WO2018181686A1 - Warpage correction material and method for manufacturing fan out-type wafer level package - Google Patents

Warpage correction material and method for manufacturing fan out-type wafer level package Download PDF

Info

Publication number
WO2018181686A1
WO2018181686A1 PCT/JP2018/013176 JP2018013176W WO2018181686A1 WO 2018181686 A1 WO2018181686 A1 WO 2018181686A1 JP 2018013176 W JP2018013176 W JP 2018013176W WO 2018181686 A1 WO2018181686 A1 WO 2018181686A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
warpage
warp correction
correction material
warp
Prior art date
Application number
PCT/JP2018/013176
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 秀之
佐藤 和也
康昭 荒井
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018030738A external-priority patent/JP6423119B2/en
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Priority to KR1020197028048A priority Critical patent/KR102339968B1/en
Priority to CN201880020184.4A priority patent/CN110447097B/en
Publication of WO2018181686A1 publication Critical patent/WO2018181686A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage

Definitions

  • the present invention relates to a fan-out type warp correction material for a wafer-level package in which an arrangement region of external connection electrodes is larger than a semiconductor planar size.
  • the number of electrodes (terminals and bumps) for external connection of the semiconductor chip tends to increase. Therefore, the pitch of the electrodes for external connection of the semiconductor chip is small. Tend to be. However, it is not always easy to directly mount a semiconductor chip on which bumps are formed at a fine pitch on a circuit board.
  • a semiconductor sealing material region is formed on the outer periphery of the semiconductor chip, and a redistribution layer or a lead frame connected to the electrodes (hereinafter also referred to as “redistribution layer etc.”). It has been proposed to increase the pitch of the bumps by providing also in the region of the semiconductor sealing material.
  • a WLP is called a fan-out type wafer level package (hereinafter sometimes abbreviated as FO-WLP) because the size of the bump arrangement area is larger than the size of the semiconductor chip.
  • a semiconductor chip In FO-WLP, a semiconductor chip is embedded with a semiconductor sealing material. The circuit surface of the semiconductor chip is exposed to the outside, and a boundary between the semiconductor chip and the semiconductor sealing material is formed. A rewiring layer connected to the electrode of the semiconductor chip is also provided in the region of the semiconductor sealing material that embeds the semiconductor chip, and the bump is electrically connected to the electrode of the semiconductor chip via the rewiring layer or the like. .
  • the pitch of the bumps can be set larger than the pitch of the electrodes of the semiconductor chip.
  • a semiconductor chip or an electronic component is arranged at a certain interval on a support, embedded with a semiconductor sealing material, and the sealing material is heat-cured, and then the support.
  • Pseudo wafer is produced by peeling from the wafer.
  • a rewiring layer or the like is formed from the semiconductor chip circuit surface of the pseudo wafer to the expanded semiconductor sealing material region. In this way, the pitch of the bumps can be set larger than the pitch of the electrodes of the semiconductor chip.
  • a positive sensitive resin is applied to the semiconductor chip circuit surface of the pseudo wafer, pre-baked, and activated with UV light or the like in a region to be opened through a photomask or the like. Irradiate light, then develop using a developer such as TMAH (tetramethylammonium hydroxide), heat cure, oxygen plasma treatment, etc., metal electrode sputtering, and further form a photoresist layer
  • TMAH tetramethylammonium hydroxide
  • heat cure oxygen plasma treatment
  • metal electrode sputtering metal electrode sputtering
  • the wiring is patterned to form a rewiring layer (for example, Japanese Patent Application Laid-Open No. 2013-38270).
  • a thin metal plate is die-cut by an etching technique or a punching process, and is collectively formed by press bending.
  • the circuit surface (that is, the surface on which the insulating film is formed) is mainly due to shrinkage during curing of the insulating film such as photosensitive polyimide between the wirings. Warping deformation that becomes concave occurs. Further, warping deformation in which the circuit surface becomes convex occurs due to shrinkage during curing of the sealing material sealed on the surface opposite to the rewiring layer or the lead frame.
  • a resin layer is formed on one surface of a substrate made of a wafer-like semiconductor, and the entire resin layer is warped and held in a spherical shape, and then the resin layer is cured.
  • FO-WLP is susceptible to the stress generated when the rewiring layer is formed because the package is thinner than the conventional WLP. Therefore, the package is more likely to warp than the conventional one. Further, as proposed in Japanese Patent Application Laid-Open No. 2012-178422, even if the WLP provided with the rewiring layer only on one side is heated to suppress the warpage amount, the mounting temperature of the WLP (for example, 260 ° C.) is reduced. When heated, the rewiring layer and the sealing material expand and warp the package. As a result, there is a problem that peeling occurs between layers inside the package, or some terminals are difficult to connect during mounting.
  • Warping also occurs during heating, so it is not possible to deal with cases where the degree of warpage changes. Further, since the method described in US Patent Publication No. 2010/0252919 is provided with an opposite warp in advance when manufacturing a pseudo wafer, it is difficult to perform fine processing when a rewiring layer is provided. There is a case. Furthermore, Japanese Patent Laid-Open No. 2013-8896 focuses on underfill, and does not consider WLP warpage at all.
  • an object of the present invention is to provide a warp correction material capable of reducing the warpage of WLP by adjusting the warpage amount at the temperature at the time of mounting a fan-out type wafer level package (FO-WLP) or at the room temperature such as wafer transfer. It is to be.
  • the amount of warpage can be suppressed both at the temperature at the time of mounting the semiconductor package and at room temperature such as wafer transfer, and the amount of warpage of FO-WLP.
  • the present inventors have found that a warp correction material using a curable resin composition that can be cured by both active energy rays and heat can effectively generate a warp stress. Furthermore, the warping stress can be controlled by the degree of curing when the curable resin composition is cured, and the degree of curing is related to the absolute value of the difference in glossiness between the surface and the interface when the cured film is formed. It was. And when the difference of the said glossiness was in the fixed range, the knowledge that moderate curvature stress could be produced with the curvature correction material was acquired.
  • the warp correction material according to the present invention is a warp correction material for a fan-out type wafer level package, It consists of a curable resin composition containing a component that can be cured by active energy rays and heat,
  • the warp straightening material is cured by active energy rays and heat to form a flat film-like cured product
  • the cured product has a linear expansion coefficient ⁇ (ppm / ° C.) at 25 ° C. and an elastic modulus ⁇ ( GPa) and thickness ⁇ ( ⁇ m) are expressed by the following relational expression: 2000 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 10000 It is characterized by satisfying.
  • the ⁇ ( ⁇ m) is preferably in the range of 15-50.
  • the surface of the cured product is a 60 ° mirror surface.
  • the absolute value of the difference between the reflectance and the 60 ° specular reflectance at the interface between the cured product and the silicon wafer is preferably 10% or less.
  • the curable resin composition preferably includes at least a compound having a hydroxyl group and a compound having an isocyanate group.
  • the molar ratio of the hydroxyl group in the compound having a hydroxyl group to the isocyanate group of the compound having an isocyanate group is preferably 0.1 to 0.9.
  • the compound having a hydroxyl group preferably has two or more hydroxyl groups in one molecule and has a hydroxyl value of 100 (mgKOH / g) or more.
  • the compound having a hydroxyl group or the compound having an isocyanate group has at least one of an isocyanuric group or a benzene ring.
  • a method for manufacturing a fan-out type wafer level package includes: Apply the warp correction material to the same surface as the surface on which the rewiring layer of the pseudo wafer is formed or the opposite surface to form a coating film, Curing the coating film with active energy rays and heat to form a warp correction layer, Including things.
  • the coating is preferably performed by an ink jet method.
  • the thickness of the warp correction layer is preferably in the range of 15 to 50 ⁇ m.
  • the warp straightening material is applied on a JEITA standard silicon wafer and cured by the active energy ray and heat to obtain a flat film-like cured product. Furthermore, it is preferable that the absolute value of the difference between the 60 ° specular reflectance of the cured product surface and the 60 ° specular reflectance at the interface between the cured product and the silicon wafer is 10% or less.
  • a semiconductor package is mounted.
  • the amount of warpage can be suppressed both at temperature and at room temperature such as wafer conveyance, and the warpage of the wafer or package can be reduced while adjusting the amount of warpage of the wafer or package. As a result, a semiconductor package with high quality and reliability can be obtained.
  • the warp correction material according to the present invention is a material for forming a warp correction layer, and is made of a curable resin composition containing an active energy ray and a component that can be cured by heat.
  • an insulating layer is provided on the circuit formation surface of the pseudo wafer together with a rewiring layer, etc.
  • the insulating film material, thickness, pattern, sealing material, thickness Accordingly, the amount of warpage of the pseudo wafer also changes.
  • a warp correction material comprising a curable resin composition that can be cured by active energy rays and heat as described above is obtained by curing a warp correction material by active energy rays and heat to form a flat film-like cured product.
  • the linear expansion coefficient ⁇ (ppm / ° C.) at 25 ° C., the elastic modulus ⁇ (GPa) at 25 ° C., and the thickness ⁇ ( ⁇ m) of the cured product are expressed by the following relational expressions: 2000 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 10000 It has been found that the amount of warpage can be suppressed by adjusting so as to satisfy the above conditions, both at the temperature when the semiconductor package is mounted and at room temperature such as wafer conveyance. In other words, the shrinkage stress can be applied to the warp correction layer so as to cancel the shrinkage stress of the rewiring layer, the insulating layer, and the sealing material.
  • the warp correction material according to the present invention may be provided on the surface opposite to the surface on which the FO-WLP rewiring layer or the like is provided, or may be provided on the same surface according to the balance. good.
  • each component which comprises the curable resin composition by this invention is demonstrated.
  • components that can be cured by active energy rays which are essential components contained in the curable resin composition constituting the warp correction material, include curable components that can be cured by radical addition polymerization reaction.
  • Specific examples of the radical addition polymerization reactive component having one or more ethylenically unsaturated groups in the molecule include conventionally known polyester (meth) acrylate, polyether (meth) acrylate, and urethane (meth). Examples thereof include acrylate, carbonate (meth) acrylate, and epoxy (meth) acrylate.
  • glycol diacrylates such as ethylene glycol, methoxytetraethylene glycol, polyethylene glycol, and propylene glycol
  • acrylamides such as N, N-dimethylacrylamide, N-methylolacrylamide, and N, N-dimethylaminopropylacrylamide
  • Aminoalkyl acrylates such as N, N-dimethylaminoethyl acrylate and N, N-dimethylaminopropyl acrylate
  • polyhydric alcohols such as hexanediol, trimethylolpropane, pentaerythritol, dipentaerythritol, tris-hydroxyethyl isocyanurate
  • a polyvalent acrylate such as an ethylene oxide adduct, a propylene oxide adduct, or an ⁇ -caprolactone adduct
  • Acrylates, bisphenol A diacrylates, and polyvalent acrylates such as ethylene oxide adduct
  • compounds such as the following (1) to (11) may be used as curable components that can be cured by radical addition polymerization reaction.
  • a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide is reacted with an unsaturated group-containing monocarboxylic acid, and the resulting reaction product is converted to a polybasic acid.
  • (Meth) acrylated acrylic-containing urethane resin (8) During the synthesis of a resin by polyaddition reaction of a diisocyanate with a carboxyl group-containing dialcohol compound and a diol compound, a compound having one isocyanate group and one or more (meth) acryloyl groups in the molecule is added, Terminal (meth) acrylated acrylic-containing urethane resin, (9) An acrylic-containing urethane resin obtained by adding a compound having one hydroxyl group and one or more (meth) acryloyl groups in the molecule during the synthesis of the resin of (5), and terminal (meth) acrylated, (10) An acrylic-containing urethane resin obtained by adding a compound having one isocyanate group and one or more (meth) acryloyl groups in the molecule during the synthesis of the resin of (5) above, and terminally (meth) acrylated; 11) An acrylic-containing polymer obtained by adding a compound having one epoxy group
  • Examples of the photopolymerization initiator that causes radical addition polymerization reaction of the above-described curable component by active energy rays include bis- (2,6-dichlorobenzoyl) phenylphosphine oxide and bis- (2,6-dichlorobenzoyl).
  • oxime esters hereinafter referred to as “oxime ester photopolymerization initiators”
  • ⁇ -aminoacetophenone light which is one of acetophenones.
  • photopolymerization initiators selected from the group consisting of “polymerization initiators” and acylphosphine oxides (hereinafter referred to as “acylphosphine oxide photopolymerization initiators”).
  • oxime ester photopolymerization initiators examples include CGI-325, IRGACURE OXE01, IRGACURE OXE02 manufactured by BASF Japan Ltd., and N-1919 manufactured by ADEKA Corporation.
  • numerator can also be used suitably.
  • the compounding amount of the oxime ester photopolymerization initiator is 0.01 to 5 parts by mass with respect to 100 parts by mass of the radical addition polymerization reactive component having one or more ethylenically unsaturated groups in the molecule. It is preferable.
  • ⁇ -aminoacetophenone photopolymerization initiators include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone-1, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, N , N-dimethylaminoacetophenone and the like.
  • Commercially available products include Omnirad® 907, Omnirad 369, Omnirad® 379 manufactured by IGM Resins.
  • acylphosphine oxide photopolymerization initiator examples include the above compounds.
  • Commercially available products include Omnirad TPO, Omnirad 819 manufactured by IGM Resins.
  • the blending amount of the photopolymerization initiator excluding the oxime ester photopolymerization initiator is 0.1 with respect to 100 parts by mass of the radical addition polymerization reactive component having one or more ethylenically unsaturated groups in the molecule.
  • the amount is preferably 30 parts by mass.
  • the photocurability of the curable resin composition is good, the coating film is difficult to peel off, and the coating properties such as chemical resistance are also good.
  • 30 parts by mass or less an effect of reducing outgas is obtained, and light absorption on the surface of the solder resist coating film is good, and the deep curability is hardly lowered. More preferably, it is 0.5 to 15 parts by mass.
  • an oxime ester photopolymerization initiator as a photopolymerization initiator that causes radical addition polymerization reaction with active energy rays, not only can a sufficient amount be obtained, but also when a thermosetting component is blended. Since there is little volatilization of the photopolymerization initiator in the post-heating process during thermosetting and mounting, contamination of a device such as a drying furnace can be reduced.
  • acylphosphine oxide photopolymerization initiator when used, the deep curability at the time of the photoreaction is improved, so that a favorable opening shape can be obtained in terms of resolution.
  • a commercially available photopolymerization initiator that causes radical addition polymerization reaction with active energy rays may be used.
  • JMT-784 manufactured by Yueyang Jinmao Technology Co., Ltd. is preferably used. Can do.
  • Components that can be cured by heat contained in the curable resin composition include amine resins such as melamine resins and benzoguanamine resins, isocyanate compounds, blocked isocyanate compounds, cyclocarbonate compounds, polyfunctional epoxy compounds, polyfunctional oxetane compounds, episulfides.
  • amine resins such as melamine resins and benzoguanamine resins
  • isocyanate compounds blocked isocyanate compounds
  • cyclocarbonate compounds polyfunctional epoxy compounds
  • polyfunctional oxetane compounds polyfunctional oxetane compounds
  • episulfides Known and commonly used thermosetting resins such as resins and melamine derivatives can be used.
  • cyclic (thio) ether groups cyclic (
  • thermosetting component having two or more cyclic (thio) ether groups in the molecule is either one of the three-, four- or five-membered cyclic ether groups in the molecule, or the cyclic thioether group, or two kinds thereof.
  • a compound having at least two epoxy groups in the molecule that is, a polyfunctional epoxy compound, a compound having at least two oxetanyl groups in the molecule, that is, a polyfunctional compound.
  • examples include oxetane compounds, compounds having two or more thioether groups in the molecule, that is, episulfide resins.
  • Examples of the polyfunctional epoxy compound include jER828, jER834, jER1001, jER1004 manufactured by Mitsubishi Chemical Corporation, Epicron 840 manufactured by DIC Corporation, Epicron 850, Epicron 1050, Epicron 2055, and Epototo YD manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. -011, YD-013, YD-127, YD-128, D.C. E. R. 317, D.E. E. R. 331, D.D. E. R. 661, D.D. E. R. 664, Sumi-epoxy ESA-011, ESA-014, ELA-115, ELA-128 manufactured by Sumitomo Chemical Co., Ltd. E. R.
  • A.I. E. R. 331, A.I. E. R. 661, A.I. E. R. 664, etc. (all trade names) bisphenol A type epoxy resin; jERYL903 manufactured by Mitsubishi Chemical Corporation, Epicron 152, Epicron 165 manufactured by DIC Corporation, Epototo YDB-400, YDB-500 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. D. Chemicals manufactured by Dow Chemical Company. E. R. 542, Sumitomo Epoxy ESB-400, ESB-700 manufactured by Sumitomo Chemical Co., Ltd. E. R. 711, A.I. E. R.
  • Brominated epoxy resins such as 714 (both trade names); jER152 and jER154 manufactured by Mitsubishi Chemical Corporation, and D.C. E. N. 431, D.D. E. N. 438, Epicron N-730, Epicron N-770, Epicron N-865 manufactured by DIC Corporation, Epototo YDCN-701, YDCN-704 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., EPPN-201 manufactured by Nippon Kayaku Co., Ltd.
  • Epototo YDF-170, YDF-175 Bisphenol F type epoxy resins such as YDF-2004 (all trade names); hydrogenated bisphenol A type epoxy resins such as Epototo ST-2004, ST-2007, ST-3000 (trade names) manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • Glycidylamine type epoxy resin such as jER604 manufactured by Mitsubishi Chemical Co., Ltd., Epototo YH-434 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., Sumi-epoxy ELM-120 manufactured by Sumitomo Chemical Co., Ltd.
  • Bisphenol S type epoxy such as xylenol type or biphenol type epoxy resin or mixture thereof; EBPS-200 manufactured by Nippon Kayaku Co., Ltd., EPX-30 manufactured by Asahi Denka Kogyo Co., Ltd., EXA-1514 manufactured by DIC Co., Ltd. Resin; Bisphenol A novolak type epoxy resin such as jER157S (trade name) manufactured by Mitsubishi Chemical Corporation; Tetraphenylolethane type epoxy resin such as jERYL-931 (all trade name) manufactured by Mitsubishi Chemical Corporation; Nissan Chemical Industries Heterocyclic D of TEPIC, etc.
  • These epoxy resins can be used alone or in combination of two or more.
  • a novolac type epoxy resin, a heterocyclic epoxy resin, a bisphenol A type epoxy resin or a mixture thereof is particularly preferable.
  • polyfunctional oxetane compound examples include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, 1,4-bis [(3-methyl -3-Oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3-oxetanyl)
  • polyfunctional oxetanes such as methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and oligomers or copolymers thereof, oxetane alcohol and novolak resin, Poly (p-hydroxystyrene
  • episulfide resin examples include bisphenol A type episulfide resin YL7000 manufactured by Mitsubishi Chemical Corporation. Moreover, episulfide resin etc. which replaced the oxygen atom of the epoxy group of the novolak-type epoxy resin with the sulfur atom using the same synthesis method can be used.
  • thermosetting catalyst When using a thermosetting component having two or more cyclic (thio) ether groups in the molecule, it is preferable to add a thermosetting catalyst.
  • thermosetting catalysts include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole.
  • Imidazole derivatives such as 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N -Amine compounds such as dimethylbenzylamine and 4-methyl-N, N-dimethylbenzylamine; hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide; and phosphorus compounds such as triphenylphosphine.
  • Examples of commercially available products include 2MZ-A, 2MZ-OK, 2PHZ, 2P4BHZ, 2P4MHZ (both trade names of imidazole compounds) manufactured by Shikoku Kasei Kogyo Co., Ltd., U-CAT manufactured by San Apro Co., Ltd. (Registered trademark) 3503N, U-CAT3502T (all are trade names of blocked isocyanate compounds of dimethylamine), DBU, DBN, U-CATSA102, U-CAT5002 (all are bicyclic amidine compounds and salts thereof), etc. .
  • two or more isocyanate groups in one molecule, or Compounds having blocked isocyanate groups can be added.
  • a compound having two or more isocyanate groups or blocked isocyanate groups in one molecule is a compound having two or more isocyanate groups in one molecule, that is, a polyisocyanate compound, or two in one molecule. Examples thereof include compounds having the above blocked isocyanate groups, that is, blocked isocyanate compounds.
  • polyisocyanate compound for example, aromatic polyisocyanate, aliphatic polyisocyanate or alicyclic polyisocyanate is used.
  • aromatic polyisocyanate include 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, o-xylylene diisocyanate, m- Examples include xylylene diisocyanate and 2,4-tolylene dimer.
  • aliphatic polyisocyanate examples include tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-methylenebis (cyclohexyl isocyanate), and isophorone diisocyanate.
  • alicyclic polyisocyanate examples include bicycloheptane triisocyanate.
  • adduct bodies, burette bodies and isocyanurate bodies of the isocyanate compounds mentioned above may be mentioned.
  • the blocked isocyanate group contained in the blocked isocyanate compound is a group in which the isocyanate group is protected by reaction with a blocking agent and temporarily deactivated. When heated to a predetermined temperature, the blocking agent is dissociated to produce isocyanate groups.
  • the blocked isocyanate compound an addition reaction product of an isocyanate compound and an isocyanate blocking agent is used.
  • the isocyanate compound that can react with the blocking agent include isocyanurate type, biuret type, and adduct type.
  • this isocyanate compound for example, the same aromatic polyisocyanate, aliphatic polyisocyanate or alicyclic polyisocyanate as described above is used.
  • isocyanate blocking agents include phenolic blocking agents such as phenol, cresol, xylenol, chlorophenol and ethylphenol; lactam blocking agents such as ⁇ -caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam and ⁇ -propiolactam Active methylene blocking agents such as ethyl acetoacetate and acetylacetone; methanol, ethanol, propanol, butanol, amyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, Benzyl ether, methyl glycolate, butyl glycolate, diacetone alcohol Alcohol-based blocking agents such as methyl lactate and ethyl lactate; oxime-based blocking agents such as formaldehyde oxime, acetaldoxime, acetoxime, methyl
  • the blocked isocyanate compound may be commercially available, for example, 7950, 7951, 7960, 7961, 7982, 7990, 7991, 7992 (above, manufactured by Baxenden, trade name) Sumijour BL-3175, BL-4165, BL-1100, BL-1265, Death Module TPLS-2957, TPLS-2062, TPLS-2078, TPLS-2117, Desmotherm 2170, Desmotherm 2265 (above, Sumitomo Bayer Urethane Co., Ltd., trade name), Coronate 2512, Coronate 2513 , Coronate 2520 (Akatsuki or more, Nippon Polyurethane Industry Co., Ltd., trade name), B-830, B-815, B-846, B-870, B-874, B-882 (Mitsui Takeda Chemical Co., trade name) ), PA-B80E, 17B-60PX, E402-B80T, MF-B60B, MF
  • two or more blocked isocyanates are formed in the molecule by radical addition polymerization reaction having an ethylenically unsaturated group upon irradiation with active energy such as Karenz MOI-BM and Karenz MOI-BP (trade name, manufactured by Showa Denko KK). You may use the compound which has.
  • the above compounds having two or more isocyanate groups or blocked isocyanate groups in one molecule can be used singly or in combination of two or more.
  • the curable resin composition may contain a blocked isocyanate reaction catalyst.
  • a blocked isocyanate reaction catalyst is organic ammonium salt, organic amidine salt, or imidazole.
  • the reaction catalyst of blocked isocyanate is organic ammonium salt, organic amidine salt, or imidazole.
  • tetraalkylammonium halides, tetraalkylammonium hydroxides, tetraalkylammonium organic acid salts, etc. are used for organic ammonium salts, and 1,8-diazabicyclo [5.4.0] undecene-7 is used for organic amidine salts.
  • DBU 1,5-diazabicyclo [4.3.0] nonene-5
  • DBN 1,5-diazabicyclo [4.3.0] nonene-5
  • phenol salt octylate, oleate, p-toluenesulfonate, and formate. it can.
  • DBU-octylate, DBN-octylate and the like are preferably used.
  • Commercially available products include TOYOCAT-TR20 and TOYOCAT-TRX (manufactured by Tosoh Corporation) for organic ammonium salts, U-CAT SA1, U-CAT SA102, U-CAT SA106, U-CAT SA506, U-CAT for organic amidine salts.
  • Examples of SA603, U-CAT SA1102 (manufactured by Sun Apro Co., Ltd.), and imidazole include TOYOCAT-DMI (manufactured by Tosoh Corporation). These reaction catalysts can be used alone or in combination of two or more.
  • the curable resin composition constituting the warp correction material of the present invention may contain a compound having two or more hydroxyl groups capable of reacting with an isocyanate group or a compound having a blocked isocyanate group.
  • the compound having two or more hydroxyl groups include polyol resin, polyvinyl butyral resin, polyvinyl acetal resin, polycarbonate diol, ethylene glycol, diethylene glycol, triethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5 -Pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12- Dodecanediol, 1,2-propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-but
  • two or more compounds having a hydroxyl group that reacts with isocyanate exist in the molecule before the curing reaction by heat, and include compounds that change to those having two or more upon irradiation with active energy.
  • a radical addition polymerization reactive component having one or more ethylenically unsaturated groups in the molecule is irradiated with active energy rays.
  • a compound having two or more hydroxyl groups may be used. Specific examples include pentaerythritol triacrylate, 1,4-cyclohexanedimethanol monoacrylate, 4-hydroxybutyl acrylate and the like.
  • the hydroxyl group value of the compound having a hydroxyl group is 100 (mgKOH / g) or more, the strength of the coating film (warping correction layer) is improved because the crosslinking during thermal curing is sufficient.
  • the molar ratio of the compound having an isocyanate group to the isocyanate group is preferably 0.1 to 0.9. If the hydroxyl group / isocyanate group is 0.1 or more, the isocyanate reaction proceeds sufficiently. If the hydroxyl group / isocyanate group is 0.9 or less, the coating film has an appropriate hardness and a sufficient strength can be secured.
  • the curable resin composition constituting the warp correction material of the present invention may contain an inorganic filler component.
  • the inorganic filler component conventionally known ones can be used without limitation, for example, silica, alumina, talc, aluminum hydroxide, calcium carbonate, Neuburg silica, glass powder, clay, magnesium carbonate, natural mica, synthetic mica.
  • Powders of barium sulfate, barium titanate, hydrotalcite, mineral wool, aluminum silicate, calcium silicate, zinc white, titanium oxide, iron oxide, silicon carbide, boron nitride, etc., spheroidized beads, single crystal fibers and A glass fiber etc. 1 type can be used individually or in mixture of 2 or more types.
  • silica, alumina, and titanium oxide are preferable in order to control the relative dielectric constant in the film.
  • the inorganic filler component preferably has an average particle size of 0.01 to 15 ⁇ m, more preferably 0.02 to 12 ⁇ m, particularly preferably 0.03 to 10 ⁇ m.
  • the average particle diameter is the number average particle diameter calculated as an arithmetic average value obtained by measuring the major axis diameter of 20 inorganic fillers randomly selected with an electron microscope.
  • the curable resin composition constituting the warp correction material of the present invention may contain a colorant component.
  • the colorant component By including the colorant component, it is possible to prevent malfunction of the semiconductor device due to infrared rays or the like generated from surrounding devices when the semiconductor chip on which the curable resin composition is disposed is incorporated into the device.
  • the curing agent composition is engraved by means such as laser marking, marks such as letters and symbols are easily recognized. That is, in a semiconductor chip on which a curable resin composition is formed, the product number or the like is usually printed on the surface of the protective film by a laser marking method (a method in which the surface of the protective film is scraped off by laser light and printed).
  • a laser marking method a method in which the surface of the protective film is scraped off by laser light and printed.
  • organic or inorganic pigments and dyes can be used singly or in combination of two or more.
  • black pigments are preferable from the viewpoint of electromagnetic wave and infrared shielding properties.
  • the black pigment include carbon black, perylene black, iron oxide, manganese dioxide, aniline black, activated carbon, and the like, but are not limited thereto.
  • Carbon black is particularly preferable from the viewpoint of preventing malfunction of the semiconductor device.
  • pigments or dyes such as red, blue, green, and yellow can be mixed to obtain black or a black color close thereto.
  • red colorants include monoazo, disazo, azo lake, benzimidazolone, perylene, diketopyrrolopyrrole, condensed azo, anthraquinone, and quinacridone. Specific examples include the following: It is done.
  • blue colorants include phthalocyanine series and anthraquinone series, and pigment series are compounds classified as Pigment, specifically: Pigment Blue 15, Pigment Blue 15: 1, Pigment Blue 15: 2, Pigment Blue 15: 3, Pigment Blue 15: 4. Pigment Blue 15: 6, Pigment Blue 16, Pigment Blue 60, and the like.
  • the dye system include Solvent Blue 35, Solvent Blue 63, Solvent Blue 68, Solvent Blue 70, Solvent Blue 83, Solvent Blue 87, Solvent Blue 94, Solvent Blue 97, Solvent Blue 122, Solvent Blue 70, Solvent Blue 70, and Solvent Blue 70
  • metal-substituted or unsubstituted phthalocyanine compounds can also be used.
  • the green colorant there are similarly phthalocyanine, anthraquinone, perylene, and the like. Specifically, PigmentGreen 7, PigmentGreen 36, SolventGreen 3, SolventGreen 5, SolventGreen 20, SolventGreen 28, and the like can be used. In addition to the above, a metal-substituted or unsubstituted phthalocyanine compound can also be used.
  • the green colorant there are similarly phthalocyanine, anthraquinone, perylene, and the like. Specifically, PigmentGreen 7, PigmentGreen 36, SolventGreen 3, SolventGreen 5, SolventGreen 20, SolventGreen 28, and the like can be used. In addition to the above, a metal-substituted or unsubstituted phthalocyanine compound can also be used.
  • yellow colorants examples include monoazo, disazo, condensed azo, benzimidazolone, isoindolinone, anthraquinone, and the like.
  • colorants such as purple, orange, brown and black may be added for the purpose of adjusting the color tone.
  • the warpage correction layer is also light-transmissive for alignment. It is preferable to have.
  • the colorant component can be selected with appropriate consideration.
  • the curable resin composition constituting the warp correction material of the present invention includes adhesion, adhesion and warpage correction layer to the adherend (pseudo wafer) of the warpage correction layer when the warpage correction layer is provided on FO-WLP.
  • a coupling agent component having a functional group that reacts with an inorganic substance and a functional group that reacts with an organic functional group may be included.
  • a coupling agent component when a coupling agent component is included, when a coating film of the curable resin composition is formed on FO-WLP and the curable resin composition is cured to form a warpage correction layer, the warpage correction layer
  • the water resistance can be improved without impairing the heat resistance.
  • Examples of such coupling agents include titanate coupling agents, aluminate coupling agents, silane coupling agents, and the like. Of these, silane coupling agents are preferred.
  • Examples of organic groups contained in the silane coupling agent include vinyl groups, epoxy groups, styryl groups, methacryloxy groups, acryloxy groups, amino groups, ureido groups, chloropropyl groups, mercapto groups, polysulfide groups, and isocyanate groups. Can be mentioned.
  • Commercially available silane coupling agents can be used, for example, KA-1003, KBM-1003, KBE-1003, KBM-303, KBM-403, KBE-402, KBE-403, KBM-1403.
  • KBM-502, KBM-503, KBE-502, KBE-503, KBM-5103, KBM-602, KBM-603, KBE-603, KBM-903, KBE-903, KBE-9103, KBM-9103, KBM -573, KBM-575, KBM-6123, KBE-585, KBM-703, KBM-802, KBM-803, KBE-846, KBE-9007 (all trade names; manufactured by Shin-Etsu Chemical Co., Ltd.) be able to. These may be used alone or in combination of two or more.
  • additives may be blended in the curable resin composition constituting the warp correction material of the present invention as necessary.
  • Various additives include leveling agents, plasticizers, antioxidants, ion scavengers, gettering agents, chain transfer agents, release agents, rust inhibitors, adhesion promoters, UV absorbers, thermal polymerization inhibitors, thickening agents. You may contain a well-known and usual additive in the field
  • the curable resin composition constituting the warp correction material of the present invention can contain an organic solvent.
  • the organic solvent is used to adjust the viscosity when synthesizing a polyether compound containing an ethylenically unsaturated group in the molecule, mixing each component, and applying the obtained curable resin composition to a substrate or a support film. Can be used for.
  • organic solvent examples include ketones, aromatic hydrocarbons, glycol ethers, glycol ether acetates, esters, alcohols, aliphatic hydrocarbons, petroleum solvents, and the like. More specifically, ketones such as methyl ethyl ketone and cyclohexanone, aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene, cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, propylene glycol monomethyl Glycol ethers such as ether, dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, triethylene glycol monoethyl ether, ethyl acetate, butyl acetate, dipropylene glycol methyl ether acetate, propylene glycol methyl ether acetate, propylene glycol ethyl ether a
  • the correction material of the present invention is used as a FO-WLP warpage correction layer.
  • a FO-WLP pseudo wafer provided with a warp correction layer will be described.
  • a semiconductor wafer is prepared and a circuit is formed on one surface.
  • the semiconductor wafer may be a silicon wafer or a compound semiconductor wafer such as gallium arsenide (GaAs).
  • GaAs gallium arsenide
  • a circuit can be formed on the wafer surface by various methods including a widely used method such as an etching method and a lift-off method.
  • the semiconductor wafer may be cut into individual semiconductor chips through a dicing process.
  • the semiconductor chip obtained as described above is placed on a plate-like carrier having a smooth surface through an adhesive layer.
  • a carrier A circular or square silicon wafer and a metal plate can be used.
  • the adhesive layer a layer capable of temporarily fixing a semiconductor chip and capable of being peeled off after manufacturing a pseudo wafer is used.
  • an acrylic adhesive, a rubber adhesive, a styrene / conjugated diene block copolymer, or the like can be used.
  • a carboxyl group-containing resin having an ethylenically unsaturated group and a radical polymerization initiator as described above can be contained. By containing such a resin, heating or active energy rays can be contained.
  • the adhesiveness of the adhesive layer can also be changed by irradiation.
  • the semiconductor chips to be mounted may be the same or different in the number of arrangement in the vertical and horizontal directions in plan view, and from various viewpoints such as improving the density and securing the terminal area per unit semiconductor chip, You may arrange
  • the distance between the adjacent semiconductor chips is not particularly limited, but may be arranged so as to obtain a fan-out (FO) region necessary for forming a connection terminal of the finally obtained FO-WLP. desirable.
  • the semiconductor chip placed on the plate-like carrier via the adhesive layer is sealed with a sealing material.
  • the semiconductor chip is placed and the sealing material is applied or bonded onto the carrier so that the side wall surface and the upper surface of the semiconductor chip are sealed with the sealing material.
  • the sealing material is molded so as to be embedded in the space between the semiconductor chips.
  • the sealing step using such a sealing material can be formed by performing compression molding using a known semiconductor sealing resin composition that is liquid, granule, or sheet.
  • a known semiconductor sealing resin compositions epoxy resins, epoxy resin curing agents, curing accelerators, spherical fillers and the like are mainly used.
  • the plate-like carrier After curing the sealing material, the plate-like carrier is peeled off. Peeling is performed between the sealing material and the semiconductor chip and the adhesive layer.
  • peeling method heat treatment is performed to change (decrease) the adhesive strength of the adhesive layer and release, or first peeling is performed between the plate-like carrier and the adhesive layer, and then the adhesive layer is subjected to heat treatment or Examples of the method include a method of releasing after the irradiation treatment with an electron beam or ultraviolet rays.
  • the post-cure may be carried out on the pseudo wafer thus obtained.
  • Post-curing is performed, for example, in a temperature range of 150 to 200 ° C. and in a range of 10 minutes to 8 hours.
  • the pseudo wafer can be thinned by polishing the opposite side of the obtained pseudo wafer where the semiconductor is embedded.
  • the grinding method is not particularly limited, and grinding may be performed by a known means using a grinder or the like.
  • the thickness of the pseudo wafer after grinding is not particularly limited, but is usually about 50 to 500 ⁇ m.
  • a rewiring layer or a lead frame is formed on the side of the pseudo wafer where the semiconductor chip circuit is exposed.
  • an insulating resin for rewiring is applied to the entire surface of the pseudo wafer where the circuit of the semiconductor chip is exposed by spin coating or the like, and prebaked at about 100 ° C.
  • An insulating resin layer for rewiring is formed.
  • a pattern is formed on the insulating resin layer for rewiring using a photolithography method or the like, and heat treatment (curing) is performed.
  • the heat treatment conditions are, for example, a temperature range of 150 to 250 ° C.
  • the insulating resin for rewiring is not particularly limited, but polyimide resin, polybenzooxide resin, benzocyclobutene resin, and the like are used from the viewpoint of heat resistance and reliability. As described above, when the insulating resin for rewiring is heat-treated, the pseudo wafer may be warped due to heat shrinkage of the insulating resin. On the other hand, in the formation of the lead frame, a thin metal plate is die-cut by an etching technique or a punching process, and is collectively formed by press bending.
  • a power feeding layer is formed on the entire surface of the rewiring layer of the pseudo wafer by a method such as sputtering, and then a resist layer is formed on the power feeding layer, exposed to a predetermined pattern and developed, and then via-plated by electrolytic copper plating. And form a rewiring circuit. After forming the rewiring circuit, the resist layer is peeled off and the power feeding layer is etched.
  • solder resist layer may be formed so as to cover a part of the rewiring circuit and the solder balls.
  • the applied flux can be resin-based or water-based. As the heating and melting method, reflow, hot plate or the like can be used. In this way, a pseudo wafer of FO-WLP is obtained.
  • the FO-WLP is obtained by dividing the FO-WLP pseudo wafer into individual pieces by a method such as dicing.
  • the warp correction material is applied to the same surface as the surface on which the rewiring layer or the like of the pseudo wafer obtained in this way is formed or the opposite surface to form a coating film.
  • the warp correction material can be applied by a printing method such as screen printing, inkjet, dip coating, flow coating, roll coating, bar coater, curtain coating or the like.
  • the viscosity of the warp correction material can be appropriately adjusted as long as the viscosity corresponds to each printing method.
  • the ink jet method is preferable because it allows fine and partial printing and can flexibly cope with the location and size of the warp of the package.
  • the viscosity at 50 ° C. of the warp correction material is preferably 5 to 50 mPa ⁇ s, and more preferably 5 to 20 mPa ⁇ s. Thereby, smooth printing can be performed without applying an unnecessary load to the ink jet printer.
  • the coating amount of the warp correction material is preferably adjusted so that the thickness of the warp correction layer when cured to form the warp correction layer is in the range of 15 to 50 ⁇ m.
  • the thickness of the warp correction layer is 15 ⁇ m or more, it becomes easy to smooth the warp. If it exceeds 50 ⁇ m, the thinness, which is one of the advantages of FOWLP, is not impaired.
  • Irradiation of active energy rays can be carried out after pattern drawing by an ink jet printer, but it is preferable to carry out simultaneously, for example, by irradiating active energy rays from, for example, a side portion or a lower portion in parallel with pattern drawing by an ink jet printer.
  • an LED, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a metal halide lamp, or the like is appropriate.
  • electron beams, ⁇ rays, ⁇ rays, ⁇ rays, X rays, neutron rays, and the like can also be used.
  • the irradiation amount of the active energy ray varies depending on the film thickness of the warp correction layer, but can generally be in the range of 10 to 10000 mJ / cm 2 , preferably 20 to 2000 mJ / cm 2 .
  • the application amount of the warp correction material that is, the adjustment of the thickness of the warp correction layer after curing the warp correction material, the irradiation amount of the active energy ray, and further, the selection of the whole surface irradiation and partial irradiation
  • the amount of correction according to the degree of warpage of FO-WLP can be easily adjusted by appropriately adjusting the degree of cure of the warp correction layer of the pseudo wafer.
  • the temperature and time for curing by heat are adjusted, or the temperature of the pseudo wafer is warped by performing a method of raising the temperature in one step to the target temperature or performing step heating that is heated to the final temperature via an intermediate temperature.
  • the amount of correction can be easily adjusted by appropriately adjusting the degree of cure of the correction layer and the warping of FO-WLP.
  • the time for curing by heating is preferably 30 seconds to 3 hours. Preferably, it is 30 minutes to 2 hours.
  • the above-described curing with active energy rays and heat is performed by applying the warp correction material on a JEITA standard silicon wafer and curing it with active energy rays and heat to obtain a flat film-like cured product.
  • the absolute value of the difference between the 60 ° specular reflectance and the 60 ° specular reflectance at the interface between the cured product and the silicon wafer is preferably 10% or less.
  • the inventors cure the warp correction material so as to satisfy the above-described relationship, thereby applying an appropriate warp stress to the warp correction material. It has been found that it can be generated. The reason is not clear, but it is likely that deep curability when curing with active energy rays is involved in curing shrinkage. This is only a guess of the present inventors, and the present invention is not bound to the logic.
  • ⁇ Preparation of pseudo wafer> A 4-inch, 150 ⁇ m thick P-type silicon wafer having a 100 nm SiO 2 film formed on one side made by Canosis Co., Ltd. was diced using a dicing apparatus to obtain a 10 mm ⁇ 10 mm square semiconductor chip.
  • a temporary fixing film was placed on a SUS flat substrate, and the above-mentioned semiconductor chips were placed 5 ⁇ 5 in length and breadth so that the SiO 2 surface was in contact with the temporarily fixing film and the distance between the semiconductor chips was 10 mm vertically and horizontally.
  • a 100 mm ⁇ 100 mm square sheet-shaped semiconductor encapsulant was laminated thereon so that the center positions were approximately the same, and compression-molded at 150 ° C.
  • a kneaded material having the following composition is placed between two 50 ⁇ m cover films (Teijin Purex film), and the kneaded material is formed into a sheet by a flat plate pressing method. What was formed in the sheet form of 200 micrometers in thickness was used.
  • ⁇ Preparation of semiconductor encapsulant composition The following components were blended, heated at 70 ° C. for 4 minutes in a roll kneader, then heated at 120 ° C. for 6 minutes, and melt-kneaded for 10 minutes in total with reduced pressure (0.01 kg / cm 2 ) to prepare a kneaded product.
  • ⁇ Naphthalene type epoxy resin Nippon Kayaku Co., Ltd.
  • NC-7000 30 parts ⁇ Bisphenol type epoxy resin (Mitsubishi Chemical Corporation YX-4000) 10 parts ⁇ Phenol novolac type epoxy resin (The Dow Chemical Company) D.E.N.431) 10 parts, anthraquinone 2 parts, carbon black (Carbon MA-100, manufactured by Mitsubishi Chemical Corporation) 10 parts spherical silica (Admafine SO-E2 manufactured by Admatechs Co., Ltd.) 500 parts ⁇ Silane coupling agent (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) 2 parts ⁇ 2-Phenylimidazole (2PZ manufactured by Shikoku Chemicals Co., Ltd.) 2 parts
  • the temporarily fixed film was peeled off from the obtained laminate, and the back side was polished to obtain a pseudo wafer having a size of 100 mm ⁇ 100 mm square and a thickness of 200 ⁇ m.
  • a positive type rewiring forming resin composition having the following composition was applied by spin coating to the semiconductor circuit surface side of the obtained pseudo wafer, and prebaked by heating at 100 ° C. for 20 minutes.
  • the thickness of the photosensitive rewiring-forming resin layer formed on the pre-baked pseudo wafer was 10 ⁇ m.
  • ⁇ Polyhydroxyamide resin (Z2) 100 parts ⁇ Phenol novolac type epoxy resin (DEN 431 manufactured by The Dow Chemical Company) 10 parts ⁇ 1-Naphthoquinone-2-diazide-5-sulfonic acid ester (Trade name TPPA528, manufactured by AZ Electronic Materials) 10 parts, YXY block copolymer (Nanostrength M52N, manufactured by Arkema) 5 parts, silane coupling agent (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) 2 parts • ⁇ -butyrolactone 30 parts • Propylene glycol monomethyl ether acetate 120 parts
  • HMW680GW metal halide lamp
  • ORC organic halide lamp
  • a photomask in which a circular opening pattern of 100 ⁇ m is continuously formed vertically and horizontally at a pitch of 400 ⁇ m
  • an exposure amount of 500 mJ / cm 2 is positive.
  • the mold pattern was irradiated with light, and developed using a 2.38 wt% TMAH aqueous solution at 25 ° C. for 2 minutes to form a rewiring resin layer in which a round opening pattern was formed.
  • the amount of warpage was a state in which the central portion was recessed by 6 mm with reference to a peripheral portion of 100 mm ⁇ 100 mm square.
  • warp correction materials 1 to 5 were prepared according to the compositions shown in Table 1 below.
  • a coating film is formed by applying each warp correction material obtained above onto a mirror surface of a silicon wafer with JEITA specifications, and ultraviolet rays are irradiated with a high-pressure mercury lamp at an irradiation amount of 600 mJ / cm 2 to perform temporary curing. It was. Next, the temporarily cured film was peeled off, fixed on a Teflon sheet with the irradiated surface facing up, and heated at 150 ° C. for 60 minutes using a BOX-type drying furnace to obtain a flat film-like cured product. The linear expansion coefficient at 50 ° C.
  • thermomechanical analysis TMA / SS6000, manufactured by Seiko Instruments Inc.
  • cured material was measured with the dynamic viscoelasticity measuring apparatus (DMS6100, Seiko Instruments Inc. make).
  • the thickness of the flat film-like cured product was measured with a micro caliper. The measurement results were as shown in Tables 2 and 3 below.
  • the glossiness on the surface side (ultraviolet irradiation side) of the flat film-shaped cured product and the surface side (interface side) that was in contact with the mirror surface of the silicon wafer was measured with a gloss meter ( The 60 ° specular reflectance was measured using Micro Trigloss, manufactured by BYK Gardener. The absolute value of the difference between the two was determined from the measurement results of the specular reflectivity on the surface side and the interface side. The results were as shown in Table 4 below.
  • the warp correction materials 1, 2, 3, and 5 were applied by inkjet printing using a piezo-type inkjet printer, respectively, to form a coating film.
  • the ink jet head was irradiated with ultraviolet rays at an irradiation amount of 600 mJ / cm 2 with an incidental high-pressure mercury lamp, and the coating film was temporarily cured.
  • a coating film is formed on the convex surface of the prepared pseudo wafer by screen printing using the warp correction material 4, and the coating film is dried at 80 ° C. for 30 minutes in a BOX-type drying furnace.
  • the warp correction material 2 was applied to the convex surface of the prepared pseudo wafer by ink jet printing using a piezo ink jet printer to form a coating film. At this time, ultraviolet irradiation was not performed. Thereafter, the coating film was heated at 150 ° C. for 60 minutes in a BOX type drying furnace (curing method B).
  • the amount of warpage was measured for a pseudo wafer in which the warp correction material was cured by the curing method as described above to form a warp correction layer.
  • the amount of warpage was measured at 25 ° C. using a long caliper.
  • the warp of the central part is ⁇ 2 mm or less with reference to two points on the peripheral part of the pseudo wafer, it was judged as good ( ⁇ ).
  • ⁇ 2 to 3 mm was judged as ⁇ , and when it exceeded ⁇ 3 mm, it was judged as defective ( ⁇ ).
  • the evaluation results are as shown in Tables 2 and 3.
  • Example 1 and Example 2 the warpage of Example 1 and Example 2 in which the linear expansion coefficient ( ⁇ ) ⁇ elastic modulus ( ⁇ ) ⁇ film thickness ( ⁇ ) is 2000 or more is good, while In Example 1 and Comparative Example 2, since the linear expansion coefficient ( ⁇ ) ⁇ elastic modulus ( ⁇ ) ⁇ film thickness ( ⁇ ) was less than 2000, the warp correction was not good. Moreover, while the curvature of Example 6 and Example 7 whose linear expansion coefficient ( ⁇ ) ⁇ elastic modulus ( ⁇ ) ⁇ film thickness ( ⁇ ) is 10,000 or less is good, Comparative Examples 3 and 4 and Comparative Example In No. 6, since the linear expansion coefficient ( ⁇ ) ⁇ elastic modulus ( ⁇ ) ⁇ film thickness ( ⁇ ) exceeds 10,000, the warpage of the warp correction material is poor.
  • Example 1 and Comparative Example 1 when Example 1 and Comparative Example 1 are compared, the linear expansion coefficient ( ⁇ ) and the elastic modulus ( ⁇ ) are constant, but the film thickness ( ⁇ ) is different. In this case, if the linear expansion coefficient ( ⁇ ) ⁇ elastic modulus ( ⁇ ) ⁇ film thickness ( ⁇ ) is 2000 or more, the warpage of the warp correction material is good, and if it is less than 2000, the warpage of the warpage correction material is poor. On the other hand, when Example 2 and Comparative Example 1 are compared, the linear expansion coefficient ( ⁇ ) and the film thickness ( ⁇ ) are constant, but the elastic modulus ( ⁇ ) is different.
  • the absolute value of the difference in reflectance is 10% or less, and it is estimated that the curing of the surface and the interface proceeds well.
  • the absolute value of the reflectance difference of the cured product using the warp correction material 5 is more than 10%
  • the hydroxyl group-containing compound contained in the warp correction material 5 has two or more hydroxyl groups, and the hydroxyl value is Since the compound is 100 (mgKOH / g) or more
  • the warpage measurement evaluation (Example 7) of the pseudo wafer using the warp correction material 5 is performed when the warp correction materials 1 to 4 are used (Examples 1 to 6). ) Is presumed to have the same effect.

