WO2018180610A1 - PRODUCTION METHOD FOR α,α-DIFLUOROACETALDEHYDE HEMIACETAL - Google Patents

PRODUCTION METHOD FOR α,α-DIFLUOROACETALDEHYDE HEMIACETAL Download PDF

Info

Publication number
WO2018180610A1
WO2018180610A1 PCT/JP2018/010510 JP2018010510W WO2018180610A1 WO 2018180610 A1 WO2018180610 A1 WO 2018180610A1 JP 2018010510 W JP2018010510 W JP 2018010510W WO 2018180610 A1 WO2018180610 A1 WO 2018180610A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mixture
difluoroacetaldehyde
hemiacetal
general formula
Prior art date
Application number
PCT/JP2018/010510
Other languages
French (fr)
Japanese (ja)
Inventor
真人 木村
進也 秋葉
将彰 武田
一樹 田中
雅隆 藤本
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to JP2019509292A priority Critical patent/JP7032666B2/en
Priority to CN201880022732.7A priority patent/CN110520403B/en
Publication of WO2018180610A1 publication Critical patent/WO2018180610A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/30Compounds having groups
    • C07C43/317Compounds having groups having groups, X being hydrogen or metal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing ⁇ , ⁇ -difluoroacetaldehyde hemiacetal.
  • ⁇ , ⁇ -Difluoroacetaldehyde represented by the formula [1] is a compound useful as a material in the field of advanced materials or an intermediate for medical and agricultural chemicals.
  • —CHF 2 difluoromethyl group
  • two fluorine atoms and one hydrogen atom having high electronegativity are bonded to the same carbon atom.
  • This unique structure is considered to be deeply related to characteristics such as water repellency, transparency, low dielectric property, unique physiological activity, and mimic effect of various materials synthesized using the structure.
  • substances using ⁇ , ⁇ -difluoroacetaldehyde as a building block are subject to active research and development in the fields of advanced materials and intermediates for medical and agricultural chemicals.
  • Non-patent Document 1 As a method for producing ⁇ , ⁇ -difluoroacetaldehyde, a reduction reaction using a hydride reducing agent such as lithium aluminum hydride is known for esters having a difluoromethyl group in the presence of a catalyst (Non-patent Document 1). ). Further, the present applicant has disclosed a method of reducing ⁇ , ⁇ -difluoroacetic acid esters by hydrogen (H 2 ) in the presence of a ruthenium catalyst (Patent Document 1).
  • Non-patent Document 2 a substance called aldehyde is unstable and gradually polymerizes with other aldehyde molecules. Since the aldehyde targeted in the present invention is directly linked to a difluoromethyl group which is a strong electron-attracting group, a self-polymer, a hydrate, a hemiacetal, an acetal and a compound in which these structural features are combined It is also disclosed in Patent Document 1 that it can be obtained as a plurality of stable equivalents.
  • the aldehyde to which the difluoromethyl group is directly linked tends to be easily converted into a plurality of compounds. Therefore, the applicant of the present invention forms ⁇ , ⁇ -difluoroacetaldehyde hemiacetal represented by the general formula [3] in the presence of ⁇ , ⁇ -difluoroacetaldehyde with the alcohol represented by the general formula [2], and Patent Document 2 reports that adjusting the amount of coexisting alcohol makes it easier for the hemiacetal to exist stably in the system, that is, the storage stability is improved. [Wherein, R 4 represents an alkyl group or a substituted alkyl group. ] [Wherein, R 1 is the same as R 1 in the general formula [2]. ]
  • Patent Documents 1 and 2 a dimer of ⁇ , ⁇ -difluoroacetaldehyde represented by the general formula [4] (hereinafter referred to as the present specification) when purifying ⁇ , ⁇ -difluoroacetaldehyde hemiacetal. (Sometimes referred to as “dimers”). [Wherein R 3 is the same as R 1 in the general formula [2]. ] This compound is a stable chemical species compared to ⁇ , ⁇ -difluoroacetaldehyde hemiacetal, and once produced, in order to proceed the desired reaction as ⁇ , ⁇ -difluoroacetaldehyde, it is a dimer.
  • ⁇ , ⁇ -difluoroacetaldehyde hemiacetal is a compound that is unstable in the gas phase. Therefore, after synthesis, if a distillation operation or the like is performed to remove the neutralized salt or hydride reducing agent in the reaction solution, it will be constant. An amount of dimer is generated. Therefore, the present applicant has also found a specific phenomenon that the storage stability is improved and the compound (dimer) other than the hemiacetal is much less likely to be produced, and this is reported in Patent Document 2. .
  • the inventors of the present invention can stabilize a dimer when a mixed solution containing ⁇ , ⁇ -difluoroacetaldehyde hemiacetal and a dimer is in an acidic state.
  • the pH of the mixed solution is less than 3.5. In some cases, it has been found that the stability is significantly increased and the dimer decomposition reaction is reduced.
  • acids that may be present in the production of ⁇ , ⁇ -difluoroacetaldehyde hemiacetal include acids used in hydride reducing agents and base neutralization processes, and decomposition of ⁇ , ⁇ -difluoroacetaldehyde hemiacetal.
  • the resulting difluoroacetic acid is contemplated.
  • difluoroacetic acid is a strong acid, and the pH of the whole liquid is less than 3.5 even if the content in the mixed liquid is as small as several tens of ppm.
  • difluoroacetic acid is present in the system, there is a problem that even if alcohol is reacted with the dimer, it is difficult to proceed to the decomposition reaction of the dimer, that is, to hemiacetal.
  • First step Reacting ⁇ , ⁇ -difluoroacetate represented by the general formula [5] with hydrogen (H 2 ) in the presence of a base and a ruthenium catalyst using the alcohol represented by the general formula [2] as a solvent;
  • ⁇ , ⁇ -difluoroacetaldehyde hemiacetal represented by the general formula [3] is contained by reacting the ⁇ , ⁇ -difluoroacetic acid ester represented by the general formula [5] with a hydride reducing agent.
  • Second step The mixture obtained in the first step is subjected to neutralization treatment, and then the mixture is filled into a reaction vessel so that the oxygen (O 2 ) concentration in the reaction vessel is 5000 ppm or less under light shielding conditions. And then a distillation operation is performed, so that the pH is 3.5, which includes ⁇ , ⁇ -difluoroacetaldehyde hemiacetal and a dimer of ⁇ , ⁇ -difluoroacetaldehyde represented by the general formula [4]. Obtaining a mixture of ⁇ 10.0.
  • Third step After filling the mixture obtained in the second step into a reaction vessel and adjusting the oxygen concentration in the gas phase in the reaction vessel to 5000 ppm or less under light-shielding conditions, the general formula [2 ], By which at least part of the dimer contained in the mixture is reduced or substantially free of the dimer contained in the mixture, ⁇ , ⁇ - Obtaining a mixture comprising difluoroacetaldehyde hemiacetal.
  • the present invention provides the following [Invention 1]-[Invention 12].
  • [Invention 1] A method for producing ⁇ , ⁇ -difluoroacetaldehyde hemiacetal represented by the general formula [3], comprising the following steps. First step: Reacting ⁇ , ⁇ -difluoroacetate represented by the general formula [5] with hydrogen (H 2 ) in the presence of a base and a ruthenium catalyst using the alcohol represented by the general formula [2] as a solvent; Alternatively, ⁇ , ⁇ -difluoroacetaldehyde hemiacetal represented by the general formula [3] is contained by reacting the ⁇ , ⁇ -difluoroacetic acid ester represented by the general formula [5] with a hydride reducing agent.
  • Second step The mixture obtained in the first step is neutralized, and then filled into a reaction vessel so that the oxygen concentration in the gas phase in the reaction vessel is 5000 ppm or less under light-shielding conditions. And a distillation operation is carried out to adjust the pH to 3 with ⁇ , ⁇ -difluoroacetaldehyde hemiacetal and a dimer of ⁇ , ⁇ -difluoroacetaldehyde represented by the general formula [4]. Obtaining a mixture of 5 to 10.0.
  • the mixture obtained in the second step is filled in a reaction vessel, and after adjusting the oxygen concentration in the gas phase in the reaction vessel to be 5000 ppm or less under light-shielding conditions, the general formula [2] Is reduced in at least one part of the dimer contained in the mixture, or substantially free of the dimer contained in the mixture.
  • the general formula [2] Is reduced in at least one part of the dimer contained in the mixture, or substantially free of the dimer contained in the mixture.
  • each R independently represents a hydrogen atom, an alkyl group, a substituted alkyl group, an aromatic ring group or a substituted aromatic ring group
  • Ar represents each independently an aromatic ring group or a substituted aromatic ring group
  • each X represents an independent group.
  • Ph represents a phenyl group.
  • the ruthenium catalyst is a catalyst having a ruthenium compound supported on a carrier.
  • invention 6 The production method according to invention 4 or 5, wherein the ruthenium compound is at least one selected from the group consisting of ruthenium fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride, and oxyfluoride chloride. .
  • invention 8 The production method according to invention 7, wherein the metal hydride is lithium aluminum hydride, lithium borohydride, sodium borohydride or sodium cyanoborohydride.
  • invention 9 The production method according to any one of inventions 1 to 8, wherein in the second step, the pH of the mixture is adjusted by adding an acid.
  • invention 10 The production method according to invention 9, wherein the acid is acetic acid, benzoic acid or para-toluenesulfonic acid.
  • invention 12 The manufacturing method according to any one of inventions 1 to 11, wherein in the second step or the third step, the oxygen concentration is adjusted by bubbling an inert gas into the container.
  • the dimer produced as a by-product during purification of the hemiacetal can be reduced, and the content of difluoroacetic acid can be reduced.
  • This step is a known method, and adopting the method described in Patent Document 1 is particularly advantageous in producing the hemiacetal on a large scale. Since adopting this step is important in carrying out the present invention, this manufacturing method will be described below.
  • R 2 of the ⁇ , ⁇ -difluoroacetate ester represented by the general formula [5] used in this step represents an alkyl group or a substituted alkyl group.
  • R 3 in the dimer represented by the general formula [4] is also synonymous with R 2 in the acetate esters.
  • alkyl group in the present specification means an “unsubstituted alkyl group” represents a linear or branched alkyl group having 1 to 10 carbon atoms.
  • methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, n-pentyl group, n-octyl group, n- Examples include decyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group and the like.
  • the substituted alkyl group has a substituent in any number and in any combination on any carbon atom of the alkyl group.
  • a substituent is a halogen atom, a lower alkoxy group, a lower haloalkoxy group, a cyano group, a lower alkoxycarbonyl group, or the like. Specific examples include fluorine, chlorine, bromine, methoxy group, ethoxy group, propoxy group, fluoromethoxy group, chloromethoxy group, bromomethoxy group, cyano group, methoxycarbonyl group, ethoxycarbonyl group and propoxycarbonyl group. .
  • “lower” means a linear or branched chain or cyclic group (in the case of 3 or more carbon atoms) having 1 to 6 carbon atoms.
  • Bases used in this step are alkali metal hydrogen carbonate, alkali metal carbonate, alkali metal hydroxide, tetraalkylammonium hydroxide, alkali metal alkoxide, organic base, alkali metal bis (trialkylsilyl) Amides, alkali metal borohydrides, and the like.
  • alkali metal alkoxides alkoxides having 1 to 6 carbon atoms
  • lithium methoxide, sodium methoxide, and potassium methoxide are particularly preferable.
  • sodium methoxide is usually available as a methanol solution. For this reason, methanol remains in the reaction system. That is, methanol plays at least part of the role as the alcohol represented by the general formula [2] described above.
  • R 4 has the same meaning as R 1 of ⁇ , ⁇ -difluoroacetaldehyde hemiacetal represented by the general formula [3].
  • Specific examples of the alcohol include methanol, ethanol, n-propanol, isopropanol, butanol, tert-butanol, and benzyl alcohol.
  • methanol, ethanol, n-propanol, and isopropanol are preferable.
  • ethanol are particularly preferred because anhydrous reagents can be easily obtained on a large scale, and the effect of improving the stability of ⁇ , ⁇ -difluoroacetaldehyde alkyl hemiacetal is great.
  • the amount of alcohol used may be 0.001 mol or more, preferably 0.005 to 5 mol, particularly preferably 0.01 to 3 mol, relative to 1 mol of ⁇ , ⁇ -difluoroacetate as a raw material.
  • the ruthenium catalyst used in this step is not particularly limited.
  • each R independently represents a hydrogen atom, an alkyl group, a substituted alkyl group, an aromatic ring group or a substituted aromatic ring group
  • Ar represents each independently an aromatic ring group or a substituted aromatic ring group
  • each X represents an independent group.
  • Ph represents a phenyl group.
  • ruthenium catalyst a catalyst in which a ruthenium compound is supported on a carrier can be used. Details will be described later.
  • the definition of the alkyl group of the ruthenium catalyst represented by the general formula [6] is synonymous with R 1 in the general formula [4] or the general formula [5].
  • the aromatic ring group of the ruthenium catalyst is an aromatic hydrocarbon group or an aromatic heterocyclic group containing a hetero atom such as a nitrogen atom, an oxygen atom or a sulfur atom.
  • Specific examples of the aromatic hydrocarbon group include a phenyl group, a naphthyl group, and an anthryl group having 6 to 18 carbon atoms
  • specific examples of the aromatic heterocyclic group containing a hetero atom include a pyrrolyl group (also a nitrogen-protected substance).
  • the “substituent” in the substituted alkyl group and the substituted aromatic ring group of the ruthenium catalyst represented by the general formula [6] is an arbitrary number and an arbitrary number on an arbitrary carbon atom of the alkyl group or aromatic ring group. Exists in combination. Such substituents include halogen atoms, lower alkyl groups, lower haloalkyl groups, lower alkoxy groups, lower haloalkoxy groups, cyano groups, lower alkoxycarbonyl groups, aromatic ring groups, carboxyl groups, carboxyl group protectors, amino groups, amino groups Group protectors, hydroxyl groups, and hydroxyl group protectors.
  • the substituted alkyl group of the ruthenium catalyst represented by the general formula [6] is a carbon-carbon double bond or carbon in which any carbon-carbon single bond of the alkyl group is in any number and in any combination. It can also be replaced by carbon triple bonds (of course, alkyl groups replaced by these unsaturated bonds can likewise have the aforementioned substituents). Depending on the type of the substituent, the substituent itself may be involved in the side reaction, but it can be minimized by employing suitable reaction conditions.
  • the “aromatic ring group” in the “substituent” is a halogen atom, lower alkyl group, lower haloalkyl group, lower alkoxy group, lower haloalkoxy group, cyano group, lower alkoxycarbonyl group, carboxyl group, A protected group of a carboxyl group, an amino group, a protected group of an amino group, a hydroxyl group, a protected group of a hydroxyl group, and the like can be substituted. Further, pyrrolyl group, indolyl group, carboxyl group, amino group and hydroxyl protecting group are protecting groups described in Protective Group in Organic Synthesis, Third Edition, 1999, John Wiley & Sons, Inc.
  • ruthenium catalysts represented by the general formula [6] a ruthenium catalyst represented by the following formula ⁇ (commercially available as “Ru-MACHO”, manufactured by Takasago International Corporation) ⁇ has high activity, Particularly preferred. [Wherein, Ph represents a phenyl group. ]
  • the ruthenium catalyst represented by the general formula [7] can be prepared by a known method, but is commercially available under the trade name “Ru-SNS” (manufactured by Sigma-Aldrich Sakai Japan LLC). It is convenient to use.
  • ruthenium catalyst a catalyst in which a ruthenium compound is supported on a carrier can be used.
  • the ruthenium compound referred to here is at least one selected from the group consisting of ruthenium fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride, and oxyfluorinated chloride. Oxide or activated carbon.
  • the metal oxide is at least one selected from the group consisting of alumina, zirconia, titania, silica, and magnesium.
  • the activated carbon can be selected from commercially available ones.
  • activated carbon manufactured from bituminous coal for example, Calgon granular activated carbon CAL (manufactured by Toyo Calgon Co., Ltd.), coconut shell charcoal (for example, Nippon Enviro Chemicals). (Made by Co., Ltd.), etc., but of course not limited to these types.
  • the method for preparing the catalyst used in the present invention is not limited, but for example, it can be adjusted by dissolving a ruthenium compound in a solution, impregnating the solution with a support, and then reducing with hydrogen while heating. Alternatively, it can be prepared by impregnating or spraying a solution in which a soluble compound of a ruthenium compound is dissolved in a compound in which a carrier is modified with a halogen in advance by hydrogen fluoride, hydrogen chloride, chlorinated fluorinated hydrocarbon or the like.
  • the soluble compound examples include nitrates, phosphates, chlorides, oxides, oxychlorides, oxyfluorides, and the like of ruthenium compounds that dissolve in a solvent such as water, hydrochloric acid, aqueous ammonia, ethanol, and acetone.
  • a solvent such as water, hydrochloric acid, aqueous ammonia, ethanol, and acetone.
  • the amount of the ruthenium compound supported on the carrier is suitably 0.1 to 80% by mass, preferably 1 to 40% by mass, based on the total amount with the carrier.
  • catalysts prepared by supporting a ruthenium compound on a carrier can be prepared by the above-mentioned method, but commercially available catalysts can also be used.
  • heterogeneous catalysts such as A type, B type, K type, and R type, which are ruthenium activated carbon powders (dehydrated products) manufactured by N. chemcat.
  • the ruthenium catalyst may be used in an amount of 0.000001 mol or more per 1 mol of ⁇ , ⁇ -difluoroacetic acid ester when the ruthenium catalyst represented by the general formula [6] or formula [7] is used. 0.00001 to 0.005 mol is preferable, and 0.00002 to 0.002 mol is particularly preferable.
  • a catalyst having a ruthenium compound supported on a carrier is used as the ruthenium catalyst, 0.00001 mol% or more is used with respect to 1 mol of ⁇ , ⁇ -difluoroacetic acid ester, and 0.001 to 10 mol% is preferable. 0.01 to 5 mol% is particularly preferable.
  • the amount of hydrogen gas used may be 1 mol or more per 1 mol of ⁇ , ⁇ -difluoroacetic acid ester, a large excess is preferred, and a large excess under pressure (hydrogen pressure will be described later) is particularly preferred.
  • the hydrogen pressure is not particularly limited, but is usually 0.01 to 10 MPa (absolute pressure standard, hereinafter the same in the present specification), preferably 0.1 to 6 MPa, and more preferably 0.3 to 5 MPa.
  • examples of the hydride reducing agent used in this step include aluminum hydride and boron hydride.
  • Specific examples include (i-Bu) 2 AlH, LiAlH 4 , NaAlH 2 (OCH 2 CH 2 OCH 3 ) 2 , diborane, BH 3 ⁇ THF, BH 3 ⁇ SMe 2 , BH 3 ⁇ NMe 3 , BH 3 ⁇ NPhEt 2 , NaBH 4 , LiBH 4 and the like
  • Bu represents a butyl group
  • THF represents a tetrahydrofuran
  • Me represents a methyl group
  • Ph represents a phenyl group
  • Et represents an ethyl group
  • the amount of hydride reducing agent used is preferably 0.3 to 2.0 equivalents, particularly preferably 0.7 to 1.3 equivalents, per mole of ⁇ , ⁇ -difluoroacetate.
  • the amount of hydride reducing agent used is preferably 0.3 to 2.0 equivalents, particularly preferably 0.7 to 1.3 equivalents, per mole of ⁇ , ⁇ -difluoroacetate.
  • the hydride reducing agent is less than 0.3 equivalent, the addition rate of the reaction is not sufficient.
  • the hydride reducing agent exceeds 2.0 equivalent, the overreduction of side reaction increases, and the yield of the target product is greatly reduced. is there.
  • a reaction solvent When using a hydride reducing agent, a reaction solvent may be used.
  • the reaction solvent include aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, nitriles, acid amides, ethers, and alcohols.
  • Specific compounds include n-pentane, n-hexane, n-heptane, benzene, toluene, xylene, methylene chloride, chloroform, 1,2-dichloroethaneacetonitrile, propionitrile, phenylacetonitrile, isobutyronitrile, benzone.
  • These reaction solvents can be used alone or in combination.
  • the reaction solvent may be used in an amount of 0.03 L (liter) or more, preferably 0.05 to 10 L, particularly preferably 0.07 to 7 L with respect to 1 mol of ⁇ , ⁇ -difluoroacetic acid ester as a raw material. .
  • the reaction time may be within 72 hours, and varies depending on the raw material substrate and reaction conditions. Therefore, the progress of the reaction is traced by analytical means such as gas chromatography, liquid chromatography, nuclear magnetic resonance, etc.
  • the end point should be the point at which almost no recognition is possible. Thereby, a mixture containing ⁇ , ⁇ -difluoroacetaldehyde hemiacetal represented by the general formula [3] can be obtained.
  • the reaction in this step once generates ⁇ , ⁇ -difluoroacetaldehyde (corresponding to the general formula [1]), but reacts with the alcohol present in the system to form a stable alkyl hemiacetal (general formula [1] 3], which is quickly converted to ⁇ , ⁇ -difluoroacetaldehyde hemiacetal.
  • the starting material in this step includes an alcohol represented by the general formula [2], and two compounds represented by the general formula [4].
  • a monomer may be contained (an example described later), even such a starting material can be suitably used as a starting material in the subsequent second step.
  • the second step the mixture obtained in the first step is neutralized, and then the reaction vessel is filled with the mixture, and the oxygen concentration in the gas phase in the reaction vessel is reduced under light-shielding conditions.
  • the dimer of ⁇ , ⁇ -difluoroacetaldehyde hemiacetal and ⁇ , ⁇ -difluoroacetaldehyde represented by the general formula [4] is contained by adjusting to 5000 ppm or less and performing a distillation operation under light-shielding conditions.
  • a mixture having a pH of 3.5 to 10.0 is obtained.
  • the mixture obtained in the first step is a reaction solution containing a base regardless of whether hydrogenation using a ruthenium catalyst or reduction with a hydride reducing agent is used, and has a strong basicity (pH 11.0 or higher).
  • neutralization is performed in order to make the reaction solution for purification operation neutral to weakly basic.
  • neutral to weakly basic means that a liquid is collected and immersed in a pH test paper, but the liquid has a pH of 3.5 to 10.0 when measured with a pH meter (ie, , "Liquidity that can be defined as" neutral to weakly basic vicinity "), more preferably 6 to 10.
  • the liquid used in the third step becomes acidic, and the produced dimer is stabilized, which is not preferable.
  • the side reaction such as the Cannizzaro reaction is likely to occur and the yield of ⁇ , ⁇ -difluoroacetaldehyde hemiacetal is reduced, which is not preferable.
  • acetic acid in order to adjust the pH to the range of 3.5 to 10.0, acetic acid, benzoic acid, para-toluenesulfonic acid or the like may be used (see Examples described later).
  • This step is performed under light-shielding conditions.
  • a material that blocks all wavelengths by an opaque outer wall is most desirable, but any material that can block a short wavelength, specifically, a wavelength of less than 450 nm, can be used by a brown light shielding glass or the like.
  • the oxygen concentration in the gas phase portion can be measured using a general oxygen concentration meter.
  • the hemiacetal reaction liquid is supplied to the container and then filled with an inert gas such as nitrogen or argon, but there is no particular limitation on the method of filling the container with the inert gas.
  • an inert gas such as nitrogen or argon
  • the inert gas is bubbled through the liquid phase in the container, and then the container is sealed.
  • the inside of the container is sealed, and after performing a pressure reducing operation to such an extent that the mixture is not discharged out of the container, an inert gas is blown onto the liquid phase part in the container, or the liquid phase part is Bubbling inert gas, Etc. In either case, the dissolved oxygen concentration in the liquid phase part is lowered, and at the same time, the gas phase part in the container is gradually replaced with an inert gas.
  • ⁇ As the type of inert gas a gas that does not affect the reaction, such as nitrogen or argon, is used.
  • the oxygen in the container is adjusted so that the oxygen concentration in the gas phase is 5000 ppm or less, preferably 1000 ppm or less, particularly preferably 300 ppm or less.
  • the specific method for adjusting the oxygen concentration for example, (1) Adjust the oxygen concentration range to be within the above-mentioned range by introducing an inert gas into the container, or (2) A mixed gas of oxygen and an inert gas such as nitrogen or argon is blown to reduce the oxygen concentration in the container to an appropriate range, or (3) The inside of the container containing ⁇ , ⁇ -difluoroacetaldehyde hemiacetal is sealed, and the inside of the container is depressurized. And the like.
  • each ratio in the mixed gas of oxygen and an inert gas does not have a restriction
  • the adjustment method of (1) or (2) is Since it is easy to adjust the oxygen concentration of a gaseous phase part to 5000 ppm or less, it is preferably used.
  • the distillation operation in this step is a fractional distillation (in addition, in explaining “precision distillation” here, For convenience, chemical purity can be increased by combining “fractional distillation” or “distillation”.
  • the number of stages of the distillation column may be, for example, 2 or more and 50 or less.
  • regular packing may be those usually used, and examples thereof include sulzer packing, mela pack, techno pack, and flexi pack.
  • irregular packing may be those usually used, and examples thereof include helipac, Raschig ring, and Dixon packing.
  • the reflux ratio is 0.5 to 8.0, preferably 0.5 to 7.0, more preferably 0.5 to 6.0.
  • the pressure and temperature during distillation are not particularly limited as long as ⁇ , ⁇ -difluoroacetaldehyde hemiacetal is vaporized. Also, the reaction time is not particularly limited.
  • the pH of the reaction system containing a dimer of ⁇ , ⁇ -difluoroacetaldehyde hemiacetal and ⁇ , ⁇ -difluoroacetaldehyde is 3.5 to 10. without forming difluoroacetic acid in the reaction system. A zero mixture will be obtained.
  • the fraction after distillation includes a self-polymer, a hydrate, an acetal, a hemiacetal, and a structure thereof. In many cases, it is obtained as a stable equivalent such as a compound having a combination of specific characteristics.
  • a dimer of the general formula [4] is produced in addition to ⁇ , ⁇ -difluoroacetaldehyde hemiacetal, as shown in Examples described later. Therefore, the dimer can be efficiently converted to the hemiacetal by passing through the subsequent third step.
  • the third step the mixture containing ⁇ , ⁇ -difluoroacetaldehyde hemiacetal and dimer obtained in the second step is filled into a reaction vessel, and the oxygen in the gas phase in the reaction vessel is filled under a light-shielding condition.
  • the concentration to be 5000 ppm or less
  • adding an alcohol represented by the general formula [2] to the mixture at least a part of the dimer contained in the mixture is reduced, or the mixture Is a step of obtaining a mixture containing ⁇ , ⁇ -difluoroacetaldehyde hemiacetal substantially free of the dimer contained in
  • the oxygen concentration in the reaction vessel is adjusted to 5000 ppm or less under light-shielding conditions with respect to the mixture introduced into the reaction vessel, but the reaction vessel used and the conditions for introducing oxygen are as described above. Since it can be carried out under the same conditions as described in the two steps, repeated description of the oxygen introduction conditions is omitted in this step.
  • this step is preferably performed when the alcohol represented by the general formula [2] is added to the mixture obtained in the second step so that the pH of the mixture is in the range of 3.5 to 10.0.
  • an acid or the like is added to the mixture to adjust the pH to be out of the range of 3.5 to 10.0, a part of the dimer contained in the mixture decreases, but ⁇ , ⁇ -difluoro
  • the amount of acetaldehyde hemiacetal may decrease (Comparative Examples 4 to 8 described later).
  • the alcohol is reacted with the mixture at a pH in the range of 3.5 to 10.0 (note that this step is the second step). Since the obtained mixture having a pH of 3.5 to 10.0 is used as it is, it is not always necessary to positively add acid).
  • the alcohol used in this step is represented by the general formula [2] (note that it is not necessarily the same as the alcohol used as necessary in the first step).
  • methanol and ethanol are more preferable because anhydrous reagents can be easily obtained on a large scale and the effect of improving the stability of ⁇ , ⁇ -difluoroacetaldehyde alkyl hemiacetal is large.
  • the addition of alcohol in this step may be added all at once at the time of preparation, while it may be added sequentially while monitoring the progress of the reaction, and there is no particular limitation.
  • the dimer is added to ⁇ , ⁇ -difluoroacetaldehyde hemiacetal by adding at least 1.0 equivalent, preferably 1.5 equivalents or more, of alcohol to the dimer with respect to the number of moles of the dimer. It is gradually decomposed, and as a result, the selectivity to the hemiacetal is improved.
  • it is not economical to add 5 equivalents or more of alcohol to the dimer because it uses more reagents than necessary.
  • the reaction temperature in this step is not particularly limited, but it is preferable to perform the reaction at room temperature of 5 ° C. to 35 ° C. because no load is applied.
  • the reaction time of this step is not particularly limited, but the end point of the reaction is the time when almost no decrease in the dimer as a starting material can be confirmed using an analytical instrument such as gas chromatography or nuclear magnetic resonance (NMR). It is preferable to do.
  • the second step and the third step can be performed, for example, in an inert gas atmosphere such as nitrogen or argon.
  • the reactor or the storage container may be made of any material that is made of a material having corrosion resistance to an organic solvent or ⁇ , ⁇ -difluoroacetaldehyde hemiacetal and can sufficiently react under normal pressure or pressure.
  • the content of the dimer in ⁇ , ⁇ -difluoroacetaldehyde hemiacetal is, for example, less than 10% by mass as shown in the examples described later. Can be reduced.
  • the production of difluoroacetic acid is, for example, less than 200 ppm (not detected in the examples described later), and is a useful method as an efficient production method of ⁇ , ⁇ -difluoroacetaldehyde hemiacetal.
  • the quantification (composition ratio and yield) of the product was calculated based on “mol%” of the composition obtained by measuring the reaction mixture with a nuclear magnetic resonance analyzer (NMR).
  • the pH is a value obtained by measuring a mixture of a solution and ultrapure water at a weight ratio of 1: 1 with a pH meter.
  • Example 1 First step: In a stainless steel pressure-resistant reaction vessel, 109 g (0.88 mol) of ethyl ⁇ , ⁇ -difluoroacetate, 0.107 g (0.18 mmol) of a ruthenium catalyst represented by the following formula, 42 g of sodium methoxide 28% methanol solution (sodium) 0.22 mol as methoxide) and 290 mL of methanol were added, the inside of the reactor was replaced with hydrogen gas five times, the hydrogen pressure was set to 1.0 MPa, and the reaction was stirred at 15 ° C. for 8 hours.
  • a ruthenium catalyst represented by the following formula
  • Second step When 13.2 g (0.22 mol) of acetic acid was added to the reaction completed solution, the pH reached 8 and the addition was terminated. The reaction solution was bubbled with nitrogen gas. It was confirmed by bubbling operation that the oxygen concentration in the container was 3000 ppm.
  • the obtained solution was bubbled again with nitrogen gas, and after confirming that the oxygen concentration in the gas phase was 2000 ppm, the liquid was subjected to precision distillation (theoretical plate number: 35 plates) under light shielding conditions.
  • Distillation temperature; room temperature (25 ° C.) to 92 ° C., degree of vacuum; normal pressure (0.1 MPa) to 35 kPa) was used to separate difluoroethanol and most of methanol.
  • the fraction obtained after precision distillation contains ethanol, ⁇ , ⁇ -difluoroacetaldehyde ethyl hemiacetal, and a “dimer” derived from the hemiacetal represented by the following formula, each having a composition ratio of ethanol Was 6.3 wt%, ⁇ , ⁇ -difluoroacetaldehyde ethyl hemiacetal was 72.1 wt%, and the dimer was 21.6 wt%.
  • the yield of difluoroacetaldehyde ethyl hemiacetal through the first step and the second step considering the composition ratio was 51%, and the pH of the solution was 4.5.
  • Third step A stirrer is placed in a 100 ml light-shielded glass container, and 50 g of the solution after the precision distillation obtained in the second step is filled in a nitrogen atmosphere. The solution is then filled with nitrogen gas as in the second step. Bubbling operation was performed. When the oxygen concentration in the container reached 3000 ppm, 1.8 equivalents of ethanol was added to the dimer, and the mixture was stirred at room temperature of 25 ° C. for 1 hour. After 1 hour, the solution was measured by 19 F-NMR.
  • composition of the solution was 7.5 wt% ethanol, 84.2 wt% ⁇ , ⁇ -difluoroacetaldehyde ethyl hemiacetal, and 8.3 wt% dimer, and no difluoroacetic acid was detected by 19 F-NMR.
  • Second step When 7.5 g (0.13 mol) of acetic acid was added to the reaction-terminated liquid, the pH was 12, so the addition was terminated. The neutralized solution was bubbled with nitrogen gas, and it was confirmed that the oxygen concentration in the container was 3000 ppm.
  • Second step When 13.2 g (0.22 mol) of acetic acid was added to the reaction completed solution, the pH reached 8 and the addition was terminated. The neutralized solution was bubbled with nitrogen gas, and it was confirmed that the oxygen concentration in the container was 3000 ppm.
  • the fraction contains ethanol, ⁇ , ⁇ -difluoroacetaldehyde ethyl hemiacetal, and a “dimer” derived from the hemiacetal represented by the following formula, each having a composition ratio of 6.6 wt% ethanol,
  • the ⁇ , ⁇ -difluoroacetaldehyde alkyl hemiacetal was 71.9 wt%, and the dimer was 21.5 wt%.
  • the yield of difluoroacetaldehyde ethyl hemiacetal through the first step and the second step in consideration of purity was 51%, and the pH of the solution was 2.7.
  • Third step A stirrer is placed in a 100 ml light-shielded glass container, and 50 g of the solution obtained in the second step is filled in a nitrogen atmosphere. Then, the liquid mixture is bubbled with nitrogen gas as in the second step. went. When the oxygen concentration in the container reached 3000 ppm, 1.8 equivalents of ethanol was added to the dimer and stirred at room temperature of 25 ° C. for 24 hours. After 24 hours, the solution was measured by 19 F-NMR.
  • the composition of the solution was 6.4 wt% ethanol, 73.0 wt% ⁇ , ⁇ -difluoroacetaldehyde ethyl hemiacetal, 20.6 wt% dimer, and 710 ppm ethyl difluoroacetate.
  • the pH was lowered by carrying out the non-light-shielding condition in the second step, the decomposition of the dimer in the third step was suppressed, and at the same time, difluoroacetic acid as a by-product was ⁇ , It remained in the ⁇ -difluoroacetaldehyde alkyl hemiacetal.
  • the fraction includes ethanol, ⁇ , ⁇ -difluoroacetaldehyde ethyl hemiacetal, and a “dimer” derived from the hemiacetal represented by the following formula, each having a composition ratio of ethanol 6.3 wt%, ⁇ ,
  • the ⁇ -difluoroacetaldehyde ethyl hemiacetal was 72.1 wt% and the dimer was 21.6 wt%.
  • the yield of difluoroacetaldehyde ethyl hemiacetal was 51%, and the pH of the liquid was 3.2.
  • Third step A stirrer is placed in a 100 ml light-shielded glass container, and 50 g of the precision-distilled solution obtained in the second step is filled in a nitrogen atmosphere. The mixture is then filled with nitrogen gas in the same manner as in the second step. Bubbling operation was performed. When the oxygen concentration in the container reached 2000 ppm, 1.8 equivalents of ethanol was added to the dimer and stirred at room temperature of 25 ° C. for 24 hours. After 24 hours, the solution was measured by 19 F-NMR.
  • the composition of the solution was 7.8 wt% ethanol, 76.9 wt% ⁇ , ⁇ -difluoroacetaldehyde ethyl hemiacetal, 15.3 wt% dimer, and 530 ppm ethyl difluoroacetate.
  • pH became low, and it resulted in the decomposition
  • difluoroacetic acid as a by-product remained in the ⁇ , ⁇ -difluoroacetaldehyde alkyl hemiacetal after rectification.
  • Second step When 26.4 g (0.44 mol) of acetic acid was added to the reaction-terminated liquid, the pH was 8. Therefore, it was judged that the reaction was neutral to weakly basic, and the addition was terminated. The neutralized solution was bubbled with nitrogen gas, and it was confirmed that the oxygen concentration in the container was 3000 ppm.
  • the solution thus obtained was bubbled again with nitrogen gas, and after confirming that the oxygen concentration in the gas phase was 2000 ppm, this liquid was subjected to precision distillation (theoretical plate number: 35 plates) under light-shielding conditions.
  • Distillation temperature; room temperature (25 ° C.) to 91 ° C., degree of vacuum; normal pressure (0.1 MPa) to 38 kPa) was used to separate difluoroethanol and most of methanol.
  • the fraction contains ethanol, ⁇ , ⁇ -difluoroacetaldehyde alkyl hemiacetal, and a dimer represented by the following formula, each having a composition ratio of 4.5 wt% ethanol, ⁇ , ⁇ -difluoro.
  • Acetaldehyde ethyl hemiacetal was 78.4 wt%, and the dimer was 15.3 wt%.
  • the yield of difluoroacetaldehyde ethyl hemiacetal through the first step and the second step considering the composition ratio was 51%, and the pH of the solution was 5.0.
  • Third step A stirrer was placed in a 30 ml light-shielded glass container, and 20 g of the solution after the precision distillation obtained in the second step (the liquid composition was 4.5 wt% ethanol and 78 ⁇ - ⁇ -difluoroacetaldehyde ethyl hemiacetal).
  • Ethanol was added in an equivalent amount of 1.8 with respect to the dimer, and the mixture was bubbled with nitrogen gas.
  • the mixed gas of nitrogen was filled so that the oxygen concentration in the container became the value shown in Table 2 below, and then sealed and sealed at 25 ° C. at 24 ° C. Stir for hours. After 24 hours, the contents were measured by 19 F-NMR. The following is shown in Table 2.
  • difluoroacetate was detected by 19 F-NMR. In Table 2, “ND” indicates no detection.
  • Example 6 in the composition after 72 hours, the dimer content was less than 10% by mass, and the dimer was efficiently converted to ⁇ , ⁇ -difluoroacetaldehyde hemiacetal, and Difluoroacetic acid was not detected by 19 F-NMR.
  • the method for defining the oxygen concentration and light shielding conditions of the present invention is effective as a production method for converting a dimer into ⁇ , ⁇ -difluoroacetaldehyde hemiacetal.
  • the ⁇ , ⁇ -difluoroacetaldehyde hemiacetal targeted in the present invention can be used as a material in the field of advanced materials or as an intermediate for medical and agricultural chemicals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The production method for an α,α-difluoroacetaldehyde hemiacetal ("DFAL-ROH") according to the present invention comprises: a step in which a difluoroacid ester is reacted with hydrogen (H2) in a reactor in the presence of a base and a ruthenium catalyst to produce a mixture containing a DFAL-ROH; a step in which the mixture is neutralized, thereafter the oxygen concentration inside the reactor is regulated to 5,000 ppm or less under such conditions that the mixture is shielded from light, and then distillation is conducted to obtain a mixture comprising the DFAL-ROH and a dimer and having a pH of 3.5-10.0; and a step in which an alcohol is added to the mixture after the oxygen concentration inside the reactor is regulated under light-shielding conditions, thereby obtaining a DFAL-ROH-containing mixture from which at least some of the dimer contained in said mixture has been removed or substantially all the dimer contained in said mixture has been removed. By the method, a DFAL-ROH reduced in by-product content is efficiently obtained.

