WO2018180694A1 - Heating device and heating method - Google Patents

Heating device and heating method Download PDF

Info

Publication number
WO2018180694A1
WO2018180694A1 PCT/JP2018/010774 JP2018010774W WO2018180694A1 WO 2018180694 A1 WO2018180694 A1 WO 2018180694A1 JP 2018010774 W JP2018010774 W JP 2018010774W WO 2018180694 A1 WO2018180694 A1 WO 2018180694A1
Authority
WO
WIPO (PCT)
Prior art keywords
burner
fuel gas
nozzle
heating
sleeve fire
Prior art date
Application number
PCT/JP2018/010774
Other languages
French (fr)
Japanese (ja)
Inventor
透理 堀川
一晃 原
好司 岩田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2019509343A priority Critical patent/JP6690779B2/en
Priority to EP18778121.6A priority patent/EP3604925B1/en
Priority to KR1020197025717A priority patent/KR102273957B1/en
Priority to CN201880013141.3A priority patent/CN110325794B/en
Publication of WO2018180694A1 publication Critical patent/WO2018180694A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q9/00Pilot flame igniters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/74Preventing flame lift-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q9/00Pilot flame igniters
    • F23Q9/02Pilot flame igniters without interlock with main fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q9/00Pilot flame igniters
    • F23Q9/02Pilot flame igniters without interlock with main fuel supply
    • F23Q9/04Pilot flame igniters without interlock with main fuel supply for upright burners, e.g. gas-cooker burners
    • F23Q9/045Structurally associated with a main-burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q9/00Pilot flame igniters
    • F23Q9/08Pilot flame igniters with interlock with main fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2209/00Safety arrangements
    • F23D2209/20Flame lift-off / stability

