JP2015004483A - Fuel two-stage combustion type burner device, and fuel two-stage combustion method - Google Patents

Fuel two-stage combustion type burner device, and fuel two-stage combustion method Download PDF

Info

Publication number
JP2015004483A
JP2015004483A JP2013130394A JP2013130394A JP2015004483A JP 2015004483 A JP2015004483 A JP 2015004483A JP 2013130394 A JP2013130394 A JP 2013130394A JP 2013130394 A JP2013130394 A JP 2013130394A JP 2015004483 A JP2015004483 A JP 2015004483A
Authority
JP
Japan
Prior art keywords
furnace
combustion
fuel
combustion gas
secondary fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013130394A
Other languages
Japanese (ja)
Other versions
JP6168875B2 (en
Inventor
憲彦 小泉
Norihiko Koizumi
憲彦 小泉
和広 相原
Kazuhiro Aihara
和広 相原
健志 軽石
Kenji Karuishi
健志 軽石
晋 持田
Susumu Mochida
晋 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Furnace Co Ltd
Original Assignee
Nippon Furnace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Furnace Co Ltd filed Critical Nippon Furnace Co Ltd
Priority to JP2013130394A priority Critical patent/JP6168875B2/en
Publication of JP2015004483A publication Critical patent/JP2015004483A/en
Application granted granted Critical
Publication of JP6168875B2 publication Critical patent/JP6168875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a fuel two-stage combustion method for augmenting the ratio of a secondary fuel supply amount/a primary fuel supply amount without deteriorating a combustion stability in a primary combustion area, and for increasing the excess ratio of burning air without increasing the generation quantity of nitrogen oxides.SOLUTION: A primary fuel (F1) of a primary fuel injection port (11) is fed in a burner throat (13) to a burning air flow (A). Dam portions (20) are arranged between a secondary fuel injection port (12) and an outlet opening (14), and are protruded onto a furnace inner surface (W). The directivity of a secondary fuel (F2) is varied by the dam portions (20). The secondary fuel is mixed with an in-furnace combustion gas (EG). Via an in-furnace combustion gas recirculation passage (30) formed between the dam portions, the in-furnace combustion gas circulation flow is fed to the burning air flow (A). The burning air is diluted with the in-furnace combustion gas. The secondary fuel mixed with the in-furnace combustion gas and the combustion air diluted are mixed in contact, so that a secondary combustion flame (C2) is created in an in-furnace region (V) thereby to improve the NOx reducing effect.

Description

本発明は燃料二段燃焼式バーナ装置及び燃料二段燃焼方法に関するものであり、より詳細には、燃料を二段階に分けて燃焼用空気に供給するとともに、炉内燃焼ガスの循環流を燃焼用空気に混合して燃焼用空気の酸素濃度を低減する燃料二段燃焼法(フューエルステージング法)を実施するための燃料二段燃焼式バーナ装置及び燃料二段燃焼方法に関するものである。   The present invention relates to a fuel two-stage combustion burner apparatus and a fuel two-stage combustion method, and more specifically, supplies fuel to combustion air in two stages and burns a circulating flow of combustion gas in the furnace. TECHNICAL FIELD The present invention relates to a fuel two-stage combustion burner device and a fuel two-stage combustion method for carrying out a fuel two-stage combustion method (fuel staging method) in which the oxygen concentration of combustion air is reduced by mixing with the combustion air.

低NOx燃焼法として、燃料を二段階に分けて燃焼用空気に供給する燃料二段燃焼法が知られている。燃料二段燃焼法を実施するバーナ装置の構成が図8に例示されている。図8に示す如く、バーナ装置は、一次燃料F1及び二次燃料F2を夫々供給する一次燃料ノズル101及び二次燃料ノズル102を備える。過剰空気量を含む全量(理論空気量+過剰空気量)の燃焼用空気Aが、バーナスロート103に供給される。一次燃料ノズル101は、バーナスロート103の中央部に配置され、燃焼用空気流Aの中央部において一次燃料F1を噴射し、一次燃焼火炎C1を形成する。二次燃料ノズル102は、バーナタイル、炉壁又は炉床等の炉内表面Wに配置され、バーナスロート103の出口部近傍において二次燃料F2を燃焼用空気流Aに噴射する。   As a low NOx combustion method, a fuel two-stage combustion method is known in which fuel is divided into two stages and supplied to combustion air. FIG. 8 illustrates the configuration of a burner apparatus that performs the two-stage fuel combustion method. As shown in FIG. 8, the burner device includes a primary fuel nozzle 101 and a secondary fuel nozzle 102 for supplying a primary fuel F1 and a secondary fuel F2, respectively. The entire amount of combustion air A including the excess air amount (theoretical air amount + excess air amount) is supplied to the burner throat 103. The primary fuel nozzle 101 is disposed at the center of the burner throat 103, and injects the primary fuel F1 at the center of the combustion air flow A to form a primary combustion flame C1. The secondary fuel nozzle 102 is disposed on a furnace inner surface W such as a burner tile, a furnace wall, or a hearth, and injects the secondary fuel F2 into the combustion air flow A in the vicinity of the outlet portion of the burner throat 103.

炉内領域Vに生成した炉内燃焼ガスEGが、炉内領域Vに噴流する燃焼用空気流Aに誘引され、燃焼用空気流Aに混合する。従って、燃焼用空気流Aは、一次燃焼により生成した一次燃焼ガスと混合して希釈されるとともに、炉内燃焼ガスEGと混合して希釈されるので、燃焼用空気流Aの酸素濃度は低減する。二次燃料ノズル102が噴射した二次燃料F2は、噴流域Jにおいて炉内燃焼ガスEGと混合し、酸素濃度が低減した燃焼用空気流Aと混合接触し、緩慢な炉内燃焼反応による二次燃焼火炎C2を炉内領域Vに形成する。   The in-furnace combustion gas EG generated in the in-furnace region V is attracted by the combustion air flow A jetted into the in-furnace region V and mixed with the combustion air flow A. Therefore, the combustion air stream A is mixed with the primary combustion gas generated by the primary combustion and diluted, and mixed with the in-furnace combustion gas EG, so that the oxygen concentration of the combustion air stream A is reduced. To do. The secondary fuel F2 injected by the secondary fuel nozzle 102 is mixed with the in-furnace combustion gas EG in the jet region J, mixed with and brought into contact with the combustion air flow A with a reduced oxygen concentration, and the second fuel F2 injected by the slow in-core combustion reaction. The next combustion flame C2 is formed in the in-furnace region V.

このような燃料二段燃焼法は、比較的高い空気比の空気過剰状態において一次燃料F1を燃焼させた後、燃焼用空気、一次燃焼ガス、炉内燃焼ガスEG及び二次燃料F2を混合して緩慢な二次燃焼反応を炉内領域に進行せしめる方式のものである。この種の燃料二段燃焼法は、例えば、本出願人の出願に係る特開平6−159613号公報(特許文献1)、特開平8−145315号公報(特許文献2)等に記載されている。   In such a fuel two-stage combustion method, after combusting the primary fuel F1 in an air excess state with a relatively high air ratio, the combustion air, the primary combustion gas, the in-furnace combustion gas EG, and the secondary fuel F2 are mixed. And a slow secondary combustion reaction is advanced to the furnace region. This type of fuel two-stage combustion method is described in, for example, Japanese Patent Application Laid-Open No. 6-159613 (Patent Document 1), Japanese Patent Application Laid-Open No. 8-145315 (Patent Document 2) and the like relating to the application of the present applicant. .

特開平6−159613号公報JP-A-6-159613 特開平8−145315号公報JP-A-8-145315

このような燃料二段燃焼法においては、一次燃料供給量に対する二次燃料供給量の比率(二次燃料供給量/一次燃料供給量)を増大することが、窒素酸化物(NOx)の発生を抑制する上で望ましい。この点は、近年の研究により既に判明している。   In such a fuel two-stage combustion method, increasing the ratio of the secondary fuel supply amount to the primary fuel supply amount (secondary fuel supply amount / primary fuel supply amount) reduces the generation of nitrogen oxides (NOx). Desirable for suppression. This point has already been found by recent studies.