Description

α,α-ジフルオロアセトアルデヒドヘミアセタールの製造方法Process for producing α, α-difluoroacetaldehyde hemiacetal
 本発明は、α,α-ジフルオロアセトアルデヒドヘミアセタールの製造方法に関する。 The present invention relates to a method for producing α, α-difluoroacetaldehyde hemiacetal.
 式[1]で表されるα,α-ジフルオロアセトアルデヒドは、先端材料分野の材料もしくは医農薬用の中間体として有用な化合物である。
Figure JPOXMLDOC01-appb-C000008
 特にそのジフルオロメチル基(-CHF2)は、高い電気陰性度を持つフッ素原子2つおよび水素原子1つが、同一の炭素原子に結合している。この特異な構造が、それを用いて合成した各種材料の撥水性、透明性、低誘電性、特異な生理活性、ミミック効果、などの特徴に深く関係すると考えられている。このため、α,α-ジフルオロアセトアルデヒドをビルディングブロックとして用いた物質は、先端材料分野及び医農薬中間体などの分野で、活発な研究開発の対象となっている。
Α, α-Difluoroacetaldehyde represented by the formula [1] is a compound useful as a material in the field of advanced materials or an intermediate for medical and agricultural chemicals.
Figure JPOXMLDOC01-appb-C000008
In particular, in the difluoromethyl group (—CHF 2 ), two fluorine atoms and one hydrogen atom having high electronegativity are bonded to the same carbon atom. This unique structure is considered to be deeply related to characteristics such as water repellency, transparency, low dielectric property, unique physiological activity, and mimic effect of various materials synthesized using the structure. For this reason, substances using α, α-difluoroacetaldehyde as a building block are subject to active research and development in the fields of advanced materials and intermediates for medical and agricultural chemicals.
 α,α-ジフルオロアセトアルデヒド類の製造方法として、触媒存在下、ジフルオロメチル基を持つエステル類に対し、水素化リチウムアルミニウム等のヒドリド還元剤を用いた還元反応が知られている(非特許文献1)。また、本出願人は、α,α-ジフルオロ酢酸エステル類に対し、ルテニウム触媒の存在下、水素(H2)による還元反応による方法を開示している(特許文献1)。 As a method for producing α, α-difluoroacetaldehyde, a reduction reaction using a hydride reducing agent such as lithium aluminum hydride is known for esters having a difluoromethyl group in the presence of a catalyst (Non-patent Document 1). ). Further, the present applicant has disclosed a method of reducing α, α-difluoroacetic acid esters by hydrogen (H 2 ) in the presence of a ruthenium catalyst (Patent Document 1).
 一方、アルデヒドという物質は不安定で、次第に他のアルデヒド分子と重合することが知られている(非特許文献2)。本発明で対象とするアルデヒドは、強力な電子求引基であるジフルオロメチル基が直結しているため、自己重合体、水和体、ヘミアセタール、アセタール及びこれらの構造的特徴が組み合わさった化合物等、複数の安定な等価体として得られることも特許文献1に開示されている。 On the other hand, it is known that a substance called aldehyde is unstable and gradually polymerizes with other aldehyde molecules (Non-patent Document 2). Since the aldehyde targeted in the present invention is directly linked to a difluoromethyl group which is a strong electron-attracting group, a self-polymer, a hydrate, a hemiacetal, an acetal and a compound in which these structural features are combined It is also disclosed in Patent Document 1 that it can be obtained as a plurality of stable equivalents.
 このように、ジフルオロメチル基が直結しているアルデヒドは、複数の化合物に変換されやすい傾向があった。そこで、本出願人は、α,α-ジフルオロアセトアルデヒドは一般式[2]で表されるアルコールとの共存下、一般式[3]で示されるα,α-ジフルオロアセトアルデヒドヘミアセタールを形成し、かつ、共存するアルコールの量を調整することで、該ヘミアセタールが系内に安定に存在しやすくなる、すなわち、保存安定性が向上する旨を、特許文献2で報告している。
Figure JPOXMLDOC01-appb-C000009
[式中、R4はアルキル基または置換アルキル基を表す。]
Figure JPOXMLDOC01-appb-C000010
[式中、R1は一般式[2]におけるR1と同じ。]
As described above, the aldehyde to which the difluoromethyl group is directly linked tends to be easily converted into a plurality of compounds. Therefore, the applicant of the present invention forms α, α-difluoroacetaldehyde hemiacetal represented by the general formula [3] in the presence of α, α-difluoroacetaldehyde with the alcohol represented by the general formula [2], and Patent Document 2 reports that adjusting the amount of coexisting alcohol makes it easier for the hemiacetal to exist stably in the system, that is, the storage stability is improved.
Figure JPOXMLDOC01-appb-C000009
[Wherein, R 4 represents an alkyl group or a substituted alkyl group. ]
Figure JPOXMLDOC01-appb-C000010
[Wherein, R 1 is the same as R 1 in the general formula [2]. ]
 ところで、本出願人は特許文献1及び2において、α,α-ジフルオロアセトアルデヒドヘミアセタールの精製時に、一般式[4]で表されるα,α-ジフルオロアセトアルデヒドの二量体(以下、本明細書で単に「二量体」と言うことがある)が生成することを報告している。
Figure JPOXMLDOC01-appb-C000011
[式中、R3は一般式[2]におけるR1と同じ。]
 この化合物は、α,α-ジフルオロアセトアルデヒドヘミアセタールと比べて安定な化学種であり、一旦生成してしまうと、このままではα,α-ジフルオロアセトアルデヒドとして目的の反応を進行させるには、二量体をα,α-ジフルオロアセトアルデヒドヘミアセタールに収束させる工程が増えることになる。そのため、α,α-ジフルオロアセトアルデヒドヘミアセタール中に二量体は発生させない、もしくはできる限り低減させておくことが望ましいと言える。
By the way, the present applicants disclosed in Patent Documents 1 and 2 a dimer of α, α-difluoroacetaldehyde represented by the general formula [4] (hereinafter referred to as the present specification) when purifying α, α-difluoroacetaldehyde hemiacetal. (Sometimes referred to as “dimers”).
Figure JPOXMLDOC01-appb-C000011
[Wherein R 3 is the same as R 1 in the general formula [2]. ]
This compound is a stable chemical species compared to α, α-difluoroacetaldehyde hemiacetal, and once produced, in order to proceed the desired reaction as α, α-difluoroacetaldehyde, it is a dimer. This will increase the number of steps for converging to α, α-difluoroacetaldehyde hemiacetal. Therefore, it can be said that it is desirable not to generate a dimer in α, α-difluoroacetaldehyde hemiacetal, or to reduce it as much as possible.
 しかし、α,α-ジフルオロアセトアルデヒドヘミアセタールは気相中では不安定な化合物である為、合成後、反応液中の中和塩やヒドリド還元剤を除去する為に蒸留操作等を行うと、一定量の二量体が発生してしまう。そこで本出願人は、保存安定性の向上、該ヘミアセタール以外の化合物(二量体)を格段と生成しにくくなるという特異的な現象をも見出し、特許文献2でその旨を報告している。 However, α, α-difluoroacetaldehyde hemiacetal is a compound that is unstable in the gas phase. Therefore, after synthesis, if a distillation operation or the like is performed to remove the neutralized salt or hydride reducing agent in the reaction solution, it will be constant. An amount of dimer is generated. Therefore, the present applicant has also found a specific phenomenon that the storage stability is improved and the compound (dimer) other than the hemiacetal is much less likely to be produced, and this is reported in Patent Document 2. .
国際公開2014/115801号International Publication No. 2014/115801 国際公開2016/017318号International Publication No. 2016/017318
 α,α-ジフルオロアセトアルデヒドは、自己重合体、水和体、ヘミアセタール等の安定な等価体の他、二量体が得られることは、前述した特許文献2に記載の方法で公知である。さらに、該文献によれば、二量体に対して酸を加えて強く加熱する等の操作により、α,α-ジフルオロアセトアルデヒドに戻すことが出来るとする旨の記載もなされている。 It is known by the method described in Patent Document 2 that α, α-difluoroacetaldehyde can be obtained as a dimer in addition to stable equivalents such as self-polymers, hydrates, and hemiacetals. Further, according to this document, there is a description that it can be returned to α, α-difluoroacetaldehyde by an operation such as adding an acid to the dimer and heating it strongly.
 しかしながら、特許文献2に記載されているように、前述した二量体が一旦生成すると、それを分解させて対応するα,α-ジフルオロアセトアルデヒドヘミアセタールを安定的に得る条件を見出すことは難しい。仮にこの二量体をα,α-ジフルオロアセトアルデヒドに戻すべく、酸を加えて加熱等行ったとしても、実際、二量体が分解してα,α-ジフルオロアセトアルデヒドヘミアセタールとなる際の変換率は、処理条件により大きなばらつきがあった(後述の比較例)。また変換率が低い場合は長時間反応を行っても二量体が所定の割合から減少しない場合もあった。 However, as described in Patent Document 2, once the above-mentioned dimer is formed, it is difficult to find a condition for decomposing it to stably obtain the corresponding α, α-difluoroacetaldehyde hemiacetal. Even if an acid is added to the dimer to return it to α, α-difluoroacetaldehyde, heating, etc., the conversion rate when the dimer is actually decomposed into α, α-difluoroacetaldehyde hemiacetal There were large variations depending on the processing conditions (comparative examples described later). When the conversion rate is low, the dimer may not be reduced from a predetermined ratio even if the reaction is performed for a long time.
 一方、α,α-ジフルオロアセトアルデヒドヘミアセタールの保管中に分解が進行し分解してジフルオロ酢酸が副生してしまうこともあった。一旦、ジフルオロ酢酸が生成してしまうと、この化合物自体、強酸性物質であり、この量が増えることで反応容器の材質に影響を与えることから、α,α-ジフルオロアルデヒドの長期保存には不向きであった。 On the other hand, during the storage of α, α-difluoroacetaldehyde hemiacetal, decomposition progressed and sometimes decomposed to produce difluoroacetic acid as a by-product. Once difluoroacetic acid is produced, this compound itself is a strongly acidic substance, and increasing this amount affects the material of the reaction vessel, so it is not suitable for long-term storage of α, α-difluoroaldehyde. Met.
 そこで、α,α-ジフルオロアセトアルデヒドヘミアセタールの精製時に副生する、該ヘミアセタールに含まれる二量体を低減させ、かつ、ジフルオロ酢酸の副生を抑えることのできる、効率的なα,α-ジフルオロアセトアルデヒドヘミアセタールの製造方法が求められていた。 Therefore, an efficient α, α- which can reduce the dimer contained in the hemiacetal, which is by-produced during the purification of α, α-difluoroacetaldehyde hemiacetal, and can suppress the by-product of difluoroacetic acid. There has been a demand for a method for producing difluoroacetaldehyde hemiacetal.
 本発明者らは、α,α-ジフルオロアセトアルデヒドヘミアセタールと二量体を含む混合液が酸性状態であると二量体が安定化される、特に、該混合液のpHが3.5未満である場合、安定性が顕著に高くなり、二量体の分解反応が低下するという知見を得た。 The inventors of the present invention can stabilize a dimer when a mixed solution containing α, α-difluoroacetaldehyde hemiacetal and a dimer is in an acidic state. In particular, the pH of the mixed solution is less than 3.5. In some cases, it has been found that the stability is significantly increased and the dimer decomposition reaction is reduced.
 通常、α,α-ジフルオロアセトアルデヒドヘミアセタールを製造する際に存在する可能性のある酸としては、ヒドリド還元剤や塩基の中和プロセスに用いる酸と、α,α-ジフルオロアセトアルデヒドヘミアセタールの分解によって生じるジフルオロ酢酸が考えられる。これらのうち、ジフルオロ酢酸は強酸であり、該混合液中の含量が数十ppm程度と微量であっても液全体のpHは3.5未満となる。ジフルオロ酢酸が系内に存在すると、二量体に対しアルコールを反応させても、二量体の分解反応、すなわち、ヘミアセタールへ進行しにくくなってしまうという問題があった。 In general, acids that may be present in the production of α, α-difluoroacetaldehyde hemiacetal include acids used in hydride reducing agents and base neutralization processes, and decomposition of α, α-difluoroacetaldehyde hemiacetal. The resulting difluoroacetic acid is contemplated. Of these, difluoroacetic acid is a strong acid, and the pH of the whole liquid is less than 3.5 even if the content in the mixed liquid is as small as several tens of ppm. When difluoroacetic acid is present in the system, there is a problem that even if alcohol is reacted with the dimer, it is difficult to proceed to the decomposition reaction of the dimer, that is, to hemiacetal.
 そこで本発明者らが鋭意検討を行った結果、より高純度のα,α-ジフルオロアセトアルデヒドヘミアセタールを製造するための条件として、下記の3つの工程を含む製造方法を採用することで、α,α-ジフルオロアセトアルデヒドヘミアセタールからの分解物であるジフルオロ酢酸の生成を抑え、かつ、該ヘミアセタールの精製時に副生するα,α-ジフルオロアセトアルデヒドヘミアセタールの二量体を低減できると言った、大変好ましい知見を得、本発明を完成するに至った。
 第1工程:
 一般式[5]で表されるα,α-ジフルオロ酢酸エステル類を、一般式[2]で表されるアルコールを溶媒とし、塩基及びルテニウム触媒の存在下、水素(H2)と反応させる、または、一般式[5]で表されるα,α-ジフルオロ酢酸エステル類を、ヒドリド還元剤と反応させる、ことにより、一般式[3]で表されるα,α-ジフルオロアセトアルデヒドヘミアセタールを含む混合物を製造する工程。
Figure JPOXMLDOC01-appb-C000012
[式中、R2は一般式[3]におけるR1と同じである]
 第2工程:
 第1工程で得られた前記混合物に対し、中和処理を行い、その後、該混合物を反応容器に充填し、遮光条件下、該反応容器内の酸素(O2)濃度を5000ppm以下となるように調整し、続いて蒸留操作を行うことで、α,α-ジフルオロアセトアルデヒドヘミアセタールと、一般式[4]で表されるα,α-ジフルオロアセトアルデヒドの二量体を含む、pHが3.5~10.0の混合物を得る工程。
 第3工程:
 第2工程で得られた前記混合物を反応容器に充填させ、遮光条件下、該反応容器内の気相部の酸素濃度を5000ppm以下となるよう調整した後、該混合物に対し、一般式[2]で表されるアルコールを反応させることで、該混合物中に含まれる二量体の少なくとも1部が減少した、もしくは該混合物中に含まれる二量体を実質的に含まない、α,α-ジフルオロアセトアルデヒドヘミアセタールを含む混合物を得る工程。
Therefore, as a result of intensive studies by the present inventors, by adopting a production method including the following three steps as a condition for producing α, α-difluoroacetaldehyde hemiacetal of higher purity, α, It is said that the production of difluoroacetic acid, which is a decomposition product from α-difluoroacetaldehyde hemiacetal, can be suppressed, and the dimer of α, α-difluoroacetaldehyde hemiacetal produced as a by-product during the purification of hemiacetal can be reduced. The present inventors have obtained preferable findings and completed the present invention.
First step:
Reacting α, α-difluoroacetate represented by the general formula [5] with hydrogen (H 2 ) in the presence of a base and a ruthenium catalyst using the alcohol represented by the general formula [2] as a solvent; Alternatively, α, α-difluoroacetaldehyde hemiacetal represented by the general formula [3] is contained by reacting the α, α-difluoroacetic acid ester represented by the general formula [5] with a hydride reducing agent. Producing a mixture;
Figure JPOXMLDOC01-appb-C000012
[Wherein R 2 is the same as R 1 in the general formula [3]]
Second step:
The mixture obtained in the first step is subjected to neutralization treatment, and then the mixture is filled into a reaction vessel so that the oxygen (O 2 ) concentration in the reaction vessel is 5000 ppm or less under light shielding conditions. And then a distillation operation is performed, so that the pH is 3.5, which includes α, α-difluoroacetaldehyde hemiacetal and a dimer of α, α-difluoroacetaldehyde represented by the general formula [4]. Obtaining a mixture of ˜10.0.
Third step:
After filling the mixture obtained in the second step into a reaction vessel and adjusting the oxygen concentration in the gas phase in the reaction vessel to 5000 ppm or less under light-shielding conditions, the general formula [2 ], By which at least part of the dimer contained in the mixture is reduced or substantially free of the dimer contained in the mixture, α, α- Obtaining a mixture comprising difluoroacetaldehyde hemiacetal.
 すなわち、本発明は、以下の[発明1]-[発明12]を提供する。 That is, the present invention provides the following [Invention 1]-[Invention 12].
 [発明1]
 次の工程を含む、一般式[3]で表されるα,α-ジフルオロアセトアルデヒドヘミアセタールの製造方法。
 第1工程:
 一般式[5]で表されるα,α-ジフルオロ酢酸エステル類を、一般式[2]で表されるアルコールを溶媒とし、塩基及びルテニウム触媒の存在下、水素(H2)と反応させる、または、一般式[5]で表されるα,α-ジフルオロ酢酸エステル類を、ヒドリド還元剤と反応させる、ことにより、一般式[3]で表されるα,α-ジフルオロアセトアルデヒドヘミアセタールを含む混合物を製造する工程。
 第2工程:
 第1工程で得られた前記混合物に対し、中和処理を行い、その後、該混合物を反応容器に充填し、遮光条件下、該反応容器内の気相部の酸素濃度を5000ppm以下となるように調整し、続いて蒸留操作を行うことで、α,α-ジフルオロアセトアルデヒドヘミアセタールと、一般式[4]で表されるα,α-ジフルオロアセトアルデヒドの二量体とを含む、pHが3.5~10.0の混合物を得る工程。
 第3工程:
 第2工程で得られた前記混合物を反応容器に充填させ、遮光条件下、該反応容器内の気相部の酸素濃度を5000ppm以下となるよう調整した後、該混合物に対し一般式[2]で表されるアルコールを反応させることで、該混合物に含まれる二量体の少なくとも1部が減少した、もしくは該混合物に含まれる二量体を実質的に含まない、α,α-ジフルオロアセトアルデヒドヘミアセタールを含む混合物を得る工程。
[Invention 1]
A method for producing α, α-difluoroacetaldehyde hemiacetal represented by the general formula [3], comprising the following steps.
First step:
Reacting α, α-difluoroacetate represented by the general formula [5] with hydrogen (H 2 ) in the presence of a base and a ruthenium catalyst using the alcohol represented by the general formula [2] as a solvent; Alternatively, α, α-difluoroacetaldehyde hemiacetal represented by the general formula [3] is contained by reacting the α, α-difluoroacetic acid ester represented by the general formula [5] with a hydride reducing agent. Producing a mixture;
Second step:
The mixture obtained in the first step is neutralized, and then filled into a reaction vessel so that the oxygen concentration in the gas phase in the reaction vessel is 5000 ppm or less under light-shielding conditions. And a distillation operation is carried out to adjust the pH to 3 with α, α-difluoroacetaldehyde hemiacetal and a dimer of α, α-difluoroacetaldehyde represented by the general formula [4]. Obtaining a mixture of 5 to 10.0.
Third step:
The mixture obtained in the second step is filled in a reaction vessel, and after adjusting the oxygen concentration in the gas phase in the reaction vessel to be 5000 ppm or less under light-shielding conditions, the general formula [2] Is reduced in at least one part of the dimer contained in the mixture, or substantially free of the dimer contained in the mixture. Obtaining a mixture comprising acetal;
 [発明2]
 第1工程において、ルテニウム触媒が式[6]または式[7]で表される触媒である、発明1に記載の製造方法。
Figure JPOXMLDOC01-appb-C000013
[式中、Rはそれぞれ独立に水素原子、アルキル基、置換アルキル基、芳香環基または置換芳香環基を表し、Arはそれぞれ独立に芳香環基または置換芳香環基を表し、Xはそれぞれ独立に形式電荷が-1または0の配位子(但し、3つのXの形式電荷の合計は-2)を表し、nはそれぞれ独立に1または2の整数を表す。]
Figure JPOXMLDOC01-appb-C000014
[式中、Phはフェニル基を表す。]
[Invention 2]
The production method according to invention 1, wherein in the first step, the ruthenium catalyst is a catalyst represented by formula [6] or formula [7].
Figure JPOXMLDOC01-appb-C000013
[In the formula, each R independently represents a hydrogen atom, an alkyl group, a substituted alkyl group, an aromatic ring group or a substituted aromatic ring group, Ar represents each independently an aromatic ring group or a substituted aromatic ring group, and each X represents an independent group. Represents a ligand having a formal charge of −1 or 0 (provided that the sum of the three formal charges of X is −2), and n independently represents an integer of 1 or 2. ]
Figure JPOXMLDOC01-appb-C000014
[Wherein, Ph represents a phenyl group. ]
 [発明3]
 式[6]で表されるルテニウム触媒が、下記式で表される触媒である、発明1または2に記載の製造方法。
Figure JPOXMLDOC01-appb-C000015
[式中、Phはフェニル基を表す。]
[Invention 3]
The manufacturing method of the invention 1 or 2 whose ruthenium catalyst represented by Formula [6] is a catalyst represented by a following formula.
Figure JPOXMLDOC01-appb-C000015
[Wherein, Ph represents a phenyl group. ]
 [発明4]
 第1工程において、ルテニウム触媒が、ルテニウム化合物を担体に担持した触媒である、発明1に記載の製造方法。
[Invention 4]
The production method according to invention 1, wherein in the first step, the ruthenium catalyst is a catalyst having a ruthenium compound supported on a carrier.
 [発明5]
 担体が、金属酸化物もしくは活性炭に担持した触媒である、発明4に記載の製造方法。
[Invention 5]
The production method according to claim 4, wherein the carrier is a catalyst supported on a metal oxide or activated carbon.
 [発明6]
 ルテニウム化合物が、ルテニウムのフッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物、及びオキシフッ化塩化物からなる群より選ばれる少なくとも1種である、発明4または5に記載の製造方法。
[Invention 6]
The production method according to invention 4 or 5, wherein the ruthenium compound is at least one selected from the group consisting of ruthenium fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride, and oxyfluoride chloride. .
 [発明7]
 第1工程において、ヒドリド還元剤が金属水素化物である、発明1に記載の製造方法。
[Invention 7]
The production method according to invention 1, wherein in the first step, the hydride reducing agent is a metal hydride.
 [発明8]