Definitions

  • the present invention relates to a heating apparatus including a burner, and more particularly to a heating apparatus that can stably hold a flame without misfire even at a high discharge speed and can perform heating with extremely high efficiency.
  • the present invention also relates to a heating method using the heating device.
  • FIG. 8 is a schematic view showing an example of a premixed combustion burner conventionally used.
  • combustible fuel gas 101 and air 102 are premixed in the premixed combustion burner 100 to form a mixed gas, and the mixed gas is discharged from the premixed combustion burner 100 and burned. As a result, a flame 103 is formed.
  • the heat transfer amount Q from the flame to the surface of the object to be heated is proportional to the heat transfer coefficient ⁇ , and the heat transfer coefficient ⁇ is equal to the flame discharge speed V 0 .
  • the heat transfer coefficient ⁇ is proportional to V 0 1/2 .
  • the heat transfer coefficient ⁇ is proportional to V 0 0.58 . Therefore, in order to improve the heating efficiency by the burner, it is required to increase the discharge speed.
  • Patent Document 1 a method for stabilizing the flame and suppressing the blow-off.
  • the burner of Patent Document 1 it is possible to stabilize the flame and raise the flame temperature.
  • the burner proposed in Patent Document 1 is not sufficient in terms of improving the discharge speed described above, and is provided with a burner that can be used stably at a higher discharge speed in order to improve heating efficiency. Development of a new heating device is required.
  • the present invention has been made in view of the above circumstances, and can provide a heating apparatus that can stably hold a flame without misfire even at a high discharge speed and can perform heating with extremely high efficiency.
  • the purpose is to provide.
  • Another object of the present invention is to provide a heating method using the heating device.
  • a heating device comprising a burner, The burner A main burner section comprising a fuel gas nozzle for discharging fuel gas and an air nozzle for discharging combustion air;
  • a heating apparatus comprising: a sleeve fire burner portion that is located outside the main burner portion and burns fuel gas discharged from the main burner portion.
  • the main burner section includes a pressure equalizing chamber on the upstream side of one or both of the fuel gas nozzle and the air nozzle.
  • a concave portion having a bottom portion and a tapered portion gradually widening from the bottom portion toward the tip of the burner is provided at the tip of the burner,
  • the main burner portion is disposed at the bottom;
  • the flaming burner comprises a flaming nozzle selected from a tubular nozzle having a diameter d and a slit nozzle having a width d in the short side direction; 6.
  • the heating apparatus according to any one of the above 1 to 7, further comprising a flow rate adjusting means capable of independently adjusting a flow rate in the main burner portion and a flow rate in the sleeve fire burner portion.
  • the ratio of the flow rate F1 of the fuel gas discharged from the main burner portion to the flow rate F2 of the fuel gas for the sleeve fire discharged from the sleeve fire burner portion, F1: F2, is set to 70:30 to 85:15.
  • Item 11 The heating method according to Item 9 or 10.
  • FIG. 1 It is a schematic diagram which shows the structure of the burner in one Embodiment of this invention. It is a schematic diagram which shows the structure of the main burner part in one Embodiment of this invention. It is a schematic diagram which shows the structure of the sleeve fire burner part in one Embodiment of this invention. It is a schematic diagram which shows the structure of the sleeve fire burner part in other embodiment of this invention. It is a figure which shows the discharge speed in each burner of an Example and a comparative example. It is a figure which shows the heating power in each burner of an Example and a comparative example. It is a figure which shows the example of a measurement of the temperature distribution in the burner of the comparative example 1 and Example 1. FIG. It is a schematic diagram which shows an example of the conventional premixed combustion burner.
  • the heating device of the present invention is a heating device including a burner, and the burner includes a main burner portion and a sleeve fire burner portion.
  • the main burner section includes a fuel gas nozzle that discharges fuel gas and an air nozzle that discharges combustion air, and the fuel gas and air discharged from the main burner section are combusted. To form a flame for heating.
  • the sleeve fire burner portion has a function for igniting the fuel gas discharged from the main burner portion.
  • the sleeve fire burner portion is positioned outside the burner with respect to the main burner portion.
  • the heat transfer amount Q from the flame to the surface of the object to be heated is proportional to the heat transfer coefficient ⁇ , and the heat transfer coefficient ⁇ increases as the flame discharge speed V 0 increases. Therefore, according to the heating device of the present invention, heating can be performed with extremely high efficiency by causing a flame to collide with the surface of the object to be heated at high speed. As a result, the object to be heated can be heated to a higher temperature at a higher speed.
  • the amount of fuel gas necessary to achieve the same heating temperature can be reduced. Furthermore, since the discharge speed can be increased in the heating device of the present invention, the flame can reach a distant position. Therefore, the burner can be installed at a position away from the object to be heated, and the degree of freedom in device design is high.
  • the heating device of the present invention can be used very suitably as a heating device for an iron making process for heating an iron making material.
  • the heating device for the iron making process include an ignition device for a sintering machine used for producing sintered ore.
  • the structure of a burner is a line burner provided with the several nozzle arranged in a linear form.
  • the flame can be stably maintained even at a high discharge speed by using the above-described positional relationship for the following reason. That is, as proposed in Patent Document 1, the fuel gas nozzle and the combustion air nozzle are arranged so as to sandwich the squib burner, and the fuel gas discharge direction and the combustion air discharge direction are arranged to intersect each other. In this case, a vortex flow is generated, and the kinetic energy loss due to the flow turbulence increases, so that a high flow velocity cannot be maintained.
  • the sleeve fire burner portion is located outside the burner with respect to the main burner portion, thereby suppressing the turbulence of the flow of the mainstream fuel gas and combustion air, and the high flow rate. Can be maintained. Further, if the discharge direction of the fuel gas discharged from the main burner portion and the combustion air are made parallel, the flow disturbance can be further suppressed and a higher flow rate can be maintained.
  • the squib burner is arranged outside, and the combustion air nozzle is arranged outside the fuel gas nozzle, it is necessary to discharge the fuel gas toward the scabs on both sides. Is required on both sides.
  • the diameter of each nozzle is reduced, so that the attenuation of the gas speed after discharge increases and the high flow rate after discharge cannot be maintained.
  • a high flow rate can be maintained.
  • the fuel gas is not particularly limited, and any flammable gas can be used.
  • the fuel gas for example, natural gas or LPG (liquefied petroleum gas) can be generally used.
  • LPG liquefied petroleum gas
  • a process gas by-produced in the steelworks can be used as the fuel gas.
  • the process gas it is preferable to use a process gas containing a coke oven gas.
  • the process gas containing the coke oven gas for example, the coke oven gas itself (that is, a gas composed only of the coke oven gas) and M gas that is a mixture of coke oven gas and blast furnace gas are preferably used. .
  • FIG. 1 is a schematic diagram of a burner 1 according to an embodiment of the present invention, and shows a structure of a cross section of the burner 1.
  • the burner 1 includes a burner body 10, and a main burner portion 20 and a sleeve fire burner portion 30 provided on the burner body 10.
  • a recess 40 is provided at the tip of the burner 1 (on the side where the flame is formed).
  • the recess 40 includes a bottom 41 and a tapered portion 42 that gradually widens from the bottom 41 toward the tip of the burner 1. Have.
  • FIG. 2 is a schematic diagram showing the structure of the main burner portion 20 in one embodiment of the present invention.
  • the main burner unit 20 includes a fuel gas nozzle 21 that discharges fuel gas and an air nozzle 22 that discharges combustion air.
  • One fuel gas nozzle 21 is provided at the center of the bottom 41.
  • Two air nozzles 22 are provided symmetrically so as to sandwich the fuel gas nozzle 21 therebetween.
  • the cross section of one burner is shown in the example shown in FIG. 2, when a wide article is heated, it is preferable to arrange a plurality of burners in the direction perpendicular to the paper surface to form a line burner.
  • Fuel gas is supplied as indicated by arrow G and is discharged from the fuel gas nozzle 21.
  • Combustion air is supplied as indicated by arrow A and is discharged from the air nozzle 22.
  • the fuel gas is not ignited at the time of discharge, but is ignited by the sleeve fire 50 formed by the sleeve fire burner 30 as shown in FIG.
  • the shape of the fuel gas nozzle 21 and the air nozzle 22 is not particularly limited, and can be any shape. However, as shown in FIG. 2, it is preferable to use a straight pipe structure that does not have a cone-like structure at the nozzle tip. If a straight tube structure nozzle is used, the discharge rate can be further improved and the heat transfer coefficient on the heated surface can be further increased. As a result, the heating efficiency can be further improved. This is because the straight pipe structure nozzle has less energy loss due to the vortex formation than the nozzle that forms the swirl flow, and the gas velocity after discharge is suppressed from being attenuated.
  • the diameters of the fuel gas nozzle 21 and the air nozzle 22 are preferably determined so that the discharge flow rate in the normal use flow rate range is 50 to 80 Nm / s in order to increase the heating efficiency of the burner. Further, the discharge flow rate during maximum combustion is preferably 150 Nm / s or less. The definition of the discharge speed will be described later.
  • the specific diameters of the fuel gas nozzle 21 and the air nozzle 22 are not limited, but if the diameter is 3 mm or more, attenuation of the gas velocity after being discharged from the nozzle can be further suppressed. Therefore, the diameter is preferably 3 mm or more, and more preferably 5 mm or more.
  • the condition of the diameter is not particularly limited, but if the diameter is 30 mm or less, the heat load of the burner can be maintained in a more preferable range, and the life of the burner can be extended. Also, by providing a large number of small diameter nozzles having a diameter of 30 mm or less, heating can be performed more uniformly than when a small number of large diameter nozzles are provided. Therefore, the diameter is preferably 30 mm or less.
  • the diameter of the fuel gas nozzle 21 and the diameter of the air nozzle 22 may be the same or different.
  • the distance (nozzle pitch) L 1 between the fuel gas nozzle 21 and the air nozzle 22 is 2d NG ⁇ L 1 ⁇ 15d NA when the diameter of the fuel gas nozzle 21 is d NG and the diameter of the air nozzle 22 is d NA. It is preferable to satisfy.
  • the fuel gas nozzle interval (nozzle pitch) L 2 of each burner satisfies 2d NG ⁇ L 2 ⁇ 15d NA . If the above conditions are satisfied, combustion stability is further improved, and attenuation of gas velocity can be further suppressed.
  • the main burner portion 20 is provided with a pressure equalizing chamber 23 on the upstream side of each of the fuel gas nozzle 21 and the air nozzle 22, and fuel gas or air passes on the opposite side (upstream side) of the nozzle of the pressure equalizing chamber 23.
  • a perforated plate 24 provided with holes is provided. If the pressure equalizing chamber 23 is provided in this way, the gas can be discharged more uniformly, so that the flame can be further stabilized and the discharge speed can be further increased.
  • the pressure equalizing chamber 23 can be provided only on the upstream side of one of the fuel gas nozzle 21 and the air nozzle 22, but it is preferable to provide the pressure equalizing chamber 23 on both as shown in FIG.
  • the pressure equalizing chamber is a structure provided on the upstream side of the nozzle in order to mitigate the influence of fluctuations in gas supply pressure.
  • the pressure equalization chamber includes a plate (throttle plate) provided on the upstream side of the nozzle and having one or more openings, and a space between the throttle plate and the nozzle. Is provided.
  • the upstream side of the diaphragm plate and the space are connected only by the opening of the diaphragm plate.
  • the total area of the openings provided in the diaphragm plate is smaller than the cross-sectional area of the space in a plane perpendicular to the discharge direction of the nozzle.
  • the total area of the nozzle openings is also smaller than the cross-sectional area of the space in a plane perpendicular to the nozzle ejection direction.