しかしながら、二次燃料供給量の比率を増大する結果、一次燃料供給量の比率を相対的に低減すると、一次燃焼域の空気比が増大して一次燃焼反応が極端に空気過剰の環境で燃焼反応するので、一次燃焼域における安定燃焼性を所望の如く確保し難く、このため、従来の燃料二段燃焼法においては、一次燃焼域における燃焼安定性の確保を優先し又は重視し、二次燃料供給量の比率を所望の如く増大し難い事情がある。これは、NOx低減効果をある程度まで犠牲にした二次燃料供給量/一次燃料供給量の比率を運転条件として採用せざるを得ないことを意味する。   However, as a result of increasing the ratio of the secondary fuel supply amount, if the ratio of the primary fuel supply amount is relatively reduced, the air ratio in the primary combustion zone increases and the primary combustion reaction becomes a combustion reaction in an extremely excessive air environment. Therefore, it is difficult to ensure the stable combustibility in the primary combustion region as desired. Therefore, in the conventional fuel two-stage combustion method, priority is given to or priority is given to ensuring the combustion stability in the primary combustion region. There are circumstances where it is difficult to increase the ratio of the supply amount as desired. This means that the ratio of the secondary fuel supply amount / primary fuel supply amount that sacrifices the NOx reduction effect to some extent must be adopted as the operating condition.

また、ある種の燃焼炉、加熱炉等においては、炉温低下等を意図して燃焼用空気の過剰率を増大した運転条件を採用する必要が生じる。このような燃焼炉等の運転条件においては、燃焼反応に関与しない酸素が量的に増大するので、窒素酸化物の発生量が増大する傾向がある。   Also, in certain types of combustion furnaces, heating furnaces, etc., it is necessary to employ operating conditions in which the excess rate of combustion air is increased in order to lower the furnace temperature or the like. Under such operating conditions such as a combustion furnace, oxygen that does not participate in the combustion reaction increases quantitatively, so that the amount of nitrogen oxide generated tends to increase.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、一次燃焼域における燃焼安定性を損なうことなく、二次燃料供給量/一次燃料供給量の比率を増大するとともに、窒素酸化物の発生量を増大することなく、燃焼用空気の過剰率を増大することができる燃料二段燃焼式バーナ装置及び燃料二段燃焼方法を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to increase the ratio of the secondary fuel supply amount / primary fuel supply amount without impairing the combustion stability in the primary combustion region. In addition, an object of the present invention is to provide a fuel two-stage combustion burner apparatus and a fuel two-stage combustion method capable of increasing the excess ratio of combustion air without increasing the amount of nitrogen oxides generated.

上記目的を達成すべく、本発明は、炉内壁面、炉床面又は炉頂面に開口したバーナスロートと、一次燃料及び二次燃料を段階的に燃焼用空気に供給する一次燃料噴射口及び二次燃料噴射口とを有し、炉内燃焼ガス循環流を燃焼用空気に混合して燃焼用空気の酸素濃度を低減した後、該燃焼用空気及び前記二次燃料を二次燃焼域で混合する燃料二段燃焼式バーナ装置において、
炉内表面に位置する前記二次燃料噴射口と、前記バーナスロートの出口開口との間に配置され、前記出口開口を囲むように炉内表面に突設された堰を有し、
該堰は、前記二次燃料噴射口が噴射した二次燃料噴流の方向を変化させる外側面と、炉内燃焼ガス循環流を炉内表面に沿って前記出口開口の開口縁に向かって流動せしめる炉内燃焼ガス還流路とを有することを特徴とする燃料二段燃焼式バーナ装置を提供する。
In order to achieve the above object, the present invention comprises a burner throat opened on the inner wall surface, hearth surface or top surface of a furnace, a primary fuel injection port for supplying primary fuel and secondary fuel to combustion air in stages, and A secondary fuel injection port, and mixing the combustion gas circulation flow in the furnace with the combustion air to reduce the oxygen concentration of the combustion air, and then the combustion air and the secondary fuel are mixed in the secondary combustion zone. In the fuel two-stage combustion burner device to be mixed,
It is arranged between the secondary fuel injection port located on the inner surface of the furnace and the outlet opening of the burner throat, and has a weir protruding from the inner surface of the furnace so as to surround the outlet opening,
The weir causes the outer surface to change the direction of the secondary fuel jet injected by the secondary fuel injection port, and the combustion gas circulation flow in the furnace to flow along the furnace inner surface toward the opening edge of the outlet opening. Provided is a fuel two-stage combustion burner device having an in-furnace combustion gas recirculation path.

本発明は又、炉内壁面、炉床面又は炉頂面に開口したバーナスロートから燃焼用空気流を炉内領域に供給して、炉内燃焼ガスの循環流を燃焼用空気に混合して燃焼用空気の酸素濃度を低減するとともに、前記バーナスロートに配置された一次燃料噴射口の一次燃料と、炉内表面に配置された二次燃料噴射口の二次燃料とを燃焼用空気に段階的に供給する燃料二段燃焼方法において、
炉内表面に位置する前記二次燃料噴射口と、前記バーナスロートの出口開口との間に堰を配置し、炉内表面に突設した前記堰によって前記出口開口を囲むことにより、前記二次燃料噴射口が噴射した二次燃料噴流の方向を変化させ、
炉内燃焼ガス還流路を前記堰に形成して、炉内燃焼ガス循環流を前記炉内表面に沿って前記出口開口の開口縁に向かって流動させ、前記出口開口から炉内領域に流出する前記燃焼用空気に炉内燃焼ガスを混合することを特徴とする燃料二段燃焼方法を提供する。
The present invention also supplies a combustion air flow from a burner throat opened to the furnace inner wall surface, the furnace floor surface, or the furnace top surface to the furnace inner region, and mixes the circulation flow of the furnace combustion gas with the combustion air. Combusting air is used to reduce the oxygen concentration in the combustion air, and to convert the primary fuel injection port disposed in the burner throat and the secondary fuel in the secondary fuel injection port disposed on the inner surface of the furnace into combustion air. In the fuel two-stage combustion method to supply automatically,
By placing a weir between the secondary fuel injection port located on the furnace inner surface and the outlet opening of the burner throat, and surrounding the outlet opening by the weir protruding from the furnace inner surface, Change the direction of the secondary fuel jet injected by the fuel injection port,
An in-furnace combustion gas recirculation path is formed in the weir to cause the in-furnace combustion gas circulation flow to flow along the inner surface of the furnace toward the opening edge of the outlet opening and to flow out from the outlet opening to the in-furnace region. A fuel two-stage combustion method is provided, wherein a combustion gas in a furnace is mixed with the combustion air.

好ましくは、上記堰を構成する複数の堰部分が上記出口開口の外縁部に沿って間隔を隔てて配置され、上記炉内燃焼ガス還流路は、隣り合う堰部分の離間領域により形成される。更に好ましくは、堰部分は、出口開口に向かって膨出するように全体的に弧状且つ凸状に湾曲した形態を有し、各堰部分は、複数の二次燃料噴流が均等に衝突可能な弧状且つ凹状の外側面を有する。   Preferably, a plurality of dam portions constituting the dam are arranged at intervals along an outer edge portion of the outlet opening, and the in-furnace combustion gas recirculation path is formed by a separation region between adjacent dam portions. More preferably, the weir portion has a generally arcuate and convex curved shape so as to bulge toward the outlet opening, and each of the weir portions can collide with a plurality of secondary fuel jets equally. It has an arcuate and concave outer surface.

なお、本明細書において、「堰」は、炉内表面に沿って流動する流体の流れを阻止して滞留又は偏向させることができる堤、隆起、突条、凸状部、突出部、隔壁等を包含する概念である。また、上記「堰部分」は、「堰」の構成単位又は構成要素を意味し、「堰」は、複数の「堰部分」を連設又は隔設することによって形成することができる。   In this specification, “weir” refers to a bank, a ridge, a ridge, a protruding portion, a protruding portion, a partition wall, etc. that can stay or deflect while preventing the flow of fluid flowing along the furnace inner surface. It is a concept that includes The “dam portion” means a constituent unit or a component of the “dam”, and the “dam” can be formed by connecting or separating a plurality of “dam portions”.

