JP2011190216A - Method for producing (trifluoromethyl) alkyl ketone - Google Patents

Method for producing (trifluoromethyl) alkyl ketone Download PDF

Info

Publication number
JP2011190216A
JP2011190216A JP2010058030A JP2010058030A JP2011190216A JP 2011190216 A JP2011190216 A JP 2011190216A JP 2010058030 A JP2010058030 A JP 2010058030A JP 2010058030 A JP2010058030 A JP 2010058030A JP 2011190216 A JP2011190216 A JP 2011190216A
Authority
JP
Japan
Prior art keywords
formula
compound represented
reaction
alkyl
trifluoromethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010058030A
Other languages
Japanese (ja)
Inventor
Hajime Ogawa
元 尾川
Tomoyuki Asai
智之 淺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2010058030A priority Critical patent/JP2011190216A/en
Publication of JP2011190216A publication Critical patent/JP2011190216A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a (trifluoromethyl) alkyl ketone in a high yield in a few steps under mild reaction conditions. <P>SOLUTION: The method for producing a (trifluoromethyl) alkyl ketone represented by formula (A) includes the following steps of (i) a step for reacting magnesium with a compound represented by formula R<SP>1</SP>Br (wherein R<SP>1</SP>is alkyl) to give R<SP>1</SP>MgBr (wherein R<SP>1</SP>is as shown above) in the presence of a (cycloalkyl) alkyl ether, (ii) a step for reacting the compound represented by formula R<SP>1</SP>MgBr (wherein R<SP>1</SP>is as shown above) with a compound represented by formula CF<SB>3</SB>COOR<SP>2</SP>(wherein R<SP>2</SP>is ester residue) in the presence of a (cycloalkyl) alkyl ether to give a Grignard reagent adduct and (iii) a step for hydrolyzing the adduct to give the (trifluoromethyl) alkyl ketone represented by formula (A). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、(トリフルオロメチル)アルキルケトンの製造方法に関する。   The present invention relates to a method for producing a (trifluoromethyl) alkylketone.

(トリフルオロメチル)アルキルケトンは医薬・農薬等の中間体として、また各種の機能材料の製造中間体として有用な化合物である。(トリフルオロメチル)アルキルケトンの製造方法に関しては、これまでに非特許文献1および2に記載の方法が提案されている。   (Trifluoromethyl) alkylketone is a useful compound as an intermediate for pharmaceuticals and agricultural chemicals, and as an intermediate for the production of various functional materials. Regarding the production method of (trifluoromethyl) alkyl ketone, methods described in Non-Patent Documents 1 and 2 have been proposed so far.

非特許文献1に記載の方法は、クライゼン縮合を経由して(トリフルオロメチル)アルキルケトンを合成する方法である。非特許文献2には、トリフルオロ酢酸に低級アルキル基を有するグリニア試薬をジブチルエーテル中で10〜15℃で反応させた後に、加水分解反応を行う(トリフルオロメチル)アルキルケトンの製造方法が記載される。   The method described in Non-Patent Document 1 is a method of synthesizing (trifluoromethyl) alkyl ketone via Claisen condensation. Non-Patent Document 2 describes a method for producing a (trifluoromethyl) alkyl ketone in which a glycerin reagent having a lower alkyl group in trifluoroacetic acid is reacted in dibutyl ether at 10 to 15 ° C. and then subjected to a hydrolysis reaction. Is done.

Burdon, J.; McLoughlin, V. C. R., Tetrahedron (1964), 20(10), pp.2163-2166Burdon, J .; McLoughlin, V. C. R., Tetrahedron (1964), 20 (10), pp. 2163-2166 Sykes, A.; Tatlow, J. C.; Thomas, C. R.,Chemistry & Industry (London, United Kingdom) (1955),pp.630-631Sykes, A .; Tatlow, J. C .; Thomas, C. R., Chemistry & Industry (London, United Kingdom) (1955), pp. 630-631

しかし、上記の方法には、次の欠点がある。非特許文献1に記載の方法は反応工程が多く工業的には不利である。また、非特許文献2に記載の方法は、収率が25〜63%であり、工業的な実施には十分な方法ではない。   However, the above method has the following drawbacks. The method described in Non-Patent Document 1 has many reaction steps and is industrially disadvantageous. Further, the method described in Non-Patent Document 2 has a yield of 25 to 63% and is not a sufficient method for industrial implementation.

本発明は、少ない工程かつ温和な反応条件で、高収率で(トリフルオロメチル)アルキルケトンを製造できる製造方法を得ることを課題とするものである。   An object of the present invention is to obtain a production method capable of producing a (trifluoromethyl) alkylketone in a high yield with few steps and mild reaction conditions.

本発明者は工業的な実施に有利な反応条件で(トリフルオロメチル)アルキルケトンを製造する方法を検討した結果、特定の反応溶媒とトリフルオロ酢酸エステルを用いたグリニャール反応を採用することにより、高い反応収率で(トリフルオロメチル)アルキルケトンができることを見出し、本発明を完成させた。   As a result of studying a method for producing a (trifluoromethyl) alkyl ketone under reaction conditions advantageous for industrial implementation, the present inventor adopted a Grignard reaction using a specific reaction solvent and a trifluoroacetic acid ester, The inventors have found that (trifluoromethyl) alkylketone can be produced with a high reaction yield and completed the present invention.

