WO2018180517A1 - Electrode base material, and electrode catalyst and electrolysis apparatus each using same - Google Patents

Electrode base material, and electrode catalyst and electrolysis apparatus each using same Download PDF

Info

Publication number
WO2018180517A1
WO2018180517A1 PCT/JP2018/010104 JP2018010104W WO2018180517A1 WO 2018180517 A1 WO2018180517 A1 WO 2018180517A1 JP 2018010104 W JP2018010104 W JP 2018010104W WO 2018180517 A1 WO2018180517 A1 WO 2018180517A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
catalyst
electrode
base material
layer
Prior art date
Application number
PCT/JP2018/010104
Other languages
French (fr)
Japanese (ja)
Inventor
可織 関根
俊夫 谷
英樹 會澤
吉則 風間
稲森 康次郎
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Publication of WO2018180517A1 publication Critical patent/WO2018180517A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an electrode base material, and an electrode catalyst and an electrolysis apparatus using the same.
  • the catalyst used for the reduction reaction of carbon dioxide requires not only the reaction efficiency but also selectivity for a specific reaction. From such a viewpoint, selection of a material is important (Non-patent Document 1).
  • gold and silver are effective in reducing and producing carbon monoxide efficiently
  • copper is the catalyst material in efficiently reducing and producing hydrocarbons such as methane, ethane and ethylene.
  • copper attracts attention as a cathode reduction electrode catalyst for carbon dioxide because it can produce higher-order organic substances such as ethylene.
  • a copper reduction electrode catalyst As such a copper reduction electrode catalyst, a flat type such as a copper plate or a copper foil, a mesh or a porous one has been proposed (Patent Documents 1 and 2), and a catalyst is formed by electrodeposition or vapor deposition on a substrate.
  • a copper electrode catalyst having a fixed material is also used.
  • the catalyst material fixedly formed on the base material reacts or interdiffuses with the atoms constituting the base material over time, and is integrated with the base material or altered.
  • the desired catalyst performance as a catalyst material may not be exhibited.
  • the present invention has been made in view of the above problems, and is suitably used as a base material of a catalyst for generating hydrogen by electrolysis of water, or for converting carbon dioxide into a carbon-containing substance by cathodic reduction of carbon dioxide,
  • An object of the present invention is to provide an electrode base material capable of improving the catalytic performance of the catalyst, and an electrode catalyst and an electrolysis apparatus using the same.
  • the present inventors have found out from a base made of copper or a copper-based alloy and an organic material formed on the surface of the base directly or via an oxide layer.
  • the gist configuration of the present invention is as follows.
  • An electrode substrate comprising: a substrate made of copper or a copper-based alloy; and a diffusion prevention layer containing an organic material formed directly or via an oxide layer on the surface of the substrate. Wood.
  • An electrode base material used as a base material constituting a catalyst for producing hydrogen by electrolysis of water or catalyzing carbon dioxide to convert it into a carbon-containing substance.
  • [5] The electrode base material according to any one of the above [1] to [4], and a catalyst layer containing a catalyst material containing a metal cluster formed on the diffusion prevention layer of the electrode base material.
  • An electrolysis apparatus comprising the copper base material according to any one of [1] to [4] above or the electrode catalyst according to [5] or [6] above.
  • [8] A cathode using the copper base material according to any one of [1] to [4], a cathode electrolyte, an anode, the anode electrolyte, and between the cathode and the anode. And an ion exchange membrane.
  • a catalyst for generating hydrogen by electrolysis of water or for converting carbon dioxide into a carbon-containing substance by cathodic reduction According to such an electrode base material, a catalyst capable of exhibiting good catalytic performance for electrolysis of water and cathode reduction of carbon dioxide can be obtained.
  • FIG. 1 is a schematic cross-sectional view showing an example of the copper-based substrate of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another example of the copper-based substrate of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing an example of a catalyst using the copper base material of the present invention.
  • FIG. 4 is a configuration diagram schematically showing the electrolysis apparatus.
  • FIG. 5 is a schematic cross-sectional view showing a configuration of an electrolysis cell (carbon dioxide reduction cell or water decomposition cell device) in the electrolysis apparatus shown in FIG.
  • an electrolysis cell carbon dioxide reduction cell or water decomposition cell device
  • Embodiments of an electrode substrate according to the present invention, and an electrode catalyst and an electrolysis apparatus using the electrode substrate will be described in detail below.
  • the electrode base material according to the present embodiment has a base made of copper or a copper-based alloy, and a diffusion prevention layer made of an organic material formed directly on the surface of the base or through an oxide layer.
  • a copper-based electrode base material is preferably used as a copper-based electrode base material constituting a catalyst for hydrogen generation by electrolysis of water, or cathodic reduction of a carbon dioxide base material to convert it to a carbon-containing material. It is done.
  • FIG. 1 shows a schematic cross-sectional view schematically showing a cross section of the copper base material according to the present embodiment.
  • a copper-based substrate 1 a according to the present invention includes a base 11 and a diffusion prevention layer 13 formed directly on the base 11.
  • the copper base material 1b shown in FIG. 2 includes an oxide layer between the base 11 and the diffusion prevention layer 13. Twelve.
  • the copper-based substrate 1a shown in FIG. 1 and the copper-based substrate 1b shown in FIG. 2 are simply referred to as “copper-based substrate 1” unless otherwise distinguished.
  • FIG. 3 is an example when the copper base material according to the present embodiment is used as a catalyst base material, and schematically shows a cross section of the catalyst 3 using the copper base material 1a shown in FIG. It is sectional drawing.
  • the catalyst layer 31 is formed on the diffusion preventing layer 13 of the copper-based substrate 1a.
  • the catalyst layer 31 is the same as the catalyst 3 shown in FIG. Formed on layer 13.
  • the copper-based substrate 1 according to the present embodiment used in this way has a diffusion prevention layer 13 formed directly on the substrate 11 or through the oxide layer 12, thereby providing a substrate for the catalyst 3.
  • the catalyst performance of the catalyst layer 31 is not deteriorated. That is, according to the copper-based substrate 1, since the catalyst layer 31 is formed on the diffusion preventing layer 13, the catalyst material constituting the catalyst layer 31 and the constituent components of the substrate 11 and the oxide layer 12 are in direct contact with each other. There is nothing. Therefore, it is possible to effectively prevent reaction or mutual diffusion over time with the atoms constituting the substrate 11 and the oxide layer 12.
  • the copper base material 1 according to the present embodiment is used, it is possible to effectively suppress deterioration over time due to integration and alteration of the catalyst material and the base material, which has been a problem with conventional base materials. Therefore, the catalyst performance peculiar to the catalyst material can be sufficiently and continuously exhibited.
  • the diffusion preventing layer 13 is made of an organic material.
  • the organic material when the copper base material 1 is used as the base material of the catalyst 3, the catalyst material constituting the catalyst layer 31 is between the constituents of the base material 11 and the oxide layer 12.
  • Any organic material that can effectively prevent reaction or interdiffusion with time can be used, and in particular, it is a material that inhibits the movement of components between the substrate 11 and the oxide layer 12 and the catalyst layer 31. Is preferred. Examples of such a material include compounds such as azoles such as triazoles, thiazoles and imidazoles, mercaptans and triethanolamines.
  • azoles are preferable because they have good affinity with copper (for example, coordinate bond to copper), more preferably triazoles, and still more preferably benzotriazoles.
  • benzotriazoles for example, benzotriazole is preferable.
  • the formation state of the diffusion preventing layer 13 is not particularly limited and can be appropriately selected according to the shape of the base body 11 and the usage pattern, and may be formed on at least one surface of the base material 11. It may be formed so as to cover the entire surface.
  • the thickness of the diffusion preventing layer 13 is quantitatively expressed by an inverse value of the electric double layer capacity.
  • the reciprocal value of the electric double layer capacity obtained by the above formula (1) is induced in proportion to the thickness d of the electric double layer formed on the substrate, that is, the thickness of the diffusion prevention layer 13.
  • the reciprocal value of the electric double layer capacitance is preferably 0.3 to 5 cm 2 / ⁇ F, and more preferably 0.5 to 1.5 cm 2 / ⁇ F. By setting it as the above range, a catalyst capable of exhibiting excellent catalyst performance can be obtained when used as a catalyst substrate.
  • the reciprocal value of the electric double layer capacity is 0.3 to 5 cm 2 / ⁇ F
  • the thickness of the diffusion prevention layer 13 is measured with an electron microscope, and the average is about 4 to 75 nm.
  • the substrate 11 is made of copper or a copper-based alloy.
  • copper pure copper
  • variously processed tough pitch copper TPC, phosphorus deoxidized copper PDC, oxygen-free copper OFC, or electrolytic copper foil can be used.
  • a copper-based dilute alloy such as a copper-tin alloy, a copper-iron alloy, a copper-zirconium alloy, or a copper-chromium alloy can be used. It is also possible to use a solid solution or precipitation strengthened copper-based dilute alloy in which the component after the second component such as a Corson alloy system is about 0.01 to 5% by mass.
  • the conductivity tends to decrease and the basic characteristics as a base electrode tend to be reduced, so the additive amount of components other than silver is small.
  • substrate 11 is not specifically limited, A thing of a mesh and a porous shape other than flat form can also be used, and a flat thing is preferable especially.
  • the oxide layer 12 is an arbitrary layer and is formed between the base 11 and the diffusion prevention layer 12.
  • Such an oxide layer 12 is preferably composed of, for example, a metal oxide layer, and is preferably an oxide containing at least one metal selected from transition metals, in particular, copper.
  • the oxide containing is preferable.
  • the copper oxide include non-stoichiometric copper oxide in addition to cuprous oxide (Cu 2 O) and cupric oxide (CuO).
  • the oxide layer 12 preferably contains at least one of cuprous oxide and cupric oxide.
  • the oxide layer 12 may be a single layer composed of one oxide layer, or may be a multilayer composed of two or more oxide layers. Further, when the oxide layer 12 is a single layer composed of one oxide layer, it may be a layer composed of one kind of oxide, or may be a layer in which two or more kinds of oxides are mixed. Good. Further, when the oxide layer 12 is a multi-layer composed of two or more oxide layers, each layer does not necessarily have to be clearly separate layers, and each layer is configured at the boundary between the two layers. Each of the oxides may be mixed. In addition to the various oxides, the oxide layer 12 may contain about 500 to 1000 ppm of the above-described organic materials, metals and alloys constituting the substrate.
  • the oxide layer 12 preferably contains at least cuprous oxide or cupric oxide.
  • a single layer containing at least one of cuprous oxide and cupric oxide, a layer made of cuprous oxide (hereinafter referred to as “cuprous oxide layer”) and A multilayer including at least one of layers made of cupric oxide (hereinafter referred to as “cupric oxide layer”) may be mentioned.
  • the oxide layer 12 is preferably composed of two or more copper oxide layers having different copper oxidation numbers, and more preferably composed of a cuprous oxide layer and a cupric oxide layer. Moreover, it is more preferable that the copper oxide layer of such two or more layers has a higher copper oxidation number as the layer is located on the surface side.
  • FIG. 2 shows a schematic cross-sectional view schematically showing a cross section of the copper-based substrate 1b according to the present embodiment.
  • the oxide layer 12 is composed of a first copper oxide layer 121 and a second copper oxide layer 122 having different copper oxidation numbers.
  • the second copper oxide layer 122 located on the surface side of the first copper oxide layer 121 has a copper oxidation number larger than that of the first copper oxide layer 121.
  • the cupric oxide layer is oxidized as in the case where the first copper oxide layer 121 is a cuprous oxide layer and the second copper oxide layer 122 is a cupric oxide layer. It is preferable that it is an outer layer rather than a 1st copper layer. Further, the ratio of the thickness of the cuprous oxide layer to the cupric oxide layer is preferably 0.0001 to 10,000, and more preferably 1 to 10,000.
  • the manufacturing method of the copper base material which concerns on this embodiment has the process of forming a diffusion prevention layer in the surface of a base
  • Pretreatment process First, a base made of copper or a copper-based alloy is prepared, and the surface of the base is cleaned. By cleaning the surface of the substrate, a diffusion preventing layer can be formed uniformly on the substrate surface in a later step, and adhesion between the substrate and the diffusion preventing layer can be improved.
  • the surface cleaning can be performed by a known method, but it is desirable to perform acid cleaning (neutralization) after immersion degreasing or cathode electrolytic degreasing.
  • a diffusion prevention layer is formed on the surface of the substrate after the pretreatment. Specifically, the diffusion preventing layer is formed on the substrate by immersing the substrate in a solution containing an organic material to be formed as the diffusion preventing layer and drying it.
  • the organic material described above can be used as the organic material.
  • a solvent of the solution containing an organic material for example, a known solvent such as water or alcohol can be used.
  • the temperature of the solution containing the organic material may be 60 to 100 ° C.
  • the immersion time may be about 1.5 to 4 minutes
  • the drying temperature may be 60 to 90 ° C. .
  • the thickness of the diffusion preventing layer can be adjusted by the number of organic materials, the concentration of the solution, and the steps of immersion and drying.
  • a step of forming the oxide layer is performed prior to the step of forming the diffusion preventing layer.
  • the step of forming the oxide layer is preferably a step of performing any one of immersion treatment, anodic oxidation treatment and heat oxidation treatment on the substrate before forming the diffusion prevention layer.
  • the catalyst according to the present embodiment preferably includes the above-described copper-based substrate according to the present embodiment and a catalyst layer including a catalyst material formed on the diffusion-preventing layer of the copper-based substrate.
  • FIG. 3 shows a catalyst 3 using the copper base material 1a shown in FIG. 1 as an example of the catalyst according to the present embodiment.
  • the catalyst 3 has a catalyst layer 31 containing a catalyst material on the diffusion prevention layer 13 of the copper base material 1.
  • the catalytic reaction mainly occurs on the surface of the catalyst layer 31 or in the vicinity of the surface.
  • the constituent component of the catalyst layer 31 reacts with or diffuses with the constituent component of the base 11 constituting the copper base material 1 and the oxide layer 12 that is arbitrarily formed. Therefore, the reaction efficiency of the catalytic reaction by the catalyst layer 31 does not decrease with time.
  • Examples of the catalyst material constituting the catalyst layer 31 include a cluster catalyst including metal clusters and nanoparticles. Especially, the catalyst material containing a metal cluster is especially preferable from the high catalyst performance.
  • the catalyst material includes a metal cluster
  • a conventional base material that does not have the diffusion prevention layer 13 according to the present embodiment is used, the metal cluster included in the catalyst layer 31 and the copper component that forms the base material Inter-diffusion and fusion with each other, and the performance specific to the cluster catalyst is not fully exhibited.
  • the copper-based substrate 1 having the diffusion prevention layer 13 according to the present embodiment even when the catalyst material includes a metal cluster, it is possible to effectively prevent the diffusion of atoms, and thus the cluster catalyst. As the performance does not deteriorate. That is, the copper-based substrate 1 according to the present embodiment can be particularly suitably used as a substrate for forming a catalyst layer made of a catalyst material containing a metal cluster.