本発明の上記構成によれば、一次燃焼火炎に対する炉内燃焼ガス循環流の影響を堰の障害によって緩和し又は妨げることができるので、炉内燃焼ガス循環流が流体力学的に一次燃焼火炎に作用するのを防止し、これにより、一次燃焼域における安定燃焼性を向上することができ、この結果、二次燃料供給量/一次燃料供給量の比率を増大することができる。二次燃料供給量/一次燃料供給量の比率の増大は、より多くの燃料が燃焼反応前に炉内燃焼ガスと混合し得ること(従って、燃料二段燃焼式バーナ装置及び燃料二段燃焼方法のNOx低減効果を向上し得ること)を意味する。   According to the above configuration of the present invention, the influence of the combustion gas circulation flow in the furnace on the primary combustion flame can be mitigated or hindered by the failure of the weir, so that the combustion gas circulation flow in the furnace is hydrodynamically converted into the primary combustion flame. Thus, stable combustion in the primary combustion region can be improved, and as a result, the ratio of secondary fuel supply amount / primary fuel supply amount can be increased. Increasing the ratio of secondary fuel supply / primary fuel supply means that more fuel can be mixed with the in-furnace combustion gas before the combustion reaction (thus, the fuel two-stage combustion burner device and the fuel two-stage combustion method) It is possible to improve the NOx reduction effect.

また、本発明の上記構成によれば、炉内燃焼ガス還流路を介して、炉内燃焼ガス循環流が燃焼用空気流に供給され、燃焼用空気と混合する。燃焼用空気は、バーナスロートの出口開口から流出した直後に炉内燃焼ガスによって希釈され、その酸素濃度を低下させた後、二次燃料と混合する。他方、二次燃料噴射口から噴射した二次燃料は、堰の外側において炉内側に転向又は変向し、炉内燃焼ガスと効果的に混合する。従って、本発明の上記構成によれば、比較的多量の炉内燃焼ガスによって燃焼用空気を早期に(即ち、一次燃焼の直後に)希釈した後、比較的多量の燃焼ガスと混合した二次燃料と混合接触させ、緩慢な二次燃焼反応を生じさせることができる。即ち、本発明によれば、酸素濃度が低下した燃焼用空気と、炉内燃焼ガスと十分に混合した二次燃料との混合接触により緩慢な二次燃焼反応を生起することができるので、燃料二段燃焼式バーナ装置及び燃料二段燃焼方法のNOx低減効果を向上することができる。   Further, according to the above configuration of the present invention, the in-furnace combustion gas circulation flow is supplied to the combustion air flow through the in-furnace combustion gas recirculation path, and is mixed with the combustion air. Combustion air is diluted with the combustion gas in the furnace immediately after flowing out from the outlet opening of the burner throat, the oxygen concentration is lowered, and then mixed with the secondary fuel. On the other hand, the secondary fuel injected from the secondary fuel injection port is turned or turned to the inside of the furnace outside the weir and is effectively mixed with the combustion gas in the furnace. Therefore, according to the above configuration of the present invention, the combustion air is diluted early with a relatively large amount of combustion gas in the furnace (that is, immediately after the primary combustion) and then mixed with a relatively large amount of combustion gas. Mixing contact with fuel can cause a slow secondary combustion reaction. That is, according to the present invention, a slow secondary combustion reaction can be caused by mixing contact between the combustion air having a reduced oxygen concentration and the secondary fuel sufficiently mixed with the in-furnace combustion gas. The NOx reduction effect of the two-stage combustion type burner device and the fuel two-stage combustion method can be improved.

また、本発明によれば、このようなNOx低減効果の向上により、窒素酸化物の発生を抑制することができるので、燃焼用空気の過剰率を増大することが可能となる。   In addition, according to the present invention, generation of nitrogen oxides can be suppressed by such an improvement in NOx reduction effect, so that the excess ratio of combustion air can be increased.

本発明の燃料二段燃焼式バーナ装置及び燃料二段燃焼方法によれば、一次燃焼域における燃焼安定性を損なうことなく、二次燃料供給量/一次燃料供給量の比率を増大するとともに、窒素酸化物の発生量を増大することなく、燃焼用空気の過剰率を増大することができる。   According to the fuel two-stage combustion type burner device and the fuel two-stage combustion method of the present invention, the ratio of the secondary fuel supply amount / primary fuel supply amount is increased without impairing the combustion stability in the primary combustion zone, The excess rate of combustion air can be increased without increasing the amount of oxide generated.

図1は、本発明に係る燃料二段燃焼式バーナ装置の構造を概略的に示す正面図である。FIG. 1 is a front view schematically showing the structure of a fuel two-stage combustion burner apparatus according to the present invention. 図2は、図1のI−I線における断面図である。2 is a cross-sectional view taken along the line II of FIG. 図3は、図1のII−II線における断面図である。3 is a cross-sectional view taken along line II-II in FIG. 図4(A)は、図1〜図3に示す堰の作用を示す概略斜視図であり、図4(B)は、離間領域を備えない円筒状又は円環状の堰を備えたバーナ装置の構成を参考例として示す概略斜視図であり、図4(C)は、堰を備えないバーナ装置の構成を比較例として示す概略斜視図である。4A is a schematic perspective view showing the action of the weir shown in FIGS. 1 to 3, and FIG. 4B is a diagram of a burner device provided with a cylindrical or annular weir without a separation region. FIG. 4C is a schematic perspective view showing a configuration of a burner apparatus that does not include a weir as a comparative example. 図5(A)は、図1のI−I線における部分拡大断面図であり、図5(B)は、図1のII−II線における部分拡大断面図である。5A is a partially enlarged cross-sectional view taken along the line II of FIG. 1, and FIG. 5B is a partially enlarged cross-sectional view taken along the line II-II of FIG. 図6は、本発明に係る低NOxバーナ装置を炉床部分に配設した燃焼炉又は加熱炉の実施例を示す燃焼炉又は加熱炉の部分縦断面図である。FIG. 6 is a partial longitudinal sectional view of a combustion furnace or a heating furnace showing an embodiment of a combustion furnace or a heating furnace in which the low NOx burner device according to the present invention is disposed in the hearth part. 図7は、図6のIII−III線における断面図である。7 is a cross-sectional view taken along line III-III in FIG. 図8は、燃料二段燃焼法を実施する従来の低NOxバーナ装置の構成を例示する断面図である。FIG. 8 is a cross-sectional view illustrating the configuration of a conventional low NOx burner apparatus that implements the fuel two-stage combustion method.

以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1〜図3は、本発明に係る燃料二段燃焼式バーナ装置の構成を概略的且つ概念的に示す正面図、I−I線断面図及びII−II線断面図である。   1 to 3 are a front view, a cross-sectional view taken along a line II, and a cross-sectional view taken along a line II-II, schematically and conceptually showing the configuration of a fuel two-stage combustion burner apparatus according to the present invention.

燃料二段燃焼式バーナ装置1(以下、「バーナ装置1」という。)は、バーナスロート13内で一次燃料F1を噴射又は吐出する一次燃料ノズル11と、バーナタイル、炉壁又は炉床等の炉内表面Wから炉内領域Vに二次燃料F2を噴射又は吐出する二次燃料ノズル12と、炉内表面Wに突設された複数の堰部分20とを備える。一次燃料ノズル11は、バーナスロート13の中央部に配置される。   The fuel two-stage combustion type burner device 1 (hereinafter referred to as “burner device 1”) includes a primary fuel nozzle 11 that injects or discharges primary fuel F1 in a burner throat 13, and a burner tile, a furnace wall, or a hearth. A secondary fuel nozzle 12 for injecting or discharging the secondary fuel F2 from the furnace inner surface W to the furnace inner region V, and a plurality of weir portions 20 protruding from the furnace inner surface W are provided. The primary fuel nozzle 11 is disposed at the center of the burner throat 13.

燃焼用空気Aがバーナスロート13に供給される。燃焼用空気Aは、バーナ装置1の燃焼反応に要する理論空気量及び過剰空気量(全空気量)の空気流である。一次燃料ノズル11が噴射した一次燃料F1は、燃焼用空気Aと混合して燃焼反応し、一次燃焼火炎C1をバーナスロート13の出口部に形成する。   Combustion air A is supplied to the burner throat 13. The combustion air A is an air flow of a theoretical air amount and an excess air amount (total air amount) required for the combustion reaction of the burner device 1. The primary fuel F <b> 1 injected by the primary fuel nozzle 11 is mixed with the combustion air A and causes a combustion reaction to form a primary combustion flame C <b> 1 at the outlet of the burner throat 13.