すなわち本発明は、以下の工程を含む(トリフルオロメチル)アルキルケトンの製造方法である。
(i)(シクロアルキル)アルキルエーテルの存在下で、マグネシウムと、式RBrで表わされる化合物(ただし、Rはアルキル基を示す。)とを反応させて式RMgBr(ただし、Rは前記と同じ意味を示す。)で表される化合物を得る工程。
(ii)(シクロアルキル)アルキルエーテルの存在下で、式RMgBr(ただし、Rは前記と同じ意味を示す。)で表される化合物と、式CFCOORで表わされる化合物(ただし、R2はエステル残基を示す。)とを反応させて式(B)で表される化合物を得る工程。
(iii)式(B)で表される化合物を加水分解することにより式(A)で表される(トリフルオロメチル)アルキルケトンを得る工程。

Figure 2011190216

Figure 2011190216
That is, this invention is a manufacturing method of the (trifluoromethyl) alkyl ketone including the following processes.
(I) In the presence of (cycloalkyl) alkyl ether, magnesium is reacted with a compound represented by the formula R 1 Br (where R 1 represents an alkyl group) to give a formula R 1 MgBr (where R 1 1 represents the same meaning as described above).
(Ii) In the presence of (cycloalkyl) alkyl ether, a compound represented by the formula R 1 MgBr (where R 1 has the same meaning as described above) and a compound represented by the formula CF 3 COOR 2 (provided that , R 2 represents an ester residue) to obtain a compound represented by the formula (B).
(Iii) A step of obtaining a (trifluoromethyl) alkyl ketone represented by the formula (A) by hydrolyzing the compound represented by the formula (B).
Figure 2011190216

Figure 2011190216

本発明の製造方法によれば、少ない工程数で、温和な反応条件下で、医薬・農薬等の合成中間体として、また、各種機能材料などの製造中間体として有用な(トリフルオロメチル)アルキルケトンを高収率で製造できる。   According to the production method of the present invention, (trifluoromethyl) alkyl is useful as a synthetic intermediate for pharmaceuticals, agricultural chemicals, etc., and as a production intermediate for various functional materials under mild reaction conditions with a small number of steps. Ketones can be produced in high yield.

本発明の製造方法における(トリフルオロメチル)アルキルケトンの製造工程の各工程を説明する。本発明の製造方法においては、まず、(i)(シクロアルキル)アルキルエーテルの存在下で、マグネシウムと、式RBrで表わされる化合物(ただし、Rはアルキル基を示す。)とを反応させて式RMgBr(ただし、Rは前記と同じ意味を示す。)で表される化合物を得る工程(以下、工程(i)とも言う)、を行う。
ここで、Rは、アルキル基であり、好ましくは炭素数1〜6のアルキル基である。Rは、具体的には、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基およびn−ブチル基、ペンチル基、ヘキシル基が好ましく、エチル基が特に好ましい。
Each process of the manufacturing process of the (trifluoromethyl) alkyl ketone in the manufacturing method of this invention is demonstrated. In the production method of the present invention, first, magnesium and a compound represented by the formula R 1 Br (where R 1 represents an alkyl group) are reacted in the presence of (i) (cycloalkyl) alkyl ether. And a step of obtaining a compound represented by the formula R 1 MgBr (where R 1 has the same meaning as described above) (hereinafter also referred to as step (i)).
Here, R 1 is an alkyl group, preferably an alkyl group having 1 to 6 carbon atoms. Specifically, R 1 is preferably, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a pentyl group, or a hexyl group, and particularly preferably an ethyl group.

この工程は、下記反応式(I)で表される反応により、式RMgBrで表される化合物を得る工程である。 This step is a step of obtaining a compound represented by the formula R 1 MgBr by a reaction represented by the following reaction formula (I).

Figure 2011190216
Figure 2011190216

上記反応式(I)において、Rは上記の通りである。 In the reaction formula (I), R 1 is as described above.

本発明の製造方法における溶媒である(シクロアルキル)アルキルエーテルは、市販品から入手できる。(シクロアルキル)アルキルエーテルは、通常入手できる純度のものを、精製等を行わずにそのまま使用してもよく、精製して使用してもよい。(シクロアルキル)アルキルエーテルの使用量は、式RBrで表わされる化合物1モル当たり1〜10モルとすることが好ましく、2〜8モルとすることがより好ましい。 (Cycloalkyl) alkyl ether which is a solvent in the production method of the present invention can be obtained from a commercial product. (Cycloalkyl) alkyl ether having a purity which can be usually obtained may be used as it is without purification or may be used after purification. The amount of (cycloalkyl) alkyl ether used is preferably 1 to 10 moles, more preferably 2 to 8 moles per mole of the compound represented by the formula R 1 Br.

(シクロアルキル)アルキルエーテルのシクロアルキル基としては、シクロペンチル、シクロヘキシル、シクロヘプチル基またはこれらの基の水素原子の一つ以上がアルキル基に置換された基が好ましい。アルキルエーテルのアルキル基としては、好ましくは炭素数1〜6のアルキル基である。具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、ペンチル基、ヘキシル基が好ましく、メチル基が特に好ましい。(シクロアルキル)アルキルエーテルとしては、(シクロペンチル)メチルエーテルが好ましい。   The cycloalkyl group of (cycloalkyl) alkyl ether is preferably a cyclopentyl, cyclohexyl, cycloheptyl group or a group in which one or more hydrogen atoms of these groups are substituted with an alkyl group. The alkyl group of the alkyl ether is preferably an alkyl group having 1 to 6 carbon atoms. Specifically, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a pentyl group, and a hexyl group are preferable, and a methyl group is particularly preferable. (Cycloalkyl) alkyl ether is preferably (cyclopentyl) methyl ether.

本発明における出発原料であるマグネシウム及び式RBrで表わされる化合物は、市販品から入手でき、通常入手できる純度のものを、精製等を行わずにそのまま使用してもよい。 The starting material in the present invention, magnesium and the compound represented by the formula R 1 Br can be obtained from commercially available products, and those that are usually available may be used as they are without purification.

