルを作製した。対照(偽誘発)として、溶媒:DMSO/Tween80/注射用水(1:1:18)を投与し、初回の投与日を病態誘発1日目とした。
 病態誘発1日目から、化合物3(3、10又は30mg/kg)又はその溶媒(0.5%メチルセルロース溶液)をラットに14日間、1日2回連日経口投与(2回目の投与は1回目の投与から8時間後に投与)した。なお、化合物3は、0.5%メチルセルロース溶液に懸濁して用いた。病態誘発1日目はボルテゾミブ投与前に1回目の投与を行った。群構成は、偽誘発‐溶媒投与群(Sham群)、病態誘発‐溶媒投与群(Vehicle群)、病態誘発‐3mg/kg化合物3投与群(3mg/kg化合物3投与群)、病態誘発‐10mg/kg化合物3投与群(10mg/kg化合物3投与群)、病態誘発‐30mg/kg化合物3投与群(30mg/kg化合物3投与群)の5群とした。
 機械的アロディニアに対する薬効評価は、実施例1と同様の方法にて評価し、病態誘発前、化合物3最終投与日の翌日(病態誘発15日目)及びその1週間後(病態誘発22日目)に行った。
 化合物3の機械的アロディニアに対する効果の評価結果を図6に示す。図6の縦軸は、von Frey試験における50%反応閾値を示し、数値が高いほど機械的アロディニアが改善されていることを示す(平均値±標準誤差;各群10例)。横軸は、左から病態誘発前(図中、「Day0(病態誘発前)」)、病態誘発15日目(図中、「Day15(化合物3投与1日後)」)及び病態誘発22日目(図中、「Day22(化合物3投与8日後)」)における各投与群を示し、横軸の「0」、「3」、「10」及び「30」は化合物3の投与用量(mg/kg)を示す。図中の「#」は、Sham群と比較して統計学的に有意(p<0.05、Student’s t検定)な差であることを示し、図中の「*」は、Vehicle群と比較して統計学的に有意(*:p<0.025、Williams多重比較、片側)な差であることを示す。
 化合物3最終投与日の翌日(病態誘発15日目)及びその1週間後(病態誘発22日目)において、Vehicle群は、Sham群と比較して、50%反応閾値の有意な低下が観察された。すなわち、ボルテゾミブにより誘発される末梢神経障害である機械的アロディニアの発症が病態誘発22日目まで持続的に確認された。
 化合物3最終投与日の翌日(病態誘発15日目)およびその1週間後(病態誘発22日目)において、化合物3投与群は、Vehicle群と比較して、50%反応閾値の有意な上昇が観察された。すなわち、化合物3は、ボルテゾミブによる末梢神経障害(機械的アロディニア)の発症を抑制することが明らかとなった。
 これらの結果から、シクロヘキサン誘導体(I)又はその薬理学的に許容される塩は、抗がん剤誘発末梢神経障害に対して、抑制効果を示すことが明らかとなった。
 本発明のシクロヘキサン誘導体又はその薬理学的に許容される塩は、抗がん剤誘発末梢神経障害の症状を抑制することから、抗がん剤誘発末梢神経障害の治療剤又は予防剤として利用できる。
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書にとり入れるものとする。 

Claims (6)