  • the cluster means an aggregate of about 2 to 100 metal atoms. Of these, an aggregate of 10 to 40 metal atoms is preferable.
  • the metal cluster includes one or more metals selected from platinum (Pt), gold (Au), silver (Ag), copper (Cu), palladium (Pd), and iron (Fe). Among them, those containing copper are preferable, and those made of copper or a copper-based alloy are more preferable.
  • the catalyst material containing a metal cluster may contain about 30% by mass of metal particles other than the cluster in the catalyst material.
  • the method for producing a catalyst according to the present embodiment includes a step of forming a catalyst layer on the surface of the diffusion preventing layer of the copper-based substrate according to the present embodiment. Moreover, you may have further the process of forming a surface protective layer on the surface of a catalyst layer as needed. This will be specifically described below.
  • a copper base material according to the present embodiment is prepared.
  • a catalyst layer made of a catalyst material containing a metal cluster is formed on the diffusion preventing layer of the copper base material.
  • Such a catalyst layer can be formed by vapor-depositing a cluster catalyst on the diffusion preventing layer of the copper base material.
  • a cluster catalyst is produced by using an apparatus including a vacuumed chamber, a cluster growth cell installed in the chamber, and a sputtering source (magnetron sputtering source) installed in the cluster growth cell. create.
  • the cluster growth cell is surrounded by a liquid nitrogen jacket, and liquid nitrogen (N 2 ) flows through the liquid nitrogen jacket.
  • argon gas (Ar) is supplied to the sputtering source, and helium gas (He) is supplied into the cluster growth cell.
  • Pulse power is supplied from a pulse power source for the sputtering source, and sputtered particles such as neutral atoms and ions derived from the target are released from the target into the helium gas. Metal atoms and metal ions generated from these sputtering sources are cooled and agglomerated with the aforementioned helium gas to produce a cluster catalyst.
  • Such a catalyst according to the present invention is particularly suitable as an electrode catalyst. That is, the electrode catalyst according to the present embodiment is a catalyst layer made of a copper-based substrate according to the present embodiment and a catalyst material including a metal cluster formed on the diffusion-preventing layer of the copper-based substrate. It is preferable to have.
  • Such an electrode catalyst can be suitably used as a cathode electrode of a carbon dioxide reduction apparatus described later.
  • the reaction overvoltage in the cathode reduction can be reduced, so that the required external bias voltage (external power) is reduced. That is, in cathodic reduction, the current efficiency of the reaction is increased, and the yield and productivity are improved.
  • the electrolysis apparatus preferably uses the copper base material according to the present embodiment or the electrode catalyst according to the present embodiment.
  • the method for forming the device is not particularly limited, and can be performed by a known method.
  • Examples of the electrolysis device include a carbon dioxide reduction device and a water electrolysis device.
  • the electrode catalyst using the copper base material according to the present embodiment is used as a cathode electrode for electrochemical reduction (electrolytic reduction, cathode reduction) of carbon dioxide will be described.
  • FIG. 4 is a block diagram showing the configuration of the electrolysis apparatus 3 that performs electrochemical reduction of carbon dioxide.
  • the electrolyzer 3 mainly includes a power supply 31, an electrolysis cell 33, a gas recovery device 35, an electrolyte solution circulation device 37, a carbon dioxide supply unit 39, and the like.
  • the electrolysis cell 33 is a part that reduces the target substance, and is also a part that includes the cathode electrode according to the present embodiment, and includes carbon dioxide (in the solution, in addition to dissolved carbon dioxide, hydrogen carbonate ions are included. Hereinafter, it is a site that simply reduces carbon dioxide. Electric power is supplied from the power source 31 to the electrolysis cell 33.
  • the electrolytic solution circulation device 37 is a part that circulates the cathode side electrolytic solution with respect to the cathode electrode of the electrolytic cell 33.
  • the electrolytic solution circulation device 37 is, for example, a tank and a pump. Carbon dioxide or the like is supplied from the carbon dioxide supply unit 39 so as to have a predetermined carbon dioxide concentration and is dissolved in the electrolytic solution. It is possible to circulate the electrolyte.
  • the gas recovery device 35 is a part that recovers the gas generated by reduction by the electrolytic cell 33.
  • the gas recovery device 35 can collect gas such as hydrocarbons generated at the cathode electrode of the electrolytic cell 33. In the gas recovery device 35, the gas may be separable for each gas type.
  • the electrolyzer 3 functions as follows. As described above, an electrolytic potential from the power source 31 is applied to the electrolytic cell 33.
  • the electrolytic solution is supplied to the cathode electrode of the electrolytic cell 33 by the electrolytic solution circulation device 37 (arrow A in the figure).
  • carbon dioxide or the like in the supplied electrolytic solution is reduced. When carbon dioxide and the like are reduced, hydrocarbons such as ethane and ethylene are mainly produced.
  • the hydrocarbon gas generated at the cathode electrode is recovered by the gas recovery device 35 (arrow B in the figure).
  • the gas recovery device 35 can separate and store the gas as necessary.
  • the concentration of carbon dioxide and the like in the electrolyte decreases. Carbon dioxide or the like that has been reduced by the reduction reaction is always replenished, and its concentration is always kept within a predetermined range. Specifically, a part of the electrolytic solution is collected by the electrolytic solution circulation device 37 (arrow C in the figure), and an electrolytic solution having a predetermined concentration is always supplied (arrow A in the figure). As described above, in the electrolytic cell 33, hydrocarbons can always be generated under certain conditions.
  • FIG. 5 is a diagram showing the configuration of the electrolysis cell 33.
  • the electrolysis cell 33 mainly includes a tank 316a which is a cathode tank, a metal mesh 317, a cathode electrode 319, a cation exchange membrane 321, an anode electrode 320, a tank 316b which is an anode tank, and the like.
  • Electrolytes 315a and 315b are held in the tanks 316a and 316b, respectively.
  • a hole for recovering the generated gas is formed and connected to a gas recovery device (not shown). That is, the gas generated at the cathode electrode is recovered from the hole.
  • piping etc. are connected to the tank 316a, and it connects with the electrolyte solution circulation apparatus 37 which abbreviate
  • the electrolyte 315a that is a cathode electrolyte is preferably an electrolyte that can dissolve a large amount of carbon dioxide and the like.
  • An alkaline solution such as potassium hydrogen, monomethanolamine, methylamine, other liquid amines, or a mixture of these liquid amines and an aqueous electrolyte solution may be used.
  • acetonitrile, benzonitrile, methylene chloride, tetrahydrofuran, propylene carbonate, dimethylformamide, dimethyl sulfoxide, methanol, ethanol, and the like can be used.
  • water electrolysis for the purpose of generating hydrogen, an appropriate aqueous solution or pure water may be used.
  • the electrolytic solution 315b which is an anode electrolytic solution
  • the above-described cathode electrolytic solution can be used, or an appropriate pure water or aqueous solution can be used.
  • the metal mesh 317 is a member that is connected to the negative electrode side of the power supply 31 together with the reference electrode 318 and energizes the cathode electrode 319.
  • the metal mesh 317 is, for example, a copper mesh or a stainless steel mesh, and a silver / silver chloride electrode can be used as the reference electrode 318.
  • cation exchange membrane 32 for example, a known Nafion system can be used. Hydrogen ions generated together with oxygen in the anode reaction can be moved to the cathode side.
  • the anode electrode 320 is connected to the positive electrode of the power source 31.
  • an electrode having a small oxygen generation overvoltage for example, an electrode in which a base material such as titanium or stainless steel is coated with iridium oxide, platinum, rhodium, or the like, an oxide electrode, a stainless electrode, a lead electrode, or the like is used. be able to.
  • the anode electrode 320 can also be comprised with a photocatalyst or a semiconductor electrode catalyst. That is, an electromotive force can be generated by irradiating light. By doing so, an electromotive force is generated by irradiating the anode electrode with light such as sunlight, and this electromotive force can be used as an electrolysis potential in the electrolysis cell 33.
  • carbon dioxide or the like in the electrolyte is reduced.
  • Carbon dioxide is dissolved in water, exists in the electrolyte in the form of dissolved carbon dioxide and hydrogen carbonate ions, and is supplied to the cathode electrode.
  • a cathode electrode made of a material other than copper a large amount of hydrogen and carbon monoxide tends to be generated, and almost no hydrocarbon is generated.
  • hydrocarbons can be generated relatively efficiently.
  • the cathode electrode 319 according to the present embodiment is composed of the electrode catalyst according to the present embodiment. That is, the cathode electrode 319 is formed by forming a catalyst layer on the copper base material according to the present embodiment.
  • carbon dioxide can be efficiently decomposed and reduced, and hydrocarbons useful as energy can be generated with high energy efficiency.
  • Example 1 First, a TPC copper plate (10 mm ⁇ 10 mm ⁇ 0.1 mm, manufactured by Furukawa Electric Co., Ltd.) was prepared as a base. Next, as a pretreatment, the prepared substrate is degreased by cathode using a cleaner 160 (Meltex Co., Ltd.) aqueous solution, washed with water, and then acidified using a dilute sulfuric acid aqueous solution (sulfuric acid concentration 10 mass%). Wash neutralization and further water washing.
  • a cleaner 160 Meltex Co., Ltd.
  • 2% by mass aqueous solution of benzotriazole manufactured by Johoku Chemical Industry Co., Ltd.
  • 2% by mass BTA solution a 2% by mass aqueous solution of benzotriazole (manufactured by Johoku Chemical Industry Co., Ltd.)
  • Immersion treatment was carried out under conditions of 80 ° C. for 2 minutes and then dried at 80 ° C. to prepare a copper base material having a diffusion prevention layer on the surface of the substrate.
  • copper nanocluster ions are generated by magnetron sputtering using Cu pellets as a raw material according to the method described in the specification of International Publication No. 2014/192703 on the diffusion-preventing layer of the obtained copper-based substrate.
  • An electrode catalyst was obtained.
  • Example 2 In Example 2, instead of the 2% by mass BTA solution, a 0.5% by mass aqueous solution of benzotriazole (manufactured by Johoku Chemical Co., Ltd.) (hereinafter simply referred to as “0.5% by mass BTA solution”) was used. Except for the above, a copper-based substrate and an electrode catalyst using the same were prepared in the same manner as in Example 1.
  • benzotriazole manufactured by Johoku Chemical Co., Ltd.
  • Example 3 In Example 3, except that the immersion treatment using the 0.5 mass% BTA solution was repeated a plurality of times until the reciprocal of the electric double layer capacity shown in Table 1 was obtained with 80 ° C. drying in between. A copper base material and an electrode catalyst using the same were prepared in the same manner as in Example 2.
  • Examples 4 to 6 In Examples 4 to 6, except that the immersion treatment using the 2% by mass BTA solution was repeated a plurality of times until the reciprocal number of each electric double layer capacity shown in Table 1 was obtained with 80 ° C. drying in between. A copper-based substrate and an electrode catalyst using the same were prepared in the same manner as in Example 1.
  • Example 7 In Example 7, instead of the 2% by mass BTA solution, a 2.5% by mass aqueous solution of tolyltriazole (manufactured by Johoku Chemical Co., Ltd.) (hereinafter simply referred to as “2.5% by mass TTA solution”) was used.
  • the copper base material and this were used in the same manner as in Example 1 except that the conditions for the immersion treatment using the 2.5 mass% TTA solution were 60 ° C. for 2 minutes and the subsequent drying conditions were 60 ° C.
  • the electrode catalyst was prepared.
  • Example 8 a copper base material was prepared in the same manner as in Example 7 except that a 2.5% by mass aqueous solution of imidazole (manufactured by Johoku Chemical Co., Ltd.) was used instead of the 2.5% by mass TTA solution. And the electrode catalyst using this was produced.
  • a 2.5% by mass aqueous solution of imidazole manufactured by Johoku Chemical Co., Ltd.
  • Example 9 In Example 9, instead of the 2.5% by mass TTA solution, an aqueous solution containing 1% by mass of benzotriazole (manufactured by Johoku Chemical Industry Co., Ltd.) and 1.5% by mass of triazole (manufactured by Johoku Chemical Industry Co., Ltd.) was used. Except for the above, a copper-based substrate and an electrode catalyst using the same were prepared in the same manner as in Example 7.
  • Comparative Example 1 An electrode catalyst was obtained in the same manner as in Example 1 except that the diffusion prevention layer was not formed and copper clusters were directly deposited on the surface of the pretreated substrate.
  • Comparative Example 2 In Comparative Example 2, instead of the 2% by mass BTA solution, a 5% by mass aqueous solution of silica fine powder, which is an inorganic material, was prepared, and the substrate after the above pretreatment was added to this silica solution at 30 ° C. for 1 minute. A copper base material and an electrode catalyst using the same were prepared in the same manner as in Example 1, except that the diffusion prevention layer was formed on the surface of the substrate by dipping the substrate at 80 ° C.
  • Example 10 a copper base material was produced by the same method as in Example 1, and the diffusion preventive layer of the obtained copper base material was subjected to the method described in the specification of International Publication No. 2014/192703.
  • Pd nanocluster ions were generated by magnetron sputtering using palladium (Pd) pellets as a raw material to obtain a Pd cluster electrode catalyst.
  • Carbon dioxide reduction test Carbon dioxide reduction tests were conducted using the electrode catalysts of Examples 1 to 10 and Comparative Examples 1 and 2 as the cathode electrode of a carbon dioxide cathode reduction apparatus.
  • the outline of the cathode reduction device for carbon dioxide is as described above (FIG. 5).
  • the electrolyte used was a 50 mM aqueous solution of potassium hydrogen carbonate, and 30 mL each was used for each tank 316a, 316b.
  • As the anode electrode 320 a platinum electrode (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) in which a titanium base material was coated with platinum was used.
  • the electrolysis was performed for 60 minutes under the conditions of a current of 2 mA and a voltage of 2.8V.
  • carbon dioxide gas was bubbled from the supply pipe at 10 mL / min (in the direction of arrow A in the figure).
  • the gas generated from the cathode was collected by the analysis tube 323 (in the direction of arrow B in the figure) and analyzed by gas chromatography.
  • SUPELCO CARBOXEN 1010PLOT 30m ⁇ 032mlD was used as the column, and FID (manufactured by Sigma-Aldrich) was used as the detector.
  • the copper base materials according to Examples 1 to 10 according to the above embodiment have a diffusion prevention layer made of an organic material directly formed on a base made of copper, When this was used as the base material of the catalyst electrode, it was confirmed that an electrode catalyst exhibiting good catalytic performance was obtained for the cathode reduction of carbon dioxide. Furthermore, as shown in Table 2, the catalyst electrode using the copper base material of the present invention (Examples 1, 2 and 6) is a good catalyst having a hydrogen gas concentration of 600 ppm or more even in the electrolysis of water. It was confirmed that the characteristics were developed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The purpose of the present invention is to provide: a copper-based base material which is suitable for use as a base material for catalysts for hydrogen generation by means of electrolysis of water or catalysts for conversion of carbon dioxide into a carbon-containing substance by means of cathodic reduction, and which is capable of improving the catalytic performance of the catalysts; and an electrode catalyst and an electrolysis apparatus, each of which uses this copper-based base material. An electrode base material according to the present invention comprises: a substrate which is formed of copper or a copper alloy; and a diffusion prevention layer which is formed on the surface of the substrate directly or with an oxide layer being interposed therebetween, and which is formed from an organic material.