工程(i)における式RMgBrで表される化合物の合成は、溶媒として(シクロアルキル)アルキルエーテルを用いる。(シクロアルキル)アルキルエーテルを用いることにより、工程(i)の反応で生成する式RMgBrで表される化合物の(シクロアルキル)アルキルエーテル溶液を、そのまま次の工程(ii)で用いることができる。 The synthesis of the compound represented by the formula R 1 MgBr in the step (i) uses (cycloalkyl) alkyl ether as a solvent. By using (cycloalkyl) alkyl ether, the (cycloalkyl) alkyl ether solution of the compound represented by the formula R 1 MgBr generated in the reaction of step (i) can be used as it is in the next step (ii). it can.

また、式RBrで表わされる化合物とマグネシウムを溶媒を用いずに直接反応させると高温を発して式RMgBrで表される化合物が分解してしまう恐れがあることから、溶媒の存在下で反応を実施することにより、式RMgBrで表される化合物を収率よく得ることができる。 In addition, if the compound represented by the formula R 1 Br and magnesium are reacted directly without using a solvent, the compound represented by the formula R 1 MgBr may be decomposed due to high temperature. The compound represented by the formula R 1 MgBr can be obtained with good yield by carrying out the reaction at

マグネシウム及び式RBrで表わされる化合物との反応においては、各々を(シクロアルキル)アルキルエーテルに混合した溶液にした上で反応させることが好ましい。具体的には、(シクロアルキル)アルキルエーテルを溶媒とするマグネシウム溶液に、(シクロアルキル)アルキルエーテルを溶媒とする式RBrで表わされる化合物の溶液を滴下して反応させる方法が挙げられる。マグネシウムと式RBrで表わされる化合物とが直接反応することを避ける他の方法としては、式RBrで表わされる化合物を(シクロアルキル)アルキルエーテルに混合した溶液に、マグネシウムを混合して反応させる方法も採用できる。 In the reaction with magnesium and the compound represented by the formula R 1 Br, it is preferable to react each after making each into a solution mixed with (cycloalkyl) alkyl ether. Specifically, a method of dropping a solution of a compound represented by the formula R 1 Br using (cycloalkyl) alkyl ether as a solvent into a magnesium solution using (cycloalkyl) alkyl ether as a solvent is allowed to react. Another way to avoid that the magnesium and the formula R 1 is represented by Br compound reacts directly, a solution obtained by mixing a compound of formula R 1 Br in (cycloalkyl) alkyl ether, a mixture of magnesium A reaction method can also be employed.

(シクロアルキル)アルキルエーテルを溶媒とする溶液中のマグネシウムの濃度は、0質量%超100質量%以下であることが好ましく、6質量%以上70質量%以下であることがより好ましい。この範囲とすることで反応式(I)における発熱を安定に制御することができる。   The concentration of magnesium in the solution using (cycloalkyl) alkyl ether as a solvent is preferably more than 0% by mass and 100% by mass or less, and more preferably 6% by mass or more and 70% by mass or less. By setting it as this range, the heat generation in the reaction formula (I) can be stably controlled.

(シクロアルキル)アルキルエーテルを溶媒とする溶液中の式RBrで表わされる化合物の濃度は0質量%超100質量%以下であることがより好ましく、10質量%以上70質量%以下であることが特に好ましい。式RBrで表わされる化合物の濃度を当該範囲とすることにより、反応式(I)における発熱を安定に制御することができる。 The concentration of the compound represented by the formula R 1 Br in the solution using (cycloalkyl) alkyl ether as a solvent is more preferably more than 0% by mass and 100% by mass or less, and more preferably 10% by mass to 70% by mass. Is particularly preferred. By setting the concentration of the compound represented by the formula R 1 Br within this range, the exotherm in the reaction formula (I) can be controlled stably.

工程(i)の反応温度は、通常−10℃〜+30℃が好ましく、特に目的物の選択率と原料の転化率との兼ね合いから0℃〜+20℃であるのが好ましい。該反応温度は、反応雰囲気における温度ではなく、反応容器内の温度(内部温度)として測定される温度であるのが好ましい。該反応時間は、目的物の選択率と原料の転化率との兼ね合いから30分から5時間が好ましい。(該反応圧力は目的物の選択率と原料の転化率との兼ね合いから0〜0.1MPa(ゲージ圧。以下同様。)が好ましい。)   The reaction temperature in step (i) is usually preferably from −10 ° C. to + 30 ° C., and particularly preferably from 0 ° C. to + 20 ° C. in consideration of the selectivity of the target product and the conversion rate of the raw material. The reaction temperature is preferably not the temperature in the reaction atmosphere but the temperature measured as the temperature in the reaction vessel (internal temperature). The reaction time is preferably 30 minutes to 5 hours in consideration of the selectivity of the target product and the conversion rate of the raw material. (The reaction pressure is preferably 0 to 0.1 MPa (gauge pressure, the same applies hereinafter) in view of the selectivity of the target product and the conversion rate of the raw material.)

本発明においては、工程(i)のあとで、後述の工程(ii)を実施する。工程(i)の反応生成物は、そのまま工程(ii)の反応に用いてもよく、通常の後処理工程や、精製工程を施したものを、工程(ii)の反応に用いてもよい。また、本発明においては、工程(ii)における式RMgBrで表される化合物は、工程(i)の反応で製造してもよく、他の方法で製造してもよく、市販品を用いてもよい。 In the present invention, step (ii) described later is performed after step (i). The reaction product of step (i) may be used for the reaction of step (ii) as it is, or a product subjected to a normal post-treatment step or purification step may be used for the reaction of step (ii). In the present invention, the compound represented by the formula R 1 MgBr in step (ii) may be produced by the reaction of step (i), may be produced by other methods, and a commercially available product is used. May be.