  1.  一般式(I)
    Figure JPOXMLDOC01-appb-C000001
    [式中、Aは、一般式(IIa)又は(IIb)で表される置換基であり、
    Figure JPOXMLDOC01-appb-C000002
     R及びRは、それぞれ独立して、水素原子、塩素原子、炭素数1~3のハロアルキル基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基又はシアノ基であり、
     Rは、水素原子又は塩素原子であり、Rは、フッ素原子、ヒドロキシメチル基又はヒドロキシル基であり、
     R及びRは、それぞれ独立して、水素原子、フッ素原子、炭素数1~3のハロアルキル基、カルボキシル基、メトキシカルボニル基、エトキシカルボニル基、炭素数1~4のアルコキシ基、ヒドロキシル基又は炭素数2~5のアルキルカルボニルオキシ基であるか、一緒になってオキソ基を形成してもよく、
     R及びRは、それぞれ独立して、水素原子又はフッ素原子であり、
     Yは、酸素原子又は硫黄原子であり、
     Zは、窒素原子又はメチン基である。]
    で示されるシクロヘキサン誘導体又はその薬理学的に許容される塩を有効成分として含有する、抗がん剤によって誘発される末梢神経障害の治療剤又は予防剤。
  2.  一般式(I)
    Figure JPOXMLDOC01-appb-C000003
    [式中、Aは、一般式(IIc)又は(IId)で表される置換基であり、
    Figure JPOXMLDOC01-appb-C000004
     R及びRは、それぞれ独立して、水素原子、塩素原子、炭素数1~3のハロアルキル基、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基であり、
     Rは、水素原子又は塩素原子であり、Rは、フッ素原子、ヒドロキシメチル基又はヒドロキシル基であり、
     R及びRは、それぞれ独立して、水素原子、フッ素原子、炭素数1~3のハロアルキル基、カルボキシル基、炭素数1~4のアルコキシ基、ヒドロキシル基又は炭素数2~5のアルキルカルボニルオキシ基であるか、一緒になってオキソ基を形成してもよく、
     Yは、酸素原子又は硫黄原子であり、
     Zは、窒素原子又はメチン基である。]
    で示されるシクロヘキサン誘導体又はその薬理学的に許容される塩を有効成分として含有する、抗がん剤によって誘発される末梢神経障害の治療剤又は予防剤。
  3.  R及びRは、それぞれ独立して、トリフルオロメチル基、メチル基又はメトキシ基である、請求項1又は2記載の治療剤又は予防剤。
  4.  Rは、水素原子である、請求項1~3のいずれか一項記載の治療剤又は予防剤。
  5.  Rは、ヒドロキシメチル基又はヒドロキシル基である、請求項1~4のいずれか一項記載の治療剤又は予防剤。
  6.  R及びRは、それぞれ独立して、水素原子、フッ素原子、トリフルオロメチル基、カルボキシル基、メトキシ基、ヒドロキシル基又はアセチルオキシ基であるか、一緒になってオキソ基を形成してもよい、請求項1~5のいずれか一項記載の治療剤又は予防剤。
PCT/JP2018/013535 2017-03-31 2018-03-30 抗がん剤誘発末梢神経障害の治療剤又は予防剤 WO2018181859A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-070431 2017-03-31
JP2017070431 2017-03-31
JP2017-161780 2017-08-25
JP2017161780 2017-08-25

Publications (1)

Publication Number Publication Date
WO2018181859A1 true WO2018181859A1 (ja) 2018-10-04

Family

ID=63676488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013535 WO2018181859A1 (ja) 2017-03-31 2018-03-30 抗がん剤誘発末梢神経障害の治療剤又は予防剤

Country Status (1)

Country Link
WO (1) WO2018181859A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050577A1 (ja) * 2008-10-31 2010-05-06 東レ株式会社 シクロヘキサン誘導体及びその医薬用途
WO2011125836A1 (ja) * 2010-03-31 2011-10-13 東レ株式会社 線維筋痛症の治療剤又は予防剤
WO2011136318A1 (ja) * 2010-04-28 2011-11-03 東レ株式会社 アルツハイマー病の治療剤又は予防剤
WO2012015027A1 (ja) * 2010-07-30 2012-02-02 東レ株式会社 神経障害性疼痛の治療剤又は予防剤
WO2015115509A1 (ja) * 2014-01-29 2015-08-06 東レ株式会社 多発性硬化症の治療剤又は予防剤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050577A1 (ja) * 2008-10-31 2010-05-06 東レ株式会社 シクロヘキサン誘導体及びその医薬用途
WO2011125836A1 (ja) * 2010-03-31 2011-10-13 東レ株式会社 線維筋痛症の治療剤又は予防剤
WO2011136318A1 (ja) * 2010-04-28 2011-11-03 東レ株式会社 アルツハイマー病の治療剤又は予防剤
WO2012015027A1 (ja) * 2010-07-30 2012-02-02 東レ株式会社 神経障害性疼痛の治療剤又は予防剤
WO2015115509A1 (ja) * 2014-01-29 2015-08-06 東レ株式会社 多発性硬化症の治療剤又は予防剤