図2に示すように、バーナスロート13の出口開口14は、バーナスロート13の中心軸線を中心とした真円形輪郭を有する。堰部分20は、出口開口14の外周に沿って周方向に間隔を隔てて配置され、全体的に出口開口14を囲む堰を形成する。二次燃料ノズル12は、堰部分20の外側に配置され、堰部分20は、出口開口14の外縁部と二次燃料ノズル12との間においてノズル11、12を分離する隔壁を形成する。   As shown in FIG. 2, the outlet opening 14 of the burner throat 13 has a true circular contour centered on the central axis of the burner throat 13. The dam portions 20 are arranged at intervals in the circumferential direction along the outer periphery of the outlet opening 14, and form a dam that entirely surrounds the outlet opening 14. The secondary fuel nozzle 12 is disposed outside the dam portion 20, and the dam portion 20 forms a partition that separates the nozzles 11, 12 between the outer edge of the outlet opening 14 and the secondary fuel nozzle 12.

図1に示す如く、同一構造及び同一形状を有する4つの二次燃料ノズル12が周方向に90度の角度間隔を隔てて炉内表面Wに配置され、同一構造及び同一形状を有する4体の堰部分20が、90度の角度間隔を隔てて炉内表面Wに配置される。各二次燃料ノズル12は、複数の燃料噴射口を有するマルチノズル方式の燃料ノズルであり、所定の開き角をもって二次燃料F2を噴射する。図1に示す如く、各堰部分20は、出口開口14に向かって膨出するように全体的に弧状に湾曲した形態を有し、二次燃料F2の噴流が均等に衝突可能な凹状の弧状外側面21を備える。弧状外側面21は、曲率中心Oを中心とした曲率半径r1の円弧状面である。曲率中心Oは、堰部分20の中心軸線(図1に一点鎖線で示す)上に位置し、二次燃料ノズル12の中心は、弧状外側面21及び曲率中心Oの間において堰部分20の中心軸線上に位置する。堰部分20は、中心軸線上の近接点23において出口開口14の開口縁に近接した凸状の弧状内側面22を有する。弧状内側面22は、曲率中心Oを中心とした曲率半径r2の円弧状面である。   As shown in FIG. 1, four secondary fuel nozzles 12 having the same structure and the same shape are arranged on the furnace inner surface W with an angular interval of 90 degrees in the circumferential direction, and four bodies having the same structure and the same shape are arranged. The weir portions 20 are disposed on the furnace inner surface W with an angular interval of 90 degrees. Each secondary fuel nozzle 12 is a multi-nozzle type fuel nozzle having a plurality of fuel injection ports, and injects the secondary fuel F2 with a predetermined opening angle. As shown in FIG. 1, each dam portion 20 has a generally curved shape so as to bulge toward the outlet opening 14, and is a concave arc shape in which the jet of the secondary fuel F <b> 2 can collide evenly. An outer surface 21 is provided. The arcuate outer surface 21 is an arcuate surface having a radius of curvature r1 with the center of curvature O as the center. The center of curvature O is located on the central axis of the weir portion 20 (indicated by the one-dot chain line in FIG. 1), and the center of the secondary fuel nozzle 12 is the center of the weir portion 20 between the arcuate outer surface 21 and the center of curvature O. Located on the axis. The weir portion 20 has a convex arcuate inner surface 22 proximate to the opening edge of the outlet opening 14 at a proximity point 23 on the central axis. The arcuate inner surface 22 is an arcuate surface having a radius of curvature r2 with the center of curvature O as the center.

各堰部分20は、出口開口14の中心に対して角度αの角度範囲に形成され、互いに離間した離間領域30を角度βの角度範囲に形成する。好ましくは、出口開口14の直径Dと離間領域30の開口幅Sとの比、即ち、S/Dは、0.2〜0.5の範囲内の値に設定される。離間領域30は、炉内領域Vに生成した炉内燃焼ガスEGを燃焼用空気流Aに混合させるための炉内燃焼ガス還流路を構成する。   Each dam portion 20 is formed in an angle range of an angle α with respect to the center of the outlet opening 14, and forms a separation region 30 spaced from each other in an angle range of an angle β. Preferably, the ratio of the diameter D of the outlet opening 14 to the opening width S of the separation region 30, that is, S / D is set to a value in the range of 0.2 to 0.5. The separation region 30 constitutes an in-furnace combustion gas recirculation path for mixing the in-furnace combustion gas EG generated in the in-furnace region V with the combustion air flow A.

図2及び図3に示すように、堰部分20は、炉内表面Wから炉内側に突出寸法Hだけ突出する。好ましくは、直径Dと突出寸法Hとの比、即ち、H/Dは、0.2〜2.0の範囲内(但し、40mm以上)に設定される。   As shown in FIGS. 2 and 3, the weir portion 20 protrudes from the furnace inner surface W by the protrusion dimension H to the inside of the furnace. Preferably, the ratio between the diameter D and the protrusion dimension H, that is, H / D is set within a range of 0.2 to 2.0 (however, 40 mm or more).

図4(A)は、図1〜図3に示す堰部分20の作用を示す概略斜視図であり、図4(B)は、離間領域30を備えない円筒状又は円環状の堰120を備えたバーナ装置の構成を参考例として示す概略斜視図であり、図4(C)は、堰部分20を備えないバーナ装置の構成を比較例として示す概略斜視図である。また、図5(A)は、図1のI−I線における部分拡大断面図であり、図5(B)は、図1のII−II線における部分拡大断面図である。図5には、堰部分20が拡大して示されている。   4A is a schematic perspective view showing the operation of the dam portion 20 shown in FIGS. 1 to 3, and FIG. 4B includes a cylindrical or annular dam 120 that does not include the separation region 30. 4C is a schematic perspective view showing the configuration of the burner device as a reference example, and FIG. 4C is a schematic perspective view showing the configuration of the burner device without the dam portion 20 as a comparative example. 5A is a partially enlarged cross-sectional view taken along the line II of FIG. 1, and FIG. 5B is a partially enlarged cross-sectional view taken along the line II-II of FIG. FIG. 5 shows an enlarged view of the weir portion 20.

図4(C)に示すように、堰部分20を備えないバーナ装置においては、一次燃料ノズル11が噴射又は吐出した一次燃料F1は、燃焼用空気流Aと混合接触して一次燃焼火炎C1(図8)を出口開口14の近傍に形成し、燃焼用空気流Aに誘引された炉内燃焼ガスEGは、出口開口14の全方位から燃焼用空気流Aに混合し、二次燃料ノズル12が噴射又は吐出した二次燃料F2は、炉内燃焼ガスEGと混合する。炉内燃焼ガスEGと混合した二次燃料F2は、炉内燃焼ガスEGと混合して酸素濃度が低減した燃焼用空気流Aと混合接触し、二次燃焼火炎C2(図8)を炉内領域V(図8)に生成する。   As shown in FIG. 4 (C), in the burner device that does not include the dam portion 20, the primary fuel F1 injected or discharged by the primary fuel nozzle 11 is mixed and contacted with the combustion air flow A to form the primary combustion flame C1 ( 8) is formed in the vicinity of the outlet opening 14, and the in-furnace combustion gas EG attracted to the combustion air flow A is mixed into the combustion air flow A from all directions of the outlet opening 14, and the secondary fuel nozzle 12 is obtained. The secondary fuel F2 injected or discharged by is mixed with the in-furnace combustion gas EG. The secondary fuel F2 mixed with the in-furnace combustion gas EG is mixed and contacted with the combustion air flow A mixed with the in-furnace combustion gas EG to reduce the oxygen concentration, and the secondary combustion flame C2 (FIG. 8) is brought into the furnace. It produces | generates to the area | region V (FIG. 8).

この構成のバーナ装置は、図8を参照して説明した従来構造のものであり、NOx低減効果を向上すべく二次燃料供給量/一次燃料供給量の比率を増大すると、一次燃焼域における安定燃焼性を所望の如く確保し難い事情がある。安定燃焼性が損なわれる理由は、主として、炉内領域において流動する比較的多量の炉内燃焼ガス循環流の全体的挙動又は流体力学的作用が一次燃焼火炎C1に外乱として影響することに起因すると考えられる。   The burner device having this structure is of the conventional structure described with reference to FIG. 8, and when the ratio of the secondary fuel supply amount / primary fuel supply amount is increased to improve the NOx reduction effect, the burner device is stabilized in the primary combustion region. There are circumstances where it is difficult to ensure combustibility as desired. The reason why the stable combustibility is impaired is mainly due to the fact that the overall behavior or hydrodynamic action of a relatively large amount of the combustion gas circulation flow flowing in the furnace region affects the primary combustion flame C1 as a disturbance. Conceivable.