工程(ii)は、(シクロアルキル)アルキルエーテルの存在下で、式RMgBr(ただし、Rは前記と同じ意味を示す。)で表される化合物と、式CFCOORで表される化合物(ただし、Rはエステル残基を示す。)とを反応させて式(B)で表される化合物を得る工程、である。 In the step (ii), in the presence of a (cycloalkyl) alkyl ether, a compound represented by the formula R 1 MgBr (where R 1 has the same meaning as described above) and a formula CF 3 COOR 2 are used. And a compound (wherein R 2 represents an ester residue) to obtain a compound represented by the formula (B).

ここで、Rは前記と同じ意味を示す。また、Rはアルキル基、エーテル性酸素原子を含むアルキル基が好ましく、炭素数1〜6のアルキル基が特に好ましい。炭素数1〜6のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、ペンチル基、ヘキシル基が好ましい。Rはエチル基が特に好ましい。本発明においては、トリフルオロ酢酸エステルを用いることにより、高収率でグリニア反応を実施できる。その理由は、必ずしも明らかではないが、トリフルオロ酢酸エステル、および生成物の式(B)で表される化合物の(シクロアルキル)アルキルエーテルへの溶解性が関与しているものと推測される。 Here, R 1 has the same meaning as described above. R 2 is preferably an alkyl group or an alkyl group containing an etheric oxygen atom, particularly preferably an alkyl group having 1 to 6 carbon atoms. As the alkyl group having 1 to 6 carbon atoms, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a pentyl group, and a hexyl group are preferable. R 2 is particularly preferably an ethyl group. In the present invention, by using trifluoroacetic acid ester, the Grineer reaction can be carried out with high yield. The reason is not necessarily clear, but it is presumed that the solubility of the compound represented by the formula (B) of the trifluoroacetate ester and the product in (cycloalkyl) alkyl ether is involved.

工程(ii)は、下記反応式(II)で表される反応により、式(B)で表される化合物を得る工程である。   Step (ii) is a step of obtaining a compound represented by the formula (B) by a reaction represented by the following reaction formula (II).

Figure 2011190216
Figure 2011190216

上記反応式(II)において、R及びRは上記の通りである。 In the reaction formula (II), R 1 and R 2 are as described above.

式CFCOORで表される化合物は市販品から、または通常の合成方法で入手できる。 The compound represented by the formula CF 3 COOR 2 can be obtained from a commercially available product or by an ordinary synthesis method.

式CFCOORで表される化合物を式RMgBrで表される化合物と反応させる際、式CFCOORで表される化合物は(シクロアルキル)アルキルエーテルを溶媒とし、0質量%超100質量%以下であることが好ましく、20質量%以上70質量%以下であることがより好ましい。この範囲とすることで反応式(II)における発熱を安定に制御することができる。0質量%超100質量%溶液の(シクロアルキル)アルキルエーテル溶液として反応させることも可能である。 When the compound represented by the formula CF 3 COOR 2 is reacted with the compound represented by the formula R 1 MgBr, the compound represented by the formula CF 3 COOR 2 uses (cycloalkyl) alkyl ether as a solvent and exceeds 0% by mass. It is preferably 100% by mass or less, and more preferably 20% by mass or more and 70% by mass or less. By setting it within this range, the heat generation in the reaction formula (II) can be stably controlled. It is also possible to carry out the reaction as a (cycloalkyl) alkyl ether solution in a solution of more than 0% by mass and 100% by mass.

式RMgBrで表される化合物の量はトリフルオロ酢酸エステルに対して0.5〜2倍モル使用するのが好ましく、特に目的物の選択率と原料の転化率との兼ね合いから1〜8倍モルで使用するのがより好ましい。 The amount of the compound represented by the formula R 1 MgBr is preferably 0.5 to 2 times the molar amount of the trifluoroacetic acid ester, particularly 1 to 8 in view of the balance between the selectivity of the target product and the conversion rate of the raw material. More preferably, it is used in a molar ratio.

工程(ii)において、式CFCOORで表される化合物を式RMgBrで表される化合物と反応させる際、温度(内部温度)は−40℃以上+20℃以下とすることが好ましく、−20℃以上+10℃以下とすることがより好ましい。反応時間は、目的物の選択率と原料の転化率との兼ね合いから2時間から10時間が好ましい。また、反応圧力は目的物の選択率と原料の転化率との兼ね合いから0〜0.1MPaが好ましい。 In the step (ii), when the compound represented by the formula CF 3 COOR 2 is reacted with the compound represented by the formula R 1 MgBr, the temperature (internal temperature) is preferably −40 ° C. or higher and + 20 ° C. or lower. It is more preferable to set it to −20 ° C. or higher and + 10 ° C. or lower. The reaction time is preferably 2 to 10 hours in view of the balance between the selectivity of the target product and the conversion rate of the raw material. The reaction pressure is preferably 0 to 0.1 MPa in view of the balance between the selectivity of the target product and the conversion rate of the raw material.

溶媒として(シクロアルキル)アルキルエーテルを用いた工程(ii)の反応を、従来法に比較して、高い温度で実施できることは、工業的実施においてきわめて有利であるだけでなく、本発明においては、該反応における収率も高い利点を有する。   The fact that the reaction of step (ii) using (cycloalkyl) alkyl ether as a solvent can be carried out at a higher temperature compared with the conventional method is not only very advantageous in industrial practice, but also in the present invention. The yield in the reaction also has a high advantage.