Landscapes

  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

[Problem] To provide a warpage correction material which can adjust the amount of warpage even at the temperature at which a fan out-type wafer level package (FO-WLP) is mounted, and at room temperature at which, for example, wafer transportation is performed, and thereby reduce the warpage of the WLP. [Solution] This warpage correction material for a fan out-type wafer level package is characterized by comprising a curable resin composition including a component that is curable by means of an active energy ray and heat, wherein when the warpage correction material is formed into a flat film-shaped cured product by curing the warpage correction material by means of the active energy ray and heat, and the linear expansion coefficient α (ppm/°C) at 25°C, the elastic modulus β (GPa) at 25°C, and the thickness γ (μm) of the cured product satisfy the following relational expression: 2000≤α×β×γ≤10000.

Description

反り矯正材およびファンアウト型ウェハレベルパッケージの製造方法Warpage correction material and manufacturing method of fan-out type wafer level package
 本発明は、外部接続用電極の配置領域が半導体の平面サイズよりも大きいファンアウト(Fan-out)型のウェハレベルパッケージ用反り矯正材に関する。 The present invention relates to a fan-out type warp correction material for a wafer-level package in which an arrangement region of external connection electrodes is larger than a semiconductor planar size.
 近年、半導体回路等の分野おいて小型化の要求が高まっており、その要求に応えるために半導体回路はそのチップサイズに近いパッケージ(Chip Size Package)に実装されることがある。チップサイズパッケージを実現する手段の一つとして、ウェハレベルで接合し断片化するウェハレベルパッケージ(Wafer Level Package、以下、WLPと略す場合がある。)と呼ばれるパッケージ方法が提案されている。WLPは、低コスト化、小型化に寄与し得るため、注目されている。WLPは、電極が形成された回路基板上にフェースダウンで実装される。 In recent years, there has been an increasing demand for miniaturization in the field of semiconductor circuits and the like, and in order to meet the demands, semiconductor circuits may be mounted in a package (Chip Size Package) close to the chip size. As one means for realizing a chip size package, a package method called a wafer level package (hereinafter sometimes abbreviated as WLP) that is bonded and fragmented at a wafer level has been proposed. WLP is attracting attention because it can contribute to cost reduction and size reduction. The WLP is mounted face down on a circuit board on which electrodes are formed.
 ところで、半導体チップの小型化、高集積化に伴って、半導体チップの外部接続用の電極(端子、バンプ)の数は多くなる傾向にあり、そのため半導体チップの外部接続用の電極のピッチは小さくなる傾向にある。しかしながら、微細なピッチでバンプが形成された半導体チップを回路基板上に直接実装するのは必ずしも容易ではない。 By the way, with the miniaturization and high integration of the semiconductor chip, the number of electrodes (terminals and bumps) for external connection of the semiconductor chip tends to increase. Therefore, the pitch of the electrodes for external connection of the semiconductor chip is small. Tend to be. However, it is not always easy to directly mount a semiconductor chip on which bumps are formed at a fine pitch on a circuit board.
 上記のような課題に対して、半導体チップの外周に半導体用封止材の領域を形成し、電極に接続された再配線層またはリードフレーム(以下、併せて、「再配線層等」ともいう。)を半導体用封止材の領域にも設けて、バンプのピッチを大きくすることが提案されている。このようなWLPは、半導体チップのサイズに対してバンプの配置エリアのサイズが大きくなるため、ファンアウト型のウェハレベルパッケージ(以下、FO-WLPと略す場合がある。)と称される。 In order to solve the above-described problems, a semiconductor sealing material region is formed on the outer periphery of the semiconductor chip, and a redistribution layer or a lead frame connected to the electrodes (hereinafter also referred to as “redistribution layer etc.”). It has been proposed to increase the pitch of the bumps by providing also in the region of the semiconductor sealing material. Such a WLP is called a fan-out type wafer level package (hereinafter sometimes abbreviated as FO-WLP) because the size of the bump arrangement area is larger than the size of the semiconductor chip.
 FO-WLPでは、半導体チップが半導体用封止材により埋め込まれる。半導体チップの回路面は外側にむき出しとなり、半導体チップと半導体用封止材との境界が形成される。半導体チップを埋め込む半導体用封止材の領域にも、半導体チップの電極に接続された再配線層等が設けられ、バンプが再配線層等を介して半導体チップの電極に電気的に接続される。かかるバンプのピッチは、半導体チップの電極のピッチに対して大きく設定できるようになる。 In FO-WLP, a semiconductor chip is embedded with a semiconductor sealing material. The circuit surface of the semiconductor chip is exposed to the outside, and a boundary between the semiconductor chip and the semiconductor sealing material is formed. A rewiring layer connected to the electrode of the semiconductor chip is also provided in the region of the semiconductor sealing material that embeds the semiconductor chip, and the bump is electrically connected to the electrode of the semiconductor chip via the rewiring layer or the like. . The pitch of the bumps can be set larger than the pitch of the electrodes of the semiconductor chip.
 また、半導体チップのみならず、同種または異種からなる複数の電子部品を1つのパッケージ内に収めたり、複数の半導体チップを半導体用封止材に埋め込み1つの半導体部品とすることも考えられる。このようなパッケージでは、複数の電子部品が半導体用封止材により埋め込まれる。複数の電子部品を埋め込む半導体用封止材には、電子部品の電極に接続された再配線層等が設けられ、バンプが再配線層等を介して電子部品の電極に電気的に接続される。この場合にも、半導体チップのサイズに対してバンプの配置エリアのサイズが大きくなるため、FO-WLPといえる。 It is also conceivable that not only semiconductor chips but also a plurality of electronic components of the same or different types are housed in one package, or a plurality of semiconductor chips are embedded in a semiconductor sealing material to form one semiconductor component. In such a package, a plurality of electronic components are embedded with a semiconductor sealing material. A semiconductor encapsulant for embedding a plurality of electronic components is provided with a rewiring layer or the like connected to the electrode of the electronic component, and the bump is electrically connected to the electrode of the electronic component through the rewiring layer or the like . Also in this case, it can be said that FO-WLP because the size of the bump arrangement area is larger than the size of the semiconductor chip.
 このようなパッケージでは、一般的に支持体上に一定の間隔を設けて半導体チップや電子部品を配置し、半導体用封止材を用いて埋め込み、封止材を加熱硬化させた後に、支持体から剥離して擬似ウェハが作製される。続いて、擬似ウェハの半導体チップ回路面から拡張された半導体用封止材料領域にかけて、再配線層等が形成される。このようにしてバンプのピッチは、半導体チップの電極のピッチに対して大きく設定できるようになる。 In such a package, in general, a semiconductor chip or an electronic component is arranged at a certain interval on a support, embedded with a semiconductor sealing material, and the sealing material is heat-cured, and then the support. Pseudo wafer is produced by peeling from the wafer. Subsequently, a rewiring layer or the like is formed from the semiconductor chip circuit surface of the pseudo wafer to the expanded semiconductor sealing material region. In this way, the pitch of the bumps can be set larger than the pitch of the electrodes of the semiconductor chip.
 再配線層の形成においては、一般的に、ポジ型の感応性樹脂を、擬似ウェハの半導体チップ回路面に塗布し、プリベークを行い、フォトマスク等を介して開口したい領域にUV光線等の活性光線を照射し、続いてTMAH(テトラメチルアンモニウムヒドロキシド)等の現像液を用いて現像を行い、加熱キュア、酸素プラズマ処理等を行い、メタル電極のスパッタリングを行い、さらにフォトレジスト層を形成し配線をパターニングして再配線層を形成していく(例えば、特開2013-38270号公報等)。一方、リードフレームの形成においては、薄い金属板をエッチング技術や打ち抜き加工等により型抜きし、プレス曲げにより一括形成される。 In the formation of the rewiring layer, generally, a positive sensitive resin is applied to the semiconductor chip circuit surface of the pseudo wafer, pre-baked, and activated with UV light or the like in a region to be opened through a photomask or the like. Irradiate light, then develop using a developer such as TMAH (tetramethylammonium hydroxide), heat cure, oxygen plasma treatment, etc., metal electrode sputtering, and further form a photoresist layer The wiring is patterned to form a rewiring layer (for example, Japanese Patent Application Laid-Open No. 2013-38270). On the other hand, in the formation of the lead frame, a thin metal plate is die-cut by an etching technique or a punching process, and is collectively formed by press bending.
 WLPやFO-WLPにおいて、半導体チップ回路面に再配線層を形成すると、主に配線間の感光性ポリイミド等の絶縁膜のキュア時の収縮により回路面(即ち、絶縁膜を形成した面)が凹となる反り変形が発生する。また、再配線層やリードフレームとは反対面に封止された封止材のキュア時の収縮により、回路面が凸となる反り変形が発生する。この反り量を低減するため、ウェハ状の半導体からなる基板の一面に樹脂層を形成し、その樹脂層の全域が球面状に膨出するように反らせて保持した後に、樹脂層を硬化させことが提案されている(例えば、特開2012-178422号公報)。また、FO-WLPの反りに関して、例えば、米国特許公開第2010/0252919号には、FO-WLPでは半導体チップ面側が凹となるような反りが発生するため、その反り量を予測しておき、同じ反り量で逆向きに反る高分子フィルムを半導体チップ面とは反対面側に設けることで反りを打ち消し合うようにした半導体装置が記載されている。さらに、フィリップチップ方式の半導体装置においてアンダーフィルの線膨張係数と弾性率との積(ストレスインデックス)に着目し、半導体装置の信頼性を改善することが提案されている(例えば、特開2013-8896号公報)。 In WLP or FO-WLP, when a rewiring layer is formed on the semiconductor chip circuit surface, the circuit surface (that is, the surface on which the insulating film is formed) is mainly due to shrinkage during curing of the insulating film such as photosensitive polyimide between the wirings. Warping deformation that becomes concave occurs. Further, warping deformation in which the circuit surface becomes convex occurs due to shrinkage during curing of the sealing material sealed on the surface opposite to the rewiring layer or the lead frame. In order to reduce the amount of warpage, a resin layer is formed on one surface of a substrate made of a wafer-like semiconductor, and the entire resin layer is warped and held in a spherical shape, and then the resin layer is cured. Has been proposed (for example, JP 2012-178422 A). Further, regarding warpage of FO-WLP, for example, in US 2010/0252919, warpage in which the semiconductor chip surface side is concave occurs in FO-WLP, so the warpage amount is predicted, There is described a semiconductor device in which warpage is canceled out by providing a polymer film that is warped in the opposite direction with the same amount of warpage on the side opposite to the semiconductor chip surface. Further, it has been proposed to improve the reliability of a semiconductor device by paying attention to the product (stress index) of the linear expansion coefficient and the elastic modulus of an underfill in a Philip chip type semiconductor device (for example, Japanese Patent Laid-Open No. 2013-2013). 8896).
 FO-WLPでは、従来のWLPと比べてパッケージの厚さが薄いことから、再配線層形成時に発生する応力の影響を受けやすい。そのため、従来のものよりもパッケージが反り易い。また、特開2012-178422号公報で提案されているように再配線層が片面にのみ設けられているWLPを加熱して反り量を抑制したとしても、WLPの実装温度(例えば260℃)に加熱されると再配線層や封止材が膨張してパッケージに反りが発生する。その結果、パッケージ内部の層間に剥離が生じたり、実装時に一部の端子が接続しにくくなる問題がある。一方、WLPの実装時のパッケージの反りを抑制するために、WLPの実装温度で反り量や封止材が抑制されるように調整すると、パッケージを室温に冷却した際に絶縁膜を含む再配線層が収縮してウェハに反りが発生してしまう。その結果、ウェハ搬送が困難になったり、ウェハに応力がかかって微小な衝撃で割れるリスクが高まる問題がある。また、米国特許公開第2010/0252919号に記載されている方法では、予測できるような反り量であれば反り矯正が可能であるものの、上述のとおり擬似ウェハの製造段階のみならず、WLPの実装時の加熱においても反りが発生するため、反りの程度が変化するような場合には対応できない。また、米国特許公開第2010/0252919号に記載されている方法は、擬似ウェハ作製時に予め反対の反りを付与しておくものであるため、再配線層を設ける際の微細な加工が困難となる場合がある。さらに、特開2013-8896号公報では、アンダーフィルに着目したものであり、WLPの反りに関しては全く考慮されていない。 FO-WLP is susceptible to the stress generated when the rewiring layer is formed because the package is thinner than the conventional WLP. Therefore, the package is more likely to warp than the conventional one. Further, as proposed in Japanese Patent Application Laid-Open No. 2012-178422, even if the WLP provided with the rewiring layer only on one side is heated to suppress the warpage amount, the mounting temperature of the WLP (for example, 260 ° C.) is reduced. When heated, the rewiring layer and the sealing material expand and warp the package. As a result, there is a problem that peeling occurs between layers inside the package, or some terminals are difficult to connect during mounting. On the other hand, in order to suppress the warpage of the package at the time of mounting the WLP, if the adjustment is made so that the warping amount and the sealing material are suppressed at the WLP mounting temperature, the rewiring including the insulating film is performed when the package is cooled to room temperature. The layer shrinks and the wafer is warped. As a result, there are problems that it becomes difficult to carry the wafer and that the risk that the wafer is stressed and broken by a minute impact increases. Further, according to the method described in US Patent Publication No. 2010/0252919, it is possible to correct a warp if the warp amount is predictable. However, as described above, not only the manufacturing stage of the pseudo wafer but also the mounting of WLP is possible. Warping also occurs during heating, so it is not possible to deal with cases where the degree of warpage changes. Further, since the method described in US Patent Publication No. 2010/0252919 is provided with an opposite warp in advance when manufacturing a pseudo wafer, it is difficult to perform fine processing when a rewiring layer is provided. There is a case. Furthermore, Japanese Patent Laid-Open No. 2013-8896 focuses on underfill, and does not consider WLP warpage at all.
 したがって、本発明の目的は、ファンアウト型のウェハレベルパッケージ(FO-WLP)の実装時の温度でもウェハ搬送等の室温でも反り量を調整してWLPの反りを低減できる、反り矯正材を提供することである。 Therefore, an object of the present invention is to provide a warp correction material capable of reducing the warpage of WLP by adjusting the warpage amount at the temperature at the time of mounting a fan-out type wafer level package (FO-WLP) or at the room temperature such as wafer transfer. It is to be.
 上記のような問題を解決するためには、FO-WLPに反り矯正層を設けるにあたり半導体パッケージ実装時の温度でもウェハ搬送等の室温でも反り量を抑制できることが望ましいといえる。そして、本発明者らが検討したところ、反り矯正材の反り応力を調整できるパラメーターとして、反り矯正材の硬化物の線膨張係数と弾性率と膜厚とが密接に関係していることが判明した。そして、検討をさらに進め、線膨張係数、弾性率および膜厚が一定の関係にあれば、半導体パッケージ実装時の温度でもウェハ搬送等の室温でも反り量を抑制できるとともに、FO-WLPの反り量を調整しながらウェハないしパッケージの反りを低減できるとの知見を得た。本発明は係る知見に基づくものである。 In order to solve the above-described problems, it can be said that it is desirable to be able to suppress the warpage amount at the temperature at the time of mounting the semiconductor package or at the room temperature such as wafer conveyance when providing the warpage correction layer in the FO-WLP. As a result of the study by the present inventors, it was found that the linear expansion coefficient, the elastic modulus, and the film thickness of the cured product of the warp correction material are closely related as parameters capable of adjusting the warp stress of the warp correction material. did. Further, if the relationship between the linear expansion coefficient, the elastic modulus, and the film thickness is fixed, the amount of warpage can be suppressed both at the temperature at the time of mounting the semiconductor package and at room temperature such as wafer transfer, and the amount of warpage of FO-WLP. The knowledge that the warpage of the wafer or the package can be reduced while adjusting the angle. The present invention is based on such knowledge.
 また、本発明者らは、活性エネルギー線と熱の両方で硬化し得るような硬化性樹脂組成物を用いた反り矯正材は、反り応力を効果的に生じさせることができることを見出した。さらに、硬化性樹脂組成物を硬化させる際の硬化度合いによって反り応力を制御ができ、その硬化度合いは、硬化膜とした際の表面と界面の光沢度の差の絶対値に関係することがわかった。そして、当該光沢度の差が一定の範囲内にあれば、反り矯正材により適度な反り応力を生じさせることができるとの知見を得た。 Further, the present inventors have found that a warp correction material using a curable resin composition that can be cured by both active energy rays and heat can effectively generate a warp stress. Furthermore, the warping stress can be controlled by the degree of curing when the curable resin composition is cured, and the degree of curing is related to the absolute value of the difference in glossiness between the surface and the interface when the cured film is formed. It was. And when the difference of the said glossiness was in the fixed range, the knowledge that moderate curvature stress could be produced with the curvature correction material was acquired.
 すなわち、本発明による反り矯正材は、ファンアウト型ウェハレベルパッケージ用の反り矯正材であって、
 活性エネルギー線および熱によって硬化し得る成分を含む硬化性樹脂組成物からなり、
 前記反り矯正材を活性エネルギー線および熱により硬化させて平膜状の硬化物とした場合に、該硬化物の、25℃における線膨張係数α(ppm/℃)、25℃における弾性率β(GPa)、および厚さγ(μm)が、下記関係式:
  2000≦α×β×γ≦10000
を満足することを特徴とするものである。
That is, the warp correction material according to the present invention is a warp correction material for a fan-out type wafer level package,
It consists of a curable resin composition containing a component that can be cured by active energy rays and heat,
When the warp straightening material is cured by active energy rays and heat to form a flat film-like cured product, the cured product has a linear expansion coefficient α (ppm / ° C.) at 25 ° C. and an elastic modulus β ( GPa) and thickness γ (μm) are expressed by the following relational expression:
2000 ≦ α × β × γ ≦ 10000
It is characterized by satisfying.
 本発明の態様においては、前記γ(μm)が15~50の範囲であることが好ましい。 In the embodiment of the present invention, the γ (μm) is preferably in the range of 15-50.
 本発明の態様においては、前記反り矯正材を、JEITA規格のシリコンウェハ上に適用して活性エネルギー線および熱により硬化させて平膜状の硬化物とした場合に、硬化物表面の60°鏡面反射率と、硬化物とシリコンウェハとの界面での60°鏡面反射率との差の絶対値が10%以下であることが好ましい。 In an aspect of the present invention, when the warpage correction material is applied onto a JEITA standard silicon wafer and cured by active energy rays and heat to obtain a flat film-like cured product, the surface of the cured product is a 60 ° mirror surface. The absolute value of the difference between the reflectance and the 60 ° specular reflectance at the interface between the cured product and the silicon wafer is preferably 10% or less.
 本発明の態様においては、前記硬化性樹脂組成物が、水酸基を有する化合物とイソシアネート基を有する化合物とを少なくとも含むことが好ましい。 In the embodiment of the present invention, the curable resin composition preferably includes at least a compound having a hydroxyl group and a compound having an isocyanate group.
 本発明の態様においては、前記水酸基を有する化合物中の水酸基の、前記イソシアネート基を有する化合物のイソシアネート基に対するモル比(水酸基/イソシアネート基)が0.1~0.9であることが好ましい。 In the embodiment of the present invention, the molar ratio of the hydroxyl group in the compound having a hydroxyl group to the isocyanate group of the compound having an isocyanate group (hydroxyl group / isocyanate group) is preferably 0.1 to 0.9.
 本発明の態様においては、前記水酸基を有する化合物が、一分子中に水酸基を2個以上有し、水酸基価が100(mgKOH/g)以上であることが好ましい。 In an embodiment of the present invention, the compound having a hydroxyl group preferably has two or more hydroxyl groups in one molecule and has a hydroxyl value of 100 (mgKOH / g) or more.
 本発明の態様においては、前記水酸基を有する化合物または前記イソシアネート基を有する化合物が、イソシアヌル基またはベンゼン環の少なくとも1つを有することが好ましい。 In the aspect of the present invention, it is preferable that the compound having a hydroxyl group or the compound having an isocyanate group has at least one of an isocyanuric group or a benzene ring.
 また、本発明の別の態様によるファンアウト型ウェハレベルパッケージの製造方法は、
 上記反り矯正材を、擬似ウェハの再配線層が形成されている面と同じ面または反対側の面に塗布して塗膜を形成し、
 前記塗膜を活性エネルギー線および熱により硬化させて反り矯正層を形成する、
ことを含むものである。
A method for manufacturing a fan-out type wafer level package according to another aspect of the present invention includes:
Apply the warp correction material to the same surface as the surface on which the rewiring layer of the pseudo wafer is formed or the opposite surface to form a coating film,
Curing the coating film with active energy rays and heat to form a warp correction layer,
Including things.
 本発明の態様においては、前記塗布がインクジェット方式により行われることが好ましい。 In the embodiment of the present invention, the coating is preferably performed by an ink jet method.
 本発明の態様においては、反り矯正層の厚みが15~50μmの範囲であることが好ましい。 In the embodiment of the present invention, the thickness of the warp correction layer is preferably in the range of 15 to 50 μm.
 本発明の態様においては、前記活性エネルギー線および熱による硬化を、JEITA規格のシリコンウェハ上に前記反り矯正材を塗布して活性エネルギー線および熱により硬化させて平膜状の硬化物とした場合に、硬化物表面の60°鏡面反射率と、硬化物とシリコンウェハとの界面での60°鏡面反射率との差の絶対値が10%以下となるように行うことが好ましい。 In the aspect of the present invention, when the active energy ray and heat are cured, the warp straightening material is applied on a JEITA standard silicon wafer and cured by the active energy ray and heat to obtain a flat film-like cured product. Furthermore, it is preferable that the absolute value of the difference between the 60 ° specular reflectance of the cured product surface and the 60 ° specular reflectance at the interface between the cured product and the silicon wafer is 10% or less.
 本発明によれば、硬化物とした場合の線膨張係数、弾性率、および厚さが所定の関係を有するような硬化性樹脂組成物からなる反り矯正材を用いることにより、半導体パッケージ実装時の温度でもウェハ搬送等の室温でも反り量を抑制できるとともに、ウェハないしパッケージの反り量を調整しながらウェハないしパッケージの反りを低減できる。その結果、品質信頼性の高い半導体パッケージを得ることができる。 According to the present invention, by using a warp correction material made of a curable resin composition having a predetermined relationship between a linear expansion coefficient, a modulus of elasticity, and a thickness when a cured product is used, a semiconductor package is mounted. The amount of warpage can be suppressed both at temperature and at room temperature such as wafer conveyance, and the warpage of the wafer or package can be reduced while adjusting the amount of warpage of the wafer or package. As a result, a semiconductor package with high quality and reliability can be obtained.
<反り矯正材>
 本発明による反り矯正材は、反り矯正層を形成するための材料であって、活性エネルギー線および熱によって硬化し得る成分を含む硬化性樹脂組成物からなるものである。FO-WLPの製造時に、擬似ウェハの回路形成面に再配線層等とともに絶縁層が設けられるが、再配線層だけでなく、絶縁膜の材料、厚さ、パターン、封止材の材料、厚さによって、擬似ウェハの反り量も変化する。そこで、再配線層の収縮応力や絶縁層の収縮応力や封止材の収縮応力によりFO-WLPに作用する応力と同程度の収縮応力を、反り矯正層によって発生させることができれば、FO-WLPの反りを抑制することができると考えられる。本発明においては、上記したような活性エネルギー線と熱により硬化し得る硬化性樹脂組成物からなる反り矯正材が、反り矯正材を活性エネルギー線および熱により硬化させて平膜状の硬化物とした場合に、該硬化物の、25℃における線膨張係数α(ppm/℃)、25℃における弾性率β(GPa)、および厚さγ(μm)が、下記関係式:
  2000≦α×β×γ≦10000
を満足するように調整することで、半導体パッケージ実装時の温度でもウェハ搬送等の室温でも反り量を抑制することができることを見出した。即ち、再配線層や絶縁層や封止材の収縮応力を打ち消すように反り矯正層に収縮応力を働かせることができ、その結果、半導体パッケージ実装時の温度でもウェハ搬送等の室温でも反り量を抑制できるとともに、ウェハないしパッケージの反り量を調整しながらウェハないしパッケージの反りを低減でき、品質信頼性の高い半導体パッケージを得ることができる。これはあくまでも本発明者らの推測であり、本発明が当該論理に拘束されるものではない。なお、本発明による反り矯正材は、FO-WLPの再配線層等が設けられている面とは反対の面に設けられていても良いが、バランスに応じて同じ面に設けられていても良い。以下、本発明による硬化性樹脂組成物を構成する各成分について説明する。
<War correction material>
The warp correction material according to the present invention is a material for forming a warp correction layer, and is made of a curable resin composition containing an active energy ray and a component that can be cured by heat. At the time of manufacturing FO-WLP, an insulating layer is provided on the circuit formation surface of the pseudo wafer together with a rewiring layer, etc. In addition to the rewiring layer, the insulating film material, thickness, pattern, sealing material, thickness Accordingly, the amount of warpage of the pseudo wafer also changes. Therefore, if the shrinkage stress similar to the stress acting on the FO-WLP due to the shrinkage stress of the rewiring layer, the insulation layer, or the shrinkage stress of the sealing material can be generated by the warp correction layer, the FO-WLP It is considered that the warpage of the film can be suppressed. In the present invention, a warp correction material comprising a curable resin composition that can be cured by active energy rays and heat as described above is obtained by curing a warp correction material by active energy rays and heat to form a flat film-like cured product. In this case, the linear expansion coefficient α (ppm / ° C.) at 25 ° C., the elastic modulus β (GPa) at 25 ° C., and the thickness γ (μm) of the cured product are expressed by the following relational expressions:
2000 ≦ α × β × γ ≦ 10000