Description

電極基材、並びにこれを用いた電極触媒および電解装置Electrode base material, and electrode catalyst and electrolysis apparatus using the same
 本発明は、電極基材、並びにこれを用いた電極触媒および電解装置に関する。 The present invention relates to an electrode base material, and an electrode catalyst and an electrolysis apparatus using the same.
 エネルギー資源の乏しい日本では、今後水素を作って様々な燃料に用いようとする計画がなされている。太陽電池や水力、風力による再生可能エネルギーを増大させて、水や水蒸気の電解によって水素を製造し、化石燃料に替えて利用していこうというものである。 In Japan, where energy resources are scarce, there are plans to make hydrogen for various fuels in the future. By increasing the renewable energy from solar cells, hydropower and wind power, we will produce hydrogen by electrolysis of water and water vapor and use it in place of fossil fuels.
 また、昨今の地球温暖化による悪影響が様々に地球環境の変化をもたらし、多くの問題現象が認められている。その原因が温暖化ガス、特にその多くを占める二酸化炭素の濃度上昇にあると云われている。二酸化炭素濃度を下げるには、陸上の新たな植林や海洋藻類による光合成量の増加だけでなく、積極的に二酸化炭素を吸収回収して、その炭素を有機化合物の原料炭素源化して、10年以上に亘る有価物への固定を図って行く必要がある。具体的には、二酸化炭素を還元して、一酸化炭素やメタン、メタノール、ギ酸等に変換して、有機物合成の原料に成り得る材料として利用していく必要がある。 Also, the recent adverse effects of global warming have brought about changes in the global environment, and many problematic phenomena have been recognized. The cause is said to be an increase in the concentration of greenhouse gases, particularly carbon dioxide, which accounts for the majority. To reduce carbon dioxide concentration, not only increase the amount of photosynthesis by new land plantations and marine algae, but also actively absorb and recover carbon dioxide, and use that carbon as a raw material carbon source for organic compounds for 10 years. It is necessary to fix to the valuables over the above. Specifically, it is necessary to reduce carbon dioxide and convert it into carbon monoxide, methane, methanol, formic acid, etc., and use it as a material that can be used as a raw material for organic synthesis.
 近年、上記のような二酸化炭素の還元反応には、光触媒や、電極触媒等の触媒が広く用いられており、より触媒性能に優れた触媒の開発が求められている。 In recent years, a catalyst such as a photocatalyst or an electrode catalyst has been widely used in the reduction reaction of carbon dioxide as described above, and the development of a catalyst having more excellent catalytic performance has been demanded.
 二酸化炭素の還元反応に用いられる触媒には、反応効率だけでなく、特定の反応に対する選択性が求められており、そのような観点からは材料の選択が重要となる(非特許文献1)。例えば、一酸化炭素を効率よく還元生成させ、還元物質中での割合を高める上では金や銀が、メタンやエタン、エチレン等の炭化水素を効率良く還元生成させる上では銅が、それぞれ触媒材料として推奨されている。特に銅は、エチレンなど高次の有機物も生成できることから、二酸化炭素のカソード還元電極触媒として着目されている。 The catalyst used for the reduction reaction of carbon dioxide requires not only the reaction efficiency but also selectivity for a specific reaction. From such a viewpoint, selection of a material is important (Non-patent Document 1). For example, gold and silver are effective in reducing and producing carbon monoxide efficiently, and copper is the catalyst material in efficiently reducing and producing hydrocarbons such as methane, ethane and ethylene. Recommended as. In particular, copper attracts attention as a cathode reduction electrode catalyst for carbon dioxide because it can produce higher-order organic substances such as ethylene.
 このような銅の還元電極触媒としては、銅板や銅箔の平面タイプほか、メッシュや多孔質形状のものが提案されており(特許文献1および2)、基材上に電着や蒸着により触媒材料を固定形成した銅電極触媒も用いられている。しかし、このような銅電極触媒では、基材上に固定形成した触媒材料が、基材を構成している原子との間で経時的に反応あるいは相互拡散して、基材と一体化あるいは変質し、触媒材料としての所望の触媒性能が発揮されない場合がある。 As such a copper reduction electrode catalyst, a flat type such as a copper plate or a copper foil, a mesh or a porous one has been proposed (Patent Documents 1 and 2), and a catalyst is formed by electrodeposition or vapor deposition on a substrate. A copper electrode catalyst having a fixed material is also used. However, in such a copper electrode catalyst, the catalyst material fixedly formed on the base material reacts or interdiffuses with the atoms constituting the base material over time, and is integrated with the base material or altered. However, the desired catalyst performance as a catalyst material may not be exhibited.
特開2001-97894号公報JP 2001-97889 A 特許第5683883号公報Japanese Patent No. 5683883
 本発明は、上記問題点に鑑みてなされたものであり、水の電気分解による水素生成、または二酸化炭素をカソード還元して炭素含有物質に変換するための触媒の基材として好適に用いられ、該触媒の触媒性能を向上し得る電極基材、並びにこれを用いた電極触媒および電解装置を提供することを目的とする。 The present invention has been made in view of the above problems, and is suitably used as a base material of a catalyst for generating hydrogen by electrolysis of water, or for converting carbon dioxide into a carbon-containing substance by cathodic reduction of carbon dioxide, An object of the present invention is to provide an electrode base material capable of improving the catalytic performance of the catalyst, and an electrode catalyst and an electrolysis apparatus using the same.
 本発明者らは、上記課題を解決するために鋭意検討した結果、銅または銅系合金からなる基体と、該基体の表面上に直接または酸化物層を介して形成された、有機系材料からなる拡散防止層とを有する銅系基材を、水の電気分解による水素生成、または二酸化炭素をカソード還元して炭素含有物質に変換するための触媒の基材として用いることにより、基材上に形成された触媒材料の経時変化を抑制または防止でき、優れた触媒性能を発揮しうる触媒が得られることを見出し、かかる知見に基づき本発明を完成させるに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found out from a base made of copper or a copper-based alloy and an organic material formed on the surface of the base directly or via an oxide layer. A copper-based substrate having a diffusion barrier layer formed on the substrate by using hydrogen as an electrolysis of water, or as a catalyst substrate for cathodic reduction of carbon dioxide to convert it to a carbon-containing material. It has been found that a catalyst capable of suppressing or preventing a change in the formed catalyst material with time and exhibiting excellent catalyst performance can be obtained, and the present invention has been completed based on such knowledge.
 すなわち、本発明の要旨構成は、以下のとおりである。
[1]銅または銅系合金からなる基体と、該基体の表面上に直接または酸化物層を介して形成された、有機系材料を含む拡散防止層とを有することを特徴とする、電極基材。
[2] 水の電気分解による水素生成、または二酸化炭素をカソード還元して炭素含有物質に変換するための触媒を構成する基材として用いられる、電極基材。
[3] 前記有機系材料が、アゾール類の化合物である、上記[1]又は[2]に記載の電極基材。
[4] 電気二重層容量の逆数値が、0.3~5cm/μFである、上記[1]~[3]のいずれか1項に記載の電極基材。
[5] 上記[1]~[4]のいずれか1項に記載の電極基材と、該電極基材の前記拡散防止層に形成された金属クラスターを含む触媒材料を含有する触媒層とを有する、電極触媒。
[6] 前記金属クラスターが、銅または銅系合金からなるクラスターである、上記[5]に記載の電極触媒。
[7] 上記[1]~[4]のいずれか1項に記載の銅系基材、あるいは上記[5]または[6]に記載の電極触媒を備えた、電解装置。
[8] 上記[1]~[4]のいずれか1項に記載の銅系基材を用いたカソードと、カソード電解液と、アノードと、前記アノード電解液と、前記カソードと前記アノードの間に備えたイオン交換膜とを具備することを特徴とする電解装置。
That is, the gist configuration of the present invention is as follows.
[1] An electrode substrate comprising: a substrate made of copper or a copper-based alloy; and a diffusion prevention layer containing an organic material formed directly or via an oxide layer on the surface of the substrate. Wood.
[2] An electrode base material used as a base material constituting a catalyst for producing hydrogen by electrolysis of water or catalyzing carbon dioxide to convert it into a carbon-containing substance.
[3] The electrode substrate according to [1] or [2], wherein the organic material is an azole compound.
[4] The electrode substrate according to any one of [1] to [3] above, wherein the reciprocal value of the electric double layer capacity is 0.3 to 5 cm 2 / μF.
[5] The electrode base material according to any one of the above [1] to [4], and a catalyst layer containing a catalyst material containing a metal cluster formed on the diffusion prevention layer of the electrode base material. An electrode catalyst.
[6] The electrode catalyst according to [5], wherein the metal cluster is a cluster made of copper or a copper-based alloy.
[7] An electrolysis apparatus comprising the copper base material according to any one of [1] to [4] above or the electrode catalyst according to [5] or [6] above.
[8] A cathode using the copper base material according to any one of [1] to [4], a cathode electrolyte, an anode, the anode electrolyte, and between the cathode and the anode. And an ion exchange membrane.
 本発明によれば、水の電気分解による水素生成、または二酸化炭素をカソード還元して炭素含有物質に変換するための触媒の基材として好適に用いることができる。このような電極基材によれば、水の電気分解や、二酸化炭素のカソード還元に対し良好な触媒性能を発揮し得る触媒が得られる。 According to the present invention, it can be suitably used as a base material for a catalyst for generating hydrogen by electrolysis of water or for converting carbon dioxide into a carbon-containing substance by cathodic reduction. According to such an electrode base material, a catalyst capable of exhibiting good catalytic performance for electrolysis of water and cathode reduction of carbon dioxide can be obtained.
図1は、本発明の銅系基材の一例を示す、概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of the copper-based substrate of the present invention. 図2は、本発明の銅系基材の別の一例を示す、概略断面図である。FIG. 2 is a schematic cross-sectional view showing another example of the copper-based substrate of the present invention. 図3は、本発明の銅系基材を用いた触媒の一例を示す、概略断面図である。FIG. 3 is a schematic cross-sectional view showing an example of a catalyst using the copper base material of the present invention. 図4は、電解装置を概略的に示す構成図である。FIG. 4 is a configuration diagram schematically showing the electrolysis apparatus. 図5は、図4に示す電解装置のうち、電解セル(二酸化炭素還元セル、または水分解セル装置)の構成を示す、概略断面図である。FIG. 5 is a schematic cross-sectional view showing a configuration of an electrolysis cell (carbon dioxide reduction cell or water decomposition cell device) in the electrolysis apparatus shown in FIG.
 本発明に係る電極基材、並びにこれを用いた電極触媒および電解装置の実施の形態について、以下で詳細に説明する。 Embodiments of an electrode substrate according to the present invention, and an electrode catalyst and an electrolysis apparatus using the electrode substrate will be described in detail below.
 本実施の形態に係る電極基材は、銅または銅系合金からなる基体と、該基体の表面上に直接または酸化物層を介して形成された、有機系材料からなる拡散防止層とを有する。このような銅系の電極基材は、水の電気分解による水素生成、または二酸化基材をカソード還元して炭素含有物質に変換するための触媒を構成する銅系の電極基材として好適に用いられる。 The electrode base material according to the present embodiment has a base made of copper or a copper-based alloy, and a diffusion prevention layer made of an organic material formed directly on the surface of the base or through an oxide layer. . Such a copper-based electrode base material is preferably used as a copper-based electrode base material constituting a catalyst for hydrogen generation by electrolysis of water, or cathodic reduction of a carbon dioxide base material to convert it to a carbon-containing material. It is done.
 本実施の形態に係る銅系基材の一例として、図1に、本実施の形態に係る銅系基材の断面を模式的に示す概略断面図を示す。図1に示されるように、本発明に係る銅系基材1aは、基体11と、該基体11上に直接形成された拡散防止層13とを有する。また、図2は、本実施の形態に係る銅系基材の別の一例であり、図2に示される銅系基材1bは、基体11と、拡散防止層13の間に、酸化物層12を有する。なお、以下において特に区別する必要が無い限り、図1に示される銅系基材1aおよび図2に示される銅系基材1bは、単に「銅系基材1」と表す。 As an example of a copper base material according to the present embodiment, FIG. 1 shows a schematic cross-sectional view schematically showing a cross section of the copper base material according to the present embodiment. As shown in FIG. 1, a copper-based substrate 1 a according to the present invention includes a base 11 and a diffusion prevention layer 13 formed directly on the base 11. 2 is another example of the copper base material according to the present embodiment, and the copper base material 1b shown in FIG. 2 includes an oxide layer between the base 11 and the diffusion prevention layer 13. Twelve. In the following description, the copper-based substrate 1a shown in FIG. 1 and the copper-based substrate 1b shown in FIG. 2 are simply referred to as “copper-based substrate 1” unless otherwise distinguished.
 また、本実施の形態に係る銅系基材を、触媒を構成する基材として用いる場合には、例えば図3に示すような使用態様が挙げられる。図3は、本実施の形態に係る銅系基材を触媒の基材として用いる場合の一例であり、図1に示される銅系基材1aを用いた触媒3の断面を模式的に示す概略断面図である。図3の触媒3では、触媒層31が銅系基材1aの拡散防止層13上に形成されている。なお、特に図示はしないが、図2に示される銅系基材1bを基材として用いる場合も、図3に示される触媒3と同様で、触媒層31は、銅系基材1bの拡散防止層13上に形成される。 Moreover, when using the copper base material which concerns on this Embodiment as a base material which comprises a catalyst, the usage condition as shown, for example in FIG. 3 is mentioned. FIG. 3 is an example when the copper base material according to the present embodiment is used as a catalyst base material, and schematically shows a cross section of the catalyst 3 using the copper base material 1a shown in FIG. It is sectional drawing. In the catalyst 3 of FIG. 3, the catalyst layer 31 is formed on the diffusion preventing layer 13 of the copper-based substrate 1a. In addition, although not shown in particular, when the copper base material 1b shown in FIG. 2 is used as the base material, the catalyst layer 31 is the same as the catalyst 3 shown in FIG. Formed on layer 13.
 このように使用される本実施の形態に係る銅系基材1は、基体11上に直接または酸化物層12を介して形成された拡散防止層13を有することにより、触媒3の基材として用いた場合に、触媒層31の触媒性能を劣化させることがない。すなわち、銅系基材1によれば、触媒層31は拡散防止層13上に形成されるため、触媒層31を構成する触媒材料と、基体11や酸化物層12の構成成分とが直接接することはない。そのため、基体11や酸化物層12を構成している原子との間で、経時的に反応あるいは相互拡散することを有効に防止できる。その結果、本実施の形態に係る銅系基材1を用いれば、従来の基材で問題となっていた、触媒材料と基材と一体化や変質による経時的な劣化を効果的に抑制できるため、触媒材料特有の触媒性能を十分に、かつ継続的に発揮させることができる。 The copper-based substrate 1 according to the present embodiment used in this way has a diffusion prevention layer 13 formed directly on the substrate 11 or through the oxide layer 12, thereby providing a substrate for the catalyst 3. When used, the catalyst performance of the catalyst layer 31 is not deteriorated. That is, according to the copper-based substrate 1, since the catalyst layer 31 is formed on the diffusion preventing layer 13, the catalyst material constituting the catalyst layer 31 and the constituent components of the substrate 11 and the oxide layer 12 are in direct contact with each other. There is nothing. Therefore, it is possible to effectively prevent reaction or mutual diffusion over time with the atoms constituting the substrate 11 and the oxide layer 12. As a result, if the copper base material 1 according to the present embodiment is used, it is possible to effectively suppress deterioration over time due to integration and alteration of the catalyst material and the base material, which has been a problem with conventional base materials. Therefore, the catalyst performance peculiar to the catalyst material can be sufficiently and continuously exhibited.
 拡散防止層13は、有機系材料からなる。ここで、有機系材料としては、銅系基材1を触媒3の基材として用いた場合に、触媒層31を構成する触媒材料が、基体11や酸化物層12の構成成分との間で、経時的に反応あるいは相互拡散することを有効に防止できる有機系材料であればよく、特に基体11や酸化物層12と触媒層31との間での成分の移動を阻害する材料であることが好ましい。このような材料としては、例えば、トリアゾール類、チアゾール類およびイミダゾール類等のアゾール類、メルカプタン類、トリエタノールアミン類等の化合物が挙げられる。中でも、銅との親和性がよい(例えば、銅に配位結合する)ことから、アゾール類が好ましく、より好ましくはトリアゾール類、さらに好ましくはベンゾトリアゾール類である。なお、ベンゾトリアゾール類の化合物としては、例えば、ベンゾトリアゾールが好ましい。 The diffusion preventing layer 13 is made of an organic material. Here, as the organic material, when the copper base material 1 is used as the base material of the catalyst 3, the catalyst material constituting the catalyst layer 31 is between the constituents of the base material 11 and the oxide layer 12. Any organic material that can effectively prevent reaction or interdiffusion with time can be used, and in particular, it is a material that inhibits the movement of components between the substrate 11 and the oxide layer 12 and the catalyst layer 31. Is preferred. Examples of such a material include compounds such as azoles such as triazoles, thiazoles and imidazoles, mercaptans and triethanolamines. Among these, azoles are preferable because they have good affinity with copper (for example, coordinate bond to copper), more preferably triazoles, and still more preferably benzotriazoles. In addition, as a compound of benzotriazoles, for example, benzotriazole is preferable.