本発明においては、工程(ii)のあとで、工程(iii)を実施する。工程(ii)の反応生成物は、そのまま工程(iii)の反応に用いてもよく、通常の後処理工程や、精製工程を施したものを、工程(iii)の反応に用いてもよい。   In the present invention, step (iii) is performed after step (ii). The reaction product of the step (ii) may be used for the reaction of the step (iii) as it is, or a product subjected to a normal post-treatment step or a purification step may be used for the reaction of the step (iii).

本発明においては、次に(iii)式(B)で表される化合物を加水分解することにより式(A)で表される(トリフルオロメチル)アルキルケトンを得る工程、を行う。   In the present invention, next, (iii) a step of obtaining a (trifluoromethyl) alkyl ketone represented by the formula (A) by hydrolyzing the compound represented by the formula (B).

工程(iii)は、下記反応式(III)で表される反応により、式(A)で表される(トリフルオロメチル)アルキルケトンを得る工程である。   Step (iii) is a step of obtaining a (trifluoromethyl) alkyl ketone represented by the formula (A) by a reaction represented by the following reaction formula (III).

Figure 2011190216
Figure 2011190216

上記反応式(III)において、R及びRは上記の通りである。 In the reaction formula (III), R 1 and R 2 are as described above.

工程(iii)における加水分解反応は、公知の加水分解反応の条件および手法を適用することができ、本発明においては、水のみを加えて加水分解反応が実施できる。また、加水分解により生成する、水に不溶なマグネシウム塩(式HOMgBrで表される化合物)を溶解させて、後の分離操作(たとえば、分液操作)を容易にする目的で酸性水溶液を加えて加水分解を実施してもよい。酸性水溶液を加えた場合、中和熱による発熱が顕著であるため、酸性水溶液を使用する場合には、まず水を加え、つぎに酸を加えて加水分解反応を実施する方法が好ましい。   Known hydrolysis reaction conditions and methods can be applied to the hydrolysis reaction in the step (iii). In the present invention, the hydrolysis reaction can be carried out by adding only water. Further, an acidic aqueous solution is added for the purpose of dissolving a water-insoluble magnesium salt (compound represented by the formula HOMgBr) generated by hydrolysis and facilitating a subsequent separation operation (for example, a liquid separation operation). Hydrolysis may be performed. When an acidic aqueous solution is added, heat generation due to heat of neutralization is remarkable. Therefore, when using an acidic aqueous solution, a method of adding a water first and then an acid to carry out a hydrolysis reaction is preferable.

加水分解に用いる水の量は、マグネシウムに対して2倍モル〜10倍モルが好ましい。酸を用いる場合の酸としては、塩酸、硫酸、硝酸が挙げられ、塩酸が好ましい。酸の量はマグネシウムに対して2倍モル〜4倍モルが好ましい。   The amount of water used for hydrolysis is preferably 2 to 10 moles relative to magnesium. Examples of the acid in the case of using an acid include hydrochloric acid, sulfuric acid, and nitric acid, and hydrochloric acid is preferable. The amount of the acid is preferably 2 to 4 times mol with respect to magnesium.

工程(iii)における加水分解反応の反応時間は、目的物の選択率と原料の転化率との兼ね合いから2時間から10時間が好ましい。また、反応圧力は目的物の選択率と原料の転化率との兼ね合いから0〜0.1MPaが好ましい。   The reaction time of the hydrolysis reaction in the step (iii) is preferably 2 hours to 10 hours in view of the balance between the selectivity of the target product and the conversion rate of the raw material. The reaction pressure is preferably 0 to 0.1 MPa in view of the balance between the selectivity of the target product and the conversion rate of the raw material.

工程(iii)における加水分解反応の温度は、−20℃以上+20℃以下とすることが好ましく、特に目的物の選択率と原料の転化率との兼ね合いから−20℃以上+10℃以下とすることがより好ましい。   The temperature of the hydrolysis reaction in the step (iii) is preferably −20 ° C. or higher and + 20 ° C. or lower, and is particularly preferably −20 ° C. or higher and + 10 ° C. or lower in view of the selectivity of the target product and the conversion rate of the raw material. Is more preferable.

工程(iii)で得られる(トリフルオロメチル)アルキルケトンは、そのまま目的とする用途に用いてもよい。通常の場合には、(トリフルオロメチル)アルキルケトンの反応生成物は、精製を行い、所望の純度としたものを、目的とする用途に用いるのが好ましい。精製方法としては、ろ過、蒸留、カラムクロマトグラフィー、高速液体クロマトグラフィー、分液等の方法が挙げられるが、これらに限定されない。また(トリフルオロメチル)アルキルケトンを保存する場合には、安定に保存するために、低温で保管、遮光下に保管等の方法で保存するのが好ましい。   The (trifluoromethyl) alkyl ketone obtained in step (iii) may be used as it is for the intended purpose. In the usual case, it is preferable to purify the reaction product of (trifluoromethyl) alkylketone and obtain a desired purity for the intended use. Examples of the purification method include, but are not limited to, filtration, distillation, column chromatography, high performance liquid chromatography, and liquid separation. Further, when the (trifluoromethyl) alkyl ketone is stored, it is preferably stored by a method such as storage at a low temperature and storage under light shielding in order to store it stably.

本発明の製造方法で生成する(トリフルオロメチル)アルキルケトンとしては、トリフルオロメチルエチルケトンが好ましい。   As the (trifluoromethyl) alkyl ketone produced by the production method of the present invention, trifluoromethyl ethyl ketone is preferable.