  • the sleeve fire burner portion has a function of igniting the fuel gas discharged from the main burner portion and burning the fuel gas.
  • the ignition of the fuel gas discharged from the main burner portion is performed by a flame (sleeve fire) formed by the sleeve fire burner portion.
  • the sleeve fire burner section normally includes a sleeve fire fuel gas outlet and a sleeve fire air outlet for forming a sleeve fire.
  • a sleeve fire is formed by burning the fuel gas for the sleeve fire using the air for the sleeve fire.
  • “sleeve fire fuel gas” may be simply referred to as “fuel gas”
  • sleeve fire air” may be simply referred to as “air”.
  • the heating device of the present invention includes the sleeve fire burner for burning the fuel gas discharged from the main burner outside the main burner as described above, the fuel gas from the main burner The flame can be stably maintained even under conditions where the discharge speed is high. Therefore, the burner of the present invention has a combustion chamber structure for stably maintaining a flame on the front side of the main burner, that is, a structure protruding toward the front of the burner so as to surround the main burner and the sleeve fire burner. There is also an advantage that it is not necessary.
  • the flame of the main burner is maintained in the space portion in front of the gas discharge direction from the main burner.
  • a combustion chamber structure for stably maintaining a flame or a cone-shaped structure composed of a refractory is provided on the front side of the main burner, and the flame is maintained inside or on the surface thereof.
  • the intersection of the gas discharge direction of the main burner portion and the gas discharge direction of the sleeve fire burner portion is the outside of the space portion in front of the gas discharge direction of the burner or the recess of the burner ( It is preferably located outside the burner.
  • FIG. 3 is a schematic diagram showing the structure of the sleeve fire burner 30 in one embodiment of the present invention.
  • the sleeve fire burner 30 is composed of a surface combustion burner.
  • a porous plate 31 is provided at the tip of the surface combustion burner, and fuel gas for sleeve fire and air for sleeve fire are supplied to the porous plate 31 as indicated by arrows G and A, respectively.
  • an accompanying flow accompanying the air flow is formed near the tip of the burner 1, particularly in the recess 40.
  • the flow rate of the gas discharged from the main burner portion is 50 m / s
  • the flow rate of the accompanying flow is as high as 20 to 30 m / s, so the sleeve fire 50 formed by the sleeve fire burner portion 30 is unstable. There is a risk of becoming.
  • the surface combustion burner since the ignition point exists on the surface or inside of the porous plate, the sleeve fire can be stably held without being affected by the accompanying flow.
  • the porous plate 31 is not particularly limited, and a plate-like member made of an arbitrary porous body can be used.
  • the porous body can be made of, for example, one or more materials selected from the group consisting of metals, alloys, and ceramics.
  • a metal mesh a laminate of metal fibers
  • the surface of the porous plate 31 is preferably disposed on the same plane as the surface of the tapered portion 42.
  • the main burner portion 20 and the sleeve fire burner portion 30 have a discharge axis (discharge direction) of the main burner portion 20 and a discharge axis (discharge direction) of the sleeve fire burner portion 30. It is preferable that they are arranged so as to intersect on the extension line. More specifically, it is preferable that the angle ⁇ formed by the bottom portion 41 and the tapered portion 42 constituting the recess 40 is 20 ° or more.
  • the angle ⁇ is less than 20 °, the flame of the sleeve fire burner part is difficult to reach the gas flow discharged from the main burner part, and misfire is likely to occur.
  • the ⁇ is more preferably 30 ° or more.
  • the upper limit of the ⁇ is not particularly limited, but is usually preferably 80 ° or less, and more preferably 60 ° or less.
  • the distance between the main burner portion and the sleeve fire burner portion is determined so that the flame of the sleeve fire burner portion (sleeve fire 50) reaches the discharge flow from the main burner portion.
  • the effective flame length of the sleeve fire burner is F
  • the distance that the flame of the sleeve fire burner reaches in the direction parallel to the surface of the bottom 41 is F ⁇ sin ⁇ .
  • the distance between the main burner portion and the sleeve fire burner portion may be determined so that the distance from the center position of the sleeve fire burner portion is F ⁇ sin ⁇ or less in the direction parallel to the surface of the bottom portion 41.
  • the effective flame length of the sleeve burner portion is 100 mm
  • the center of the main burner portion and the sleeve flame The distance at the center of the burner may be 75 mm or less.
  • the distance between the center of the main burner portion and the center of the sleeve burner portion is 60 to 110 mm.
  • the effective flame length can be determined as the length from the combustion surface or the taper surface of the region that is equal to or higher than the gas ignition temperature based on the measurement result of the flame temperature.
  • FIG. 4 is a schematic view showing an example of the structure of the sledge fire burner portion in another embodiment of the present invention.
  • the sleeve fire burner 30 includes a tubular nozzle having a diameter d as the sleeve fire nozzle 32.
  • the sleeve fire nozzle 32 includes an outer pipe and an inner pipe provided coaxially. As shown by an arrow G, the sleeve fire fuel gas is supplied to the inner pipe. It is discharged from the tip of the inner tube. On the other hand, as shown by the arrow A, the sleeve fire air is supplied to the outer pipe, and the sleeve fire air is discharged from the tip of the outer pipe.
  • the tip of the sleeve fire nozzle 32 is provided at a position deeper than d from the surface of the tapered portion 42 as shown in FIG. In other words, the distance from the surface of the taper portion 42 to the tip of the sleeve nozzle 32 is d or more.
  • the fuel gas for sleeve fire discharged from the sleeve fire nozzle 32 is ignited in the space 33, and the flame (sleeve) is formed so as to extend beyond the surface of the tapered portion 42.
  • the tip of the sleeve fire nozzle 32 is set to a position recessed toward the inside of the burner body 10, the effect of the accompanying flow described above can be suppressed and the sleeve fire can be stabilized without using a surface combustion burner. It becomes possible to hold. Even when the sleeve fire burner portion 30 includes a slit nozzle having a width d in the short side direction as the sleeve fire nozzle 32, the tip of the sleeve fire nozzle 32 is similarly recessed at least d from the surface of the tapered portion 42. It is preferable to provide it.
  • the distance from the surface of the tapered portion 42 to the tip of the sleeve fire nozzle 32 is preferably 2d or more.
  • the distance from the surface of the tapered portion 42 to the tip of the sleeve fire nozzle 32 is preferably 15 d or less, and more preferably 4 d or less.
  • the heating device of the present invention it is possible to stably hold a flame without misfire even at a high discharge speed, and it is possible to perform heating with extremely high efficiency.
  • the discharge speed at the time of use is not particularly limited and may be any speed as long as the flame can be held.
  • the fuel gas and air discharged from the main burner section The discharge speed of each is preferably 50 Nm / s or more, more preferably 60 Nm / s or more, and still more preferably 65 Nm / s or more.
  • an extremely high discharge speed cannot be realized by a conventional burner.
  • discharge speed gas flow rate per unit time of a single nozzle / nozzle cross-sectional area.
  • the cross-sectional area of the nozzle outlet portion is considered as the nozzle cross-sectional area.
  • the fuel discharged from the burner with a cross-sectional area at the outlet of the cone portion By dividing the total flow rate of the sum of gas and air, the burner discharge speed can be determined.
  • the fuel gas discharge speed and the combustion air discharge speed be approximately equal.
  • the ratio of the discharge speed of the fuel gas to the discharge speed of the combustion air is preferably 0.8 to 1.2.
  • the discharge flow rate ratio in the nozzle hole portion in front of the cone is preferably 0.8 to 1.2.
  • the heating device includes a flow rate adjusting unit that can independently adjust the fuel gas flow rate in the main burner portion and the fuel gas flow rate in the stagfire burner portion.
  • the combustion air amount can be determined by multiplying the fuel gas flow rate by the theoretical amount of fuel gas and the air ratio.
  • the heating device includes a flow rate adjusting unit that can independently adjust the flow rate of the combustion air in the main burner portion and the flow rate of the combustion air in the sleeve fire burner portion.
  • a flow rate adjusting valve or the like can be used as the flow rate adjusting means.
  • the flow rate of the fuel gas in the sleeve fire burner is 15% or more.
  • the ratio of the flow rate F1 of the fuel gas discharged from the main burner portion to the flow rate F2 of the fuel gas for sleeve fire discharged from the sleeve fire burner portion, F1: F2 is 85:15 or less (F1 / F2 ⁇ 85/15).
  • the flow rate of the fuel gas in the sleeve fire burner portion is 30% or less, in other words, F1: F2 is 70:30 or more (F1 / F2 ⁇ 70/30).
  • Table 1 shows the dimensions of the nozzle and the cross-sectional area of the discharge part. Further, the ratio of the flow rate of the fuel gas in the main burner portion and the flow rate of the fuel gas in the sleeve fire burner portion in Comparative Example 2 and Example 1 (fuel gas flow rate ratio) is shown in Table 1 together.
  • Comparative Example 1 a slit-shaped nozzle having the cross-sectional shape shown in FIG. 8 and having a nozzle width of 10 mm and a length of 1 m was used.
  • Comparative Example 2 60 nozzles set in a straight line between 1 m in the burner width direction were used as shown in FIG. Since the burner described in Patent Document 1 includes two fuel gas nozzles per burner, the number of fuel gas nozzles is 120.
  • 50 nozzle sets of the nozzles of FIGS. 1 and 2 according to the present invention were linearly arranged in the burner width direction 1 m, that is, 50 fuel gas nozzles were installed. When 50 sets of nozzles were arranged in the burner of Comparative Example 2, the flame was unstable, so 60 sets of nozzles were installed to stabilize the flame.
  • the experiment was conducted in an experimental combustion furnace having a combustion space size of 1.4 m ⁇ 1.4 m ⁇ 0.4 m.
  • the flow rate of the fuel gas and the combustion air was increased so that the flow rate ratio was constant, and the critical discharge flow rate at which the flame could be held without the flame blowing out was measured.
  • M gas mixed gas of coke oven gas and blast furnace gas
  • the main components of the M gas were H 2 : 26.5%, CO: 17.6%, CH 4 : 9.1%, and N 2 : 30.9%.
  • Comparative Example 1 when the flow velocity (discharge speed) in the nozzle straight pipe portion exceeded 30 Nm / s, the flame could not be held and blowing out occurred.
  • the flow rate of the straight pipe portion is 3 Nm / s when converted to the flow velocity at the tip of the cone portion.
  • Comparative Example 2 when the flow velocity (discharge speed) in the nozzle straight pipe portion exceeded 40 Nm / s, the flame could not be held and blowing out occurred.
  • Example 1 the flame was stable even under conditions where the discharge speed exceeded 40 Nm / s. When the discharge speed exceeded 100 Nm / s, the flame became unstable and blow-off occurred at 120 Nm / s.
  • the heating apparatus of the present invention can perform stable combustion even at a discharge flow rate significantly higher than that of a conventional burner.
  • use near the blow-off limit flow rate may increase the risk of blow-off due to fluctuations in the operation of the supply system, etc.
  • the flow rate be reduced.
  • FIG. 5 also shows an example of the actual normal use flow rate.
  • FIG. 6 shows the heating power of the burner in each example and comparative example when the fuel gas flow rate and the air ratio are the same. In Example 1, it turns out that a heating power is improving significantly compared with the comparative example 1 and the comparative example 2.
  • Comparative Example 1 combustion is performed inside the cone in front of the burner, and combustion of many fuel gases is completed before reaching the object to be heated.
  • Example 1 the fuel gas discharged from the main burner is ignited by the flame of the sleeve fire burner in the vicinity of the middle of the burner and the object to be heated, and starts to burn, and a lot of fuel gas is discharged near the object to be heated. Fuel gas is burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Gas Burners (AREA)

Abstract

Provided is a heating device with which it is possible to maintain a flame in a stable manner without flameout even at high discharge speeds, and to carry out heating with extremely high efficiency. A heating device provided with a burner, wherein the burner comprises: a main burner part provided with a fuel gas nozzle for discharging a fuel gas and an air nozzle for discharging air for combustion; and a pilot burner part for combusting the fuel gas discharged from the main burner part, the pilot burner part being positioned further outward than the main burner part.