 拡散防止層13の形成状態は特に限定されず、基体11の形状や、使用形態に応じて適宜選択することができ、少なくとも基材11の一表面に形成されていればよく、基材11表面の全面を覆うように形成されていてもよい。 The formation state of the diffusion preventing layer 13 is not particularly limited and can be appropriately selected according to the shape of the base body 11 and the usage pattern, and may be formed on at least one surface of the base material 11. It may be formed so as to cover the entire surface.
 また、拡散防止層13の厚みは、電気二重層容量の逆数値にて定量的に表現する。
 具体的には、拡散防止層13の厚みを表現する電気二重層容量の逆数値は、市販の直読式電気二重層容量測定器(例えば、インピーダンスアナライザ Cメータ、日置電機株式会社製)を用いて、基体表面の電気二重層容量(C:μF)を測定し、下記式(1)で示すように、その逆数値(1/C)として算出する。
    1/C=A・d+B ……(1)
(dは、基体上に形成されている電気二重層の厚み、A,Bは定数)
Further, the thickness of the diffusion preventing layer 13 is quantitatively expressed by an inverse value of the electric double layer capacity.
Specifically, the reciprocal value of the electric double layer capacity expressing the thickness of the diffusion preventing layer 13 is obtained using a commercially available direct-reading type electric double layer capacity measuring instrument (for example, impedance analyzer C meter, manufactured by Hioki Electric Co., Ltd.). Then, the electric double layer capacity (C: μF) on the surface of the substrate is measured and calculated as the reciprocal value (1 / C) as shown by the following formula (1).
1 / C = A · d + B (1)
(D is the thickness of the electric double layer formed on the substrate, A and B are constants)
 上記式(1)で求められる電気二重層容量の逆数値は、基体上に形成された電気二重層の厚みd、すなわち拡散防止層13の厚みに比例して誘起される。したがって、このような電気二重層容量の逆数値は、0.3~5cm/μFであることが好ましく、0.5~1.5cm/μFであることがより好ましい。上記範囲とすることにより、触媒の基体として用いた場合に、優れた触媒性能を発揮しうる触媒が得られる。なお、電気二重層容量の逆数値が0.3~5cm/μFであるとき、拡散防止層13の厚みを電子顕微鏡で測定すると、平均4~75nm程度である。 The reciprocal value of the electric double layer capacity obtained by the above formula (1) is induced in proportion to the thickness d of the electric double layer formed on the substrate, that is, the thickness of the diffusion prevention layer 13. Accordingly, the reciprocal value of the electric double layer capacitance is preferably 0.3 to 5 cm 2 / μF, and more preferably 0.5 to 1.5 cm 2 / μF. By setting it as the above range, a catalyst capable of exhibiting excellent catalyst performance can be obtained when used as a catalyst substrate. When the reciprocal value of the electric double layer capacity is 0.3 to 5 cm 2 / μF, the thickness of the diffusion prevention layer 13 is measured with an electron microscope, and the average is about 4 to 75 nm.
 基体11は、銅または銅系合金からなる。基体11が銅(純銅)からなる場合には、例えば、タフピッチ銅TPC、リン脱酸銅PDC、無酸素銅OFCを様々に形状加工したものや、電解銅箔を用いることができる。また、基体11が銅系合金からなる場合には、銅-スズ系合金、銅-鉄系合金、銅-ジルコニウム系合金、銅-クロム系合金等の銅基希薄合金を用いることができる他、コルソン合金系等などの第二成分以降の成分が0.01質量%~5質量%程度の、固溶または析出強化された銅基希薄合金を用いることもできる。なお、合金系の電極の場合、銀以外の成分の添加量が増すほど、導電率が低くなり、基材電極としての基本特性を低下させる傾向にあるため、銀以外の成分の添加量は少ないほど好ましい。また、基体11の形状は、特に限定されず、平板状のほか、メッシュや多孔質形状のものも用いることができ、中でも平板状のものが好ましい。 The substrate 11 is made of copper or a copper-based alloy. In the case where the substrate 11 is made of copper (pure copper), for example, variously processed tough pitch copper TPC, phosphorus deoxidized copper PDC, oxygen-free copper OFC, or electrolytic copper foil can be used. When the substrate 11 is made of a copper alloy, a copper-based dilute alloy such as a copper-tin alloy, a copper-iron alloy, a copper-zirconium alloy, or a copper-chromium alloy can be used. It is also possible to use a solid solution or precipitation strengthened copper-based dilute alloy in which the component after the second component such as a Corson alloy system is about 0.01 to 5% by mass. In addition, in the case of an alloy-based electrode, as the additive amount of components other than silver increases, the conductivity tends to decrease and the basic characteristics as a base electrode tend to be reduced, so the additive amount of components other than silver is small. The more preferable. Moreover, the shape of the base | substrate 11 is not specifically limited, A thing of a mesh and a porous shape other than flat form can also be used, and a flat thing is preferable especially.
 酸化物層12は、任意の層で、基体11と拡散防止層12との間に形成される。このような酸化物層12は、例えば、金属酸化物層により構成されていることが好ましく、中でも、遷移金属から選択される少なくとも1種の金属を含む酸化物であることが好ましく、特に銅を含む酸化物が好ましい。銅酸化物としては、例えば酸化第一銅(CuO)や、酸化第二銅(CuO)の他、不定比酸化銅などが挙げられる。特に、酸化物層12は、酸化第一銅および酸化第二銅の少なくとも一方を含むことが好ましい。 The oxide layer 12 is an arbitrary layer and is formed between the base 11 and the diffusion prevention layer 12. Such an oxide layer 12 is preferably composed of, for example, a metal oxide layer, and is preferably an oxide containing at least one metal selected from transition metals, in particular, copper. The oxide containing is preferable. Examples of the copper oxide include non-stoichiometric copper oxide in addition to cuprous oxide (Cu 2 O) and cupric oxide (CuO). In particular, the oxide layer 12 preferably contains at least one of cuprous oxide and cupric oxide.
 また、酸化物層12は、1層の酸化物層からなる単層であってもよいし、2層以上の酸化物層からなる複層であってもよい。また、酸化物層12が1層の酸化物層からなる単層である場合、1種の酸化物からなる層であってもよいし、2種以上の酸化物が混在した層であってもよい。また、酸化物層12が2層以上の酸化物層からなる複層である場合、各層は、必ずしも明確に個別の層となっている必要はなく、2つの層の境界部分においては各層を構成する各酸化物が混在していてもよい。また、酸化物層12には、各種酸化物の他にも、上述の有機系材料や、基体を構成する金属や合金が500~1000ppm程度含まれていてもよい。 Further, the oxide layer 12 may be a single layer composed of one oxide layer, or may be a multilayer composed of two or more oxide layers. Further, when the oxide layer 12 is a single layer composed of one oxide layer, it may be a layer composed of one kind of oxide, or may be a layer in which two or more kinds of oxides are mixed. Good. Further, when the oxide layer 12 is a multi-layer composed of two or more oxide layers, each layer does not necessarily have to be clearly separate layers, and each layer is configured at the boundary between the two layers. Each of the oxides may be mixed. In addition to the various oxides, the oxide layer 12 may contain about 500 to 1000 ppm of the above-described organic materials, metals and alloys constituting the substrate.
 また、酸化物層12は、少なくとも酸化第一銅または酸化第二銅を含んでいることが好ましい。このような酸化物層12としては、酸化第一銅および酸化第二銅の少なくとも一方を含む単層、または、酸化第一銅からなる層(以下、「酸化第一銅層」という。)および酸化第二銅からなる層(以下、「酸化第二銅層」という。)の少なくとも一方を含む複層が挙げられる。 The oxide layer 12 preferably contains at least cuprous oxide or cupric oxide. As such an oxide layer 12, a single layer containing at least one of cuprous oxide and cupric oxide, a layer made of cuprous oxide (hereinafter referred to as "cuprous oxide layer") and A multilayer including at least one of layers made of cupric oxide (hereinafter referred to as “cupric oxide layer”) may be mentioned.
 また、酸化物層12は、互いに異なる銅の酸化数を有する2層以上の銅酸化物層からなることが好ましく、酸化第一銅層および酸化第二銅層とで構成されることがより好ましい。また、そのような2層以上の銅酸化物層は、表面側に位置する層ほど銅の酸化数が大きいことがより好ましい。 The oxide layer 12 is preferably composed of two or more copper oxide layers having different copper oxidation numbers, and more preferably composed of a cuprous oxide layer and a cupric oxide layer. . Moreover, it is more preferable that the copper oxide layer of such two or more layers has a higher copper oxidation number as the layer is located on the surface side.
 酸化物層12が複層である場合の一例として、図2に、本実施の形態に係る銅系基材1bの断面を模式的に示す概略断面図を示す。図2に示される銅系基材1bでは、酸化物層12が、互いに異なる銅の酸化数を有する、第1の銅酸化物層121と、第2の銅酸化物層122とで構成されている。ここで、第1の銅酸化物層121よりも表面側に位置する第2の銅酸化物層122は、第1の銅酸化物層121に比べて銅の酸化数が大きいことが好ましい。 As an example when the oxide layer 12 is a multilayer, FIG. 2 shows a schematic cross-sectional view schematically showing a cross section of the copper-based substrate 1b according to the present embodiment. In the copper-based substrate 1b shown in FIG. 2, the oxide layer 12 is composed of a first copper oxide layer 121 and a second copper oxide layer 122 having different copper oxidation numbers. Yes. Here, it is preferable that the second copper oxide layer 122 located on the surface side of the first copper oxide layer 121 has a copper oxidation number larger than that of the first copper oxide layer 121.
 例えば、図2において、第1の銅酸化物層121が酸化第一銅層、第2の銅酸化物層122が酸化第二銅層である場合のように、酸化第二銅層は、酸化第一銅層よりも外層であることが好ましい。また、酸化第二銅層に対する酸化第一銅層の厚さの比率は、0.0001~10000であることが好ましく、1~10000であることがより好ましい。 For example, in FIG. 2, the cupric oxide layer is oxidized as in the case where the first copper oxide layer 121 is a cuprous oxide layer and the second copper oxide layer 122 is a cupric oxide layer. It is preferable that it is an outer layer rather than a 1st copper layer. Further, the ratio of the thickness of the cuprous oxide layer to the cupric oxide layer is preferably 0.0001 to 10,000, and more preferably 1 to 10,000.
 次に、本実施の形態に係る銅系基材の好ましい製造方法について説明する。
 本実施形態に係る銅系基材の製造方法は、基体の表面に、拡散防止層を形成する工程を有する。また、必要に応じて、前処理工程や、酸化物層を形成する工程をさらに有していてもよい。以下、具体的に説明する。
Next, the preferable manufacturing method of the copper-type base material which concerns on this Embodiment is demonstrated.
The manufacturing method of the copper base material which concerns on this embodiment has the process of forming a diffusion prevention layer in the surface of a base | substrate. Moreover, you may have further the process of forming a pre-processing process and an oxide layer as needed. This will be specifically described below.
(前処理工程)
 まず、銅または銅系合金からなる基体を準備し、該基体の表面洗浄を行う。基体の表面を清浄化することにより、後工程において、基体表面に拡散防止層を均質に形成でき、基体と拡散防止層との密着性を向上できる。表面洗浄は、公知の方法で行うことができるが、浸漬脱脂またはカソード電解脱脂を行った後に酸洗浄(中和)することが望ましい。
(Pretreatment process)
First, a base made of copper or a copper-based alloy is prepared, and the surface of the base is cleaned. By cleaning the surface of the substrate, a diffusion preventing layer can be formed uniformly on the substrate surface in a later step, and adhesion between the substrate and the diffusion preventing layer can be improved. The surface cleaning can be performed by a known method, but it is desirable to perform acid cleaning (neutralization) after immersion degreasing or cathode electrolytic degreasing.
(拡散防止層を形成する工程)
 前処理を終えた基体表面に、拡散防止層を形成する。具体的には、拡散防止層として形成させたい有機系材料を含む溶液に、基体を浸漬させ、それを乾燥させることで、基体上に拡散防止層を形成する。
(Step of forming a diffusion prevention layer)
A diffusion prevention layer is formed on the surface of the substrate after the pretreatment. Specifically, the diffusion preventing layer is formed on the substrate by immersing the substrate in a solution containing an organic material to be formed as the diffusion preventing layer and drying it.
 有機系材料としては、上述の有機系材料を用いることができる。また、有機系材料を含む溶液の溶媒としては、例えば水やアルコール等の公知の溶媒を用いることができる。また、基体を浸漬させる際の、上記有機系材料を含む溶液の温度は60~100℃、浸漬時間は1.5~4分程度とすればよく、乾燥温度は60~90℃とすればよい。なお、拡散防止層の厚さは、有機系材料の種類や溶液の濃度、浸漬と乾燥の工程を繰り返し回数により調節することができる。 The organic material described above can be used as the organic material. Moreover, as a solvent of the solution containing an organic material, for example, a known solvent such as water or alcohol can be used. In addition, when the substrate is immersed, the temperature of the solution containing the organic material may be 60 to 100 ° C., the immersion time may be about 1.5 to 4 minutes, and the drying temperature may be 60 to 90 ° C. . The thickness of the diffusion preventing layer can be adjusted by the number of organic materials, the concentration of the solution, and the steps of immersion and drying.
 また、基体と拡散防止層との間に、酸化物層を形成する場合には、拡散防止層を形成する工程に先立って、酸化物層を形成する工程を行う。酸化物層を形成する工程は、拡散防止層を形成する前の基体に対して、浸漬処理、アノード酸化処理および加熱酸化処理のいずれかの処理を施す工程であることが好ましい。 Further, when an oxide layer is formed between the base and the diffusion preventing layer, a step of forming the oxide layer is performed prior to the step of forming the diffusion preventing layer. The step of forming the oxide layer is preferably a step of performing any one of immersion treatment, anodic oxidation treatment and heat oxidation treatment on the substrate before forming the diffusion prevention layer.
 次に、本実施の形態に係る銅系基材を用いた触媒について説明する。
 本実施の形態に係る触媒は、上述した本実施の形態に係る銅系基材と、該銅系基材の拡散防止層上に形成された、触媒材料を含む触媒層とを有することが好ましい。図3には、本実施の形態に係る触媒の一例として、図1に示される銅系基材1aを用いた触媒3を示す。
Next, the catalyst using the copper base material according to the present embodiment will be described.
The catalyst according to the present embodiment preferably includes the above-described copper-based substrate according to the present embodiment and a catalyst layer including a catalyst material formed on the diffusion-preventing layer of the copper-based substrate. . FIG. 3 shows a catalyst 3 using the copper base material 1a shown in FIG. 1 as an example of the catalyst according to the present embodiment.
 図3に示されるように、本実施の形態に係る触媒3は、銅系基材1の拡散防止層13上に、触媒材料を含む触媒層31を有する。触媒3において、触媒反応は主に触媒層31の表面や、その表面付近で起こる。このような触媒3によれば、触媒層31の構成成分が、銅系基材1を構成する基体11や、任意に形成される酸化物層12の構成成分と、反応したり、拡散したりすることを有効に防止できるため、触媒層31による触媒反応の反応効率が経時的に低下しない。 As shown in FIG. 3, the catalyst 3 according to the present embodiment has a catalyst layer 31 containing a catalyst material on the diffusion prevention layer 13 of the copper base material 1. In the catalyst 3, the catalytic reaction mainly occurs on the surface of the catalyst layer 31 or in the vicinity of the surface. According to such a catalyst 3, the constituent component of the catalyst layer 31 reacts with or diffuses with the constituent component of the base 11 constituting the copper base material 1 and the oxide layer 12 that is arbitrarily formed. Therefore, the reaction efficiency of the catalytic reaction by the catalyst layer 31 does not decrease with time.
 触媒層31を構成する触媒材料は、例えば、金属クラスターを含むクラスター触媒やナノ粒子が挙げられる。中でも、触媒性能の高さから、特に、金属クラスターを含む触媒材料が好ましい。 Examples of the catalyst material constituting the catalyst layer 31 include a cluster catalyst including metal clusters and nanoparticles. Especially, the catalyst material containing a metal cluster is especially preferable from the high catalyst performance.
 しかし、触媒材料が金属クラスターを含む場合、本実施の形態に係る拡散防止層13を有さない従来の基材を用いると、触媒層31に含まれる金属クラスターと、基材を構成する銅成分とが相互拡散し、融合し、クラスター触媒特有の性能が十分に発揮されない問題がある。 However, when the catalyst material includes a metal cluster, when a conventional base material that does not have the diffusion prevention layer 13 according to the present embodiment is used, the metal cluster included in the catalyst layer 31 and the copper component that forms the base material Inter-diffusion and fusion with each other, and the performance specific to the cluster catalyst is not fully exhibited.
 これに対し、本実施の形態に係る拡散防止層13を有する銅系基材1によれば、触媒材料が金属クラスターを含む場合であっても、原子の拡散を有効に防止できるため、クラスター触媒としての性能を劣化させない。すなわち、本実施の形態に係る銅系基材1は、金属クラスターを含む触媒材料からなる触媒層を形成するための基材として、特に好適に用いることができる。 On the other hand, according to the copper-based substrate 1 having the diffusion prevention layer 13 according to the present embodiment, even when the catalyst material includes a metal cluster, it is possible to effectively prevent the diffusion of atoms, and thus the cluster catalyst. As the performance does not deteriorate. That is, the copper-based substrate 1 according to the present embodiment can be particularly suitably used as a substrate for forming a catalyst layer made of a catalyst material containing a metal cluster.