本発明の製造方法によれば、(トリフルオロメチル)アルキルケトンを高収率で得ることできる。特に本発明の製造方法では、(トリフルオロメチル)アルキルケトンを70%以上の高収率で得ることができる。   According to the production method of the present invention, (trifluoromethyl) alkyl ketone can be obtained in high yield. In particular, in the production method of the present invention, (trifluoromethyl) alkyl ketone can be obtained in a high yield of 70% or more.

以下、例により本発明をさらに具体的に説明するが、本発明はこれらにより限定されない。また、反応収率は、生成物を蒸留する前の抽出油層を、GCを用いた内部標準分析法で分析することによって求めた値であり、臭化エチルからの収率である。
[例1(実施例)]
500mLの4つ口フラスコに、マグネシウム(12g)およびシクロペンチルメチルエーテル(50mL)を加えた。そこに温度10〜20℃を保ちつつ臭化エチル(55g)をシクロペンチルメチルエーテル(100mL)に混合した混合液を1.5時間で滴下した。発熱がなくなったことを確認した後、反応器を0℃に冷却し、トリフルオロ酢酸エチル(73g)をシクロペンチルメチルエーテル(50mL)に溶解させた混合液を内部温度を0℃〜10℃の反応温度を保ちながら滴下速度を調節しつつ2.5時間かけて滴下した。発熱がなくなったことを確認した後、水(100mL)を滴下しグリニャール塩を分解した。更に5mol/Lの塩酸水溶液(100mL)を添加した後、有機層と水槽層を分離した。有機層をガスクロマトグラフにより分析した結果、1,1,1−トリフルオロ−2−ブタノンが確認され、反応収率は72%であった。有機層は常圧下、30℃〜80℃留分を単蒸留により得、それを更に常圧において長さ200mm、内径25mmの蒸留塔にヘリパックRを充填した蒸留塔により精製蒸留を行うことにより、44〜45℃の留分を得、これを製品とした。反応から製品を得るまでの収率は55%であった。得られた製品は遮光下にて−4℃以下の冷蔵保管を行った。
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto. The reaction yield is a value obtained by analyzing the extracted oil layer before distillation of the product by an internal standard analysis method using GC, and is a yield from ethyl bromide.
[Example 1 (Example)]
Magnesium (12 g) and cyclopentyl methyl ether (50 mL) were added to a 500 mL four-necked flask. Thereto was added dropwise a mixture of ethyl bromide (55 g) and cyclopentyl methyl ether (100 mL) while maintaining the temperature at 10 to 20 ° C. over 1.5 hours. After confirming that the exotherm had ceased, the reactor was cooled to 0 ° C., and a mixture of ethyl trifluoroacetate (73 g) dissolved in cyclopentyl methyl ether (50 mL) was reacted at an internal temperature of 0 ° C. to 10 ° C. It was added dropwise over 2.5 hours while adjusting the dropping rate while maintaining the temperature. After confirming that there was no exotherm, water (100 mL) was added dropwise to decompose the Grignard salt. Furthermore, after adding 5 mol / L hydrochloric acid aqueous solution (100 mL), the organic layer and the water tank layer were separated. As a result of analyzing the organic layer by gas chromatography, 1,1,1-trifluoro-2-butanone was confirmed, and the reaction yield was 72%. The organic layer is obtained by subjecting a 30 ° C. to 80 ° C. fraction by simple distillation under normal pressure, and further performing purification distillation using a distillation column filled with Helipac R in a distillation column having a length of 200 mm and an inner diameter of 25 mm at normal pressure, A fraction of 44 to 45 ° C. was obtained and used as a product. The yield from reaction to product was 55%. The obtained product was refrigerated at -4 ° C. or lower under light shielding.

[例2(実施例)]
例1における反応器温度を−20℃に冷却し、トリフルオロ酢酸エチル(73g)およびシクロペンチルメチルエーテル(50mL)の混合液を内部温度−20℃〜−10℃の反応温度を保ちながら滴下速度を調節しつつ2.5時間かけて滴下したこと以外は同様に反応を行い、1,1,1−トリフルオロ−2−ブタノンが確認された。また反応収率は83%であった。
[Example 2 (Example)]
The reactor temperature in Example 1 was cooled to −20 ° C., and the dropwise addition rate of a mixture of ethyl trifluoroacetate (73 g) and cyclopentyl methyl ether (50 mL) was maintained while maintaining the reaction temperature of −20 ° C. to −10 ° C. The reaction was carried out in the same manner except that it was added dropwise over 2.5 hours while adjusting, and 1,1,1-trifluoro-2-butanone was confirmed. The reaction yield was 83%.

[例3(参考例)]
例1におけるトリフルオロ酢酸エチル(73g)をトリフルオロ酢酸(29g)に変更した以外は、同様に反応を行い、1,1,1−トリフルオロ−2−ブタノンが確認された。また反応収率は45%であった。
[Example 3 (reference example)]
The reaction was conducted in the same manner except that ethyl trifluoroacetate (73 g) in Example 1 was changed to trifluoroacetic acid (29 g), and 1,1,1-trifluoro-2-butanone was confirmed. The reaction yield was 45%.

[例4(参考例)]
例1における反応器温度を10℃に冷却し、トリフルオロ酢酸エチル(73g)および(シクロペンチル)メチルエーテル(50mL)の混合液を内部温度10℃〜20℃の反応温度を保ちながら滴下速度を調節しつつ2.5時間かけて滴下したこと以外は同様に反応を行い、1,1,1−トリフルオロ−2−ブタノンが確認された。また反応収率は22%であった。
[Example 4 (reference example)]
The reactor temperature in Example 1 was cooled to 10 ° C., and the dropping rate was adjusted while maintaining the reaction temperature of the internal temperature of 10 ° C. to 20 ° C. for the mixture of ethyl trifluoroacetate (73 g) and (cyclopentyl) methyl ether (50 mL). However, the reaction was performed in the same manner except that it was added dropwise over 2.5 hours, and 1,1,1-trifluoro-2-butanone was confirmed. The reaction yield was 22%.