Description

加熱装置および加熱方法Heating apparatus and heating method
 本発明は、バーナを備える加熱装置に関し、特に、高い吐出速度においても失火することなく安定して火炎を保持することが可能であり、極めて高い効率で加熱を行うことができる加熱装置に関する。また本発明は、前記加熱装置を用いた加熱方法に関する。 The present invention relates to a heating apparatus including a burner, and more particularly to a heating apparatus that can stably hold a flame without misfire even at a high discharge speed and can perform heating with extremely high efficiency. The present invention also relates to a heating method using the heating device.
 物品の加熱方法としては、熱風加熱、赤外線加熱、電気ヒーターによる加熱、誘導加熱など、様々な方法が知られているが、中でもバーナによる加熱は様々な用途において極めて一般的に用いられている。 As a method for heating an article, various methods such as hot air heating, infrared heating, heating with an electric heater, induction heating, and the like are known. Among them, heating with a burner is very commonly used in various applications.
 図8は、従来用いられている予混合燃焼バーナの一例を示す模式図である。予混合燃焼バーナ100では、可燃性の燃料ガス101と空気102とが予混合燃焼バーナ100の内部で予め混合されて混合ガスとされ、前記混合ガスは予混合燃焼バーナ100から吐出されて燃焼することによって火炎103が形成される。 FIG. 8 is a schematic view showing an example of a premixed combustion burner conventionally used. In the premixed combustion burner 100, combustible fuel gas 101 and air 102 are premixed in the premixed combustion burner 100 to form a mixed gas, and the mixed gas is discharged from the premixed combustion burner 100 and burned. As a result, a flame 103 is formed.
 このようなバーナで形成した火炎を用いて直接加熱を行う場合、火炎から被加熱物表面への伝熱量Qは熱伝達係数αに比例し、前記熱伝達係数αは火炎の吐出速度V0に依存する。例えば、円形の開口を有するバーナを用いる場合、熱伝達係数αはV0 1/2に比例する。また、複数のノズルを一直線上に並べて配置したラインバーナの場合、熱伝達係数αはV0 0.58に比例する。したがって、バーナによる加熱効率を向上させるためには、吐出速度を高めることが求められる。 When direct heating is performed using a flame formed by such a burner, the heat transfer amount Q from the flame to the surface of the object to be heated is proportional to the heat transfer coefficient α, and the heat transfer coefficient α is equal to the flame discharge speed V 0 . Dependent. For example, when a burner having a circular opening is used, the heat transfer coefficient α is proportional to V 0 1/2 . In the case of a line burner in which a plurality of nozzles are arranged in a straight line, the heat transfer coefficient α is proportional to V 0 0.58 . Therefore, in order to improve the heating efficiency by the burner, it is required to increase the discharge speed.
 しかし、吐出速度を高めるために単純に燃料ガスや空気の流速を上げると火炎が不安定となり、さらに流速を上げると、燃焼速度とガス流速との釣り合いが破れ、火炎が下流へ吹き飛ばされて消える、いわゆる吹き消えが生じてしまう。そのため、従来のバーナでは吐出速度を大きく増加させることができず、したがって加熱効率の向上に限界があった。 However, simply increasing the flow rate of fuel gas or air to increase the discharge speed makes the flame unstable, and if the flow rate is further increased, the balance between the combustion speed and the gas flow rate is broken, and the flame is blown off downstream and disappears. So-called blowout occurs. For this reason, the conventional burner cannot greatly increase the discharge speed, and thus there is a limit to the improvement of the heating efficiency.
 そこで、火炎を安定させて吹き消えを抑制する方法として、主バーナと、前記主バーナにおける燃焼を助勢する袖火バーナとを備えたバーナを用いる方法が提案されている(特許文献1)。 Therefore, as a method for stabilizing the flame and suppressing the blow-off, there has been proposed a method using a burner including a main burner and a sleeve fire burner for assisting combustion in the main burner (Patent Document 1).
特開2013-194991号公報JP 2013-194991 A
 特許文献1のバーナによれば、火炎を安定化し、火炎温度を上昇させることができる。しかし、上述した吐出速度向上の面では特許文献1で提案されているバーナであっても十分とはいえず、加熱効率の向上のために、さらに高い吐出速度で安定して使用できるバーナを備えた加熱装置の開発が求められている。 According to the burner of Patent Document 1, it is possible to stabilize the flame and raise the flame temperature. However, the burner proposed in Patent Document 1 is not sufficient in terms of improving the discharge speed described above, and is provided with a burner that can be used stably at a higher discharge speed in order to improve heating efficiency. Development of a new heating device is required.
 本発明は、上記事情に鑑みてなされたものであり、高い吐出速度においても失火することなく安定して火炎を保持することが可能であり、極めて高い効率で加熱を行うことができる加熱装置を提供することを目的とする。また、本発明は、前記加熱装置を用いた加熱方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and can provide a heating apparatus that can stably hold a flame without misfire even at a high discharge speed and can perform heating with extremely high efficiency. The purpose is to provide. Another object of the present invention is to provide a heating method using the heating device.
 本発明者らは、上記課題を解決するために検討を行った結果、主バーナ部と袖火バーナ部とを特定の位置関係で設けたバーナを用いることにより、例えば、50Nm/s以上といった極めて高い吐出速度でも安定して火炎を保持できることを知見した。本発明は前記知見に基づいてなされたものであり、その要旨構成は、次のとおりである。 As a result of investigations to solve the above problems, the present inventors have used a burner in which a main burner portion and a sleeve fire burner portion are provided in a specific positional relationship, for example, an extremely high value of 50 Nm / s or more. It was found that the flame can be held stably even at a high discharge speed. This invention is made | formed based on the said knowledge, The summary structure is as follows.
1.バーナを備える加熱装置であって、
 前記バーナが、
  燃料ガスを吐出する燃料ガスノズルと燃焼用空気を吐出する空気ノズルとを備える主バーナ部と、
  前記主バーナ部よりも外側に位置し、前記主バーナ部から吐出される燃料ガスを燃焼させるための袖火バーナ部とを備える、加熱装置。
1. A heating device comprising a burner,
The burner
A main burner section comprising a fuel gas nozzle for discharging fuel gas and an air nozzle for discharging combustion air;
A heating apparatus, comprising: a sleeve fire burner portion that is located outside the main burner portion and burns fuel gas discharged from the main burner portion.
2.前記主バーナ部が、前記燃料ガスノズルおよび前記空気ノズルの一方または両方の上流側に均圧室を備える、上記1に記載の加熱装置。 2. The heating apparatus according to claim 1, wherein the main burner section includes a pressure equalizing chamber on the upstream side of one or both of the fuel gas nozzle and the air nozzle.
3.前記燃料ガスノズルおよび前記空気ノズルが直管構造である、上記1または2に記載の加熱装置。 3. 3. The heating apparatus according to 1 or 2, wherein the fuel gas nozzle and the air nozzle have a straight pipe structure.
4.前記バーナの先端に、底部と、該底部から該バーナの先端に向かって漸次拡幅するテーパー部とを有する凹部が設けられており、
 前記主バーナ部が前記底部に配置されており、
 前記袖火バーナ部が前記テーパー部に配置されている、上記1~3のいずれか一項に記載の加熱装置。
4). A concave portion having a bottom portion and a tapered portion gradually widening from the bottom portion toward the tip of the burner is provided at the tip of the burner,
The main burner portion is disposed at the bottom;
The heating apparatus according to any one of claims 1 to 3, wherein the sleeve fire burner portion is disposed in the tapered portion.
5.前記底部および前記テーパー部のなす角度θが20°以上である、上記4に記載の加熱装置。 5. 5. The heating device according to 4 above, wherein an angle θ formed by the bottom portion and the tapered portion is 20 ° or more.
6.前記袖火バーナ部が面燃焼バーナである、上記1~5のいずれか一項に記載の加熱装置。 6). 6. The heating apparatus according to any one of 1 to 5, wherein the sleeve fire burner is a surface combustion burner.
7.前記袖火バーナ部が、直径dの管形ノズルおよび短辺方向の幅dのスリットノズルから選択される袖火ノズルを備え、
 前記袖火ノズルの先端が、前記テーパー部の表面からd以上15d以下奥まった位置に設けられている、上記4または5に記載の加熱装置。
7). The flaming burner comprises a flaming nozzle selected from a tubular nozzle having a diameter d and a slit nozzle having a width d in the short side direction;
6. The heating apparatus according to 4 or 5 above, wherein a tip of the flaming nozzle is provided at a position deeper than d and not more than 15d from the surface of the tapered portion.
8.前記主バーナ部における流量と前記袖火バーナ部における流量とを独立して調整可能な流量調整手段を備える、上記1~7のいずれか一項に記載の加熱装置。 8). The heating apparatus according to any one of the above 1 to 7, further comprising a flow rate adjusting means capable of independently adjusting a flow rate in the main burner portion and a flow rate in the sleeve fire burner portion.
9.上記1~8のいずれか一項に記載の加熱装置を用いて加熱する、加熱方法。 9. A heating method of heating using the heating apparatus according to any one of 1 to 8 above.
10.前記主バーナ部から吐出される燃料ガスと燃焼用空気のそれぞれの吐出速度が50Nm/s以上である、上記9に記載の加熱方法。 10. 10. The heating method according to 9 above, wherein the discharge speeds of the fuel gas and the combustion air discharged from the main burner part are 50 Nm / s or more.
11.前記主バーナ部から吐出される燃料ガスの流量F1と前記袖火バーナ部から吐出される袖火用燃料ガスの流量F2の比、F1:F2を、70:30~85:15とする、請求項9または10に記載の加熱方法。 11. The ratio of the flow rate F1 of the fuel gas discharged from the main burner portion to the flow rate F2 of the fuel gas for the sleeve fire discharged from the sleeve fire burner portion, F1: F2, is set to 70:30 to 85:15. Item 11. The heating method according to Item 9 or 10.
 本発明によれば、高い吐出速度においても失火することなく安定して火炎を保持することが可能となり、極めて高い効率で加熱を行うことができる。 According to the present invention, it is possible to stably hold a flame without misfire even at a high discharge speed, and heating can be performed with extremely high efficiency.
本発明の一実施形態におけるバーナの構造を示す模式図である。It is a schematic diagram which shows the structure of the burner in one Embodiment of this invention. 本発明の一実施形態における主バーナ部の構造を示す模式図である。It is a schematic diagram which shows the structure of the main burner part in one Embodiment of this invention. 本発明の一実施形態における袖火バーナ部の構造を示す模式図である。It is a schematic diagram which shows the structure of the sleeve fire burner part in one Embodiment of this invention. 本発明の他の実施形態における袖火バーナ部の構造を示す模式図である。It is a schematic diagram which shows the structure of the sleeve fire burner part in other embodiment of this invention. 実施例および比較例の各バーナにおける吐出速度を示す図である。It is a figure which shows the discharge speed in each burner of an Example and a comparative example. 実施例および比較例の各バーナにおける加熱力を示す図である。It is a figure which shows the heating power in each burner of an Example and a comparative example. 比較例1と実施例1のバーナにおける温度分布の測定例を示す図である。It is a figure which shows the example of a measurement of the temperature distribution in the burner of the comparative example 1 and Example 1. FIG. 従来の予混合燃焼バーナの一例を示す模式図である。It is a schematic diagram which shows an example of the conventional premixed combustion burner.
 次に、本発明を実施する方法について具体的に説明する。なお、以下の説明は、本発明の好適な実施態様を示すものであり、本発明は以下の説明によって何ら限定されるものではない。 Next, a method for carrying out the present invention will be specifically described. In addition, the following description shows the suitable embodiment of this invention, and this invention is not limited at all by the following description.
 本発明の加熱装置はバーナを備える加熱装置であって、前記バーナが主バーナ部と袖火バーナ部とを備えている。前記主バーナ部は、燃料ガスを吐出する燃料ガスノズルと燃焼用空気を吐出する空気ノズルとを備えており、前記主バーナ部から吐出された燃料ガスと空気とが燃焼することにより、被加熱物を加熱するための火炎を形成する。また、前記袖火バーナ部は、前記主バーナ部から吐出される燃料ガスに着火するための機能を有するものである。 The heating device of the present invention is a heating device including a burner, and the burner includes a main burner portion and a sleeve fire burner portion. The main burner section includes a fuel gas nozzle that discharges fuel gas and an air nozzle that discharges combustion air, and the fuel gas and air discharged from the main burner section are combusted. To form a flame for heating. The sleeve fire burner portion has a function for igniting the fuel gas discharged from the main burner portion.
 ここで、前記袖火バーナ部が、前記主バーナ部よりもバーナの外側に位置することが重要である。このような位置関係とすることにより、他の位置関係とした場合と比べて高い吐出速度においても安定して火炎を保持することができる。上述したように、火炎から被加熱物表面への伝熱量Qは熱伝達係数αに比例し、前記熱伝達係数αは火炎の吐出速度V0が大きいほど大きくなる。したがって、本発明の加熱装置によれば、被加熱物の表面に高速で火炎を衝突させることによって、極めて高い効率で加熱を行うことができる。そしてその結果、被加熱物をより高速に、より高い温度まで加熱することができる。また、本発明の加熱装置によれば、同じ加熱温度を達成するために必要な燃料ガスの量を低減することができる。さらに、本発明の加熱装置では吐出速度を高くできるため、火炎を離れた位置まで到達させることができる。したがって、被加熱物から離れた位置にバーナを設置することができ、装置設計の自由度が高い。 Here, it is important that the sleeve fire burner portion is positioned outside the burner with respect to the main burner portion. By adopting such a positional relationship, it is possible to stably hold the flame even at a higher discharge speed as compared with other positional relationships. As described above, the heat transfer amount Q from the flame to the surface of the object to be heated is proportional to the heat transfer coefficient α, and the heat transfer coefficient α increases as the flame discharge speed V 0 increases. Therefore, according to the heating device of the present invention, heating can be performed with extremely high efficiency by causing a flame to collide with the surface of the object to be heated at high speed. As a result, the object to be heated can be heated to a higher temperature at a higher speed. Moreover, according to the heating device of the present invention, the amount of fuel gas necessary to achieve the same heating temperature can be reduced. Furthermore, since the discharge speed can be increased in the heating device of the present invention, the flame can reach a distant position. Therefore, the burner can be installed at a position away from the object to be heated, and the degree of freedom in device design is high.