 なお、本発明でいうクラスターとは、金属原子が2~100個程度集合したものを意味する。中でも、金属原子が10~40個集合したものが好ましい。また、金属クラスターは、金属として白金(Pt)、金(Au)、銀(Ag)、銅(Cu)、パラジウム(Pd)および鉄(Fe)から選択される1種または2種以上の金属を含むものが挙げられ、中でも、銅を含むものが好ましく、銅または銅系合金からなるものがより好ましい。金属クラスターを含む触媒材料は、クラスター以外の金属粒子を触媒材料中に30質量%程度含んでいてもよい。 In the present invention, the cluster means an aggregate of about 2 to 100 metal atoms. Of these, an aggregate of 10 to 40 metal atoms is preferable. In addition, the metal cluster includes one or more metals selected from platinum (Pt), gold (Au), silver (Ag), copper (Cu), palladium (Pd), and iron (Fe). Among them, those containing copper are preferable, and those made of copper or a copper-based alloy are more preferable. The catalyst material containing a metal cluster may contain about 30% by mass of metal particles other than the cluster in the catalyst material.
 次に、本実施の形態に係る銅系基材を用いた触媒の製造方法について説明する。以下では、金属クラスターを含む触媒材料からなる触媒層を形成する場合を例に、触媒の製造方法の一例を説明する。
 本実施の形態に係る触媒の製造方法は、本実施の形態に係る銅系基材の拡散防止層の表面に、触媒層を形成する工程を有する。また、必要に応じて、触媒層の表面に、表面保護層を形成する工程をさらに有していてもよい。以下、具体的に説明する。
Next, the manufacturing method of the catalyst using the copper base material which concerns on this Embodiment is demonstrated. Below, an example of the manufacturing method of a catalyst is demonstrated to the case where the catalyst layer which consists of a catalyst material containing a metal cluster is formed as an example.
The method for producing a catalyst according to the present embodiment includes a step of forming a catalyst layer on the surface of the diffusion preventing layer of the copper-based substrate according to the present embodiment. Moreover, you may have further the process of forming a surface protective layer on the surface of a catalyst layer as needed. This will be specifically described below.
 まず、上記本実施の形態に係る銅系基材を準備する。次に、銅系基材の拡散防止層上に、金属クラスターを含む触媒材料からなる触媒層を形成する。このような触媒層は、クラスター触媒を銅系基材の拡散防止層上に蒸着させることにより形成できる。クラスター触媒の形成方法は、特に限定されないが、例えば国際公開第2014/192703号の明細書に記載の方法等が挙げられる。 First, a copper base material according to the present embodiment is prepared. Next, a catalyst layer made of a catalyst material containing a metal cluster is formed on the diffusion preventing layer of the copper base material. Such a catalyst layer can be formed by vapor-depositing a cluster catalyst on the diffusion preventing layer of the copper base material. Although the formation method of a cluster catalyst is not specifically limited, For example, the method etc. which are described in the specification of international publication 2014/192703 are mentioned.
 具体的には、直流電源を利用したマグネトロンスパッタリング法などにより形成できる。このような方法では、真空引きしたチャンバと、該チャンバ内に設置されるクラスター成長セルと、該クラスター成長セル内に設置されるスパッタ源(マグネトロンスパッタ源)を備えた装置を用い、クラスター触媒を作成する。該クラスター成長セルは、その周囲を液体窒素ジャケットで囲まれており、該液体窒素ジャケット内を液体窒素(N)が流通するように構成されている。プラズマを発生させるためアルゴンガス(Ar)をスパッタ源に対して供給し、ヘリウムガス(He)をクラスター成長セル内へ供給する。スパッタ源用パルス電源からパルス電力が供給し、ターゲットからヘリウムガス中に、ターゲット由来の中性原子及びイオン等のスパッタ粒子を放出させる。これらのスパッタ源から発生した金属原子や金属イオンを冷却し前述のヘリウムガスで凝集させ、クラスター触媒を生成する。 Specifically, it can be formed by a magnetron sputtering method using a DC power source. In such a method, a cluster catalyst is produced by using an apparatus including a vacuumed chamber, a cluster growth cell installed in the chamber, and a sputtering source (magnetron sputtering source) installed in the cluster growth cell. create. The cluster growth cell is surrounded by a liquid nitrogen jacket, and liquid nitrogen (N 2 ) flows through the liquid nitrogen jacket. In order to generate plasma, argon gas (Ar) is supplied to the sputtering source, and helium gas (He) is supplied into the cluster growth cell. Pulse power is supplied from a pulse power source for the sputtering source, and sputtered particles such as neutral atoms and ions derived from the target are released from the target into the helium gas. Metal atoms and metal ions generated from these sputtering sources are cooled and agglomerated with the aforementioned helium gas to produce a cluster catalyst.
 このような本発明に係る触媒は、特に電極触媒として好適である。すなわち、本実施の形態に係る電極触媒は、本実施の形態に係る銅系基材と、該銅系基材の前記拡散防止層上に形成された、金属クラスターを含む触媒材料からなる触媒層とを有することが好ましい。このような電極触媒は、後述する二酸化炭素還元装置のカソード電極として好適に用いることができる。特に、カソード電極として用いた場合に、カソード還元における反応の過電圧を小さくできるので、必要とする外部バイアス電圧(外部電力)が小さくなる。即ち、カソード還元において、反応の電流効率が高くなり、収率および生産性が向上する。 Such a catalyst according to the present invention is particularly suitable as an electrode catalyst. That is, the electrode catalyst according to the present embodiment is a catalyst layer made of a copper-based substrate according to the present embodiment and a catalyst material including a metal cluster formed on the diffusion-preventing layer of the copper-based substrate. It is preferable to have. Such an electrode catalyst can be suitably used as a cathode electrode of a carbon dioxide reduction apparatus described later. In particular, when used as a cathode electrode, the reaction overvoltage in the cathode reduction can be reduced, so that the required external bias voltage (external power) is reduced. That is, in cathodic reduction, the current efficiency of the reaction is increased, and the yield and productivity are improved.
 本実施形態に係る電解装置は、本実施の形態に係る銅系基材または本実施の形態に係る電極触媒を用いることが好ましい。装置の形成方法は特に限定されず、公知の方法により行うことができる。電解装置としては、例えば二酸化炭素の還元装置や、水の電気分解装置などが挙げられる。 The electrolysis apparatus according to the present embodiment preferably uses the copper base material according to the present embodiment or the electrode catalyst according to the present embodiment. The method for forming the device is not particularly limited, and can be performed by a known method. Examples of the electrolysis device include a carbon dioxide reduction device and a water electrolysis device.
 以下に、本実施の形態に係る銅系基材を用いた電極触媒が、二酸化炭素の電気化学的還元(電解還元、カソード還元)のカソード電極として用いられる場合の一例について説明する。 Hereinafter, an example in which the electrode catalyst using the copper base material according to the present embodiment is used as a cathode electrode for electrochemical reduction (electrolytic reduction, cathode reduction) of carbon dioxide will be described.
 図4は、二酸化炭素の電気化学的還元を行う電解装置3の構成を示すブロック図である。電解装置3は、主に、電源31、電解セル33、ガス回収装置35、電解液循環装置37、二酸化炭素供給部39等で構成される。 FIG. 4 is a block diagram showing the configuration of the electrolysis apparatus 3 that performs electrochemical reduction of carbon dioxide. The electrolyzer 3 mainly includes a power supply 31, an electrolysis cell 33, a gas recovery device 35, an electrolyte solution circulation device 37, a carbon dioxide supply unit 39, and the like.
 電解セル33は、対象物質を還元する部位であり、本実施の形態に係るカソード電極が含まれる部位でもあり、二酸化炭素(溶液において、溶存二酸化炭素のほか、炭酸水素イオンである場合も含む。以下、単に二酸化炭素等とする。)を還元する部位である。電解セル33には、電源31から電力が供給される。 The electrolysis cell 33 is a part that reduces the target substance, and is also a part that includes the cathode electrode according to the present embodiment, and includes carbon dioxide (in the solution, in addition to dissolved carbon dioxide, hydrogen carbonate ions are included. Hereinafter, it is a site that simply reduces carbon dioxide. Electric power is supplied from the power source 31 to the electrolysis cell 33.
 電解液循環装置37は、電解セル33のカソード電極に対して、カソード側電解液を循環させる部位である。電解液循環装置37は、例えば槽およびポンプであり、二酸化炭素供給部39から所定の二酸化炭素濃度となるように、二酸化炭素等が供給されて電解液中に溶解され、電解セル33との間で電解液を循環可能である。 The electrolytic solution circulation device 37 is a part that circulates the cathode side electrolytic solution with respect to the cathode electrode of the electrolytic cell 33. The electrolytic solution circulation device 37 is, for example, a tank and a pump. Carbon dioxide or the like is supplied from the carbon dioxide supply unit 39 so as to have a predetermined carbon dioxide concentration and is dissolved in the electrolytic solution. It is possible to circulate the electrolyte.
 ガス回収装置35は、電解セル33によって還元されて発生したガスを回収する部位である。ガス回収装置35では、電解セル33のカソード電極で発生する炭化水素等のガスを捕集することが可能である。なお、ガス回収装置35において、ガス種類毎にガスを分離可能としてもよい。 The gas recovery device 35 is a part that recovers the gas generated by reduction by the electrolytic cell 33. The gas recovery device 35 can collect gas such as hydrocarbons generated at the cathode electrode of the electrolytic cell 33. In the gas recovery device 35, the gas may be separable for each gas type.
 電解装置3は、以下のように機能する。前述の通り、電解セル33には電源31からの電解電位が付与される。電解セル33のカソード電極には、電解液循環装置37によって電解液が供給される(図中矢印A)。電解セル33のカソード電極においては、供給される電解液中の二酸化炭素等が還元される。二酸化炭素等が還元されると、主にエタンやエチレン等の炭化水素が生成される。 The electrolyzer 3 functions as follows. As described above, an electrolytic potential from the power source 31 is applied to the electrolytic cell 33. The electrolytic solution is supplied to the cathode electrode of the electrolytic cell 33 by the electrolytic solution circulation device 37 (arrow A in the figure). At the cathode electrode of the electrolytic cell 33, carbon dioxide or the like in the supplied electrolytic solution is reduced. When carbon dioxide and the like are reduced, hydrocarbons such as ethane and ethylene are mainly produced.
 カソード電極で生成された炭化水素ガスは、ガス回収装置35により回収される(図中矢印B)。ガス回収装置35では、必要に応じてガスを分離し貯留することが可能である。 The hydrocarbon gas generated at the cathode electrode is recovered by the gas recovery device 35 (arrow B in the figure). The gas recovery device 35 can separate and store the gas as necessary.
 カソード電極で二酸化炭素等が還元されて消費されることで、電解液中の二酸化炭素等の濃度が減少する。還元反応によって減少した二酸化炭素等は常に補充され、その濃度は常に所定範囲内に保たれる。具体的は、電解液の一部が電解液循環装置37により回収されて(図中矢印C)、所定濃度の電解液が常に供給される(図中矢印A)。以上により、電解セル33において、常に一定の条件で炭化水素を生成することができる。 As the carbon dioxide is reduced and consumed at the cathode electrode, the concentration of carbon dioxide and the like in the electrolyte decreases. Carbon dioxide or the like that has been reduced by the reduction reaction is always replenished, and its concentration is always kept within a predetermined range. Specifically, a part of the electrolytic solution is collected by the electrolytic solution circulation device 37 (arrow C in the figure), and an electrolytic solution having a predetermined concentration is always supplied (arrow A in the figure). As described above, in the electrolytic cell 33, hydrocarbons can always be generated under certain conditions.
 次に、電解セル33について説明する。図5は、電解セル33の構成を示す図である。電解セル33は、主に、カソード槽である槽316a、金属メッシュ317、カソード電極319、陽イオン交換膜321、アノード電極320、アノード槽である槽316b等から構成される。 Next, the electrolytic cell 33 will be described. FIG. 5 is a diagram showing the configuration of the electrolysis cell 33. The electrolysis cell 33 mainly includes a tank 316a which is a cathode tank, a metal mesh 317, a cathode electrode 319, a cation exchange membrane 321, an anode electrode 320, a tank 316b which is an anode tank, and the like.
 槽316a、316bには、それぞれ電解液315a、315bが保持される。カソード電極側の槽316aの上部には、生成ガスを回収するための孔が形成され、図示を省略したガス回収装置に接続される。すなわち、カソード電極で生成されるガスは、当該孔から回収される。また、槽316aには、配管等が接続され、図示を省略した電解液循環装置37と接続される。すなわち、槽316a内の電解液315aは常に電解液循環装置37によって循環可能である。なお、必要に応じて、槽315b側の電解液も同様に循環可能としてもよい。 Electrolytes 315a and 315b are held in the tanks 316a and 316b, respectively. In the upper part of the tank 316a on the cathode electrode side, a hole for recovering the generated gas is formed and connected to a gas recovery device (not shown). That is, the gas generated at the cathode electrode is recovered from the hole. Moreover, piping etc. are connected to the tank 316a, and it connects with the electrolyte solution circulation apparatus 37 which abbreviate | omitted illustration. That is, the electrolytic solution 315a in the tank 316a can always be circulated by the electrolytic solution circulating device 37. If necessary, the electrolytic solution on the tank 315b side may be circulated in the same manner.
 カソード電解液である電解液315aとしては、二酸化炭素等を多量に溶解できる電解液であることが好ましく、例えば、水酸化ナトリウム水溶液、水酸化カリウム水溶液、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、等のアルカリ性溶液、モノメタノールアミン、メチルアミン、その他液状のアミン、またはそれら液状のアミンと電解質水溶液の混合液などが用いられる。また、アセトニトリル、ベンゾニトリル、塩化メチレン、テトラヒドロフラン、炭酸プロピレン、ジメチルホルムアミド、ジメチルスルホキシド、メタノール、エタノール等を用いることができる。また、水素生成を目的とする水電解の場合には、適当な水溶液か純水を用いて構わない。 The electrolyte 315a that is a cathode electrolyte is preferably an electrolyte that can dissolve a large amount of carbon dioxide and the like. For example, an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, carbonic acid An alkaline solution such as potassium hydrogen, monomethanolamine, methylamine, other liquid amines, or a mixture of these liquid amines and an aqueous electrolyte solution may be used. In addition, acetonitrile, benzonitrile, methylene chloride, tetrahydrofuran, propylene carbonate, dimethylformamide, dimethyl sulfoxide, methanol, ethanol, and the like can be used. In the case of water electrolysis for the purpose of generating hydrogen, an appropriate aqueous solution or pure water may be used.
 また、アノード電解液である電解液315bとしては、前記のカソード電解液を用いるか、または適当な純水や水溶液を用いることができる。 Further, as the electrolytic solution 315b which is an anode electrolytic solution, the above-described cathode electrolytic solution can be used, or an appropriate pure water or aqueous solution can be used.
 金属メッシュ317は、参照電極318と共に電源31の負極側に接続され、カソード電極319に対して通電するための部材である。金属メッシュ317としては、例えば銅製のメッシュやステンレス製のメッシュであり、参照電極318には銀/塩化銀電極などが使用できる。 The metal mesh 317 is a member that is connected to the negative electrode side of the power supply 31 together with the reference electrode 318 and energizes the cathode electrode 319. The metal mesh 317 is, for example, a copper mesh or a stainless steel mesh, and a silver / silver chloride electrode can be used as the reference electrode 318.
 陽イオン交換膜321としては、例えば、公知のナフィオン系などを用いることができる。アノード反応で酸素と共に発生する水素イオンをカソード側へ移動させ得る。 As the cation exchange membrane 321, for example, a known Nafion system can be used. Hydrogen ions generated together with oxygen in the anode reaction can be moved to the cathode side.
 アノード電極320は電源31の正極に接続される。アノード電極320としては酸素発生過電圧の小さい電極、例えば、チタンやステンレス鋼などの基材上に酸化イリジウムや白金、ロジウム等を被覆した電極、或いは酸化物電極や、ステンレス電極、鉛電極などを用いることができる。 The anode electrode 320 is connected to the positive electrode of the power source 31. As the anode electrode 320, an electrode having a small oxygen generation overvoltage, for example, an electrode in which a base material such as titanium or stainless steel is coated with iridium oxide, platinum, rhodium, or the like, an oxide electrode, a stainless electrode, a lead electrode, or the like is used. be able to.
 なお、アノード電極320は、光触媒や半導体電極触媒によって構成することもできる。すなわち、光を照射することで起電力を生じるようにすることができる。このようにすることで、アノード電極に太陽光などの光を照射して起電力を生じさせ、この起電力を電解セル33における電解電位として利用することができる。 In addition, the anode electrode 320 can also be comprised with a photocatalyst or a semiconductor electrode catalyst. That is, an electromotive force can be generated by irradiating light. By doing so, an electromotive force is generated by irradiating the anode electrode with light such as sunlight, and this electromotive force can be used as an electrolysis potential in the electrolysis cell 33.
 カソード電極319では、電解液中の二酸化炭素等が還元される。二酸化炭素は、水に溶解し、溶存二酸化炭素や炭酸水素イオンの状態で電解液中に存在し、カソード電極に供給される。通常、銅系以外の材料からなるカソード電極の場合、水素や一酸化炭素が多く発生する傾向にあり、炭化水素は殆ど生成されない。これに対し、銅系の材料からなるカソード電極の場合、比較的効率良く炭化水素を生成することができる。 At the cathode electrode 319, carbon dioxide or the like in the electrolyte is reduced. Carbon dioxide is dissolved in water, exists in the electrolyte in the form of dissolved carbon dioxide and hydrogen carbonate ions, and is supplied to the cathode electrode. Usually, in the case of a cathode electrode made of a material other than copper, a large amount of hydrogen and carbon monoxide tends to be generated, and almost no hydrocarbon is generated. On the other hand, in the case of a cathode electrode made of a copper-based material, hydrocarbons can be generated relatively efficiently.
 本実施形態に係るカソード電極319は、本実施の形態に係る電極触媒で構成されている。すなわち、カソード電極319は、本実施の形態に係る銅系基材上に、触媒層が形成されてなる。このようなカソード電極を用いることで、二酸化炭素を効率良く分解還元でき、エネルギーとして有用な炭化水素を高いエネルギー効率で生成できる。 The cathode electrode 319 according to the present embodiment is composed of the electrode catalyst according to the present embodiment. That is, the cathode electrode 319 is formed by forming a catalyst layer on the copper base material according to the present embodiment. By using such a cathode electrode, carbon dioxide can be efficiently decomposed and reduced, and hydrocarbons useful as energy can be generated with high energy efficiency.
 以上、本発明の一実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、本実施の形態に係る概念および請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and includes all aspects included in the concept and claims of the present embodiment. Various modifications can be made within the range described above.
 次に、本発明の効果をさらに明確にするために、実施例および比較例について説明するが、本発明はこれら実施例に限定されるものではない。 Next, in order to further clarify the effects of the present invention, examples and comparative examples will be described, but the present invention is not limited to these examples.
(実施例1)
 まず、基体としてTPC銅板(古河電気工業株式会社製、10mm×10mm×0.1mm)を準備した。次に、準備した基体に対し、前処理として、クリーナー160(メルテックス株式会社製)水溶液を用いてカソード脱脂し、これを水洗した後、希硫酸水溶液(硫酸濃度10質量%)を用いて酸洗中和し、さらに水洗した。
 次いで、ベンゾトリアゾール(城北化学工業株式会社製)の2質量%水溶液(以下、単に「2質量%BTA溶液」という。)を準備し、2質量%BTA溶液に、上記前処理後の基体を、80℃、2分間の条件で浸漬処理し、その後80℃で乾燥させて、基体の表面に拡散防止層を有する銅系基材を作製した。
 その後、得られた銅系基材の拡散防止層上に、国際公開第2014/192703号の明細書に記載の方法に従い、Cuペレットを原料としてマグネトロンスパッタリングにより銅ナノクラスターイオンを生成させ、銅クラスター電極触媒を得た。
Example 1
First, a TPC copper plate (10 mm × 10 mm × 0.1 mm, manufactured by Furukawa Electric Co., Ltd.) was prepared as a base. Next, as a pretreatment, the prepared substrate is degreased by cathode using a cleaner 160 (Meltex Co., Ltd.) aqueous solution, washed with water, and then acidified using a dilute sulfuric acid aqueous solution (sulfuric acid concentration 10 mass%). Wash neutralization and further water washing.
Next, a 2% by mass aqueous solution of benzotriazole (manufactured by Johoku Chemical Industry Co., Ltd.) (hereinafter simply referred to as “2% by mass BTA solution”) was prepared, and the substrate after the above pretreatment was added to the 2% by mass BTA solution. Immersion treatment was carried out under conditions of 80 ° C. for 2 minutes and then dried at 80 ° C. to prepare a copper base material having a diffusion prevention layer on the surface of the substrate.
Thereafter, copper nanocluster ions are generated by magnetron sputtering using Cu pellets as a raw material according to the method described in the specification of International Publication No. 2014/192703 on the diffusion-preventing layer of the obtained copper-based substrate. An electrode catalyst was obtained.
(実施例2)
 実施例2では、2質量%BTA溶液に替えて、ベンゾトリアゾール(城北化学工業株式会社製)の0.5質量%水溶液(以下、単に「0.5質量%BTA溶液」という。)を用いた以外は、実施例1と同様の方法で銅系基材およびこれを用いた電極触媒を作製した。
(Example 2)
In Example 2, instead of the 2% by mass BTA solution, a 0.5% by mass aqueous solution of benzotriazole (manufactured by Johoku Chemical Co., Ltd.) (hereinafter simply referred to as “0.5% by mass BTA solution”) was used. Except for the above, a copper-based substrate and an electrode catalyst using the same were prepared in the same manner as in Example 1.
(実施例3)
 実施例3では、0.5質量%BTA溶液を用いた浸漬処理を、間に80℃の乾燥を挟んで、表1に示す電気二重層容量の逆数が得られるまで複数回繰り返した以外は、実施例2と同様の方法で銅系基材およびこれを用いた電極触媒を作製した。
(Example 3)
In Example 3, except that the immersion treatment using the 0.5 mass% BTA solution was repeated a plurality of times until the reciprocal of the electric double layer capacity shown in Table 1 was obtained with 80 ° C. drying in between. A copper base material and an electrode catalyst using the same were prepared in the same manner as in Example 2.
(実施例4~6)
 実施例4~6では、2質量%BTA溶液を用いた浸漬処理を、間に80℃の乾燥を挟んで、表1に示す各電気二重層容量の逆数が得られるまで複数回繰り返した以外は、実施例1と同様の方法で銅系基材およびこれを用いた電極触媒をそれぞれ作製した。
(Examples 4 to 6)
In Examples 4 to 6, except that the immersion treatment using the 2% by mass BTA solution was repeated a plurality of times until the reciprocal number of each electric double layer capacity shown in Table 1 was obtained with 80 ° C. drying in between. A copper-based substrate and an electrode catalyst using the same were prepared in the same manner as in Example 1.
(実施例7)
 実施例7では、2質量%BTA溶液に替えて、トリルトリアゾール(城北化学工業株式会社製)の2.5質量%水溶液(以下、単に「2.5質量%TTA溶液」という。)を用い、2.5質量%TTA溶液を用いた浸漬処理の条件を60℃、2分間とし、その後の乾燥条件を60℃とした以外は、実施例1と同様の方法で銅系基材およびこれを用いた電極触媒を作製した。
(Example 7)
In Example 7, instead of the 2% by mass BTA solution, a 2.5% by mass aqueous solution of tolyltriazole (manufactured by Johoku Chemical Co., Ltd.) (hereinafter simply referred to as “2.5% by mass TTA solution”) was used. The copper base material and this were used in the same manner as in Example 1 except that the conditions for the immersion treatment using the 2.5 mass% TTA solution were 60 ° C. for 2 minutes and the subsequent drying conditions were 60 ° C. The electrode catalyst was prepared.
(実施例8)
 実施例8では、2.5質量%TTA溶液に替えて、イミダゾール(城北化学工業株式会社製)の2.5質量%水溶液を用いた以外は、実施例7と同様の方法で銅系基材およびこれを用いた電極触媒を作製した。
(Example 8)
In Example 8, a copper base material was prepared in the same manner as in Example 7 except that a 2.5% by mass aqueous solution of imidazole (manufactured by Johoku Chemical Co., Ltd.) was used instead of the 2.5% by mass TTA solution. And the electrode catalyst using this was produced.
(実施例9)
 実施例9では、2.5質量%TTA溶液に替えて、ベンゾトリアゾール(城北化学工業株式会社製)1質量%およびトリアゾール(城北化学工業株式会社製)1.5質量%を含む水溶液を用いた以外は、実施例7と同様の方法で銅系基材およびこれを用いた電極触媒を作製した。
Example 9
In Example 9, instead of the 2.5% by mass TTA solution, an aqueous solution containing 1% by mass of benzotriazole (manufactured by Johoku Chemical Industry Co., Ltd.) and 1.5% by mass of triazole (manufactured by Johoku Chemical Industry Co., Ltd.) was used. Except for the above, a copper-based substrate and an electrode catalyst using the same were prepared in the same manner as in Example 7.
(比較例1)
 比較例1では、拡散防止層を形成せず、前処理後の基体の表面に直接、銅クラスターを蒸着させた以外は、実施例1と同様の方法で、電極触媒を得た。
(Comparative Example 1)
In Comparative Example 1, an electrode catalyst was obtained in the same manner as in Example 1 except that the diffusion prevention layer was not formed and copper clusters were directly deposited on the surface of the pretreated substrate.
(比較例2)
 比較例2では、2質量%BTA溶液に替えて、無機材料であるシリカ微粉末の5質量%水溶液を準備し、このシリカ溶液に、上記前処理後の基体を、30℃、1分間の条件で浸漬処理し、その後80℃で乾燥させて、基体の表面に拡散防止層を形成した以外は、実施例1と同様の方法で銅系基材およびこれを用いた電極触媒を作製した。
(Comparative Example 2)
In Comparative Example 2, instead of the 2% by mass BTA solution, a 5% by mass aqueous solution of silica fine powder, which is an inorganic material, was prepared, and the substrate after the above pretreatment was added to this silica solution at 30 ° C. for 1 minute. A copper base material and an electrode catalyst using the same were prepared in the same manner as in Example 1, except that the diffusion prevention layer was formed on the surface of the substrate by dipping the substrate at 80 ° C.
(実施例10)
 実施例10では、実施例1と同様の方法で銅系基材を作製し、得られた銅系基材の拡散防止層上に、国際公開第2014/192703号の明細書に記載の方法に従い、パラジウム(Pd)ペレットを原料としてマグネトロンスパッタリングによりPdナノクラスターイオンを生成させ、Pdクラスター電極触媒を得た。
(Example 10)
In Example 10, a copper base material was produced by the same method as in Example 1, and the diffusion preventive layer of the obtained copper base material was subjected to the method described in the specification of International Publication No. 2014/192703. Pd nanocluster ions were generated by magnetron sputtering using palladium (Pd) pellets as a raw material to obtain a Pd cluster electrode catalyst.
[評価]
 上記実施例および比較例に係る銅系基材および電極触媒を用いて、下記に示す特性評価を行った。各特性の評価条件は下記の通りである。結果を表1および2に示す。
[Evaluation]
Using the copper base materials and electrode catalysts according to the above Examples and Comparative Examples, the following characteristic evaluation was performed. The evaluation conditions for each characteristic are as follows. The results are shown in Tables 1 and 2.
[1]電気二重層容量の逆数値
 実施例1~10および比較例2の銅系基材について、拡散防止層を形成する前後の表面(拡散防止層形成前:前処理後の基体の表面、拡散防止層形成後:作製した銅系基材の表面)の電気二重層容量を測定し、その逆数(1/C)を算出した。測定装置としては、直読式電気二重層容量測定器(インピーダンスアナライザ Cメータ、日置電機株式会社製)を用い、電解液は、0.1Nの硝酸カリウム水溶液を用い、ステップ電流50μA/cmの条件にて、各試料2点ずつ測定し(N=2)、平均値を求めた。なお、比較例2については、測定限界により、電気二重層容量が検出できなかった。
[1] Reciprocal value of electric double layer capacity For the copper base materials of Examples 1 to 10 and Comparative Example 2, the surface before and after the formation of the diffusion prevention layer (before formation of the diffusion prevention layer: the surface of the substrate after the pretreatment, After the formation of the diffusion prevention layer: the electric double layer capacity of the prepared copper-based substrate was measured, and the reciprocal (1 / C) was calculated. As a measuring device, a direct-reading type electric double layer capacitance measuring device (impedance analyzer C meter, manufactured by Hioki Electric Co., Ltd.) is used, and an electrolytic solution is a 0.1N potassium nitrate aqueous solution, and the step current is 50 μA / cm 2 . Then, two points were measured for each sample (N = 2), and the average value was obtained. In Comparative Example 2, the electric double layer capacity could not be detected due to the measurement limit.
[2]二酸化炭素の還元試験
 実施例1~10および比較例1および2の電極触媒を、二酸化炭素のカソード還元装置のカソード電極として用い、二酸化炭素の還元試験を行った。二酸化炭素のカソード還元装置の概略は、上述のとおりである(図5)。なお、電解液は、50mMの炭酸水素カリウム水溶液を用い、各槽316a、316bに30mLずつ用いた。アノード電極320には、チタン基材に白金を被覆した白金電極(田中貴金属工業株式会社製)を用いた。電気分解は、電流2mA、電圧2.8Vの条件で60分間行った。また、電気分解中は、供給管より、二酸化炭素ガスを10mL/分でバブリングした(図中矢印A方向)。また、カソードより発生したガスは、分析管323により収集し(図中矢印B方向)、ガスクロマトグラフィーで分析を行った。カラムは、SUPELCO CARBOXEN 1010PLOT 30m×032mmlDを用い、検出機はFID(Sigma-Aldrich社製)を用いた。
[2] Carbon dioxide reduction test Carbon dioxide reduction tests were conducted using the electrode catalysts of Examples 1 to 10 and Comparative Examples 1 and 2 as the cathode electrode of a carbon dioxide cathode reduction apparatus. The outline of the cathode reduction device for carbon dioxide is as described above (FIG. 5). The electrolyte used was a 50 mM aqueous solution of potassium hydrogen carbonate, and 30 mL each was used for each tank 316a, 316b. As the anode electrode 320, a platinum electrode (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) in which a titanium base material was coated with platinum was used. The electrolysis was performed for 60 minutes under the conditions of a current of 2 mA and a voltage of 2.8V. During electrolysis, carbon dioxide gas was bubbled from the supply pipe at 10 mL / min (in the direction of arrow A in the figure). The gas generated from the cathode was collected by the analysis tube 323 (in the direction of arrow B in the figure) and analyzed by gas chromatography. SUPELCO CARBOXEN 1010PLOT 30m × 032mlD was used as the column, and FID (manufactured by Sigma-Aldrich) was used as the detector.
 なお、カソードにおける反応としては、以下に示したメタン、エチレン、エタンの生成について注目した。
 CO+8H+8e → CH+2H
 CO+12H+12e → C+4H
 CO+14H+14e → C+4H
 結果を表3に示す。なお、本実施例では、メタンガス濃度が40ppm以上、エチレンガス濃度が30ppm以上、エタンガス濃度が10ppm以上のものを合格レベルと評価した。
As the reaction at the cathode, attention was paid to the generation of methane, ethylene, and ethane as shown below.
CO 2 + 8H + + 8e → CH 4 + 2H 2 O
CO 2 + 12H + + 12e → C 2 H 4 + 4H 2 O
CO 2 + 14H + + 14e → C 2 H 6 + 4H 2 O
The results are shown in Table 3. In this example, methane gas concentrations of 40 ppm or higher, ethylene gas concentrations of 30 ppm or higher, and ethane gas concentrations of 10 ppm or higher were evaluated as acceptable levels.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[3]水の電気分解試験
 上記二酸化炭素の還元試験で用いた装置により、電解液をイオン交換水に替えて、水の電気分解試験を行った。なお、本試験は、実施例1、2および6を、それぞれカソード電極として用いる場合について行った。また、電気分解の条件は、電流2mA、電圧2.8V、60分とした。結果を表2に示す。
[3] Water electrolysis test The electrolysis test of water was performed by changing the electrolyte solution to ion-exchanged water using the apparatus used in the carbon dioxide reduction test. In addition, this test was done about the case where Example 1, 2, and 6 are each used as a cathode electrode. The electrolysis conditions were a current of 2 mA, a voltage of 2.8 V, and 60 minutes. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、上記実施の形態に係る実施例1~10に係る銅系基材は、銅からなる基体上に、直接形成された有機系材料からなる拡散防止層を有するため、これを触媒電極の基材として用いたとき、二酸化炭素のカソード還元に対し、良好な触媒性能を発現する電極触媒が得られることが確認された。さらに、表2に示されるように、本発明の銅系基材(実施例1、2および6)を用いた触媒電極は、水の電気分解においても、水素ガス濃度が600ppm以上の良好な触媒特性を発現することが確認された。 As shown in Table 1, since the copper base materials according to Examples 1 to 10 according to the above embodiment have a diffusion prevention layer made of an organic material directly formed on a base made of copper, When this was used as the base material of the catalyst electrode, it was confirmed that an electrode catalyst exhibiting good catalytic performance was obtained for the cathode reduction of carbon dioxide. Furthermore, as shown in Table 2, the catalyst electrode using the copper base material of the present invention (Examples 1, 2 and 6) is a good catalyst having a hydrogen gas concentration of 600 ppm or more even in the electrolysis of water. It was confirmed that the characteristics were developed.
 これに対し、比較例1~2に係る銅系基材は、銅からなる基体上に有機系材料からなる拡散防止層を有していないため、これを用いた電極触媒は、本発明の実施例1~10に係る電極触媒に比べて、二酸化炭素のカソード還元において触媒活性が劣っていることが確認された。これは、比較例1~2に係る銅系基材では有機系材料の拡散防止層が形成されていないため、基体を構成する銅と、Cuクラスターとが融合し、クラスター触媒としての活性が低下したためと推察される。 On the other hand, since the copper base materials according to Comparative Examples 1 and 2 do not have a diffusion prevention layer made of an organic material on a base made of copper, an electrode catalyst using the same is an embodiment of the present invention. Compared with the electrode catalysts according to Examples 1 to 10, it was confirmed that the catalytic activity was inferior in the cathode reduction of carbon dioxide. This is because the copper base material according to Comparative Examples 1 and 2 does not have an organic material diffusion prevention layer, so the copper constituting the base and the Cu cluster are fused, and the activity as a cluster catalyst is reduced. It is guessed that it was because
1……………銅系基材
11…………基体
12…………酸化物層
121………酸化第一銅層
122………酸化第二銅層
13…………拡散保護層
3……………電解装置
31…………電源
33…………電解セル(COカソード還元試験装置)
35…………ガス回収装置
37…………電解液循環装置
39…………二酸化炭素供給部
315a、315b………電解液
316a、316b………槽
317………金属メッシュ
318………参照電極(銀/塩化銀)
319………カソード電極
320………アノード電極
321………陽イオン交換膜
323………分析管
325………供給管
327………シール部材
DESCRIPTION OF SYMBOLS 1 ......... Copper base material 11 ......... Base 12 ......... Oxide layer 121 ......... Copper oxide layer 122 ......... Copper oxide layer 13 ......... Diffusion protective layer 3 ………… Electrolysis device 31 ………… Power supply 33 ………… Electrolysis cell (CO 2 cathode reduction test device)
35 ………… Gas recovery device 37 ………… Electrolyte circulation device 39 ………… Carbon dioxide supply unit 315a, 315b ……… Electrolyte 316a, 316b ……… Bath 317 ……… Metal mesh 318 …… ... Reference electrode (silver / silver chloride)
319 ......... Cathode electrode 320 ......... Anode electrode 321 ......... Cation exchange membrane 323 ......... Analysis tube 325 ......... Supply tube 327 ......... Seal member

Claims (8)

  1.  銅または銅系合金からなる基体と、該基体の表面上に直接または酸化物層を介して形成された、有機系材料含む拡散防止層とを有することを特徴とする、電極基材。 An electrode base material comprising: a base made of copper or a copper-based alloy; and a diffusion prevention layer containing an organic material formed directly or through an oxide layer on the surface of the base.
  2.  水の電気分解による水素生成、または二酸化炭素をカソード還元して炭素含有物質に変換するための触媒を構成する基材として用いられる銅系基材である、請求項1に記載の電極基材。 The electrode base material according to claim 1, which is a copper base material used as a base material constituting a catalyst for hydrogen generation by electrolysis of water or a catalyst for cathodic reduction of carbon dioxide to convert it to a carbon-containing substance.
  3.  前記有機系材料が、アゾール類の化合物である、請求項1又は請求項2に記載の電極基材。 The electrode substrate according to claim 1 or 2, wherein the organic material is an azole compound.
  4.  電気二重層容量の逆数値が、0.3~5cm/μFである、請求項1~請求項3のいずれか1項に記載の電極基材。 The electrode substrate according to any one of claims 1 to 3, wherein the reciprocal value of the electric double layer capacity is 0.3 to 5 cm 2 / µF.
  5.  請求項1~請求項4のいずれか1項に記載の電極基材と、該電極基材の前記拡散防止層に形成された金属クラスターを含む触媒材料を含有する触媒層とを有する、電極触媒。 An electrode catalyst comprising: the electrode base material according to any one of claims 1 to 4; and a catalyst layer containing a catalyst material including a metal cluster formed in the diffusion prevention layer of the electrode base material. .
  6.  前記金属クラスターが、銅または銅系合金からなるクラスターである、請求項5に記載の電極触媒。 The electrode catalyst according to claim 5, wherein the metal cluster is a cluster made of copper or a copper-based alloy.
  7.  請求項1~請求項4のいずれか1項に記載の電極基材、あるいは請求項5または6に記載の電極触媒を備えた、電解装置。 An electrolysis apparatus comprising the electrode substrate according to any one of claims 1 to 4 or the electrode catalyst according to claim 5 or 6.
  8.  請求項1~請求項4のいずれか1項に記載の銅系基材を備えたカソードと、カソード電解液と、アノードと、前記アノード電解液と、前記カソードと前記アノードの間に備えたイオン交換膜とを具備することを特徴とする電解装置。 A cathode comprising the copper-based substrate according to any one of claims 1 to 4, a cathode electrolyte, an anode, the anode electrolyte, and an ion provided between the cathode and the anode. An electrolysis apparatus comprising an exchange membrane.
PCT/JP2018/010104 2017-03-29 2018-03-15 Electrode base material, and electrode catalyst and electrolysis apparatus each using same WO2018180517A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-065856 2017-03-29
JP2017065856A JP6902375B2 (en) 2017-03-29 2017-03-29 Copper-based substrate, and electrode catalyst and electrolyzer using this