It has been found that the amount of warpage can be suppressed by adjusting so as to satisfy the above conditions, both at the temperature when the semiconductor package is mounted and at room temperature such as wafer conveyance. In other words, the shrinkage stress can be applied to the warp correction layer so as to cancel the shrinkage stress of the rewiring layer, the insulating layer, and the sealing material. In addition to suppressing the warpage of the wafer or package, the warpage of the wafer or package can be reduced, and a semiconductor package with high quality reliability can be obtained. This is only a guess of the present inventors, and the present invention is not bound to the logic. The warp correction material according to the present invention may be provided on the surface opposite to the surface on which the FO-WLP rewiring layer or the like is provided, or may be provided on the same surface according to the balance. good. Hereinafter, each component which comprises the curable resin composition by this invention is demonstrated.
 反り矯正材を構成する硬化性樹脂組成物に含まれる必須成分である活性エネルギー線によって硬化しうる成分としては、ラジカル性の付加重合反応により硬化し得る硬化性成分が挙げられる。分子中に1個以上のエチレン性不飽和基を有するラジカル性の付加重合反応性成分の具体例としては、例えば、慣用公知のポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ウレタン(メタ)アクリレート、カーボネート(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げることができる。具体的には、エチレングリコール、メトキシテトラエチレングリコール、ポリエチレングリコール、プロピレングリコール等のグリコールのジアクリレート類;N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド等のアクリルアミド類;N,N-ジメチルアミノエチルアクリレート、N,N-ジメチルアミノプロピルアクリレート等のアミノアルキルアクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリス-ヒドロキシエチルイソシアヌレート等の多価アルコールまたはこれらのエチレオキサイド付加物、プロピレンオキサイド付加物、もしくはε-カプロラクトン付加物等の多価アクリレート類;フェノキシアクリレート、ビスフェノールAジアクリレート、およびこれらのフェノール類のエチレンオキサイド付加物もしくはプロピレンオキサイド付加物等の多価アクリレート類;グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレート等のグリシジルエーテルの多価アクリレート類;前記に限らず、ポリエーテルポリオール、ポリカーボネートジオール、水酸基末端ポリブタジエン、ポリエステルポリオール等のポリオールを直接アクリレート化、もしくは、ジイソシアネートを介してウレタンアクリレート化したアクリレート類およびメラミンアクリレート、および前記アクリレートに対応する各メタクリレート類の少なくとも何れか一種等が挙げられる。 Examples of components that can be cured by active energy rays, which are essential components contained in the curable resin composition constituting the warp correction material, include curable components that can be cured by radical addition polymerization reaction. Specific examples of the radical addition polymerization reactive component having one or more ethylenically unsaturated groups in the molecule include conventionally known polyester (meth) acrylate, polyether (meth) acrylate, and urethane (meth). Examples thereof include acrylate, carbonate (meth) acrylate, and epoxy (meth) acrylate. Specifically, glycol diacrylates such as ethylene glycol, methoxytetraethylene glycol, polyethylene glycol, and propylene glycol; acrylamides such as N, N-dimethylacrylamide, N-methylolacrylamide, and N, N-dimethylaminopropylacrylamide Aminoalkyl acrylates such as N, N-dimethylaminoethyl acrylate and N, N-dimethylaminopropyl acrylate; polyhydric alcohols such as hexanediol, trimethylolpropane, pentaerythritol, dipentaerythritol, tris-hydroxyethyl isocyanurate Or a polyvalent acrylate such as an ethylene oxide adduct, a propylene oxide adduct, or an ε-caprolactone adduct; Acrylates, bisphenol A diacrylates, and polyvalent acrylates such as ethylene oxide adducts or propylene oxide adducts of these phenols; glycerin diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, triglycidyl isocyanurate Polyglycerides of glycidyl ether such as, but not limited to, acrylates and melamines obtained by directly acrylated polyols such as polyether polyols, polycarbonate diols, hydroxyl-terminated polybutadienes, polyester polyols, or urethane acrylates via diisocyanates Acrylate, and at least one of each methacrylate corresponding to the acrylate Is mentioned.
 上記した以外にも、ラジカル性の付加重合反応により硬化し得る硬化性成分としては、以下の(1)~(11)のような化合物を使用してもよい。
 (1)1分子中に複数のフェノール性水酸基を有する化合物とアルキレンオキシドとを反応させて得られる反応生成物に、不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られる不飽和基含有ポリマー、
 (2)2官能またはそれ以上の多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、側鎖に存在する水酸基に2塩基酸無水物を付加させたアクリル含有ポリマー、
 (3)2官能エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたアクリル含有ポリマー、
 (4)1分子中に複数のフェノール性水酸基を有する化合物と環状カーボネート化合物とを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られる不飽和基含有ポリマー、
 (5)ジイソシアネートと、2官能エポキシ樹脂の(メタ)アクリレートもしくはその部分酸無水物変性物、カルボキシル基含有ジアルコール化合物およびジオール化合物との重付加反応によるアクリル含有ウレタン樹脂、
 (6)不飽和カルボン酸と、不飽和基含有化合物との共重合により得られる不飽和基含有ポリマー、
 (7)ジイソシアネートと、カルボキシル基含有ジアルコール化合物およびジオール化合物との重付加反応による樹脂の合成中に、分子内に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したアクリル含有ウレタン樹脂、
 (8)ジイソシアネートと、カルボキシル基含有ジアルコール化合物およびジオール化合物との重付加反応による樹脂の合成中に、分子内に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したアクリル含有ウレタン樹脂、
 (9)前記(5)の樹脂の合成中に、分子内に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したアクリル含有ウレタン樹脂、
 (10)前記(5)の樹脂の合成中に、分子内に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え末端(メタ)アクリル化したアクリル含有ウレタン樹脂、および
 (11)上記(1)~(10)の樹脂にさらに1分子内に1つのエポキシ基と1個以上の(メタ)アクリロイル基を有する化合物を付加してなるアクリル含有ポリマー、等を単独でまたは2種以上を組み合わせて、あるいは上記した分子中に1個以上のエチレン性不飽和基を有するモノマーと併用して、用いることができる。
In addition to the above, compounds such as the following (1) to (11) may be used as curable components that can be cured by radical addition polymerization reaction.
(1) A reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide is reacted with an unsaturated group-containing monocarboxylic acid, and the resulting reaction product is converted to a polybasic acid. An unsaturated group-containing polymer obtained by reacting an anhydride,
(2) an acrylic-containing polymer obtained by reacting a bifunctional or higher polyfunctional epoxy resin with (meth) acrylic acid and adding a dibasic acid anhydride to a hydroxyl group present in the side chain;
(3) an acrylic-containing polymer in which (meth) acrylic acid is reacted with a polyfunctional epoxy resin obtained by epoxidizing the hydroxyl group of a bifunctional epoxy resin with epichlorohydrin, and a dibasic acid anhydride is added to the resulting hydroxyl group;
(4) A reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a cyclic carbonate compound is reacted with an unsaturated group-containing monocarboxylic acid, and the resulting reaction product is a polybasic acid. An unsaturated group-containing polymer obtained by reacting an anhydride,
(5) Acrylic-containing urethane resin by polyaddition reaction between diisocyanate and (meth) acrylate of bifunctional epoxy resin or its partial acid anhydride modified product, carboxyl group-containing dialcohol compound and diol compound,
(6) an unsaturated group-containing polymer obtained by copolymerization of an unsaturated carboxylic acid and an unsaturated group-containing compound,
(7) During the synthesis of a resin by polyaddition reaction of a diisocyanate, a carboxyl group-containing dialcohol compound and a diol compound, a compound having one hydroxyl group and one or more (meth) acryloyl groups in the molecule is added. (Meth) acrylated acrylic-containing urethane resin,
(8) During the synthesis of a resin by polyaddition reaction of a diisocyanate with a carboxyl group-containing dialcohol compound and a diol compound, a compound having one isocyanate group and one or more (meth) acryloyl groups in the molecule is added, Terminal (meth) acrylated acrylic-containing urethane resin,
(9) An acrylic-containing urethane resin obtained by adding a compound having one hydroxyl group and one or more (meth) acryloyl groups in the molecule during the synthesis of the resin of (5), and terminal (meth) acrylated,
(10) An acrylic-containing urethane resin obtained by adding a compound having one isocyanate group and one or more (meth) acryloyl groups in the molecule during the synthesis of the resin of (5) above, and terminally (meth) acrylated; 11) An acrylic-containing polymer obtained by adding a compound having one epoxy group and one or more (meth) acryloyl groups in one molecule to the resins (1) to (10) above alone or It can be used in combination of more than one species or in combination with a monomer having one or more ethylenically unsaturated groups in the molecule.
 上記した硬化性成分を活性エネルギー線によりラジカル性の付加重合反応をさせる光重合開始剤としては、例えば、ビス-(2,6-ジクロロベンゾイル)フェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルホスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(IGM Resins社製Omnirad 819、2,6-ジメトキシベンゾイルジフェニルホスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルホスフィン酸メチルエステル、2-メチルベンゾイルジフェニルホスフィンオキサイド、ピバロイルフェニルホスフィン酸イソプロピルエステル、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド(IGM Resins社製Omnirad TPO)等のアシルホスフィンオキサイド類;1-ヒドロキシ-シクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等のヒドロキシアセトフェノン類;ベンゾイン、ベンジル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインn-プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル等のベンゾイン類;ベンゾインアルキルエーテル類;ベンゾフェノン、p-メチルベンゾフェノン、ミヒラーズケトン、メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン等のベンゾフェノン類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル)-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、N,N-ジメチルアミノアセトフェノン等のアセトフェノン類;チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アントラキノン、クロロアントラキノン、2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-アミノアントラキノン等のアントラキノン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;エチル-4-ジメチルアミノベンゾエート、2-(ジメチルアミノ)エチルベンゾエート、p-ジメチル安息香酸エチルエステル等の安息香酸エステル類;1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル類;ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(2-(1-ピル-1-イル)エチル)フェニル]チタニウム等のチタノセン類;フェニルジスルフィド2-ニトロフルオレン、ブチロイン、アニソインエチルエーテル、アゾビスイソブチロニトリル、テトラメチルチウラムジスルフィド等を挙げることができる。これら光重合開始剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the photopolymerization initiator that causes radical addition polymerization reaction of the above-described curable component by active energy rays include bis- (2,6-dichlorobenzoyl) phenylphosphine oxide and bis- (2,6-dichlorobenzoyl). ) -2,5-dimethylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -4-propylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2 , 6-Dimethoxybenzoyl) phenylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine Oxide, bis- (2, , 6-Trimethylbenzoyl) -phenylphosphine oxide (OMRIrad 819 manufactured by IGM Resins, 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6-dichlorobenzoyldiphenylphosphine oxide, methyl 2,4,6-trimethylbenzoylphenylphosphinate Acylphosphine oxides such as ester, 2-methylbenzoyldiphenylphosphine oxide, pivaloylphenylphosphinic acid isopropyl ester, 2,4,6-trimethylbenzoyldiphenylphosphine oxide (IGM Resins, Omnirad® TPO); 1-hydroxy-cyclohexyl Phenyl ketone, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl 1-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one, 2-hydroxy Hydroxyacetophenones such as -2-methyl-1-phenylpropan-1-one; benzoins such as benzoin, benzyl, benzoin methyl ether, benzoin ethyl ether, benzoin n-propyl ether, benzoin isopropyl ether, and benzoin n-butyl ether; Benzoin alkyl ethers; benzophenones such as benzophenone, p-methylbenzophenone, Michler's ketone, methylbenzophenone, 4,4'-dichlorobenzophenone, 4,4'-bisdiethylaminobenzophenone; acetophenone, 2,2- Methoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino -1-propanone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2- (dimethylamino) -2-[(4-methylphenyl) methyl) -1- [ Acetophenones such as 4- (4-morpholinyl) phenyl] -1-butanone and N, N-dimethylaminoacetophenone; thioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethyl Thioxanthone, 2-chlorothioxanthone, Thioxanthones such as 1,4-diisopropylthioxanthone; anthraquinones such as anthraquinone, chloroanthraquinone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1-chloroanthraquinone, 2-amylanthraquinone, 2-aminoanthraquinone Ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzoates such as ethyl-4-dimethylaminobenzoate, 2- (dimethylamino) ethyl benzoate and p-dimethylbenzoic acid ethyl ester; 1,2-octanedione; , 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl ]-, 1- (O-acetyloxime) and other oxime esters; bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrole-1- Yl) phenyl) titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3- (2- (1-pyr-1-yl) ethyl) phenyl] titanium, and the like; phenyl disulfide 2- Examples thereof include nitrofluorene, butyroin, anisoin ethyl ether, azobisisobutyronitrile, tetramethylthiuram disulfide and the like. These photoinitiators may be used individually by 1 type, and may be used in combination of 2 or more type.
 上記した光重合開始剤のなかでも、オキシムエステル類(以下「オキシムエステル系光重合開始剤」と称する)、アセトフェノン類の1つであるα-アミノアセトフェノン類(以下、「α-アミノアセトフェノン系光重合開始剤」と称する)、およびアシルホスフィンオキサイド類(以下、「アシルホスフィンオキサイド系光重合開始剤」と称する)からなる群から選択される1種以上の光重合開始剤を用いることが好ましい。 Among the photopolymerization initiators described above, oxime esters (hereinafter referred to as “oxime ester photopolymerization initiators”) and α-aminoacetophenones (hereinafter referred to as “α-aminoacetophenone light”), which is one of acetophenones. It is preferable to use one or more photopolymerization initiators selected from the group consisting of “polymerization initiators” and acylphosphine oxides (hereinafter referred to as “acylphosphine oxide photopolymerization initiators”).
 オキシムエステル系光重合開始剤としては、市販品として、BASFジャパン株式会社製のCGI-325、IRGACURE OXE01、IRGACURE OXE02、株式会社ADEKA製N-1919等が挙げられる。また、分子内に2個のオキシムエステル基を有する光重合開始剤も好適に用いることができる。オキシムエステル系光重合開始剤の配合量は、分子中に1個以上のエチレン性不飽和基を有するラジカル性の付加重合反応性成分100質量部に対して、0.01~5質量部とすることが好ましい。 Examples of commercially available oxime ester photopolymerization initiators include CGI-325, IRGACURE OXE01, IRGACURE OXE02 manufactured by BASF Japan Ltd., and N-1919 manufactured by ADEKA Corporation. Moreover, the photoinitiator which has two oxime ester groups in a molecule | numerator can also be used suitably. The compounding amount of the oxime ester photopolymerization initiator is 0.01 to 5 parts by mass with respect to 100 parts by mass of the radical addition polymerization reactive component having one or more ethylenically unsaturated groups in the molecule. It is preferable.
 α-アミノアセトフェノン系光重合開始剤としては、具体的には2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパノン-1、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、N,N-ジメチルアミノアセトフェノン等が挙げられる。市販品としては、IGM Resins社製のOmnirad 907、Omnirad 369、Omnirad 379等が挙げられる。 Specific examples of α-aminoacetophenone photopolymerization initiators include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone-1, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, N , N-dimethylaminoacetophenone and the like. Commercially available products include Omnirad® 907, Omnirad 369, Omnirad® 379 manufactured by IGM Resins.
 アシルホスフィンオキサイド系光重合開始剤としては、上記の化合物が挙げられる。市販品としては、IGM Resins社製のOmnirad TPO、Omnirad 819等が挙げられる。 Examples of the acylphosphine oxide photopolymerization initiator include the above compounds. Commercially available products include Omnirad TPO, Omnirad 819 manufactured by IGM Resins.
 オキシムエステル系光重合開始剤を除く光重合開始剤の配合量は、分子中に1個以上のエチレン性不飽和基を有するラジカル性の付加重合反応性成分100質量部に対して、0.1~30質量部であることが好ましい。0.1質量部以上の場合、硬化性樹脂組成物の光硬化性が良好となり、塗膜が剥離しにくく、耐薬品性等の塗膜特性も良好となる。一方、30質量部以下の場合、アウトガスの低減効果が得られ、さらにソルダーレジスト塗膜表面での光吸収が良好となり、深部硬化性が低下しにくい。より好ましくは0.5~15質量部である。 The blending amount of the photopolymerization initiator excluding the oxime ester photopolymerization initiator is 0.1 with respect to 100 parts by mass of the radical addition polymerization reactive component having one or more ethylenically unsaturated groups in the molecule. The amount is preferably 30 parts by mass. When the amount is 0.1 parts by mass or more, the photocurability of the curable resin composition is good, the coating film is difficult to peel off, and the coating properties such as chemical resistance are also good. On the other hand, in the case of 30 parts by mass or less, an effect of reducing outgas is obtained, and light absorption on the surface of the solder resist coating film is good, and the deep curability is hardly lowered. More preferably, it is 0.5 to 15 parts by mass.
 活性エネルギー線によりラジカル性の付加重合反応をさせる光重合開始剤としてオキシムエステル系光重合開始剤を用いると、少量でも十分な感度を得ることができるだけでなく、熱硬化性成分を配合した場合の熱硬化時、および実装の際の後熱工程での光重合開始剤の揮発が少ないため、乾燥炉等の装置の汚染を少なくすることができる。 Using an oxime ester photopolymerization initiator as a photopolymerization initiator that causes radical addition polymerization reaction with active energy rays, not only can a sufficient amount be obtained, but also when a thermosetting component is blended. Since there is little volatilization of the photopolymerization initiator in the post-heating process during thermosetting and mounting, contamination of a device such as a drying furnace can be reduced.
 また、アシルホスフィンオキサイド系光重合開始剤を用いると、光反応時の深部硬化性を向上させるため、解像性において良好な開口形状が得られる。 Further, when an acylphosphine oxide photopolymerization initiator is used, the deep curability at the time of the photoreaction is improved, so that a favorable opening shape can be obtained in terms of resolution.
 オキシムエステル系光重合開始剤、アシルホスフィンオキサイド系光重合開始剤のどちらを用いても効果的であるが、上述のようなレジストのライン形状および開口のバランス、光硬化性の点からは、オキシムエステル系光重合開始剤とアシルホスフィンオキサイド系光重合開始剤の併用が更に好適である。 It is effective to use either an oxime ester photopolymerization initiator or an acyl phosphine oxide photopolymerization initiator. However, from the viewpoint of the resist line shape and opening balance as described above, and photocurability, oxime The combined use of an ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator is more preferred.
 また、活性エネルギー線によりラジカル性の付加重合反応をさせる光重合開始剤として市販のものを使用してもよく、例えば、岳陽市金茂泰科技有限公司株式会社製のJMT-784を好適に使用することができる。 In addition, a commercially available photopolymerization initiator that causes radical addition polymerization reaction with active energy rays may be used. For example, JMT-784 manufactured by Yueyang Jinmao Technology Co., Ltd. is preferably used. Can do.
 硬化性樹脂組成物中に含まれる熱によって硬化し得る成分としては、メラミン樹脂、ベンゾグアナミン樹脂などのアミン樹脂、イソシアネート化合物、ブロックイソシアネート化合物、シクロカーボネート化合物、多官能エポキシ化合物、多官能オキセタン化合物、エピスルフィド樹脂、メラミン誘導体などの公知慣用の熱硬化性樹脂が使用できる。本発明の一形態において、分子中に2個以上の環状エーテル基および環状チオエーテル基のうちから選ばれる少なくともいずれか1種(以下、環状(チオ)エーテル基と略す)を有する熱硬化性成分が好ましい。 Components that can be cured by heat contained in the curable resin composition include amine resins such as melamine resins and benzoguanamine resins, isocyanate compounds, blocked isocyanate compounds, cyclocarbonate compounds, polyfunctional epoxy compounds, polyfunctional oxetane compounds, episulfides. Known and commonly used thermosetting resins such as resins and melamine derivatives can be used. In one embodiment of the present invention, a thermosetting component having at least one selected from the group consisting of two or more cyclic ether groups and cyclic thioether groups (hereinafter abbreviated as cyclic (thio) ether groups) in the molecule. preferable.
 このような分子中に2つ以上の環状(チオ)エーテル基を有する熱硬化性成分は、分子中に3、4または5員環の環状エーテル基、または環状チオエーテル基のいずれか一方または2種類の基を2個以上有する化合物であり、例えば、分子内に少なくとも2つ以上のエポキシ基を有する化合物、すなわち多官能エポキシ化合物、分子内に少なくとも2つ以上のオキセタニル基を有する化合物、すなわち多官能オキセタン化合物、分子内に2個以上のチオエーテル基を有する化合物、すなわちエピスルフィド樹脂などが挙げられる。 Such a thermosetting component having two or more cyclic (thio) ether groups in the molecule is either one of the three-, four- or five-membered cyclic ether groups in the molecule, or the cyclic thioether group, or two kinds thereof. A compound having at least two epoxy groups in the molecule, that is, a polyfunctional epoxy compound, a compound having at least two oxetanyl groups in the molecule, that is, a polyfunctional compound. Examples include oxetane compounds, compounds having two or more thioether groups in the molecule, that is, episulfide resins.
 前記多官能エポキシ化合物としては、例えば、三菱ケミカル株式会社製のjER828、jER834、jER1001、jER1004、DIC株式会社製のエピクロン840、エピクロン850、エピクロン1050、エピクロン2055、新日鉄住金化学株式会社製のエポトートYD-011、YD-013、YD-127、YD-128、ダウ・ケミカル社製のD.E.R.317、D.E.R.331、D.E.R.661、D.E.R.664、住友化学工業株式会社製のスミ-エポキシESA-011、ESA-014、ELA-115、ELA-128、旭化成工業株式会社製のA.E.R.330、A.E.R.331、A.E.R.661、A.E.R.664等(何れも商品名)のビスフェノールA型エポキシ樹脂;三菱ケミカル株式会社製のjERYL903、DIC株式会社製のエピクロン152、エピクロン165、新日鉄住金化学株式会社製のエポトートYDB-400、YDB-500、ダウ・ケミカル社製のD.E.R.542、住友化学工業株式会社製のスミ-エポキシESB-400、ESB-700、旭化成工業株式会社製のA.E.R.711、A.E.R.714等(何れも商品名)のブロム化エポキシ樹脂;三菱ケミカル株式会社製のjER152、jER154、ダウ・ケミカル社製のD.E.N.431、D.E.N.438、DIC株式会社製のエピクロンN-730、エピクロンN-770、エピクロンN-865、新日鉄住金化学株式会社社製のエポトートYDCN-701、YDCN-704、日本化薬株式会社製のEPPN-201、EOCN-1025、EOCN-1020、EOCN-104S、RE-306、住友化学工業株式会社製のスミ-エポキシESCN-195X、ESCN-220、旭化成工業株式会社製のA.E.R.ECN-235、ECN-299等(何れも商品名)のノボラック型エポキシ樹脂;DIC株式会社製のエピクロン830、三菱ケミカル株式会社製jER807、新日鉄住金化学株式会社製のエポトートYDF-170、YDF-175、YDF-2004等(何れも商品名)のビスフェノールF型エポキシ樹脂;新日鉄住金化学株式会社製のエポトートST-2004、ST-2007、ST-3000(商品名)等の水添ビスフェノールA型エポキシ樹脂;三菱ケミカル株式会社製のjER604、新日鉄住金化学株式会社製のエポトートYH-434、住友化学工業株式会社製のスミ-エポキシELM-120等(何れも商品名)のグリシジルアミン型エポキシ樹脂;ヒダントイン型エポキシ樹脂;株式会社ダイセル製のセロキサイド2021P等(商品名)の脂環式エポキシ樹脂;三菱ケミカル株式会社製のYL-933、ダウ・ケミカル社製のT.E.N.、EPPN-501、EPPN-502等(何れも商品名)のトリヒドロキシフェニルメタン型エポキシ樹脂;三菱ケミカル株式会社製のYL-6056、YX-4000、YL-6121(何れも商品名)等のビキシレノール型もしくはビフェノール型エポキシ樹脂またはそれらの混合物;日本化薬株式会社製EBPS-200、旭電化工業株式会社製EPX-30、DIC株式会社製のEXA-1514(商品名)等のビスフェノールS型エポキシ樹脂;三菱ケミカル株式会社製のjER157S(商品名)等のビスフェノールAノボラック型エポキシ樹脂;三菱ケミカル株式会社製のjERYL-931等(何れも商品名)のテトラフェニロールエタン型エポキシ樹脂;日産化学工業株式会社製のTEPIC等(商品名)の複素環式エポキシ樹脂;日本油脂株式会社製ブレンマーDGT等のジグリシジルフタレート樹脂;新日鉄住金化学株式会社製ZX-1063等のテトラグリシジルキシレノイルエタン樹脂;新日鉄化学株式会社製ESN-190、ESN-360、DIC株式会社製HP-4032、EXA-4750、EXA-4700等のナフタレン基含有エポキシ樹脂;DIC株式会社製HP-7200、HP-7200H等のジシクロペンタジエン骨格を有するエポキシ樹脂;日本油脂株式会社製CP-50S、CP-50M等のグリシジルメタアクリレート共重合系エポキシ樹脂;さらにシクロヘキシルマレイミドとグリシジルメタアクリレートの共重合エポキシ樹脂;エポキシ変性のポリブタジエンゴム誘導体(例えばダイセル化学工業製PB-3600等)、CTBN変性エポキシ樹脂(例えば東都化成株式会社製のYR-102、YR-450等)等が挙げられるが、これらに限られるものではない。これらのエポキシ樹脂は、単独でまたは2種以上を組み合わせて用いることができる。これらの中でも特にノボラック型エポキシ樹脂、複素環式エポキシ樹脂、ビスフェノールA型エポキシ樹脂またはそれらの混合物が好ましい。 Examples of the polyfunctional epoxy compound include jER828, jER834, jER1001, jER1004 manufactured by Mitsubishi Chemical Corporation, Epicron 840 manufactured by DIC Corporation, Epicron 850, Epicron 1050, Epicron 2055, and Epototo YD manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. -011, YD-013, YD-127, YD-128, D.C. E. R. 317, D.E. E. R. 331, D.D. E. R. 661, D.D. E. R. 664, Sumi-epoxy ESA-011, ESA-014, ELA-115, ELA-128 manufactured by Sumitomo Chemical Co., Ltd. E. R. 330, A.I. E. R. 331, A.I. E. R. 661, A.I. E. R. 664, etc. (all trade names) bisphenol A type epoxy resin; jERYL903 manufactured by Mitsubishi Chemical Corporation, Epicron 152, Epicron 165 manufactured by DIC Corporation, Epototo YDB-400, YDB-500 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. D. Chemicals manufactured by Dow Chemical Company. E. R. 542, Sumitomo Epoxy ESB-400, ESB-700 manufactured by Sumitomo Chemical Co., Ltd. E. R. 711, A.I. E. R. Brominated epoxy resins such as 714 (both trade names); jER152 and jER154 manufactured by Mitsubishi Chemical Corporation, and D.C. E. N. 431, D.D. E. N. 438, Epicron N-730, Epicron N-770, Epicron N-865 manufactured by DIC Corporation, Epototo YDCN-701, YDCN-704 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., EPPN-201 manufactured by Nippon Kayaku Co., Ltd. EOCN-1025, EOCN-1020, EOCN-104S, RE-306, Sumitomo Chemical Co., Ltd., Sumi-epoxy ESCN-195X, ESCN-220, Asahi Kasei Kogyo Co., Ltd. E. R. ECN-235, ECN-299, etc. (both trade names) novolac epoxy resins; DIC Corporation Epicron 830, Mitsubishi Chemical Corporation jER807, Nippon Steel & Sumikin Chemical Co., Ltd. Epototo YDF-170, YDF-175 Bisphenol F type epoxy resins such as YDF-2004 (all trade names); hydrogenated bisphenol A type epoxy resins such as Epototo ST-2004, ST-2007, ST-3000 (trade names) manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. Glycidylamine type epoxy resin such as jER604 manufactured by Mitsubishi Chemical Co., Ltd., Epototo YH-434 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., Sumi-epoxy ELM-120 manufactured by Sumitomo Chemical Co., Ltd. (all trade names); hydantoin type Epoxy resin; Cellokisai manufactured by Daicel Corporation Alicyclic epoxy resin of 2021P, etc. (trade name); Mitsubishi Chemical Co., Ltd. YL-933, manufactured by Dow Chemical Company T. E. N. , EPPN-501, EPPN-502, etc. (all trade names) trihydroxyphenylmethane type epoxy resin; Mitsubishi Chemical Corporation YL-6056, YX-4000, YL-6121 (all trade names), etc. Bisphenol S type epoxy such as xylenol type or biphenol type epoxy resin or mixture thereof; EBPS-200 manufactured by Nippon Kayaku Co., Ltd., EPX-30 manufactured by Asahi Denka Kogyo Co., Ltd., EXA-1514 manufactured by DIC Co., Ltd. Resin; Bisphenol A novolak type epoxy resin such as jER157S (trade name) manufactured by Mitsubishi Chemical Corporation; Tetraphenylolethane type epoxy resin such as jERYL-931 (all trade name) manufactured by Mitsubishi Chemical Corporation; Nissan Chemical Industries Heterocyclic D of TEPIC, etc. (trade name) manufactured by Diglycidyl phthalate resin such as Bremer DGT manufactured by Nippon Oil &Fats; Tetraglycidyl Xylenoylethane resin such as ZX-1063 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd .; ESN-190, ESN-360, DIC manufactured by Nippon Steel Chemical Co. Naphthalene group-containing epoxy resins such as HP-4032, EXA-4750, and EXA-4700 manufactured by Co., Ltd .; Epoxy resins having a dicyclopentadiene skeleton such as HP-7200 and HP-7200H manufactured by DIC Corporation; CP manufactured by Nippon Oil & Fats Co., Ltd. -50S, CP-50M and other glycidyl methacrylate copolymer epoxy resins; cyclohexyl maleimide and glycidyl methacrylate copolymer epoxy resins; epoxy-modified polybutadiene rubber derivatives (eg, PB-3600 manufactured by Daicel Chemical Industries, Ltd.) , CTBN modified epoxy resin (e.g. Tohto Kasei YR-102 Co., Ltd., YR-450, etc.) and others as mentioned, is not limited thereto. These epoxy resins can be used alone or in combination of two or more. Among these, a novolac type epoxy resin, a heterocyclic epoxy resin, a bisphenol A type epoxy resin or a mixture thereof is particularly preferable.
 前記多官能オキセタン化合物としては、ビス[(3-メチル-3-オキセタニルメトキシ)メチル]エーテル、ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エーテル、1,4-ビス[(3-メチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、(3-メチル-3-オキセタニル)メチルアクリレート、(3-エチル-3-オキセタニル)メチルアクリレート、(3-メチル-3-オキセタニル)メチルメタクリレート、(3-エチル-3-オキセタニル)メチルメタクリレートやそれらのオリゴマーまたは共重合体等の多官能オキセタン類の他、オキセタンアルコールとノボラック樹脂、ポリ(p-ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、またはシルセスキオキサンなどの水酸基を有する樹脂とのエーテル化物などが挙げられる。その他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体なども挙げられる。 Examples of the polyfunctional oxetane compound include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, 1,4-bis [(3-methyl -3-Oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3-oxetanyl) In addition to polyfunctional oxetanes such as methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and oligomers or copolymers thereof, oxetane alcohol and novolak resin, Poly (p-hydroxystyrene), cardo type bisph Nord acids, calixarenes, calix resorcin arenes, or the like ethers of a resin having a hydroxyl group such as silsesquioxane and the like. In addition, a copolymer of an unsaturated monomer having an oxetane ring and an alkyl (meth) acrylate is also included.
 前記エピスルフィド樹脂としては、例えば、三菱ケミカル株式会社製のビスフェノールA型エピスルフィド樹脂 YL7000などが挙げられる。また、同様の合成方法を用いて、ノボラック型エポキシ樹脂のエポキシ基の酸素原子を硫黄原子に置き換えたエピスルフィド樹脂なども用いることができる。 Examples of the episulfide resin include bisphenol A type episulfide resin YL7000 manufactured by Mitsubishi Chemical Corporation. Moreover, episulfide resin etc. which replaced the oxygen atom of the epoxy group of the novolak-type epoxy resin with the sulfur atom using the same synthesis method can be used.
 分子中に2つ以上の環状(チオ)エーテル基を有する熱硬化性成分を使用する場合、熱硬化触媒を配合することが好ましい。そのような熱硬化触媒としては、例えば、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール等のイミダゾール誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジン化合物;トリフェニルホスフィン等のリン化合物などが挙げられる。また、市販されているものとしては、例えば四国化成工業株式会社製の2MZ-A、2MZ-OK、2PHZ、2P4BHZ、2P4MHZ(いずれもイミダゾール系化合物の商品名)、サンアプロ株式会社製のU-CAT(登録商標)3503N、U-CAT3502T(いずれもジメチルアミンのブロックイソシアネート化合物の商品名)、DBU、DBN、U-CATSA102、U-CAT5002(いずれも二環式アミジン化合物およびその塩)などが挙げられる。 When using a thermosetting component having two or more cyclic (thio) ether groups in the molecule, it is preferable to add a thermosetting catalyst. Examples of such thermosetting catalysts include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole. Imidazole derivatives such as 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N -Amine compounds such as dimethylbenzylamine and 4-methyl-N, N-dimethylbenzylamine; hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide; and phosphorus compounds such as triphenylphosphine. Examples of commercially available products include 2MZ-A, 2MZ-OK, 2PHZ, 2P4BHZ, 2P4MHZ (both trade names of imidazole compounds) manufactured by Shikoku Kasei Kogyo Co., Ltd., U-CAT manufactured by San Apro Co., Ltd. (Registered trademark) 3503N, U-CAT3502T (all are trade names of blocked isocyanate compounds of dimethylamine), DBU, DBN, U-CATSA102, U-CAT5002 (all are bicyclic amidine compounds and salts thereof), etc. .
 また、反り矯正材を硬化させて反り矯正層とした際の硬化膜の強靭性を向上させるために、本発明においては、熱硬化性成分として、1分子内に2個以上のイソシアネート基、またはブロック化イソシアネート基を有する化合物を加えることができる。このような1分子内に2個以上のイソシアネート基、またはブロック化イソシアネート基を有する化合物は、1分子内に2個以上のイソシアネート基を有する化合物、すなわちポリイソシアネート化合物、または1分子内に2個以上のブロック化イソシアネート基を有する化合物、すなわちブロックイソシアネート化合物などが挙げられる。 In order to improve the toughness of the cured film when the warp correction material is cured to form a warp correction layer, in the present invention, two or more isocyanate groups in one molecule, or Compounds having blocked isocyanate groups can be added. Such a compound having two or more isocyanate groups or blocked isocyanate groups in one molecule is a compound having two or more isocyanate groups in one molecule, that is, a polyisocyanate compound, or two in one molecule. Examples thereof include compounds having the above blocked isocyanate groups, that is, blocked isocyanate compounds.
 ポリイソシアネート化合物としては、例えば、芳香族ポリイソシアネート、脂肪族ポリイソシアネートまたは脂環式ポリイソシアネートが用いられる。芳香族ポリイソシアネートの具体例としては、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、o-キシリレンジイソシアネート、m-キシリレンジイソシアネートおよび2,4-トリレンダイマーが挙げられる。脂肪族ポリイソシアネートの具体例としては、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、4,4-メチレンビス(シクロヘキシルイソシアネート)およびイソホロンジイソシアネートが挙げられる。脂環式ポリイソシアネートの具体例としてはビシクロヘプタントリイソシアネートが挙げられる。並びに先に挙げられたイソシアネート化合物のアダクト体、ビューレット体およびイソシアヌレート体が挙げられる。 As the polyisocyanate compound, for example, aromatic polyisocyanate, aliphatic polyisocyanate or alicyclic polyisocyanate is used. Specific examples of the aromatic polyisocyanate include 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, o-xylylene diisocyanate, m- Examples include xylylene diisocyanate and 2,4-tolylene dimer. Specific examples of the aliphatic polyisocyanate include tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-methylenebis (cyclohexyl isocyanate), and isophorone diisocyanate. Specific examples of the alicyclic polyisocyanate include bicycloheptane triisocyanate. In addition, adduct bodies, burette bodies and isocyanurate bodies of the isocyanate compounds mentioned above may be mentioned.
 ブロックイソシアネート化合物に含まれるブロック化イソシアネート基は、イソシアネート基がブロック剤との反応により保護されて一時的に不活性化された基である。所定温度に加熱されたときにそのブロック剤が解離してイソシアネート基が生成する。 The blocked isocyanate group contained in the blocked isocyanate compound is a group in which the isocyanate group is protected by reaction with a blocking agent and temporarily deactivated. When heated to a predetermined temperature, the blocking agent is dissociated to produce isocyanate groups.
 ブロックイソシアネート化合物としては、イソシアネート化合物とイソシアネートブロック剤との付加反応生成物が用いられる。ブロック剤と反応し得るイソシアネート化合物としては、イソシアヌレート型、ビウレット型、アダクト型等が挙げられる。このイソシアネート化合物としては、例えば、上記と同様の芳香族ポリイソシアネート、脂肪族ポリイソシアネートまたは脂環式ポリイソシアネートが用いられる。 As the blocked isocyanate compound, an addition reaction product of an isocyanate compound and an isocyanate blocking agent is used. Examples of the isocyanate compound that can react with the blocking agent include isocyanurate type, biuret type, and adduct type. As this isocyanate compound, for example, the same aromatic polyisocyanate, aliphatic polyisocyanate or alicyclic polyisocyanate as described above is used.
 イソシアネートブロック剤としては、例えば、フェノール、クレゾール、キシレノール、クロロフェノールおよびエチルフェノール等のフェノール系ブロック剤;ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタムおよびβ-プロピオラクタム等のラクタム系ブロック剤;アセト酢酸エチルおよびアセチルアセトンなどの活性メチレン系ブロック剤;メタノール、エタノール、プロパノール、ブタノール、アミルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ベンジルエーテル、グリコール酸メチル、グリコール酸ブチル、ジアセトンアルコール、乳酸メチルおよび乳酸エチル等のアルコール系ブロック剤;ホルムアルデヒドキシム、アセトアルドキシム、アセトキシム、メチルエチルケトキシム、ジアセチルモノオキシム、シクロヘキサンオキシム等のオキシム系ブロック剤;ブチルメルカプタン、ヘキシルメルカプタン、t-ブチルメルカプタン、チオフェノール、メチルチオフェノール、エチルチオフェノール等のメルカプタン系ブロック剤;酢酸アミド、ベンズアミド等の酸アミド系ブロック剤;コハク酸イミドおよびマレイン酸イミド等のイミド系ブロック剤;キシリジン、アニリン、ブチルアミン、ジブチルアミン等のアミン系ブロック剤;イミダゾール、2-エチルイミダゾール等のイミダゾール系ブロック剤;メチレンイミンおよびプロピレンイミン等のイミン系ブロック剤等が挙げられる。 Examples of isocyanate blocking agents include phenolic blocking agents such as phenol, cresol, xylenol, chlorophenol and ethylphenol; lactam blocking agents such as ε-caprolactam, δ-valerolactam, γ-butyrolactam and β-propiolactam Active methylene blocking agents such as ethyl acetoacetate and acetylacetone; methanol, ethanol, propanol, butanol, amyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, Benzyl ether, methyl glycolate, butyl glycolate, diacetone alcohol Alcohol-based blocking agents such as methyl lactate and ethyl lactate; oxime-based blocking agents such as formaldehyde oxime, acetaldoxime, acetoxime, methyl ethyl ketoxime, diacetyl monooxime, cyclohexane oxime; butyl mercaptan, hexyl mercaptan, t-butyl mercaptan, thiophenol Mercaptan blocking agents such as methylthiophenol and ethylthiophenol; acid amide blocking agents such as acetic acid amide and benzamide; imide blocking agents such as succinimide and maleic imide; xylidine, aniline, butylamine, dibutylamine, etc. Amine blocking agents; imidazole blocking agents such as imidazole and 2-ethylimidazole; imine blocking agents such as methyleneimine and propyleneimine An oxidant etc. are mentioned.
 ブロックイソシアネート化合物は市販のものであってもよく、例えば、7950、7951、7960、7961、7982、7990、7991、7992(以上、Baxenden社製、商品名)スミジュールBL-3175、BL-4165、BL-1100、BL-1265 、デスモジュールTPLS-2957 、TPLS-2062、TPLS-2078、TPLS-2117、デスモサーム2170、デスモサーム2265(以上、住友バイエルウレタン株式会社製、商品名)、コロネート2512、コロネート2513、コロネート2520( 以上、日本ポリウレタン工業株式会社製、商品名)、B-830、B-815、B-846、B-870、B-874、B-882(三井武田ケミカル株式会社製、商品名)、TPA-B80E、17B-60PX、E402-B80T、MF-B60B、MF-K60B、SBN-70D(旭化成ケミカルズ株式会社製、商品名)等が挙げられる。なお、スミジュールBL-3175、BL-4265はブロック剤としてメチルエチルオキシムを用いて得られるものである。 The blocked isocyanate compound may be commercially available, for example, 7950, 7951, 7960, 7961, 7982, 7990, 7991, 7992 (above, manufactured by Baxenden, trade name) Sumijour BL-3175, BL-4165, BL-1100, BL-1265, Death Module TPLS-2957, TPLS-2062, TPLS-2078, TPLS-2117, Desmotherm 2170, Desmotherm 2265 (above, Sumitomo Bayer Urethane Co., Ltd., trade name), Coronate 2512, Coronate 2513 , Coronate 2520 (Akatsuki or more, Nippon Polyurethane Industry Co., Ltd., trade name), B-830, B-815, B-846, B-870, B-874, B-882 (Mitsui Takeda Chemical Co., trade name) ), PA-B80E, 17B-60PX, E402-B80T, MF-B60B, MF-K60B, SBN-70D (manufactured by Asahi Kasei Chemicals Corporation, trade name) and the like. Sumijoules BL-3175 and BL-4265 are obtained using methyl ethyl oxime as a blocking agent.
 またカレンズMOI-BM、カレンズMOI-BP(昭和電工社製、商品名)のように活性エネルギー照射でエチレン性不飽和基を有するラジカル性の付加重合反応により分子内に2個以上のブロックイソシアネートを有する化合物を用いてもよい。 In addition, two or more blocked isocyanates are formed in the molecule by radical addition polymerization reaction having an ethylenically unsaturated group upon irradiation with active energy such as Karenz MOI-BM and Karenz MOI-BP (trade name, manufactured by Showa Denko KK). You may use the compound which has.
 上記した1分子内に2個以上のイソシアネート基、またはブロック化イソシアネート基を有する化合物は、1種を単独でまたは2種以上を組み合わせて用いることができる。 The above compounds having two or more isocyanate groups or blocked isocyanate groups in one molecule can be used singly or in combination of two or more.
 硬化性樹脂組成物中には、ブロックイソシアネートの反応触媒が含まれていてもよい。反応触媒としては、特に限定されるものではないが、ブロックイソシアネートの反応触媒が、有機アンモニウム塩、有機アミジン塩またはイミダゾールであることが好ましい。具体的には、有機アンモニウム塩ではテトラアルキルアンモニウムハロゲン化物、テトラアルキルアンモニウム水酸化物、テトラアルキルアンモニウム有機酸塩、等、有機アミジン塩では1,8-ジアザビシクロ[5.4.0]ウンデセン-7(以下DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(以下DBN)のフェノール塩、オクチル酸塩、オレイン酸塩、p-トルエンスルホン酸塩、ギ酸塩を使用することができる。中でも、DBU-オクチル酸塩、DBN-オクチル酸塩等を使用することが好ましい。市販品としては、有機アンモニウム塩ではTOYOCAT-TR20、TOYOCAT-TRX(東ソー株式会社製)、有機アミジン塩ではU-CAT SA1、U-CAT SA102、U-CAT SA106、U-CAT SA506、U-CAT SA603、U-CAT SA1102(サンアプロ株式会社製)、イミダゾールとしてはTOYOCAT-DMI(東ソー株式会社製)が挙げられる。これら反応触媒は1種を単独でまたは2種以上を組み合わせて用いることができる。 The curable resin composition may contain a blocked isocyanate reaction catalyst. Although it does not specifically limit as a reaction catalyst, It is preferable that the reaction catalyst of blocked isocyanate is organic ammonium salt, organic amidine salt, or imidazole. Specifically, tetraalkylammonium halides, tetraalkylammonium hydroxides, tetraalkylammonium organic acid salts, etc. are used for organic ammonium salts, and 1,8-diazabicyclo [5.4.0] undecene-7 is used for organic amidine salts. (Hereinafter referred to as DBU), 1,5-diazabicyclo [4.3.0] nonene-5 (hereinafter referred to as DBN) phenol salt, octylate, oleate, p-toluenesulfonate, and formate. it can. Of these, DBU-octylate, DBN-octylate and the like are preferably used. Commercially available products include TOYOCAT-TR20 and TOYOCAT-TRX (manufactured by Tosoh Corporation) for organic ammonium salts, U-CAT SA1, U-CAT SA102, U-CAT SA106, U-CAT SA506, U-CAT for organic amidine salts. Examples of SA603, U-CAT SA1102 (manufactured by Sun Apro Co., Ltd.), and imidazole include TOYOCAT-DMI (manufactured by Tosoh Corporation). These reaction catalysts can be used alone or in combination of two or more.
 本発明の反り矯正材を構成する硬化性樹脂組成物には、イソシアネート基、またはブロック化イソシアネート基を有する化合物と反応し得る水酸基を2個以上有する化合物が含まれていてもよい。水酸基を2個以上有する化合物としては、ポリオール樹脂、ポリビニルブチラール樹脂、ポリビニルアセタール樹脂、ポリカーボネートジオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール、1,2-プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,3-ブタンジオール、1,2-ブタンジオール、2,3-ブタンジオール、1,5-ヘキサンジオール、2,5-ヘキサンジオール、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、3-メチル-1,5-ペンタンジオール等の脂肪族ポリオールや、ビスフェノールAやビスフェノールF等のビスフェノール化合物およびそれらのアルキレンオキサイド付加物、G700(株式会社ADEKA製 商品名)、AM-302(株式会社ADEKA 商品名)、THEIC、THEIC-G、THEIC-EP、THEIC-LP(四国化成工業株式会社製 商品名)などが挙げられる。 The curable resin composition constituting the warp correction material of the present invention may contain a compound having two or more hydroxyl groups capable of reacting with an isocyanate group or a compound having a blocked isocyanate group. Examples of the compound having two or more hydroxyl groups include polyol resin, polyvinyl butyral resin, polyvinyl acetal resin, polycarbonate diol, ethylene glycol, diethylene glycol, triethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5 -Pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12- Dodecanediol, 1,2-propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-butanediol, 1,2-butanediol, 2,3-butanediol, 1,5-hexanediol, 2,5- Hexanediol 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, Fats such as 2-ethyl-1,3-hexanediol, 2-methyl-1,8-octanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 3-methyl-1,5-pentanediol Group polyols, bisphenol compounds such as bisphenol A and bisphenol F and their alkylene oxide adducts, G700 (trade name, manufactured by ADEKA Corporation), AM-302 (trade name, ADEKA Corporation), THEIC, THEIC-G, THEIC- EP, THEIC-LP (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.) It is.
 さらに、イソシアネートと反応する水酸基を有する化合物は熱による硬化反応する前に2個以上分子内に存在すればよく、活性エネルギーの照射によって2個以上有するものに変化するものも含む。例えば、水酸基を2個以上有する化合物には、上記した分子中に1個以上のエチレン性不飽和基を有するラジカル性の付加重合反応性成分に活性エネルギー線を照射した際に生じる、分子内に水酸基を2個以上有する化合物であってもよい。具体的には、ペンタエリスリトールトリアクリレート、1,4-シクロヘキサンジメタノールモノアクリレート、4-ヒドロキシブチルアクリレートなどが挙げられる。このような水酸基を2個以上有する化合物が含まれることにより、熱硬化時の架橋が十分であるため塗膜(反り矯正層)の強度が向上する。 Furthermore, it is sufficient that two or more compounds having a hydroxyl group that reacts with isocyanate exist in the molecule before the curing reaction by heat, and include compounds that change to those having two or more upon irradiation with active energy. For example, in a compound having two or more hydroxyl groups, a radical addition polymerization reactive component having one or more ethylenically unsaturated groups in the molecule is irradiated with active energy rays. A compound having two or more hydroxyl groups may be used. Specific examples include pentaerythritol triacrylate, 1,4-cyclohexanedimethanol monoacrylate, 4-hydroxybutyl acrylate and the like. By including such a compound having two or more hydroxyl groups, the strength of the coating film (warping correction layer) is improved because the crosslinking during thermal curing is sufficient.
 また、水酸基を有する化合物は、水酸基価が100(mgKOH/g)以上であると熱硬化時の架橋が十分であるため塗膜(反り矯正層)の強度が向上する。 In addition, when the hydroxyl group value of the compound having a hydroxyl group is 100 (mgKOH / g) or more, the strength of the coating film (warping correction layer) is improved because the crosslinking during thermal curing is sufficient.
 上記した水酸基を有する化合物中の水酸基のイソシアネート基を有する化合物のイソシアネート基に対するモル比(水酸基/イソシアネート基)は0.1~0.9であることが好ましい。水酸基/イソシアネート基が0.1以上であるとイソシアネートの反応が十分に進行し、また0.9以下であると塗膜が適当な硬度となり、十分な強度が確保できる。 In the above-mentioned compound having a hydroxyl group, the molar ratio of the compound having an isocyanate group to the isocyanate group (hydroxyl group / isocyanate group) is preferably 0.1 to 0.9. If the hydroxyl group / isocyanate group is 0.1 or more, the isocyanate reaction proceeds sufficiently. If the hydroxyl group / isocyanate group is 0.9 or less, the coating film has an appropriate hardness and a sufficient strength can be secured.
 本発明の反り矯正材を構成する硬化性樹脂組成物には、無機フィラー成分が含まれていてもよい。無機フィラー成分としては、従来公知のものを制限なく使用することができ、例えばシリカ、アルミナ、タルク、水酸化アルミニウム、炭酸カルシウム、ノイブルグ珪土、ガラス粉末、クレー、炭酸マグネシウム、天然マイカ、合成マイカ、硫酸バリウム、チタン酸バリウム、ハイドロタルサイト、ミネラルウール、アルミニウムシリケート、カルシウムシリケート、亜鉛華、酸化チタン、酸化鉄、炭化珪素、窒化ホウ素等の粉末、これらを球形化したビーズ、単結晶繊維およびガラス繊維等が挙げられ、1種を単独でまたは2種以上を混合して使用することができる。これらの中でも、フィルムの中の比誘電率を制御するためにシリカ、アルミナ、酸化チタンが好ましい。 The curable resin composition constituting the warp correction material of the present invention may contain an inorganic filler component. As the inorganic filler component, conventionally known ones can be used without limitation, for example, silica, alumina, talc, aluminum hydroxide, calcium carbonate, Neuburg silica, glass powder, clay, magnesium carbonate, natural mica, synthetic mica. , Powders of barium sulfate, barium titanate, hydrotalcite, mineral wool, aluminum silicate, calcium silicate, zinc white, titanium oxide, iron oxide, silicon carbide, boron nitride, etc., spheroidized beads, single crystal fibers and A glass fiber etc. are mentioned, 1 type can be used individually or in mixture of 2 or more types. Among these, silica, alumina, and titanium oxide are preferable in order to control the relative dielectric constant in the film.
 無機フィラー成分は、平均粒子径は、好ましくは0.01~15μm、より好ましくは0.02~12μm、特に好ましくは0.03~10μmのものを使用することが好ましい。なお、本明細書中、平均粒子径は、電子顕微鏡で無作為に選んだ無機フィラー20個の長軸径を測定し、その算術平均値として算出される個数平均粒子径とする。 The inorganic filler component preferably has an average particle size of 0.01 to 15 μm, more preferably 0.02 to 12 μm, particularly preferably 0.03 to 10 μm. In the present specification, the average particle diameter is the number average particle diameter calculated as an arithmetic average value obtained by measuring the major axis diameter of 20 inorganic fillers randomly selected with an electron microscope.
 本発明の反り矯正材を構成する硬化性樹脂組成物には、着色剤成分が含まれていてもよい。着色剤成分が含まれることにより、硬化性樹脂組成物を配置した半導体チップを機器に組み込んだ際に、周囲の装置から発生する赤外線等による半導体装置の誤作動を防止することができる。また、レーザーマーキング等の手段により硬化剤お組成物に刻印を行った場合に、文字、記号等のマークが認識しやすくなる。すなわち、硬化性樹脂組成物が形成された半導体チップでは、保護膜の表面に品番等が通常レーザーマーキング法(レーザー光により保護膜表面を削り取り印字を行う方法)により印字されるが、硬化性樹脂組成物が着色剤を含有することで、保護膜のレーザー光により削り取られた部分とそうでない部分のコントラスト差が充分に得られ、視認性が向上する。 The curable resin composition constituting the warp correction material of the present invention may contain a colorant component. By including the colorant component, it is possible to prevent malfunction of the semiconductor device due to infrared rays or the like generated from surrounding devices when the semiconductor chip on which the curable resin composition is disposed is incorporated into the device. In addition, when the curing agent composition is engraved by means such as laser marking, marks such as letters and symbols are easily recognized. That is, in a semiconductor chip on which a curable resin composition is formed, the product number or the like is usually printed on the surface of the protective film by a laser marking method (a method in which the surface of the protective film is scraped off by laser light and printed). When the composition contains a colorant, a sufficient difference in contrast between the portion of the protective film scraped by the laser beam and the portion not removed is obtained, and the visibility is improved.
 着色剤成分として、有機または無機の顔料および染料を1種単独で、または2種以上を組み合わせて用いることができるが、これらの中でも電磁波や赤外線遮蔽性の点から黒色顔料が好ましい。黒色顔料としては、カーボンブラック、ペリレンブラック、酸化鉄、二酸化マンガン、アニリンブラック、活性炭等が用いられるが、これらに限定されることはない。半導体装置の誤作動防止の観点からはカーボンブラックが特に好ましい。また、カーボンブラックに代えて、赤、青、緑、黄色などの顔料または染料を混合し、黒色またはそれに近い黒色系の色とすることもできる。 As the colorant component, organic or inorganic pigments and dyes can be used singly or in combination of two or more. Among these, black pigments are preferable from the viewpoint of electromagnetic wave and infrared shielding properties. Examples of the black pigment include carbon black, perylene black, iron oxide, manganese dioxide, aniline black, activated carbon, and the like, but are not limited thereto. Carbon black is particularly preferable from the viewpoint of preventing malfunction of the semiconductor device. Further, instead of carbon black, pigments or dyes such as red, blue, green, and yellow can be mixed to obtain black or a black color close thereto.
 赤色着色剤としてはモノアゾ系、ジスアゾ系、アゾレーキ系、ベンズイミダゾロン系、ペリレン系、ジケトピロロピロール系、縮合アゾ系、アントラキノン系、キナクリドン系などがあり、具体的には以下のものが挙げられる。Pigment Red 1, 2,3,4,5,6,8,9,12,14,15,16,17,21,22,23,31,32,112,114,146,147,151,170,184,187,188,193,210,245,253,258,266,267,268,269等のモノアゾ系赤色着色剤、PigmentRed37,38,41等のジスアゾ系赤色着色剤、PigmentRed48:1,48:2,48:3,48:4,49:1,49:2,50:1,52:1,52:2,53:1,53:2,57:1,58:4,63:1,63:2,64:1,68等のモノアゾレーキ系赤色着色剤、PigmentRed171、PigmentRed175、PigmentRed176、PigmentRed185、PigmentRed208等のベンズイミダゾロン系赤色着色剤、SolventRed135、SolventRed179、PigmentRed123、PigmentRed149、PigmentRed166、PigmentRed178、PigmentRed179、PigmentRed190、PigmentRed194、PigmentRed224等のぺリレン系赤色着色剤、PigmentRed254、PigmentRed255、PigmentRed264、PigmentRed270、PigmentRed272等のジケトピロロピロール系赤色着色剤、PigmentRed220、PigmentRed144、PigmentRed166、PigmentRed214、PigmentRed220、PigmentRed221、PigmentRed242等の縮合アゾ系赤色着色剤、PigmentRed168、PigmentRed177、PigmentRed216、SolventRed149、SolventRed150、SolventRed52、SolventRed207等のアントラキノン系赤色着色剤、PigmentRed122、PigmentRed202、PigmentRed206、PigmentRed207、PigmentRed209等のキナクリドン系赤色着色剤が挙げられる。 Examples of red colorants include monoazo, disazo, azo lake, benzimidazolone, perylene, diketopyrrolopyrrole, condensed azo, anthraquinone, and quinacridone. Specific examples include the following: It is done. Pigment Red 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 15, 16, 17, 21, 22, 23, 31, 32, 112, 114, 146, 147, 151, 170, 184, 187, 188, 193, 210, 245, 253, 258, 266, 267, 268, 269 and other monoazo red colorants, Pigment Red 37, 38, 41 and other disazo red colorants, Pigment Red 48: 1, 48: 2, 48: 3, 48: 4, 49: 1, 49: 2, 50: 1, 52: 1, 52: 2, 53: 1, 53: 2, 57: 1, 58: 4, 63: 1 63: 2, 64: 1, 68 etc. monoazo lake red colorant, PigmentRed171, PigmentRed175, PigmentRed176, PigmentRe 185, benzimidazolone red colorant such as PigmentRed208, SolventRed135, SolventRed179, PigmentRed123, PigmentRed149, PigmentRed166, PigmentRed178, PigmentRed179, PigmentRed190, PigmentRed194, perylene-based red coloring agents such as PigmentRed224, PigmentRed254, PigmentRed255, PigmentRed264, PigmentRed270, PigmentRed272 Diketopyrrolopyrrole red colorant such as PigmentRed220, PigmentRed144, PigmentRed166, PigmentRed214, P gmentRed220, PigmentRed221, condensed azo red colorant such as PigmentRed242, PigmentRed168, PigmentRed177, PigmentRed216, SolventRed149, SolventRed150, SolventRed52, anthraquinone-based red coloring agents such as SolventRed207, PigmentRed122, PigmentRed202, PigmentRed206, PigmentRed207, quinacridone such PigmentRed209 red-colored Agents.
 青色着色剤としてはフタロシアニン系、アントラキノン系などがあり、顔料系はピグメント(Pigment)に分類されている化合物、具体的には:PigmentBlue15、PigmentBlue15:1、PigmentBlue15:2、PigmentBlue15:3、PigmentBlue15:4、PigmentBlue15:6、PigmentBlue16、PigmentBlue60等が挙げられる。染料系としては、SolventBlue35、SolventBlue63、SolventBlue68、SolventBlue70、SolventBlue83、SolventBlue87、SolventBlue94、SolventBlue97、SolventBlue122、SolventBlue136、SolventBlue67、SolventBlue70等を使用することができる。また、これら以外にも、金属置換もしくは無置換のフタロシアニン化合物も使用することができる。 Examples of blue colorants include phthalocyanine series and anthraquinone series, and pigment series are compounds classified as Pigment, specifically: Pigment Blue 15, Pigment Blue 15: 1, Pigment Blue 15: 2, Pigment Blue 15: 3, Pigment Blue 15: 4. Pigment Blue 15: 6, Pigment Blue 16, Pigment Blue 60, and the like. Examples of the dye system include Solvent Blue 35, Solvent Blue 63, Solvent Blue 68, Solvent Blue 70, Solvent Blue 83, Solvent Blue 87, Solvent Blue 94, Solvent Blue 97, Solvent Blue 122, Solvent Blue 70, Solvent Blue 70, and Solvent Blue 70 In addition to these, metal-substituted or unsubstituted phthalocyanine compounds can also be used.
 緑色着色剤としては、同様にフタロシアニン系、アントラキノン系、ペリレン系などがあり、具体的にはPigmentGreen7、PigmentGreen36、SolventGreen3、SolventGreen5、SolventGreen20、SolventGreen28等を使用することができる。上記以外にも、金属置換もしくは無置換のフタロシアニン化合物も使用することができる。 As the green colorant, there are similarly phthalocyanine, anthraquinone, perylene, and the like. Specifically, PigmentGreen 7, PigmentGreen 36, SolventGreen 3, SolventGreen 5, SolventGreen 20, SolventGreen 28, and the like can be used. In addition to the above, a metal-substituted or unsubstituted phthalocyanine compound can also be used.
 緑色着色剤としては、同様にフタロシアニン系、アントラキノン系、ペリレン系などがあり、具体的にはPigmentGreen7、PigmentGreen36、SolventGreen3、SolventGreen5、SolventGreen20、SolventGreen28等を使用することができる。上記以外にも、金属置換もしくは無置換のフタロシアニン化合物も使用することができる。 As the green colorant, there are similarly phthalocyanine, anthraquinone, perylene, and the like. Specifically, PigmentGreen 7, PigmentGreen 36, SolventGreen 3, SolventGreen 5, SolventGreen 20, SolventGreen 28, and the like can be used. In addition to the above, a metal-substituted or unsubstituted phthalocyanine compound can also be used.
 黄色着色剤としてはモノアゾ系、ジスアゾ系、縮合アゾ系、ベンズイミダゾロン系、イソインドリノン系、アントラキノン系などがあり、具体的には以下のものが挙げられる。SolventYellow163、PigmentYellow24、PigmentYellow108、PigmentYellow193、PigmentYellow147、PigmentYellow199、PigmentYellow202等のアントラキノン系黄色着色剤、PigmentYellow110、PigmentYellow109、PigmentYellow139、PigmentYellow179、PigmentYellow185等のイソインドリノン系黄色着色剤、PigmentYellow93、PigmentYellow94、PigmentYellow95、PigmentYellow128、PigmentYellow155、PigmentYellow166、PigmentYellow180等の縮合アゾ系黄色着色剤、PigmentYellow120、PigmentYellow151、PigmentYellow154、PigmentYellow156、PigmentYellow175、PigmentYellow181等のベンズイミダゾロン系黄色着色剤、PigmentYellow1,2,3,4,5,6,9,10,12,61,62,62:1,65,73,74,75,97,100,104,105,111,116,167,168,169,182,183等のモノアゾ系黄色着色剤、PigmentYellow12,13,14,16,17,55,63,81,83,87,126,127,152,170,172,174,176,188,198等のジスアゾ系黄色着色剤等を使用することができる。 Examples of yellow colorants include monoazo, disazo, condensed azo, benzimidazolone, isoindolinone, anthraquinone, and the like. SolventYellow163, PigmentYellow24, PigmentYellow108, PigmentYellow193, PigmentYellow147, PigmentYellow199, anthraquinone-based yellow colorant such as PigmentYellow202, PigmentYellow110, PigmentYellow109, PigmentYellow139, PigmentYellow179, isoindolinone-based yellow colorant such as PigmentYellow185, PigmentYellow93, PigmentYellow94, PigmentYellow95, PigmentYellow128, PigmentYellow155, Pigment Yellow 166, Pigment Yellow 120, Pigment Yellow 151, Pigment Yellow 154, Pigment Yellow 156, Pigment Yellow 175, Pigment Yellow 181, Yield 6, 61, yellow 9 62, 62: 1, 65, 73, 74, 75, 97, 100, 104, 105, 111, 116, 167, 168, 169, 182, 183, and the like, Pigment Yellow 12, 13, 14, 16, 17, 55, 63, 81, 83, 87, 126, 127, 152, 170, 172, 174, 176, 188 Etc. can be used disazo-based yellow colorant such as 198.
 また、色調を調整する目的で紫、オレンジ、茶色、黒などの着色剤を加えてもよい。具体的に例示すれば、PigmentViolet19、23、29、32、36、38、42、SolventViolet13、36、C.I.ピグメントオレンジ1、C.I.ピグメントオレンジ5、C.I.ピグメントオレンジ13、C.I.ピグメントオレンジ14、C.I.ピグメントオレンジ16、C.I.ピグメントオレンジ17、C.I.ピグメントオレンジ24、C.I.ピグメントオレンジ34、C.I.ピグメントオレンジ36、C.I.ピグメントオレンジ38、C.I.ピグメントオレンジ40、C.I.ピグメントオレンジ43、C.I.ピグメントオレンジ46、C.I.ピグメントオレンジ49、C.I.ピグメントオレンジ51、C.I.ピグメントオレンジ61、C.I.ピグメントオレンジ63、C.I.ピグメントオレンジ64、C.I.ピグメントオレンジ71、C.I.ピグメントオレンジ73、C.I.ピグメントブラウン23、C.I.ピグメントブラウン25、C.I.ピグメントブラック1、C.I.ピグメントブラック7等が挙げられる。 Also, colorants such as purple, orange, brown and black may be added for the purpose of adjusting the color tone. Specifically, PigmentViolet 19, 23, 29, 32, 36, 38, 42, Solvent Violet 13, 36, C.I. I. Pigment orange 1, C.I. I. Pigment orange 5, C.I. I. Pigment orange 13, C.I. I. Pigment orange 14, C.I. I. Pigment orange 16, C.I. I. Pigment orange 17, C.I. I. Pigment orange 24, C.I. I. Pigment orange 34, C.I. I. Pigment orange 36, C.I. I. Pigment orange 38, C.I. I. Pigment orange 40, C.I. I. Pigment orange 43, C.I. I. Pigment orange 46, C.I. I. Pigment orange 49, C.I. I. Pigment orange 51, C.I. I. Pigment orange 61, C.I. I. Pigment orange 63, C.I. I. Pigment orange 64, C.I. I. Pigment orange 71, C.I. I. Pigment orange 73, C.I. I. Pigment brown 23, C.I. I. Pigment brown 25, C.I. I. Pigment black 1, C.I. I. Pigment black 7 and the like.
 なお、FO-WLPのファンアウト領域に貫通電極を形成する場合は、ファンアウト領域とFO-WLP用反り矯正層とを同時にレーザー加工する必要があるため、アライメント用に反り矯正層も光透過性を有していることが好ましい。このような場合も適宜考慮して着色剤成分を選択することができる。 When forming a through electrode in the fan-out region of FO-WLP, it is necessary to laser process the fan-out region and the FO-WLP warpage correction layer at the same time, so the warpage correction layer is also light-transmissive for alignment. It is preferable to have. In such a case, the colorant component can be selected with appropriate consideration.
 本発明の反り矯正材を構成する硬化性樹脂組成物には、FO-WLPに反り矯正層を設けた場合の反り矯正層の被着体(擬似ウェハ)に対する接着性、密着性および反り矯正層の凝集性の少なくとも何れか一方を向上させるため、無機物と反応する官能基および有機官能基と反応する官能基を有するカップリング剤成分が含まれていてもよい。また、カップリング剤成分が含まれることにより、FO-WLPに硬化性樹脂組成物の塗膜を形成し、当該硬化性樹脂組成物を硬化させて反り矯正層を形成した場合に、反り矯正層の耐熱性を損なうことなく、その耐水性を向上させることができる。このようなカップリング剤としては、チタネート系カップリング剤、アルミネート系カップリング剤、シランカップリング剤等が挙げられる。これらのうちでも、シランカップリング剤が好ましい。 The curable resin composition constituting the warp correction material of the present invention includes adhesion, adhesion and warpage correction layer to the adherend (pseudo wafer) of the warpage correction layer when the warpage correction layer is provided on FO-WLP. In order to improve at least one of the cohesive properties, a coupling agent component having a functional group that reacts with an inorganic substance and a functional group that reacts with an organic functional group may be included. In addition, when a coupling agent component is included, when a coating film of the curable resin composition is formed on FO-WLP and the curable resin composition is cured to form a warpage correction layer, the warpage correction layer The water resistance can be improved without impairing the heat resistance. Examples of such coupling agents include titanate coupling agents, aluminate coupling agents, silane coupling agents, and the like. Of these, silane coupling agents are preferred.
 シランカップリング剤に含有される有機基としては、例えば、ビニル基、エポキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、ウレイド基、クロロプロピル基、メルカプト基、ポリスルフィド基、イソシアネート基などが挙げられる。シランカップリング剤として市販されているものを使用することができ、例えば、KA-1003、KBM-1003、KBE-1003、KBM-303、KBM-403、KBE-402、KBE-403、KBM-1403、KBM-502、KBM-503、KBE-502、KBE-503、KBM-5103、KBM-602、KBM-603、KBE-603、KBM-903、KBE-903、KBE-9103、KBM-9103、KBM-573、KBM-575、KBM-6123、KBE-585、KBM-703、KBM-802、KBM-803、KBE-846、KBE-9007(いずれも商品名;信越化学工業株式会社製)などを挙げることができる。これらは1種を単独で用いてもよく2種以上を併用してもよい。 Examples of organic groups contained in the silane coupling agent include vinyl groups, epoxy groups, styryl groups, methacryloxy groups, acryloxy groups, amino groups, ureido groups, chloropropyl groups, mercapto groups, polysulfide groups, and isocyanate groups. Can be mentioned. Commercially available silane coupling agents can be used, for example, KA-1003, KBM-1003, KBE-1003, KBM-303, KBM-403, KBE-402, KBE-403, KBM-1403. , KBM-502, KBM-503, KBE-502, KBE-503, KBM-5103, KBM-602, KBM-603, KBE-603, KBM-903, KBE-903, KBE-9103, KBM-9103, KBM -573, KBM-575, KBM-6123, KBE-585, KBM-703, KBM-802, KBM-803, KBE-846, KBE-9007 (all trade names; manufactured by Shin-Etsu Chemical Co., Ltd.) be able to. These may be used alone or in combination of two or more.
 本発明の反り矯正材を構成する硬化性樹脂組成物には、上記した成分以外に、必要に応じて各種添加剤が配合されてもよい。各種添加剤としては、レベリング剤、可塑剤、酸化防止剤、イオン捕捉剤、ゲッタリング剤、連鎖移動剤、剥離剤、防錆剤、密着促進剤、紫外線吸収剤、熱重合禁止剤、増粘剤、消泡剤等の電子材料の分野において公知慣用の添加剤を含有してもよい。 In addition to the above-described components, various additives may be blended in the curable resin composition constituting the warp correction material of the present invention as necessary. Various additives include leveling agents, plasticizers, antioxidants, ion scavengers, gettering agents, chain transfer agents, release agents, rust inhibitors, adhesion promoters, UV absorbers, thermal polymerization inhibitors, thickening agents. You may contain a well-known and usual additive in the field | areas of electronic materials, such as an agent and an antifoamer.
 本発明の反り矯正材を構成する硬化性樹脂組成物には、有機溶剤を含有することができる。有機溶剤は、分子中にエチレン性不飽和基を含有するポリエーテル化合物の合成、各成分の混合、および得られた硬化性樹脂組成物を基板や支持体フィルムに塗布する際の、粘度調整のために使用できる。 The curable resin composition constituting the warp correction material of the present invention can contain an organic solvent. The organic solvent is used to adjust the viscosity when synthesizing a polyether compound containing an ethylenically unsaturated group in the molecule, mixing each component, and applying the obtained curable resin composition to a substrate or a support film. Can be used for.
 有機溶剤としては、ケトン類、芳香族炭化水素類、グリコールエーテル類、グリコールエーテルアセテート類、エステル類、アルコール類、脂肪族炭化水素、石油系溶剤等が挙げることができる。より具体的には、メチルエチルケトン、シクロヘキサノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、ジプロピレングリコールメチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールブチルエーテルアセテート等のエステル類、エタノール、プロパノール、エチレングリコール、プロピレングリコール等のアルコール類、オクタン、デカン等の脂肪族炭化水素、石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤等を挙げることができる。有機溶剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the organic solvent include ketones, aromatic hydrocarbons, glycol ethers, glycol ether acetates, esters, alcohols, aliphatic hydrocarbons, petroleum solvents, and the like. More specifically, ketones such as methyl ethyl ketone and cyclohexanone, aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene, cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, propylene glycol monomethyl Glycol ethers such as ether, dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, triethylene glycol monoethyl ether, ethyl acetate, butyl acetate, dipropylene glycol methyl ether acetate, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate , Esters such as propylene glycol butyl ether acetate, ethanol, propanol Ethylene glycol, or propylene glycol, octane, can be exemplified aliphatic hydrocarbons decane, petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, petroleum solvents such as solvent naphtha. An organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
<ファンアウト型ウェハレベルパッケージの製造方法>
 本発明の矯正材は、FO-WLPの反り矯正層として用いられる。以下、反り矯正層を設けたFO-WLPの擬似ウェハについて説明する。
<Manufacturing method of fan-out type wafer level package>
The correction material of the present invention is used as a FO-WLP warpage correction layer. Hereinafter, a FO-WLP pseudo wafer provided with a warp correction layer will be described.
 先ず、半導体ウェハを準備し、一方の面に回路形成を行う。半導体ウェハはシリコンウェハであってもよく、またガリウム・砒素(GaAs)などの化合物半導体ウェハであってもよい。ウェハ表面への回路の形成はエッチング法、リフトオフ法などの汎用されている方法を含む様々な方法により行うことができる。半導体ウェハはダイシング工程を経て、個々の半導体チップに切り分けておいてもよい。 First, a semiconductor wafer is prepared and a circuit is formed on one surface. The semiconductor wafer may be a silicon wafer or a compound semiconductor wafer such as gallium arsenide (GaAs). A circuit can be formed on the wafer surface by various methods including a widely used method such as an etching method and a lift-off method. The semiconductor wafer may be cut into individual semiconductor chips through a dicing process.
 上記のようにして得た半導体チップを、粘着層を介して表面が平滑な板状のキャリアに載置する。キャリアとしては特に限定されないが、円形や四角形のシリコンウェハや金属板を用いることができる。また、粘着層としては、半導体チップを仮固定でき、擬似ウェハ作製後に剥離が可能なものを用いる。このような粘着層材料としては、アクリル系粘着剤、ゴム系粘着剤、スチレン・共役ジエンブロック共重合体などを用いることができる。また、粘着層材料として、エチレン性不飽和基を有するカルボキシル基含有樹脂と、上記したようなラジカル重合開始剤を含有させることもでき、このような樹脂を含有させることにより、加熱または活性エネルギー線の照射により、粘着層の粘着性を変化させることもできる。 The semiconductor chip obtained as described above is placed on a plate-like carrier having a smooth surface through an adhesive layer. Although it does not specifically limit as a carrier, A circular or square silicon wafer and a metal plate can be used. Further, as the adhesive layer, a layer capable of temporarily fixing a semiconductor chip and capable of being peeled off after manufacturing a pseudo wafer is used. As such an adhesive layer material, an acrylic adhesive, a rubber adhesive, a styrene / conjugated diene block copolymer, or the like can be used. Further, as the adhesive layer material, a carboxyl group-containing resin having an ethylenically unsaturated group and a radical polymerization initiator as described above can be contained. By containing such a resin, heating or active energy rays can be contained. The adhesiveness of the adhesive layer can also be changed by irradiation.
 粘着層上に半導体チップを載置する際は、複数の半導体チップを離間して載置する。載置される半導体チップは平面視において、縦横方向における配置数が同一でも異なってもよく、また、密度の向上や単位半導体チップ当たりの端子面積を確保する等の各種の観点から、点対称や格子状等に配置されてもよい。隣接する半導体チップ間の離間部の距離は、特に限定されないが、最終的に得られるFO-WLPの接続端子を形成するために必要なファンアウト(FO)領域が得られるように配置することが望ましい。 When mounting semiconductor chips on the adhesive layer, a plurality of semiconductor chips are mounted separately. The semiconductor chips to be mounted may be the same or different in the number of arrangement in the vertical and horizontal directions in plan view, and from various viewpoints such as improving the density and securing the terminal area per unit semiconductor chip, You may arrange | position in a grid | lattice form etc. The distance between the adjacent semiconductor chips is not particularly limited, but may be arranged so as to obtain a fan-out (FO) region necessary for forming a connection terminal of the finally obtained FO-WLP. desirable.
 続いて、板状のキャリア上に粘着層を介して載置した半導体チップを封止材により封止する。半導体チップの側壁面および上面が封止材で封止されるように、半導体チップが載置されキャリア上に封止材を塗布ないし貼り合わせる。この際、半導体チップ間の離間部にも封止材が埋め込まれるように成形する。このような封止材を用いた封止工程は、液状、顆粒、シート状である公知の半導体封止用樹脂組成物を用い、圧縮成形を行うことによって形成することができる。公知の半導体封止用樹脂組成物には主にエポキシ樹脂、エポキシ樹脂の硬化剤、硬化促進剤、球状フィラー等が用いられる。 Subsequently, the semiconductor chip placed on the plate-like carrier via the adhesive layer is sealed with a sealing material. The semiconductor chip is placed and the sealing material is applied or bonded onto the carrier so that the side wall surface and the upper surface of the semiconductor chip are sealed with the sealing material. At this time, the sealing material is molded so as to be embedded in the space between the semiconductor chips. The sealing step using such a sealing material can be formed by performing compression molding using a known semiconductor sealing resin composition that is liquid, granule, or sheet. For known semiconductor sealing resin compositions, epoxy resins, epoxy resin curing agents, curing accelerators, spherical fillers and the like are mainly used.
 封止材を硬化させた後、板状のキャリアを剥離する。剥離は、封止材および半導体チップと粘着層の間で行う。剥離方法としては、加熱処理を行い粘着層の粘着力を変化(低下)させてはく離する方法、先に板状のキャリアと粘着層の間で剥離を行い、そののちに粘着層に加熱処理または電子線や紫外線などの照射処理を施したのちにはく離する方法等が挙げられる。 After curing the sealing material, the plate-like carrier is peeled off. Peeling is performed between the sealing material and the semiconductor chip and the adhesive layer. As a peeling method, heat treatment is performed to change (decrease) the adhesive strength of the adhesive layer and release, or first peeling is performed between the plate-like carrier and the adhesive layer, and then the adhesive layer is subjected to heat treatment or Examples of the method include a method of releasing after the irradiation treatment with an electron beam or ultraviolet rays.
 このようにして得られた擬似ウェハは、ポストキュアを実施してもよい。ポストキュアとしては、例えば、150~200℃の温度範囲で、10分~8時間の範囲で行う。続いて、得られた擬似ウェハの半導体が埋め込まれている面の反対側を研磨して、擬似ウェハを薄くすることもできる。研削する方法は特に限定はされず、グラインダーなどを用いた公知の手段で研削してもよい。擬似ウェハの研削後の厚みは特に限定はされないが、通常は50~500μm程度である。 The post-cure may be carried out on the pseudo wafer thus obtained. Post-curing is performed, for example, in a temperature range of 150 to 200 ° C. and in a range of 10 minutes to 8 hours. Subsequently, the pseudo wafer can be thinned by polishing the opposite side of the obtained pseudo wafer where the semiconductor is embedded. The grinding method is not particularly limited, and grinding may be performed by a known means using a grinder or the like. The thickness of the pseudo wafer after grinding is not particularly limited, but is usually about 50 to 500 μm.
 続いて、擬似ウェハの半導体チップの回路が露出している面側に、再配線層またはリードフレームを形成する。再配線層の形成においては、先ず、擬似ウェハの半導体チップの回路が露出している面の全面にスピンコート法等を用いて再配線用絶縁樹脂を塗布し、100℃程度でプリベークを行い、再配線用絶縁樹脂層を形成する。次に、半導体チップの接続パッドを開口させるために、フォトリソグラフィー法等を用いて、再配線用絶縁樹脂層にパターンを形成して加熱処理(キュア)を行う。加熱処理の条件としては、例えば、150~250℃の温度範囲で、10分~5時間の範囲で行う。再配線用絶縁樹脂としては、特に限定されないが、耐熱性および信頼性の観点から、ポリイミド樹脂、ポリベンゾオキサイド樹脂、ベンゾシクロブテン樹脂などが用いられる。上記したように、再配線用絶縁樹脂を加熱処理する際に、絶縁樹脂の加熱収縮により擬似ウェハに反りが生じる場合がある。一方、リードフレームの形成においては、薄い金属板をエッチング技術や打ち抜き加工等により型抜きし、プレス曲げにより一括形成される。 Subsequently, a rewiring layer or a lead frame is formed on the side of the pseudo wafer where the semiconductor chip circuit is exposed. In the formation of the rewiring layer, first, an insulating resin for rewiring is applied to the entire surface of the pseudo wafer where the circuit of the semiconductor chip is exposed by spin coating or the like, and prebaked at about 100 ° C., An insulating resin layer for rewiring is formed. Next, in order to open the connection pads of the semiconductor chip, a pattern is formed on the insulating resin layer for rewiring using a photolithography method or the like, and heat treatment (curing) is performed. The heat treatment conditions are, for example, a temperature range of 150 to 250 ° C. and a range of 10 minutes to 5 hours. The insulating resin for rewiring is not particularly limited, but polyimide resin, polybenzooxide resin, benzocyclobutene resin, and the like are used from the viewpoint of heat resistance and reliability. As described above, when the insulating resin for rewiring is heat-treated, the pseudo wafer may be warped due to heat shrinkage of the insulating resin. On the other hand, in the formation of the lead frame, a thin metal plate is die-cut by an etching technique or a punching process, and is collectively formed by press bending.
 擬似ウェハの再配線層等の全面に給電層をスパッタ等の方法で形成し、次いで、給電層の上にレジスト層を形成し、所定のパターンに露光、現像した後、電解銅メッキにてビアおよび再配線回路を形成する。再配線回路を形成した後、レジスト層を剥離し、給電層をエッチングする。 A power feeding layer is formed on the entire surface of the rewiring layer of the pseudo wafer by a method such as sputtering, and then a resist layer is formed on the power feeding layer, exposed to a predetermined pattern and developed, and then via-plated by electrolytic copper plating. And form a rewiring circuit. After forming the rewiring circuit, the resist layer is peeled off and the power feeding layer is etched.
 続いて、再配線回路上に設けたランドにフラックスを塗布し、半田ボールを搭載したのち加熱溶融することにより、半田ボールをランドに取り付ける。また、再配線回路および半田ボールの一部を覆うようにソルダーレジスト層を形成してもよい。塗布されるフラックスは、樹脂系や水溶系のものを使用することができる。加熱溶融方法としては、リフロー、ホットプレート等が使用できる。このようにしてFO-WLPの擬似ウェハが得られる。 Subsequently, flux is applied to the lands provided on the rewiring circuit, the solder balls are mounted, and then heated and melted to attach the solder balls to the lands. Further, a solder resist layer may be formed so as to cover a part of the rewiring circuit and the solder balls. The applied flux can be resin-based or water-based. As the heating and melting method, reflow, hot plate or the like can be used. In this way, a pseudo wafer of FO-WLP is obtained.
 この後、ダイシング等の方法により、FO-WLPの擬似ウェハを個片化することでFO-WLPが得られる。 Thereafter, the FO-WLP is obtained by dividing the FO-WLP pseudo wafer into individual pieces by a method such as dicing.
 このようにして得られた擬似ウェハの再配線層等が形成されている面と同じ面または反対側の面に、反り矯正材を塗布して塗膜を形成する。反り矯正材の塗布は、スクリーン印刷、インクジェット、ディップコート、フローコート、ロールコート、バーコーター、カーテンコートなどの印刷方式により行うことができる。反り矯正材の粘度は各印刷方式に対応する粘度であれば適宜調整できる。特に、インクジェット方式は、微細でかつ部分的な印刷が可能であり、パッケージの反りの場所や大きさに柔軟に対応できるため好ましい。インクジェットの場合、反り矯正材の50℃における粘度が、5~50mPa・sであることが好ましく、5~20mPa・sであることがより好ましい。これにより、インクジェットプリンターに不要な負荷を与えることなく、円滑な印刷が可能となる。 The warp correction material is applied to the same surface as the surface on which the rewiring layer or the like of the pseudo wafer obtained in this way is formed or the opposite surface to form a coating film. The warp correction material can be applied by a printing method such as screen printing, inkjet, dip coating, flow coating, roll coating, bar coater, curtain coating or the like. The viscosity of the warp correction material can be appropriately adjusted as long as the viscosity corresponds to each printing method. In particular, the ink jet method is preferable because it allows fine and partial printing and can flexibly cope with the location and size of the warp of the package. In the case of inkjet, the viscosity at 50 ° C. of the warp correction material is preferably 5 to 50 mPa · s, and more preferably 5 to 20 mPa · s. Thereby, smooth printing can be performed without applying an unnecessary load to the ink jet printer.
 反り矯正材の塗布量は、硬化させて反り矯正層を形成した際の反り矯正層の厚みが15~50μmの範囲となるように調整することが好ましい。反り矯正層の厚みが15μm以上であると反りを平滑化することが容易となる。また50μmを超えるとFOWLPの利点の一つである薄さを損なうことがない。 The coating amount of the warp correction material is preferably adjusted so that the thickness of the warp correction layer when cured to form the warp correction layer is in the range of 15 to 50 μm. When the thickness of the warp correction layer is 15 μm or more, it becomes easy to smooth the warp. If it exceeds 50 μm, the thinness, which is one of the advantages of FOWLP, is not impaired.
 活性エネルギー線の照射は、インクジェットプリンターによるパターン描画後に行なうこともできるが、インクジェットプリンターによるパターン描画と平行して例えば側部や低部等から活性エネルギー線を照射するなど、同時に行なうことが好ましい。活性エネルギー線の照射光源としては、LED、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、メタルハライドランプなどが適当である。その他、電子線、α線、β線、γ線、X線、中性子線なども利用可能である。 Irradiation of active energy rays can be carried out after pattern drawing by an ink jet printer, but it is preferable to carry out simultaneously, for example, by irradiating active energy rays from, for example, a side portion or a lower portion in parallel with pattern drawing by an ink jet printer. As the irradiation source of the active energy ray, an LED, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a metal halide lamp, or the like is appropriate. In addition, electron beams, α rays, β rays, γ rays, X rays, neutron rays, and the like can also be used.
 活性エネルギー線の照射量は、反り矯正層の膜厚によっても異なるが、一般には10~10000mJ/cm、好ましくは20~2000mJ/cmの範囲内とすることができる。 The irradiation amount of the active energy ray varies depending on the film thickness of the warp correction layer, but can generally be in the range of 10 to 10000 mJ / cm 2 , preferably 20 to 2000 mJ / cm 2 .
 本発明においては、反り矯正材の塗布量、すなわち、反り矯正材を硬化させた後の反り矯正層の膜厚の調整、活性エネルギー線の照射量、更には、全面照射と部分照射の選択によって、擬似ウェハの反り矯正層の硬化度を適宜調整することで、FO-WLPの反り具合に応じた矯正量を簡便に調整することができる。 In the present invention, the application amount of the warp correction material, that is, the adjustment of the thickness of the warp correction layer after curing the warp correction material, the irradiation amount of the active energy ray, and further, the selection of the whole surface irradiation and partial irradiation The amount of correction according to the degree of warpage of FO-WLP can be easily adjusted by appropriately adjusting the degree of cure of the warp correction layer of the pseudo wafer.
 本発明においては、熱により硬化させる際の温度や時間を調整または、目標の温度まで一段階で温度を上げる方法や中間温度を経て最終温度に加熱するステップ加熱を行うことにより、擬似ウェハの反り矯正層の硬化度を適宜調整し、FO-WLPの反り具合によって、矯正量を簡便に調整することができる。加熱により硬化させる時間は30秒~3時間が望ましい。好ましくは30分~2時間である。 In the present invention, the temperature and time for curing by heat are adjusted, or the temperature of the pseudo wafer is warped by performing a method of raising the temperature in one step to the target temperature or performing step heating that is heated to the final temperature via an intermediate temperature. The amount of correction can be easily adjusted by appropriately adjusting the degree of cure of the correction layer and the warping of FO-WLP. The time for curing by heating is preferably 30 seconds to 3 hours. Preferably, it is 30 minutes to 2 hours.
 上記した活性エネルギー線および熱による硬化は、JEITA規格のシリコンウェハ上に前記反り矯正材を塗布して活性エネルギー線および熱により硬化させて平膜状の硬化物とした場合に、硬化物表面の60°鏡面反射率と、硬化物とシリコンウェハとの界面での60°鏡面反射率との差の絶対値が10%以下となるように行うことが好ましい。本発明者らは、反り矯正材を硬化させて反り矯正層を形成する際に、上記したような関係を満たすように反り矯正材の硬化を行うことにより、反り矯正材に適度な反り応力を生じさせることができることを見出した。理由は定かではないが、恐らく、活性エネルギー線で硬化を行う際の深部硬化性が硬化収縮に関与していると考えられる。これはあくまでも本発明者らの推測であり、本発明が当該論理に拘束されるものではない。 The above-described curing with active energy rays and heat is performed by applying the warp correction material on a JEITA standard silicon wafer and curing it with active energy rays and heat to obtain a flat film-like cured product. The absolute value of the difference between the 60 ° specular reflectance and the 60 ° specular reflectance at the interface between the cured product and the silicon wafer is preferably 10% or less. When the warp correction material is cured to form a warp correction layer, the inventors cure the warp correction material so as to satisfy the above-described relationship, thereby applying an appropriate warp stress to the warp correction material. It has been found that it can be generated. The reason is not clear, but it is likely that deep curability when curing with active energy rays is involved in curing shrinkage. This is only a guess of the present inventors, and the present invention is not bound to the logic.
 次に実施例を挙げて、本発明をさらに詳細に説明するが、本発明は、これら実施例に限定されるものではない。 Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
<擬似ウェハの準備>
 キャノシス株式会社製の片面に100nmのSiO膜が形成された4inch、厚み150μmのP型シリコンウェハを、ダイシング装置を用いてダイシングを行い、10mm×10mm角の半導体チップを得た。SUS製平面基板上に仮固定フィルムを配置し、上記半導体チップをSiO面が仮固定フィルムと接触し、半導体チップの間が上下左右で10mm間隔となるように縦横5×5個配置した。この上に100mm×100mm角シート状の半導体用封止材を中心位置がおよそ一致するように積層し、加熱式プレス圧着機を用いて150℃で1時間圧縮成形させた。半導体用封止材としては、下記の組成を有する混練物を2枚の50μmのカバーフィルム(帝人ピューレックスフィルム)に挟むように配置し、平板プレス法により混練物をシート状に形成し、厚さ200μmのシート状に形成したものを用いた。
<Preparation of pseudo wafer>
A 4-inch, 150 μm thick P-type silicon wafer having a 100 nm SiO 2 film formed on one side made by Canosis Co., Ltd. was diced using a dicing apparatus to obtain a 10 mm × 10 mm square semiconductor chip. A temporary fixing film was placed on a SUS flat substrate, and the above-mentioned semiconductor chips were placed 5 × 5 in length and breadth so that the SiO 2 surface was in contact with the temporarily fixing film and the distance between the semiconductor chips was 10 mm vertically and horizontally. A 100 mm × 100 mm square sheet-shaped semiconductor encapsulant was laminated thereon so that the center positions were approximately the same, and compression-molded at 150 ° C. for 1 hour using a heating type press crimping machine. As a semiconductor sealing material, a kneaded material having the following composition is placed between two 50 μm cover films (Teijin Purex film), and the kneaded material is formed into a sheet by a flat plate pressing method. What was formed in the sheet form of 200 micrometers in thickness was used.
<半導体用封止材組成物の調製>
 以下の成分を配合し、ロール混練機で70℃4分間、続いて120℃6分間加熱し、合計10分間、減圧(0.01kg/cm)しながら溶融混練し、混練物を作製した。
・ナフタレン型エポキシ樹脂(日本化薬株式会社製NC-7000)30部
・ビスフェノール型エポキシ樹脂(三菱ケミカル株式会社製 YX-4000)                             10部
・フェノールノボラック型エポキシ樹脂
 (ザ・ダウ・ケミカル・カンパニー社製 D.E.N.431) 10部
・アントラキノン                        2部
・カーボンブラック(三菱ケミカル株式会社製 カーボンMA-100)
                               10部
・球状シリカ(株式会社アドマテックス製 アドマファインSO-E2)
                              500部
・シランカップリング剤
 (信越化学工業株式会社製 KBM-403)          2部
・2-フェニルイミダゾール(四国化成工業株式会社製 2PZ)  2部
<Preparation of semiconductor encapsulant composition>
The following components were blended, heated at 70 ° C. for 4 minutes in a roll kneader, then heated at 120 ° C. for 6 minutes, and melt-kneaded for 10 minutes in total with reduced pressure (0.01 kg / cm 2 ) to prepare a kneaded product.
・ Naphthalene type epoxy resin (Nippon Kayaku Co., Ltd. NC-7000) 30 parts ・ Bisphenol type epoxy resin (Mitsubishi Chemical Corporation YX-4000) 10 parts ・ Phenol novolac type epoxy resin (The Dow Chemical Company) D.E.N.431) 10 parts, anthraquinone 2 parts, carbon black (Carbon MA-100, manufactured by Mitsubishi Chemical Corporation)
10 parts spherical silica (Admafine SO-E2 manufactured by Admatechs Co., Ltd.)
500 parts ・ Silane coupling agent (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) 2 parts ・ 2-Phenylimidazole (2PZ manufactured by Shikoku Chemicals Co., Ltd.) 2 parts
 次いで、得られた積層体から仮固定フィルムをはがし、裏側を研磨して、100mm×100mm角、厚み200μmの擬似ウェハを得た。 Next, the temporarily fixed film was peeled off from the obtained laminate, and the back side was polished to obtain a pseudo wafer having a size of 100 mm × 100 mm square and a thickness of 200 μm.
 得られた擬似ウェハの半導体回路面側に、下記組成を有するポジ型の再配線形成用樹脂組成物をスピンコートで塗布し、100℃で20分間加熱してプリベークを行った。プリベーク後の擬似ウェハ上に形成された感光性再配線形成用樹脂層の厚みは10μmであった。 A positive type rewiring forming resin composition having the following composition was applied by spin coating to the semiconductor circuit surface side of the obtained pseudo wafer, and prebaked by heating at 100 ° C. for 20 minutes. The thickness of the photosensitive rewiring-forming resin layer formed on the pre-baked pseudo wafer was 10 μm.
<再配線形成用樹脂組成物の調製>
 まず、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-プロパンを、N-メチルピロリドンに溶解させ、4,4’-ジフェニルエーテルジカルボン酸クロリドのN-メチルピロリドンを滴下しながら0~5℃で反応させて、重量平均分子量1.3×104のポリヒドロキシアミド(ポリベンゾオキサゾール前駆体)樹脂を合成した。
 次いで、ポリヒドロキシアミド樹脂を含む下記の成分を配合し、この混合溶液を3μm孔のテフロン(登録商標)フィルタを用いて加圧ろ過して、再配線用樹脂組成物を調製した。
・ポリヒドロキシアミド樹脂(Z2)             100部
・フェノールノボラック型エポキシ樹脂
 (ザ・ダウ・ケミカル・カンパニー社製 D.E.N.431) 10部
・1-ナフトキノン-2-ジアジド-5-スルホン酸エステル
 (AZエレクトロニックマテリアルズ社製商品名TPPA528)10部
・Y-X-Y型ブロック共重合体
 (アルケマ社製 ナノストレングスM52N)          5部
・シランカップリング剤
 (信越化学工業株式会社製 KBM-403)          2部
・γ-ブチロラクトン                     30部
・プロピレングリコールモノメチルエーテルアセテート     120部
<Preparation of resin composition for rewiring formation>
First, 2,2-bis (3-amino-4-hydroxyphenyl) -propane was dissolved in N-methylpyrrolidone, and 0 to 5 was added dropwise while adding N-methylpyrrolidone of 4,4′-diphenyl ether dicarboxylic acid chloride. Reaction was carried out at 0 ° C. to synthesize a polyhydroxyamide (polybenzoxazole precursor) resin having a weight average molecular weight of 1.3 × 10 4.
Next, the following components containing a polyhydroxyamide resin were blended, and this mixed solution was subjected to pressure filtration using a 3 μm pore Teflon (registered trademark) filter to prepare a resin composition for rewiring.
・ Polyhydroxyamide resin (Z2) 100 parts ・ Phenol novolac type epoxy resin (DEN 431 manufactured by The Dow Chemical Company) 10 parts ・ 1-Naphthoquinone-2-diazide-5-sulfonic acid ester (Trade name TPPA528, manufactured by AZ Electronic Materials) 10 parts, YXY block copolymer (Nanostrength M52N, manufactured by Arkema) 5 parts, silane coupling agent (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) 2 parts • γ-butyrolactone 30 parts • Propylene glycol monomethyl ether acetate 120 parts
 続いて、100μmの円形の開口パターンが400μmピッチで縦横に連続して形成されているフォトマスクを介して、ORC社製のHMW680GW(メタルハライドランプ)を用いて、露光量500mJ/cmで、ポジ型のパターン状に光照射を行い、TMAH2.38wt%水溶液を用いて、25℃で2分間現像を行って丸型開口パターンが形成された再配線樹脂層を形成した。その後、200℃で1時間ベーク処理を行い室温まで冷却した。こうして得られた擬似ウェハは、再配線樹脂層側が凹となるような反りが発生していた。反り量は、100mm×100mm角の周辺部を基準として中央部が6mm凹んだ状態であった。 Subsequently, using an HMW680GW (metal halide lamp) manufactured by ORC through a photomask in which a circular opening pattern of 100 μm is continuously formed vertically and horizontally at a pitch of 400 μm, an exposure amount of 500 mJ / cm 2 is positive. The mold pattern was irradiated with light, and developed using a 2.38 wt% TMAH aqueous solution at 25 ° C. for 2 minutes to form a rewiring resin layer in which a round opening pattern was formed. Then, it baked at 200 degreeC for 1 hour, and cooled to room temperature. In the pseudo wafer thus obtained, a warp such that the rewiring resin layer side was concave occurred. The amount of warpage was a state in which the central portion was recessed by 6 mm with reference to a peripheral portion of 100 mm × 100 mm square.
<反り矯正材の調製>
 クレゾールノボラック型エポキシ樹脂(日本化薬株式会社製、EOCN-104S、エポキシ当量220g/eq)220部(1当量)、カルビトールアセテート140.1部、およびソルベントナフサ60.3部をフラスコに仕込み、90℃に加熱・攪拌し、溶解した。得られた溶液を一旦60℃まで冷却し、アクリル酸72部(1モル)、メチルハイドロキノン0.5部、トリフェニルホスフィン2部を加え、100℃に加熱し、約12時間反応させ、酸価が0.2mgKOH/gの反応物を得た。これにテトラヒドロ無水フタル酸80.6部(0.53モル)を加え、90℃に加熱し、約6時間反応させ、固形分の酸価85mgKOH/g、固形分64.9%の硬化性成分であるアクリル含有ポリエーテル化合物溶液を得た。これを硬化成分1とした。
<Preparation of warp correction material>
Cresole novolac type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., EOCN-104S, epoxy equivalent 220 g / eq) 220 parts (1 equivalent), carbitol acetate 140.1 parts, and solvent naphtha 60.3 parts were charged in a flask. It melt | dissolved by heating and stirring to 90 degreeC. The obtained solution is once cooled to 60 ° C., 72 parts (1 mol) of acrylic acid, 0.5 part of methylhydroquinone and 2 parts of triphenylphosphine are added, heated to 100 ° C., reacted for about 12 hours, and acid value Yielded a reaction of 0.2 mg KOH / g. To this was added 80.6 parts (0.53 mol) of tetrahydrophthalic anhydride, heated to 90 ° C., and allowed to react for about 6 hours. A curable component having a solid content acid value of 85 mgKOH / g and a solid content of 64.9%. An acrylic-containing polyether compound solution was obtained. This was designated as curing component 1.
 上記のようにして得られた硬化成分1を用いて、下記表1に示した組成に従って反り矯正材1~5を調製した。
Figure JPOXMLDOC01-appb-T000001
Using the curing component 1 obtained as described above, warp correction materials 1 to 5 were prepared according to the compositions shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 表1中、各成分の詳細は以下のとおりである。
・7982:ブロックイソシアネート(Baxenden社製)
・4HBA:4-ヒドロキシブチルアクリレート(日本化成株式会社製)
・THEIC-G:トリス(2-ヒドロキシエチル)イソシアヌレート(四国化成工業株式会社製)3官能水酸基含有化合物(水酸基価644mgKOH/g)
・HDDA:1,6-ヘキサンジオールジアクリレート(ダイセル・オルネクス株式会社製)
・DPGDA: ジプロピレングリコールジアクリレート(BASFジャパン株式会社製)
・PE-3A:ペンタエリスリトールトリアクリレート(共栄社化学株式会社製)
・TMPTA:トリメチロールプロパントリアクリレート(ダイセル・オルネクス株式会社製)
・Omnirad 369:2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン(IGM Resins社製)
・MA-100:カーボンブラック(三菱ケミカル株式会社製)
・BYK-307:シリコン系添加剤(ビックケミー・ジャパン株式会社製)
・BYK-350:アクリレート系添加剤(ビックケミー・ジャパン株式会社製)
・N-770:フェノールノボラック型エポキシ樹脂 エピクロンN-770(DIC株式会社製)
・DICY7:ジシアンジアミド(三菱ケミカル株式会社製)
・B-30:硫酸バリウム(堺化学工業株式会社製)
・SO-E2:球状シリカ(株式会社アドマテックス製)
The details of each component in Table 1 are as follows.
7982: Block isocyanate (manufactured by Baxenden)
・ 4HBA: 4-hydroxybutyl acrylate (manufactured by Nippon Kasei Co., Ltd.)
THEIC-G: Tris (2-hydroxyethyl) isocyanurate (manufactured by Shikoku Kasei Kogyo Co., Ltd.) Trifunctional hydroxyl group-containing compound (hydroxyl value 644 mgKOH / g)
HDDA: 1,6-hexanediol diacrylate (manufactured by Daicel Ornex Co., Ltd.)
・ DPGDA: Dipropylene glycol diacrylate (manufactured by BASF Japan Ltd.)
PE-3A: pentaerythritol triacrylate (manufactured by Kyoeisha Chemical Co., Ltd.)
TMPTA: trimethylolpropane triacrylate (manufactured by Daicel Ornex Co., Ltd.)
Omnirad 369: 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone (manufactured by IGM Resins)
MA-100: Carbon black (Mitsubishi Chemical Corporation)
・ BYK-307: Silicone additive (by Big Chemie Japan)
・ BYK-350: Acrylate-based additive (by Big Chemie Japan Co., Ltd.)
N-770: phenol novolac type epoxy resin Epicron N-770 (manufactured by DIC Corporation)
-DICY7: Dicyandiamide (Mitsubishi Chemical Corporation)
・ B-30: Barium sulfate (manufactured by Sakai Chemical Industry Co., Ltd.)
・ SO-E2: Spherical silica (manufactured by Admatechs)
<反り矯正材の物性の測定>
 JEITA仕様のシリコンウェハ鏡面上に、上記で得られた各反り矯正材を塗布して塗膜を形成し、高圧水銀灯にて紫外線を600mJ/cmの照射量にて照射し、仮硬化を行った。次に、仮硬化膜を剥がし、照射面を上にしてテフロンシート上に固定し、BOX式乾燥炉を用い、150℃で60分間加熱することにより平膜状の硬化物を得た。
 得られた硬化物の50℃における線膨張係数を熱機械分析(TMA/SS6000、セイコーインスツルメンツ株式会社製)により測定した。また、得られた硬化物の50℃における弾性率を動的粘弾性測定装置(DMS6100、セイコーインスツルメンツ株式会社製)により測定した。さらに、平膜状の硬化物の厚さをマイクロノギスにより測定した。測定結果は下記表2および3に示すとおりであった。
 また、それぞれの平膜状の硬化物について、平膜状の硬化物の表面側(紫外線照射側)と、シリコンウェハ鏡面に接していた面側(界面側)の光沢度を、光沢度計(マイクロトリグロス、BYK Gardener社製)を用いて、60°鏡面反射率を測定した。表面側と界面側の鏡面反射率の測定結果から両者の差の絶対値を求めた。結果は、下記表4に示すとおりであった。
<Measurement of physical properties of warp straightener>
A coating film is formed by applying each warp correction material obtained above onto a mirror surface of a silicon wafer with JEITA specifications, and ultraviolet rays are irradiated with a high-pressure mercury lamp at an irradiation amount of 600 mJ / cm 2 to perform temporary curing. It was. Next, the temporarily cured film was peeled off, fixed on a Teflon sheet with the irradiated surface facing up, and heated at 150 ° C. for 60 minutes using a BOX-type drying furnace to obtain a flat film-like cured product.
The linear expansion coefficient at 50 ° C. of the obtained cured product was measured by thermomechanical analysis (TMA / SS6000, manufactured by Seiko Instruments Inc.). Moreover, the elastic modulus at 50 degreeC of the obtained hardened | cured material was measured with the dynamic viscoelasticity measuring apparatus (DMS6100, Seiko Instruments Inc. make). Further, the thickness of the flat film-like cured product was measured with a micro caliper. The measurement results were as shown in Tables 2 and 3 below.
In addition, for each flat film-shaped cured product, the glossiness on the surface side (ultraviolet irradiation side) of the flat film-shaped cured product and the surface side (interface side) that was in contact with the mirror surface of the silicon wafer was measured with a gloss meter ( The 60 ° specular reflectance was measured using Micro Trigloss, manufactured by BYK Gardener. The absolute value of the difference between the two was determined from the measurement results of the specular reflectivity on the surface side and the interface side. The results were as shown in Table 4 below.
<擬似ウェハの反り測定>
 準備した擬似ウェハ上の凸側の表面に、反り矯正材1、2、3、5を、それぞれピエゾ型インクジェット印刷機を用いてインクジェット印刷により塗布して塗膜を形成した。この際、印刷直後にインクジェットヘッドに付帯の高圧水銀灯にて紫外線を600mJ/cmの照射量にて照射して、塗膜の仮硬化を行った。
 また、準備した擬似ウェハ上の凸側の表面に、反り矯正材4を用いてスクリーン印刷により塗布して塗膜を形成し、塗膜をBOX式乾燥炉にて80℃で30分間乾燥した後、高圧水銀灯にて紫外線を600mJ/cmの照射量にて照射した。
 上記のようにして硬化させた5種の塗膜をBOX式乾燥炉にて150℃で60分間加熱した(硬化工法A)。
<Measurement of warpage of pseudo wafer>
On the surface on the convex side of the prepared pseudo wafer, the warp correction materials 1, 2, 3, and 5 were applied by inkjet printing using a piezo-type inkjet printer, respectively, to form a coating film. At this time, immediately after printing, the ink jet head was irradiated with ultraviolet rays at an irradiation amount of 600 mJ / cm 2 with an incidental high-pressure mercury lamp, and the coating film was temporarily cured.
In addition, a coating film is formed on the convex surface of the prepared pseudo wafer by screen printing using the warp correction material 4, and the coating film is dried at 80 ° C. for 30 minutes in a BOX-type drying furnace. Then, ultraviolet rays were irradiated with a high-pressure mercury lamp at an irradiation amount of 600 mJ / cm 2 .
The five coating films cured as described above were heated at 150 ° C. for 60 minutes in a BOX-type drying furnace (curing method A).
 また、準備した擬似ウェハ上の凸側の表面に、反り矯正材2をピエゾ型インクジェット印刷機を用いてインクジェット印刷により塗布して塗膜を形成した。この際、紫外線照射は行わなかった。その後、塗膜をBOX式乾燥炉にて150℃で60分間加熱した(硬化工法B)。 Further, the warp correction material 2 was applied to the convex surface of the prepared pseudo wafer by ink jet printing using a piezo ink jet printer to form a coating film. At this time, ultraviolet irradiation was not performed. Thereafter, the coating film was heated at 150 ° C. for 60 minutes in a BOX type drying furnace (curing method B).
 上記のような硬化工法により反り矯正材を硬化させて反り矯正層を形成した擬似ウェハについて、反り量を測定した。反り量は、25℃においてロングジョウノギスを用いて測定した。擬似ウェハの周辺部の2点を基準として中心部の反りが±2mm以下であれば良好(〇)とした。±2~3mmは△、±3mmを超えるときは不良(×)と判定した。評価結果は表2および3に示すとおりであった。 The amount of warpage was measured for a pseudo wafer in which the warp correction material was cured by the curing method as described above to form a warp correction layer. The amount of warpage was measured at 25 ° C. using a long caliper. When the warp of the central part is ± 2 mm or less with reference to two points on the peripheral part of the pseudo wafer, it was judged as good (◯). ± 2 to 3 mm was judged as Δ, and when it exceeded ± 3 mm, it was judged as defective (×). The evaluation results are as shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2、3より明らかなように、線膨張係数(α)×弾性率(β)×膜厚(γ)が2000以上である実施例1および実施例2の反りが良好であるに対し、比較例1および比較例2は、線膨張係数(α)×弾性率(β)×膜厚(γ)が2000未満であるため、反り矯正が良好ではなかった。また、線膨張係数(α)×弾性率(β)×膜厚(γ)が10000以下である実施例6および実施例7の反りが良好であるのに対し、比較例3、4および比較例6は、線膨張係数(α)×弾性率(β)×膜厚(γ)が10000を超えるため、反り矯正材の反りが不良である。 As is clear from Tables 2 and 3, the warpage of Example 1 and Example 2 in which the linear expansion coefficient (α) × elastic modulus (β) × film thickness (γ) is 2000 or more is good, while In Example 1 and Comparative Example 2, since the linear expansion coefficient (α) × elastic modulus (β) × film thickness (γ) was less than 2000, the warp correction was not good. Moreover, while the curvature of Example 6 and Example 7 whose linear expansion coefficient (α) × elastic modulus (β) × film thickness (γ) is 10,000 or less is good, Comparative Examples 3 and 4 and Comparative Example In No. 6, since the linear expansion coefficient (α) × elastic modulus (β) × film thickness (γ) exceeds 10,000, the warpage of the warp correction material is poor.
 また、実施例1と比較例1を比較すると線膨張係数(α)と弾性率(β)が一定であるが膜厚(γ)が異なる。この場合において線膨張係数(α)×弾性率(β)×膜厚(γ)が2000以上であると反り矯正材の反りが良好で2000未満であると反り矯正材の反りが不良である。一方、実施例2と比較例1を比較すると線膨張係数(α)と膜厚(γ)が一定であるが弾性率(β)が異なる。この場合においても線膨張係数(α)×弾性率(β)×膜厚(γ)が10000以下であると反り矯正材の反りが良好で10000を超えると反り矯正材の反りが不良である。 Further, when Example 1 and Comparative Example 1 are compared, the linear expansion coefficient (α) and the elastic modulus (β) are constant, but the film thickness (γ) is different. In this case, if the linear expansion coefficient (α) × elastic modulus (β) × film thickness (γ) is 2000 or more, the warpage of the warp correction material is good, and if it is less than 2000, the warpage of the warpage correction material is poor. On the other hand, when Example 2 and Comparative Example 1 are compared, the linear expansion coefficient (α) and the film thickness (γ) are constant, but the elastic modulus (β) is different. Even in this case, when the linear expansion coefficient (α) × elastic modulus (β) × film thickness (γ) is 10,000 or less, the warp of the warp correction material is good, and when it exceeds 10,000, the warp of the warp correction material is poor.
 また、表4に示すとおり、反り矯正材1~4を使用した硬化物は、反射率差の絶対値が10%以下であり、表面と界面の硬化がよく進行していると推定される。一方、反り矯正材5を使用した硬化物の反射率差の絶対値は10%超となっているものの、反り矯正材5に含まれる水酸基含有化合物が水酸基を2つ以上有し、水酸基価が100(mgKOH/g)以上である化合物であるため、反り矯正材5を使用した擬似ウェハの反り測定評価(実施例7)は、反り矯正材1~4を使用した場合(実施例1~6)と同様の効果を奏しているものと推察される。 Also, as shown in Table 4, in the cured product using the warp correction materials 1 to 4, the absolute value of the difference in reflectance is 10% or less, and it is estimated that the curing of the surface and the interface proceeds well. On the other hand, although the absolute value of the reflectance difference of the cured product using the warp correction material 5 is more than 10%, the hydroxyl group-containing compound contained in the warp correction material 5 has two or more hydroxyl groups, and the hydroxyl value is Since the compound is 100 (mgKOH / g) or more, the warpage measurement evaluation (Example 7) of the pseudo wafer using the warp correction material 5 is performed when the warp correction materials 1 to 4 are used (Examples 1 to 6). ) Is presumed to have the same effect.