 特に、製鉄プロセスにおいては、バーナから離れた位置にある被加熱物を加熱する必要があることが多い。そのため、本発明の加熱装置は、製鉄プロセス用加熱装置として、製鉄材料の加熱に極めて好適に用いることができる。前記製鉄プロセス用加熱装置としては、例えば、焼結鉱の製造などに用いられる焼結機の点火装置が挙げられる。また、本発明の加熱装置を、製鉄プロセス用加熱装置として用いる際には、バーナの構造を、直線状に並べられた複数のノズルを備えるラインバーナとすることが好ましい。 Especially in the steelmaking process, it is often necessary to heat an object to be heated located away from the burner. Therefore, the heating device of the present invention can be used very suitably as a heating device for an iron making process for heating an iron making material. Examples of the heating device for the iron making process include an ignition device for a sintering machine used for producing sintered ore. Moreover, when using the heating apparatus of this invention as a heating apparatus for iron-making processes, it is preferable that the structure of a burner is a line burner provided with the several nozzle arranged in a linear form.
 なお、上述した位置関係とすることによって高い吐出速度においても火炎を安定に保持できるのは、以下のような理由からであると推測される。すなわち、特許文献1で提案されているように、燃料ガスノズルと燃焼用空気ノズルが袖火バーナを挟むように配置され、燃料ガスの吐出方向と燃焼用空気の吐出方向が交差するように配置されている場合、渦流が発生し、流れの乱れによる運動エネルギー損失が大きくなるため高い流速を維持することができない。これに対して、本発明の技術では、前記袖火バーナ部が前記主バーナ部よりもバーナの外側に位置することで、主流の燃料ガスと燃焼用空気の流れの乱れを抑制し、高い流速を維持することが可能である。また、主バーナ部から吐出される燃料ガスと燃焼用空気の吐出方向を平行にすれば、流れの乱れを一層抑制でき、さらに高い流速を維持できる。 In addition, it is estimated that the flame can be stably maintained even at a high discharge speed by using the above-described positional relationship for the following reason. That is, as proposed in Patent Document 1, the fuel gas nozzle and the combustion air nozzle are arranged so as to sandwich the squib burner, and the fuel gas discharge direction and the combustion air discharge direction are arranged to intersect each other. In this case, a vortex flow is generated, and the kinetic energy loss due to the flow turbulence increases, so that a high flow velocity cannot be maintained. On the other hand, in the technology of the present invention, the sleeve fire burner portion is located outside the burner with respect to the main burner portion, thereby suppressing the turbulence of the flow of the mainstream fuel gas and combustion air, and the high flow rate. Can be maintained. Further, if the discharge direction of the fuel gas discharged from the main burner portion and the combustion air are made parallel, the flow disturbance can be further suppressed and a higher flow rate can be maintained.
 また、燃料ガスノズルが中央部にあり、その外側に袖火バーナ、さらにその外側に燃焼用空気ノズルが配置されている場合、燃料ガスは両側の袖火に向けて吐出させる必要があり、燃料ガスノズルが両側に必要となる。それにより、ノズル個数が増加するため吐出速度を上昇させるようとすると個々のノズルの径が小さくなるため、吐出後のガス速度の減衰が大きくなり、吐出後の高い流速の維持ができない。これに対して、本発明の技術では、燃料ガスを両側に分割する必要がないため、高い流速を維持できる。 In addition, when the fuel gas nozzle is located in the center, the squib burner is arranged outside, and the combustion air nozzle is arranged outside the fuel gas nozzle, it is necessary to discharge the fuel gas toward the scabs on both sides. Is required on both sides. As a result, since the number of nozzles increases and the discharge speed is increased, the diameter of each nozzle is reduced, so that the attenuation of the gas speed after discharge increases and the high flow rate after discharge cannot be maintained. On the other hand, in the technique of the present invention, since it is not necessary to divide the fuel gas on both sides, a high flow rate can be maintained.
[燃料ガス]
 上記燃料ガスとしては特に限定されることなく、可燃性ガスであれば任意のものを用いることができる。前記燃料ガスとしては、例えば、一般には天然ガスやLPG(liquefied petroleum gas)が使用可能である。上記加熱装置を製鉄所において使用する場合には、製鉄所で副生するプロセスガスを前記燃料ガスとして用いることもできる。前記プロセスガスとしては、コークス炉ガスを含有するプロセスガスを用いることが好ましい。前記コークス炉ガスを含有するプロセスガスとしては、例えば、コークス炉ガス自体(すなわち、コークス炉ガスのみからなるガス)、およびコークス炉ガスと高炉ガスを混合したガスであるMガスが好適に用いられる。
[Fuel gas]
The fuel gas is not particularly limited, and any flammable gas can be used. As the fuel gas, for example, natural gas or LPG (liquefied petroleum gas) can be generally used. When the heating device is used in a steelworks, a process gas by-produced in the steelworks can be used as the fuel gas. As the process gas, it is preferable to use a process gas containing a coke oven gas. As the process gas containing the coke oven gas, for example, the coke oven gas itself (that is, a gas composed only of the coke oven gas) and M gas that is a mixture of coke oven gas and blast furnace gas are preferably used. .
 次に、図面に基づいてさらに具体的に説明する。 Next, more specific explanation will be given based on the drawings.
 図1は、本発明の一実施形態におけるバーナ1の模式図であり、バーナ1の断面における構造を示している。バーナ1は、バーナ本体10と、バーナ本体10に設けられた主バーナ部20および袖火バーナ部30とを備えている。前記バーナ1の先端(火炎が形成される側)には、凹部40が設けられており、凹部40は、底部41と、底部41からバーナ1の先端に向かって漸次拡幅するテーパー部42とを有している。 FIG. 1 is a schematic diagram of a burner 1 according to an embodiment of the present invention, and shows a structure of a cross section of the burner 1. The burner 1 includes a burner body 10, and a main burner portion 20 and a sleeve fire burner portion 30 provided on the burner body 10. A recess 40 is provided at the tip of the burner 1 (on the side where the flame is formed). The recess 40 includes a bottom 41 and a tapered portion 42 that gradually widens from the bottom 41 toward the tip of the burner 1. Have.
[主バーナ部]
 図2は、本発明の一実施形態における主バーナ部20の構造を示す模式図である。主バーナ部20は、燃料ガスを吐出する燃料ガスノズル21と、燃焼用空気を吐出する空気ノズル22とを備えている。燃料ガスノズル21は、底部41の中央に1つ設けられている。空気ノズル22は、燃料ガスノズル21を挟むように左右対称に2つ設けられている。なお、図2に示した例では1つのバーナの断面を示しているが、幅のある物品を加熱する場合には複数のバーナを紙面垂直方向に配列してラインバーナとすることが好ましい。
[Main burner section]
FIG. 2 is a schematic diagram showing the structure of the main burner portion 20 in one embodiment of the present invention. The main burner unit 20 includes a fuel gas nozzle 21 that discharges fuel gas and an air nozzle 22 that discharges combustion air. One fuel gas nozzle 21 is provided at the center of the bottom 41. Two air nozzles 22 are provided symmetrically so as to sandwich the fuel gas nozzle 21 therebetween. In addition, although the cross section of one burner is shown in the example shown in FIG. 2, when a wide article is heated, it is preferable to arrange a plurality of burners in the direction perpendicular to the paper surface to form a line burner.
 燃料ガスは矢印Gで示したように供給され、燃料ガスノズル21から吐出される。また、燃焼用空気は矢印Aで示したように供給され、空気ノズル22から吐出される。燃料ガスは、吐出された時点では着火していないが、図1で示すように袖火バーナ部30によって形成される袖火50によって着火され、火炎60を形成する。 Fuel gas is supplied as indicated by arrow G and is discharged from the fuel gas nozzle 21. Combustion air is supplied as indicated by arrow A and is discharged from the air nozzle 22. The fuel gas is not ignited at the time of discharge, but is ignited by the sleeve fire 50 formed by the sleeve fire burner 30 as shown in FIG.
 燃料ガスノズル21および空気ノズル22の形状は特に限定されず、任意の形状とすることができる。しかし、図2に示すようにノズル先端部のコーン状構造を有しない直管構造とすることが好ましい。直管構造のノズルを用いれば、吐出速度をさらに向上させ、被加熱面での熱伝達係数をより大きくできるため、その結果、加熱効率を一層向上させることができる。これは、直管構造のノズルでは、旋回流を形成するノズルを用いた場合に比べて渦流形成によるエネルギーロスが少なく、吐出後のガス速度の減衰が抑制されるためである。 The shape of the fuel gas nozzle 21 and the air nozzle 22 is not particularly limited, and can be any shape. However, as shown in FIG. 2, it is preferable to use a straight pipe structure that does not have a cone-like structure at the nozzle tip. If a straight tube structure nozzle is used, the discharge rate can be further improved and the heat transfer coefficient on the heated surface can be further increased. As a result, the heating efficiency can be further improved. This is because the straight pipe structure nozzle has less energy loss due to the vortex formation than the nozzle that forms the swirl flow, and the gas velocity after discharge is suppressed from being attenuated.
 燃料ガスノズル21および空気ノズル22の径(以下、ノズル径という)は、バーナの加熱効率を上げるため、常用使用流量域での吐出流速が50~80Nm/sとなるように決めることが好ましい。また、最大燃焼時の吐出流速は150Nm/s以下とすることが好ましい。なお、吐出速度の定義については後述する。 The diameters of the fuel gas nozzle 21 and the air nozzle 22 (hereinafter referred to as nozzle diameter) are preferably determined so that the discharge flow rate in the normal use flow rate range is 50 to 80 Nm / s in order to increase the heating efficiency of the burner. Further, the discharge flow rate during maximum combustion is preferably 150 Nm / s or less. The definition of the discharge speed will be described later.
 燃料ガスノズル21および空気ノズル22の具体的な直径は限定されないが、前記直径が3mm以上であれば、ノズルから吐出された後のガス速度の減衰をさらに抑制することができる。そのため、前記直径は3mm以上とすることが好ましく、5mm以上とすることがより好ましい。一方、前記直径の条件も特に限定されないが、前記直径が30mm以下であれば、バーナの熱負荷をより好ましい範囲に維持し、バーナの寿命を延長することができる。また、直径が30mm以下であるような小さな径のノズルを多数設けることにより、大きな径のノズルを少数設けるよりもより均一に加熱を行うことができる。そのため、前記直径は30mm以下とすることが好ましい。なお、燃料ガスノズル21の径と、空気ノズル22の径とは、同じであってもよく、異なっていてもよい。 The specific diameters of the fuel gas nozzle 21 and the air nozzle 22 are not limited, but if the diameter is 3 mm or more, attenuation of the gas velocity after being discharged from the nozzle can be further suppressed. Therefore, the diameter is preferably 3 mm or more, and more preferably 5 mm or more. On the other hand, the condition of the diameter is not particularly limited, but if the diameter is 30 mm or less, the heat load of the burner can be maintained in a more preferable range, and the life of the burner can be extended. Also, by providing a large number of small diameter nozzles having a diameter of 30 mm or less, heating can be performed more uniformly than when a small number of large diameter nozzles are provided. Therefore, the diameter is preferably 30 mm or less. The diameter of the fuel gas nozzle 21 and the diameter of the air nozzle 22 may be the same or different.
 なお、燃料ガスノズル21と空気ノズル22の間隔(ノズルピッチ)L1は、燃料ガスノズル21の径をdNG、および空気ノズル22の径をdNAとするとき、2dNG≦L1≦15dNAを満たすことが好ましい。また、複数のバーナを配列してラインバーナとする場合、各バーナの燃料ガスノズルの間隔(ノズルピッチ)L2は、2dNG≦L2≦15dNAを満たすことが好ましい。前記条件を満たせば、燃焼安定性が一層向上し、ガス速度の減衰をさらに抑制できる。 The distance (nozzle pitch) L 1 between the fuel gas nozzle 21 and the air nozzle 22 is 2d NG ≦ L 1 ≦ 15d NA when the diameter of the fuel gas nozzle 21 is d NG and the diameter of the air nozzle 22 is d NA. It is preferable to satisfy. When a plurality of burners are arranged to form a line burner, it is preferable that the fuel gas nozzle interval (nozzle pitch) L 2 of each burner satisfies 2d NG ≦ L 2 ≦ 15d NA . If the above conditions are satisfied, combustion stability is further improved, and attenuation of gas velocity can be further suppressed.
[均圧室]
 主バーナ部20には、燃料ガスノズル21および空気ノズル22それぞれの上流側に均圧室23が設けられており、均圧室23のノズルと反対側(上流側)には燃料ガスまたは空気が通るための孔が設けたれた有孔板24が設置されている。このように均圧室23を設ければガスをより均一に吐出できるため、火炎をさらに安定化し、吐出速度をさらに上げることが可能となる。なお、燃料ガスノズル21および空気ノズル22のいずれか一方の上流側にのみ均圧室23を設けることもできるが、図2に示したように両方に設けることが好ましい。ここで、均圧室とは、ガスの供給圧の変動による影響を緩和するために、ノズルの上流側に設けられる構造である。前記均圧室は、図2に例示したように、ノズルの上流側に設置された、1または2以上の開口を備える板(絞り板)と、前記絞り板と前記ノズルとの間の空間とを備える。そして、前記絞り板の上流側と前記空間とは、前記絞り板の開口のみで繋がっている。前記絞り板に設けられた開口の合計面積は、前記空間の、前記ノズルの吐出方向と垂直な面における断面積よりも小さい。さらに、前記ノズルの開口の合計面積も、前記空間の、前記ノズルの吐出方向と垂直な面における断面積よりも小さい。
[Equal pressure chamber]
The main burner portion 20 is provided with a pressure equalizing chamber 23 on the upstream side of each of the fuel gas nozzle 21 and the air nozzle 22, and fuel gas or air passes on the opposite side (upstream side) of the nozzle of the pressure equalizing chamber 23. A perforated plate 24 provided with holes is provided. If the pressure equalizing chamber 23 is provided in this way, the gas can be discharged more uniformly, so that the flame can be further stabilized and the discharge speed can be further increased. Note that the pressure equalizing chamber 23 can be provided only on the upstream side of one of the fuel gas nozzle 21 and the air nozzle 22, but it is preferable to provide the pressure equalizing chamber 23 on both as shown in FIG. Here, the pressure equalizing chamber is a structure provided on the upstream side of the nozzle in order to mitigate the influence of fluctuations in gas supply pressure. As illustrated in FIG. 2, the pressure equalization chamber includes a plate (throttle plate) provided on the upstream side of the nozzle and having one or more openings, and a space between the throttle plate and the nozzle. Is provided. The upstream side of the diaphragm plate and the space are connected only by the opening of the diaphragm plate. The total area of the openings provided in the diaphragm plate is smaller than the cross-sectional area of the space in a plane perpendicular to the discharge direction of the nozzle. Furthermore, the total area of the nozzle openings is also smaller than the cross-sectional area of the space in a plane perpendicular to the nozzle ejection direction.
[袖火バーナ部]
 上述したように、袖火バーナ部は、主バーナ部から吐出される燃料ガスに着火し、該燃料ガスを燃焼させる機能を有している。主バーナ部から吐出される燃料ガスの着火は、袖火バーナ部によって形成される炎(袖火)によって行われる。したがって、袖火バーナ部は、通常、袖火を形成するための、袖火用燃料ガス出口と袖火用空気出口を備えている。前記袖火用空気を用いて前記袖火用燃料ガスを燃焼させることにより袖火が形成される。なお、以下の説明において、「袖火用燃料ガス」を単に「燃料ガス」、「袖火用空気」を単に「空気」と呼ぶ場合がある。
[Sleeve Burner]
As described above, the sleeve fire burner portion has a function of igniting the fuel gas discharged from the main burner portion and burning the fuel gas. The ignition of the fuel gas discharged from the main burner portion is performed by a flame (sleeve fire) formed by the sleeve fire burner portion. Therefore, the sleeve fire burner section normally includes a sleeve fire fuel gas outlet and a sleeve fire air outlet for forming a sleeve fire. A sleeve fire is formed by burning the fuel gas for the sleeve fire using the air for the sleeve fire. In the following description, “sleeve fire fuel gas” may be simply referred to as “fuel gas”, and “sleeve fire air” may be simply referred to as “air”.
 本発明の加熱装置は、上述したように主バーナ部よりも外側に、該主バーナ部から吐出される燃料ガスを燃焼させるための袖火バーナ部を備えているため、主バーナからの燃料ガスの吐出速度が高い条件においても火炎を安定的に維持できる。そのため、本発明のバーナでは、主バーナの前方側に火炎を安定的に維持するための燃焼室構造、すなわち主バーナと袖火バーナを取り囲むようにバーナの前方に向かって突出した構造を有しなくてもよいという利点も有する。 Since the heating device of the present invention includes the sleeve fire burner for burning the fuel gas discharged from the main burner outside the main burner as described above, the fuel gas from the main burner The flame can be stably maintained even under conditions where the discharge speed is high. Therefore, the burner of the present invention has a combustion chamber structure for stably maintaining a flame on the front side of the main burner, that is, a structure protruding toward the front of the burner so as to surround the main burner and the sleeve fire burner. There is also an advantage that it is not necessary.
 また、本発明の加熱装置では、主バーナの火炎は、主バーナからのガス吐出方向の前方の空間部に維持される。公知の技術では、主バーナの前方側に火炎を安定的に維持するための燃焼室構造や耐火物で構成されるコーン形状の構造物を設けて、その内部で火炎を維持したりその表面に接触する火炎を維持したりすることが行われるが、本発明ではそのような構造を設けなくても袖火バーナの火炎で主バーナの火炎を空間部に維持することで、主バーナの高速の火炎が維持できる。このような火炎を維持するためには、主バーナ部のガスの吐出方向と袖火バーナ部のガス吐出方向との交点が、バーナのガス吐出方向前方の空間部または、バーナの凹部の外(バーナの外部)に位置することが好ましい。 Further, in the heating device of the present invention, the flame of the main burner is maintained in the space portion in front of the gas discharge direction from the main burner. In the known technology, a combustion chamber structure for stably maintaining a flame or a cone-shaped structure composed of a refractory is provided on the front side of the main burner, and the flame is maintained inside or on the surface thereof. In the present invention, it is possible to maintain the flame of the main burner in the space with the flame of the sleeve fire burner without providing such a structure, so that the high speed of the main burner can be maintained. The flame can be maintained. In order to maintain such a flame, the intersection of the gas discharge direction of the main burner portion and the gas discharge direction of the sleeve fire burner portion is the outside of the space portion in front of the gas discharge direction of the burner or the recess of the burner ( It is preferably located outside the burner.
 図3は、本発明の一実施形態における袖火バーナ部30の構造を示す模式図である。この例において袖火バーナ部30は、面燃焼バーナで構成されている。面燃焼バーナの先端には多孔質板31が設けられており、多孔質板31に、袖火用燃料ガスと袖火用空気が、それぞれ矢印Gおよび矢印Aで示すように供給される。 FIG. 3 is a schematic diagram showing the structure of the sleeve fire burner 30 in one embodiment of the present invention. In this example, the sleeve fire burner 30 is composed of a surface combustion burner. A porous plate 31 is provided at the tip of the surface combustion burner, and fuel gas for sleeve fire and air for sleeve fire are supplied to the porous plate 31 as indicated by arrows G and A, respectively.
 本発明の加熱装置では、主バーナ部20から燃料ガスと空気が高速で吐出されるため、その気流にともなう随伴流がバーナ1の先端付近、特に凹部40の内部に形成される。例えば、主バーナ部から吐出されるガスの流速が50m/sの場合、随伴流の流速も20~30m/sと高速となるため、袖火バーナ部30によって形成される袖火50が不安定となるおそれがある。しかし、面燃焼バーナでは着火ポイントが多孔質板の表面または内部に存在するため、随伴流の影響を受けることなく安定して袖火を保持することができる。 In the heating device of the present invention, since the fuel gas and air are discharged from the main burner portion 20 at high speed, an accompanying flow accompanying the air flow is formed near the tip of the burner 1, particularly in the recess 40. For example, when the flow rate of the gas discharged from the main burner portion is 50 m / s, the flow rate of the accompanying flow is as high as 20 to 30 m / s, so the sleeve fire 50 formed by the sleeve fire burner portion 30 is unstable. There is a risk of becoming. However, in the surface combustion burner, since the ignition point exists on the surface or inside of the porous plate, the sleeve fire can be stably held without being affected by the accompanying flow.
 多孔質板31としては、特に限定されることなく任意の多孔体からなる板状部材を用いることができる。前記多孔体は、例えば、金属、合金、およびセラミックからなる群より選択される1または2以上の材料で構成することができる。多孔質板31としては、例えば、金属メッシュ(金属繊維を積層した物)を用いることができる。前記多孔質板31の表面は、テーパー部42の表面と同一面上に配置することが好ましい。 The porous plate 31 is not particularly limited, and a plate-like member made of an arbitrary porous body can be used. The porous body can be made of, for example, one or more materials selected from the group consisting of metals, alloys, and ceramics. As the porous plate 31, for example, a metal mesh (a laminate of metal fibers) can be used. The surface of the porous plate 31 is preferably disposed on the same plane as the surface of the tapered portion 42.
 図1に示したように、主バーナ部20から吐出される燃料ガスと空気は、袖火50によって着火される。したがって、確実に着火するという観点からは、主バーナ部20と袖火バーナ部30とが、主バーナ部20の吐出軸(吐出方向)と袖火バーナ部30の吐出軸(吐出方向)とがその延長線上で交差するように配置されていることが好ましい。より具体的には、凹部40を構成する底部41とテーパー部42のなす角度θを20°以上とすることが好ましい。前記θが20°未満であると、袖火バーナ部の火炎が主バーナ部から吐出されるガス流に届きにくくなるため、失火が発生しやすくなる。前記θは、30°以上とすることがより好ましい。一方、前記θの上限は特に限定されないが、通常は80°以下とすることが好ましく、60°以下とすることがより好ましい。 As shown in FIG. 1, the fuel gas and air discharged from the main burner unit 20 are ignited by a sleeve fire 50. Therefore, from the viewpoint of surely igniting, the main burner portion 20 and the sleeve fire burner portion 30 have a discharge axis (discharge direction) of the main burner portion 20 and a discharge axis (discharge direction) of the sleeve fire burner portion 30. It is preferable that they are arranged so as to intersect on the extension line. More specifically, it is preferable that the angle θ formed by the bottom portion 41 and the tapered portion 42 constituting the recess 40 is 20 ° or more. If the angle θ is less than 20 °, the flame of the sleeve fire burner part is difficult to reach the gas flow discharged from the main burner part, and misfire is likely to occur. The θ is more preferably 30 ° or more. On the other hand, the upper limit of the θ is not particularly limited, but is usually preferably 80 ° or less, and more preferably 60 ° or less.
 主バーナ部と袖火バーナ部の距離は、袖火バーナ部の火炎(袖火50)が主バーナ部からの吐出流に届くように決定する。袖火バーナ部の火炎有効長さをFとするとき、袖火バーナ部の火炎が底部41の面に平行な方向に到達する距離はF・sinθとなるので、主バーナ部の端の位置と、袖火バーナ部の中心位置との距離が、底部41の面に平行な方向にF・sinθ以下となるように主バーナ部と袖火バーナ部の距離を決めればよい。具体的には、袖火バーナ部の有効火炎長さが100mmで、主バーナの幅(主バーナ部の最外ノズル間距離)が50mm、θ=30°の場合、主バーナ部中心と袖火バーナ部中心の距離は75mm以下とすればよい。θの好適範囲を考慮すれば、主バーナ部中心と袖火バーナ部中心の距離は60~110mmとすることが好ましい。有効火炎長さは、火炎温度の測定結果に基づき、ガスの着火温度以上となる領域の、燃焼面またはテーパー面からの長さとして決定できる。 The distance between the main burner portion and the sleeve fire burner portion is determined so that the flame of the sleeve fire burner portion (sleeve fire 50) reaches the discharge flow from the main burner portion. When the effective flame length of the sleeve fire burner is F, the distance that the flame of the sleeve fire burner reaches in the direction parallel to the surface of the bottom 41 is F · sin θ. The distance between the main burner portion and the sleeve fire burner portion may be determined so that the distance from the center position of the sleeve fire burner portion is F · sin θ or less in the direction parallel to the surface of the bottom portion 41. Specifically, when the effective flame length of the sleeve burner portion is 100 mm, the width of the main burner (the distance between the outermost nozzles of the main burner portion) is 50 mm, and θ = 30 °, the center of the main burner portion and the sleeve flame The distance at the center of the burner may be 75 mm or less. Considering a preferable range of θ, it is preferable that the distance between the center of the main burner portion and the center of the sleeve burner portion is 60 to 110 mm. The effective flame length can be determined as the length from the combustion surface or the taper surface of the region that is equal to or higher than the gas ignition temperature based on the measurement result of the flame temperature.
 図4は、本発明の他の実施形態における袖火バーナ部の構造の例を示す模式図である。この実施形態では、袖火バーナ部30が直径dの管形ノズルを袖火ノズル32として備えている。袖火ノズル32は、同軸で設けられた外管と内管とを備えており、前記内管には矢印Gで示したように袖火用燃料ガスが供給され、前記袖火用燃料ガスは前記内管の先端から吐出される。一方、前記外管には矢印Aで示したように袖火用空気が供給され、前記袖火用空気は前記外管先端から吐出される。 FIG. 4 is a schematic view showing an example of the structure of the sledge fire burner portion in another embodiment of the present invention. In this embodiment, the sleeve fire burner 30 includes a tubular nozzle having a diameter d as the sleeve fire nozzle 32. The sleeve fire nozzle 32 includes an outer pipe and an inner pipe provided coaxially. As shown by an arrow G, the sleeve fire fuel gas is supplied to the inner pipe. It is discharged from the tip of the inner tube. On the other hand, as shown by the arrow A, the sleeve fire air is supplied to the outer pipe, and the sleeve fire air is discharged from the tip of the outer pipe.
 袖火ノズル32の先端は、図4に示したようにテーパー部42の表面からd以上奥まった位置に設けられている。言い換えると、テーパー部42の表面から袖火ノズル32の先端までの距離がd以上である。袖火ノズル32から吐出される袖火用燃料ガスは空間33内で着火し、その火炎(袖火)はテーパー部42の表面を超えて外部へ伸びるように形成される。このように袖火ノズルの32の先端をバーナ本体10の内部へ向かって奥まった位置とすることにより、面燃焼バーナを用いずとも、上述した随伴流の影響を抑制して袖火を安定に保持することが可能となる。なお、袖火バーナ部30が、短辺方向の幅dのスリットノズルを袖火ノズル32として備える場合にも、同様に袖火ノズル32の先端をテーパー部42の表面からd以上奥まった位置に設けることが好ましい。随伴流の影響を抑制するという観点からは、テーパー部42の表面から袖火ノズル32の先端までの距離を2d以上とすることが好ましい。一方、袖火ノズル32の先端がテーパー部42の表面から15d以上奥まった位置に設置されていると、火炎温度が低下するおそれがある。そのため、テーパー部42の表面から袖火ノズル32の先端までの距離は、15d以下とすることが好ましく、4d以下とすることがより好ましい。 The tip of the sleeve fire nozzle 32 is provided at a position deeper than d from the surface of the tapered portion 42 as shown in FIG. In other words, the distance from the surface of the taper portion 42 to the tip of the sleeve nozzle 32 is d or more. The fuel gas for sleeve fire discharged from the sleeve fire nozzle 32 is ignited in the space 33, and the flame (sleeve) is formed so as to extend beyond the surface of the tapered portion 42. In this way, by setting the tip of the sleeve fire nozzle 32 to a position recessed toward the inside of the burner body 10, the effect of the accompanying flow described above can be suppressed and the sleeve fire can be stabilized without using a surface combustion burner. It becomes possible to hold. Even when the sleeve fire burner portion 30 includes a slit nozzle having a width d in the short side direction as the sleeve fire nozzle 32, the tip of the sleeve fire nozzle 32 is similarly recessed at least d from the surface of the tapered portion 42. It is preferable to provide it. From the viewpoint of suppressing the influence of the accompanying flow, the distance from the surface of the tapered portion 42 to the tip of the sleeve fire nozzle 32 is preferably 2d or more. On the other hand, if the tip of the sleeve fire nozzle 32 is installed at a position deeper than the surface of the tapered portion 42 by 15 d or more, the flame temperature may be lowered. For this reason, the distance from the surface of the tapered portion 42 to the tip of the sleeve fire nozzle 32 is preferably 15 d or less, and more preferably 4 d or less.
[吐出速度]
 上述したように、本発明の加熱装置によれば、高い吐出速度においても失火することなく安定して火炎を保持することが可能であり、極めて高い効率で加熱を行うことができる。なお、使用時の吐出速度は特に限定されず、火炎が保持できる範囲内であれば任意の速度とすることができるが、加熱効率の観点からは、主バーナ部から吐出される燃料ガスと空気のそれぞれの吐出速度を50Nm/s以上とすることが好ましく、60Nm/s以上とすることがより好ましく、65Nm/s以上とすることがさらに好ましい。このように極めて高い吐出速度は従来のバーナでは実現できなかったものである。
[Discharge speed]