他方、図4(B)に示すように円筒状又は円環状の一体的堰120を出口開口14の外周部に配設し、一次燃焼火炎C1に対する炉内燃焼ガス循環流の影響を緩和する対策が考えられる。このような構成によれば、二次燃料F2と燃焼用空気流Aとの混合接触が堰120によって過渡的に遮られるので、二次燃料F2が炉内燃焼ガスEGと十分に混合し、これにより、ある程度までは、NOx低減効果を向上し得ると考えられる。しかしながら、炉内燃焼ガスEGと燃焼用空気流Aとの混合が堰120によって過渡的に遮られるばかりでなく、堰120の外周面に沿って上方に差し向けられる二次燃料F2の多くは、炉内燃焼ガスEGが燃焼用空気流Aに混合する前に燃焼用空気流Aに混合接触する。即ち、二次燃料F2の多くは、比較的多量の酸素を含有した燃焼用空気(炉内燃焼ガスと混合する前の燃焼用空気)と混合接触して二次燃焼火炎C2を炉内領域に生成するので、所望のNOx低減効果を確保し難い。   On the other hand, as shown in FIG. 4 (B), a cylindrical or annular integral weir 120 is arranged on the outer periphery of the outlet opening 14 to reduce the influence of the furnace combustion gas circulation flow on the primary combustion flame C1. Can be considered. According to such a configuration, since the mixing contact between the secondary fuel F2 and the combustion air flow A is transiently blocked by the weir 120, the secondary fuel F2 is sufficiently mixed with the in-furnace combustion gas EG. Thus, it is considered that the NOx reduction effect can be improved to some extent. However, not only is the mixing of the in-furnace combustion gas EG and the combustion air flow A transiently blocked by the weir 120, but many of the secondary fuels F2 directed upward along the outer peripheral surface of the weir 120 are: Before the in-furnace combustion gas EG is mixed with the combustion air stream A, it mixes with the combustion air stream A. That is, most of the secondary fuel F2 is mixed and contacted with combustion air containing a relatively large amount of oxygen (combustion air before being mixed with the in-furnace combustion gas) to bring the secondary combustion flame C2 into the in-furnace region. Since it produces | generates, it is difficult to ensure a desired NOx reduction effect.

これに対し、図4(A)に示すように前述の堰部分20を備えたバーナ装置においては、一次燃焼火炎C1(図2、図3)に対する炉内燃焼ガス循環流の影響が緩和し、二次燃料F2と燃焼用空気流Aとの混合接触が堰部分20によって過渡的に妨げられるばかりでなく、堰部分20の間に形成された離間領域30が炉内燃焼ガス還流路として機能するので、図4(A)及び図5(B)に矢印で示す如く、炉内燃焼ガスEGが離間領域30から出口開口14に向かって径方向内方に流入し、燃焼用空気流Aに早期に混合する。従って、燃焼用空気流Aは、出口開口14の近傍で炉内燃焼ガスEGによって確実且つ規則的に希釈される。   On the other hand, as shown in FIG. 4A, in the burner device provided with the above-described weir portion 20, the influence of the combustion gas circulation flow in the furnace on the primary combustion flame C1 (FIGS. 2 and 3) is mitigated, The mixing contact between the secondary fuel F2 and the combustion air flow A is not only transiently hindered by the weir part 20, but the separation region 30 formed between the weir parts 20 functions as a furnace combustion gas recirculation path. Therefore, as shown by the arrows in FIGS. 4A and 5B, the in-furnace combustion gas EG flows inward in the radial direction from the separation region 30 toward the outlet opening 14, and enters the combustion air flow A at an early stage. To mix. Therefore, the combustion air flow A is reliably and regularly diluted by the in-furnace combustion gas EG in the vicinity of the outlet opening 14.

しかも、複数の燃料噴射口から噴射した二次燃料F2は、図5(A)に示す如く、弧状外側面21によって上方に転向又は変向し、二次燃焼域に差し向けられるとともに、弧状外側面21の表面に膜状に拡散又は分散し、薄膜状の噴流として上方に流動する。このため、二次燃料F2は、炉内燃焼ガスEGと効果的に混合し、二次燃焼域において希釈後の燃焼用空気と混合接触して燃焼反応するので、NOx低減効果を向上することができる。なお、図5(A)に示す如く、堰部分20の弧状内側面22は、下流側に拡開したテーパ状の表面として形成することが望ましい。   In addition, as shown in FIG. 5A, the secondary fuel F2 injected from the plurality of fuel injection ports is turned or turned upward by the arc-shaped outer surface 21 and is directed to the secondary combustion region. It diffuses or disperses in the form of a film on the surface of the side surface 21, and flows upward as a thin-film jet. For this reason, the secondary fuel F2 is effectively mixed with the in-furnace combustion gas EG and mixed and contacted with the combustion air after dilution in the secondary combustion region, so that the NOx reduction effect can be improved. it can. As shown in FIG. 5A, the arcuate inner side surface 22 of the dam portion 20 is desirably formed as a tapered surface that expands downstream.

図6は、上記構成のバーナ装置1を炉床部分に配設した燃焼炉又は加熱炉の実施例を示す燃焼炉又は加熱炉の部分縦断面図であり、図7は、図6のIII−III線における断面図である。   FIG. 6 is a partial longitudinal sectional view of a combustion furnace or a heating furnace showing an embodiment of a combustion furnace or a heating furnace in which the burner device 1 having the above-described configuration is disposed in the hearth part, and FIG. It is sectional drawing in an III line.

燃焼炉又は加熱炉の炉床50には、バーナ装置1のバーナスロート13を構成するバーナタイル16が固定されており、バーナ装置1は、燃焼用空気流Aを鉛直上方に吐出するように配向されている。一次燃料ノズル11を備えたガス燃焼式のバーナガン15がバーナスロート13の中心部に配置され、パイロットバーナ17が、バーナガン15の近傍に配置される。複数の二次燃料ノズル12が、周方向に間隔を隔ててバーナタイル16の上面W1に配設される。一次燃料ノズル11、二次燃料ノズル12及びパイロットバーナ17は、燃料供給管11a、12a、17aを介して燃料ガス供給源等の燃料供給源(図示せず)に接続される。燃焼用空気流路を形成するエアーケーシング18が炉床50に固定され、給気ダクト19がエアーケーシング18の側部に接続される。給気ダクト19は、給気ファン(図示せず)に接続され、常温(大気温)の外気又は大気が、給気ファンの給気圧力下に燃焼用空気流Aとしてエアーケーシング18内に給送される。   A burner tile 16 constituting the burner throat 13 of the burner device 1 is fixed to the hearth 50 of the combustion furnace or heating furnace, and the burner device 1 is oriented so as to discharge the combustion air flow A vertically upward. Has been. A gas combustion type burner gun 15 provided with a primary fuel nozzle 11 is disposed in the center of the burner throat 13, and a pilot burner 17 is disposed in the vicinity of the burner gun 15. A plurality of secondary fuel nozzles 12 are disposed on the upper surface W <b> 1 of the burner tile 16 at intervals in the circumferential direction. The primary fuel nozzle 11, the secondary fuel nozzle 12, and the pilot burner 17 are connected to a fuel supply source (not shown) such as a fuel gas supply source through fuel supply pipes 11a, 12a, and 17a. An air casing 18 forming a combustion air flow path is fixed to the hearth 50, and an air supply duct 19 is connected to a side portion of the air casing 18. The air supply duct 19 is connected to an air supply fan (not shown), and ambient air (at high temperature) outside air or air is supplied into the air casing 18 as a combustion air flow A under the air supply pressure of the air supply fan. Sent.