[例5(参考例)]
例1におけるシクロペンチルメチルエーテルをテトラヒドロフランに変更した以外は、同様に反応を行い、1,1,1−トリフルオロ−2−ブタノンが確認された。また反応収率は10%であった。
[Example 5 (reference example)]
The reaction was conducted in the same manner except that the cyclopentyl methyl ether in Example 1 was changed to tetrahydrofuran, and 1,1,1-trifluoro-2-butanone was confirmed. The reaction yield was 10%.

以上の結果から、本発明による例1〜3は、本発明によらない例4及び5と比較して、温和な反応条件下で、1,1,1−トリフルオロ−2−ブタノンを高い反応収率で製造できることが分かった。   From the above results, Examples 1 to 3 according to the present invention show higher reaction of 1,1,1-trifluoro-2-butanone under mild reaction conditions than Examples 4 and 5 not according to the present invention. It was found that it can be produced in a yield.

Claims (7)

以下の工程を含む式(A)で表される(トリフルオロメチル)アルキルケトンの製造方法。
(i)(シクロアルキル)アルキルエーテルの存在下で、マグネシウムと、式RBrで表わされる化合物(ただし、Rはアルキル基を示す。)とを反応させて式RMgBr(ただし、Rは前記と同じ意味を示す。)で表される化合物を得る工程。
(ii)(シクロアルキル)アルキルエーテルの存在下で、式RMgBr(ただし、Rは前記と同じ意味を示す。)で表される化合物と、式CFCOORで表わされる化合物(ただし、R2はエステル残基を示す。)とを反応させて式(B)で表される化合物を得る工程。
(iii)式(B)で表される化合物を加水分解することにより式(A)で表される(トリフルオロメチル)アルキルケトンを得る工程。
Figure 2011190216

Figure 2011190216
The manufacturing method of the (trifluoromethyl) alkyl ketone represented by Formula (A) including the following processes.
(I) In the presence of (cycloalkyl) alkyl ether, magnesium is reacted with a compound represented by the formula R 1 Br (where R 1 represents an alkyl group) to give a formula R 1 MgBr (where R 1 1 represents the same meaning as described above).
(Ii) In the presence of (cycloalkyl) alkyl ether, a compound represented by the formula R 1 MgBr (where R 1 has the same meaning as described above) and a compound represented by the formula CF 3 COOR 2 (provided that , R 2 represents an ester residue) to obtain a compound represented by the formula (B).
(Iii) A step of obtaining a (trifluoromethyl) alkyl ketone represented by the formula (A) by hydrolyzing the compound represented by the formula (B).
Figure 2011190216

Figure 2011190216
以下の工程を含む式(A)で表される(トリフルオロメチル)アルキルケトンの製造方法。
(ii)(シクロアルキル)アルキルエーテルの存在下で、式RMgBr(ただし、Rは前記と同じ意味を示す。)で表される化合物と、式CFCOORで表わされる化合物(ただし、R2はエステル残基を示す。)とを反応させて式(B)で表される化合物を得る工程。
(iii)式(B)で表される化合物を加水分解することにより式(A)で表される(トリフルオロメチル)アルキルケトンを得る工程。
Figure 2011190216

Figure 2011190216
The manufacturing method of the (trifluoromethyl) alkyl ketone represented by Formula (A) including the following processes.
(Ii) In the presence of (cycloalkyl) alkyl ether, a compound represented by the formula R 1 MgBr (where R 1 has the same meaning as described above) and a compound represented by the formula CF 3 COOR 2 (provided that , R 2 represents an ester residue) to obtain a compound represented by the formula (B).
(Iii) A step of obtaining a (trifluoromethyl) alkyl ketone represented by the formula (A) by hydrolyzing the compound represented by the formula (B).
Figure 2011190216

Figure 2011190216
以下の工程による式(B)で表される化合物の製造方法。
(ii)(シクロアルキル)アルキルエーテルの存在下で、式RMgBr(ただし、Rは前記と同じ意味を示す。)で表される化合物と、式CFCOORで表わされる化合物(ただし、Rはエステル残基を示す。)とを反応させて式(B)で表される化合物を得る工程。
Figure 2011190216
The manufacturing method of the compound represented by Formula (B) by the following processes.
(Ii) In the presence of (cycloalkyl) alkyl ether, a compound represented by the formula R 1 MgBr (where R 1 has the same meaning as described above) and a compound represented by the formula CF 3 COOR 2 (provided that , R 2 represents an ester residue.) To obtain a compound represented by the formula (B).
Figure 2011190216
(ii)において、−20℃〜+10℃の反応温度を保ちながら、式RMgBr(ただし、Rは前記と同じ意味を示す。)で表される化合物と、式CFCOORで表わされる化合物(ただし、Rは前記と同じ意味を示す。)とを反応させる請求項1〜3のいずれか1項に記載の製造方法。 In (ii), while maintaining the reaction temperature of −20 ° C. to + 10 ° C., the compound represented by the formula R 1 MgBr (where R 1 has the same meaning as described above) and the formula CF 3 COOR 2 are used. The manufacturing method of any one of Claims 1-3 with which the compound (However, R < 2 > shows the same meaning as the above.) Is made to react. (シクロアルキル)アルキルエーテルが、シクロヘキシルメチルエーテルである請求項1〜4のいずれか1項に記載の製造方法。   (Cycloalkyl) alkyl ether is cyclohexyl methyl ether, The manufacturing method of any one of Claims 1-4. 反応収率70%以上で(トリフルオロメチル)アルキルケトンを得る、請求項1〜4のいずれか1項に記載の製造方法。   The manufacturing method of any one of Claims 1-4 which obtains (trifluoromethyl) alkyl ketone by reaction yield 70% or more. がエチル基であり、Rが炭素数1〜6のアルキル基である請求項1〜6のいずれか1項に記載の製造方法。 R 1 is an ethyl group, a manufacturing method according to any one of claims 1 to 6 R 2 is an alkyl group having 1 to 6 carbon atoms.
JP2010058030A 2010-03-15 2010-03-15 Method for producing (trifluoromethyl) alkyl ketone Withdrawn JP2011190216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010058030A JP2011190216A (en) 2010-03-15 2010-03-15 Method for producing (trifluoromethyl) alkyl ketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010058030A JP2011190216A (en) 2010-03-15 2010-03-15 Method for producing (trifluoromethyl) alkyl ketone