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BUGAN, ILKNUR ET AL.: "Gabapentin, an Analgesic Used Against Cancer-Associated Neuropathic Pain: Effects on Prostate Cancer Progression in an In Vivo Rat Model", BASIC AND CLINICAL PHARMACOLOGY AND TOXICOLOGY, vol. 118, no. 3, 3 September 2015 (2015-09-03) - March 2016 (2016-03-01), pages 200 - 207, XP055612813, ISSN: 1742-7843 *
HERSHMAN, DAWN L. ET AL.: "Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: American Society of Clinical Oncology Clinical Practice Guideline Summary", JOURNAL OF ONCOLOGY PRACTICE, vol. 10, no. 6, November 2014 (2014-11-01), pages e421 - e424, XP055612809, ISSN: 1554-7477 *

Similar Documents

Publication Publication Date Title
US20160287605A1 (en) Combination therapy
JP6762312B2 (ja) 過剰な体脂肪の治療処置または美容処置のためのnk−3受容体拮抗薬
KR101909433B1 (ko) 키나제 저해제의 부작용 저감제
KR20170125951A (ko) 화학요법에 의해 유도되는 통증의 예방 또는 치료를 위한 시그마 리간드
RU2494736C2 (ru) Комбинация, включающая паклитаксел, для лечения рака яичников
WO2018043530A1 (ja) 抗腫瘍剤、抗腫瘍効果増強剤及び抗腫瘍用キット
JP5786714B2 (ja) 神経障害性疼痛の治療剤又は予防剤
CN110290788A (zh) 氨基甲酸酯化合物用于预防、缓解或治疗双相障碍的用途
JP2007509170A (ja) 線維筋痛症の治療のためのサリドマイドを含んでなる方法および組成物
WO2018181860A1 (ja) 末梢神経障害の治療剤又は予防剤
WO2018181859A1 (ja) 抗がん剤誘発末梢神経障害の治療剤又は予防剤
RU2275906C2 (ru) Средство для лечения болезни паркинсона, включающее в качестве активного ингредиента соединение, улучшающее астроцитную функцию
JP2010106019A (ja) リマプロストを含有してなる癌化学療法に起因する末梢神経障害予防、治療および/または症状軽減剤
JP6447496B2 (ja) 多発性硬化症の治療剤又は予防剤
JP2022528481A (ja) ピモジドとメトトレキサートの医薬組成物、及びその使用
Kuczyńska et al. New studies on dexketoprofen
EP1485090B1 (en) Combinations comprising an epothilone derivative and an imidazotetrazinone
US20230218623A1 (en) Salts of neuroceuticals and uses thereof
WO2010061907A1 (ja) 抗癌剤
ES2359910T3 (es) Composición medicinal para inhibir la expresión de atp-citrato liasa y su uso.
JP2005060311A (ja) N−(ベンゾイル)アミノ酸誘導体を有効成分とするニューロパシー性疼痛治療剤
JP2007063205A (ja) 神経因性疼痛治療剤
JP2000191546A (ja) 抗腫瘍剤
US20210386720A1 (en) Methods of treating cns tumors with tesetaxel
JP2010518052A (ja) 性機能障害の予防および治療に有用な薬物の調製のための、ニューロキニンaのnk2受容体に対する化合物である拮抗薬の使用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP