WO2018180914A1 - 自壊性アセタールリンカーを有する親水性ポリマー誘導体及びそれを用いた複合体 - Google Patents

自壊性アセタールリンカーを有する親水性ポリマー誘導体及びそれを用いた複合体 Download PDF

Info

Publication number
WO2018180914A1
WO2018180914A1 PCT/JP2018/011485 JP2018011485W WO2018180914A1 WO 2018180914 A1 WO2018180914 A1 WO 2018180914A1 JP 2018011485 W JP2018011485 W JP 2018011485W WO 2018180914 A1 WO2018180914 A1 WO 2018180914A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
bond
hydrophilic polymer
carbon atoms
Prior art date
Application number
PCT/JP2018/011485
Other languages
English (en)
French (fr)
Inventor
拓真 粒崎
晋也 玉川
Original Assignee
日油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日油株式会社 filed Critical 日油株式会社
Priority to US16/493,033 priority Critical patent/US11319408B2/en
Priority to EP18777041.7A priority patent/EP3604384B1/en
Publication of WO2018180914A1 publication Critical patent/WO2018180914A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/3311Polymers modified by chemical after-treatment with organic compounds containing oxygen containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterized by the type of post-polymerisation functionalisation
    • C08G2650/04End-capping
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/62Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the nature of monomer used
    • C08G2650/64Monomer containing functional groups not involved in polymerisation

Definitions

  • the present invention relates to biofunctional molecules such as bioactive proteins, peptides, antibodies, nucleic acids and low molecular weight drugs, and hydrophilic polymer derivatives used for prodrug formation of drug carriers such as liposomes and polymer micelles and the like. Related to the complex.
  • hydrophilic polymers with low antigenicity In drug delivery systems, chemical modification of biofunctional molecules and drug carriers with hydrophilic polymers with low antigenicity has advantages such as improving water solubility of these drugs, avoiding renal clearance, and inhibiting degradation by metabolic enzymes. Yes, it is an effective method for extending the blood circulation time of drugs and the like and increasing bioavailability.
  • drugs and the like in which a hydrophilic polymer is permanently bound by a covalent bond may be used as target endogenous molecules for the formation of a hydrated layer by the hydrophilic polymer and a three-dimensional shielding effect on the active site.
  • active drugs that are not chemically modified by chemically modifying a hydrophilic polymer via a temporary bond to the drug and cleaving this temporary bond in vivo "Bioconjugate Chemistry 2015, 26 (7), 1172-1181", in which a method of releasing a drug, that is, a pro-drug method is used.
  • prodrugation which is cleaved by a cascade mechanism.
  • Cleavage by a cascade mechanism is made possible by a linker structure composed of a combination of a masking group and an activating group (FIG. 1).
  • the masking group is attached to the activating group by a first temporary bond.
  • the activating group is bonded to an amino group present in the drug or the like through a second temporary bond.
  • the stability of the second temporary bond depends largely on whether a masking group is present. In the presence of a masking group, the second temporary bond is very stable and release of the bound drug is usually not possible. On the other hand, in the absence of a masking group, the second temporary bond becomes very unstable and rapidly cleaves to release the drug.
  • the activating group is also referred to as a self-immolative spacer.
  • the cleavage of the first temporary bond between the masking group and the activating group is a rate-determining step.
  • the masking group is often an atomic group that cleaves the first temporary bond triggered by environmental stimuli in each part of the body, that is, the presence or absence of specific enzymes, and environmental stimuli such as a reducing environment.
  • One of the most frequently used activating groups is an atomic group based on 1,4- or 1,6-benzyl elimination.
  • Patent Document 1 discloses an example of a hydrophilic polymer prodrug in which a carbamate group, an amide group or an oligopeptide group is introduced as a masking group, and 2-aminobenzyl alcohol and 4-aminobenzyl alcohol are used as activating groups.
  • a carbamate group, an amide group or an oligopeptide group is introduced as a masking group
  • 2-aminobenzyl alcohol and 4-aminobenzyl alcohol are used as activating groups.
  • Patent Document 2 discloses an example of a hydrophilic polymer prodrug in which a disulfide group is introduced as a masking group and 2-mercaptobenzyl alcohol and 4-mercaptobenzyl alcohol are used as activating groups.
  • the reductive cleavage of the disulfide bond the first temporary bond between the masking group and the activating group, triggers the second temporary bond between 2-mercaptobenzyl alcohol or 4-mercaptobenzyl alcohol and the drug.
  • the carbamate bond is cleaved based on 1,4- or 1,6-benzyl elimination and the drug is released.
  • 2-mercaptobenzyl alcohol or 4-mercaptobenzyl alcohol and carbon dioxide are released.
  • An example is shown in FIG.
  • the hydrophilic polymer prodrugs disclosed in Patent Document 1 and Patent Document 2 release aminobenzyl alcohol and mercaptobenzyl alcohol, respectively, in the process of drug release.
  • the amino group of aminobenzyl alcohol is protonated and positively charged at the pH in the living body, and may usually interact with a negatively charged cell membrane.
  • the mercapto group of mercaptobenzyl alcohol may cause an exchange reaction with a disulfide bond present in the protein. Therefore, drugs with hydrophilic polymers modified through these linker structures may require the evaluation of secondary interactions after the release of aminobenzyl alcohol or mercaptobenzyl alcohol, There are undesirable aspects such as complicated analysis of pharmacological activity.
  • Non-Patent Document 1 discloses an example of a hydrophilic polymer prodrug in which an ester group or a carbonate group is introduced as a masking group and 2-hydroxybenzyl alcohol and 4-hydroxybenzyl alcohol are used as an activating group.
  • enzymatic or non-enzymatic hydrolysis of the ester bond or carbonate bond which is the first temporary bond between the masking group and the activating group, is triggered by 2-hydroxybenzyl alcohol or 4-hydroxybenzyl alcohol.
  • the carbamate bond, the second temporary bond with the drug is cleaved based on 1,4- or 1,6-benzyl elimination and the drug is released.
  • 2-hydroxybenzyl alcohol or 4-hydroxybenzyl alcohol and carbon dioxide are released. An example is shown in FIG.
  • the functional group contained in the free hydroxybenzyl alcohol is only a hydroxy group, and unlike the aminobenzyl alcohol and mercaptobenzyl alcohol of Patent Document 1 and Patent Document 2, the interaction with the cell membrane and protein is very small.
  • Non-Patent Document 1 uses an ester group or a carbonate group as a masking group, enzyme-dependent cleavage (hydrolysis) in blood is fast, and blood such as drugs is present in blood. A contradiction arises with the original purpose of chemical modification with a hydrophilic polymer to prolong the circulation time.
  • a further disadvantage of enzyme-dependent cleavage is variability between patients. Since enzyme levels can vary significantly between individuals, biological variations occur in the release of drugs and the like from prodrugs by enzyme-dependent cleavage. In addition, since the enzyme level can vary depending on the administration site, the drug design is very difficult.
  • Non-Patent Document 1 there is a potential problem that an ester group or a carbonate group causes a side reaction with an amino group in the coupling reaction between an activating group and an amino group such as a drug, and an unwanted byproduct is generated. It is also stated that it exists. Such by-products greatly affect the pharmacokinetics and physical properties of drugs, etc., and therefore must be removed prior to formulation. However, when they are produced on an industrial scale, separation and removal are technical aspects. In addition, the cost is a big detriment.
  • An object of the present invention is to provide a novel linker technology capable of forming hydrophilic polymer prodrugs such as drugs containing amino groups in order to overcome the limitations of conventional hydrophilic polymer prodrugs as described above. And a composite using the same.
  • the present inventor has an acetal structure that can be cleaved only depending on pH, and further releases a drug that has not been chemically modified with the cleavage of the acetal.
  • hydrophilic polymer derivatives that can be used.
  • the present invention is characterized in that since a low molecular weight compound released in the process of releasing a drug or the like is a benzyl alcohol derivative having only a hydroxy group as a functional group, secondary interaction in vivo is difficult to occur.
  • a low molecular weight compound released in the process of releasing a drug or the like is a benzyl alcohol derivative having only a hydroxy group as a functional group, secondary interaction in vivo is difficult to occur.
  • the acetal structure is fundamentally inactive with respect to amino groups, there is also an advantage that no by-product is generated in the binding reaction with drugs having amino groups.
  • a hydrophilic polymer derivative containing a hydrophilic polymer part and an acetal part A hydrophilic polymer derivative comprising a structure represented by formula (1) or formula (2).
  • B 1 is a hydrogen atom or —C (R 6 ) (R 7 ) OC (O) E 1 ;
  • E 1 is a leaving group;
  • R 1 is a hydrocarbon group having 1 to 10 carbon atoms or a hydrogen atom, and R 1 may be bonded to an oxygen atom of the acetal part;
  • R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are each independently a hydrocarbon group having 1 to 10 carbon atoms or a hydrogen atom;
  • m is 0 or 1;
  • One of the two oxygen atoms contained in the acetal part is bonded to the phenyl group; and the wavy line represents a covalent bond to a carbon atom bonded to both of the two oxygen atoms contained in
  • [2] The hydrophilic polymer derivative of [1], which is represented by formula (3) or formula (4).
  • P 1 is the hydrophilic polymer part;
  • w is an integer from 1 to 20;
  • Z 1 is an ether bond, ester bond, carbonate bond, urethane bond, amide bond, secondary amino group or an alkylene group containing these, a single bond or an alkylene group, and
  • Z 1 is an ether bond, ester bond, carbonate bond, urethane.
  • a bond, an amide bond, a secondary amino group or an alkylene group containing these, and the number of the structural units in the case where a plurality of the same structural units are bonded is 2 or less;
  • a 1 is a divalent hydrocarbon group having 1 to 10 carbon atoms or a phenylene group which may have a substituent;
  • R 8 and R 9 are each independently a hydrocarbon group or hydrogen atom having 1 to 9 carbon atoms; and
  • R 10 is a hydrocarbon group or hydrogen atom having 1 to 10 carbon atoms.
  • [3] The hydrophilic polymer derivative of [1], which is represented by the formula (5) or the formula (6).
  • P 1 is the hydrophilic polymer part;
  • w is an integer from 1 to 20;
  • Z 2 is an ether bond, ester bond, carbonate bond, urethane bond, amide bond, secondary amino group or an alkylene group containing these, a single bond or an alkylene group, and
  • Z 2 is an ether bond, ester bond, carbonate bond, urethane.
  • a bond, an amide bond, a secondary amino group or an alkylene group containing these, and the number of the structural units in the case where a plurality of the same structural units are bonded is 2 or less;
  • a 2 is a hydrocarbon group having 1 to 10 carbon atoms, an optionally substituted phenyl group or a hydrogen atom;
  • R 11 is a hydrocarbon group having 1 to 10 carbon atoms or a hydrogen atom.
  • X 1 is a maleimide group, alpha-haloacetyl groups, acryl group, a vinyl sulfone group, protected thiol group, pyridyldithio group, aldehyde group, an epoxy group, a carboxyl group, protected carboxy groups, protected amino [5], [7] or [8], selected from the group consisting of a group, a protected oxyamino group, a protected hydrazide group, an azide group, an allyl group, a vinyl group, an alkynyl group and a hydroxy group Polymer derivatives.
  • X 1 is the formula (a), formula (b), formula (c), formula (d), formula (e), formula (f), formula (g), formula (h), formula (i) Selected from the group consisting of formula (j), formula (k), formula (l), formula (m), formula (n) and formula (o), [5], [7] or [8] Hydrophilic polymer derivative.
  • R 12 is a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms
  • R 13 is a halogen atom selected from a chlorine atom, a bromine atom and an iodine atom
  • R 14 is a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms.
  • Z 3 is an ether bond, an ester bond, a carbonate bond, a urethane bond, an amide bond, a secondary amino group or an alkylene group containing these, a single bond or an alkylene group, and Z 3 is an ether bond, an ester bond, or a carbonate.
  • a bond, a urethane bond, an amide bond, a secondary amino group or an alkylene group containing these, and the number of the structural units when a plurality of the same structural units are bonded is 2 or less, [5], [ [7] The hydrophilic polymer derivative of [8].
  • P 1 is polyethylene glycol having 2 to 8 terminals, all terminals of polyethylene glycol constituting P 1 are bonded to Z 1 and w is equal to the number of terminals of the polyethylene glycol. , [2] or [3].
  • the hydrophilic polymer derivative having a self-destructive acetal linker according to the present invention has an acetal structure that can be cleaved only depending on pH, and can release a drug or the like that is not chemically modified with the cleavage of the acetal. It is. Therefore, it is easy to control the release behavior of a drug etc. from a prodrug modified with the hydrophilic polymer derivative, and since the released drug etc. is not chemically modified, its pharmacological action is not impaired. Is done.
  • the prodrug using the hydrophilic polymer derivative is less likely to cause a secondary interaction in vivo with the benzyl alcohol derivative that is released in the process of releasing the drug, and the drug design is simple.
  • the acetal structure is fundamentally inactive with respect to amino groups, no by-product is produced in the binding reaction with drugs having amino groups, and production on an industrial scale is easy.
  • FIG. 3 shows cleavage based on 1,6-benzyl elimination of a prodrug using 4-aminobenzyl alcohol.
  • FIG. 3 shows cleavage based on 1,4-benzyl elimination of a prodrug using 2-aminobenzyl alcohol.
  • FIG. 6 shows cleavage based on 1,6-benzyl elimination of a prodrug using 6-mercaptobenzyl alcohol.
  • FIG. 3 shows cleavage based on 1,6-benzyl elimination of a prodrug using 6-hydroxybenzyl alcohol.
  • FIG. 3 shows the results of a benzylamine release test at 37 ° C. in heavy water buffers of pD 3.0, 4.0, and 7.4 using the compound of formula (44) described in the Examples.
  • acetal part means both an acetal structure derived from aldehydes and an acetal structure derived from ketones, ie, a ketal structure.
  • prodrug is any compound that exhibits its pharmacological effect after undergoing biotransformation.
  • a prodrug is a drug that comprises a specialized protecting group that is used in a temporary manner to modify or eliminate undesirable properties in the parent molecule.
  • cascade mechanism refers to a prodrug cleavage mechanism in which drug release occurs only after the activating group is unmasked.
  • the hydrophilic polymer derivative having a self-destructive acetal linker of the present invention has an active carbonate group at the terminal via an acetal part, and an ether part having an active carbonate group at the terminal out of two ether parts constituting the acetal part Includes a structure represented by Formula (1) or Formula (2).
  • the active carbonate group in the present invention is a functional group represented by “—O—C ( ⁇ O) —E 1 ” in the formulas (1) and (2), and indicates an activated carbonate group, 1 represents a leaving group.
  • the active carbonate group preferably reacts with an amino group contained in a biofunctional molecule or drug carrier to form a carbamate bond.
  • E 1 include succinimidyloxy, phthalimidyloxy, 4-nitrophenoxy, 1-imidazolyl, pentafluorophenoxy, benzotriazol-1-yloxy and 7-azabenzo.
  • a triazol-1-yloxy group more preferably a succinimidyloxy group, a 4-nitrophenoxy group, a 1-imidazolyl group, and a pentafluorophenoxy group, still more preferably a succinimidyloxy group or a 4-nitro group It is a phenoxy group.
  • hydrophilic polymer constituting the hydrophilic polymer portion P 1 in the present invention include polyalkylene glycol, polyoxazoline, polycarbonate, polyurethane, polyvinyl alcohol, polyacrylate, polymethacrylate, polyacrylamide, polyvinyl pyrrolidone, poly Examples thereof include lactic acid, polyglycolic acid, polyamino acid, and a copolymer derived from the above polymer, preferably polyalkylene glycol, and more preferably polyethylene glycol.
  • Polyethylene glycol constituting P 1 includes both polyethylene glycol having a molecular weight distribution obtained by polymerization of ethylene oxide, and monodispersed polyethylene glycol obtained by coupling single molecular weight oligoethylene glycols by a coupling reaction.
  • R 2 , R 3 , R 4 , R 5 , R 6 and R 7 in the formulas (1) and (2) of the present invention are each independently a hydrocarbon group having 1 to 10 carbon atoms or a hydrogen atom, Specific hydrocarbon groups include methyl, ethyl, propyl, isopropyl, t-butyl, phenyl and benzyl groups.
  • a preferred embodiment of R 2 , R 3 , R 4 , R 5 , R 6 and R 7 is a hydrogen atom or a methyl group, more preferably a hydrogen atom.
  • R 1 in the formulas (1) and (2) of the present invention is a hydrocarbon group having 1 to 10 carbon atoms or a hydrogen atom, and R 1 may be bonded to the oxygen atom of the acetal part.
  • R 1 is a divalent hydrocarbon group having 1 to 10 carbon atoms, specifically a methylene group, a monoalkylmethylene group, a dialkylmethylene group, an ethylene group, a monoalkylethylene group, Examples thereof include a dialkylethylene group, a propylene group, a monoalkylpropylene group, and a dialkylpropylene group.
  • Preferred is a methylene group, ethylene group or propylene group, more preferred is a methylene group or ethylene group, and still more preferred is a methylene group.
  • M in the formulas (1) and (2) of the present invention is 0 or 1.
  • m is 0, and a hydrophilic polymer derivative represented by formula (14) or formula (15) is provided.
  • hydrophilic polymer derivative represented by formula (16) or formula (17), wherein m is 1 and B 1 is a hydrogen atom.
  • m is 1 and B 1 is -C (R 6) (R 7 ) OC (O) is E 1, hydrophilic represented by the formula (18) or formula (19) Polymer derivatives are provided. In this embodiment, a derivative having two E 1 for one acetal is provided.
  • a hydrophilic polymer derivative represented by the formula (3) or the formula (4) is provided.
  • R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 10 in formula (3) and formula (4) of this embodiment are each independently a hydrocarbon group having 1 to 10 carbon atoms or hydrogen
  • Specific hydrocarbon groups for R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 10 are methyl, ethyl, propyl, isopropyl, t-butyl, A phenyl group, a benzyl group, etc. are mentioned.
  • R 2, R 3, R 4 , R 5, R 6, R 7 and R 10 is a hydrogen atom or a methyl group, more preferably a hydrogen atom.
  • R 8 and R 9 in formula (3) and formula (4) of this embodiment are each independently a hydrocarbon group or hydrogen atom having 1 to 9 carbon atoms, and specific hydrocarbons of R 8 and R 9 Examples of the group include methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, phenyl group and benzyl group.
  • a preferred embodiment of R 8 and R 9 is a hydrogen atom or a methyl group, more preferably a hydrogen atom.
  • a 1 in the formula of this embodiment (3) and (4) is a divalent hydrocarbon group or may have a substituent group phenylene group having 1 to 10 carbon atoms, specific hydrocarbon radical Examples thereof include a methylene group, an ethylene group, a propylene group, and a butylene group.
  • the phenylene group may be a 1,2-phenylene group, a 1,3-phenylene group, or a 1,4-phenylene group.
  • the substituent of the phenylene group may be either an electron-withdrawing substituent or an electron-donating substituent as long as it does not cause a side reaction in the synthesis process of the hydrophilic polymer derivative. May be used.
  • Examples of the electron-withdrawing substituent include an acyl group having 2 to 5 carbon atoms, an alkoxycarbonyl group having 2 to 5 carbon atoms, a carbamoyl group having 2 to 5 carbon atoms, an acyloxy group having 2 to 5 carbon atoms, and 2 carbon atoms.
  • the electron-donating substituent is an alkyl group having 1 to 4 carbon atoms, and preferred examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a t-butyl group.
  • Substituents that are electron withdrawing at the meta position and electron donating at the para and ortho positions include alkoxy groups having 1 to 4 carbon atoms, aryl groups having 6 to 10 carbon atoms, and aryloxy having 6 to 10 carbon atoms.
  • Preferred examples include methoxy group, ethoxy group, propoxy group, isopropoxy group, t-butoxy group, phenyl group and phenoxy group.
  • Z 1 in the formulas (3) and (4) of this embodiment is a divalent spacer between the A 1 and the hydrophilic polymer chain.
  • These are composed of covalent bonds and are not particularly limited as long as they are more stable to hydrolysis than the acetal structure, but preferably ether bonds, ester bonds, carbonate bonds, urethane bonds, amide bonds, secondary amino groups or these.
  • preferred examples of the alkylene group include structures such as (z1).
  • Preferable examples of the alkylene group having an ether bond include structures such as (z2) or (z3).
  • Preferable examples of the alkylene group having an ester bond include a structure such as (z4).
  • a preferred example of the alkylene group having a carbonate bond is a structure such as (z5).
  • Preferable examples of the alkylene group having a urethane bond include structures such as (z6).
  • a preferred example of the alkylene group having an amide bond is a structure such as (z7).
  • Preferable examples of the alkylene group having a secondary amino group include a structure such as (z8).
  • p and q are independently integers from 1 to 12.
  • p and q are preferably larger, and when it is desired to bond in a hydrophilic environment, p and q are preferably smaller.
  • Z 1 is an ether bond, an ester bond, a carbonate bond, a urethane bond, an amide bond, a secondary amino group or an alkylene group containing these, a plurality of the same structural units are bonded to each other. The number is 2 or less.
  • E 1 in the formulas (3) and (4) of this embodiment is a leaving group, and preferable examples include succinimidyloxy group, phthalimidyloxy group, 4-nitrophenoxy group, 1-imidazolyl.
  • M in Formula (3) and Formula (4) of this aspect is 0 or 1.
  • m is 0, and a hydrophilic polymer derivative represented by formula (20) or formula (21) is provided.
  • hydrophilic polymer derivative represented by formula (22) or formula (23), wherein m is 1 and B 1 is a hydrogen atom.
  • m is 1 and B 1 is -C (R 6 ) (R 7 ) OC (O) E 1 and is a hydrophilic group represented by formula (24) or formula (25)
  • Polymer derivatives are provided.
  • two molecules of drug can be converted into a prodrug with one molecule of the hydrophilic polymer derivative.
  • hydrophilic polymer derivative represented by the formula (5) or the formula (6) is provided.
  • R 1, R 2, R 3 in the formula of this aspect (5) and (6), R 4, R 5, R 6, R 7 and R 11 are each independently a hydrocarbon having 1-10 carbon atoms Group or hydrogen atom, and specific hydrocarbon groups of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 11 are methyl group, ethyl group, propyl group, isopropyl group , T-butyl group, phenyl group, benzyl group and the like.
  • a preferred embodiment of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 11 is a hydrogen atom or a methyl group, more preferably a hydrogen atom.
  • a 2 is a hydrocarbon group having 1 to 10 carbon atoms, a phenyl group which may have a substituent, or a hydrogen atom, preferably 1 to 1 carbon atoms. It is a phenyl group which may have 10 hydrocarbon groups or substituents.
  • the hydrocarbon group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a t-butyl group.
  • the substituent of the phenyl group may be either an electron-withdrawing substituent or an electron-donating substituent as long as it does not cause a side reaction in the synthesis process of the hydrophilic polymer derivative. May be used.
  • the electron-withdrawing substituent include an acyl group having 2 to 5 carbon atoms, an alkoxycarbonyl group having 2 to 5 carbon atoms, a carbamoyl group having 2 to 5 carbon atoms, an acyloxy group having 2 to 5 carbon atoms, and 2 carbon atoms.
  • the electron-donating substituent is an alkyl group having 1 to 4 carbon atoms, and preferred examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a t-butyl group.
  • Substituents that are electron withdrawing at the meta position and electron donating at the para and ortho positions include alkoxy groups having 1 to 4 carbon atoms, aryl groups having 6 to 10 carbon atoms, and aryloxy having 6 to 10 carbon atoms.
  • Preferred examples include methoxy group, ethoxy group, propoxy group, isopropoxy group, t-butoxy group, phenyl group and phenoxy group.
  • Z 2 in Formula (5) and Formula (6) of this embodiment is a divalent spacer between one oxygen atom of the acetal and the hydrophilic polymer chain.
  • These are composed of covalent bonds and are not particularly limited as long as they are more stable to hydrolysis than the acetal structure, but preferably ether bonds, ester bonds, carbonate bonds, urethane bonds, amide bonds, secondary amino groups or these.
  • preferred examples of the alkylene group include structures such as (z1).
  • Preferable examples of the alkylene group having an ether bond include structures such as (z2) or (z3).
  • Preferable examples of the alkylene group having an ester bond include a structure such as (z4).
  • a preferred example of the alkylene group having a carbonate bond is a structure such as (z5).
  • Preferable examples of the alkylene group having a urethane bond include structures such as (z6).
  • a preferred example of the alkylene group having an amide bond is a structure such as (z7).
  • Preferable examples of the alkylene group having a secondary amino group include a structure such as (z8).
  • p and q are independently integers from 1 to 12.
  • p and q are preferably larger, and when it is desired to bond in a hydrophilic environment, p and q are preferably smaller.
  • Z 2 is an ether bond, an ester bond, a carbonate bond, a urethane bond, an amide bond, a secondary amino group or an alkylene group containing these, and a plurality of the same structural units are bonded to each other. The number is 2 or less.
  • E 1 is a leaving group, and preferable examples include succinimidyloxy group, phthalimidyloxy group, 4-nitrophenoxy group, 1-imidazolyl.
  • M in Formula (5) and Formula (6) of this embodiment is 0 or 1.
  • m is 0, and a hydrophilic polymer derivative represented by formula (26) or formula (27) is provided.
  • hydrophilic polymer derivative represented by formula (28) or formula (29), wherein m is 1 and B 1 is a hydrogen atom.
  • m is 1 and B 1 is -C (R 6 ) (R 7 ) OC (O) E 1 , and the hydrophilicity represented by formula (30) or formula (31) Polymer derivatives are provided. In this embodiment, derivatives having two E 1 is provided for one acetal.
  • P 1 in the formula (3), the formula (4), the formula (5), and the formula (6) is a linear polyethylene glycol.
  • P 1 in formula (3), formula (4), formula (5) and formula (6) is represented by formula (7).
  • n is the number of repeating units per polyethylene glycol chain, and in polyethylene glycol having a molecular weight distribution, it is calculated by performing various theoretical calculations based on the number average molecular weight (Mn) of the compound. It is defined as that.
  • Y 1 is a hydrocarbon group having 1 to 24 carbon atoms.
  • Specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, a pentyl group, an isopentyl group, Hexyl, heptyl, 2-ethylhexyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, Examples include heneicosyl group, docosyl group, toycosyl group, tetracosyl group, phenyl group, benzyl group, cresyl group, butylphenyl group, dode
  • P 1 in formula (3), formula (4), formula (5) and formula (6) is represented by formula (8):
  • X 1 is a chemically reactive functional group
  • Z 3 is a divalent spacer between the functional group X 1 and the polyethylene glycol chain.
  • Polyethylene glycol derivatives of this embodiment for example, to bind the drug to the active carbonate groups, by coupling the biofunctional molecules with targeting antibodies such as the X 1, provides a drug complex with targeted performance can do.
  • Preferred examples of X 1 include an aldehyde group, an epoxy group, a maleimide group, a vinyl sulfone group, an acrylic group, a sulfonyloxy group, a carboxy group, a thiol group protected with a protecting group, a dithiopyridyl group, an ⁇ -haloacetyl group, An alkynyl group, an allyl group, a vinyl group, an amino group protected with a protecting group, an oxyamino group protected with a protecting group, a hydrazide group or an azide group protected with a protecting group.
  • the functional group capable of reacting with the amino group of the biofunctional molecule to form a covalent bond includes an aldehyde group, an epoxy group, a maleimide group, a vinyl sulfone group, an acrylic group, a sulfonyloxy group, and
  • a functional group that is a carboxy group and can react with a thiol group of a biofunctional molecule to form a covalent bond includes an aldehyde group, an epoxy group, a maleimide group, a vinyl sulfone group, an acrylic group, a sulfonyloxy group, a carboxy group, Group, thiol group protected with protecting group, dithiopyridyl group, ⁇ -haloacetyl group, alkynyl group, allyl group and vinyl group, react with aldehyde group or carboxy group of biofunctional molecule to form covalent bond
  • Possible functional groups are thiol groups protected with protecting groups, amino groups protected with protecting groups, protected
  • a functional group that is a hydrazide group protected with an oxyamino group and a protecting group, and can react with an alkynyl group of a biofunctional molecule to form a covalent bond includes a thiol group and an azide group protected with a protecting group.
  • the functional group capable of reacting with the azide group of the biofunctional molecule to form a covalent bond is a functional group containing an alkynyl group and a triple bond.
  • the “protecting group” is a component that prevents or inhibits the reaction of a specific chemically reactive functional group in a molecule under a certain reaction condition.
  • the protecting group will vary depending on the type of chemically reactive functional group being protected, the conditions used, and the presence of other functional groups or protecting groups in the molecule. Specific examples of protecting groups can be found in many common books, such as ⁇ Wuts, P. G. M .; Greene, eT. W. Protective Groups in Organic Synthesis, 4th ed.;. Wiley -Interscience: “New York, 2007”.
  • the functional group protected with a protecting group can be reprotected by deprotection using a reaction condition suitable for each protecting group, that is, a chemical reaction, thereby regenerating the original functional group. Therefore, in this specification, a functional group that is protected by a protecting group and can be deprotected by various reactions is included in the “functional group capable of chemical reaction”. Representative deprotection conditions for protecting groups are described in the aforementioned references.
  • the functional group to be protected when the functional group to be protected is an amino group, for example, an acyl-type protective group and a carbamate-type protective group can be mentioned, specifically, a trifluoroacetyl group, 9- Examples include a fluorenylmethyloxycarbonyl group and a 2- (trimethylsilyl) ethyloxycarbonyl group.
  • the functional group to be protected when the functional group to be protected is a hydroxy group, examples thereof include a silyl protecting group and an acyl protecting group.
  • a t-butyldiphenylsilyl group a t-butyldimethylsilyl group, a triisopropylsilyl group Acetyl group and pivaloyl group.
  • the functional group to be protected is a carboxy group
  • examples include an alkyl ester-based protective group and a silyl ester-based protective group, such as a methyl group, a 9-fluorenylmethyl group, and a t-butyldimethylsilyl group. Is mentioned.
  • the functional group to be protected is a sulfanyl group
  • examples thereof include an acyl protecting group, a thioether protecting group, a thiocarbonate protecting group, and a disulfide protecting group.
  • an acetyl group, S-2,4- Examples thereof include a dinitrophenyl group, an S-9-fluorenylmethyloxycarbonyl group, and a St-butyl disulfide group.
  • Typical deprotection conditions for the protecting groups are described in the above-mentioned literature, and reaction conditions suitable for each protecting group can be selected. *
  • X 1 is a group represented by group (I), group (II), group (III), group (IV) or group (V).
  • Group (I) Functional group capable of reacting with an amino group of a biofunctional molecule to form a covalent bond (a), (b), (e) and (f) below
  • Group (II) Functional group capable of reacting with a thiol group of a biofunctional molecule to form a covalent bond
  • Group (III) Functional group capable of reacting with an aldehyde group or carboxy group of a biofunctional molecule to form a covalent bond
  • Group (IV) a functional group capable of reacting with an alkynyl group of a biofunctional molecule to form a covalent bond (c), (d), (g), (h), (i), (j) and (o)
  • Group (IV) a functional group capable of reacting with an alkynyl group of a biofunctional molecule to form a covalent bond (c), (d), (g), (h),
  • R 12 and R 14 are each independently a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms.
  • Specific hydrocarbon groups include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group. , T-butyl group and pentyl group.
  • R 13 is a halogen atom selected from a chlorine atom, a bromine atom and an iodine atom.
  • Z 3 is composed of a covalent bond and is not particularly limited as long as it is more stable to hydrolysis than the acetal structure, but preferably an ether bond, an ester bond, a carbonate bond, a urethane bond, an amide bond, a secondary amino group or It is an alkylene group, a single bond or an alkylene group containing these.
  • the alkylene group preferably has 1 to 24 carbon atoms.
  • preferred examples of the alkylene group include structures such as (z1).
  • Preferable examples of the alkylene group having an ether bond include structures such as (z2) or (z3).
  • Preferable examples of the alkylene group having an ester bond include a structure such as (z4).
  • a preferred example of the alkylene group having a carbonate bond is a structure such as (z5).
  • Preferable examples of the alkylene group having a urethane bond include structures such as (z6).
  • a preferred example of the alkylene group having an amide bond is a structure such as (z7).
  • Preferable examples of the alkylene group having a secondary amino group include a structure such as (z8).
  • p and q are independently integers from 1 to 12. For example, when it is desired to bind the functional group X 1 in a hydrophobic environment such as the inside of a protein, p and q are preferably large, and when it is desired to bind in a hydrophilic environment, p and q are preferably small.
  • Z 3 is an ether bond, an ester bond, a carbonate bond, a urethane bond, an amide bond, a secondary amino group or an alkylene group containing these, and a plurality of the same structural units are bonded,
  • the number is 2 or less.
  • P 1 in the formula (3), the formula (4), the formula (5) and the formula (6) is branched polyethylene glycol.
  • P 1 in formula (3), formula (4), formula (5) and formula (6) is represented by formula (9).
  • Y 1 is the hydrocarbon group having 1 to 24 carbon atoms, and v is 0 or 2.
  • v When v is 0, it has 2 polyethylene glycol chains, and when v is 2, it has 4 polyethylene glycol chains.
  • introduction of bonding points with polyethylene glycol more than necessary will destroy the active sites of the bio-related substances and reduce their functions. There are attempts to increase it.
  • the viscosity increases as the molecular weight increases, it becomes difficult to handle in an aqueous solution preparation such as an injection preparation.
  • the polyethylene glycol derivative has a branched structure, it has a lower viscosity than a linear polyethylene glycol derivative having the same molecular weight, and is useful in applications such as aqueous solution preparations.
  • P 1 in formula (3), formula (4), formula (5) and formula (6) is represented by formula (10).
  • X 1 is the functional group capable of chemically reacting
  • Z 3 is the divalent spacer
  • v is 0 or 2.
  • Polyethylene glycol derivatives of this embodiment has one active carbonate group and two or four of X 1, for example, to bind the drug to the active carbonate groups, biological with targeting antibodies such as the X 1 When functional molecules are bound, drug conjugates with high targeting performance can be provided.
  • P 1 in formula (3), formula (4), formula (5) and formula (6) is represented by formula (11):
  • X 1 is the functional group capable of chemically reacting
  • Z 3 is the divalent spacer
  • v is 0 or 2.
  • the polyethylene glycol derivative of this embodiment has two or four active carbonate groups and one X 1 , for example, an anti-cancer agent is bound to the active carbonate group by ADC targeting cancer and X 1 is attached.
  • the efficiency of transporting the anticancer agent can be improved without increasing the binding point with the antibody.
  • P 1 in the formula (3), formula (4), formula (5) and formula (6) is a polyethylene glycol having 2 to 8 terminals, and polyethylene constituting P 1 All the ends of the glycol are bonded to Z 1 for formula (3) and formula (4), respectively, to Z 2 for formula (5) and formula (6), w is equal to the number of terminals of the polyethylene glycol.
  • P 1 in formula (3), formula (4), formula (5) and formula (6) is the formula (r), formula (s), formula (t), formula (u ) And formula (v).
  • P 1 in formula (3), formula (4), formula (5) and formula (6) is the formula (r), formula (s), formula (t), formula (u ) And formula (v).
  • w 2 when P 1 is represented by formula (s), w is 3, and P 1 is represented by formula (t).
  • W is 4, w is 4 when P 1 is represented by formula (u), and w is 8 when P 1 is represented by formula (v).
  • n in the formulas (7) and (8) of the present invention is 3 to 2000, more preferably 20 to 1500, still more preferably 40 to 1000, and most preferably 60 to 500. is there.
  • a preferable range of n is 3 to 1000, preferably 10 to 800, more preferably 20 to 500, and most preferably 30 to 300. It is.
  • the preferable range of n in the formula (r), the formula (s), the formula (t), the formula (u), and the formula (v) is 3 to 2000, more preferably 20 to 1500, and still more preferably. Is from 40 to 1000, most preferably from 60 to 500.
  • the formula (12) or the formula (12) obtained by reacting the active carbonate group of the hydrophilic polymer derivative having a self-destroying acetal linker of the present invention with an amino group contained in a biofunctional molecule is provided.
  • R 15 is a substituent of the amino group, and is a hydrocarbon group having 1 to 10 carbon atoms or a hydrogen atom. Specific hydrocarbon groups include methyl, ethyl, propyl, isopropyl, t-butyl, phenyl and benzyl groups.
  • a preferred embodiment of R 15 is a hydrogen atom or a methyl group, more preferably a hydrogen atom.
  • the biofunctional molecule includes a chemotherapeutic agent.
  • Chemotherapeutic drugs are useful compounds in the treatment of cancer.
  • chemotherapeutic agents include: alkylating agents such as thiotepa and cyclophosphamide (CYTOXAN TM); alkyl sulfonates such as busulfan, improsulfan And piposulfan; aziridines, such as benzodopa, carboquone, meturedopa, and uredopa; ethyleneimines and methylamelamines, altretamine ), Triethylenemelamine, trietylenephosphoramide, triethylenethiophosphaoramide and trimethylolomelamine; acetogenins (especially blatatacin) and Blatatacinone Camptothecin (including topotecan, a synthetic analog); bryostatin; callystatin; CC-1065 (adzelesin, carzelesin and biz
  • dynemicin includes dynemicin, dynemycin A; esperamicin; Neocarzinostatin chromophore And related chromoprotein enycein antibiotics chromomophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin ( carabicin), carminomycin, carzinophilin; chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L- Norleucine, doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin and deoxyxorubicin), epirubicin, esorubicin, idarubicin, marcellomycin, marcellomycin (n
  • antihormonal agents that act to modulate or inhibit the action of hormones on the tumor, such as: tamoxifen, raloxifene, 4 (5) -imidazoles that inhibit aromatase, 4 Antiestrogens, including hydroxytamoxifen, trioxifene, keoxifene, LY117018, onapristone, and toremifene (Fareston); and antiandrogens such as flutamide ), Nilutamide, bicalutamide, leuprolide, and goserelin; siRNA and pharmaceutically acceptable salts, acids or derivatives of any of the above.
  • Other chemotherapeutic agents that can be used with the present invention are disclosed in US Patent Application Publication No. 2008/0171040 or US Patent Application Publication No. 2008/0305044, which are hereby incorporated by reference.
  • the chemotherapeutic agent is a small molecule drug.
  • the small molecule drug preferably has a molecular weight of 100-1500, more preferably 120-1200, even more preferably 200-1000. Widely used to refer to organic, inorganic, or organometallic compounds that typically have a molecular weight of less than about 1000.
  • the small molecule drugs of the present invention also include oligopeptides and other biomolecules having a molecular weight of less than about 1000. Small molecule drugs are well characterized in the art, for example, inter alia in WO 05/058367, EP 85901495 and 8590319, and in US Pat. No. 4,956,303. They are used as they are.
  • the preferred low molecular weight drug of the present invention is a low molecular weight drug that can be linked to an antibody.
  • the present invention includes known drugs and drugs that may become known. Particularly preferred low molecular weight drugs include cytotoxic drugs.
  • Preferred cytotoxic drugs are maytansinoids, CC-1065 analogs, morpholinos, doxorubicins, taxanes, cryptophycins, epothilones, calicheamicins ), Auristatins, and pyrrolobenzodiazepine dimers.
  • ⁇ antibody '' is used in its broadest sense and specifically includes monoclonal antibodies, polyclonal antibodies, dimers, multimers, multispecific antibodies (e.g., bispecific antibodies), And antibody fragments as long as they exhibit the desired biological activity (Miller, K. et al. J. Immunol. 2003, 170, 4854-4861).
  • the antibody can be derived from a murine antibody, a human antibody, a humanized antibody, a chimeric antibody, or other species.
  • Antibodies are proteins produced by the immune system that can recognize and bind to specific antigens (Janeway, C .; Travers, P .; Walport, M .; Shlomchik, M.
  • a target antigen generally has multiple binding sites (also called epitopes) that are recognized by CDRs on multiple antibodies. Antibodies that specifically bind to different epitopes have different structures. Thus, an antigen can have more than one corresponding antibody.
  • An antibody includes a full-length immunoglobulin molecule, or an immunologically active portion of a full-length immunoglobulin molecule (ie, a molecule comprising an antigen binding site that immunospecifically binds to an antigen of interest or portion thereof).
  • targets include, but are not limited to, cancer cells or cells that produce autoimmune antibodies associated with autoimmune diseases.
  • the immunoglobulins disclosed herein can be any type (e.g., IgG, IgE, IgM, IgD, and IgA), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2) or subclass of immunity. It can be a globulin molecule.
  • the immunoglobulin can be derived from any species. However, in one embodiment, the immunoglobulin is of human origin, mouse origin, or rabbit origin.
  • Polyclonal antibodies are heterogeneous populations of antibody molecules, such as those derived from the sera of immunized animals.
  • Various procedures known in the art may be used to generate polyclonal antibodies against the antigen of interest.
  • a subject antigen or derivative thereof may be injected to immunize a variety of host animals including but not limited to rabbits, mice, rats and guinea pigs.
  • Freund's (complete and incomplete) adjuvants mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpets
  • mineral gels such as aluminum hydroxide
  • surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpets
  • BCG Bacille® Calmett-Guerin
  • Corynebacterium parvum Such adjuvants are also known in the art.
  • Monoclonal antibodies are antibodies that are homogenous to specific antigenic determinants (e.g., cellular antigens (cancer or autoimmune cell antigens), viral antigens, microbial antigens, proteins, peptides, carbohydrates, chemicals, nucleic acids or antigen-binding fragments thereof). It is a group. Monoclonal antibodies (mAbs) against the antigen of interest may be prepared using any technique known in the art. These include the hybridoma technique first described by Kohler, G; Milstein, C. Nature 1975, 256, 495-497), the human B cell hybridoma technique (Kozbor, D. et al. Immunol.
  • Such antibodies may be any immunoglobulin type including IgG, IgM, IgE, IgA and IgD and any sub-species thereof.
  • the hybridoma producing a monoclonal antibody in the present invention may be cultured in vitro or in vivo.
  • Monoclonal antibodies include, but are not limited to, human monoclonal antibodies, humanized monoclonal antibodies, chimeric monoclonal antibodies and antibody fragments.
  • Human monoclonal antibodies may be any of a number of techniques known in the art (eg, Teng, N. N. et al. Proc. Natl. Acad. Sci. USA. 1983, 80, 7308-7312, Kozbor D. et al. Immunology Today 1983, 4, 72-79, Olsson, L. et al. Meth. Enzymol. 1982, 92, 3-16, and U.S. Patent Nos. 5939598 and 5770429 (See).
  • Recombinant antibodies such as chimeric monoclonal antibodies and humanized monoclonal antibodies can be made using standard recombinant DNA techniques known in the art (see, e.g., U.S. Pat. Nos. 4,816,567, 4,83,697). ).
  • Antibody resurfacing can also reduce the immunogenicity of the antibody (U.S. Pat.No. 5,225,539, European Patent No. 0239400, No. 0519596, No. 0592106). (See the book).
  • the antibody may be a bispecific antibody.
  • Methods for making bispecific antibodies are known in the art. Traditional methods for producing full-length bispecific antibodies rely on the simultaneous expression of two immunoglobulin heavy chain-light chain pairs when the two chains have different specificities (Milstein, C et al. Nature 1983, 305, 537-539).
  • a bispecific antibody can also be produced by fusing an antibody variable domain having a desired binding specificity (antibody-antigen binding site) with an immunoglobulin invariant domain sequence.
  • F (ab ′) 2 fragments include F (ab ′) 2 fragments, Fab ′ fragments, Fab fragments, Fvs, single chain antibodies (SCA) (see, e.g., U.S. Pat.No. 4,946,778, Bird, R. E. et al. Science 1988, 242, 423-442, Huston, J. S. et at. Proc. Natl. Acad. Sot USA 1988, 85, 5879-5883 and Ward, E. S. et al.
  • SCA single chain antibodies
  • known antibodies for the treatment or prevention of cancer may be used. All target proteins can be targeted for antibodies, including any target protein whose expression correlates with expression on cancer, cell proliferation disorder or tumor cells.
  • the antibody is useful for the treatment of cancer.
  • antibodies that can be used to treat cancer include Rituxan® (Genentech), a chimeric anti-CD20 monoclonal antibody for the treatment of patients with non-Hodgkin lymphoma, and a mouse antibody for the treatment of ovarian cancer.
  • Ovalex (Altarex), mouse IgG2a antibody Panorex (Glaxowelcom) for the treatment of colorectal cancer, anti-EGFR for the treatment of epidermal growth factor positive cancers such as head and cervical cancer Cetuximab Erbitux (Immclone Systems), an IgG chimeric antibody, Vitaxin (Med Immun), a humanized antibody for the treatment of sarcomas, and a humanized IgG1 antibody for the treatment of chronic lymphocyte leukemia (CLL)
  • CLL chronic lymphocyte leukemia
  • a campus I / H (Leukosite), Smart M195 (protein), a humanized anti-CD33 IgG antibody for the treatment of acute myeloid leukemia (AML) Lyneside (Immunomedix), a humanized anti-CD22 IgG antibody for the treatment of non-Hodgkin lymphoma, Smart ID10 (protein), a humanized anti-HLA-DR antibody for the treatment of non-Hodgkin lymph
  • the antibody is an antibody against the following antigen.
  • Some specific useful antibodies are BR96 mAb (Trail, P. A. et al. Science 1993, 261, 212-215), BR64 (Trail, P. A. et al. Cancer Research 1997, 57, 100-105), mAbs against CD40 antigens such as S2C6 mAb (Francisco, J. A. et al. Cancer Res. 2000, 60, 3225-3231), or U.S. Patent Application Publication Nos. 2003/0211100 and 2002
  • Other anti-CD40 antibodies as disclosed in / 0142358, mAbs against CD70 antigens such as 1F6FmAb and 2F2 mAb, and AC10 (Bowen, M. A. et al. J. Immunol.
  • M in Formula (12) and Formula (13) of the present invention is 0 or 1.
  • m is 0 and a complex represented by formula (32) or formula (33) is provided.
  • m is 1 and B 2 is -C (R 6 ) (R 7 ) OC (O) D 1 , and the compound represented by formula (36) or formula (37) The body is provided.
  • a derivative having two E 1 for one acetal is provided.
  • JNM-ECP400 or JNM-ECA600 manufactured by JEOL Datum was used. A ⁇ 5 mm tube was used for the measurement.
  • the deuterated solvent was CDCl 3 or d 6 -DMSO
  • tetramethylsilane (TMS) was used as an internal standard substance
  • D 2 O was used, HDO was used as a standard.
  • Mn represents the number average molecular weight
  • Mw represents the weight average molecular weight
  • Mn the molecular weight distribution was calculated as Mw / Mn.
  • Example 2 Synthesized according to the literature (Freeman, JH; J. Am. Chem. Soc. 1952, 74, 6257-6260) into a 50 mL three-necked flask equipped with a thermometer, nitrogen blowing tube, stirrer and condenser tube 2,4 -Di (hydroxymethyl) phenol (50.0 mg, 0.324 mmol), compound of formula (38) (217 mg, 1.29 mmol), 2,6-di-tert-butyl-p-cresol (7.14 mg, 0.0324 mmol), Anhydrous sodium sulfate (1 g) and cyclopentyl methyl ether (10 g) were added, p-toluenesulfonic acid monohydrate (4.10 mg, 0.0212 mmol) was added, and the reaction was carried out at 40 ° C.
  • Example 3 A 300 mL four-necked flask equipped with a thermometer, nitrogen blowing tube, stirrer and condenser was charged with dehydrated methanol (12.8 g, 0.400 mol), dehydrated toluene (150 g) and metal sodium 0.3 g (13 mmol). The mixture was stirred at room temperature until metallic sodium was dissolved while blowing nitrogen. This solution was charged into a 5 L autoclave, the inside of the system was purged with nitrogen, and the temperature was raised to 100 ° C. Ethylene oxide (1,987 g, 45 mol) was added at 100 to 130 ° C. and a pressure of 1 MPa or less, and the reaction was continued for another 2 hours. After removing unreacted ethylene oxide gas under reduced pressure, the mixture was cooled to 60 ° C. and adjusted to pH 7.5 with 85% aqueous phosphoric acid to obtain a compound of formula (40).
  • Example 4 A 500 mL three-necked flask equipped with a thermometer, nitrogen blowing tube, stirrer, Dean-stark tube and condenser tube was charged with the compound of formula (40) (100 g, 20.0 mmol) and toluene (250 g). Removed azeotropically with toluene. After cooling to 40 ° C., triethylamine (3.24 g, 32.0 mmol) was charged, and methanesulfonyl chloride (2.75 g, 24.0 mmol) prepared in the dropping funnel was gradually added dropwise. After completion of dropping, the reaction was carried out at 40 ° C. for 3 hours.
  • Example 5 In a 50 mL three-necked flask equipped with a thermometer, nitrogen blowing tube, stirrer and condenser, the compound of formula (39) (37.0 mg, 0.141 mmol), the compound of formula (41) (705 mg, 0.141 mmol), Potassium carbonate (97.0 mg, 0.705 mmol) and acetonitrile (3.5 g) were charged and reacted at 80 ° C. for 4 hours. After filtration, the solvent was distilled off under reduced pressure, and the residue was dissolved in dichloromethane. After washing with 10 wt% saline, the organic layer was dried over anhydrous sodium sulfate.
  • Example 6 In a 50 mL three-necked flask equipped with a thermometer, nitrogen blowing tube, stirrer and condenser, the compound of formula (42) (300 mg, 0.0600 mmol), di (N-succinimidyl) carbonate (46.0 mg, 0.180 mmol) , Triethylamine (21.0 mg, 0.208 mmol) and dichloromethane (5 g) were added and reacted at 25 ° C. for 12 hours. After filtration, the organic layer was washed with 5 wt% brine and the solvent in the organic layer was distilled off under reduced pressure.
  • Example 7 In a 50 mL three-necked flask equipped with a thermometer, nitrogen blowing tube, stirrer and condenser, the compound of formula (43) (72.0 mg, 0.0144 mmol), benzylamine (6.17 mg, 0.0576 mmol) and toluene (5 g ) And reacted at 40 ° C. for 1 hour. After filtration, ethyl acetate (50 g) was added, and hexane (50 g) was added for crystallization. After filtration, it was dried under reduced pressure to obtain a compound of formula (44).
  • Example 8 The compound of formula (44) (20 mg) was dissolved in pD 3.0 citrate heavy water buffer (1 mL), pD 4.0 acetic acid heavy water buffer (1 mL), and pD 7.4 HEPES heavy water buffer (1 mL), respectively. The mixture was allowed to stand in a constant temperature bath at 37 ° C., and the release rate of benzylamine accompanying the hydrolysis of acetal was measured by 1 H-NMR. The measurement results are shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Polyethers (AREA)
  • Medicinal Preparation (AREA)

Abstract

従来の親水性ポリマープロドラッグの制限を克服するために、アミノ基を含有する薬物等の親水性ポリマープロドラッグを形成させることが可能な、新規のリンカー技術を有する親水性ポリマー誘導体を提供する。親水性ポリマー部およびアセタール部を含む親水性ポリマー誘導体であって、式(1)または式(2)で表される構造を含む親水性ポリマー誘導体。

Description

自壊性アセタールリンカーを有する親水性ポリマー誘導体及びそれを用いた複合体
 本発明は、生理活性タンパク質、ペプチド、抗体、核酸および低分子薬物などの生体機能性分子、並びにリポソームやポリマーミセルなどの薬物キャリアのプロドラッグ化のために用いられる親水性ポリマー誘導体及びそれを用いた複合体に関する。
 ドラッグデリバリーシステムにおいて、抗原性の低い親水性ポリマーによる生体機能性分子や薬物キャリアの化学修飾は、これら薬物等の水溶解性の改善、腎臓クリアランスの回避、代謝酵素による分解の抑制などの利点があり、薬物等の血中循環時間を延長させ、バイオアベイラビリティーを増大させる有効な手法である。その一方で、親水性ポリマーが共有結合で永久的に結合した薬物等は、当該親水性ポリマーによる水和層の形成や活性部位の立体的な遮蔽効果のために、ターゲットとする生体内因性分子、受容体または細胞膜との相互作用が低下し、薬物本来の薬理作用の低下や体内・細胞内動態の変化など、薬物等に好ましくない影響を与える場合があることも知られている。
 上記のような課題に対するアプローチとして、薬物等に一時的結合(temporary linkage)を介して親水性ポリマーを化学修飾し、生体内でこの一時的結合を開裂させて化学修飾されていない活性な薬物等を放出させる方法、即ちプロドラッグ(pro-drug)化の方法が用いられる「Bioconjugate Chemistry 2015, 26(7), 1172-1181」。その中で最も有望な方法の一つが、カスケード(cascade)機構で開裂するプロドラッグ化である。
 カスケード機構による開裂は、マスキング(masking)基と活性化(activating)基との組み合わせで構成されるリンカー構造により可能となる(図1)。マスキング基は第一の一時的結合によって活性化基に結合させる。その活性化基は、第二の一時的結合を介して薬物等に存在するアミノ基に結合させる。第二の一時的結合の安定性は、マスキング基が存在しているか否かに大きく依存する。マスキング基の存在下では、第二の一時的結合は非常に安定であり、結合している薬物の放出は通常起こりえない。一方、マスキング基が存在していない場合、第二の一時的結合は非常に不安定となり、急速に開裂して薬物を放出する。したがって、活性化基は自壊性(self-immolative)スペーサーとも呼称される。このように、カスケード機構による開裂は、マスキング基と活性化基との第一の一時的結合の開裂が律速段階(rate-determining step)である。
 マスキング基には、生体内の各部分における環境的特性、即ち特異的酵素の有無、還元的環境といった環境刺激を引き金として第一の一時的結合が開裂する原子団が用いられる場合が多い。また、活性化基で最もよく用いられるものの一つは、1,4-または1,6-ベンジル脱離に基づく原子団である。
 特許文献1では、マスキング基としてカーバメート基、アミド基またはオリゴペプチド基を導入し、活性化基として2-アミノベンジルアルコールおよび4-アミノベンジルアルコールを用いた親水性ポリマープロドラッグの例が開示されている(図2および図3)。ここでは、マスキング基と活性化基との第一の一時的結合であるカーバメート結合またはアミド結合(ペプチド結合)の酵素的または非酵素的な加水分解が引き金となり、2-アミノベンジルアルコールまたは4-アミノベンジルアルコールと薬物との第二の一時的結合であるカーバメート結合が、1,4-または1,6-ベンジル脱離に基づいて開裂し、薬物が放出される。薬物が放出される過程において、2-アミノベンジルアルコールまたは4-アミノベンジルアルコールと二酸化炭素が遊離する。
 また、特許文献2では、マスキング基としてジスルフィド基を導入し、活性化基として2-メルカプトベンジルアルコールおよび4-メルカプトベンジルアルコールを用いた親水性ポリマープロドラッグの例が開示されている。ここでは、マスキング基と活性化基との第一の一時的結合であるジスルフィド結合の還元的開裂が引き金となり、2-メルカプトベンジルアルコールまたは4-メルカプトベンジルアルコールと薬物との第二の一時的結合であるカーバメート結合が、1,4-または1,6-ベンジル脱離に基づいて開裂し、薬物が放出される。薬物が放出される過程において、2-メルカプトベンジルアルコールまたは4-メルカプトベンジルアルコールと二酸化炭素が遊離する。図4にその一例を示している。
 特許文献1と特許文献2で開示されている親水性ポリマープロドラッグは、薬物が放出される過程において、それぞれアミノベンジルアルコールとメルカプトベンジルアルコールが遊離する。アミノベンジルアルコールのアミノ基は、生体内のpHではプロトン化されて正電荷を帯びており、通常、負電荷を帯びている細胞膜と相互作用する可能性がある。また、メルカプトベンジルアルコールのメルカプト基は、タンパク質に存在するジスルフィド結合と交換反応を起こす可能性がある。したがって、これらのリンカー構造を介して親水性ポリマーが修飾された薬物等は、アミノベンジルアルコールやメルカプトベンジルアルコールが遊離した後の二次的な相互作用の評価の必要性が生じたり、薬物等の薬理活性の解析が複雑になるなどの好ましくない側面がある。
 一方、非特許文献1では、マスキング基としてエステル基またはカーボネート基を導入し、活性化基として2-ヒドロキシベンジルアルコールおよび4-ヒドロキシベンジルアルコールを用いた親水性ポリマープロドラッグの例が開示されている。ここでは、マスキング基と活性化基との第一の一時的結合であるエステル結合またはカーボネート結合の酵素的または非酵素的な加水分解が引き金となり、2-ヒドロキシベンジルアルコールまたは4-ヒドロキシベンジルアルコールと薬物との第二の一時的結合であるカーバメート結合が、1,4-または1,6-ベンジル脱離に基づいて開裂し、薬物が放出される。薬物が放出される過程において、2-ヒドロキシベンジルアルコールまたは4-ヒドロキシベンジルアルコールと二酸化炭素が遊離する。図5にその一例を示している。
 ここで遊離したヒドロキシベンジルアルコールに含まれる官能基はヒドロキシ基のみであり、特許文献1と特許文献2のアミノベンジルアルコールやメルカプトベンジルアルコールとは異なり、細胞膜やタンパク質との相互作用は非常に小さい。
 ところが、非特許文献1で開示されているリンカー構造は、マスキング基としてエステル基またはカーボネート基を用いているため、血中での酵素依存的な開裂(加水分解)が速く、薬物等の血中循環時間を延長させるという親水性ポリマーによる化学修飾の本来の目的との矛盾が生じてしまう。酵素依存的な開裂の更なる欠点は、患者間の可変性である。酵素レベルは個々の間で有意に異なり得るため、酵素依存的な開裂によるプロドラッグからの薬物等の放出には、生物学的変動が生じる。また、酵素レベルは投与部位によっても変わり得るため、その薬剤設計は非常に難しい。
 また、非特許文献1では、活性化基と薬物等のアミノ基との結合反応において、エステル基やカーボネート基がアミノ基と副反応を起こしてしまい、望まない副生物が生じてしまう問題が潜在的に存在することも述べられている。このような副生物は、薬物等の体内動態や物理的性質などに大きな影響を与えるため、製剤化の前に除去する必要があるが、工業的スケールで生産する場合、その分離除去は技術面およびコスト面で大きな弊害となる。
国際公開第1999/30727号パンフレット 国際公開第2000/64483号パンフレット
Journal of Medical Chemistry 1999, 42(18), 3657-3667
 本発明の課題は、上記のような従来の親水性ポリマープロドラッグの制限を克服するために、アミノ基を含有する薬物等の親水性ポリマープロドラッグを形成させることが可能な、新規のリンカー技術を有する親水性ポリマー誘導体及びそれを用いた複合体を提供することである。
 本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、pHのみに依存して開裂可能なアセタール構造を有し、さらにアセタールの開裂に伴って化学修飾されていない薬物等を放出することが可能な親水性ポリマー誘導体を開発した。
 更に本発明は、薬物等が放出される過程において遊離する低分子化合物が、官能基としてヒドロキシ基のみを有するベンジルアルコール誘導体であるため、生体内での二次的な相互作用が生じ難いという特徴を有する。また、アセタール構造はアミノ基に対して根本的に不活性であるため、アミノ基を有する薬物等との結合反応において、副生物が生じないという利点も有する。
 即ち、本発明は以下のものである。
[1] 親水性ポリマー部およびアセタール部を含む親水性ポリマー誘導体であって、
 式(1)または式(2)で表される構造を含むことを特徴とする、親水性ポリマー誘導体。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 (式(1)および式(2)中、
 B1は水素原子または-C(R6)(R7)OC(O)E1であり;
 E1は脱離基であり;
 R1は、炭素数1~10の炭化水素基または水素原子であり、R1が前記アセタール部の酸素原子に対して結合されていてよく;
 R2、R3、R4、R5、R6およびR7は、それぞれ独立して、炭素数1~10の炭化水素基または水素原子であり;
 mは0または1であり;
 前記アセタール部に含まれる2つの酸素原子の一方がフェニル基に結合しており;および
 波線は前記アセタール部に含まれる2つの酸素原子の両方に結合している炭素原子に対する共有結合を表す。)
[2] 式(3)または式(4)で示されることを特徴とする、[1]の親水性ポリマー誘導体。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(式(3)および式(4)中、
 P1は前記親水性ポリマー部であり;
 wは1~20の整数であり;
 Z1はエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基、単結合またはアルキレン基であり、Z1がエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基であって、複数の同一構造単位が結合している場合における前記構造単位の数は2以下であり;
 A1は炭素数1~10の2価の炭化水素基、または置換基を有していてもよいフェニレン基であり;
 R8およびR9は、それぞれ独立して炭素数1~9の炭化水素基または水素原子であり;および
 R10は、炭素数1~10の炭化水素基または水素原子である。)
[3] 式(5)または式(6)で示されることを特徴とする、[1]の親水性ポリマー誘導体。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
(式(5)および式(6)中、
 P1は前記親水性ポリマー部であり;
 wは1~20の整数であり;
 Z2はエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基、単結合またはアルキレン基であり、Z2がエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基であって、複数の同一構造単位が結合している場合における前記構造単位の数は2以下であり;
 A2は炭素数1~10の炭化水素基、置換基を有していてもよいフェニル基または水素原子であり;
 R11は、炭素数1~10の炭化水素基または水素原子である。)
[4] P1が、末端に炭化水素基または化学反応可能な官能基を有する直鎖型のポリエチレングリコールである、[2]または[3]の親水性ポリマー誘導体。
[5] wが1であり、P1が式(7)または式(8)で示されることを特徴とする、[4]の親水性ポリマー誘導体。
Figure JPOXMLDOC01-appb-C000022
(式(7)中、
 Y1は炭素数1~24の炭化水素基であり;および
 nは3~2000の整数である。)
Figure JPOXMLDOC01-appb-C000023
(式(8)中、
 X1は化学反応可能な官能基であり;
 Z3は2価のスペーサーであり;および
 nは3~2000の整数である。)
[6] P1が、末端に炭化水素基または化学反応可能な官能基を有する分岐型のポリエチレングリコールである、[2]または[3]の親水性ポリマー誘導体。
[7] wが1であり、P1が式(9)または式(10)で示されることを特徴とする、[6]の親水性ポリマー誘導体。
Figure JPOXMLDOC01-appb-C000024
(式(9)中、
 Y1は炭素数1~24の炭化水素基であり;
 nは3~1000の整数であり;および
vは0または2である。)
Figure JPOXMLDOC01-appb-C000025
(式(10)中、
 X1は化学反応可能な官能基であり;
 Z3は2価のスペーサーであり;
 nは3~1000の整数であり;および
 vは0または2である。)
[8] wがv+2であり、P1が式(11)で示されることを特徴とする、[6]の親水性ポリマー誘導体。
Figure JPOXMLDOC01-appb-C000026
(式(11)中、
 X1は化学反応可能な官能基であり;
 Z3は2価のスペーサーであり;
 nは3~1000の整数であり;および
 vは0または2である。)
[9] X1がマレイミド基、α-ハロアセチル基、アクリル基、ビニルスルホン基、保護されたチオール基、ピリジルジチオ基、アルデヒド基、エポキシ基、カルボキシ基、保護されたカルボキシ基、保護されたアミノ基、保護されたオキシアミノ基、保護されたヒドラジド基、アジド基、アリル基、ビニル基、アルキニル基およびヒドロキシ基よりなる群から選択される、[5]、[7]または[8]の親水性ポリマー誘導体。
[10] X1が式(a)、式(b)、式(c)、式(d)、式(e)、式(f)、式(g)、式(h)、式(i)、式(j)、式(k)、式(l)、式(m)、式(n)および式(o)からなる群から選択される、[5]、[7]または[8]の親水性ポリマー誘導体。
Figure JPOXMLDOC01-appb-C000027
(式(a)中、R12は水素原子または炭素数1~5の炭化水素基であり;
 式(b)中、R13は塩素原子、臭素原子およびヨウ素原子から選択されるハロゲン原子であり、
 式(l)中、R14は水素原子または炭素数1~5の炭化水素基である。)
[11] Z3はエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基、単結合またはアルキレン基であり、Z3がエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基であって、複数の同一構造単位が結合している場合における前記構造単位の数は2以下である、[5]、[7]または[8]の親水性ポリマー誘導体。
[12] P1が末端数2~8のポリエチレングリコールであり、P1を構成するポリエチレングリコールの全ての末端がそれぞれZ1に対して結合しており、wが前記ポリエチレングリコールの末端数に等しい、[2]または[3]の親水性ポリマー誘導体。
[13] P1が、式(r)、式(s)、式(t)、式(u)および式(v)からなる群から選択される、[12]の親水性ポリマー誘導体。
Figure JPOXMLDOC01-appb-C000028
(式中、nは3~2000の整数であり、
 P1が式(r)で表される場合にはwが2であり、
 P1が式(s)で表される場合にはwが3であり、
 P1が式(t)で表される場合にはwが4であり、
 P1が式(u)で表される場合にはwが4であり、
 P1が式(v)で表される場合にはwが8である。)
[14] [1]~[13]のいずれかの親水性ポリマー誘導体のOC(O)E1基と生体機能性分子に含まれるアミノ基とを反応させて得られる、式(12)または式(13)で表される構造を含むことを特徴とする複合体。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
(式(12)および式(13)中、
 B2は水素原子または-C(R6)(R7)OC(O)D1であり;
 R1は、炭素数1~10の炭化水素基または水素原子であり、R1が前記アセタール部の酸素原子に対して結合されていてよく;
 R2、R3、R4、R5、R6、R7およびR15は、それぞれ独立して、炭素数1~10の炭化水素基または水素原子であり;
 mは0または1であり;
 波線は前記アセタール部に含まれる2つの酸素原子の両方に結合している炭素原子に対する共有結合を表し;および
 D1は、前記生体機能性分子に含まれるアミノ基のうち、カーバメート結合を構成するアミノ基を除いた残基である。)
 本発明による自壊性アセタールリンカーを有する親水性ポリマー誘導体は、pHのみに依存して開裂可能なアセタール構造を有し、さらにアセタールの開裂に伴って化学修飾されていない薬物等を放出することが可能である。したがって、当該親水性ポリマー誘導体で修飾したプロドラッグからの薬物等の放出挙動の制御が容易であり、更に放出された薬物等は化学修飾されていないことから、その薬理作用が損なわれることなく発揮される。
 更に、当該親水性ポリマー誘導体を用いたプロドラッグは、薬物等が放出される過程において遊離するベンジルアルコール誘導体の生体内での二次的な相互作用が生じ難く、その薬剤設計が簡便であるとともに、アセタール構造はアミノ基に対して根本的に不活性であるため、アミノ基を有する薬物等との結合反応において副生物が生じず、工業的スケールでの生産が容易である。
親水性ポリマープロドラッグのカスケード機構による薬物放出を示す図である。 4-アミノベンジルアルコールを用いたプロドラッグの1,6-ベンジル脱離に基づく開裂を示す図である。 2-アミノベンジルアルコールを用いたプロドラッグの1,4-ベンジル脱離に基づく開裂を示す図である。 6-メルカプトベンジルアルコールを用いたプロドラッグの1,6-ベンジル脱離に基づく開裂を示す図である。 6-ヒドロキシベンジルアルコールを用いたプロドラッグの1,6-ベンジル脱離に基づく開裂を示す図である。 実施例に記載の式(44)の化合物を用いたpD 3.0、4.0、7.4の重水緩衝液中、37℃におけるベンジルアミンの放出試験の結果である。
 以下、本発明を詳細に説明する。
 本明細書で使用する用語「アセタール部」とは、アルデヒド類から誘導されるアセタール構造およびケトン類から誘導されるアセタール構造、即ちケタール構造の両方を意味する。
 本明細書で使用する用語「プロドラッグ」とは、生体内変換を受けた後でその薬理効果を示す任意の化合物である。したがって、プロドラッグは親分子における望ましくない特性を改変するか、または排除するために一時的な方法で用いられる特殊化した保護基を含んで成る薬物である。
 本明細書で使用する用語「カスケード機構」とは、活性化基が脱マスキング(unmasking)されて初めて薬物の放出が起こるプロドラッグの開裂機構を意味する。
 本発明の自壊性アセタールリンカーを有する親水性ポリマー誘導体は、末端にアセタール部を介して活性カーボネート基を有し、アセタール部を構成する2つのエーテル部分のうち、末端に活性カーボネート基を有するエーテル部分が式(1)または式(2)で表される構造を含む。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 本発明における活性カーボネート基とは、式(1)および式(2)における「-O-C(=O)-E1」で表わされる官能基であり、活性化されたカーボネート基を示し、E1は脱離基を示す。
 前記活性カーボネート基は、好ましくは生体機能性分子や薬物キャリアに含まれるアミノ基と反応してカーバメート結合を形成する。E1の好ましい例を挙げれば、スクシンイミジルオキシ基、フタルイミジルオキシ基、4-ニトロフェノキシ基、1-イミダゾリル基、ペンタフルオロフェノキシ基、ベンゾトリアゾール-1-イルオキシ基および7-アザベンゾトリアゾール-1-イルオキシ基であり、より好ましくはスクシンイミジルオキシ基、4-ニトロフェノキシ基、1-イミダゾリル基、ペンタフルオロフェノキシ基であり、更に好ましくはスクシンイミジルオキシ基または4-ニトロフェノキシ基である。
 本発明における親水性ポリマー部P1を構成する親水性ポリマーの具体的な例としては、ポリアルキレングリコール、ポリオキサゾリン、ポリカーボネート、ポリウレタン、ポリビニルアルコール、ポリアクリレート、ポリメタクリレート、ポリアクリルアミド、ポリビニルピロリドン、ポリ乳酸、ポリグリコール酸、ポリアミノ酸、並びに上記ポリマーに由来するコポリマーなどが挙げられ、好ましくはポリアルキレングリコールであり、更に好ましくはポリエチレングリコールである。
 P1を構成するポリエチレングリコールは、エチレンオキシドの重合で得られる分子量分布を有するポリエチレングリコール、並びに単一分子量のオリゴエチレングリコール類をカップリング反応で結合した単分散のポリエチレングリコールの両方を含む。
 本発明の式(1)および式(2)におけるR2、R3、R4、R5、R6およびR7はそれぞれ独立して炭素数1~10の炭化水素基または水素原子であり、具体的な炭化水素基としてはメチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、フェニル基およびベンジル基などが挙げられる。R2、R3、R4、R5、R6およびR7の好ましい実施形態としては水素原子またはメチル基であり、更に好ましくは水素原子である。
 本発明の式(1)および式(2)におけるR1は、炭素数1~10の炭化水素基または水素原子であり、R1が前記アセタール部の酸素原子に対して結合されていてよい。本発明の好ましい一態様において、R1は炭素数1~10の2価の炭化水素基であり、具体的にはメチレン基、モノアルキルメチレン基、ジアルキルメチレン基、エチレン基、モノアルキルエチレン基、ジアルキルエチレン基、プロピレン基、モノアルキルプロピレン基およびジアルキルプロピレン基などが挙げられる。好ましくはメチレン基、エチレン基またはプロピレン基であり、より好ましくはメチレン基またはエチレン基であり、更に好ましくはメチレン基である。
 本発明の式(1)および式(2)におけるmは0または1である。好ましい実施形態では、mが0であり、式(14)または式(15)で示される親水性ポリマー誘導体が提供される。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 本態様の別の好ましい実施形態では、mが1かつB1が水素原子であり、式(16)または式(17)で示される親水性ポリマー誘導体が提供される。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
 本態様のもう一つの好ましい実施形態では、mが1かつB1が-C(R6)(R7)OC(O)E1であり、式(18)または式(19)で示される親水性ポリマー誘導体が提供される。この実施形態においては、一つのアセタールに対して二つのE1を有する誘導体が提供される。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 本発明の一態様では、式(3)または式(4)で示される親水性ポリマー誘導体が提供される。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 この態様の式(3)および式(4)における R2、R3、R4、R5、R6、R7およびR10は、それぞれ独立して炭素数1~10の炭化水素基または水素原子であり、R2、R3、R4、R5、R6、R7およびR10の具体的な炭化水素基としてはメチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、フェニル基およびベンジル基などが挙げられる。R2、R3、R4、R5、R6、R7およびR10の好ましい実施形態としては水素原子またはメチル基であり、更に好ましくは水素原子である。
 この態様の式(3)および式(4)におけるR8およびR9は、それぞれ独立して炭素数1~9の炭化水素基または水素原子であり、R8およびR9の具体的な炭化水素基としてはメチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、フェニル基およびベンジル基などが挙げられる。R8およびR9の好ましい実施形態としては水素原子またはメチル基であり、更に好ましくは水素原子である。
 この態様の式(3)および式(4)におけるA1は、炭素数1~10の2価の炭化水素基または置換基を有していてもよいフェニレン基であり、具体的な炭化水素基としてはメチレン基、エチレン基、プロピレン基およびブチレン基などが挙げられ、フェニレン基は1,2-フェニレン基、1,3-フェニレン基または1,4-フェニレン基であってよい。フェニレン基の置換基は、当該親水性ポリマー誘導体の合成過程において副反応を生じない置換基であれば、電子求引性の置換基または電子供与性の置換基のいずれでもよく、それぞれ単独もしくは組み合わせて使用してもよい。
 電子求引性の置換基としては、炭素数2~5のアシル基、炭素数2~5のアルコキシカルボニル基、炭素数2~5のカルバモイル基、炭素数2~5のアシルオキシ基、炭素数2~5のアシルアミノ基、炭素数2~5のアルコキシカルボニルアミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~4のアルキルスルファニル基、炭素数1~4のアルキルスルホニル基、炭素数6~10のアリールスルホニル基、ニトロ基、トリフルオロメチル基およびシアノ基であり、好ましい例としてはアセチル基、メトキシカルボニル基、メチルカルバモイル基、アセトキシ基、アセトアミド基、メトキシカルボニルアミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、メチルスルファニル基、フェニルスルホニル基、ニトロ基、トリフルオロメチル基およびシアノ基が挙げられる。電子供与性の置換基としては、炭素数1~4のアルキル基であり、好ましい例としてはメチル基、エチル基、プロピル基、イソプロピル基およびt-ブチル基が挙げられる。メタ位では電子求引性、パラ位およびオルト位では電子供与性である置換基としては、炭素数1~4のアルコキシ基、炭素数6~10のアリール基および炭素数6~10のアリールオキシ基であり、好ましい例としてはメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、t-ブトキシ基、フェニル基およびフェノキシ基が挙げられる。
 この態様の式(3)および式(4)におけるZ1は前記A1と親水性ポリマー鎖間の2価のスペーサーである。これらは共有結合で構成され、アセタール構造よりも加水分解に対して安定であれば特に制限は無いが、好ましくはエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基、単結合またはアルキレン基である。アルキレン基の炭素数は、好ましくは1~24である。
 説明のためであって、制限するものではないが、アルキレン基の好ましい例としては、(z1)のような構造が挙げられる。エーテル結合を有するアルキレン基の好ましい例としては、(z2)または(z3)のような構造が挙げられる。エステル結合を有するアルキレン基の好ましい例としては、(z4)のような構造が挙げられる。カーボネート結合を有するアルキレン基の好ましい例としては、(z5)のような構造が挙げられる。ウレタン結合を有するアルキレン基の好ましい例としては、(z6)のような構造が挙げられる。アミド結合を有するアルキレン基の好ましい例としては、(z7)のような構造が挙げられる。2級アミノ基を有するアルキレン基の好ましい例としては、(z8)のような構造が挙げられる。好ましい実施形態において、pおよびqは独立して1~12の整数である。例えば、末端の活性カーボネート基をタンパク質内部のような疎水性環境で結合させたい場合は、pおよびqは大きい方が好ましく、親水性環境で結合させたい場合は、pおよびqは小さい方が好ましい。ただし、Z1がエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基であって、複数の同一構造単位が結合している場合における前記構造単位の数は2以下である。
Figure JPOXMLDOC01-appb-C000041
 この態様の式(3)および式(4)におけるE1は脱離基であり、好ましい例を挙げれば、スクシンイミジルオキシ基、フタルイミジルオキシ基、4-ニトロフェノキシ基、1-イミダゾリル基、ペンタフルオロフェノキシ基、ベンゾトリアゾール-1-イルオキシ基および7-アザベンゾトリアゾール-1-イルオキシ基であり、より好ましくはスクシンイミジルオキシ基、4-ニトロフェノキシ基、1-イミダゾリル基、ペンタフルオロフェノキシ基であり、更に好ましくはスクシンイミジルオキシ基または4-ニトロフェノキシ基である。
 この態様の式(3)および式(4)におけるmは0または1である。好ましい実施形態では、mが0であり、式(20)または式(21)で示される親水性ポリマー誘導体が提供される。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 本発明の式(20)で示される親水性ポリマー誘導体と薬物との複合体における分解機構は、下記の模式図で説明される。
Figure JPOXMLDOC01-appb-C000044
 この態様の別の好ましい実施形態では、mが1かつB1が水素原子であり、式(22)または式(23)で示される親水性ポリマー誘導体が提供される。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
 本発明の式(22)で示される親水性ポリマー誘導体と薬物との複合体における分解機構は、下記の模式図で説明される。
Figure JPOXMLDOC01-appb-C000047
 この態様のもう一つの好ましい実施形態では、mが1かつB1が-C(R6)(R7)OC(O)E1であり、式(24)または式(25)で示される親水性ポリマー誘導体が提供される。この実施形態においては、当該親水性ポリマー誘導体1分子で、2分子の薬物をプロドラッグ化することが可能である。
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
 本発明の別の一態様では、式(5)または式(6)で示される親水性ポリマー誘導体が提供される。
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
 この態様の式(5)および式(6)におけるR1、R2、R3、R4、R5、R6、R7およびR11は、それぞれ独立して炭素数1~10の炭化水素基または水素原子であり、R1、R2、R3、R4、R5、R6、R7およびR11の具体的な炭化水素基としてはメチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、フェニル基およびベンジル基などが挙げられる。R1、R2、R3、R4、R5、R6、R7およびR11の好ましい実施形態としては水素原子またはメチル基であり、更に好ましくは水素原子である。
 この態様の式(5)および式(6)におけるA2は、炭素数1~10の炭化水素基、置換基を有していてもよいフェニル基または水素原子であり、好ましくは炭素数1~10の炭化水素基または置換基を有していてもよいフェニル基である。
 具体的な炭化水素基としてはメチル基、エチル基、プロピル基、イソプロピル基およびt-ブチル基などが挙げられる。フェニル基の置換基は、当該親水性ポリマー誘導体の合成過程において副反応を生じない置換基であれば、電子求引性の置換基または電子供与性の置換基のいずれでもよく、それぞれ単独もしくは組み合わせて使用してもよい。電子求引性の置換基としては、炭素数2~5のアシル基、炭素数2~5のアルコキシカルボニル基、炭素数2~5のカルバモイル基、炭素数2~5のアシルオキシ基、炭素数2~5のアシルアミノ基、炭素数2~5のアルコキシカルボニルアミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~4のアルキルスルファニル基、炭素数1~4のアルキルスルホニル基、炭素数6~10のアリールスルホニル基、ニトロ基、トリフルオロメチル基およびシアノ基であり、好ましい例としてはアセチル基、メトキシカルボニル基、メチルカルバモイル基、アセトキシ基、アセトアミド基、メトキシカルボニルアミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、メチルスルファニル基、フェニルスルホニル基、ニトロ基、トリフルオロメチル基およびシアノ基が挙げられる。電子供与性の置換基としては、炭素数1~4のアルキル基であり、好ましい例としてはメチル基、エチル基、プロピル基、イソプロピル基およびt-ブチル基が挙げられる。メタ位では電子求引性、パラ位およびオルト位では電子供与性である置換基としては、炭素数1~4のアルコキシ基、炭素数6~10のアリール基および炭素数6~10のアリールオキシ基であり、好ましい例としてはメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、t-ブトキシ基、フェニル基およびフェノキシ基が挙げられる。
 この態様の式(5)および式(6)におけるZ2はアセタールの片方の酸素原子と親水性ポリマー鎖間の2価のスペーサーである。これらは共有結合で構成され、アセタール構造よりも加水分解に対して安定であれば特に制限は無いが、好ましくはエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基、単結合またはアルキレン基である。アルキレン基の炭素数は、好ましくは1~24である。
 説明のためであって、制限するものではないが、アルキレン基の好ましい例としては、(z1)のような構造が挙げられる。エーテル結合を有するアルキレン基の好ましい例としては、(z2)または(z3)のような構造が挙げられる。エステル結合を有するアルキレン基の好ましい例としては、(z4)のような構造が挙げられる。カーボネート結合を有するアルキレン基の好ましい例としては、(z5)のような構造が挙げられる。ウレタン結合を有するアルキレン基の好ましい例としては、(z6)のような構造が挙げられる。アミド結合を有するアルキレン基の好ましい例としては、(z7)のような構造が挙げられる。2級アミノ基を有するアルキレン基の好ましい例としては、(z8)のような構造が挙げられる。好ましい実施形態において、pおよびqは独立して1~12の整数である。例えば、末端の活性カーボネート基をタンパク質内部のような疎水性環境で結合させたい場合は、pおよびqは大きい方が好ましく、親水性環境で結合させたい場合は、pおよびqは小さい方が好ましい。ただし、Z2がエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基であって、複数の同一構造単位が結合している場合における前記構造単位の数は2以下である。
Figure JPOXMLDOC01-appb-C000052
 この態様の式(5)および式(6)におけるE1は脱離基であり、好ましい例を挙げれば、スクシンイミジルオキシ基、フタルイミジルオキシ基、4-ニトロフェノキシ基、1-イミダゾリル基、ペンタフルオロフェノキシ基、ベンゾトリアゾール-1-イルオキシ基および7-アザベンゾトリアゾール-1-イルオキシ基であり、より好ましくはスクシンイミジルオキシ基、4-ニトロフェノキシ基、1-イミダゾリル基、ペンタフルオロフェノキシ基であり、更に好ましくはスクシンイミジルオキシ基または4-ニトロフェノキシ基である。
 この態様の式(5)および式(6)におけるmは0または1である。好ましい実施形態では、mが0であり、式(26)または式(27)で示される親水性ポリマー誘導体が提供される。
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
 この態様の別の好ましい実施形態では、mが1かつB1が水素原子であり、式(28)または式(29)で示される親水性ポリマー誘導体が提供される。
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
 この態様のもう一つの好ましい実施形態では、mが1かつB1が-C(R6)(R7)OC(O)E1であり、式(30)または式(31)で示される親水性ポリマー誘導体が提供される。この実施形態においては、一つのアセタールに対して二つのE1を有する誘導体が提供される。
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
 本発明の一態様では、式(3)、式(4)、式(5)および式(6)のP1は直鎖型のポリエチレングリコールである。
 この態様の好ましい実施形態では、式(3)、式(4)、式(5)および式(6)のP1は式(7)で示される。
Figure JPOXMLDOC01-appb-C000059
 式中、nはポリエチレングリコール鎖1本あたりの繰り返しユニット数であり、分子量分布を有するポリエチレングリコールにおいては、化合物の数平均分子量(Mn)に基づいて、各種理論的な計算をすることにより算出することと定義する。
 式中、Y1は炭素数1~24の炭化水素基であり、具体的な例としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、イソペンチル基、ヘキシル基、ヘプチル基、2-エチルヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、ヘンエイコシル基、ドコシル基、トイコシル基、テトラコシル基、フェニル基、ベンジル基、クレジル基、ブチルフェニル基、ドデシルフェニル基およびトリチル基などが挙げられ、好ましくは炭素数1~10の炭化水素基、より好ましくはメチル基またはエチル基であり、更に好ましくはメチル基である。
 この態様のもう1つの好ましい実施形態では、式(3)、式(4)、式(5)および式(6)のP1は式(8) で示される。
Figure JPOXMLDOC01-appb-C000060
 式中、X1は化学反応可能な官能基であり、Z3は官能基X1とポリエチレングリコール鎖間の2価のスペーサーである。
 この実施形態のポリエチレングリコール誘導体は、例えば活性カーボネート基に薬物を結合させ、X1に抗体等の標的指向性を有する生体機能性分子を結合させることで、標的指向性能を持つ薬物複合体を提供することができる。
 X1の好ましい例を挙げれば、アルデヒド基、エポキシ基、マレイミド基、ビニルスルホン基、アクリル基、スルホニルオキシ基、カルボキシ基、保護基で保護されたチオール基、ジチオピリジル基、α-ハロアセチル基、アルキニル基、アリル基、ビニル基、保護基で保護されたアミノ基、保護基で保護されたオキシアミノ基、保護基で保護されたヒドラジド基またはアジド基である。
 更に具体的には、生体機能性分子のアミノ基と反応して共有結合を形成することが可能な官能基は、アルデヒド基、エポキシ基、マレイミド基、ビニルスルホン基、アクリル基、スルホニルオキシ基およびカルボキシ基であり、生体機能性分子のチオール基と反応して共有結合を形成することが可能な官能基は、アルデヒド基、エポキシ基、マレイミド基、ビニルスルホン基、アクリル基、スルホニルオキシ基、カルボキシ基、保護基で保護されたチオール基、ジチオピリジル基、α-ハロアセチル基、アルキニル基、アリル基およびビニル基であり、生体機能性分子のアルデヒド基またはカルボキシ基と反応して共有結合を形成することが可能な官能基は、保護基で保護されたチオール基、保護基で保護されたアミノ基、保護基で保護されたオキシアミノ基および保護基で保護されたヒドラジド基であり、生体機能性分子のアルキニル基と反応して共有結合を形成することが可能な官能基は、保護基で保護されたチオール基およびアジド基であり、生体機能性分子のアジド基と反応して共有結合を形成することが可能な官能基はアルキニル基および三重結合を含む官能基である。
 ここで「保護基」とは、ある反応条件下で分子中の特定の化学反応可能な官能基の反応を防止または阻止する成分である。保護基は、保護される化学反応可能な官能基の種類、使用される条件および分子中の他の官能基もしくは保護基の存在により変化する。保護基の具体的な例は多くの一般的な成書に見出すことができるが、例えば「Wuts, P. G. M.; Greene, T. W. Protective Groups in Organic Synthesis, 4th ed.; Wiley-Interscience: New York, 2007」に記載されている。また、保護基で保護された官能基は、それぞれの保護基に適した反応条件を用いて脱保護、すなわち化学反応させることで、元の官能基を再生させることができる。したがって、本明細書では、保護基で保護されており、各種反応によって脱保護が可能な官能基は「化学反応可能な官能基」に含まれる。保護基の代表的な脱保護条件は前述の文献に記載されている。
 保護される官能基と保護基の好ましい組み合わせとして、保護される官能基がアミノ基のときは、例えばアシル系保護基およびカーバメート系保護基が挙げられ、具体的にはトリフルオロアセチル基、9-フルオレニルメチルオキシカルボニル基および2-(トリメチルシリル)エチルオキシカルボニル基などが挙げられる。また、保護される官能基がヒドロキシ基のときは、例えばシリル系保護基およびアシル系保護基が挙げられ、具体的にはt-ブチルジフェニルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基、アセチル基およびピバロイル基などが挙げられる。保護される官能基がカルボキシ基のときは、例えばアルキルエステル系保護基およびシリルエステル系保護基が挙げられ、具体的にはメチル基、9-フルオレニルメチル基およびt-ブチルジメチルシリル基などが挙げられる。保護される官能基がスルファニル基のときは、例えばアシル系保護基、チオエーテル系保護基、チオカーボネート系保護基およびジスルフィド系保護基が挙げられ、具体的にはアセチル基、S-2,4-ジニトロフェニル基、S-9-フルオレニルメチルオキシカルボニル基およびS-t-ブチルジスルフィド基などが挙げられる。保護基の代表的な脱保護条件は前述の文献に記載されており、それぞれの保護基に適した反応条件を選択することができる。   
 この態様の好適な実施形態において、X1は群(I)、群(II)、群(III)、群(IV)または群(V)で示される基である。
群(I):生体機能性分子のアミノ基と反応して共有結合を形成することが可能な官能基
 下記の(a)、(b)、(e)および(f)
群(II):生体機能性分子のチオール基と反応して共有結合を形成することが可能な官能基 下記の(a)、(b)、(c)、(d)、(e)、(f)および(l)
群(III):生体機能性分子のアルデヒド基またはカルボキシ基と反応して共有結合を形成することが可能な官能基
 下記の(g)、(h)、(i)、(j)および(o)
群(IV):生体機能性分子のアルキニル基と反応して共有結合を形成することが可能な官能基
 下記の(c)、(d)、(g)、(h)、(i)、(j)および(k)
群(V):生体機能性分子のアジド基と反応して共有結合を形成することが可能な官能基
 下記の(m)および(n)
Figure JPOXMLDOC01-appb-C000061
 式中、R12およびR14はそれぞれ独立して水素原子または炭素数1~5の炭化水素基であり、具体的な炭化水素基としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基およびペンチル基などが挙げられる。R13は塩素原子、臭素原子およびヨウ素原子から選択されるハロゲン原子である。
 Z3は共有結合で構成され、アセタール構造よりも加水分解に対して安定であれば特に制限は無いが、好ましくはエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基、単結合またはアルキレン基である。アルキレン基の炭素数は、好ましくは1~24である。説明のためであって、制限するものではないが、アルキレン基の好ましい例としては、(z1)のような構造が挙げられる。エーテル結合を有するアルキレン基の好ましい例としては、(z2)または(z3)のような構造が挙げられる。エステル結合を有するアルキレン基の好ましい例としては、(z4)のような構造が挙げられる。
 カーボネート結合を有するアルキレン基の好ましい例としては、(z5)のような構造が挙げられる。ウレタン結合を有するアルキレン基の好ましい例としては、(z6)のような構造が挙げられる。アミド結合を有するアルキレン基の好ましい例としては、(z7)のような構造が挙げられる。2級アミノ基を有するアルキレン基の好ましい例としては、(z8)のような構造が挙げられる。好ましい実施形態において、pおよびqは独立して1~12の整数である。例えば、官能基X1をタンパク質内部のような疎水性環境で結合させたい場合は、pおよびqは大きい方が好ましく、親水性環境で結合させたい場合は、pおよびqは小さい方が好ましい。ただし、Z3がエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基であって、複数の同一構造単位が結合している場合における前記構造単位の数は2以下である。
Figure JPOXMLDOC01-appb-C000062
 本発明の別の一態様では、式(3)、式(4)、式(5)および式(6)のP1は分岐型のポリエチレングリコールである。
 この態様の好ましい実施形態では、式(3)、式(4)、式(5)および式(6)のP1は式(9)で示される。
Figure JPOXMLDOC01-appb-C000063
 式中、Y1は炭素数1~24の前記炭化水素基であり、vは0または2である。
 vが0の場合は2本のポリエチレングリコール鎖を有し、vが2の場合は4本のポリエチレングリコール鎖を有する。一般にポリエチレングリコールによる生体関連物質の化学修飾では、必要以上にポリエチレングリコールとの結合点を導入すると生体関連物質の活性点を潰し、その機能を低下させるため、ポリエチレングリコールの分子量を大きくして効果を高める試みが行われている。しかし、分子量の増大にともなって粘度も増大するため、例えば注射製剤のような水溶液製剤での取り扱いが困難となる。当該ポリエチレングリコール誘導体は分岐型構造であるため、同一分子量の直鎖型のポリエチレングリコール誘導体と比較して粘度が低く、水溶液製剤などの用途で有用である。
 この態様の別の好ましい実施形態では、式(3)、式(4)、式(5)および式(6)のP1は式(10)で示される。
Figure JPOXMLDOC01-appb-C000064
 式中、X1は化学反応可能な前記官能基であり、Z3は前記2価のスペーサーであり、vは0または2である。
 この実施形態のポリエチレングリコール誘導体は、1つの活性カーボネート基と2つまたは4つのX1を有しており、例えば活性カーボネート基に薬物を結合させ、X1に抗体等の標的指向性を有する生体機能性分子を結合させれば、高い標的指向性能を持つ薬物複合体を提供することができる。
 この態様のもう一つの好ましい実施形態では、式(3)、式(4)、式(5)および式(6)のP1は式(11) で示される。
Figure JPOXMLDOC01-appb-C000065
 式中、X1は化学反応可能な前記官能基であり、Z3は前記2価のスペーサーであり、vは0または2である。
 抗体-薬物複合体(ADC)関連分野においては、薬物の運搬効率を上げるために抗体に対して複数の薬物を結合させることが好ましいが、抗体に複数の結合点を導入すると抗原との親和性の低下が問題となる。この実施形態のポリエチレングリコール誘導体は、2つまたは4つの活性カーボネート基と1つのX1を有しており、例えばガンを標的としたADCで活性カーボネート基に抗ガン剤を結合させ、X1に抗体を結合させれば、抗体との結合点を増加させずに、抗ガン剤の運搬効率を向上させることができる。
 本発明の更に別の一態様では、式(3)、式(4)、式(5)および式(6)のP1は末端数2~8のポリエチレングリコールであり、P1を構成するポリエチレングリコールの全ての末端がそれぞれ、式(3)および式(4)についてはZ1に対して結合しており、式(5)および式(6)についてはZ2に対して結合しており、wが前記ポリエチレングリコールの末端数に等しい。
 この態様の好ましい実施形態では、式(3)、式(4)、式(5)および式(6)のP1は、式(r)、式(s)、式(t)、式(u)および式(v)からなる群から選択される。P1が式(r)で表される場合にはwが2であり、P1が式(s)で表される場合にはwが3であり、P1が式(t)で表される場合にはwが4であり、P1が式(u)で表される場合にはwが4であり、P1が式(v)で表される場合にはwが8である。
Figure JPOXMLDOC01-appb-C000066
 本発明の式(7)および式(8)におけるnの好適な範囲は3~2000であり、より好ましくは20~1500であり、更に好ましくは40~1000であり、最も好ましくは60~500である。式(9)、式(10)および式(11)におけるnの好適な範囲は3~1000であり、好ましくは10~800であり、更に好ましくは20~500であり、最も好ましくは30~300である。また、式(r)、式(s)、式(t)、式(u)および式(v) におけるnの好適な範囲は3~2000であり、より好ましくは20~1500であり、更に好ましくは40~1000であり、最も好ましくは60~500である。
 本発明のもう一つの態様では、本発明の自壊性アセタールリンカーを有する親水性ポリマー誘導体の活性カーボネート基と生体機能性分子に含まれるアミノ基とを反応させて得られる、式(12)または式(13)で表される構造を含む複合体が提供される。
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
 この態様の式(12)および式(13)におけるD1は、生体機能性分子に含まれるアミノ基のうち、本発明の自壊性アセタールリンカーを有する親水性ポリマー誘導体の活性カーボネート基と反応してカーバメート結合を構成するアミノ基を除いた残基である。R15は前記アミノ基の置換基であり、炭素数1~10の炭化水素基または水素原子である。具体的な炭化水素基としてはメチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、フェニル基およびベンジル基などが挙げられる。R15の好ましい実施形態としては水素原子またはメチル基であり、更に好ましくは水素原子である。
 この態様の好ましい実施形態では、前記生体機能性分子には化学療法薬が含まれる。化学療法薬は、ガンの処置において有用な化合物である。化学療法薬の例には次のものが含まれる:アルキル化剤、例えばチオテパ(thiotepa)およびシクロホスファミド(CYTOXAN(商標));アルキルスルホネート類、例えばブスルファン(busulfan)、インプロスルファン(improsulfan)およびピポスルファン(piposulfan);アジリジン類(aziridines)、例えばベンゾドーパ(benzodopa)、カルボコン(carboquone)、メツレドーパ(meturedopa)、およびウレドーパ(uredopa);エチレンイミン類およびメチルアメラミン類(methylamelamines)、アルトレタミン(altretamine)、トリエチレンメラミン(triethylenemelamine)、トリエチレンホスホルアミド(trietylenephosphoramide)、トリエチレンチオホスホルアミド(triethylenethiophosphaoramide)およびトリメチローロメラミン(trimethylolomelamine)を含む;アセトゲニン類(acetogenins)(特にブラタシン(bullatacin)およびブラタシノン(bullatacinone));カンプトテシン(camptothecin)(合成類似体であるトポテカンを含む);ブリオスタチン (bryostatin);カリスタチン(callystatin);CC-1065(そのアドゼレシン(adozelesin)、カルゼレシン(carzelesin)およびビゼレシン(bizelesin)合成類似体を含む);クリプトフィシン類(cryptophycins)(特に、クリプトフィシン1およびクリプトフィシン8);ドラスタチン(dolastatin);デュオカルマイシン(duocarmycin)(その合成類似体であるKW-2189およびCBI-TMIを含む));エレウテロビン(eleutherobin);パンクラチスタチン(pancratistatin);サルコディクチン(sarcodictyin);スポンジスタチン(spongistatin);ナイトロジェンマスタード類、例えばクロラムブシル(chlorambucil)、クロルナファジン(chlornaphazine)、コロホスファミド(cholophosphamide)、エストラムスチン(estramustine)、イホスファミド(ifosfamide)、メクロレタミン(mechlorethamine)、メクロレタミンオキシド塩酸塩、メルファラン(melphalan)、ノベムビチン(novembichin)、フェネステリン(phenesterine)、プレドニムスチン(prednimustine)、トロホスファミド(trofosfamide)、ウラシルマスタード;ニトロソ尿素類(nitrosureas)、例えばカルムスチン(carmustine)、クロロゾトシン(chlorozotocin)、フォテムスチン(fotemustine)、ロムスチン(lomustine)、ニムスチン(nimustine)、ラニムスチン(ranimustine);抗生物質、例えばエネジイン(enediyne)抗生物質(例えばカリケアマイシン(calicheamicin)、特に、カリケアマイシンガンマ1およびカリケアマイシンシータI、例えばAngew Chem Intl. Ed. Engl. 33:183-186 (1994)を参照;ダイネマイシン(dynemicin)、ダイネマイシンAを含む;エスペラマイシン(esperamicin);ならびに、ネオカルジノスタチンクロモフォア(neocarzinostatin chromophore)および関連する色素タンパク質エネジイン抗生物質クロモモフォア類)、アクラシノマイシン類(aclacinomysins)、アクチノマイシン、オースラマイシン(authramycin)、アザセリン(azaserine)、ブレオマイシン類(bleomycins)、カクチノマイシン(cactinomycin)、カラビシン(carabicin)、カルミノマイシン(carminomycin)、カルジノフィリン(carzinophilin);クロモマイシン類(chromomycins)、ダクチノマイシン(dactinomycin)、ダウノルビシン(daunorubicin)、デトルビシン(detorubicin)、6-ジアゾ-5-オキソ-L-ノルロイシン、ドキソルビシン(モルホリノ-ドキソルビシン、シアノモルホリノ-ドキソルビシン、2-ピロリノ-ドキソルビシンおよびデオキシドキソルビシンを含む)、エピルビシン(epirubicin)、エソルビシン(esorubicin)、イダルビシン(idarubicin)、マルセロマイシン(marcellomycin)、ナイトマイシン類(nitomycins)、ミコフェノール酸(mycophenolic acid)、ノガラマイシン(nogalamycin)、オリボマイシン類(olivomycins)、ペプロマイシン(peplomycin)、ポトフィロマイシン(potfiromycin)、ピューロマイシン、クエラマイシン(quelamycin)、ロドルビシン(rodorubicin)、ストレプトニグリン(streptonigrin)、ストレプトゾシン(streptozocin)、ツベルシジン(tubercidin)、ウベニメクス(ubenimex)、ジノスタチン(zinostatin)、ゾルビシン(zorubicin);代謝拮抗剤、例えば、メトトレキセートおよび5-フルオロウラシル(5-FU);葉酸類似体、例えばデノプテリン、メトトレキセート、プテロプテリン、トリメトレキセート;プリン類似体、例えばフルダラビン(fludarabine)、6-メルカプトプリン、チアミプリン(thiamiprine)、チオグアニン;ピリミジン類似体、例えばアンシタビン、アザシチジン、6-アザウリジン、カルモフール、シタラビン、ジデオキシウリジン、ドキシフルリジン(doxifluridine)、エノシタビン、フロクスウリジン、5-FU;アンドロゲン類、例えばカルステロン、ドロモスタノロンプロピオネート、エピチオスタノール、メピチオスタン、テストラクトン;抗副腎薬(anti-adrenals)、例えばアミノグルテチミド、ミトタン、トリロスタン;葉酸補充薬、例えばフロリン酸(frolinic acid);アセグラトン;アルドホスファミドグリコシド(aldophosphamide glycoside);アミノレブリン酸;アムサクリン(amsacrine);ベストラブシル(bestrabucil);ビサントレン(bisantrene);エダトラキセート(edatraxate);デフォファミン(defofamine);デメコルシン(demecolcine);ジアジコン(diaziquone);エルフォミチン(elfomithine);エリプチニウムアセテート(elliptinium acetate);エポチロン(epothilone);エトグルシド(etoglucid);硝酸ガリウム;ヒドロキシウレア;レンチナン(lentinan);ロニダミン(lonidamine);マイタンシノイド類、例えばマイタンシン (maytansine)およびアンサミトシン類(ansamitocins);ミトグアゾン(mitoguazone);ミトキサントロン(mitoxantrone);モピダモール(mopidamol);ニトラクリン(nitracrine);ペントスタチン(pentostatin);フェナメット(phenamet);ピラルビシン(pirarubicin);ポドフィリン酸(podophyllinic acid);2-エチルヒドラジド;プロカルバジン;PSK(登録商標);ラゾキサン;リゾキシン(rhizoxin);シゾフィラン(sizofiran);スピロゲルマニウム(spirogermanium);テヌアゾン酸(tenuazonic acid);トリアジクオン(triaziquone);2,2’,2’’-トリクロロトリエチルアミン;トリコテセン類(trichothecenes)、(特にT-2トキシン、ベラクリン(verracurin)A、ロリジン(roridin)Aおよびアングイジン(anguidine));ウレタン;ビンデシン;ダカルバジン;マンノムスチン;ミトブロニトール(mitobronitol);ミトラクトール(mitolactol);ピポブロマン(pipobroman);ガシトシン(gacytosine);アラビノシド(arabinoside)(“Ara-C”);シクロホスファミド;チオテパ;タキソイド類(taxoids)、例えばパクリタキセル(paclitaxel)(TAXOL(登録商標)、Bristol-Myers Squibb Oncology)およびドキセタキセル(doxetaxel)(TAXOTERE(登録商標)、Rhone-Poulenc Rorer);クロラムブシル;ゲムシタビン(gemcitabine);6-チオグアニン;メルカプトプリン;メトトレキセート;プラチナ類似体、例えばシスプラチンおよびカルボプラチン;ビンブラスチン;プラチナ;エトポシド(VP-16);イホスファミド;マイトマイシンC;ミトキサントロン;ビンクリスチン;ビノレルビン(vinorelbine);ナベルビン(navelbine);ノバントロン(novantrone);テニポシド(teniposide);ダウノマイシン(daunomycin);アミノプテリン;ゼローダ(xeloda);イバンドロネート(ibandronate);CPT-11;トポイソメラーゼ阻害剤RFS2000;ジフルオロメチルオミチン(difluoromethylomithine)(DMFO);レチノイン酸;カペシタビン(capecitabine);ならびに上記のいずれかの医薬的に許容できる塩類、酸類、または誘導体。腫瘍に対するホルモンの作用を調節または阻害するように作用する抗ホルモン剤、例えば次のものもこの定義に含まれる:例えばタモキシフェン、ラロキシフェン(raloxifene)、アロマターゼを阻害する4(5)-イミダゾール類、4-ヒドロキシタモキシフェン、トリオキシフェン(trioxifene)、ケオキシフェン(keoxifene)、LY117018、オナプリストン(onapristone)、およびトレミフェン(toremifene)(ファレストン(Fareston))を含む抗エストロゲン薬;ならびに抗アンドロゲン薬、例えばフルタミド(flutamide)、ニルタミド(nilutamide)、ビカルタミド(bicalutamide)、ロイプロリド(leuprolide)、およびゴセレリン(goserelin);siRNAならびに上記のいずれかの医薬的に許容できる塩類、酸類、または誘導体。
 本発明と共に用いることができる他の化学療法薬が、米国特許出願公開第2008/0171040号明細書または米国特許出願公開第2008/0305044号明細書において開示されており、それらをそのまま援用する。
 本発明の好ましい実施形態において、化学療法薬は低分子薬物である。低分子薬物は、好ましくは100~1500、より好ましくは120~1200まで、さらに好ましくは200~1000までの分子量を有する。典型的には約1000未満の分子量を有する有機、無機、または有機金属化合物を指して広く用いられる。また、本発明の低分子薬物は、約1000未満の分子量を有するオリゴペプチドおよび他の生体分子を含む。低分子薬物は当分野において、例えばとりわけ国際公開第05/058367号パンフレット、欧州特許出願公開第85901495号明細書および第8590319号明細書において、ならびに米国特許第4,956,303号明細書においてよく特性付けされており、それらをそのまま援用する。
 本発明の好ましい低分子薬物は、抗体への連結が可能な低分子薬物である。本発明には、既知の薬物および既知になる可能性がある薬物が含まれる。特に好ましい低分子薬物には細胞毒性薬物が含まれる。
 好ましい細胞毒性薬物はマイタンシノイド類、CC-1065類似体、モルホリノ類(morpholinos)、ドキソルビシン類、タキサン類(taxanes)、クリプトフィシン類(cryptophycins)、エポチロン類(epothilones)、カリケアマイシン類(calicheamicins)、アウリスタチン類(auristatins)、およびピロロベンゾジアゼピン(pyrrolobenzodiazepine)二量体類である。
 本明細書で使用する用語「抗体」とは、その最も広い意味で使用され、具体的には、モノクローナル抗体、ポリクローナル抗体、ダイマー、マルチマー、多重特異性抗体(例えば、二重特異性抗体)、および抗体フラグメントを、それらが望ましい生物学的活性を示す限り、網羅する(Miller, K. et al. J. Immunol. 2003, 170, 4854-4861)。抗体は、マウス抗体、ヒト抗体、ヒト化抗体、キメラ抗体、または他の種由来であり得る。抗体は、特定の抗原を認識および結合することが可能な、免疫系によって生成されるタンパク質である(Janeway, C.; Travers, P.; Walport, M.; Shlomchik, M. Immunobiology, 5th ed.; Garland Publishing: New York, 2001)。標的抗原は、一般的には、複数の抗体上にあるCDRによって認識される多数の結合部位(エピトープとも呼ばれる)を有する。異なるエピトープに特異的に結合する抗体は、異なる構造を有する。従って、ある1つの抗原は、1つよりも多くの対応する抗体を有し得る。抗体は、全長免疫グロブリン分子、または全長免疫グロブリン分子の免疫学的に活性な部分(すなわち、対象とする抗原もしくはその部分に免疫特異的に結合する抗原結合部位を含む分子)を包含する。そのような標的としては、ガン細胞、または自己免疫疾患に関連する自己免疫抗体を生成する細胞が挙げられるが、これらに限定はされない。本明細書において開示される免疫グロブリンは、任意の型(例えば、IgG、IgE、IgM、IgD、およびIgA)、クラス(例えば、IgG1、IgG2、IgG3、IgG4、IgA1、及びIgA2)またはサブクラスの免疫グロブリン分子であり得る。上記免疫グロブリンは、任意の種に由来し得る。しかし、一態様において、上記免疫グロブリンは、ヒト起源、マウス起源、またはウサギ起源である。
 ポリクローナル抗体は、免疫化動物の血清由来のものなどの、抗体分子の不均一集団である。当分野において既知のさまざまな手順を用いて対象抗原に対するポリクローナル抗体を作り出してよい。例えば、ポリクローナル抗体を作り出すために、対象抗原またはその誘導体を注射して、ウサギ、マウス、ラットおよびモルモットを含むがそれらに限定されないさまざまな宿主動物を免疫化してよい。宿主種に依存して、フロインドの(完全および不完全)アジュバント、水酸化アルミニウムなどの鉱物ゲル、リソレシチンなどの表面活性物質、プルロニック(pluronic)ポリオール、ポリアニオン、ペプチド、油乳化物、キーホールリンペットヘモシニアン、ジニトロフェノール、およびBCG(bacille Calmett-Guerin)およびCorynebacteriumu parvumなどの潜在的に有用なヒトアジュバントを含むがそれらに限定されない、さまざまなアジュバントを用いて免疫応答を増加させてよい。そのようなアジュバントも、当分野では公知である。
 モノクローナル抗体は、特定の抗原決定基(例えば、細胞抗原(ガンまたは自己免疫細胞抗原)、ウイルス抗原、微生物抗原、タンパク質、ペプチド、炭水化物、化学物質、核酸またはそれらの抗原結合フラグメント)に対する抗体の均一な集団である。当分野において既知の任意の技法を用いて対象抗原に対するモノクローナル抗体(mAb)を調製してよい。これらは、Kohler, G; Milstein, C. Nature 1975, 256, 495-497)が最初に記載したハイブリドーマ技法、ヒトB細胞ハイブリドーマ技法(Kozbor, D. et al. Immunol. Today 1983, 4, 72-79)およびEBV-ハイブリドーマ技法(Cole, S. P. C. et al. Monoclonal Antibodies and Cancer Therapy; Alan R. Liss: New York, 1985, pp. 77-96)を含むが、それらに限定されない。そのような抗体は、IgG、IgM、IgE、IgA及びIgDを含む任意の免疫グロブリンの種類およびそれらの任意の亜種であってよい。本発明においてモノクローナル抗体を産生するハイブリドーマは、インビトロまたはインビボで培養してよい。
 モノクローナル抗体は、ヒトモノクローナル抗体、ヒト化モノクローナル抗体、キメラモノクローナル抗体および抗体フラグメントを含むがそれらに限定されない。ヒトモノクローナル抗体は、当分野で既知の多数の技法のうちの任意のもの(例えば、Teng, N. N. et al. Proc.Natl.Acad.Sci.USA.1983, 80, 7308-7312、Kozbor, D. et al. Immunology Today 1983, 4, 72-79、Olsson, L. et al. Meth. Enzymol. 1982, 92, 3-16、および米国特許第5939598号明細書および第5770429号明細書を参照)によって作成してよい。キメラモノクローナル抗体およびヒト化モノクローナル抗体などの組み換え抗体は、当分野で既知の標準的な組み換えDNA技法を用いて作ることができる(例えば、米国特許第4816567号明細書、第4816397号明細書を参照)。
 抗体の表面再構成(resurfacing)処理によっても、抗体の免疫原性を減少させることができる(米国特許第5225539号明細書、欧州特許第0239400号明細書、第0519596号明細書、第0592106号明細書を参照)。
 本発明の一実施形態において、抗体は二重特異性抗体であってもよい。二重特異性抗体を作るための方法は、当分野で既知である。従来の完全長二重特異性抗体の作製方法は、2つの鎖が異なる特異性を有する場合の2つの免疫グロブリン重鎖―軽鎖対の同時発現を利用している(Milstein, C et al. Nature 1983, 305, 537-539を参照)。また、別の方法として、所望の結合特異性(抗体―抗原結合部位)を有する抗体可変分域を免疫グロブリン不変分域配列と融合させることでも、二重特異性抗体を作製することができる。
 その他の有用な抗体は、F(ab’)2フラグメント、Fab’フラグメント、Fabフラグメント、Fvs、単鎖抗体(SCA)(例えば、米国特許第4946778号明細書、Bird, R. E. et al. Science1988, 242, 423-442、Huston, J. S. et at. Proc. Natl. Acad. Sot USA 1988, 85, 5879-5883及びWard, E. S. et al. Nature 1989, 334, 544-554に記載されている)、scFv、sc-Fv-Fc、FvdsFv、ミニボディー、ダイアボディー、トライアボディー、テトラボディー、およびCDRを含み、抗体と同じ特異性を有する任意の他の分子、例えばドメイン抗体などが挙げられるが、それらに限定されない抗体のフラグメントを含む。
 本発明の好ましい実施形態では、ガンの治療または予防のための既知の抗体を用いてよい。発現がガン、細胞増殖障害または腫瘍の細胞上での発現と相関関係にある任意の標的タンパク質を含む、すべての標的タンパク質を、抗体の標的とすることができる。
 本発明の好ましい実施形態において、抗体はガンの治療に有用である。ガンの治療に利用可能な抗体の例は、非ホジキンリンパ腫を有する患者の治療のためのキメラ抗CD20モノクローナル抗体であるリツキサン(登録商標)(ジェネンテック社)、卵巣ガンの治療のためのマウス抗体であるオバレックス(アルタレックス社)、結直腸ガンの治療のためのマウスIgG2a抗体であるパノレックス(グラクソウェルカム社)、頭部ガンおよび頚部ガンなどの上皮細胞成長因子陽性ガンの治療のための抗EGFR IgGキメラ抗体であるセツキシマブエルビツクス(イムクローンシステムズ社)、肉腫の治療のためのヒト化抗体であるビタキシン(メドイミューン社)、慢性リンパ球白血病(CLL)の治療のためのヒト化IgG1抗体であるキャンパスI/H(ロイコサイト社)、急性骨髄性白血病(AML)の治療のためのヒト化抗CD33 IgG抗体であるスマートM195(プロテインデザインラブズ社)、非ホジキンリンパ腫の治療のためのヒト化抗CD22 IgG抗体であるリンフォサイド(イムノメディックス社)、非ホジキンリンパ腫の治療のためのヒト化抗HLA-DR抗体であるスマートID10(プロテインデザインラブズ社)、非ホジキンリンパ腫の治療のための放射性元素標識化マウス抗HLA-Dr10抗体であるオンコリム(テクニクローン社)、ホジキン氏病または非ホジキンリンパ腫の治療のためのヒト化抗CD2 mAbであるアロミューン(バイオトランスプラント社)、肺ガンおよび結直腸ガンの治療のための抗VEGFヒト化抗体であるアバスチン(ジェネンテック社)、非ホジキンリンパ腫の治療のための抗CD22抗体であるエプラツザマブ(イムノメディックス社およびアムジェン社)、および結直腸ガンの治療のためのヒト化抗CEA抗体であるシーサイド(イムノメディックス社)を含むがそれらに限定されない。
 本発明の好ましい実施形態において、抗体は以下の抗原に対する抗体である。CA125、CA15-3、CA19-9、L6、ルイスY、ルイスX、アルファフェトタンパク質、CA242、胎盤アルカリホスファターゼ、前立腺特異性膜抗原、EphB2、TMEFF2、前立腺酸性ホスファターゼ、上皮増殖因子、MAGE-1、MAGE-2、MAGE-3、MAGE-4、抗トランスフェリン受容体、p97、MUC1-KLH、CEA、gp100、MART1、前立腺特異性抗原、IL-2受容体、CD20、CD52、CD33、CD22、ヒト絨毛膜ゴナドトロピン、CD38、CD40、ムチン、P21、MPGおよびNeuガン遺伝子産物。いくつかの特異的な有用な抗体は、BR96 mAb(Trail, P. A. et al. Science 1993, 261, 212-215)、BR64(Trail, P. A. et al. Cancer Research 1997, 57, 100-105)、S2C6 mAb(Francisco, J. A. et al. Cancer Res. 2000, 60, 3225-3231)などのCD40抗原に対するmAb、または米国特許出願公開第2003/0211100号明細書および第2002/0142358号明細書に開示されているようなその他の抗CD40抗体、1F6 mAbおよび2F2 mAbなどのCD70抗原に対するmAb、およびAC10(Bowen, M. A. et al. J. Immunol. 1993, 151, 5896-5906、Wahl, A. F. et al. Cancer Res. 2002, 62(13), 3736-42)またはMDX-0060(米国特許出願公開第2004/0006215号明細書)などのCD30抗原に対するmAbを含むが、それらに限定されない。
 本発明の式(12)および式(13)におけるmは0または1である。好ましい実施形態では、mが0であり、式(32)または式(33)で示される複合体が提供される。
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
 本態様の別の好ましい実施形態では、mが1かつB2が水素原子であり、式(34)または式(35)で示される複合体が提供される。
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
 本態様のもう一つの好ましい実施形態では、mが1かつB2が-C(R6)(R7)OC(O)D1であり、式(36)または式(37)で示される複合体が提供される。この実施形態においては、一つのアセタールに対して二つのE1を有する誘導体が提供される。
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
 以下に実施例を挙げて本発明を更に具体的に説明するが、本発明はこれに限定されるものではない。
 1H-NMR分析では日本電子データム(株)製JNM-ECP400またはJNM-ECA600を使用した。測定にはφ5mmチューブを用い、重水素化溶媒がCDCl3またはd6-DMSOの場合は、内部標準物質としてテトラメチルシラン(TMS)を使用し、D2Oの場合はHDOを基準とした。
 ゲル浸透クロマトグラフィー(GPC)分析では、GPCシステムとしてSHODEX GPC SYSTEM-11、検出器である示唆屈折計としてSHODEX RIX8、GPCカラムとしてSHODEX KF801L、KF803L、KF804L(φ8mm×300mm)を3本直列に繋ぎ、カラムオーブンの温度を40℃とした。溶離液としてはテトラヒドロフランを用い、流速は1ml/分とし、試料の濃度は0.1wt%とし、注入容量は0.1mLとして測定を行った。検量線は関東化学(株)製のエチレングリコール、ジエチレングリコール、トリエチレングリコール、並びにPolymer Laboratory製の分子量600~70000のポリエチレングリコールまたはポリエチレンオキシドのGPC用Polymer Standardsを用いて作成したものを用いた。データの解析はBORWIN GPC計算プログラムを使用した。Mnは数平均分子量、Mwは重量平均分子量を表わし、分子量分布はMw/Mnとしてその計算値を示した。
 加水分解試験で使用するpD 3.0のクエン酸重水緩衝液、pD 4.0の酢酸重水緩衝液、pD 7.4のHEPES(2-[4-(2-Hydroxyethyl)-1-pipe
razinyl]ethanesulfonic acid)重水緩衝液は、それぞれ0.1Mのクエン酸重水溶液、0.1Mの酢酸重水溶液、0.1MのHEPES重水溶液に0.1Mの水酸化ナトリウム重水溶液を加え、「Glasoe, P. K.; Long, F. A. J. Phys. Chem. 1960, 64, 188-190」に記載されている以下の関係式に基づいて調製した。
 pD=pHメーターの測定値+0.40
 ベンジルアミンの放出率は式(44)の化合物を用いて1H-NMRで評価し、式(44)の化合物におけるベンジルアミンのメチレン水素の積分値をI1、アセタールの加水分解に伴う1,6-ベンジル脱離により放出されるベンジルアミンのメチレン水素の積分値をI2として、次の計算式により算出した。
 ベンジルアミンの放出率(%)=[I2/(I1+I2)]×100
(実施例1)
 温度計、窒素吹き込み管、攪拌機および冷却管を装備した50 mLの三つ口フラスコに3-ヒドロキシベンズアルデヒド(2.00 g, 16.4 mmol)、オルトギ酸トリメチル(3.48 g, 32.8 mmol)、メタノール(17 g)を仕込み、p-トルエンスルホン酸一水和物(0.312 mg, 1.64 mmol)を加えて25℃にて2時間反応を行った。水酸化ナトリウムを加えてしばらく撹拌した後、溶媒を減圧留去した。残渣をジクロロメタンに溶解し、5wt%炭酸水素ナトリウム水溶液、25wt%食塩水の順で洗浄した後、有機層を無水硫酸ナトリウムで乾燥した。濾過後、溶媒を減圧留去して式(38)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
3.33(6H, s, -OCH 3 ),
5.35(1H, s, -CH<),
6.81(1H, d, arom. H),
6.95(1H, d, arom. H),
7.23-7.26(1H, m, arom. H)
Figure JPOXMLDOC01-appb-C000075
(実施例2)
 温度計、窒素吹き込み管、攪拌機および冷却管を装備した50 mLの三つ口フラスコに文献(Freeman, J. H.; J.Am.Chem.Soc. 1952, 74, 6257-6260)に従い合成した2,4-ジ(ヒドロキシメチル)フェノール(50.0 mg, 0.324 mmol)、式(38)の化合物(217 mg, 1.29 mmol)、2,6-ジ-tert-ブチル-p-クレゾール(7.14 mg, 0.0324 mmol)、無水硫酸ナトリウム(1 g)およびシクロペンチルメチルエーテル(10 g)を仕込み、p-トルエンスルホン酸一水和物(4.10 mg, 0.0212 mmol)を加えて40℃にて2時間反応を行った。N-メチルモルホリンを加えてしばらく撹拌した後、濾過を行った。10wt%食塩水で洗浄した後、有機層を無水硫酸ナトリウムで乾燥した。濾過後、溶媒を減圧留去して式(39)の化合物を得た。
1H-NMR(d6-DMSO, 内部標準TMS); δ(ppm):
4.42(2H, d, -CH 2 OH),
4.93(1H, d, -CH 2 O-),
5.10(1H, t, -CH2OH),
5.15(1H, d, -CH 2 O-),
6.01(1H, s, -CH<),
6.80-7.21(7H, m, arom. H),
9.53(1H, bs, >C-OH)
Figure JPOXMLDOC01-appb-C000076
(実施例3)
 温度計、窒素吹き込み管、攪拌機および冷却管を装備した300 mLの四つ口フラスコに脱水メタノール(12.8 g, 0.400 mol)、脱水トルエン(150 g)および金属ナトリウム0.3 g(13m mol)を仕込み、窒素を吹き込みながら金属ナトリウムが溶解するまで室温で攪拌した。この溶液を5 Lオートクレーブへ仕込み、系内を窒素置換後、100℃に昇温した。100~130℃、1 MPa以下の圧力でエチレンオキシド(1,987 g, 45 mol)を加えた後、更に2時間反応を続けた。減圧にて未反応のエチレンオキシドガスを除去後、60℃に冷却し、85%リン酸水溶液でpH 7.5に調整して式(40)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
2.68(1H, t, OH),
3.38(3H, s, CH 3 O-),
3.49-3.85(450H, m, -(OCH 2 CH 2 )n-)
GPC分析;
 数平均分子量(Mn): 5119,
 重量平均分子量(Mw): 5226,
 多分散度(Mw/Mn): 1.021
Figure JPOXMLDOC01-appb-C000077
(実施例4)
 温度計、窒素吹き込み管、攪拌機、Dean-stark管および冷却管を装備した500 mLの三つ口フラスコに式(40)の化合物(100 g, 20.0 mmol)とトルエン(250g)を仕込み、水をトルエンで共沸除去した。40℃へ冷却後、トリエチルアミン(3.24 g, 32.0 mmol)を仕込み、滴下漏斗に準備した塩化メタンスルホニル(2.75 g, 24.0 mmol)を徐々に滴下した。滴下終了後、40℃で3時間反応を行った。エタノール(1.11 g, 24.0 mmol)を加えてしばらく攪拌し、濾過後、酢酸エチル(200 g)で希釈した。ヘキサン(500 g)を添加して晶析を行い、濾過後、結晶を酢酸エチル(500 g)に溶解させた。ヘキサン(500g)を添加して再度晶析を行い、濾過後、減圧下で乾燥して式(41)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
3.08(3H, s, -OSO2CH 3 ),
3.38(3H, s, CH 3 O-),
3.52-3.85(448H, m, -(OCH 2 CH 2 )n-OCH 2 -),
4.37-4.39(2H, m, -CH 2 OSO2CH3)
GPC分析;
 数平均分子量(Mn): 5197,
 重量平均分子量(Mw): 5306,
 多分散度(Mw/Mn): 1.021
Figure JPOXMLDOC01-appb-C000078
(実施例5)
 温度計、窒素吹き込み管、攪拌機および冷却管を装備した50 mLの三つ口フラスコに式(39)の化合物(37.0 mg, 0.141 mmol)、式(41)の化合物(705 mg, 0.141 mmol)、炭酸カリウム(97.0 mg, 0.705 mmol)およびアセトニトリル(3.5 g)を仕込み、80℃にて4時間反応を行った。濾過後、溶媒を減圧留去し、残渣をジクロロメタンに溶解した。10wt%食塩水で洗浄した後、有機層を無水硫酸ナトリウムで乾燥した。濾過後、溶媒を減圧留去し、残渣をトルエン(50 g)に溶解した。ヘキサン(50 g)を添加して晶析を行い、濾過後、減圧乾燥して式(42)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm): 
3.38(3H, s, -OCH 3 ),
3.52-4.18(450H, m, -(OCH2CH2)n-),
4.62(2H, s, -CH 2 OH),
4.98(1H, d, -CH 2 O-),
5.18(1H, d, -CH 2 O-),
5.95(1H, s, -CH<),
6.87-7.34(7H, m, arom. H)
GPC分析;
 数平均分子量(Mn): 5375,
 重量平均分子量(Mw): 5490,
 多分散度(Mw/Mn): 1.021
Figure JPOXMLDOC01-appb-C000079
(実施例6) 
 温度計、窒素吹き込み管、攪拌機および冷却管を装備した50 mLの三つ口フラスコに式(42)の化合物(300 mg, 0.0600 mmol)、炭酸ジ(N-スクシンイミジル)(46.0 mg, 0.180 mmol)、トリエチルアミン(21.0 mg, 0.208 mmol)およびジクロロメタン(5 g)を仕込み、25℃にて12時間反応を行った。濾過後、5wt%食塩水で洗浄し、有機層の溶媒を減圧留去した。残渣を酢酸エチル(6 g)に溶解し、無水硫酸ナトリウムで乾燥した後、濾過を行った。酢酸エチル(44 g)を加えた後、ヘキサン(50 g)を添加して晶析を行い、濾過後、減圧乾燥して式(43)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm): 
2.85(4H, s, -COCH 2 CH 2 CO-),
3.38(3H, s, -OCH 3 ),
3.52-4.18(450H, m, -(OCH2CH2)n-),
5.00(1H, d, -CH 2 OCH<),
5.18(1H, d, -CH 2 O-),
5.25(2H, s, -CH 2 OCO-),
5.97(1H, s, -CH<),
6.96-7.35(7H, m, arom. H)
GPC分析;
 数平均分子量(Mn): 5516,
 重量平均分子量(Mw): 5634,
 多分散度(Mw/Mn): 1.021
Figure JPOXMLDOC01-appb-C000080
(実施例7) 
 温度計、窒素吹き込み管、攪拌機および冷却管を装備した50 mLの三つ口フラスコに式(43)の化合物(72.0 mg, 0.0144 mmol)、ベンジルアミン(6.17 mg, 0.0576 mmol)およびトルエン(5 g)を仕込み、40℃で1時間反応を行った。濾過後、酢酸エチル(50 g)を加え、ヘキサン(50 g)を添加して晶析を行った。濾過後、減圧乾燥して式(44)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm): 
3.38(3H, s, -OCH 3 ),
3.52-4.18(450H, m, -(OCH2CH2)n-),
4.82(2H, s, -NH-CH 2 -),
4.98(1H, d, -CH 2 OCH<),
5.07(2H, s, -CH 2 OCO-),
5.17(1H, d, -CH 2 O-),
5.95(1H, s, -CH<),
6.93-7.35(12H, m, arom. H)
GPC分析;
 数平均分子量(Mn): 5508,
 重量平均分子量(Mw): 5625,
 多分散度(Mw/Mn): 1.021
Figure JPOXMLDOC01-appb-C000081
(実施例8)
 式(44)の化合物(20 mg)をそれぞれpD 3.0のクエン酸重水緩衝液(1mL)、pD 4.0の酢酸重水緩衝液(1mL)、pD 7.4のHEPES重水緩衝液(1mL)に溶解した。37℃の恒温槽で静置し、アセタールの加水分解に伴うベンジルアミンの放出率を1H-NMRで測定した。測定結果を図6に示した。 
 図6に示すように、式(44)の化合物はpD 3.0および4.0においてアセタールの加水分解に伴う1,6-ベンジル脱離によりベンジルアミンを放出し、ベンジルアミンの放出半減期(t1/2)はそれぞれ6時間および44時間であった。pD 7.4においては96hr後でも加水分解は見られなかった。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本願は、2017年3月30日付で出願された日本国特許出願(2017-067636)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。

Claims (14)

  1.  親水性ポリマー部およびアセタール部を含む親水性ポリマー誘導体であって、
     式(1)または式(2)で表される構造を含むことを特徴とする、親水性ポリマー誘導体。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
     (式(1)および式(2)中、
     B1は水素原子または-C(R6)(R7)OC(O)E1であり;
     E1は脱離基であり;
     R1は、炭素数1~10の炭化水素基または水素原子であり、R1が前記アセタール部の酸素原子に対して結合されていてよく;
     R2、R3、R4、R5、R6およびR7は、それぞれ独立して、炭素数1~10の炭化水素基または水素原子であり;
     mは0または1であり;
     前記アセタール部に含まれる2つの酸素原子の一方がフェニル基に結合しており;および
     波線は前記アセタール部に含まれる2つの酸素原子の両方に結合している炭素原子に対する共有結合を表す。)
  2.  式(3)または式(4)で示されることを特徴とする、請求項1記載の親水性ポリマー誘導体。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (式(3)および式(4)中、
     P1は前記親水性ポリマー部であり;
     wは1~20の整数であり;
     Z1はエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基、単結合またはアルキレン基であり、Z1がエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基であって、複数の同一構造単位が結合している場合における前記構造単位の数は2以下であり;
     A1は炭素数1~10の2価の炭化水素基、または置換基を有していてもよいフェニレン基であり;
     R8およびR9は、それぞれ独立して炭素数1~9の炭化水素基または水素原子であり;および
     R10は、炭素数1~10の炭化水素基または水素原子である。)
  3.  式(5)または式(6)で示されることを特徴とする、請求項1記載の親水性ポリマー誘導体。
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (式(5)および式(6)中、
     P1は前記親水性ポリマー部であり;
     wは1~20の整数であり;
     Z2はエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基、単結合またはアルキレン基であり、Z2がエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基であって、複数の同一構造単位が結合している場合における前記構造単位の数は2以下であり;
     A2は炭素数1~10の炭化水素基、置換基を有していてもよいフェニル基または水素原子であり;
     R11は、炭素数1~10の炭化水素基または水素原子である。)
  4.  P1が、末端に炭化水素基または化学反応可能な官能基を有する直鎖型のポリエチレングリコールである、請求項2または3記載の親水性ポリマー誘導体。
  5.  wが1であり、P1が式(7)または式(8)で示されることを特徴とする、請求項4記載の親水性ポリマー誘導体。
    Figure JPOXMLDOC01-appb-C000007
    (式(7)中、
     Y1は炭素数1~24の炭化水素基であり;および
     nは3~2000の整数である。)
    Figure JPOXMLDOC01-appb-C000008
    (式(8)中、
     X1は化学反応可能な官能基であり;
     Z3は2価のスペーサーであり;および
     nは3~2000の整数である。)
  6.  P1が、末端に炭化水素基または化学反応可能な官能基を有する分岐型のポリエチレングリコールである、請求項2または3記載の親水性ポリマー誘導体。
  7.  wが1であり、P1が式(9)または式(10)で示されることを特徴とする、請求項6記載の親水性ポリマー誘導体。
    Figure JPOXMLDOC01-appb-C000009
    (式(9)中、
     Y1は炭素数1~24の炭化水素基であり;
     nは3~1000の整数であり;および
    vは0または2である。)
    Figure JPOXMLDOC01-appb-C000010
    (式(10)中、
     X1は化学反応可能な官能基であり;
     Z3は2価のスペーサーであり;
     nは3~1000の整数であり;および
     vは0または2である。)
  8.  wがv+2であり、P1が式(11)で示されることを特徴とする、請求項6記載の親水性ポリマー誘導体。
    Figure JPOXMLDOC01-appb-C000011
    (式(11)中、
     X1は化学反応可能な官能基であり;
     Z3は2価のスペーサーであり;
     nは3~1000の整数であり;および
     vは0または2である。)
  9.  X1がマレイミド基、α-ハロアセチル基、アクリル基、ビニルスルホン基、保護されたチオール基、ピリジルジチオ基、アルデヒド基、エポキシ基、カルボキシ基、保護されたカルボキシ基、保護されたアミノ基、保護されたオキシアミノ基、保護されたヒドラジド基、アジド基、アリル基、ビニル基、アルキニル基およびヒドロキシ基よりなる群から選択される、請求項5、7または8に記載の親水性ポリマー誘導体。
  10.  X1が式(a)、式(b)、式(c)、式(d)、式(e)、式(f)、式(g)、式(h)、式(i)、式(j)、式(k)、式(l)、式(m)、式(n)および式(o)からなる群から選択される、請求項5、7または8に記載の親水性ポリマー誘導体。
    Figure JPOXMLDOC01-appb-C000012
     (式(a)中、R12は水素原子または炭素数1~5の炭化水素基であり;
     式(b)中、R13は塩素原子、臭素原子およびヨウ素原子から選択されるハロゲン原子であり、
     式(l)中、R14は水素原子または炭素数1~5の炭化水素基である。)
  11.  Z3はエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基、単結合またはアルキレン基であり、Z3がエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基であって、複数の同一構造単位が結合している場合における前記構造単位の数は2以下である、請求項5、7または8記載の親水性ポリマー誘導体。
  12.  P1が末端数2~8のポリエチレングリコールであり、P1を構成するポリエチレングリコールの全ての末端がそれぞれZ1に対して結合しており、wが前記ポリエチレングリコールの末端数に等しい、請求項2または3記載の親水性ポリマー誘導体。
  13.  P1が、式(r)、式(s)、式(t)、式(u)および式(v)からなる群から選択される、請求項12記載の親水性ポリマー誘導体。
    Figure JPOXMLDOC01-appb-C000013
    (式中、nは3~2000の整数であり、
     P1が式(r)で表される場合にはwが2であり、
     P1が式(s)で表される場合にはwが3であり、
     P1が式(t)で表される場合にはwが4であり、
     P1が式(u)で表される場合にはwが4であり、
     P1が式(v)で表される場合にはwが8である。)
  14.  請求項1~13のいずれか一つの請求項に記載の親水性ポリマー誘導体のOC(O)E1基と生体機能性分子に含まれるアミノ基とを反応させて得られる、式(12)または式(13)で表される構造を含むことを特徴とする複合体。
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    (式(12)および式(13)中、
     B2は水素原子または-C(R6)(R7)OC(O)D1であり;
     R1は、炭素数1~10の炭化水素基または水素原子であり、R1が前記アセタール部の酸素原子に対して結合されていてよく;
     R2、R3、R4、R5、R6、R7およびR15は、それぞれ独立して、炭素数1~10の炭化水素基または水素原子であり;
     mは0または1であり;
     波線は前記アセタール部に含まれる2つの酸素原子の両方に結合している炭素原子に対する共有結合を表し;および
     D1は、前記生体機能性分子に含まれるアミノ基のうち、カーバメート結合を構成するアミノ基を除いた残基である。)
PCT/JP2018/011485 2017-03-30 2018-03-22 自壊性アセタールリンカーを有する親水性ポリマー誘導体及びそれを用いた複合体 WO2018180914A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/493,033 US11319408B2 (en) 2017-03-30 2018-03-22 Hydrophilic polymer derivative having self-immolative acetal linker and conjugate using same
EP18777041.7A EP3604384B1 (en) 2017-03-30 2018-03-22 Hydrophilic polymer derivative having self-immolative acetal linker and composite using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-067636 2017-03-30
JP2017067636 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018180914A1 true WO2018180914A1 (ja) 2018-10-04