Publications (1)

Publication Number Publication Date
JP2011190216A true JP2011190216A (en) 2011-09-29

Family

ID=44795512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010058030A Withdrawn JP2011190216A (en) 2010-03-15 2010-03-15 Method for producing (trifluoromethyl) alkyl ketone

Country Status (1)

Country Link
JP (1) JP2011190216A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077804A1 (en) * 2010-12-10 2012-06-14 旭硝子株式会社 Method for producing (trifluoromethyl)alkyl ketone

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282340A (en) * 1989-04-25 1990-11-19 Showa Shell Sekiyu Kk Asymmetric synthesis of secondary alcohol
WO2003002500A1 (en) * 2001-06-28 2003-01-09 Zeon Corporation Solvents containing cycloalkyl alkyl ethers and process for production of the ethers
JP2009001551A (en) * 2007-05-18 2009-01-08 Sumitomo Chemical Co Ltd Organic sulfur compound and its use for controlling harmful arthropod

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282340A (en) * 1989-04-25 1990-11-19 Showa Shell Sekiyu Kk Asymmetric synthesis of secondary alcohol
WO2003002500A1 (en) * 2001-06-28 2003-01-09 Zeon Corporation Solvents containing cycloalkyl alkyl ethers and process for production of the ethers
JP2009001551A (en) * 2007-05-18 2009-01-08 Sumitomo Chemical Co Ltd Organic sulfur compound and its use for controlling harmful arthropod

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013056455; Xavier Creary: 'Reaction of organometallic reagents with ethyl trifluoroacetate and diethyl oxalate. Formation of tr' The Journal of Organic Chemistry V52, N22, 1987, P5026-5030 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077804A1 (en) * 2010-12-10 2012-06-14 旭硝子株式会社 Method for producing (trifluoromethyl)alkyl ketone

Similar Documents

Publication Publication Date Title
KR101620925B1 (en) Process for preparing 1,2-hexanediol
Yu et al. Visible Light‐Induced Methoxycarbonyldifluoromethylation of Trimethylsilyl Enol Ethers and Allyltrimethylsilanes with FSO2CF2CO2Me
JP2008222606A (en) Process for producing ester, carboxylic acid and amide
JP2004300131A (en) Method for producing alcohol by hydrogenation of ester
JP6028606B2 (en) Method for producing amine compound
US8729320B2 (en) Method for producing difluorocyclopropane compound
JP2011190216A (en) Method for producing (trifluoromethyl) alkyl ketone
EP3196183B1 (en) Method for producing 2&#39;-trifluoromethyl group-substituted aromatic ketone
WO2012077804A1 (en) Method for producing (trifluoromethyl)alkyl ketone
JP2022021915A (en) 3,3-dimethyl-1-butene-1,4-dicarboxylate compounds and 1,3,3-trimethyl-1-butene-1,4-dicarboxylate compounds, and processes for preparing 5,5-dimethyl-2-oxo-3-cyclopentene-1-carboxylate compounds and 3,5,5-trimethyl-2-oxo-3-cyclopentene-1-carboxylate compounds using the same
JP5585992B2 (en) Method for producing nucleophilic adduct using Grignard reaction and nucleophilic addition reagent
JP2007290973A (en) Nucleophilic reagent containing zinc-magnesium ate complex and method for producing nucleophilic adduct using the same
JP2010001222A (en) Method for producing alcohol
JP2007131600A (en) Production method for fluorine-containing lactic acid derivative, and its intermediate
JP4393839B2 (en) Preparation of 1,3-di-halo substituted benzene derivatives
JP2016069299A (en) Method for producing 2-trifluoromethyl benzoic acid ester
JP2010180142A (en) Method for producing cyclohexanecarbonitrile
WO2005014519A1 (en) Process for the preparation of geminal difluoroalkanes
JP6556476B2 (en) Difluoromethylzinc compound
JP4374987B2 (en) Method for producing 2-bromocyclopentanone
JP2006001925A (en) Method for producing 3,4,5-trifluorobenzyl alcohol
RU2473531C1 (en) Method of producing 1,1,1,3-tetraphenylpropyne
JP2016124788A (en) Production method of long chain ketoalcohol, and long chain diol formed by reducing the long chain ketoalcohol
JP2014076981A (en) Process for producing asymmetric dialkylamine compound
JP4370187B2 (en) Method for producing fluorine-containing unsaturated ester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131107

A131 Notification of reasons for refusal

Effective date: 20131119

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Effective date: 20140108

Free format text: JAPANESE INTERMEDIATE CODE: A761

RD04 Notification of resignation of power of attorney

Effective date: 20140210

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A072 Dismissal of procedure

Effective date: 20140603

Free format text: JAPANESE INTERMEDIATE CODE: A072