 金属水素化物が、水素化アルミニウムリチウム、水素化ホウ素リチウム、水素化ホウ素ナトリウムまたは水素化シアノホウ素ナトリウムである、発明7に記載の製造方法。
[Invention 8]
The production method according to invention 7, wherein the metal hydride is lithium aluminum hydride, lithium borohydride, sodium borohydride or sodium cyanoborohydride.
 [発明9]
 第2工程において、混合物のpHの調整を、酸を加えることにより行う、発明1乃至8の何れかに記載の製造方法。
[Invention 9]
The production method according to any one of inventions 1 to 8, wherein in the second step, the pH of the mixture is adjusted by adding an acid.
 [発明10]
 酸が、酢酸、安息香酸またはパラ-トルエンスルホン酸である、発明9に記載の製造方法。
[Invention 10]
The production method according to invention 9, wherein the acid is acetic acid, benzoic acid or para-toluenesulfonic acid.
 [発明11]
 第3工程において、アルコールがメタノール又はエタノールである、発明1乃至10の何れかに記載の製造方法。
[Invention 11]
The manufacturing method according to any one of Inventions 1 to 10, wherein in the third step, the alcohol is methanol or ethanol.
 [発明12]
 第2工程または第3工程において、酸素濃度の調整を、容器内に不活性ガスをバブリングさせることにより行う、発明1乃至11の何れかに記載の製造方法。
[Invention 12]
The manufacturing method according to any one of inventions 1 to 11, wherein in the second step or the third step, the oxygen concentration is adjusted by bubbling an inert gas into the container.
 なお、このような「二量体」にあたる化合物の生成における経時的な変化は、本発明の対象とする2,2-ジフルオロアセトアルデヒドと類似の構造体である、一般式[8]で表されるα,α,α-トリフルオロアセトアルデヒドのヘミアセタールの場合には、有意には観測されない。すなわち、このような「二量体」の生成はα,α-ジフルオロアセトアルデヒドヘミアセタールにおける特有の現象(固有の課題)である。
Figure JPOXMLDOC01-appb-C000016
[式中、R5はアルキル基または置換アルキル基を表す。]
Note that the change over time in the production of the compound corresponding to such a “dimer” is represented by the general formula [8], which is a structure similar to 2,2-difluoroacetaldehyde which is the subject of the present invention. In the case of hemiacetal of α, α, α-trifluoroacetaldehyde, it is not significantly observed. That is, the formation of such a “dimer” is a unique phenomenon (inherent problem) in α, α-difluoroacetaldehyde hemiacetal.
Figure JPOXMLDOC01-appb-C000016
[Wherein R 5 represents an alkyl group or a substituted alkyl group. ]
 本発明によれば、α,α-ジフルオロアセトアルデヒドヘミアセタールの製造において、該ヘミアセタールの精製時に副生する二量体を低減させ、かつ、ジフルオロ酢酸の含有量を低減できるという効果を奏する。 According to the present invention, in the production of α, α-difluoroacetaldehyde hemiacetal, the dimer produced as a by-product during purification of the hemiacetal can be reduced, and the content of difluoroacetic acid can be reduced.
 以下、本発明を詳細に説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。なお、本明細書において引用された全ての刊行物、例えば先行技術文献、及び公開公報、特許公報その他の特許文献は、参照として本明細書に組み込まれる。 Hereinafter, the present invention will be described in detail. The scope of the present invention is not limited to these descriptions, and other than the following examples, the scope of the present invention can be appropriately changed and implemented without departing from the spirit of the present invention. It should be noted that all publications cited in the present specification, for example, prior art documents, publications, patent publications and other patent documents are incorporated herein by reference.
 [第1工程]
 まず、第1工程について説明する。第1工程は、一般式[5]で表されるα,α-ジフルオロ酢酸エステル類を、一般式[2]で表されるアルコールを溶媒とし、塩基及びルテニウム触媒の存在下、水素(H2)と反応させる、または、一般式[5]で表されるα,α-ジフルオロ酢酸エステル類を、ヒドリド還元剤と反応させる、ことにより、一般式[3]で表されるα,α-ジフルオロアセトアルデヒドヘミアセタールを含む混合物を製造する工程である。
[First step]
First, the first step will be described. In the first step, the α, α-difluoroacetic acid ester represented by the general formula [5] is used as a solvent, the alcohol represented by the general formula [2] is used as a solvent, hydrogen (H 2) in the presence of a base and a ruthenium catalyst. ), Or α, α-difluoroacetate represented by the general formula [5] is reacted with a hydride reducing agent, whereby α, α-difluoro represented by the general formula [3] It is a process for producing a mixture containing acetaldehyde hemiacetal.
 本工程は公知の方法であり、特許文献1に記載の方法を採用するのが、大量規模で該ヘミアセタールを製造する上で特に有利である。本工程を採用することは、本発明を実施する上で重要である為、以下、この製造方法について説明する。 This step is a known method, and adopting the method described in Patent Document 1 is particularly advantageous in producing the hemiacetal on a large scale. Since adopting this step is important in carrying out the present invention, this manufacturing method will be described below.
 本工程の出発原料であるα,α-ジフルオロ酢酸エステル類の製造方法は、公知の製造方法を参考に当業者が容易に製造できる。 The manufacturing method of α, α-difluoroacetic acid esters which are starting materials for this step can be easily manufactured by those skilled in the art with reference to known manufacturing methods.
 本工程で用いる、一般式[5]で表されるα,α-ジフルオロ酢酸エステル類のR2はアルキル基または置換アルキル基を表す。なお、一般式[4]で表される二量体におけるR3についても前記酢酸エステル類におけるR2と同義である。 R 2 of the α, α-difluoroacetate ester represented by the general formula [5] used in this step represents an alkyl group or a substituted alkyl group. Note that R 3 in the dimer represented by the general formula [4] is also synonymous with R 2 in the acetate esters.
 アルキル基(本明細書で言う「アルキル基」は、「非置換のアルキル基」のことを示す)は炭素数1~10の直鎖状または分岐状のアルキル基を示す。例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-オクチル基、n-デシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。 An alkyl group (“alkyl group” in the present specification means an “unsubstituted alkyl group”) represents a linear or branched alkyl group having 1 to 10 carbon atoms. For example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, n-pentyl group, n-octyl group, n- Examples include decyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group and the like.
 置換アルキル基は、前記アルキル基の任意の炭素原子上に、任意の数および任意の組み合わせで、置換基を有する。係る置換基は、ハロゲン原子、低級アルコキシ基、低級ハロアルコキシ基、シアノ基または低級アルコキシカルボニル基等である。具体的には、フッ素、塩素、臭素、メトキシ基、エトキシ基、プロポキシ基、フルオロメトキシ基、クロロメトキシ基、ブロモメトキシ基、シアノ基、メトキシカルボニル基、エトキシカルボニル基およびプロポキシカルボニル基等が挙げられる。なお、本明細書において、“低級”とは、炭素数1~6の、直鎖状もしくは分枝状の鎖式または環式(炭素数3以上の場合)であるものを意味する。 The substituted alkyl group has a substituent in any number and in any combination on any carbon atom of the alkyl group. Such a substituent is a halogen atom, a lower alkoxy group, a lower haloalkoxy group, a cyano group, a lower alkoxycarbonyl group, or the like. Specific examples include fluorine, chlorine, bromine, methoxy group, ethoxy group, propoxy group, fluoromethoxy group, chloromethoxy group, bromomethoxy group, cyano group, methoxycarbonyl group, ethoxycarbonyl group and propoxycarbonyl group. . In this specification, “lower” means a linear or branched chain or cyclic group (in the case of 3 or more carbon atoms) having 1 to 6 carbon atoms.
 本工程で用いる塩基は、アルカリ金属の炭酸水素塩、アルカリ金属の炭酸塩、アルカリ金属の水酸化物、水酸化テトラアルキルアンモニウム、アルカリ金属のアルコキシド、有機塩基、アルカリ金属のビス(トリアルキルシリル)アミド、ならびにアルカリ金属の水素化ホウ素等である。具体的には、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸リチウム、炭酸ナトリウムおよび炭酸カリウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラn-プロピルアンモニウム、水酸化テトラn-ブチルアンモニウム、リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、リチウムエトキシド、ナトリウムエトキシド、カリウムエトキシド、リチウムイソプロポキシド、ナトリウムイソプロポキシド、カリウムイソプロポキシド、リチウムtert-ブトキシド、ナトリウムtert-ブトキシド、カリウムtert-ブトキシド、トリエチルアミン、ジイソプロピルエチルアミン、4-ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、リチウムビス(トリメチルシリル)アミド、ナトリウムビス(トリメチルシリル)アミド、カリウムビス(トリメチルシリル)アミド、水素化ホウ素リチウム、水素化ホウ素ナトリウムおよび水素化ホウ素カリウム等が挙げられる。これらの中でもアルカリ金属のアルコキシド(アルコキシドの炭素数は1~6)が好ましく、リチウムメトキシド、ナトリウムメトキシドおよびカリウムメトキシドが特に好ましい。なお、後述の実施例に記載の通り、ナトリウムメトキシドは通常メタノール溶液として入手できる。このため、反応系中には、メタノールが残存することになる。すなわち、メタノールが、前記で述べた一般式[2]で表されるアルコールとしての役割を少なくとも一部は果たすことになる。 Bases used in this step are alkali metal hydrogen carbonate, alkali metal carbonate, alkali metal hydroxide, tetraalkylammonium hydroxide, alkali metal alkoxide, organic base, alkali metal bis (trialkylsilyl) Amides, alkali metal borohydrides, and the like. Specifically, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium carbonate, sodium carbonate and potassium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, water Tetra n-propyl ammonium oxide, tetra n-butyl ammonium hydroxide, lithium methoxide, sodium methoxide, potassium methoxide, lithium ethoxide, sodium ethoxide, potassium ethoxide, lithium isopropoxide, sodium isopropoxide, potassium Isopropoxide, lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, triethylamine, diisopropylethylamine, 4-dimethylaminopi Gin, 1,8-diazabicyclo [5.4.0] undec-7-ene, lithium bis (trimethylsilyl) amide, sodium bis (trimethylsilyl) amide, potassium bis (trimethylsilyl) amide, lithium borohydride, sodium borohydride And potassium borohydride. Among these, alkali metal alkoxides (alkoxides having 1 to 6 carbon atoms) are preferable, and lithium methoxide, sodium methoxide, and potassium methoxide are particularly preferable. As described in Examples below, sodium methoxide is usually available as a methanol solution. For this reason, methanol remains in the reaction system. That is, methanol plays at least part of the role as the alcohol represented by the general formula [2] described above.
 ここで言う一般式[2]で表されるアルコールのうち、R4は一般式[3]で表されるα,α-ジフルオロアセトアルデヒドヘミアセタールのR1と同義である。アルコールの具体的な化合物はメタノール、エタノール、n-プロパノール、イソプロパノール、ブタノール、tert-ブタノール、ベンジルアルコール等が挙げられるが、これらのうち、メタノール、エタノール、n-プロパノール、イソプロパノールが好ましく、中でも、メタノールとエタノールは、無水試薬を大量規模で容易に入手でき、しかもα,α-ジフルオロアセトアルデヒドアルキルヘミアセタールの安定性向上の効果も大きいため、特に好ましい。 Among the alcohols represented by the general formula [2], R 4 has the same meaning as R 1 of α, α-difluoroacetaldehyde hemiacetal represented by the general formula [3]. Specific examples of the alcohol include methanol, ethanol, n-propanol, isopropanol, butanol, tert-butanol, and benzyl alcohol. Among these, methanol, ethanol, n-propanol, and isopropanol are preferable. And ethanol are particularly preferred because anhydrous reagents can be easily obtained on a large scale, and the effect of improving the stability of α, α-difluoroacetaldehyde alkyl hemiacetal is great.
 アルコールの使用量は、原料のα,α-ジフルオロ酢酸エステル類1モルに対して0.001モル以上を用いれば良く、0.005~5モルが好ましく、0.01~3モルが特に好ましい。 The amount of alcohol used may be 0.001 mol or more, preferably 0.005 to 5 mol, particularly preferably 0.01 to 3 mol, relative to 1 mol of α, α-difluoroacetate as a raw material.
 本工程で用いるルテニウム触媒は、特に制限はないが、例えば、下記の一般式[6]または式[7]で表されるルテニウム触媒を用いるのが好ましい。
Figure JPOXMLDOC01-appb-C000017
[式中、Rはそれぞれ独立に水素原子、アルキル基、置換アルキル基、芳香環基または置換芳香環基を表し、Arはそれぞれ独立に芳香環基または置換芳香環基を表し、Xはそれぞれ独立に形式電荷が-1または0の配位子(但し、3つのXの形式電荷の合計は-2)を表し、nはそれぞれ独立に1または2の整数を表す。]
Figure JPOXMLDOC01-appb-C000018
[式中、Phはフェニル基を表す。]
The ruthenium catalyst used in this step is not particularly limited. For example, it is preferable to use a ruthenium catalyst represented by the following general formula [6] or [7].
Figure JPOXMLDOC01-appb-C000017
[In the formula, each R independently represents a hydrogen atom, an alkyl group, a substituted alkyl group, an aromatic ring group or a substituted aromatic ring group, Ar represents each independently an aromatic ring group or a substituted aromatic ring group, and each X represents an independent group. Represents a ligand having a formal charge of −1 or 0 (provided that the sum of the three formal charges of X is −2), and n independently represents an integer of 1 or 2. ]
Figure JPOXMLDOC01-appb-C000018
[Wherein, Ph represents a phenyl group. ]
 また、ルテニウム触媒として、ルテニウム化合物を担体に担持した触媒を用いることもできるが、詳細は後述する。 Further, as the ruthenium catalyst, a catalyst in which a ruthenium compound is supported on a carrier can be used. Details will be described later.
 一般式[6]で表されるルテニウム触媒のアルキル基の定義は、一般式[4]または一般式[5]におけるR1と同義である。該ルテニウム触媒の芳香環基は、芳香族炭化水素基、または窒素原子、酸素原子もしくは硫黄原子等のヘテロ原子を含む芳香族複素環基である。芳香族炭化水素基の具体例としては炭素数6~18の、フェニル基、ナフチル基及びアントリル基等であり、ヘテロ原子を含む芳香族複素環基の具体例としてはピロリル基(窒素保護体も含む)、ピリジル基、フリル基、チエニル基、インドリル基(窒素保護体も含む)、キノリル基、ベンゾフリル基およびベンゾチエニル基等である。 The definition of the alkyl group of the ruthenium catalyst represented by the general formula [6] is synonymous with R 1 in the general formula [4] or the general formula [5]. The aromatic ring group of the ruthenium catalyst is an aromatic hydrocarbon group or an aromatic heterocyclic group containing a hetero atom such as a nitrogen atom, an oxygen atom or a sulfur atom. Specific examples of the aromatic hydrocarbon group include a phenyl group, a naphthyl group, and an anthryl group having 6 to 18 carbon atoms, and specific examples of the aromatic heterocyclic group containing a hetero atom include a pyrrolyl group (also a nitrogen-protected substance). A pyridyl group, a furyl group, a thienyl group, an indolyl group (including a nitrogen protector), a quinolyl group, a benzofuryl group, a benzothienyl group, and the like.
 一般式[6]で表されるルテニウム触媒の、置換アルキル基及び置換芳香環基における「置換基」は、前記のアルキル基又は芳香環基の、任意の炭素原子上に、任意の数および任意の組み合わせで、存在する。係る置換基は、ハロゲン原子、低級アルキル基、低級ハロアルキル基、低級アルコキシ基、低級ハロアルコキシ基、シアノ基、低級アルコキシカルボニル基、芳香環基、カルボキシル基、カルボキシル基の保護体、アミノ基、アミノ基の保護体、ヒドロキシル基、ならびにヒドロキシル基の保護体等である。具体的には、フッ素、塩素、臭素、メチル基、エチル基、プロピル基、フルオロメチル基、クロロメチル基、ブロモメチル基、メトキシ基、エトキシ基、プロポキシ基、フルオロメトキシ基、クロロメトキシ基、ブロモメトキシ基、メトキシカルボニル基、エトキシカルボニル基、プロポキシルボニル基、フェニル基、ナフチル基、アントリル基、ピロリル基(窒素保護体も含む)、ピリジル基、フリル基、チエニル基、インドリル基(窒素保護体も含む)、キノリル基、ベンゾフリル基、ベンゾチエニル基等が挙げられる。 The “substituent” in the substituted alkyl group and the substituted aromatic ring group of the ruthenium catalyst represented by the general formula [6] is an arbitrary number and an arbitrary number on an arbitrary carbon atom of the alkyl group or aromatic ring group. Exists in combination. Such substituents include halogen atoms, lower alkyl groups, lower haloalkyl groups, lower alkoxy groups, lower haloalkoxy groups, cyano groups, lower alkoxycarbonyl groups, aromatic ring groups, carboxyl groups, carboxyl group protectors, amino groups, amino groups Group protectors, hydroxyl groups, and hydroxyl group protectors. Specifically, fluorine, chlorine, bromine, methyl group, ethyl group, propyl group, fluoromethyl group, chloromethyl group, bromomethyl group, methoxy group, ethoxy group, propoxy group, fluoromethoxy group, chloromethoxy group, bromomethoxy Group, methoxycarbonyl group, ethoxycarbonyl group, propoxylbonyl group, phenyl group, naphthyl group, anthryl group, pyrrolyl group (including nitrogen protected form), pyridyl group, furyl group, thienyl group, indolyl group (including nitrogen protected form) ), Quinolyl group, benzofuryl group, benzothienyl group and the like.
 さらに、一般式[6]で表されるルテニウム触媒の置換アルキル基は、前記のアルキル基の任意の炭素-炭素単結合が、任意の数および任意の組み合わせで、炭素-炭素二重結合または炭素-炭素三重結合に置き換わることもできる(当然、これらの不飽和結合に置き換わったアルキル基は、前記の置換基を同様に有することもできる)。置換基の種類に依っては置換基自体が副反応に関与する場合もあるが、好適な反応条件を採用することにより最小限に抑えることができる。 Furthermore, the substituted alkyl group of the ruthenium catalyst represented by the general formula [6] is a carbon-carbon double bond or carbon in which any carbon-carbon single bond of the alkyl group is in any number and in any combination. It can also be replaced by carbon triple bonds (of course, alkyl groups replaced by these unsaturated bonds can likewise have the aforementioned substituents). Depending on the type of the substituent, the substituent itself may be involved in the side reaction, but it can be minimized by employing suitable reaction conditions.
 また、前記の“係る置換基は”の“芳香環基”には、ハロゲン原子、低級アルキル基、低級ハロアルキル基、低級アルコキシ基、低級ハロアルコキシ基、シアノ基、低級アルコキシカルボニル基、カルボキシル基、カルボキシル基の保護体、アミノ基、アミノ基の保護体、ヒドロキシル基およびヒドロキシル基の保護体等が置換することもできる。さらに、ピロリル基、インドリル基、カルボキシル基、アミノ基およびヒドロキシル基の保護基は、Protective Groups in Organic Synthesis, Third Edition, 1999, John Wiley & Sons, Inc.等に記載された保護基である。 The “aromatic ring group” in the “substituent” is a halogen atom, lower alkyl group, lower haloalkyl group, lower alkoxy group, lower haloalkoxy group, cyano group, lower alkoxycarbonyl group, carboxyl group, A protected group of a carboxyl group, an amino group, a protected group of an amino group, a hydroxyl group, a protected group of a hydroxyl group, and the like can be substituted. Further, pyrrolyl group, indolyl group, carboxyl group, amino group and hydroxyl protecting group are protecting groups described in Protective Group in Organic Synthesis, Third Edition, 1999, John Wiley & Sons, Inc.
 一般式[6]で表されるルテニウム触媒のうち、下記式で表されるルテニウム触媒{(商品名「Ru-MACHO」、高砂香料工業株式会社製)として市販されている}は活性が高く、特に好ましい。
Figure JPOXMLDOC01-appb-C000019
[式中、Phはフェニル基を表す。]
Among the ruthenium catalysts represented by the general formula [6], a ruthenium catalyst represented by the following formula {(commercially available as “Ru-MACHO”, manufactured by Takasago International Corporation)} has high activity, Particularly preferred.
Figure JPOXMLDOC01-appb-C000019
[Wherein, Ph represents a phenyl group. ]
 水素と反応させる際、塩基の存在下で行うことが必要であるが、該ルテニウム触媒の3つのX配位子のうち、少なくとも1つがBH4を採る場合は、塩基の非存在下に反応を行うこともできる。 When reacting with hydrogen, it is necessary to perform the reaction in the presence of a base. When at least one of the three X ligands of the ruthenium catalyst adopts BH 4 , the reaction is performed in the absence of a base. It can also be done.
 一方、一般式[7]で表されるルテニウム触媒は、公知の方法で調製することも可能であるが、商品名「Ru-SNS」(シグマ アルドリッチ ジャパン合同会社製)として市販されているものを用いるのが便利である。 On the other hand, the ruthenium catalyst represented by the general formula [7] can be prepared by a known method, but is commercially available under the trade name “Ru-SNS” (manufactured by Sigma-Aldrich Sakai Japan LLC). It is convenient to use.
 更に、前述したルテニウム触媒以外にも、例えば、Angew. Chem. Int. Ed. 2013, 52, 2538-2542, Organometallics 2012, 31, 5239-5242, Angew. Chem. Int. Ed. 2012, 51, 2772-2775およびAngew. Chem. Int. Ed. 2006, 45, 1113-1115等に記載されたルテニウム触媒が挙げられる。その代表的なもの(均一系のルテニウム触媒)を図1に示すが(略記号/Et;エチル基、t-Bu;tert-ブチル基、Ph;フェニル基、i-Pr;イソプロピル基)、当然これらに限定されるものではない。これらのルテニウム触媒でも同様の反応条件で用いることが可能である。
Figure JPOXMLDOC01-appb-C000020
In addition to the ruthenium catalyst described above, for example, Angew. Chem. Int. Ed. 2013, 52, 2538-2542, Organometallics 2012, 31, 5239-5242, Angew. Chem. Int. Ed. 2012, 51, 2772 -2775 and Angew. Chem. Int. Ed. 2006, 45, 1113-1115 and the like. A typical example (homogeneous ruthenium catalyst) is shown in FIG. 1 (abbreviation / Et: ethyl group, t-Bu; tert-butyl group, Ph: phenyl group, i-Pr: isopropyl group). It is not limited to these. These ruthenium catalysts can be used under similar reaction conditions.