バーナタイル16の上面W1は、炉床50の上面W2から20mm程度だけ上方に位置するが、上面W1、W2は、実質的には、同一レベルの炉内表面Wとして考えることができる。上面W1には、各二次燃料ノズル12に対応する堰部分20が、周方向に所定間隔を隔てて一体的に取付けられ、上面W1から鉛直上方に突出する。開口幅Sの離間領域30が、炉内領域Vに生成した炉内燃焼ガスEGを燃焼用空気流Aに混合させる炉内燃焼ガス還流路として上面W1に形成される。   The upper surface W1 of the burner tile 16 is positioned about 20 mm above the upper surface W2 of the hearth 50, but the upper surfaces W1 and W2 can be considered as the in-furnace surface W at substantially the same level. A weir portion 20 corresponding to each secondary fuel nozzle 12 is integrally attached to the upper surface W1 at a predetermined interval in the circumferential direction, and protrudes vertically upward from the upper surface W1. A separation region 30 having an opening width S is formed on the upper surface W1 as an in-furnace combustion gas recirculation path for mixing the in-furnace combustion gas EG generated in the in-furnace region V with the combustion air flow A.

本例において、出口開口14の直径Dは、約300mmであり、堰部分20及び離間領域30の角度α、β及び開口幅Sは夫々、約70°、約20°及び約100mmである。堰部分20の突出寸法H(高さ)は、約150mmである。S/Dの値は、約1/3であり、S/Hの値は、約1/2である。   In this example, the diameter D of the outlet opening 14 is about 300 mm, and the angles α and β and the opening width S of the weir portion 20 and the separation region 30 are about 70 °, about 20 °, and about 100 mm, respectively. The protrusion dimension H (height) of the weir part 20 is about 150 mm. The value of S / D is about 1/3, and the value of S / H is about 1/2.

本例において、弧状外側面21及び弧状内側面22の曲率半径r1、r2は夫々、約330mm、約430mmである。近接点23は、出口開口14の開口縁に位置する。弧状外側面21は、上面W1に対して垂直に起立しており、バーナスロート13の中心軸線と平行に延在する。他方、弧状内側面22は、上方且つ外方に僅かに拡開したテーパ状又は円錐台状の面に形成される。弧状内側面22の傾斜角θは、バーナスロート13の中心軸線に対して約10°に設定される。図6に示す如く、離間領域30も又、このような堰部分20の形態に相応して、上方に向かって僅かに拡開した輪郭を有する。   In this example, the radii of curvature r1 and r2 of the arcuate outer surface 21 and the arcuate inner surface 22 are about 330 mm and about 430 mm, respectively. The proximity point 23 is located at the opening edge of the outlet opening 14. The arcuate outer surface 21 stands perpendicular to the upper surface W <b> 1 and extends parallel to the central axis of the burner throat 13. On the other hand, the arc-shaped inner side surface 22 is formed in a tapered or frustoconical surface slightly expanding upward and outward. The inclination angle θ of the arc-shaped inner surface 22 is set to about 10 ° with respect to the central axis of the burner throat 13. As shown in FIG. 6, the separation region 30 also has a profile that is slightly widened upward in accordance with the shape of the dam portion 20.

一次燃料ノズル11が噴射した一次燃料F1は、燃焼用空気流Aと混合接触して一次燃焼火炎(図示せず)を形成する。燃焼用空気流Aに誘引された炉内燃焼ガスEGが、離間領域30から出口開口14に向かって径方向内方に流入し、燃焼用空気流Aに混合するので、燃焼用空気流Aは、出口開口14の近傍で炉内燃焼ガスEGによって希釈される。二次燃料ノズル12の各噴射口が噴射した二次燃料F2は、弧状外側面21によって上方に偏向して炉内領域Vに差し向けられるとともに、弧状外側面21の表面に膜状に拡散又は分散し、薄膜状の噴流として上方に流動する。二次燃料F2は、炉内燃焼ガスEGと効果的に混合し、従って、炉内燃焼ガスEGと混合した二次燃料F2と、炉内燃焼ガスEGにより希釈された燃焼用空気(空気流A)とが二次燃焼域で混合接触して燃焼反応する。   The primary fuel F1 injected by the primary fuel nozzle 11 is mixed and contacted with the combustion air stream A to form a primary combustion flame (not shown). The in-furnace combustion gas EG attracted by the combustion air flow A flows radially inward from the separation region 30 toward the outlet opening 14 and mixes with the combustion air flow A. Therefore, the combustion air flow A is In the vicinity of the outlet opening 14, it is diluted by the furnace combustion gas EG. The secondary fuel F2 injected from each injection port of the secondary fuel nozzle 12 is deflected upward by the arc-shaped outer surface 21 and directed to the in-furnace region V, and is diffused or filmed on the surface of the arc-shaped outer surface 21. Disperses and flows upward as a thin film jet. The secondary fuel F2 is effectively mixed with the in-furnace combustion gas EG. Therefore, the secondary fuel F2 mixed with the in-furnace combustion gas EG and the combustion air diluted by the in-furnace combustion gas EG (air flow A ) And a combustion reaction in the secondary combustion zone.

このようなバーナ装置1を使用した本発明者の実験によれば、二次燃料供給量/一次燃料供給量の比率を90/10に設定した状態においても、バーナガン15の保炎性能が維持され、従って、一次火炎C1(図2、図3)の燃焼安定性が確保される。しかも、バーナ装置1の構成によれば、二次燃料F2と炉内燃焼ガスEGとの混合が促進し且つ炉内燃焼ガスEGと燃焼用空気(空気流A)との混合が促進し、この結果、十分なNOx低減効果が得られることが本発明者の実験により判明した。また、バーナ装置1を使用した本発明者の実験においては、過剰空気率を増大した継続運転状態においても、燃焼排ガス中のNOx値が大きく増大しないことが判明した。かくして、バーナ装置1の上記構成によれば、定格燃焼状態において、二次燃料供給量/一次燃料供給量の比率を80/20〜95/5の範囲に設定可能な低NOxバーナ装置を提供することができる。   According to the inventor's experiment using such a burner device 1, the flame holding performance of the burner gun 15 is maintained even when the ratio of the secondary fuel supply amount / primary fuel supply amount is set to 90/10. Therefore, the combustion stability of the primary flame C1 (FIGS. 2 and 3) is ensured. Moreover, according to the configuration of the burner device 1, the mixing of the secondary fuel F2 and the in-furnace combustion gas EG is promoted, and the mixing of the in-furnace combustion gas EG and the combustion air (air flow A) is promoted. As a result, it has been found by experiments of the present inventors that a sufficient NOx reduction effect can be obtained. Further, in the experiment of the present inventor using the burner device 1, it has been found that the NOx value in the combustion exhaust gas does not increase greatly even in the continuous operation state in which the excess air ratio is increased. Thus, according to the above-described configuration of the burner device 1, a low NOx burner device capable of setting the ratio of the secondary fuel supply amount / primary fuel supply amount in the range of 80/20 to 95/5 in the rated combustion state is provided. be able to.

以上説明した通り、バーナ装置1の優位性は、主として次の事項に起因するものと考えられる。
(1)炉内燃焼ガスEGの循環流の流入位置が堰部分20及び離間領域30により限定されることから、一次燃焼火炎C1近傍の流体の流れが整流され且つ安定するので、一次燃焼域の燃焼安定性が向上するとともに、一次燃焼火炎C1の周囲空気が効果的に温度上昇し且つその酸素濃度を低減する。
(2)二次燃料F2が堰部分20に衝突して二次燃焼域の側に転向又は変向するとともに、二次燃料F2が分散又は拡散するので、二次燃料F2が炉内燃焼ガスEGと均一且つ効率的に混合する。
(3)一次燃焼域に循環する炉内燃焼ガスEGの流れと、二次燃焼域に循環する炉内燃焼ガスEGの流れとを堰部分20及び離間領域30によって分離又は分割し、これらの流れを効果的に規制又は制御し得るので、炉内燃焼ガスEGによる燃焼用空気流Aの希釈と、二次燃料F2及び炉内燃焼ガスEGの混合と、二次燃料F2及び燃焼用空気流Aの混合接触という3つの過程を個別又は段階的に実行することができる。
As described above, the superiority of the burner device 1 is considered to be mainly due to the following matters.
(1) Since the inflow position of the circulating flow of the combustion gas EG in the furnace is limited by the weir portion 20 and the separation region 30, the flow of the fluid in the vicinity of the primary combustion flame C1 is rectified and stabilized. Combustion stability is improved, and the ambient air of the primary combustion flame C1 effectively increases in temperature and reduces its oxygen concentration.
(2) Since the secondary fuel F2 collides with the weir portion 20 and turns or turns toward the secondary combustion zone, and the secondary fuel F2 is dispersed or diffused, the secondary fuel F2 becomes the combustion gas EG in the furnace. Uniformly and efficiently.
(3) The flow of the in-furnace combustion gas EG circulating in the primary combustion zone and the flow of the in-furnace combustion gas EG circulating in the secondary combustion zone are separated or divided by the weir portion 20 and the separation region 30, and these flows Can be effectively regulated or controlled, so that the combustion air flow A is diluted by the in-furnace combustion gas EG, the secondary fuel F2 and the in-furnace combustion gas EG are mixed, and the secondary fuel F2 and the combustion air flow A. The three processes of mixing contact can be performed individually or stepwise.