Publications (1)

Publication Number Publication Date
WO2018180517A1 true WO2018180517A1 (en) 2018-10-04

Family

ID=63675467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010104 WO2018180517A1 (en) 2017-03-29 2018-03-15 Electrode base material, and electrode catalyst and electrolysis apparatus each using same

Country Status (3)

Country Link
JP (1) JP6902375B2 (en)
TW (1) TWI753143B (en)
WO (1) WO2018180517A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153503A1 (en) 2020-01-27 2021-08-05 国立研究開発法人理化学研究所 Cathode electrode, complex of cathode electrode and substrate, and method for manufacturing complex of cathode electrode and substrate
WO2022049638A1 (en) * 2020-09-01 2022-03-10 千代田化工建設株式会社 Method for producing ethylene oxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122125A (en) * 2010-12-10 2012-06-28 Central Research Institute Of Electric Power Industry Method for manufacturing surface-modified copper member, catalyst member and organic synthesis method using the same
JP2015086472A (en) * 2013-10-31 2015-05-07 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Electrodes for electrochemical reduction
JP2015132012A (en) * 2013-05-29 2015-07-23 株式会社東芝 Reduction catalyst and chemical reaction device
JP2016215141A (en) * 2015-05-21 2016-12-22 株式会社東芝 Reduction catalyst and chemical reactor
JP2017057492A (en) * 2015-09-16 2017-03-23 株式会社東芝 Co2 reduction catalyst, co2 reduction electrode, co2 reductive reaction device and manufacturing method of co2 reduction catalyst

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2568838B2 (en) * 1987-03-31 1997-01-08 古河電池株式会社 Modified electrode and its manufacturing method
EP2382174A4 (en) * 2009-01-29 2013-10-30 Trustees Of The University Of Princeton Conversion of carbon dioxide to organic products
EP3006604B1 (en) * 2013-05-29 2018-12-12 Kabushiki Kaisha Toshiba Reduction catalyst and chemical reactor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122125A (en) * 2010-12-10 2012-06-28 Central Research Institute Of Electric Power Industry Method for manufacturing surface-modified copper member, catalyst member and organic synthesis method using the same
JP2015132012A (en) * 2013-05-29 2015-07-23 株式会社東芝 Reduction catalyst and chemical reaction device
JP2015086472A (en) * 2013-10-31 2015-05-07 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Electrodes for electrochemical reduction
JP2016215141A (en) * 2015-05-21 2016-12-22 株式会社東芝 Reduction catalyst and chemical reactor
JP2017057492A (en) * 2015-09-16 2017-03-23 株式会社東芝 Co2 reduction catalyst, co2 reduction electrode, co2 reductive reaction device and manufacturing method of co2 reduction catalyst

Also Published As

Publication number Publication date
TW201903209A (en) 2019-01-16
JP6902375B2 (en) 2021-07-14
TWI753143B (en) 2022-01-21
JP2018168410A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
Pan et al. Designing CO 2 reduction electrode materials by morphology and interface engineering
Woldu et al. Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts
JP2018024895A (en) Catalyst, electrode catalyst, and manufacturing method of electrode catalyst
Kottakkat et al. Electrodeposited AgCu foam catalysts for enhanced reduction of CO2 to CO
Schreier et al. Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO
Solmaz et al. Fabrication and characterization of NiCoZn–M (M: Ag, Pd and Pt) electrocatalysts as cathode materials for electrochemical hydrogen production
EP3670701B1 (en) Method for converting carbon dioxide (co2) into co by an electrolysis reaction
Solmaz et al. Preparation and characterization of Pd-modified Raney-type NiZn coatings and their application for alkaline water electrolysis
Amin et al. Cathodic activation of titanium-supported gold nanoparticles: an efficient and stable electrocatalyst for the hydrogen evolution reaction
Yang et al. Highly enhanced chloride adsorption mediates efficient neutral CO2 electroreduction over a dual-phase copper catalyst
DE102015203245A1 (en) Deposition of a copper-containing, hydrocarbon-developing electrocatalyst on non-copper substrates
Hersbach et al. Tailoring the electrocatalytic activity and selectivity of Pt (111) through cathodic corrosion
Lu et al. Cu, Ni and multi-walled carbon-nanotube-modified graphite felt electrode for nitrate electroreduction in water
EP2686464A2 (en) Process for the selective electrochemical conversion of c02 into c2 hydrocarbons
WO2018180517A1 (en) Electrode base material, and electrode catalyst and electrolysis apparatus each using same
Rezaei et al. Electrocatalytic activity of bimetallic PdAu nanostructure supported on nanoporous stainless steel surface using galvanic replacement reaction toward the glycerol oxidation in alkaline media
Kim et al. Electrodeposited CuAgHg multimetallic thin films for improved CO2 conversion: the dramatic impact of Hg incorporation on product selectivity
JP2017057438A (en) Reduction electrode and method of manufacturing the same, and electrolytic apparatus
Hosseini et al. Electrocatalytic activity of porous nanostructured Fe/Pt-Fe electrode for methanol electrooxidation in alkaline media
Kuznetsov et al. Re–Ni cathodes obtained by electrodeposition as a promising electrode material for hydrogen evolution reaction in alkaline solutions
Landaeta et al. Mechanistic study of plasmon-assisted in situ photoelectrochemical CO2 reduction to acetate with a Ag/Cu2O nanodendrite electrode
Liu et al. Mechanism of corrosion and sedimentation of nickel electrodes for alkaline water electrolysis
JP2018031034A (en) Electrode carrying metal-containing nanoparticles and carbon dioxide reduction apparatus
JP2018028122A (en) Cathode electrode
Döner Hydrogen evolution on Pd modified CoCuZn and CoMnZn cathodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777391

Country of ref document: EP

Kind code of ref document: A1