Figure JPOXMLDOC01-appb-C000020
 次に、ルテニウム触媒として、ルテニウム化合物を担体に担持した触媒を用いることも可能である。ここで言うルテニウム化合物とは、ルテニウムのフッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物、及びオキシフッ化塩化物からなる群より選ばれる少なくとも1種であり、担体としては、金属酸化物または活性炭である。金属酸化物の種類としては、アルミナ、ジルコニア、チタニア、シリカ、及びマグネシムからなる群より選ばれる少なくとも一種である。 Next, as the ruthenium catalyst, a catalyst in which a ruthenium compound is supported on a carrier can be used. The ruthenium compound referred to here is at least one selected from the group consisting of ruthenium fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride, and oxyfluorinated chloride. Oxide or activated carbon. The metal oxide is at least one selected from the group consisting of alumina, zirconia, titania, silica, and magnesium.
 なお、前記の活性炭は、市販されているものから選んで使用でき、例えば、瀝青炭から製造された活性炭(例えば、カルゴン粒状活性炭CAL(東洋カルゴン株式会社製)、椰子殻炭(例えば、日本エンバイロケミカルズ株式会社製)などを挙げることができるが、当然これらの種類に限られることはない。 The activated carbon can be selected from commercially available ones. For example, activated carbon manufactured from bituminous coal (for example, Calgon granular activated carbon CAL (manufactured by Toyo Calgon Co., Ltd.), coconut shell charcoal (for example, Nippon Enviro Chemicals). (Made by Co., Ltd.), etc., but of course not limited to these types.
 本発明で用いる触媒を調製する方法は限定されないが、例えばルテニウム化合物を溶液に溶かし、この溶液を担体に含浸させた後、加熱しながら水素で還元処理することで調整できる。または、担体を予めフッ化水素、塩化水素、塩素化フッ素化炭化水素などによりハロゲンで修飾処理した化合物に、ルテニウム化合物の可溶性化合物を溶解した溶液を含浸するか、スプレーすることで調製できる。ここで言う可溶性化合物としては、水、塩酸、アンモニア水、エタノール、アセトンなどの溶媒に溶解するルテニウム化合物の硝酸塩、リン酸塩、塩化物、酸化物、オキシ塩化物、オキシフッ化物、などが挙げられる。ルテニウム化合物の担体に対する担持量は、担体との合計量に占める割合が、0.1から80質量%、好ましくは1から40質量%が適当である。 The method for preparing the catalyst used in the present invention is not limited, but for example, it can be adjusted by dissolving a ruthenium compound in a solution, impregnating the solution with a support, and then reducing with hydrogen while heating. Alternatively, it can be prepared by impregnating or spraying a solution in which a soluble compound of a ruthenium compound is dissolved in a compound in which a carrier is modified with a halogen in advance by hydrogen fluoride, hydrogen chloride, chlorinated fluorinated hydrocarbon or the like. Examples of the soluble compound include nitrates, phosphates, chlorides, oxides, oxychlorides, oxyfluorides, and the like of ruthenium compounds that dissolve in a solvent such as water, hydrochloric acid, aqueous ammonia, ethanol, and acetone. . The amount of the ruthenium compound supported on the carrier is suitably 0.1 to 80% by mass, preferably 1 to 40% by mass, based on the total amount with the carrier.
 このように、ルテニウム化合物を担体に担持した触媒は、前記の方法により各種調製することもできるが、市販されているものを用いることもできる。例えば、エヌ・イ-ケムキャット社製のルテニウム活性炭粉末(脱水品)であるAタイプ、Bタイプ、Kタイプ、そしてRタイプ等の不均一系触媒を利用するのが便利である。 As described above, various catalysts prepared by supporting a ruthenium compound on a carrier can be prepared by the above-mentioned method, but commercially available catalysts can also be used. For example, it is convenient to use heterogeneous catalysts such as A type, B type, K type, and R type, which are ruthenium activated carbon powders (dehydrated products) manufactured by N. chemcat.
 ルテニウム触媒の使用量は、一般式[6]または式[7]で表されるルテニウム触媒を用いる場合、α,α-ジフルオロ酢酸エステル類1モルに対して0.000001モル以上を用いれば良く、0.00001~0.005モルが好ましく、0.00002~0.002モルが特に好ましい。 The ruthenium catalyst may be used in an amount of 0.000001 mol or more per 1 mol of α, α-difluoroacetic acid ester when the ruthenium catalyst represented by the general formula [6] or formula [7] is used. 0.00001 to 0.005 mol is preferable, and 0.00002 to 0.002 mol is particularly preferable.
 一方、ルテニウム触媒としてルテニウム化合物を担体に担持した触媒を用いる場合、α,α-ジフルオロ酢酸エステル類1モルに対して0.00001モル%以上を用いれば良く、0.001から10モル%が好ましく、0.01から5モル%が特に好ましい。 On the other hand, when a catalyst having a ruthenium compound supported on a carrier is used as the ruthenium catalyst, 0.00001 mol% or more is used with respect to 1 mol of α, α-difluoroacetic acid ester, and 0.001 to 10 mol% is preferable. 0.01 to 5 mol% is particularly preferable.
 水素ガスの使用量は、α,α-ジフルオロ酢酸エステル類1モルに対して1モル以上を用いれば良く、大過剰が好ましく、加圧下(水素圧は後述する)での大過剰が特に好ましい。 The amount of hydrogen gas used may be 1 mol or more per 1 mol of α, α-difluoroacetic acid ester, a large excess is preferred, and a large excess under pressure (hydrogen pressure will be described later) is particularly preferred.
 水素圧は、特に制限はないが、通常、0.01~10MPa(絶対圧基準。以下、本明細書で同じ)であり、0.1~6MPaが好ましく、0.3~5MPaがより好ましい。 The hydrogen pressure is not particularly limited, but is usually 0.01 to 10 MPa (absolute pressure standard, hereinafter the same in the present specification), preferably 0.1 to 6 MPa, and more preferably 0.3 to 5 MPa.
 なお、本工程で用いるヒドリド還元剤は、アルミニウムヒドリド系、ホウ素ヒドリド系が挙げられる。具体例としては(i-Bu)2AlH、LiAlH4、NaAlH2(OCH2CH2OCH32、ジボラン、BH3・THF、BH3・SMe2、BH3・NMe3、BH3・NPhEt2、NaBH4、LiBH4等が挙げられる(Buはブチル基、THFはテトラヒドロフラン、Meはメチル基、Phはフェニル基、Etはエチル基をそれぞれ表す)。 In addition, examples of the hydride reducing agent used in this step include aluminum hydride and boron hydride. Specific examples include (i-Bu) 2 AlH, LiAlH 4 , NaAlH 2 (OCH 2 CH 2 OCH 3 ) 2 , diborane, BH 3 · THF, BH 3 · SMe 2 , BH 3 · NMe 3 , BH 3 · NPhEt 2 , NaBH 4 , LiBH 4 and the like (Bu represents a butyl group, THF represents a tetrahydrofuran, Me represents a methyl group, Ph represents a phenyl group, and Et represents an ethyl group).
 ヒドリド還元剤の使用量としてはα,α-ジフルオロ酢酸エステル類1モルに対してヒドリド還元剤が0.3~2.0当量が好ましく、0.7~1.3当量が特に好ましい。ヒドリド還元剤が0.3当量未満の場合は反応の添加率が十分でなく、一方、2.0当量を超えると副反応の過還元が増大し、目的物の収率が大きく低下することがある。 The amount of hydride reducing agent used is preferably 0.3 to 2.0 equivalents, particularly preferably 0.7 to 1.3 equivalents, per mole of α, α-difluoroacetate. When the hydride reducing agent is less than 0.3 equivalent, the addition rate of the reaction is not sufficient. On the other hand, when the hydride reducing agent exceeds 2.0 equivalent, the overreduction of side reaction increases, and the yield of the target product is greatly reduced. is there.
 ヒドリド還元剤を用いる場合、反応溶媒を用いると良い。反応溶媒は脂肪族炭化水素類、芳香族炭化水素類、ハロゲン化炭化水素系、ニトリル類、酸アミド類、エーテル類、アルコール類が挙げられる。具体的な化合物としては、n-ペンタン、n-ヘキサン、n-ヘプタン、ベンゼン、トルエン、キシレン、塩化メチレン、クロロホルム、1,2-ジクロロエタンアセトニトリル、プロピオニトリル、フェニルアセトニトリル、イソブチロニトリル、ベンゾニトリル、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミド、ホルムアミド、ヘキサメチルリン酸トリアミド、N-メチルピロリドン、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、1,2-エポキシエタン、1、4-ジオキサン、ジブチルエーテル、t-ブチルメチルエーテル、置換テトラヒドロフラン、メタノール、エタノール、n-プロパノール、イソプロパノール、ブタノール、tert-ブタノール、ベンジルアルコール等が挙げられる。これらの反応溶媒は、単独でまたは組み合わせて用いることができる。 When using a hydride reducing agent, a reaction solvent may be used. Examples of the reaction solvent include aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, nitriles, acid amides, ethers, and alcohols. Specific compounds include n-pentane, n-hexane, n-heptane, benzene, toluene, xylene, methylene chloride, chloroform, 1,2-dichloroethaneacetonitrile, propionitrile, phenylacetonitrile, isobutyronitrile, benzone. Nitrile, dimethylformamide, dimethylacetamide, methylformamide, formamide, hexamethylphosphoric triamide, N-methylpyrrolidone, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, 1,2-epoxyethane, 1 4-dioxane, dibutyl ether, t-butyl methyl ether, substituted tetrahydrofuran, methanol, ethanol, n-propanol, isopropanol, butanol, tert-butanol, benzil Alcohol and the like. These reaction solvents can be used alone or in combination.
 反応溶媒の使用量は、原料のα,α-ジフルオロ酢酸エステル類1モルに対して0.03L(リットル)以上を用いれば良く、0.05~10Lが好ましく、0.07~7Lが特に好ましい。 The reaction solvent may be used in an amount of 0.03 L (liter) or more, preferably 0.05 to 10 L, particularly preferably 0.07 to 7 L with respect to 1 mol of α, α-difluoroacetic acid ester as a raw material. .
 反応時間は、72時間以内で行えば良く、原料基質および反応条件により異なるため、ガスクロマトグラフィー、液体クロマトグラフィー、核磁気共鳴等の分析手段により反応の進行状況を追跡し、原料基質の減少が殆ど認められなくなった時点を終点とすれば良い。これにより、一般式[3]で表されるα,α-ジフルオロアセトアルデヒドヘミアセタールを含む混合物を得ることができる。 The reaction time may be within 72 hours, and varies depending on the raw material substrate and reaction conditions. Therefore, the progress of the reaction is traced by analytical means such as gas chromatography, liquid chromatography, nuclear magnetic resonance, etc. The end point should be the point at which almost no recognition is possible. Thereby, a mixture containing α, α-difluoroacetaldehyde hemiacetal represented by the general formula [3] can be obtained.
 なお、本工程の反応は、一旦、α,α-ジフルオロアセトアルデヒド(前記一般式[1]に相当)が生成するが、系内に存在するアルコールと反応し、安定なアルキルヘミアセタール(一般式[3]で表されるα,α-ジフルオロアセトアルデヒドヘミアセタール)に速やかに変換される。また、本工程における出発原料には、一般式[3]で表されるα,α-ジフルオロアセトアルデヒドアルキルヘミアセタールの他、一般式[2]で表されるアルコール、及び一般式[4]の二量体が含まれることがあるが(後述の実施例)、このような出発原料であっても、続く第2工程における出発原料として好適に利用できる。 The reaction in this step once generates α, α-difluoroacetaldehyde (corresponding to the general formula [1]), but reacts with the alcohol present in the system to form a stable alkyl hemiacetal (general formula [1] 3], which is quickly converted to α, α-difluoroacetaldehyde hemiacetal. In addition to the α, α-difluoroacetaldehyde alkyl hemiacetal represented by the general formula [3], the starting material in this step includes an alcohol represented by the general formula [2], and two compounds represented by the general formula [4]. Although a monomer may be contained (an example described later), even such a starting material can be suitably used as a starting material in the subsequent second step.
 [第2工程]
 次に、第2工程について説明する。第2工程は、第1工程で得られた前記混合物に対し、中和処理を行い、その後、該混合物を反応容器に充填し、遮光条件下、該反応容器内の気相部の酸素濃度を5000ppm以下となるように調整し、遮光条件下で蒸留操作を行うことで、α,α-ジフルオロアセトアルデヒドヘミアセタールと一般式[4]で表されるα,α-ジフルオロアセトアルデヒドの二量体を含む、pHが3.5~10.0の混合物を得る工程である。
[Second step]
Next, the second step will be described. In the second step, the mixture obtained in the first step is neutralized, and then the reaction vessel is filled with the mixture, and the oxygen concentration in the gas phase in the reaction vessel is reduced under light-shielding conditions. The dimer of α, α-difluoroacetaldehyde hemiacetal and α, α-difluoroacetaldehyde represented by the general formula [4] is contained by adjusting to 5000 ppm or less and performing a distillation operation under light-shielding conditions. In this step, a mixture having a pH of 3.5 to 10.0 is obtained.
 第1工程で得られた混合物は、ルテニウム触媒を用いた水素添加、ヒドリド還元剤による還元のどちらの製法を採っても塩基を含む反応液となっており、強い塩基性(pH11.0以上)を示す為、本工程では、精製操作を行う反応液が中性から弱塩基性とする為、中和処理を行う。ここで言う「中性から弱塩基性」とは、液を採取してpH試験紙に浸すが、pHメーターで測定した際にpHが3.5~10.0であるような液性(すなわち、「中性から弱塩基性近傍」と定義できる液性)をいい、さらに好ましくは6~10である。これらのpHの範囲を外れて酸性側になると、第3工程に供する液が酸性となり、生成した二量体が安定化されてしまうため好ましくない。また逆に、これらのpHの範囲を外れてアルカリ性側になると、カニッツァロ反応等の副反応が起こりやすく、α,α-ジフルオロアセトアルデヒドヘミアセタールの収率低下が発生するため好ましくない。 The mixture obtained in the first step is a reaction solution containing a base regardless of whether hydrogenation using a ruthenium catalyst or reduction with a hydride reducing agent is used, and has a strong basicity (pH 11.0 or higher). In this step, neutralization is performed in order to make the reaction solution for purification operation neutral to weakly basic. The term “neutral to weakly basic” as used herein means that a liquid is collected and immersed in a pH test paper, but the liquid has a pH of 3.5 to 10.0 when measured with a pH meter (ie, , "Liquidity that can be defined as" neutral to weakly basic vicinity "), more preferably 6 to 10. If the pH falls outside the pH range and becomes acidic, the liquid used in the third step becomes acidic, and the produced dimer is stabilized, which is not preferable. On the other hand, if the pH is out of the pH range, the side reaction such as the Cannizzaro reaction is likely to occur and the yield of α, α-difluoroacetaldehyde hemiacetal is reduced, which is not preferable.
 本工程において、pHを3.5~10.0の範囲に調整するには、酢酸、安息香酸またはパラ-トルエンスルホン酸等で行えば良い(後述の実施例参照)。 In this step, in order to adjust the pH to the range of 3.5 to 10.0, acetic acid, benzoic acid, para-toluenesulfonic acid or the like may be used (see Examples described later).
 本工程は、遮光条件下で実施する。遮光条件としては不透明な外壁により全ての波長を遮断するものが最も望ましいが、茶褐色の遮光ガラス等により短波長、具体的には450nm未満の波長が遮断できる材質であれば使用可能である。 This step is performed under light-shielding conditions. As a light shielding condition, a material that blocks all wavelengths by an opaque outer wall is most desirable, but any material that can block a short wavelength, specifically, a wavelength of less than 450 nm, can be used by a brown light shielding glass or the like.
 さらに本工程では、気相部分の酸素濃度を管理する必要がある。酸素濃度は一般的な酸素濃度計を用いて測定が可能である。 Furthermore, in this process, it is necessary to control the oxygen concentration in the gas phase portion. The oxygen concentration can be measured using a general oxygen concentration meter.
 酸素濃度を低減させる際は該ヘミアセタールの反応液を容器に供給後、窒素、アルゴン等の不活性ガスを充填することにより行うが、不活性ガスを容器内に充填する方法について特に制限はない。例えば、後述の実施例で記載するように、
 容器に第1工程で得られたα,α-ジフルオロアセトアルデヒドヘミアセタールを含む混合物を容器内に供給した後、不活性ガスを容器内の液相部にバブリングを行った後、容器内を密閉する、または、
 前記混合物を容器内に供給した後、容器内を密閉し、混合物が容器外に排出されない程度に減圧操作を行った後、不活性ガスを容器内の液相部に吹き付ける、もしくは液相部に不活性ガスをバブリングさせる、
等が挙げられる。何れの場合も、液相部の溶存酸素濃度を低下すると共に、同時に容器内の気相部が不活性ガスに徐々に置換されることになる。
When reducing the oxygen concentration, the hemiacetal reaction liquid is supplied to the container and then filled with an inert gas such as nitrogen or argon, but there is no particular limitation on the method of filling the container with the inert gas. . For example, as described in the examples below,
After supplying the container containing the α, α-difluoroacetaldehyde hemiacetal mixture obtained in the first step into the container, the inert gas is bubbled through the liquid phase in the container, and then the container is sealed. Or
After supplying the mixture into the container, the inside of the container is sealed, and after performing a pressure reducing operation to such an extent that the mixture is not discharged out of the container, an inert gas is blown onto the liquid phase part in the container, or the liquid phase part is Bubbling inert gas,
Etc. In either case, the dissolved oxygen concentration in the liquid phase part is lowered, and at the same time, the gas phase part in the container is gradually replaced with an inert gas.
 なお、溶存酸素の除去効率を上げるため、これらの方法に液相部の攪拌操作、または脱気操作を併用することは好ましい。該ヘミアセタールの保存の規模に応じ、これらの方法を適宜組み合わせることで効率よく酸素濃度を減少させることが可能である。 In addition, in order to increase the removal efficiency of dissolved oxygen, it is preferable to use a stirring operation or a degassing operation in the liquid phase part in combination with these methods. Depending on the scale of preservation of the hemiacetal, it is possible to efficiently reduce the oxygen concentration by appropriately combining these methods.
 不活性ガスの種類としては窒素、アルゴン等の反応に影響を及ぼさないガスを用いる。 ¡As the type of inert gas, a gas that does not affect the reaction, such as nitrogen or argon, is used.
 次に、本工程では、気相部の酸素濃度を、5000ppm以下、好ましくは1000ppm以下、特に好ましくは300ppm以下となるように容器内の酸素を調整する。酸素濃度の調整方法についての具体的な方法に制限はなく、例えば、
 (1)不活性ガスを容器へ導入することで前記の酸素濃度範囲になるように調整する、または、
 (2)酸素と、窒素、アルゴン等の不活性ガスとの混合ガスを吹き込み、容器内の酸素濃度を適切な範囲まで低下させる、または、
 (3)α,α-ジフルオロアセトアルデヒドヘミアセタールを含む容器内を密閉し、容器内を減圧する、
等の方法が挙げられる。
Next, in this step, the oxygen in the container is adjusted so that the oxygen concentration in the gas phase is 5000 ppm or less, preferably 1000 ppm or less, particularly preferably 300 ppm or less. There is no limitation on the specific method for adjusting the oxygen concentration, for example,
(1) Adjust the oxygen concentration range to be within the above-mentioned range by introducing an inert gas into the container, or
(2) A mixed gas of oxygen and an inert gas such as nitrogen or argon is blown to reduce the oxygen concentration in the container to an appropriate range, or
(3) The inside of the container containing α, α-difluoroacetaldehyde hemiacetal is sealed, and the inside of the container is depressurized.
And the like.
 なお、酸素と、窒素、アルゴン等の不活性ガスとの混合ガスを吹き込む場合、酸素と不活性ガスとの混合ガスにおけるそれぞれの比率は特に制限はない。 In addition, when blowing the mixed gas of oxygen and inert gas, such as nitrogen and argon, each ratio in the mixed gas of oxygen and an inert gas does not have a restriction | limiting in particular.
 これらの条件を採用することで、α,α-ジフルオロアセトアルデヒドヘミアセタールの重合、酸化等の反応を十分に防止することができるが、これらのうち、(1)または(2)の調整方法が、気相部の酸素濃度を、5000ppm以下に調整しやすい為、好ましく用いられる。 By adopting these conditions, reactions such as polymerization and oxidation of α, α-difluoroacetaldehyde hemiacetal can be sufficiently prevented. Among these, the adjustment method of (1) or (2) is Since it is easy to adjust the oxygen concentration of a gaseous phase part to 5000 ppm or less, it is preferably used.
 本工程の蒸留操作は、通常の蒸留操作に加え、副生成物(ジフルオロエタノール等)を除去する為、精密蒸留(fractional distillation)(なお、ここで言う「精密蒸留」についての説明を行うにあたり、便宜上、「分別蒸留」または「蒸留」と言うときがある)を組み合わせることで、化学純度を高めることが可能である。 In order to remove by-products (difluoroethanol, etc.) in addition to the normal distillation operation, the distillation operation in this step is a fractional distillation (in addition, in explaining “precision distillation” here, For convenience, chemical purity can be increased by combining “fractional distillation” or “distillation”.
 ここで言う蒸留操作の条件、装置については、特に制限はなく、当業者の技術常識に照らし合わせ、適宜条件を設定できる。例えば、精密蒸留の場合、蒸留搭の段数は、例えば、2以上、50以下であればよい。 There are no particular restrictions on the conditions and apparatus for the distillation operation referred to herein, and conditions can be set as appropriate in light of the common general knowledge of those skilled in the art. For example, in the case of precision distillation, the number of stages of the distillation column may be, for example, 2 or more and 50 or less.