以上、本発明の好適な実施例について詳細に説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能である。   The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the above-described embodiments, and various modifications or changes can be made within the scope of the present invention described in the claims. Is possible.

例えば、上記実施形態では、バーナスロートの出口開口は、真円形であるが、矩形、方形、多角形、楕円形等の輪郭を有するものであっても良く、この場合、堰又は堰部分は、出口開口の形状に相応した配置及び形状に設計される。   For example, in the above embodiment, the outlet opening of the burner throat is a perfect circle, but it may have a rectangular, rectangular, polygonal, elliptical or the like outline. It is designed in an arrangement and shape corresponding to the shape of the outlet opening.

また、上記実施形態及び実施例では、複数の堰部分を周方向に間隔を隔てて配置しているが、離間した堰部分同士を架橋部材等により一体化し又は相互連結して構造的に安定させ、或いは、図4(B)に示す如く一体的な環状堰等をバーナスロートの出口開口に配設し、堰の適所に開口部を形成するとともに、堰の内側面を燃焼用空気流の下流側に向かって拡開したテーパ状又は円錐台状の面として形成することにより、複数の堰部分を隔設した上記構成と同等の構成に設計することも可能である。   In the above-described embodiments and examples, a plurality of dam portions are arranged at intervals in the circumferential direction, but the separated dam portions are integrated or interconnected by a bridging member or the like to stabilize the structure. Alternatively, as shown in FIG. 4B, an integral annular weir or the like is disposed at the outlet opening of the burner throat, and an opening is formed at an appropriate position of the weir, and the inner surface of the weir is disposed downstream of the combustion air flow. By forming it as a tapered or frustoconical surface that expands toward the side, it is possible to design a configuration equivalent to the above-described configuration in which a plurality of weir portions are spaced apart.

更に、上記実施例では、バーナ装置は、炉床部分に上向きに配置されているが、炉壁部分又は炉頂部分に横向き又は下向き等に配置されたバーナ装置において本発明の構成を採用しても良い。   Further, in the above embodiment, the burner device is arranged upward on the hearth portion, but the configuration of the present invention is adopted in the burner device arranged horizontally or downward on the furnace wall portion or the top portion of the furnace. Also good.

また、上記実施形態及び実施例では、バーナ装置は、常温空気を燃焼用空気として用いた構成のものであるが、本発明の構成を適用可能なバーナ装置は、蓄熱体等によって予熱した高温の燃焼用空気、或いは、800℃以上に予熱された超高温の燃焼用空気を燃料に混合する構成のものであっても良い。   Moreover, in the said embodiment and Example, although the burner apparatus is a thing of the structure which used normal temperature air as combustion air, the burner apparatus which can apply the structure of this invention is the high temperature pre-heated with the thermal storage body etc. It may have a configuration in which combustion air or ultrahigh-temperature combustion air preheated to 800 ° C. or higher is mixed with fuel.

本発明は、燃料二段燃焼法を実施する低NOxバーナ装置及び低NOx燃焼方法等の燃料二段燃焼式バーナ装置及び燃料二段燃焼方法に好ましくは適用される。本発明によれば、一次燃焼域における燃焼安定性を損なうことなく、二次燃料供給量/一次燃料供給量の比率を増大するとともに、窒素酸化物の発生量を増大させることなく、燃焼用空気の過剰率を増大することができるので、その実用的価値は顕著である。   The present invention is preferably applied to a fuel two-stage combustion type burner apparatus and a fuel two-stage combustion method such as a low NOx burner apparatus and a low NOx combustion method for carrying out a fuel two-stage combustion method. According to the present invention, the combustion air can be increased without increasing the ratio of the secondary fuel supply amount / primary fuel supply amount without increasing the stability of combustion in the primary combustion region, and without increasing the amount of nitrogen oxides generated. Since the excess ratio of can be increased, its practical value is remarkable.

1 燃料二段燃焼式バーナ装置
11 一次燃料ノズル
12 二次燃料ノズル
13 バーナスロート
14 出口開口
15 バーナガン
16 バーナタイル
20 堰部分(堰)
21 弧状外側面
22 弧状内側面
23 近接点
30 離間領域(炉内燃焼ガス還流路)
50 炉床
A 燃焼用空気流
V 炉内領域
W 炉内表面
EG 炉内燃焼ガス
F1 一次燃料
F2 二次燃料
C1 一次燃焼火炎
C2 二次燃焼火炎
DESCRIPTION OF SYMBOLS 1 Fuel two-stage combustion type burner apparatus 11 Primary fuel nozzle 12 Secondary fuel nozzle 13 Burner throat 14 Outlet opening 15 Burner gun 16 Burner tile 20 Weir part (weir)
21 Arc-shaped outer side surface 22 Arc-shaped inner side surface 23 Proximity point 30 Separation region (furnace combustion gas recirculation path)
50 hearth A air flow for combustion V in-furnace area W in-furnace surface EG in-furnace combustion gas F1 primary fuel F2 secondary fuel C1 primary combustion flame C2 secondary combustion flame

Claims (6)