As described above, according to the heating device of the present invention, it is possible to stably hold a flame without misfire even at a high discharge speed, and it is possible to perform heating with extremely high efficiency. In addition, the discharge speed at the time of use is not particularly limited and may be any speed as long as the flame can be held. From the viewpoint of heating efficiency, the fuel gas and air discharged from the main burner section The discharge speed of each is preferably 50 Nm / s or more, more preferably 60 Nm / s or more, and still more preferably 65 Nm / s or more. Thus, an extremely high discharge speed cannot be realized by a conventional burner.
 なお、ここで吐出速度とは、主バーナ部の燃料ガスノズルおよび空気ノズルの直管部におけるガス流速であり、吐出速度=単一ノズルの単位時間当たりガス流量/ノズル断面積で求められる。直管部を有さないノズルでは、ノズル出口部の断面積をノズル断面積として考える。また、多数ノズルまたは多数孔からなるバーナで、図8に例示したようにノズルの前方に円錐状のコーン部がある場合には、前記コーン部の出口における断面積で、バーナから吐出される燃料ガスと空気の和の合計流量を除することにより、バーナの吐出速度を求めることができる。 Here, the discharge speed is the gas flow velocity in the fuel gas nozzle of the main burner section and the straight pipe section of the air nozzle, and is determined by discharge speed = gas flow rate per unit time of a single nozzle / nozzle cross-sectional area. In a nozzle that does not have a straight pipe portion, the cross-sectional area of the nozzle outlet portion is considered as the nozzle cross-sectional area. Further, in the case of a burner composed of a number of nozzles or a number of holes and having a conical cone portion in front of the nozzle as illustrated in FIG. 8, the fuel discharged from the burner with a cross-sectional area at the outlet of the cone portion. By dividing the total flow rate of the sum of gas and air, the burner discharge speed can be determined.
 燃料ガスの吐出速度と燃焼用空気の吐出速度は、ほぼ等しくすることが好ましい。具体的には、燃焼用空気の吐出速度に対する燃料ガスの吐出速度の比(吐出流速比)を、0.8~1.2とすることが好ましい。なお、円錐形のコーンを有するバーナにおいても、コーン手前のノズル孔部における前記吐出流速比を、0.8~1.2とすることが好ましい。 It is preferable that the fuel gas discharge speed and the combustion air discharge speed be approximately equal. Specifically, the ratio of the discharge speed of the fuel gas to the discharge speed of the combustion air (discharge flow rate ratio) is preferably 0.8 to 1.2. Even in a burner having a conical cone, the discharge flow rate ratio in the nozzle hole portion in front of the cone is preferably 0.8 to 1.2.
[燃料ガス流量比]
 主バーナ部における燃料ガス流量と袖火バーナ部における燃料ガス流量の比率(以下、「燃料ガス流量比」ともいう)は、火炎の安定性および加熱能力に大きく影響する。そのため、加熱装置は、主バーナ部における燃料ガス流量と袖火バーナ部における燃料ガス流量を、それぞれ独立に調整可能な流量調整手段を備えることが好ましい。また、燃焼用空気量は、燃料ガス流量に、燃料ガスの理論空気量と空気比を乗じて決定することができる。加熱装置は、主バーナ部における燃焼用空気の流量と袖火バーナ部における燃焼用空気の流量を、それぞれ独立に調整可能な流量調整手段を備えることが好ましい。前記流量調整手段としては、流量調整弁などを用いることができる。
[Fuel gas flow ratio]
The ratio of the fuel gas flow rate in the main burner portion and the fuel gas flow rate in the sleeve fire burner portion (hereinafter also referred to as “fuel gas flow rate ratio”) greatly affects the flame stability and the heating capacity. Therefore, it is preferable that the heating device includes a flow rate adjusting unit that can independently adjust the fuel gas flow rate in the main burner portion and the fuel gas flow rate in the stagfire burner portion. The combustion air amount can be determined by multiplying the fuel gas flow rate by the theoretical amount of fuel gas and the air ratio. It is preferable that the heating device includes a flow rate adjusting unit that can independently adjust the flow rate of the combustion air in the main burner portion and the flow rate of the combustion air in the sleeve fire burner portion. As the flow rate adjusting means, a flow rate adjusting valve or the like can be used.
 主バーナ部における燃料ガス流量と袖火バーナ部における燃料ガス流量の合計を100%としたとき、袖火バーナ部燃料ガス流量が15%未満であると随伴流による火炎温度の低下が顕著となり、主バーナの失火が発生する場合がある。そのため、袖火バーナ部の燃料ガス流量を15%以上とすることが好ましい。言い換えると、前記主バーナ部から吐出される燃料ガスの流量F1と前記袖火バーナ部から吐出される袖火用燃料ガスの流量F2の比、F1:F2を85:15以下(F1/F2≦85/15)とすることが好ましい。一方、袖火バーナ部の燃料ガス流量が多すぎると、火炎は安定するものの、主バーナ部の火炎が小さくなるため加熱能力が低下する。そのため、袖火バーナ部の燃料ガス流量を30%以下、言い換えると、F1:F2を70:30以上(F1/F2≧70/30)とすることが好ましい。 When the sum of the fuel gas flow rate in the main burner portion and the fuel gas flow rate in the sleeve fire burner portion is 100%, if the sleeve gas burner portion fuel gas flow rate is less than 15%, the flame temperature due to the accompanying flow is significantly reduced. A primary burner misfire may occur. Therefore, it is preferable that the flow rate of the fuel gas in the sleeve fire burner is 15% or more. In other words, the ratio of the flow rate F1 of the fuel gas discharged from the main burner portion to the flow rate F2 of the fuel gas for sleeve fire discharged from the sleeve fire burner portion, F1: F2 is 85:15 or less (F1 / F2 ≦ 85/15). On the other hand, if the flow rate of the fuel gas in the sleeve fire burner portion is too large, the flame is stabilized, but the flame in the main burner portion is reduced, so that the heating capacity is lowered. Therefore, it is preferable that the flow rate of fuel gas in the flaming burner portion is 30% or less, in other words, F1: F2 is 70:30 or more (F1 / F2 ≧ 70/30).
 バーナ構造が火炎の安定性に与える影響を確認するため、以下の3種のバーナを用いて、吹き消えが起こらずに火炎を保持できる限界吐出速度を評価した。
(比較例1)図8に示した従来の一般的な予混合燃焼バーナ
(比較例2)特許文献1の図1に示したバーナ
(実施例1)図1~3に示した構造のバーナ
In order to confirm the influence of the burner structure on the flame stability, the following three types of burners were used to evaluate the critical discharge speed at which the flame can be held without blowing out.
(Comparative Example 1) Conventional general premixed combustion burner shown in FIG. 8 (Comparative Example 2) Burner shown in FIG. 1 of Patent Document 1 (Example 1) Burner having the structure shown in FIGS.
 上記実施例および比較例においては、図1、8等に示した断面に垂直な方向におけるバーナの幅を1mとした。表1に、ノズルの寸法と吐出部断面積を示す。また、比較例2および実施例1における主バーナ部における燃料ガスの流量と袖火バーナ部における燃料ガスの流量の比(燃料ガス流量比)を表1に合わせて示した。 In the above examples and comparative examples, the width of the burner in the direction perpendicular to the cross section shown in FIGS. Table 1 shows the dimensions of the nozzle and the cross-sectional area of the discharge part. Further, the ratio of the flow rate of the fuel gas in the main burner portion and the flow rate of the fuel gas in the sleeve fire burner portion in Comparative Example 2 and Example 1 (fuel gas flow rate ratio) is shown in Table 1 together.
 比較例1では、図8に示した断面形状を有し、ノズル幅10mm、長さ1mのスリット状ノズルを用いた。比較例2では、特許文献1の図1に記載のノズルをバーナ幅方向1mの間に直線状に60組設置したものを用いた。特許文献1記載のバーナは、バーナ1個あたり2つの燃料ガスノズルを備えているため、燃料ガスノズルの個数は120個となる。実施例1では、本発明の図1および図2のノズルをバーナ幅方向1mの間に直線状に50組、すなわち、燃料ガスノズルを50個設置したものを用いた。なお、比較例2のバーナで50組のノズルを配置した場合には火炎が不安定であったため、ノズルは60組設置して火炎の安定化を図った。 In Comparative Example 1, a slit-shaped nozzle having the cross-sectional shape shown in FIG. 8 and having a nozzle width of 10 mm and a length of 1 m was used. In Comparative Example 2, 60 nozzles set in a straight line between 1 m in the burner width direction were used as shown in FIG. Since the burner described in Patent Document 1 includes two fuel gas nozzles per burner, the number of fuel gas nozzles is 120. In Example 1, 50 nozzle sets of the nozzles of FIGS. 1 and 2 according to the present invention were linearly arranged in the burner width direction 1 m, that is, 50 fuel gas nozzles were installed. When 50 sets of nozzles were arranged in the burner of Comparative Example 2, the flame was unstable, so 60 sets of nozzles were installed to stabilize the flame.
 実験は、燃焼空間の寸法が1.4m×1.4m×0.4mの実験用燃焼炉にて実施した。燃料ガスと燃焼用空気の流量比が一定となるように両者の流量を増加させ、火炎の吹き消えが起こらずに火炎を保持できる限界吐出流速を測定した。 The experiment was conducted in an experimental combustion furnace having a combustion space size of 1.4 m × 1.4 m × 0.4 m. The flow rate of the fuel gas and the combustion air was increased so that the flow rate ratio was constant, and the critical discharge flow rate at which the flame could be held without the flame blowing out was measured.
 ここで、前記燃料ガスとしては、製鉄所内の副生ガスであるMガス(コークス炉ガスと高炉ガスの混合ガス)を使用した。前記Mガスの主成分は、H2:26.5%、CO:17.6%、CH4:9.1%、N2:30.9%であった。 Here, as the fuel gas, M gas (mixed gas of coke oven gas and blast furnace gas), which is a by-product gas in the steelworks, was used. The main components of the M gas were H 2 : 26.5%, CO: 17.6%, CH 4 : 9.1%, and N 2 : 30.9%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 測定結果を図5に示す。比較例1では、ノズル直管部における流速(吐出速度)が30Nm/sを超えると、火炎が保持できず吹き消えが発生した。なお、前記直管部の流速をコーン部の先端における流速に換算すると、3Nm/sである。比較例2では、ノズル直管部における流速(吐出速度)が40Nm/sを超えると、火炎が保持できず吹き消えが発生した。一方、実施例1では、吐出速度が40Nm/sを超える条件であっても火炎は安定していた。吐出速度が100Nm/sを超えると火炎が不安定となり、120Nm/sで吹き消えが発生した。 The measurement results are shown in FIG. In Comparative Example 1, when the flow velocity (discharge speed) in the nozzle straight pipe portion exceeded 30 Nm / s, the flame could not be held and blowing out occurred. The flow rate of the straight pipe portion is 3 Nm / s when converted to the flow velocity at the tip of the cone portion. In Comparative Example 2, when the flow velocity (discharge speed) in the nozzle straight pipe portion exceeded 40 Nm / s, the flame could not be held and blowing out occurred. On the other hand, in Example 1, the flame was stable even under conditions where the discharge speed exceeded 40 Nm / s. When the discharge speed exceeded 100 Nm / s, the flame became unstable and blow-off occurred at 120 Nm / s.
 以上の結果より、本発明の加熱装置では従来のバーナに比べて大幅に高い吐出流速においても安定燃焼が可能であることが分かる。なお、実際に工業用などで本発明のバーナを使う際には、吹き消え限界流速近傍での使用は供給系の操業変動などにより吹き消えリスクが高まる可能性があるため、吹き消え限界流速よりも流速を小さくして使用することが好ましい。図5には、実際の常用使用流速の一例も記載した。 From the above results, it can be seen that the heating apparatus of the present invention can perform stable combustion even at a discharge flow rate significantly higher than that of a conventional burner. In addition, when using the burner of the present invention for industrial use etc., use near the blow-off limit flow rate may increase the risk of blow-off due to fluctuations in the operation of the supply system, etc. However, it is preferable that the flow rate be reduced. FIG. 5 also shows an example of the actual normal use flow rate.
 また、前述の測定と同時に、被加熱物を模擬した水冷チラーをバーナに対面させるように0.4m離れた位置に設置し、水の上昇温度からバーナの加熱力を評価した。燃料ガス流量および空気比を同一としたときの、各実施例、比較例におけるバーナの加熱力を図6に示す。実施例1では、比較例1および比較例2に比べ加熱力が大幅に向上していることがわかる。 Also, simultaneously with the above measurement, a water-cooled chiller simulating an object to be heated was installed at a position 0.4 m away from the burner, and the heating power of the burner was evaluated from the rising temperature of the water. FIG. 6 shows the heating power of the burner in each example and comparative example when the fuel gas flow rate and the air ratio are the same. In Example 1, it turns out that a heating power is improving significantly compared with the comparative example 1 and the comparative example 2.
 さらに、前述の測定と同時に、比較例1および実施例1における火炎温度の分布を、熱電対を用いて測定し、これを元にバーナ断面方向の等温線を作成した。結果を図7に示す。両者は同じ燃料ガス流量および空気比にて測定したものである。比較例1では、バーナ前方のコーン内部で燃焼し、被加熱物に到達する前に多くの燃料ガスの燃焼が完了している。一方、実施例1では、主バーナから吐出された燃料ガスは、バーナと被加熱物の中間付近において袖火バーナの火炎により着火されて燃焼を開始しており、被加熱物の近傍で多くの燃料ガスが燃焼している。その結果、実施例1のバーナでは火炎が高速で被加熱物に衝突してより多くのエネルギーを被加熱面に授受するために、被加熱物近傍のガス温度はほぼ同等に見えていても、図7に示したように加熱力の大幅な向上が認められたものと考えられる。 Furthermore, simultaneously with the above measurement, the flame temperature distribution in Comparative Example 1 and Example 1 was measured using a thermocouple, and based on this, an isotherm in the burner cross-sectional direction was created. The results are shown in FIG. Both are measured at the same fuel gas flow rate and air ratio. In Comparative Example 1, combustion is performed inside the cone in front of the burner, and combustion of many fuel gases is completed before reaching the object to be heated. On the other hand, in Example 1, the fuel gas discharged from the main burner is ignited by the flame of the sleeve fire burner in the vicinity of the middle of the burner and the object to be heated, and starts to burn, and a lot of fuel gas is discharged near the object to be heated. Fuel gas is burning. As a result, in the burner of Example 1, since the flame collides with the object to be heated at a high speed and transfers more energy to the surface to be heated, even if the gas temperature in the vicinity of the object to be heated looks almost equal, As shown in FIG. 7, it is considered that a significant improvement in heating power was observed.
  1 バーナ
 10 バーナ本体
 20 主バーナ部
 21 燃料ガスノズル
 22 空気ノズル
 23 均圧室
 30 袖火バーナ部
 31 多孔質板
 33 空間
 40 凹部
 41 底部
 42 テーパー部
 50 袖火
 60 火炎
 