 蒸留塔に充填する充填物としては、規則性充填物、不規則性充填物の何れも利用できる。規則性充填物としては、通常用いられるもので良く、例えば、スルザーパッキング、メラパック、テクノパック、フレキシパック等が挙げられる。不規則性充填物としては、通常用いられるもので良く、例えば、ヘリパック、ラシヒリング、ディクソンパッキング等が挙げられる。還流比は0.5~8.0、好ましくは0.5~7.0、より好ましくは0.5~6.0である。 As the packing packed in the distillation column, either regular packing or irregular packing can be used. The regular packing may be those usually used, and examples thereof include sulzer packing, mela pack, techno pack, and flexi pack. The irregular packing may be those usually used, and examples thereof include helipac, Raschig ring, and Dixon packing. The reflux ratio is 0.5 to 8.0, preferably 0.5 to 7.0, more preferably 0.5 to 6.0.
 蒸留時の圧力、温度に関しては特に制限はなく、α,α-ジフルオロアセトアルデヒドヘミアセタールが気化される条件であればよい。また、反応時間に関しても、特に限定されない。 The pressure and temperature during distillation are not particularly limited as long as α, α-difluoroacetaldehyde hemiacetal is vaporized. Also, the reaction time is not particularly limited.
 本工程を経ることにより、反応系内にジフルオロ酢酸を生成することなく、α,α-ジフルオロアセトアルデヒドヘミアセタールと、α,α-ジフルオロアセトアルデヒドの二量体を含む、pHが3.5~10.0の混合物を得ることとなる。 By passing through this step, the pH of the reaction system containing a dimer of α, α-difluoroacetaldehyde hemiacetal and α, α-difluoroacetaldehyde is 3.5 to 10. without forming difluoroacetic acid in the reaction system. A zero mixture will be obtained.
 なお、該ヘミアセタールはジフルオロメチル基が直結したアルデヒド類である為、前記で述べたように、蒸留後の留分には、自己重合体、水和体、アセタール、ヘミアセタール、及びこれらの構造的特徴が組み合わさった化合物等の安定な等価体として得られることが多い。本工程についても、後述の実施例で示す通り、α,α-ジフルオロアセトアルデヒドヘミアセタールの他、一般式[4]の二量体が生成する。そこで、続く第3工程を経由することにより、二量体を効率的に該ヘミアセタールに変換させることができる。 Since the hemiacetal is an aldehyde having a difluoromethyl group directly bonded thereto, as described above, the fraction after distillation includes a self-polymer, a hydrate, an acetal, a hemiacetal, and a structure thereof. In many cases, it is obtained as a stable equivalent such as a compound having a combination of specific characteristics. Also in this step, a dimer of the general formula [4] is produced in addition to α, α-difluoroacetaldehyde hemiacetal, as shown in Examples described later. Therefore, the dimer can be efficiently converted to the hemiacetal by passing through the subsequent third step.
 [第3工程]
 次に、第3工程について説明する。第3工程については、第2工程で得られたα,α-ジフルオロアセトアルデヒドヘミアセタールと二量体とを含む混合物を反応容器に充填させ、遮光条件下、該反応容器内の気相部の酸素濃度を5000ppm以下となるよう調整した後、該混合物に対し、一般式[2]で表されるアルコールを加えることで、該混合物に含まれる二量体の少なくとも1部が減少した、もしくは該混合物に含まれる二量体を実質的に含まない、α,α-ジフルオロアセトアルデヒドヘミアセタールを含む混合物を得る工程である。
[Third step]
Next, the third step will be described. For the third step, the mixture containing α, α-difluoroacetaldehyde hemiacetal and dimer obtained in the second step is filled into a reaction vessel, and the oxygen in the gas phase in the reaction vessel is filled under a light-shielding condition. After adjusting the concentration to be 5000 ppm or less, by adding an alcohol represented by the general formula [2] to the mixture, at least a part of the dimer contained in the mixture is reduced, or the mixture Is a step of obtaining a mixture containing α, α-difluoroacetaldehyde hemiacetal substantially free of the dimer contained in
 本工程では、反応容器に導入した上記混合物に対し、遮光条件下で反応容器内の酸素濃度を5000ppm以下となるように調整するが、用いる反応容器、酸素を導入する際の条件は、前記第2工程で記載した条件と同様の条件で実施できる為、本工程では酸素の導入条件についての繰り返しの記載を省略する。 In this step, the oxygen concentration in the reaction vessel is adjusted to 5000 ppm or less under light-shielding conditions with respect to the mixture introduced into the reaction vessel, but the reaction vessel used and the conditions for introducing oxygen are as described above. Since it can be carried out under the same conditions as described in the two steps, repeated description of the oxygen introduction conditions is omitted in this step.
 また、本工程は、第2工程で得られた混合物に対し、一般式[2]で表されるアルコールを加える際、該混合物のpHが3.5~10.0の範囲で行うことが好ましい。ここで該混合物に酸等を加え、pHが3.5~10.0の範囲から外れるように調整した場合、該混合物に含まれる二量体の一部は減少するものの、α,α-ジフルオロアセトアルデヒドヘミアセタールの量が低下することがある(後述の比較例4~8)。従って、本工程は、第2工程と同様、pHを3.5~10.0の範囲でもって、混合物に対しアルコールを反応させることは好ましい態様である(なお、本工程は、第2工程で得られた、pHが3.5~10.0の混合物をそのまま利用する為、酸を積極的に加える必要は必ずしもない)。 In addition, this step is preferably performed when the alcohol represented by the general formula [2] is added to the mixture obtained in the second step so that the pH of the mixture is in the range of 3.5 to 10.0. . Here, when an acid or the like is added to the mixture to adjust the pH to be out of the range of 3.5 to 10.0, a part of the dimer contained in the mixture decreases, but α, α-difluoro The amount of acetaldehyde hemiacetal may decrease (Comparative Examples 4 to 8 described later). Accordingly, in this step, as in the second step, it is preferable that the alcohol is reacted with the mixture at a pH in the range of 3.5 to 10.0 (note that this step is the second step). Since the obtained mixture having a pH of 3.5 to 10.0 is used as it is, it is not always necessary to positively add acid).
 本工程で使用するアルコールは一般式[2]で表される(なお、第1工程で必要に応じて用いたアルコールと必ずしも同じものでなくても良い)。中でも、メタノールとエタノールは、無水試薬を大量規模で容易に入手でき、かつ、α,α-ジフルオロアセトアルデヒドアルキルヘミアセタールの安定性向上の効果も大きいため、より好ましい。 The alcohol used in this step is represented by the general formula [2] (note that it is not necessarily the same as the alcohol used as necessary in the first step). Among these, methanol and ethanol are more preferable because anhydrous reagents can be easily obtained on a large scale and the effect of improving the stability of α, α-difluoroacetaldehyde alkyl hemiacetal is large.
 なお、本工程はアルコールを用いるが、反応系内に本発明に記載の反応に実質的に影響を与えない程度に水やその他の有機溶剤を加えた実施態様であっても、それは本発明の範囲に含まれるものとして扱う。 Although this step uses alcohol, even in an embodiment in which water and other organic solvents are added to the reaction system to such an extent that the reaction described in the present invention is not substantially affected, Treat as included in the range.
 本工程におけるアルコールの添加は、仕込み時に一括で加えても良く、一方、反応の進行を見計らいながら逐次加えても良く、特に制限はない。例えば、二量体に対し、アルコールを少なくとも二量体のモル数に対して1.0当量以上、好ましくは1.5当量以上加えることで、二量体がα,α-ジフルオロアセトアルデヒドヘミアセタールに徐々に分解され、結果として、該ヘミアセタールへの選択率が向上する。なお、アルコールを二量体に対して5当量以上添加することは、必要以上の試薬を用いることとなり、経済的でない。 The addition of alcohol in this step may be added all at once at the time of preparation, while it may be added sequentially while monitoring the progress of the reaction, and there is no particular limitation. For example, the dimer is added to α, α-difluoroacetaldehyde hemiacetal by adding at least 1.0 equivalent, preferably 1.5 equivalents or more, of alcohol to the dimer with respect to the number of moles of the dimer. It is gradually decomposed, and as a result, the selectivity to the hemiacetal is improved. In addition, it is not economical to add 5 equivalents or more of alcohol to the dimer because it uses more reagents than necessary.
 本工程の反応温度は特に限定されないが、5℃~35℃の室温下で行うことは、負荷がかからず、好ましい。 The reaction temperature in this step is not particularly limited, but it is preferable to perform the reaction at room temperature of 5 ° C. to 35 ° C. because no load is applied.
 本工程の反応時間は特に限定されないが、ガスクロマトグラフィー、核磁気共鳴(NMR)等の分析機器を用いて、出発原料である二量体の減少が殆ど確認できなくなった時点を反応の終点とすることが好ましい。 The reaction time of this step is not particularly limited, but the end point of the reaction is the time when almost no decrease in the dimer as a starting material can be confirmed using an analytical instrument such as gas chromatography or nuclear magnetic resonance (NMR). It is preferable to do.
 第2工程と第3工程は、例えば、窒素、アルゴン等の不活性ガス雰囲気下で行うことができる。反応器または保存容器は、有機溶媒、またα,α-ジフルオロアセトアルデヒドヘミアセタールに対する耐食性を有する材質で作られ、かつ、常圧又は加圧下で十分反応を行うことができるものであれば良く、ステンレス鋼、モネルTM、ハステロイTM、ニッケルなどの金属製容器や、四フッ化エチレン樹脂、クロロトリフルオロエチレン樹脂、フッ化ビニリデン樹脂、PFA樹脂、ポリプロピレン樹脂、そしてポリエチレン等、化学工業において一般的な材質を用いることが可能である。 The second step and the third step can be performed, for example, in an inert gas atmosphere such as nitrogen or argon. The reactor or the storage container may be made of any material that is made of a material having corrosion resistance to an organic solvent or α, α-difluoroacetaldehyde hemiacetal and can sufficiently react under normal pressure or pressure. steel, Monel TM, Hastelloy TM, or metal containers, such as nickel, tetrafluoroethylene resin, chlorotrifluoroethylene resin, vinylidene fluoride resin, PFA resin, polypropylene resin, and polyethylene, typical materials in the chemical industry Can be used.
 以上、第1工程~第3工程の条件を採用することにより、α,α-ジフルオロアセトアルデヒドヘミアセタール中の二量体の含有量が、後述の実施例で示すように、例えば10質量%未満まで低減できる。さらに、ジフルオロ酢酸の生成についても、例えば200ppm未満(後述の実施例では未検出)であり、α,α-ジフルオロアセトアルデヒドヘミアセタールの効率的な製造方法として有用な方法である。 As described above, by adopting the conditions of the first step to the third step, the content of the dimer in α, α-difluoroacetaldehyde hemiacetal is, for example, less than 10% by mass as shown in the examples described later. Can be reduced. Furthermore, the production of difluoroacetic acid is, for example, less than 200 ppm (not detected in the examples described later), and is a useful method as an efficient production method of α, α-difluoroacetaldehyde hemiacetal.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。ここで、生成物の定量(組成比や収率)については、反応混合液を核磁気共鳴分析装置(NMR)によって測定して得られた組成の「モル%」を基に算出した。pHは溶液と超純水を1:1の重量比で混合したものをpHメーターで測定した値である。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. Here, the quantification (composition ratio and yield) of the product was calculated based on “mol%” of the composition obtained by measuring the reaction mixture with a nuclear magnetic resonance analyzer (NMR). The pH is a value obtained by measuring a mixture of a solution and ultrapure water at a weight ratio of 1: 1 with a pH meter.
 [実施例1]
 第1工程:
 ステンレス鋼製耐圧反応容器にα,α-ジフルオロ酢酸エチル109g(0.88モル)、下記式で表されるルテニウム触媒0.107g(0.18ミリモル)、ナトリウムメトキシド28%メタノール溶液42g(ナトリウムメトキシドとして0.22モル)、メタノール290mLを加え、反応器内を水素ガスで5回置換し、水素圧を1.0MPaに設定し、15℃で8時間攪拌し反応した。
Figure JPOXMLDOC01-appb-C000021
 反応終了後に19F-NMR分析より、α,α-ジフルオロ酢酸エチルの変換率65%、α,α-ジフルオロアセトアルデヒドエチルヘミアセタールの選択率は91%であった。19F-NMRは内部標準物質(α,α,α-トリフルオロトルエン)で定量した。
 第2工程:
 反応終了液に酢酸13.2g(0.22モル)を加えたところ、pHは8となったため、添加を終了した。反応液に対して窒素ガスでバブリング操作を行った。バブリング操作により、容器内の酸素濃度が3000ppmとなったことを確認した。この液体を遮光条件下で直接、蒸留(ボトム温度;室温(25℃)~66℃、減圧度;常圧(0.1MPa)~2.0kPa)に付すことにより、α,α-ジフルオロアセトアルデヒドエチルヘミアセタール、ジフルオロエタノール、及びメタノールを含む溶液を得た(α,α-ジフルオロアセトアルデヒドエチルヘミアセタールとしての収率は90%であった)。
 次に、得られた該溶液に対し、再び窒素ガスでバブリング操作を行い、気相部の酸素濃度が2000ppmであることを確認した後、この液体を遮光条件下、精密蒸留(理論段数35段、留出温度;室温(25℃)~92℃、減圧度;常圧(0.1MPa)~35kPa)することによりジフルオロエタノール、及び大部分のメタノールを分離した。
 精密蒸留後、得られた留分には、エタノール、α,α-ジフルオロアセトアルデヒドエチルヘミアセタール、及び下記式で示される該ヘミアセタール由来の「二量体」が含まれ、それぞれの組成比はエタノールが6.3wt%、α,α-ジフルオロアセトアルデヒドエチルヘミアセタールが72.1wt%、二量体が21.6wt%であった。
Figure JPOXMLDOC01-appb-C000022
 組成比を考慮した第1工程と第2工程を通してのジフルオロアセトアルデヒドエチルヘミアセタールの収率は51%であり、液のpHは4.5であった。
 第3工程:
 100mlの遮光したガラス製容器内に攪拌子を入れ、第2工程で得られた精密蒸留後の溶液50gを窒素雰囲気下で充填した後、該溶液に対し、第2工程と同様、窒素ガスでバブリング操作を行った。容器内の酸素濃度が3000ppmとなったところで、エタノールを二量体に対して1.8当量添加して25℃の室温下で1時間攪拌した。
 1時間経過後、溶液を19F-NMRによって測定した。溶液の組成はエタノール7.5wt%、α,α-ジフルオロアセトアルデヒドエチルヘミアセタールが84.2wt%、二量体が8.3wt%であり、ジフルオロ酢酸は19F-NMRで検出されなかった。
[Example 1]
First step:
In a stainless steel pressure-resistant reaction vessel, 109 g (0.88 mol) of ethyl α, α-difluoroacetate, 0.107 g (0.18 mmol) of a ruthenium catalyst represented by the following formula, 42 g of sodium methoxide 28% methanol solution (sodium) 0.22 mol as methoxide) and 290 mL of methanol were added, the inside of the reactor was replaced with hydrogen gas five times, the hydrogen pressure was set to 1.0 MPa, and the reaction was stirred at 15 ° C. for 8 hours.
Figure JPOXMLDOC01-appb-C000021
After completion of the reaction, the conversion of ethyl α, α-difluoroacetate was 65% and the selectivity for α, α-difluoroacetaldehyde ethyl hemiacetal was 91% from 19 F-NMR analysis. 19 F-NMR was quantified with an internal standard (α, α, α-trifluorotoluene).
Second step:
When 13.2 g (0.22 mol) of acetic acid was added to the reaction completed solution, the pH reached 8 and the addition was terminated. The reaction solution was bubbled with nitrogen gas. It was confirmed by bubbling operation that the oxygen concentration in the container was 3000 ppm. By subjecting this liquid to direct distillation under a light-shielding condition (bottom temperature; room temperature (25 ° C.) to 66 ° C., reduced pressure; normal pressure (0.1 MPa) to 2.0 kPa), α, α-difluoroacetaldehyde ethyl A solution containing hemiacetal, difluoroethanol, and methanol was obtained (the yield as α, α-difluoroacetaldehyde ethyl hemiacetal was 90%).
Next, the obtained solution was bubbled again with nitrogen gas, and after confirming that the oxygen concentration in the gas phase was 2000 ppm, the liquid was subjected to precision distillation (theoretical plate number: 35 plates) under light shielding conditions. Distillation temperature; room temperature (25 ° C.) to 92 ° C., degree of vacuum; normal pressure (0.1 MPa) to 35 kPa) was used to separate difluoroethanol and most of methanol.
The fraction obtained after precision distillation contains ethanol, α, α-difluoroacetaldehyde ethyl hemiacetal, and a “dimer” derived from the hemiacetal represented by the following formula, each having a composition ratio of ethanol Was 6.3 wt%, α, α-difluoroacetaldehyde ethyl hemiacetal was 72.1 wt%, and the dimer was 21.6 wt%.
Figure JPOXMLDOC01-appb-C000022
The yield of difluoroacetaldehyde ethyl hemiacetal through the first step and the second step considering the composition ratio was 51%, and the pH of the solution was 4.5.
Third step:
A stirrer is placed in a 100 ml light-shielded glass container, and 50 g of the solution after the precision distillation obtained in the second step is filled in a nitrogen atmosphere. The solution is then filled with nitrogen gas as in the second step. Bubbling operation was performed. When the oxygen concentration in the container reached 3000 ppm, 1.8 equivalents of ethanol was added to the dimer, and the mixture was stirred at room temperature of 25 ° C. for 1 hour.
After 1 hour, the solution was measured by 19 F-NMR. The composition of the solution was 7.5 wt% ethanol, 84.2 wt% α, α-difluoroacetaldehyde ethyl hemiacetal, and 8.3 wt% dimer, and no difluoroacetic acid was detected by 19 F-NMR.
 [比較例1]
 第1工程:
 ステンレス鋼製耐圧反応容器にα,α-ジフルオロ酢酸エチル109g(0.88モル)、下記式で表されるルテニウム触媒0.107g(0.18ミリモル)、ナトリウムメトキシド28%メタノール溶液42g(ナトリウムメトキシドとして0.22モル)、メタノール290mLを加え、反応器内を水素ガスで5回置換し、水素圧を1.0MPaに設定し、15℃で8時間攪拌し反応した。
Figure JPOXMLDOC01-appb-C000023
 8時間後、反応液を19F-NMRで分析したところ、α、α-ジフルオロ酢酸エチルの変換率は64%、α,α-ジフルオロアセトアルデヒドエチルヘミアセタールの選択率は90%であった。19F-NMRは内部標準物質(α、α、α-トリフルオロトルエン)で定量した。
 第2工程:
 反応終了液に酢酸7.5g(0.13モル)を加えたところ、pHは12となったため、添加を終了した。中和した液に対して窒素ガスでバブリング操作を行い、容器内の酸素濃度が3000ppmとなったことを確認した。この液体を直接、遮光条件下で蒸留(ボトム温度;室温(25℃)~66℃、減圧度;常圧(0.1MPa)~2.1kPa)に付すことにより、α,α-ジフルオロアセトアルデヒドエチルヘミアセタール、ジフルオロエタノール及びメタノールを含む溶液を得た(α,α-ジフルオロアセトアルデヒドエチルヘミアセタールとしての収率は5%、原料のジフルオロ酢酸エチルとしての収率は40%、ジフルオロエタノールとしての収率は38%であった)。
 このように、比較例1では、α,α-ジフルオロアセトアルデヒドエチルヘミアセタールの収率が実施例1と比較しても大幅に低下している。これは、第2工程におけるpHが高すぎた為、副反応(カニッツァロ反応)が進行したことに起因している。このことにより、第2工程の精製操作に供する反応液は中性から弱塩基性を維持するのが必要であると言える。
[Comparative Example 1]
First step:
In a stainless steel pressure-resistant reaction vessel, 109 g (0.88 mol) of ethyl α, α-difluoroacetate, 0.107 g (0.18 mmol) of a ruthenium catalyst represented by the following formula, 42 g of sodium methoxide 28% methanol solution (sodium) 0.22 mol as methoxide) and 290 mL of methanol were added, the inside of the reactor was replaced with hydrogen gas five times, the hydrogen pressure was set to 1.0 MPa, and the reaction was stirred at 15 ° C. for 8 hours.
Figure JPOXMLDOC01-appb-C000023
After 8 hours, the reaction solution was analyzed by 19 F-NMR. As a result, the conversion rate of ethyl α, α-difluoroacetate was 64%, and the selectivity of α, α-difluoroacetaldehyde ethyl hemiacetal was 90%. 19 F-NMR was quantified with an internal standard (α, α, α-trifluorotoluene).
Second step:
When 7.5 g (0.13 mol) of acetic acid was added to the reaction-terminated liquid, the pH was 12, so the addition was terminated. The neutralized solution was bubbled with nitrogen gas, and it was confirmed that the oxygen concentration in the container was 3000 ppm. By subjecting this liquid to direct distillation under light-shielding conditions (bottom temperature; room temperature (25 ° C.) to 66 ° C., degree of vacuum; normal pressure (0.1 MPa) to 2.1 kPa), α, α-difluoroacetaldehyde ethyl A solution containing hemiacetal, difluoroethanol and methanol was obtained (5% yield as α, α-difluoroacetaldehyde ethyl hemiacetal, 40% yield as raw material ethyl difluoroacetate, yield as difluoroethanol Was 38%).
As described above, in Comparative Example 1, the yield of α, α-difluoroacetaldehyde ethyl hemiacetal was significantly reduced as compared with Example 1. This is because the side reaction (Canizzaro reaction) progressed because the pH in the second step was too high. Accordingly, it can be said that the reaction solution used for the purification operation in the second step needs to maintain neutral to weak basicity.
 [比較例2]
 第1工程:
 ステンレス鋼製耐圧反応容器にα,α-ジフルオロ酢酸エチル109g(0.88モル)、下記式で表されるルテニウム触媒0.107g(0.18ミリモル)、ナトリウムメトキシド28%メタノール溶液42g(ナトリウムメトキシドとして0.22モル)、メタノール290mLを加え、反応器内を水素ガスで5回置換し、水素圧を1.0MPaに設定し、15℃で8時間攪拌し反応した。
Figure JPOXMLDOC01-appb-C000024
 8時間後、反応液を19F-NMRで分析したところ、α、α-ジフルオロ酢酸エチルの変換率は64%、α,α-ジフルオロアセトアルデヒドエチルヘミアセタールの選択率は90%であった。19F-NMRは内部標準物質(α、α、α-トリフルオロトルエン)で定量した。
 第2工程:
 反応終了液に酢酸13.2g(0.22モル)を加えたところ、pHは8となったため、添加を終了した。中和した液に対して窒素ガスでバブリング操作を行い、容器内の酸素濃度が3000ppmとなったことを確認した。この液体を蛍光灯照射条件下で直接、蒸留(ボトム温度;室温(25℃)~67℃、減圧度;常圧(0.1MPa)~1.9kPa)に付すことにより、α,α-ジフルオロアセトアルデヒドエチルヘミアセタールを含むメタノール溶液をジフルオロアセトアルデヒドエチルヘミアセタールの収率90%で得た。
 次に、得られた該溶液に対し、再び窒素ガスでバブリング操作を行い、気相部の酸素濃度が2000ppmであることを確認した後、この液体を蛍光灯照射条件下で精密蒸留(理論段数35段、留出温度;室温(25℃)~92℃、減圧度;常圧(0.1MPa)~36kPa)することにより大部分のメタノールを分離した。
 留分には、エタノール、α,α-ジフルオロアセトアルデヒドエチルヘミアセタール、及び下記式で示される該ヘミアセタール由来の「二量体」が含まれており、それぞれの組成比はエタノール6.6wt%、α,α-ジフルオロアセトアルデヒドアルキルヘミアセタールが71.9wt%、二量体が21.5wt%であった。
Figure JPOXMLDOC01-appb-C000025
 純度を考慮した第1工程と第2工程を通してのジフルオロアセトアルデヒドエチルヘミアセタールの収率は51%であり、液のpHは2.7であった。
 第3工程:
 100mlの遮光したガラス製容器内に、攪拌子を入れ、第2工程で得られた溶液50gを窒素雰囲気下で充填した後、混合液に対し、第2工程と同様、窒素ガスでバブリング操作を行った。容器内の酸素濃度が3000ppmとなったところで、エタノールを二量体に対して1.8当量添加して25℃の室温下で24時間攪拌した。
 24時間経過後、溶液を19F-NMRによって測定した。溶液の組成はエタノール6.4wt%、α,α-ジフルオロアセトアルデヒドエチルヘミアセタールが73.0wt%、二量体が20.6wt%であり、ジフルオロ酢酸エチルが710ppm含有されていた。
 このように、第2工程において非遮光条件で実施したことでpHが低くなり、第3工程での二量体の分解が抑制され、同時に副生成物であるジフルオロ酢酸が精留後のα,α-ジフルオロアセトアルデヒドアルキルヘミアセタール中に残存した。
[Comparative Example 2]
First step:
In a stainless steel pressure-resistant reaction vessel, 109 g (0.88 mol) of ethyl α, α-difluoroacetate, 0.107 g (0.18 mmol) of a ruthenium catalyst represented by the following formula, 42 g of sodium methoxide 28% methanol solution (sodium) 0.22 mol as methoxide) and 290 mL of methanol were added, the inside of the reactor was replaced with hydrogen gas five times, the hydrogen pressure was set to 1.0 MPa, and the reaction was stirred at 15 ° C. for 8 hours.
Figure JPOXMLDOC01-appb-C000024
After 8 hours, the reaction solution was analyzed by 19 F-NMR. As a result, the conversion rate of ethyl α, α-difluoroacetate was 64%, and the selectivity of α, α-difluoroacetaldehyde ethyl hemiacetal was 90%. 19 F-NMR was quantified with an internal standard (α, α, α-trifluorotoluene).
Second step:
When 13.2 g (0.22 mol) of acetic acid was added to the reaction completed solution, the pH reached 8 and the addition was terminated. The neutralized solution was bubbled with nitrogen gas, and it was confirmed that the oxygen concentration in the container was 3000 ppm. By subjecting this liquid to distillation (bottom temperature; room temperature (25 ° C.) to 67 ° C., reduced pressure; normal pressure (0.1 MPa) to 1.9 kPa) directly under fluorescent lamp irradiation conditions, α, α-difluoro A methanol solution containing acetaldehyde ethyl hemiacetal was obtained in 90% yield of difluoroacetaldehyde ethyl hemiacetal.
Next, the solution thus obtained was bubbled again with nitrogen gas, and after confirming that the oxygen concentration in the gas phase was 2000 ppm, this liquid was subjected to precision distillation (theoretical plate number) under fluorescent lamp irradiation conditions. Most of the methanol was separated by 35 stages, distillation temperature; room temperature (25 ° C.) to 92 ° C., reduced pressure; normal pressure (0.1 MPa) to 36 kPa).
The fraction contains ethanol, α, α-difluoroacetaldehyde ethyl hemiacetal, and a “dimer” derived from the hemiacetal represented by the following formula, each having a composition ratio of 6.6 wt% ethanol, The α, α-difluoroacetaldehyde alkyl hemiacetal was 71.9 wt%, and the dimer was 21.5 wt%.
Figure JPOXMLDOC01-appb-C000025
The yield of difluoroacetaldehyde ethyl hemiacetal through the first step and the second step in consideration of purity was 51%, and the pH of the solution was 2.7.
Third step:
A stirrer is placed in a 100 ml light-shielded glass container, and 50 g of the solution obtained in the second step is filled in a nitrogen atmosphere. Then, the liquid mixture is bubbled with nitrogen gas as in the second step. went. When the oxygen concentration in the container reached 3000 ppm, 1.8 equivalents of ethanol was added to the dimer and stirred at room temperature of 25 ° C. for 24 hours.
After 24 hours, the solution was measured by 19 F-NMR. The composition of the solution was 6.4 wt% ethanol, 73.0 wt% α, α-difluoroacetaldehyde ethyl hemiacetal, 20.6 wt% dimer, and 710 ppm ethyl difluoroacetate.
As described above, the pH was lowered by carrying out the non-light-shielding condition in the second step, the decomposition of the dimer in the third step was suppressed, and at the same time, difluoroacetic acid as a by-product was α, It remained in the α-difluoroacetaldehyde alkyl hemiacetal.
 [比較例3]
 第1工程:
 ステンレス鋼製耐圧反応容器にα,α-ジフルオロ酢酸エチル109g(0.88モル)、下記式で表されるルテニウム触媒0.107g(0.18ミリモル)、ナトリウムメトキシド28%メタノール溶液42g(ナトリウムメトキシドとして0.22モル)、メタノール290mLを加え、反応器内を水素ガスで5回置換し、水素圧を1.0MPaに設定し、15℃で8時間攪拌し反応した。
Figure JPOXMLDOC01-appb-C000026
 8時間後、反応液を19F-NMRで分析したところ、α、α-ジフルオロ酢酸エチルの変換率は66%、α,α-ジフルオロアセトアルデヒドエチルヘミアセタールの選択率は90%であった。19F-NMRは内部標準物質(α、α、α-トリフルオロトルエン)で定量した。
 第2工程:
 反応終了液に酢酸13.2g(0.22モル)を加えたところ、pHは8となった。中和した液に対して窒素ガスでバブリング操作を行い、容器内の酸素濃度が7000ppmとなったことを確認した。この液体を直接、遮光条件下で蒸留(ボトム温度;室温(25℃)~66℃、減圧度;常圧(0.1MPa)~2.1kPa)に付すことにより、α,α-ジフルオロアセトアルデヒドエチルヘミアセタールを含むメタノール溶液を得た。この溶液を遮光条件下で精密蒸留(理論段数35段、留出温度;室温(25℃)~92℃、減圧度;常圧(0.1MPa)~35kPa)することにより大部分のメタノールを分離した。
 留分には、エタノール、α,α-ジフルオロアセトアルデヒドエチルヘミアセタール、及び下記式で示される該ヘミアセタール由来の「二量体」が含まれ、それぞれの組成比はエタノール6.3wt%、α,α-ジフルオロアセトアルデヒドエチルヘミアセタールが72.1wt%、二量体が21.6wt%であった。
Figure JPOXMLDOC01-appb-C000027
 純度を考慮したジフルオロアセトアルデヒドエチルヘミアセタールの収率は51%であり、液のpHは3.2であった。
 第3工程:
 100mlの遮光したガラス製容器内に攪拌子を入れ、第2工程で得られた精密蒸留後の溶液50gを窒素雰囲気下で充填した後、混合液に対し、第2工程と同様、窒素ガスでバブリング操作を行った。容器内の酸素濃度が2000ppmとなったところで、エタノールを二量体に対して1.8当量添加して25℃の室温下で24時間攪拌した。24時間経過後、溶液を19F-NMRによって測定した。溶液の組成はエタノール7.8wt%、α,α-ジフルオロアセトアルデヒドエチルヘミアセタールが76.9wt%、前記二量体が15.3wt%であり、ジフルオロ酢酸エチルが530ppm含有されていた。
 このように、第2工程において気相の酸素濃度を5000ppmを越える条件で実施したためにpHが低くなり、続く第3工程での二量体の分解が抑制される結果となった。また、精留後のα,α-ジフルオロアセトアルデヒドアルキルヘミアセタール中に副生成物であるジフルオロ酢酸も残存した。
[Comparative Example 3]
First step:
In a stainless steel pressure-resistant reaction vessel, 109 g (0.88 mol) of ethyl α, α-difluoroacetate, 0.107 g (0.18 mmol) of a ruthenium catalyst represented by the following formula, 42 g of sodium methoxide 28% methanol solution (sodium) 0.22 mol as methoxide) and 290 mL of methanol were added, the inside of the reactor was replaced with hydrogen gas five times, the hydrogen pressure was set to 1.0 MPa, and the reaction was stirred at 15 ° C. for 8 hours.
Figure JPOXMLDOC01-appb-C000026
After 8 hours, the reaction solution was analyzed by 19 F-NMR. As a result, the conversion rate of ethyl α, α-difluoroacetate was 66%, and the selectivity of α, α-difluoroacetaldehyde ethyl hemiacetal was 90%. 19 F-NMR was quantified with an internal standard (α, α, α-trifluorotoluene).
Second step:
When 13.2 g (0.22 mol) of acetic acid was added to the reaction completed solution, the pH became 8. The neutralized solution was bubbled with nitrogen gas, and it was confirmed that the oxygen concentration in the container was 7000 ppm. By subjecting this liquid to direct distillation under light-shielding conditions (bottom temperature; room temperature (25 ° C.) to 66 ° C., degree of vacuum; normal pressure (0.1 MPa) to 2.1 kPa), α, α-difluoroacetaldehyde ethyl A methanol solution containing hemiacetal was obtained. This solution is subjected to precision distillation under light-shielded conditions (35 theoretical plates, distillation temperature: room temperature (25 ° C.) to 92 ° C., reduced pressure; normal pressure (0.1 MPa) to 35 kPa) to separate most of the methanol. did.
The fraction includes ethanol, α, α-difluoroacetaldehyde ethyl hemiacetal, and a “dimer” derived from the hemiacetal represented by the following formula, each having a composition ratio of ethanol 6.3 wt%, α, The α-difluoroacetaldehyde ethyl hemiacetal was 72.1 wt% and the dimer was 21.6 wt%.
Figure JPOXMLDOC01-appb-C000027
In consideration of purity, the yield of difluoroacetaldehyde ethyl hemiacetal was 51%, and the pH of the liquid was 3.2.
Third step:
A stirrer is placed in a 100 ml light-shielded glass container, and 50 g of the precision-distilled solution obtained in the second step is filled in a nitrogen atmosphere. The mixture is then filled with nitrogen gas in the same manner as in the second step. Bubbling operation was performed. When the oxygen concentration in the container reached 2000 ppm, 1.8 equivalents of ethanol was added to the dimer and stirred at room temperature of 25 ° C. for 24 hours. After 24 hours, the solution was measured by 19 F-NMR. The composition of the solution was 7.8 wt% ethanol, 76.9 wt% α, α-difluoroacetaldehyde ethyl hemiacetal, 15.3 wt% dimer, and 530 ppm ethyl difluoroacetate.
Thus, since it implemented on the conditions which exceeded the oxygen concentration of gaseous-phase in 5000 steps | paragraph in the 2nd process, pH became low, and it resulted in the decomposition | disassembly of the dimer in the following 3rd process being suppressed. Further, difluoroacetic acid as a by-product remained in the α, α-difluoroacetaldehyde alkyl hemiacetal after rectification.
 [実施例2―5、比較例4-8]
 第1工程:
 ステンレス鋼製耐圧反応容器にα,α-ジフルオロ酢酸エチル218g(1.76モル)、下記式で表されるルテニウム触媒0.214g(0.36ミリモル)、ナトリウムメトキシド28%メタノール溶液84g(ナトリウムメトキシドとして0.44モル)、メタノール580mLを加え、反応器内を水素ガスで5回置換し、水素圧を1.0MPaに設定し、15℃で8時間攪拌し反応した。
Figure JPOXMLDOC01-appb-C000028
 8時間後、反応液を19F-NMRで分析したところ、α、α-ジフルオロ酢酸エチルの変換率は64%、α,α-ジフルオロアセトアルデヒドエチルヘミアセタールの選択率は91%であった。19F-NMRは内部標準物質(α、α、α-トリフルオロトルエン)で定量した。
 第2工程:
 反応終了液に酢酸26.4g(0.44モル)を加えたところ、pHは8となったので、中性から弱塩基性になったと判断し、添加を終了した。中和した液に対して窒素ガスでバブリング操作を行い、容器内の酸素濃度が3000ppmとなったことを確認した。この液体を遮光条件下で直接、蒸留(ボトム温度;室温(25℃)~67℃、減圧度;常圧(0.1MPa)~2.0kPa)に付すことにより、α,α-ジフルオロアセトアルデヒドエチルヘミアセタール、ジフルオロエタノール、及びメタノールを含む溶液を得た(α,α-ジフルオロアセトアルデヒドエチルヘミアセタールとしての収率は90%であった)。
 次に、得られた該溶液に対し、再び窒素ガスでバブリング操作を行い、気相部の酸素濃度が2000ppmであることを確認した後、この液体を遮光条件下で精密蒸留(理論段数35段、留出温度;室温(25℃)~91℃、減圧度;常圧(0.1MPa)~38kPa)することによりジフルオロエタノール、及び大部分のメタノールを分離した。
 留分には、エタノール、α,α-ジフルオロアセトアルデヒドアルキルヘミアセタール、及び下記式で表される二量体が含まれており、それぞれの組成比はエタノールが4.5wt%、α,α-ジフルオロアセトアルデヒドエチルヘミアセタールが78.4wt%、二量体が15.3wt%であった。
Figure JPOXMLDOC01-appb-C000029
 組成比を考慮した第1工程と第2工程を通してのジフルオロアセトアルデヒドエチルヘミアセタールの収率は51%であり、液のpHは5.0であった。
 第3工程:
 30mlの遮光したガラス製容器内に、攪拌子を入れ、第2工程で得られた精密蒸留後の溶液20g(液組成はエタノールが4.5wt%、α,α-ジフルオロアセトアルデヒドエチルヘミアセタールが78.4wt%、二量体が15.3wt%)を窒素雰囲気下で充填した。続いて、各種酸を添加し、液のpHを調整した(このpHの調整は、実施例3-5及び比較例4-8に対して行った)。その後、混合物に対し窒素ガスでバブリング操作を行った。バブリング操作により、容器内の酸素濃度が4000ppmとなったところで、エタノールを二量体に対して所定量添加して所定の温度で24時間攪拌し、第2工程終了時の溶液のpHが第3工程の二量体の変換率に与える影響を確認した。72時間経過後、内容液を19F-NMRによって測定した。以下を表1に示す。
[Example 2-5, Comparative Example 4-8]
First step:
In a pressure resistant reaction vessel made of stainless steel, 218 g (1.76 mol) of ethyl α, α-difluoroacetate, 0.214 g (0.36 mmol) of a ruthenium catalyst represented by the following formula, 84 g of sodium methoxide 28% methanol solution (sodium) 0.44 mol) as methoxide) and 580 mL of methanol were added, the inside of the reactor was replaced with hydrogen gas five times, the hydrogen pressure was set to 1.0 MPa, and the reaction was stirred at 15 ° C. for 8 hours.
Figure JPOXMLDOC01-appb-C000028
After 8 hours, the reaction mixture was analyzed by 19 F-NMR. As a result, the conversion rate of ethyl α, α-difluoroacetate was 64%, and the selectivity of α, α-difluoroacetaldehyde ethyl hemiacetal was 91%. 19 F-NMR was quantified with an internal standard (α, α, α-trifluorotoluene).
Second step:
When 26.4 g (0.44 mol) of acetic acid was added to the reaction-terminated liquid, the pH was 8. Therefore, it was judged that the reaction was neutral to weakly basic, and the addition was terminated. The neutralized solution was bubbled with nitrogen gas, and it was confirmed that the oxygen concentration in the container was 3000 ppm. By subjecting this liquid to direct distillation under a light-shielding condition (bottom temperature; room temperature (25 ° C.) to 67 ° C., degree of vacuum; normal pressure (0.1 MPa) to 2.0 kPa), α, α-difluoroacetaldehyde ethyl A solution containing hemiacetal, difluoroethanol, and methanol was obtained (the yield as α, α-difluoroacetaldehyde ethyl hemiacetal was 90%).
Next, the solution thus obtained was bubbled again with nitrogen gas, and after confirming that the oxygen concentration in the gas phase was 2000 ppm, this liquid was subjected to precision distillation (theoretical plate number: 35 plates) under light-shielding conditions. Distillation temperature; room temperature (25 ° C.) to 91 ° C., degree of vacuum; normal pressure (0.1 MPa) to 38 kPa) was used to separate difluoroethanol and most of methanol.
The fraction contains ethanol, α, α-difluoroacetaldehyde alkyl hemiacetal, and a dimer represented by the following formula, each having a composition ratio of 4.5 wt% ethanol, α, α-difluoro. Acetaldehyde ethyl hemiacetal was 78.4 wt%, and the dimer was 15.3 wt%.
Figure JPOXMLDOC01-appb-C000029
The yield of difluoroacetaldehyde ethyl hemiacetal through the first step and the second step considering the composition ratio was 51%, and the pH of the solution was 5.0.
Third step:
A stirrer was placed in a 30 ml light-shielded glass container, and 20 g of the solution after the precision distillation obtained in the second step (the liquid composition was 4.5 wt% ethanol and 78 α-α-difluoroacetaldehyde ethyl hemiacetal). .4 wt%, dimer 15.3 wt%) was filled in a nitrogen atmosphere. Subsequently, various acids were added to adjust the pH of the solution (this pH was adjusted for Example 3-5 and Comparative Example 4-8). Thereafter, the mixture was bubbled with nitrogen gas. When the oxygen concentration in the container reached 4000 ppm by the bubbling operation, a predetermined amount of ethanol was added to the dimer and stirred at a predetermined temperature for 24 hours, and the pH of the solution at the end of the second step was third. The effect of the process on the dimer conversion was confirmed. After 72 hours, the contents were measured by 19 F-NMR. The following is shown in Table 1.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 表1から、実施例2~5では、72時間後の組成において、二量体の含量が10質量%未満となっており、pH3.5以上であれば、酸の種類に依らず二量体がα,α-ジフルオロアセトアルデヒドヘミアセタールに効率的に変換されていることがわかる。なお、実施例2~5において、ジフルオロ酢酸は検出されなかった。 From Table 1, in Examples 2 to 5, in the composition after 72 hours, the content of the dimer is less than 10% by mass, and the pH is 3.5 or more, regardless of the type of acid. Is efficiently converted to α, α-difluoroacetaldehyde hemiacetal. In Examples 2 to 5, difluoroacetic acid was not detected.
 それに対して、比較例4~8では、酸の添加前と比べ、二量体は減少しているものの、72時間後の組成において二量体が10質量%以上残存していることが判った。本発明の第3工程における液のpHの調整は、二量体をα,α-ジフルオロアセトアルデヒドヘミアセタールに変換する上で、特に好ましい態様の一つと言える。 On the other hand, in Comparative Examples 4 to 8, it was found that although the dimer was decreased as compared with before addition of the acid, the dimer remained at 10% by mass or more in the composition after 72 hours. . The adjustment of the pH of the liquid in the third step of the present invention can be said to be one of the particularly preferred embodiments for converting the dimer into α, α-difluoroacetaldehyde hemiacetal.
 [比較例9-11]
 第1工程~第2工程については、実施例1と同様の条件で行い、精密蒸留後の留分(後述)を得た。その留分を用い、以下の第3工程を行った。
 第3工程:
 100mlのガラス製容器内に、攪拌子を入れた後にα,α-ジフルオロアセトアルデヒドエチルヘミアセタールの組成比72.1wt%、エタノール6.3wt%とα,α-ジフルオロアセトアルデヒドエチルヘミアセタールの二量体が21.6wt%の、pH4.0である混合液50gを窒素雰囲気下で充填した。エタノールを二量体に対して1.8当量添加して、混合物に対し窒素ガスでバブリング操作を行った。バブリング操作により、容器内の酸素濃度が10000ppmとなったところで、窒素の混合ガスを、容器内の酸素濃度が以下の表2に示す値となるように充填した後、密封し、25℃で24時間攪拌した。
 24時間経過後、内容液を19F-NMRによって測定した。以下を表2に示す。なお、実施例6について、ジフルオロ酢酸は19F-NMRで検出されなかった。なお、表2中、「N.D.」は未検出であることを示す。
[Comparative Example 9-11]
The first step to the second step were carried out under the same conditions as in Example 1 to obtain a fraction after precision distillation (described later). The following 3rd process was performed using the fraction.
Third step:
The composition ratio of α, α-difluoroacetaldehyde ethyl hemiacetal is 72.1 wt%, ethanol 6.3 wt% and α, α-difluoroacetaldehyde ethyl hemiacetal dimer after putting a stir bar in a 100 ml glass container 21.6 wt% of a liquid mixture having a pH of 4.0 was charged in a nitrogen atmosphere. Ethanol was added in an equivalent amount of 1.8 with respect to the dimer, and the mixture was bubbled with nitrogen gas. When the oxygen concentration in the container reached 10000 ppm by the bubbling operation, the mixed gas of nitrogen was filled so that the oxygen concentration in the container became the value shown in Table 2 below, and then sealed and sealed at 25 ° C. at 24 ° C. Stir for hours.
After 24 hours, the contents were measured by 19 F-NMR. The following is shown in Table 2. As for Example 6, difluoroacetate was detected by 19 F-NMR. In Table 2, “ND” indicates no detection.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 表2より、実施例6では、72時間後の組成において、二量体の含有量が10質量%未満となり、二量体がα,α-ジフルオロアセトアルデヒドヘミアセタールに効率的に変換され、かつ、ジフルオロ酢酸は19F-NMRで検出されなかった。 From Table 2, in Example 6, in the composition after 72 hours, the dimer content was less than 10% by mass, and the dimer was efficiently converted to α, α-difluoroacetaldehyde hemiacetal, and Difluoroacetic acid was not detected by 19 F-NMR.
 一方、比較例9-11では、酸の添加前と比べ、二量体は減少しているものの、72時間後の組成において、二量体が10質量%以上残存し、ジフルオロ酢酸が300ppm以上含有されていることがわかる。 On the other hand, in Comparative Example 9-11, the dimer decreased compared to before addition of the acid, but in the composition after 72 hours, the dimer remained at 10% by mass or more and difluoroacetic acid contained at 300 ppm or more. You can see that
 以上の実験結果より、本発明の酸素濃度と遮光条件の規定方法は二量体をα,α-ジフルオロアセトアルデヒドヘミアセタールに変換する製造方法として有効であることがわかる。 From the above experimental results, it can be seen that the method for defining the oxygen concentration and light shielding conditions of the present invention is effective as a production method for converting a dimer into α, α-difluoroacetaldehyde hemiacetal.
 本発明で対象とするα,α-ジフルオロアセトアルデヒドヘミアセタールは、先端材料分野の材料もしくは医農薬用の中間体として利用できる。 The α, α-difluoroacetaldehyde hemiacetal targeted in the present invention can be used as a material in the field of advanced materials or as an intermediate for medical and agricultural chemicals.