Claims (10)

  1.  ファンアウト型ウェハレベルパッケージ用の反り矯正材であって、
     活性エネルギー線および熱によって硬化し得る成分を含む硬化性樹脂組成物からなり、
     前記反り矯正材を活性エネルギー線および熱により硬化させて平膜状の硬化物とした場合に、該硬化物の、25℃における線膨張係数α(ppm/℃)、25℃における弾性率β(GPa)、および厚さγ(μm)が、下記関係式:
      2000≦α×β×γ≦10000
    を満足することを特徴とする、反り矯正材。
    A warp correction material for a fan-out type wafer level package,
    It consists of a curable resin composition containing a component that can be cured by active energy rays and heat,
    When the warp straightening material is cured by active energy rays and heat to form a flat film-like cured product, the cured product has a linear expansion coefficient α (ppm / ° C.) at 25 ° C. and an elastic modulus β ( GPa) and thickness γ (μm) are expressed by the following relational expression:
    2000 ≦ α × β × γ ≦ 10000
    Warpage correction material characterized by satisfying
  2.  前記γ(μm)が15~50の範囲である、請求項1に記載の反り矯正材。 The warp correction material according to claim 1, wherein the γ (μm) is in the range of 15-50.
  3.  前記硬化性樹脂組成物が、水酸基を有する化合物とイソシアネート基を有する化合物とを少なくとも含む、請求項1または2に記載の反り矯正材。 The warp correction material according to claim 1 or 2, wherein the curable resin composition contains at least a compound having a hydroxyl group and a compound having an isocyanate group.
  4.  前記水酸基を有する化合物中の水酸基の、前記イソシアネート基を有する化合物のイソシアネート基に対するモル比(水酸基/イソシアネート基)が0.1~0.9である、請求項3に記載の反り矯正材。 4. The warpage correcting material according to claim 3, wherein the molar ratio of the hydroxyl group in the compound having a hydroxyl group to the isocyanate group of the compound having an isocyanate group (hydroxyl group / isocyanate group) is 0.1 to 0.9.
  5.  前記水酸基を有する化合物が、一分子中に水酸基を2個以上有し、水酸基価が100(mgKOH/g)以上である、請求項3または4に記載の反り矯正材。 The warp correction material according to claim 3 or 4, wherein the compound having a hydroxyl group has two or more hydroxyl groups in one molecule and has a hydroxyl value of 100 (mgKOH / g) or more.
  6.  前記水酸基を有する化合物または前記イソシアネート基を有する化合物が、イソシアヌル基またはベンゼン環の少なくとも1つを有する、請求項3~5のいずれか一項に記載の反り矯正材。 6. The warpage correcting material according to claim 3, wherein the compound having a hydroxyl group or the compound having an isocyanate group has at least one of an isocyanuric group or a benzene ring.
  7.  請求項1~6のいずれか一項に記載の反り矯正材を用いたファンアウト型ウェハレベルパッケージの製造方法であって、
     前記反り矯正材を、擬似ウェハの再配線層が形成されている面と同じ面または反対側の面に塗布して塗膜を形成し、
     前記塗膜を活性エネルギー線および熱により硬化させて反り矯正層を形成する、
    ことを含む、ファンアウト型ウェハレベルパッケージの製造方法。
    A fan-out type wafer level package manufacturing method using the warp correction material according to any one of claims 1 to 6,
    The warp correction material is applied to the same surface as the surface on which the rewiring layer of the pseudo wafer is formed or the opposite surface to form a coating film,
    Curing the coating film with active energy rays and heat to form a warp correction layer,
    A method of manufacturing a fan-out type wafer level package.
  8.  前記塗布がインクジェット方式により行われる、請求項7に記載の方法。 The method according to claim 7, wherein the coating is performed by an ink jet method.
  9.  反り矯正層の厚みが15~50μmの範囲である、請求項7または8に記載の方法。 The method according to claim 7 or 8, wherein the thickness of the warp correction layer is in the range of 15 to 50 µm.
  10.  前記活性エネルギー線および熱による硬化を、JEITA規格のシリコンウェハ上に前記反り矯正材を塗布して活性エネルギー線および熱により硬化させて平膜状の硬化物とした場合に、硬化物表面の60°鏡面反射率と、硬化物とシリコンウェハとの界面での60°鏡面反射率との差の絶対値が10%以下となるように行う、請求項7~9のいずれか一項に記載の方法。 When the warp straightening material is applied onto a JEITA standard silicon wafer and cured by active energy rays and heat to obtain a flat film-like cured product, the active energy ray and heat are cured by 60% of the surface of the cured product. The absolute value of the difference between the specular reflectivity and the 60 ° specular reflectivity at the interface between the cured product and the silicon wafer is 10% or less, according to any one of claims 7 to 9. Method.
PCT/JP2018/013176 2017-03-29 2018-03-29 Warpage correction material and method for manufacturing fan out-type wafer level package WO2018181686A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197028048A KR102339968B1 (en) 2017-03-29 2018-03-29 Manufacturing method of warpage straightener and fan-out type wafer level package
CN201880020184.4A CN110447097B (en) 2017-03-29 2018-03-29 Warp correction material and manufacturing method of fan-out type wafer level package