DESCRIPTION OF SYMBOLS 1 Burner 10 Burner main body 20 Main burner part 21 Fuel gas nozzle 22 Air nozzle 23 Pressure equalizing chamber 30 Sleeve fire burner part 31 Porous board 33 Space 40 Recess 41 Bottom part 42 Taper part 50 Sleeve fire 60 Flame

Claims (11)

  1.  バーナを備える加熱装置であって、
     前記バーナが、
      燃料ガスを吐出する燃料ガスノズルと燃焼用空気を吐出する空気ノズルとを備える主バーナ部と、
      前記主バーナ部よりも外側に位置し、前記主バーナ部から吐出される燃料ガスを燃焼させるための袖火バーナ部とを備える、加熱装置。
    A heating device comprising a burner,
    The burner
    A main burner section comprising a fuel gas nozzle for discharging fuel gas and an air nozzle for discharging combustion air;
    A heating apparatus, comprising: a sleeve fire burner portion that is located outside the main burner portion and burns fuel gas discharged from the main burner portion.
  2.  前記主バーナ部が、前記燃料ガスノズルおよび前記空気ノズルの一方または両方の上流側に均圧室を備える、請求項1に記載の加熱装置。 The heating apparatus according to claim 1, wherein the main burner section includes a pressure equalizing chamber on the upstream side of one or both of the fuel gas nozzle and the air nozzle.
  3.  前記燃料ガスノズルおよび前記空気ノズルが直管構造である、請求項1または2に記載の加熱装置。 The heating apparatus according to claim 1 or 2, wherein the fuel gas nozzle and the air nozzle have a straight pipe structure.
  4.  前記バーナの先端に、底部と、該底部から該バーナの先端に向かって漸次拡幅するテーパー部とを有する凹部が設けられており、
     前記主バーナ部が前記底部に配置されており、
     前記袖火バーナ部が前記テーパー部に配置されている、請求項1~3のいずれか一項に記載の加熱装置。
    A concave portion having a bottom portion and a tapered portion gradually widening from the bottom portion toward the tip of the burner is provided at the tip of the burner,
    The main burner portion is disposed at the bottom;
    The heating apparatus according to any one of claims 1 to 3, wherein the sleeve fire burner portion is disposed in the tapered portion.
  5.  前記底部および前記テーパー部のなす角度θが20°以上である、請求項4に記載の加熱装置。 The heating device according to claim 4, wherein an angle θ formed by the bottom portion and the tapered portion is 20 ° or more.
  6.  前記袖火バーナ部が面燃焼バーナである、請求項1~5のいずれか一項に記載の加熱装置。 The heating apparatus according to any one of claims 1 to 5, wherein the sleeve fire burner is a surface combustion burner.
  7.  前記袖火バーナ部が、直径dの管形ノズルおよび短辺方向の幅dのスリットノズルから選択される袖火ノズルを備え、
     前記袖火ノズルの先端が、前記テーパー部の表面からd以上15d以下奥まった位置に設けられている、請求項4または5に記載の加熱装置。
    The flaming burner comprises a flaming nozzle selected from a tubular nozzle having a diameter d and a slit nozzle having a width d in the short side direction;
    6. The heating device according to claim 4, wherein a tip of the sleeve fire nozzle is provided at a position recessed from d to 15 d from the surface of the tapered portion.
  8.  前記主バーナ部における流量と前記袖火バーナ部における流量とを独立して調整可能な流量調整手段を備える、請求項1~7のいずれか一項に記載の加熱装置。 The heating apparatus according to any one of claims 1 to 7, further comprising a flow rate adjusting means capable of independently adjusting a flow rate in the main burner portion and a flow rate in the sleeve fire burner portion.
  9.  請求項1~8のいずれか一項に記載の加熱装置を用いて加熱する、加熱方法。 A heating method of heating using the heating device according to any one of claims 1 to 8.
  10.  前記主バーナ部から吐出される燃料ガスと燃焼用空気のそれぞれの吐出速度が50Nm/s以上である、請求項9に記載の加熱方法。 The heating method according to claim 9, wherein the discharge speeds of the fuel gas and the combustion air discharged from the main burner part are 50 Nm / s or more.
  11.  前記主バーナ部から吐出される燃料ガスの流量F1と前記袖火バーナ部から吐出される袖火用燃料ガスの流量F2の比、F1:F2を、70:30~85:15とする、請求項9または10に記載の加熱方法。 The ratio of the flow rate F1 of the fuel gas discharged from the main burner portion to the flow rate F2 of the fuel gas for the sleeve fire discharged from the sleeve fire burner portion, F1: F2, is set to 70:30 to 85:15. Item 11. The heating method according to Item 9 or 10.
PCT/JP2018/010774 2017-03-27 2018-03-19 Heating device and heating method WO2018180694A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019509343A JP6690779B2 (en) 2017-03-27 2018-03-19 Heating device and heating method
EP18778121.6A EP3604925B1 (en) 2017-03-27 2018-03-19 Heating device and heating method
KR1020197025717A KR102273957B1 (en) 2017-03-27 2018-03-19 Heating device and heating method
CN201880013141.3A CN110325794B (en) 2017-03-27 2018-03-19 Heating device and heating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-061583 2017-03-27
JP2017061583 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018180694A1 true WO2018180694A1 (en) 2018-10-04

Family

ID=63675710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010774 WO2018180694A1 (en) 2017-03-27 2018-03-19 Heating device and heating method

Country Status (6)

Country Link
EP (1) EP3604925B1 (en)
JP (1) JP6690779B2 (en)
KR (1) KR102273957B1 (en)
CN (1) CN110325794B (en)
TW (1) TWI670457B (en)
WO (1) WO2018180694A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302596A (en) * 1966-01-21 1967-02-07 Little Inc A Combustion device
JPS5218234A (en) * 1975-07-31 1977-02-10 Exxon Research Engineering Co Multi stages air burner
JPH06159613A (en) * 1992-11-24 1994-06-07 Nippon Furnace Kogyo Kaisha Ltd Low nox combustion method and burner used for the same
JPH08145315A (en) * 1994-07-18 1996-06-07 Toyota Motor Corp Low nox burner
JP2008249280A (en) * 2007-03-30 2008-10-16 Toho Gas Co Ltd Gas burner
JP2013194991A (en) 2012-03-19 2013-09-30 Jfe Steel Corp Burner for sintering machine ignition furnace
JP2014201809A (en) * 2013-04-08 2014-10-27 新日鉄住金エンジニアリング株式会社 Combustion device and operation method thereof, and rotary hearth furnace
JP2015004483A (en) * 2013-06-21 2015-01-08 日本ファーネス株式会社 Fuel two-stage combustion type burner device, and fuel two-stage combustion method
JP2016191533A (en) * 2015-03-31 2016-11-10 大陽日酸株式会社 Burner flame forming method
JP2017036901A (en) * 2015-08-13 2017-02-16 中外炉工業株式会社 Industrial furnace and ignition method of industrial furnace

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2822864A (en) * 1953-09-28 1958-02-11 Babcock & Wilcox Co Combination fluid fuel burner
JPS54115645U (en) * 1978-02-02 1979-08-14
JPS56158716U (en) * 1980-04-25 1981-11-26
JPS58124U (en) * 1981-06-20 1983-01-05 大阪瓦斯株式会社 Radiant tube burner
JPS5899607A (en) * 1981-12-07 1983-06-14 Matsushita Electric Ind Co Ltd Burner
JPS5899607U (en) * 1981-12-28 1983-07-06 東芝機械株式会社 Measuring device
AU644350B2 (en) * 1988-09-02 1993-12-09 American Combustion, Incorporated Method and apparatus for generating highly luminous flame
JP2739884B2 (en) * 1991-12-20 1998-04-15 東京瓦斯株式会社 Burner with low nitrogen oxide generation
JP2849977B2 (en) * 1994-03-30 1999-01-27 矢崎総業株式会社 Gas burner
JP4018809B2 (en) * 1998-06-10 2007-12-05 株式会社Nfkホールディングス Additional combustion method using gas turbine exhaust gas and additional burner using this additional combustion method
US20070037106A1 (en) * 2005-08-12 2007-02-15 Kobayashi William T Method and apparatus to promote non-stationary flame
US20070231761A1 (en) * 2006-04-03 2007-10-04 Lee Rosen Integration of oxy-fuel and air-fuel combustion
JP4963621B2 (en) * 2007-03-30 2012-06-27 オリンピア工業株式会社 Low NOx gas burner
CN101520178A (en) * 2009-04-07 2009-09-02 湖南吉祥石化科技股份有限公司 High-tenacity mixing low pollution combustor discharging acid gas
JP6102009B2 (en) * 2015-02-27 2017-03-29 大陽日酸株式会社 GAS FUEL BURNER AND HEATING METHOD USING GAS FUEL BURNER
WO2017048638A1 (en) * 2015-09-14 2017-03-23 Clearsign Combustion Corporation Partially transitioned flame start-up of a perforated flame holder
CN106152136B (en) * 2016-08-26 2018-11-16 佛山市科皓燃烧设备制造有限公司 The ultralow NOx fuel dilution technology heat-accumulating burner of combustion gas injection

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302596A (en) * 1966-01-21 1967-02-07 Little Inc A Combustion device
JPS5218234A (en) * 1975-07-31 1977-02-10 Exxon Research Engineering Co Multi stages air burner
JPH06159613A (en) * 1992-11-24 1994-06-07 Nippon Furnace Kogyo Kaisha Ltd Low nox combustion method and burner used for the same
JPH08145315A (en) * 1994-07-18 1996-06-07 Toyota Motor Corp Low nox burner
JP2008249280A (en) * 2007-03-30 2008-10-16 Toho Gas Co Ltd Gas burner
JP2013194991A (en) 2012-03-19 2013-09-30 Jfe Steel Corp Burner for sintering machine ignition furnace
JP2014201809A (en) * 2013-04-08 2014-10-27 新日鉄住金エンジニアリング株式会社 Combustion device and operation method thereof, and rotary hearth furnace
JP2015004483A (en) * 2013-06-21 2015-01-08 日本ファーネス株式会社 Fuel two-stage combustion type burner device, and fuel two-stage combustion method
JP2016191533A (en) * 2015-03-31 2016-11-10 大陽日酸株式会社 Burner flame forming method
JP2017036901A (en) * 2015-08-13 2017-02-16 中外炉工業株式会社 Industrial furnace and ignition method of industrial furnace

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604925A4

Also Published As

Publication number Publication date
CN110325794B (en) 2021-07-20
JP6690779B2 (en) 2020-04-28
EP3604925B1 (en) 2022-05-11
JPWO2018180694A1 (en) 2019-11-21
TW201839342A (en) 2018-11-01
TWI670457B (en) 2019-09-01
KR102273957B1 (en) 2021-07-06
CN110325794A (en) 2019-10-11
EP3604925A1 (en) 2020-02-05
EP3604925A4 (en) 2020-04-01
KR20190113899A (en) 2019-10-08

Similar Documents

Publication Publication Date Title
US10760784B2 (en) Burner including a perforated flame holder spaced away from a fuel nozzle
EP2886956B1 (en) Solid-fuel burner
JP5320517B1 (en) Combustion apparatus, operating method thereof, and rotary hearth type heating furnace
JP6043393B2 (en) Burner flame formation method
WO2018180694A1 (en) Heating device and heating method
JP6458919B1 (en) Method for producing sintered ore
KR101595678B1 (en) Tubular flame burner
EP2653566B1 (en) Top-firing hot blast stove
CN104482538A (en) Burner for radiant tube
JP6825601B2 (en) Heating device and heating method
JP7091386B2 (en) Oxygen burner
JP6206290B2 (en) Multiple tubular flame burner
JP2019168205A (en) Burner and heating method
JP2001099407A (en) Gas combustion burner
CZ293781B6 (en) Burner head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509343

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197025717

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018778121

Country of ref document: EP

Effective date: 20191028