Family

ID=63677223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011485 WO2018180914A1 (ja) 2017-03-30 2018-03-22 自壊性アセタールリンカーを有する親水性ポリマー誘導体及びそれを用いた複合体

Country Status (4)

Country Link
US (1) US11319408B2 (ja)
EP (1) EP3604384B1 (ja)
JP (1) JP7022328B2 (ja)
WO (1) WO2018180914A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204256A1 (ja) * 2022-04-22 2023-10-26 日油株式会社 アセタール型リリーサブルポリオキシエチレン誘導体、その製造方法及びアセタール型リリーサブルポリオキシエチレン結合体

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
US4816397A (en) 1983-03-25 1989-03-28 Celltech, Limited Multichain polypeptides or proteins and processes for their production
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US4956303A (en) 1986-04-28 1990-09-11 Antibody Technology Limited Secondary antibodies against complexes of small molecules and binding partners therefor, their preparation, and their use in diagnostic methods
EP0519596A1 (en) 1991-05-17 1992-12-23 Merck & Co. Inc. A method for reducing the immunogenicity of antibody variable domains
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
EP0592106A1 (en) 1992-09-09 1994-04-13 Immunogen Inc Resurfacing of rodent antibodies
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1999030727A1 (en) 1997-12-17 1999-06-24 Enzon, Inc. Polymeric prodrugs of amino- and hydroxyl-containing bioactive agents
US5939598A (en) 1990-01-12 1999-08-17 Abgenix, Inc. Method of making transgenic mice lacking endogenous heavy chains
WO2000064483A2 (en) 1999-04-23 2000-11-02 Alza Corporation Releasable linkage and compositions containing same
US20020142358A1 (en) 2000-04-28 2002-10-03 Toshifumi Mikayama Human anti-CD40 antibodies and methods of making and using same
US20030211100A1 (en) 2001-11-09 2003-11-13 Vahe Bedian Antibodies to CD40
US20040006215A1 (en) 2002-01-09 2004-01-08 Tibor Keler Human monoclonal antibodies against CD30
WO2005058367A2 (en) 2003-12-16 2005-06-30 Nektar Therapeutics Al, Corporation Pegylated small molecules
US20080171040A1 (en) 2004-06-01 2008-07-17 Genentech, Inc. Antibody-drug conjugates and methods
US20080305044A1 (en) 2004-11-29 2008-12-11 Seattle Genetics, Inc. Engineered Antibodies and Immunoconjugates
JP2012500804A (ja) * 2008-08-22 2012-01-12 バクスター・インターナショナル・インコーポレイテッド ポリマーベンジルカルボネート誘導体
JP2014208794A (ja) * 2013-03-25 2014-11-06 日油株式会社 ベンジリデンアセタールリンカーを有する親水性ポリマー誘導体
JP2016194057A (ja) * 2015-03-31 2016-11-17 日油株式会社 環状ベンジリデンアセタールリンカーを有する生分解性ポリエチレングリコール誘導体
JP2017067636A (ja) 2015-09-30 2017-04-06 キヤノン株式会社 撮像装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180095B1 (en) 1997-12-17 2001-01-30 Enzon, Inc. Polymeric prodrugs of amino- and hydroxyl-containing bioactive agents
CZ300776B6 (cs) * 2007-11-21 2009-08-05 Univerzita Pardubice Polymerní konjugát antimykotického léciva, zpusob jeho prípravy a farmaceutická kompozice jej obsahující
EP2266964B1 (en) 2009-06-22 2013-01-09 KTB Tumorforschungsgesellschaft mbH Acid-labile trigger units

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816397A (en) 1983-03-25 1989-03-28 Celltech, Limited Multichain polypeptides or proteins and processes for their production
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US4956303A (en) 1986-04-28 1990-09-11 Antibody Technology Limited Secondary antibodies against complexes of small molecules and binding partners therefor, their preparation, and their use in diagnostic methods
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5939598A (en) 1990-01-12 1999-08-17 Abgenix, Inc. Method of making transgenic mice lacking endogenous heavy chains
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
EP0519596A1 (en) 1991-05-17 1992-12-23 Merck & Co. Inc. A method for reducing the immunogenicity of antibody variable domains
EP0592106A1 (en) 1992-09-09 1994-04-13 Immunogen Inc Resurfacing of rodent antibodies
WO1999030727A1 (en) 1997-12-17 1999-06-24 Enzon, Inc. Polymeric prodrugs of amino- and hydroxyl-containing bioactive agents
JP2002508400A (ja) * 1997-12-17 2002-03-19 エンゾン,インコーポレーテッド アミノ及びヒドロキシル含有生物活性剤のポリマープロドラッグ
WO2000064483A2 (en) 1999-04-23 2000-11-02 Alza Corporation Releasable linkage and compositions containing same
US20020142358A1 (en) 2000-04-28 2002-10-03 Toshifumi Mikayama Human anti-CD40 antibodies and methods of making and using same
US20030211100A1 (en) 2001-11-09 2003-11-13 Vahe Bedian Antibodies to CD40
US20040006215A1 (en) 2002-01-09 2004-01-08 Tibor Keler Human monoclonal antibodies against CD30
WO2005058367A2 (en) 2003-12-16 2005-06-30 Nektar Therapeutics Al, Corporation Pegylated small molecules
US20080171040A1 (en) 2004-06-01 2008-07-17 Genentech, Inc. Antibody-drug conjugates and methods
US20080305044A1 (en) 2004-11-29 2008-12-11 Seattle Genetics, Inc. Engineered Antibodies and Immunoconjugates
JP2012500804A (ja) * 2008-08-22 2012-01-12 バクスター・インターナショナル・インコーポレイテッド ポリマーベンジルカルボネート誘導体
JP2014208794A (ja) * 2013-03-25 2014-11-06 日油株式会社 ベンジリデンアセタールリンカーを有する親水性ポリマー誘導体
JP2016194057A (ja) * 2015-03-31 2016-11-17 日油株式会社 環状ベンジリデンアセタールリンカーを有する生分解性ポリエチレングリコール誘導体
JP2017067636A (ja) 2015-09-30 2017-04-06 キヤノン株式会社 撮像装置

Non-Patent Citations (24)

* Cited by examiner, † Cited by third party
Title
ANGEW CHEM INTL. ED. ENGL., vol. 33, 1994, pages 183 - 186
BIOCONJUGATE CHEMISTRY, vol. 26, no. 7, 2015, pages 1172 - 1181
BIRD, R. E. ET AL., SCIENCE, vol. 242, 1988, pages 423 - 442
BOWEN, M. A. ET AL., J. IMMUNOL., vol. 151, 1993, pages 5896 - 5906
COLE, S. P. C. ET AL.: "Monoclonal Antibodies and Cancer Therapy", 1985, ALAN R. LISS, pages: 77 - 96
FRANCISCO, J. A. ET AL., CANCER RES., vol. 60, 2000, pages 3225 - 3231
FREEMAN, J. H., J. AM. CHEM. SOC., vol. 74, 1952, pages 6257 - 6260
GLASOE, P. K.LONG, F. A., J. PHYS. CHEM., vol. 64, 1960, pages 188 - 190
HUSTON, J. S. ET AL., PROC. NATL. ACAD. SOT USA, vol. 85, 1988, pages 5879 - 5883
JANEWAY, C.TRAVERS, P.WALPORT, M.SHLOMCHIK, M.: "Immunobiology", 2001, GARLAND PUBLISHING
JOURNAL OF MEDICAL CHEMISTRY, vol. 42, no. 18, 1999, pages 3657 - 3667
KOHLER, GMILSTEIN, C., NATURE, vol. 256, 1975, pages 495 - 497
KOZBOR, D. ET AL., IMMUNOL. TODAY, vol. 4, 1983, pages 72 - 79
KOZBOR, D. ET AL., IMMUNOLOGY TODAY, vol. 4, 1983, pages 72 - 79
MILLER, K. ET AL., J. IMMUNOL., vol. 170, 2003, pages 4854 - 4861
MILSTEIN, C. ET AL., NATURE, vol. 305, 1983, pages 537 - 539
OLSSON L. ET AL., METH. ENZYMOL., vol. 92, 1982, pages 3 - 16
See also references of EP3604384A4
TENG, N. N. ET AL., PROC. NATL. ACAD. SCI. USA., vol. 80, 1983, pages 7308 - 7312
TRAIL, P. A. ET AL., CANCER RESEARCH, vol. 57, 1997, pages 100 - 105
TRAIL, P. A. ET AL., SCIENCE, vol. 261, 1993, pages 212 - 215
WAHL, A. F. ET AL., CANCER RES., vol. 62, no. 13, 2002, pages 3736 - 3742
WARD, E. S. ET AL., NATURE, vol. 334, 1989, pages 544 - 554
WUTS, P. G M.GREENE, T. W.: "Protective Groups in Organic Synthesis", 2007, WILEY-INTERSCIENCE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204256A1 (ja) * 2022-04-22 2023-10-26 日油株式会社 アセタール型リリーサブルポリオキシエチレン誘導体、その製造方法及びアセタール型リリーサブルポリオキシエチレン結合体

Also Published As

Publication number Publication date
JP2018172648A (ja) 2018-11-08
EP3604384B1 (en) 2021-09-08
JP7022328B2 (ja) 2022-02-18
US20200010620A1 (en) 2020-01-09
US11319408B2 (en) 2022-05-03
EP3604384A4 (en) 2021-01-27
EP3604384A1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
AU2009302387B2 (en) HPMA - docetaxel or gemcitabine conjugates and uses therefore
KR102464270B1 (ko) 헤테로이관능성 단분산 폴리에틸렌 글리콜 및 그것을 이용한 복합체
WO2018180914A1 (ja) 自壊性アセタールリンカーを有する親水性ポリマー誘導体及びそれを用いた複合体
US10808050B2 (en) Antibody-drug conjugate having cyclic benzylidene acetal linker
EP3766917B1 (en) Heterobifunctional compound having monodispersed polyethylene glycol in main chain or side chain
EP4036149A1 (en) Heterobifunctional monodispersed polyethylene glycol having peptide linker
US20240131178A1 (en) Antibody-drug conjugate including antibody against human cldn18.2, and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018777041

Country of ref document: EP

Effective date: 20191030