Claims (12)

  1.  次の工程を含む、一般式[3]で表されるα,α-ジフルオロアセトアルデヒドヘミアセタールの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1はアルキル基または置換アルキル基を表す。]
     第1工程:
     一般式[5]で表されるα,α-ジフルオロ酢酸エステル類を、一般式[2]で表されるアルコールを溶媒とし、塩基及びルテニウム触媒の存在下、水素と反応させる、または、一般式[5]で表されるα,α-ジフルオロ酢酸エステル類を、ヒドリド還元剤と反応させる、ことにより、一般式[3]で表されるα,α-ジフルオロアセトアルデヒドヘミアセタールを含む混合物を製造する工程。
    Figure JPOXMLDOC01-appb-C000002
    [式中、R2は一般式[3]におけるR1と同じである]
    Figure JPOXMLDOC01-appb-C000003
    [式中、R4は一般式[3]におけるR1と同じである]
     第2工程:
     第1工程で得られた前記混合物に対し、中和処理を行い、その後、該混合物を反応容器に充填し、遮光条件下、該反応容器内の酸素濃度を5000ppm以下となるように調整し、続いて蒸留操作を行うことで、α,α-ジフルオロアセトアルデヒドヘミアセタールと、一般式[4]で表されるα,α-ジフルオロアセトアルデヒドの二量体を含む、pHが3.5~10.0の混合物を得る工程。
    Figure JPOXMLDOC01-appb-C000004
    [式中、R3はアルキル基または置換アルキル基を表す。]
     第3工程:
     第2工程で得られた前記混合物を反応容器に充填させ、遮光条件下、該反応容器内の気相部の酸素濃度を5000ppm以下となるよう調整した後、該混合物に対し、一般式[2]で表されるアルコールを加えることで、該混合物に含まれる二量体の少なくとも1部が減少した、もしくは該混合物に含まれる二量体を実質的に含まない、α,α-ジフルオロアセトアルデヒドヘミアセタールを含む混合物を得る工程。
    A process for producing α, α-difluoroacetaldehyde hemiacetal represented by the general formula [3], comprising the following steps:
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, R 1 represents an alkyl group or a substituted alkyl group. ]
    First step:
    The α, α-difluoroacetic acid ester represented by the general formula [5] is reacted with hydrogen in the presence of a base and a ruthenium catalyst using the alcohol represented by the general formula [2] as a solvent, or the general formula The mixture containing α, α-difluoroacetaldehyde hemiacetal represented by the general formula [3] is produced by reacting α, α-difluoroacetate represented by [5] with a hydride reducing agent. Process.
    Figure JPOXMLDOC01-appb-C000002
    [Wherein R 2 is the same as R 1 in the general formula [3]]
    Figure JPOXMLDOC01-appb-C000003
    [Wherein R 4 is the same as R 1 in the general formula [3]]
    Second step:
    The mixture obtained in the first step is subjected to a neutralization treatment, and then the mixture is filled in a reaction vessel, and the oxygen concentration in the reaction vessel is adjusted to 5000 ppm or less under light shielding conditions, Subsequently, by performing distillation operation, the pH is 3.5 to 10.0 including a dimer of α, α-difluoroacetaldehyde hemiacetal and α, α-difluoroacetaldehyde represented by the general formula [4]. Obtaining a mixture of
    Figure JPOXMLDOC01-appb-C000004
    [Wherein R 3 represents an alkyl group or a substituted alkyl group. ]
    Third step:
    After filling the mixture obtained in the second step into a reaction vessel and adjusting the oxygen concentration in the gas phase in the reaction vessel to 5000 ppm or less under light-shielding conditions, the general formula [2 ], At least a part of the dimer contained in the mixture is reduced, or the dimer contained in the mixture is substantially free of α, α-difluoroacetaldehyde hemi Obtaining a mixture comprising acetal;
  2.  第1工程において、ルテニウム触媒が式[6]または式[7]で表される触媒である、請求項1に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    [式中、Rはそれぞれ独立に水素原子、アルキル基、置換アルキル基、芳香環基または置換芳香環基を表し、Arはそれぞれ独立に芳香環基または置換芳香環基を表し、Xはそれぞれ独立に形式電荷が-1または0の配位子(但し、3つのXの形式電荷の合計は-2)を表し、nはそれぞれ独立に1または2の整数を表す。]
    Figure JPOXMLDOC01-appb-C000006
    [式中、Phはフェニル基を表す。]
    The manufacturing method of Claim 1 whose ruthenium catalyst is a catalyst represented by Formula [6] or Formula [7] in a 1st process.
    Figure JPOXMLDOC01-appb-C000005
    [In the formula, each R independently represents a hydrogen atom, an alkyl group, a substituted alkyl group, an aromatic ring group or a substituted aromatic ring group, Ar represents each independently an aromatic ring group or a substituted aromatic ring group, and each X represents an independent group. Represents a ligand having a formal charge of −1 or 0 (provided that the sum of the three formal charges of X is −2), and n independently represents an integer of 1 or 2. ]
    Figure JPOXMLDOC01-appb-C000006
    [Wherein, Ph represents a phenyl group. ]
  3.  式[6]で表されるルテニウム触媒が、下記式で表される触媒である、請求項1または2に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000007
    [式中、Phはフェニル基を表す。]
    The manufacturing method of Claim 1 or 2 whose ruthenium catalyst represented by Formula [6] is a catalyst represented by a following formula.
    Figure JPOXMLDOC01-appb-C000007
    [Wherein, Ph represents a phenyl group. ]
  4.  第1工程において、ルテニウム触媒が、ルテニウム化合物を担体に担持した触媒である、請求項1に記載の製造方法。 The production method according to claim 1, wherein in the first step, the ruthenium catalyst is a catalyst having a ruthenium compound supported on a carrier.
  5.  担体が、金属酸化物もしくは活性炭に担持した触媒である、請求項4に記載の製造方法。 The production method according to claim 4, wherein the carrier is a catalyst supported on a metal oxide or activated carbon.
  6.  ルテニウム化合物が、ルテニウムのフッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物、及びオキシフッ化塩化物からなる群より選ばれる少なくとも1種である、請求項4または5に記載の製造方法。 The production according to claim 4 or 5, wherein the ruthenium compound is at least one selected from the group consisting of ruthenium fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride, and oxyfluoride chloride. Method.
  7.  第1工程において、ヒドリド還元剤が金属水素化物である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein in the first step, the hydride reducing agent is a metal hydride.
  8.  金属水素化物が、水素化アルミニウムリチウム、水素化ホウ素リチウム、水素化ホウ素ナトリウムまたは水素化シアノホウ素ナトリウムである、請求項7に記載の製造方法。 The production method according to claim 7, wherein the metal hydride is lithium aluminum hydride, lithium borohydride, sodium borohydride or sodium cyanoborohydride.
  9.  第2工程において、混合物のpHの調整を、酸を加えることにより行う、請求項1乃至8の何れかに記載の製造方法。 The production method according to any one of claims 1 to 8, wherein in the second step, the pH of the mixture is adjusted by adding an acid.
  10.  酸が、酢酸、安息香酸またはパラ-トルエンスルホン酸である、請求項9に記載の製造方法。 The production method according to claim 9, wherein the acid is acetic acid, benzoic acid or para-toluenesulfonic acid.
  11.  第3工程において、アルコールがメタノール又はエタノールである、請求項1乃至10の何れかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 10, wherein in the third step, the alcohol is methanol or ethanol.
  12.  第2工程または第3工程において、酸素濃度の調整を、容器内に不活性ガスをバブリングさせることにより行う、請求項1乃至11の何れかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 11, wherein in the second step or the third step, the oxygen concentration is adjusted by bubbling an inert gas into the container.
PCT/JP2018/010510 2017-03-31 2018-03-16 PRODUCTION METHOD FOR α,α-DIFLUOROACETALDEHYDE HEMIACETAL WO2018180610A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019509292A JP7032666B2 (en) 2017-03-31 2018-03-16 Method for producing α, α-difluoroacetaldehyde hemiacetal
CN201880022732.7A CN110520403B (en) 2017-03-31 2018-03-16 Process for producing alpha, alpha-difluoroacetaldehyde hemiacetal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-071306 2017-03-31
JP2017071306 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018180610A1 true WO2018180610A1 (en) 2018-10-04