炉内壁面、炉床面又は炉頂面に開口したバーナスロートと、一次燃料及び二次燃料を段階的に燃焼用空気に供給する一次燃料噴射口及び二次燃料噴射口とを有し、炉内燃焼ガス循環流を燃焼用空気に混合して燃焼用空気の酸素濃度を低減した後、該燃焼用空気及び前記二次燃料を二次燃焼域で混合する燃料二段燃焼式バーナ装置において、
炉内表面に位置する前記二次燃料噴射口と、前記バーナスロートの出口開口との間に配置され、前記出口開口を囲むように炉内表面に突設された堰を有し、
該堰は、前記二次燃料噴射口が噴射した二次燃料噴流の方向を変化させる外側面と、炉内燃焼ガス循環流を炉内表面に沿って前記出口開口の開口縁に向かって流動せしめる炉内燃焼ガス還流路とを有することを特徴とする燃料二段燃焼式バーナ装置。
A burner throat opened on the inner wall surface, the hearth surface or the top surface of the furnace, and a primary fuel injection port and a secondary fuel injection port for supplying the primary fuel and the secondary fuel to the combustion air in stages, In the fuel two-stage combustion burner device, in which the internal combustion gas circulation flow is mixed with the combustion air to reduce the oxygen concentration of the combustion air, and then the combustion air and the secondary fuel are mixed in the secondary combustion zone.
It is arranged between the secondary fuel injection port located on the inner surface of the furnace and the outlet opening of the burner throat, and has a weir protruding from the inner surface of the furnace so as to surround the outlet opening,
The weir causes the outer surface to change the direction of the secondary fuel jet injected by the secondary fuel injection port, and the combustion gas circulation flow in the furnace to flow along the furnace inner surface toward the opening edge of the outlet opening. A fuel two-stage combustion type burner device comprising an in-furnace combustion gas recirculation path.
前記堰を構成する複数の堰部分が前記出口開口の外縁部に沿って間隔を隔てて配置され、前記炉内燃焼ガス還流路は、隣り合う堰部分の離間領域により形成されることを特徴とする請求項1に記載の燃料二段燃焼式バーナ装置。   A plurality of dam portions constituting the dam are arranged at intervals along an outer edge portion of the outlet opening, and the in-furnace combustion gas recirculation path is formed by a separation region of adjacent dam portions. The fuel two-stage combustion type burner device according to claim 1. 前記堰部分は、前記出口開口に向かって膨出するように全体的に弧状且つ凸状に湾曲した形態を有し、各堰部分は、複数の前記二次燃料噴流が均等に衝突可能な弧状且つ凹状の外側面を有することを特徴とする請求項2に記載の燃料二段燃焼式バーナ装置。   The dam portions have a generally arcuate and convex curved shape so as to bulge toward the outlet opening, and each dam portion has an arc shape in which a plurality of the secondary fuel jets can collide evenly. The fuel two-stage combustion type burner device according to claim 2, further comprising a concave outer surface. 炉内壁面、炉床面又は炉頂面に開口したバーナスロートから燃焼用空気流を炉内領域に供給して、炉内燃焼ガスの循環流を燃焼用空気に混合して燃焼用空気の酸素濃度を低減するとともに、前記バーナスロートに配置された一次燃料噴射口の一次燃料と、炉内表面に配置された二次燃料噴射口の二次燃料とを燃焼用空気に段階的に供給する燃料二段燃焼方法において、
炉内表面に位置する前記二次燃料噴射口と、前記バーナスロートの出口開口との間に堰を配置し、炉内表面に突設した前記堰によって前記出口開口を囲むことにより、前記二次燃料噴射口が噴射した二次燃料噴流の方向を変化させ、
炉内燃焼ガス還流路を前記堰に形成して、炉内燃焼ガス循環流を前記炉内表面に沿って前記出口開口の開口縁に向かって流動させ、前記出口開口から炉内領域に流出する前記燃焼用空気に炉内燃焼ガスを混合することを特徴とする燃料二段燃焼方法。
Combustion air flow is supplied from the burner throat opened to the furnace inner wall surface, furnace floor surface, or furnace top surface to the furnace area, and the circulation flow of the combustion gas in the furnace is mixed with the combustion air to produce oxygen in the combustion air. A fuel that reduces the concentration and supplies the primary fuel at the burner throat and the secondary fuel at the secondary fuel injection port arranged on the furnace surface to the combustion air in stages. In the two-stage combustion method,
By placing a weir between the secondary fuel injection port located on the furnace inner surface and the outlet opening of the burner throat, and surrounding the outlet opening by the weir protruding from the furnace inner surface, Change the direction of the secondary fuel jet injected by the fuel injection port,
An in-furnace combustion gas recirculation path is formed in the weir to cause the in-furnace combustion gas circulation flow to flow along the inner surface of the furnace toward the opening edge of the outlet opening and to flow out from the outlet opening to the in-furnace region. A fuel two-stage combustion method, wherein an in-furnace combustion gas is mixed with the combustion air.
前記出口開口の外縁部に沿って複数の堰部分を隔設することにより前記堰を形成し、隣り合う堰部分の離間領域により前記炉内燃焼ガス還流路を形成することを特徴とする請求項4に記載の燃料二段燃焼方法。   The in-furnace combustion gas recirculation path is formed by separating the plurality of weir portions along the outer edge portion of the outlet opening, and forming the in-furnace combustion gas recirculation path by a separation region between adjacent weir portions. 5. The fuel two-stage combustion method according to 4. 前記堰部分を前記出口開口に向かって膨出するように全体的に弧状且つ凸状に湾曲させ、複数の二次燃料噴流を前記堰部分の弧状且つ凹状の外側面に均等に衝突させることを特徴とする請求項5に記載の燃料二段燃焼方法。   The dam portion is curved in an arc shape and a convex shape so as to bulge toward the outlet opening, and a plurality of secondary fuel jets are caused to collide evenly with the arc-shaped and concave outer surface of the dam portion. 6. The fuel two-stage combustion method according to claim 5, wherein
JP2013130394A 2013-06-21 2013-06-21 Fuel two-stage combustion burner apparatus and fuel two-stage combustion method Active JP6168875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013130394A JP6168875B2 (en) 2013-06-21 2013-06-21 Fuel two-stage combustion burner apparatus and fuel two-stage combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013130394A JP6168875B2 (en) 2013-06-21 2013-06-21 Fuel two-stage combustion burner apparatus and fuel two-stage combustion method

Publications (2)

Publication Number Publication Date
JP2015004483A true JP2015004483A (en) 2015-01-08
JP6168875B2 JP6168875B2 (en) 2017-07-26

Family

ID=52300533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013130394A Active JP6168875B2 (en) 2013-06-21 2013-06-21 Fuel two-stage combustion burner apparatus and fuel two-stage combustion method

Country Status (1)

Country Link
JP (1) JP6168875B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106431352A (en) * 2016-08-30 2017-02-22 中国西电电气股份有限公司 Sintering adjusting method of porcelain insulator in strong reduction period
WO2018180694A1 (en) * 2017-03-27 2018-10-04 Jfeスチール株式会社 Heating device and heating method
CN114234190A (en) * 2021-12-24 2022-03-25 中科卓异环境科技(东莞)有限公司 Porous medium combustor and combustion method
EP4235026A1 (en) * 2022-02-28 2023-08-30 Sofinter S.p.A. Burner assembly for a boiler unit for steam generation and boiler unit comprising said burner assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618011A (en) * 1992-03-27 1994-01-25 John Zink Co Low nox forming burner device and method thereof
JPH06159613A (en) * 1992-11-24 1994-06-07 Nippon Furnace Kogyo Kaisha Ltd Low nox combustion method and burner used for the same
JPH08145315A (en) * 1994-07-18 1996-06-07 Toyota Motor Corp Low nox burner
JP2004191032A (en) * 2002-12-06 2004-07-08 John Zink Co Llc Gas burner and gas combustion method
US7670135B1 (en) * 2005-07-13 2010-03-02 Zeeco, Inc. Burner and method for induction of flue gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618011A (en) * 1992-03-27 1994-01-25 John Zink Co Low nox forming burner device and method thereof
JPH06159613A (en) * 1992-11-24 1994-06-07 Nippon Furnace Kogyo Kaisha Ltd Low nox combustion method and burner used for the same
JPH08145315A (en) * 1994-07-18 1996-06-07 Toyota Motor Corp Low nox burner
JP2004191032A (en) * 2002-12-06 2004-07-08 John Zink Co Llc Gas burner and gas combustion method
US7670135B1 (en) * 2005-07-13 2010-03-02 Zeeco, Inc. Burner and method for induction of flue gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106431352A (en) * 2016-08-30 2017-02-22 中国西电电气股份有限公司 Sintering adjusting method of porcelain insulator in strong reduction period
WO2018180694A1 (en) * 2017-03-27 2018-10-04 Jfeスチール株式会社 Heating device and heating method
CN114234190A (en) * 2021-12-24 2022-03-25 中科卓异环境科技(东莞)有限公司 Porous medium combustor and combustion method
EP4235026A1 (en) * 2022-02-28 2023-08-30 Sofinter S.p.A. Burner assembly for a boiler unit for steam generation and boiler unit comprising said burner assembly

Also Published As

Publication number Publication date
JP6168875B2 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
KR101867690B1 (en) Gas turbine combustor
JP3344694B2 (en) Pulverized coal combustion burner
JP4906689B2 (en) Burner, combustion device, and method for modifying combustion device
US5937770A (en) Pulverized coal burner
EP2530382B1 (en) Fuel injector
JP5188238B2 (en) Combustion apparatus and burner combustion method
KR101436777B1 (en) Combustion burner and boiler provided with combustion burner
JP6484126B2 (en) Gas turbine combustor
TW201812214A (en) Solid fuel burner
US20070089419A1 (en) Combustor for gas turbine engine
JP2011058775A (en) Gas turbine combustor
JP2010281483A (en) Staging type fuel nozzle
JP6168875B2 (en) Fuel two-stage combustion burner apparatus and fuel two-stage combustion method
JP2018028418A5 (en)
JPH11211013A (en) Pulverized coal combustion burner and combustion method thereof
US9816707B2 (en) Recessed fuel injector positioning
CN108738333B (en) Composite low nitrogen oxide burner
JP2007146697A (en) Combustor and combustion air supply method of combustor
CN115451431B (en) Fuel nozzle premixing system for combustion chamber of gas turbine
JP2000356309A (en) Burner for powdered solid fuel and combustion device
JP2011058737A (en) Pulverized coal burning boiler
EP1531305A1 (en) Multi-point fuel injector
JP2008082590A (en) Gas turbine combustor
US20200263871A1 (en) Burner device
JP2017062105A (en) Combustor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161013

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170627

R150 Certificate of patent or registration of utility model

Ref document number: 6168875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250