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017066010 2017-03-29
JP2017-066010 2017-03-29
JP2018030738A JP6423119B2 (en) 2017-03-29 2018-02-23 Warpage correction material and manufacturing method of fan-out type wafer level package
JP2018-030738 2018-02-23

Publications (1)

Publication Number Publication Date
WO2018181686A1 true WO2018181686A1 (en) 2018-10-04

Family

ID=63676158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013176 WO2018181686A1 (en) 2017-03-29 2018-03-29 Warpage correction material and method for manufacturing fan out-type wafer level package

Country Status (2)

Country Link
KR (1) KR102339968B1 (en)
WO (1) WO2018181686A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116606528A (en) * 2023-07-18 2023-08-18 成都上泰科技有限公司 Toughening modified epoxy resin high polymer for wide bandgap semiconductor packaging and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230008350A1 (en) * 2021-07-08 2023-01-12 Tokyo Electron Limited Method of adjusting wafer shape using multi-directional actuation films

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100252919A1 (en) * 2009-04-07 2010-10-07 Freescale Semiconductor, Inc. Electronic device and method of packaging an electronic device
JP2016146395A (en) * 2015-02-06 2016-08-12 株式会社テラプローブ Method for manufacturing semiconductor device and semiconductor device
JP5989929B1 (en) * 2016-02-17 2016-09-07 太陽インキ製造株式会社 Curable resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100252919A1 (en) * 2009-04-07 2010-10-07 Freescale Semiconductor, Inc. Electronic device and method of packaging an electronic device
JP2016146395A (en) * 2015-02-06 2016-08-12 株式会社テラプローブ Method for manufacturing semiconductor device and semiconductor device
JP5989929B1 (en) * 2016-02-17 2016-09-07 太陽インキ製造株式会社 Curable resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116606528A (en) * 2023-07-18 2023-08-18 成都上泰科技有限公司 Toughening modified epoxy resin high polymer for wide bandgap semiconductor packaging and preparation method thereof
CN116606528B (en) * 2023-07-18 2023-09-29 成都上泰科技有限公司 Toughening modified epoxy resin high polymer for wide bandgap semiconductor packaging and preparation method thereof

Also Published As

Publication number Publication date
KR20190118191A (en) 2019-10-17
KR102339968B1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
JP5882510B2 (en) Photosensitive dry film and method for producing printed wiring board using the same
JP5847814B2 (en) Photo-curable thermosetting resin composition
CN101846882B (en) Photocuring thermocuring resin composition, dry membrane, cured product and printed circuit board
KR102457598B1 (en) Curable resin composition, dry film, cured product, and printed wiring board
JP6258547B2 (en) Photosensitive dry film and method for producing printed wiring board using the same
CN104010815A (en) Dry film, printed wiring board using same, method for producing printed wiring board, and flip chip mounting substrate
KR102103660B1 (en) Curable resin composition and fan-out wafer level package
TW201809027A (en) Photosensitive resin composition dry film cured product and printed wiring board
CN104808436A (en) Alkali-developable photosensitive resin composition, dry film, cured product and printed circuit board
JP2020148815A (en) Curable resin composition, dry film and cured product of the same, electronic component having the same, and method for producing cured product of curable resin composition
JP2012062358A (en) Photosensitive resin, curable resin composition containing the same, dry film thereof, and printed wiring board using them
KR102235435B1 (en) Inkjet curable composition set, cured product, its manufacturing method, printed wiring board and fan-out wafer level package
KR102339968B1 (en) Manufacturing method of warpage straightener and fan-out type wafer level package
JP6423119B2 (en) Warpage correction material and manufacturing method of fan-out type wafer level package
JP6779719B2 (en) Warp straightener for fan-out type wafer level package
JP2017145379A (en) Curable resin composition
JP2020148813A (en) Curable resin composition, dry film and cured product of the same, electronic component having the same, and method for producing cured product of curable resin composition
TWI771311B (en) Manufacturing method of fan-out wafer level packaging
JP2020166211A (en) Curable resin composition, dry film, cured product, printed wiring board, and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197028048

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776414

Country of ref document: EP

Kind code of ref document: A1