Family

ID=63677109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010510 WO2018180610A1 (en) 2017-03-31 2018-03-16 PRODUCTION METHOD FOR α,α-DIFLUOROACETALDEHYDE HEMIACETAL

Country Status (3)

Country Link
JP (1) JP7032666B2 (en)
CN (1) CN110520403B (en)
WO (1) WO2018180610A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114736104A (en) * 2022-04-20 2022-07-12 上海恩氟佳科技有限公司 Synthesis method of difluoroacetaldehyde hemi-ethanol

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105431A1 (en) * 2011-02-03 2012-08-09 セントラル硝子株式会社 METHOD FOR PRODUCING β-FLUOROALCOHOL
WO2014115801A1 (en) * 2013-01-25 2014-07-31 セントラル硝子株式会社 α,α-DIFLUOROACETALDEHYDE PRODUCTION METHOD
WO2014136877A1 (en) * 2013-03-07 2014-09-12 日本ゼオン株式会社 High-purity 2-fluorobutane
JP2014185111A (en) * 2013-03-25 2014-10-02 Nippon Zeon Co Ltd High-purity 2,2-difluorobutane
WO2016017318A1 (en) * 2014-07-30 2016-02-04 セントラル硝子株式会社 Method for improving preservation stability of 2,2-difluoroacetoaldehyde
JP2017039707A (en) * 2015-08-19 2017-02-23 セントラル硝子株式会社 MANUFACTURING METHOD OF α-FLUOROALDEHYDES
JP2017128536A (en) * 2016-01-21 2017-07-27 セントラル硝子株式会社 MANUFACTURING METHOD OF α,α-DIFLUORO ACETALDEHYDE
JP6195028B1 (en) * 2017-02-02 2017-09-13 セントラル硝子株式会社 Method for preserving α, α-difluoroacetaldehyde alkyl hemiacetal

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105431A1 (en) * 2011-02-03 2012-08-09 セントラル硝子株式会社 METHOD FOR PRODUCING β-FLUOROALCOHOL
WO2014115801A1 (en) * 2013-01-25 2014-07-31 セントラル硝子株式会社 α,α-DIFLUOROACETALDEHYDE PRODUCTION METHOD
WO2014136877A1 (en) * 2013-03-07 2014-09-12 日本ゼオン株式会社 High-purity 2-fluorobutane
JP2014185111A (en) * 2013-03-25 2014-10-02 Nippon Zeon Co Ltd High-purity 2,2-difluorobutane
WO2016017318A1 (en) * 2014-07-30 2016-02-04 セントラル硝子株式会社 Method for improving preservation stability of 2,2-difluoroacetoaldehyde
JP2017039707A (en) * 2015-08-19 2017-02-23 セントラル硝子株式会社 MANUFACTURING METHOD OF α-FLUOROALDEHYDES
JP2017128536A (en) * 2016-01-21 2017-07-27 セントラル硝子株式会社 MANUFACTURING METHOD OF α,α-DIFLUORO ACETALDEHYDE
JP6195028B1 (en) * 2017-02-02 2017-09-13 セントラル硝子株式会社 Method for preserving α, α-difluoroacetaldehyde alkyl hemiacetal
WO2018016126A1 (en) * 2017-02-02 2018-01-25 セントラル硝子株式会社 METHOD FOR PRESERVATION OF α, α-DIFLUOROACETALDEHYDE ALKYL HEMIACETAL

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OTSUKA, T. ET AL.: "Practical Selective Hydrogenation of [alpha]-Fluorinated Esters with Bifunctional Pincer-Type Ruthenium(II) Catalysts Leading to Fluorinated Alcohols or Fluoral Hemiacetals", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 135, no. 26, 3 July 2013 (2013-07-03), pages 9600 - 9603, XP055103702 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114736104A (en) * 2022-04-20 2022-07-12 上海恩氟佳科技有限公司 Synthesis method of difluoroacetaldehyde hemi-ethanol
CN114736104B (en) * 2022-04-20 2024-04-19 上海恩氟佳科技有限公司 Synthesis method of difluoroacetaldehyde hemiethanol

Also Published As

Publication number Publication date
CN110520403B (en) 2022-07-12
JPWO2018180610A1 (en) 2020-02-06
CN110520403A (en) 2019-11-29
JP7032666B2 (en) 2022-03-09

Similar Documents

Publication Publication Date Title
JP6217653B2 (en) Method for producing α, α-difluoroacetaldehyde
WO2012105431A1 (en) METHOD FOR PRODUCING β-FLUOROALCOHOL
US9284248B2 (en) Process for producing α-fluoroaldehydes
JP6213417B2 (en) Method for improving storage stability of 2,2-difluoroacetaldehyde
JP2012025697A (en) Method for producing difluoroacetate ester
JP7032666B2 (en) Method for producing α, α-difluoroacetaldehyde hemiacetal
CN117069763A (en) Ionic liquid catalyst and preparation method and application thereof
JP6001780B2 (en) Method for producing allyl alcohol
JP6195028B1 (en) Method for preserving α, α-difluoroacetaldehyde alkyl hemiacetal
EP2522648B1 (en) Process for producing difluorocyclopropane compound
JP2005247694A (en) Method for producing glycolic acid and its ester using ionic liquid
JP6806990B2 (en) Method for producing α-fluoroaldehydes
JP2004285068A (en) METHOD FOR CONTINUOUSLY PRODUCING ACETAL OF alpha,beta-DICARBONYL COMPOUND
JP2018177700A (en) Method for producing 1,2,2,2-tetrafluoro-ethyl difluoromethyl ether (desflurane)
CN103508861B (en) Synthesis method of dialkyl acetonide alcohol compound
JP2022188826A (en) Production method of chloro-substituted phenyl trifluoromethyl ketones
WO2017030074A1 (en) METHOD FOR PRODUCING α-FLUOROALDEHYDE COMPOUND
TW201004703A (en) Catalytic system for the oxidative carbonylation reaction and the manufacturing method for alkyl dimethyl ester of carbonic acid using the catalytic system
JP2017149707A (en) METHOD FOR PRODUCING α,α-DIFLUORO ACETALDEHYDE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509292

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775442

Country of ref document: EP

Kind code of ref document: A1