WO2018180104A1 - Determination device, determination method, program for determination, and data structure - Google Patents

Determination device, determination method, program for determination, and data structure Download PDF

Info

Publication number
WO2018180104A1
WO2018180104A1 PCT/JP2018/007027 JP2018007027W WO2018180104A1 WO 2018180104 A1 WO2018180104 A1 WO 2018180104A1 JP 2018007027 W JP2018007027 W JP 2018007027W WO 2018180104 A1 WO2018180104 A1 WO 2018180104A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold
ground
determination
information
inclination
Prior art date
Application number
PCT/JP2018/007027
Other languages
French (fr)
Japanese (ja)
Inventor
良司 野口
誠 松丸
雄悟 石川
宏 永田
竹村 到
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2019509010A priority Critical patent/JPWO2018180104A1/en
Publication of WO2018180104A1 publication Critical patent/WO2018180104A1/en
Priority to JP2021170759A priority patent/JP7174131B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram

Definitions

  • This application belongs to the technical field of determination apparatus, determination method, determination program, and data structure. More specifically, the present invention belongs to a technical field of a determination device and a determination method for performing determination related to a map, a program for the determination, and a data structure.
  • One of the techniques necessary for realizing automatic driving is the detection of obstacles on the ground.
  • One of the techniques that can be used to detect such an obstacle is object detection using a LiDAR (Light Detection Detection and Ranging, Laser Imaging Detection and Ranging) system.
  • the inclination (gradient) of the portion of the ground is detected from data calculated from the reflected light from the ground, and if the inclination is gentle, the reflected light from the ground If the slope is steep, it is determined that the reflected light is from the obstacle.
  • Patent Document 1 As an example of a technique related to the background art, there is a technique described in Patent Document 1 below, for example.
  • a threshold for determining whether or not the obstacle is an obstacle by the above inclination is necessary.
  • the threshold value is too small, for example, even a slope is judged as an obstacle, and if the threshold value is too large, a small obstacle is judged as the ground.
  • the present application has been made in view of the above-described problems, and an example of the problem is a determination device and a determination method capable of accurately determining the inclination (gradient) of the ground, and the determination device. It is to provide a program and a data structure.
  • the invention according to claim 1 is a first acquisition unit that acquires light reception information obtained by receiving reflected light from the ground of light emitted from a moving body to the surroundings; Detection means for detecting the inclination of the reflection point of the light based on the light reception information, and threshold information indicating a threshold for determining the type of the inclination are associated with the map information corresponding to the ground, and the threshold information is obtained. Whether the reflection point is the ground or an object on the ground based on a comparison between the threshold value indicated by the threshold information and the detected inclination based on the second acquisition means for acquiring from the recording medium being recorded. Determining means for determining.
  • the invention according to claim 14 is a determination method executed in a determination apparatus including a first acquisition unit, a detection unit, a second acquisition unit, and a determination unit.
  • the second acquisition step acquired by the means and a comparison between the threshold value indicated by the threshold value information and the detected inclination it is determined whether the reflection point is the ground or an object on the ground.
  • Ri determines comprising a determining step.
  • the invention according to claim 15 is directed to a computer included in the determination device, wherein the light reception information obtained by receiving the reflected light from the ground of the light emitted from the moving body to the surroundings is received.
  • Second acquisition means for acquiring the threshold information in association with the recording medium, and comparing the threshold indicated by the threshold information with the detected inclination, whether the reflection point is the ground , And functioning as a determination means for determining whether the object is on the ground.
  • the invention according to claim 16 is characterized in that the threshold information acquired by the second acquisition means of the determination device according to any one of claims 1 to 13 is the threshold value information.
  • a data structure of a recording medium recorded in association with map information, wherein the threshold value information and the threshold value indicated by the threshold value information indicate a position on the map of the ground used for the type determination of the inclination Position information that is paired with the threshold information and the map information corresponding to the map that includes the position indicated by the position information, and the threshold information and the position information that form the pair are The map information corresponding to the map including the position indicated by the read position information is read together with the threshold information by being read by the second acquisition unit. Configured to be read to.
  • the invention according to claim 17 is the light reception obtained by receiving the reflected light from the ground or the object on the ground of the light emitted from the emitting means to the predetermined area.
  • Second acquisition for acquiring threshold information indicating a first threshold value for determining whether the object is on the ground based on the inclination state and a second threshold value for determining based on the reflectance
  • the irradiation target is on the ground on the basis of means, a comparison between the first threshold value indicated by the threshold value information and the detected inclination state, and a comparison between the second threshold value and the detected reflectance.
  • an object on the ground Comprising a determining means.
  • (a) is a flowchart which shows the said map data recording process
  • (b) is a flowchart which shows the whole ground determination process which concerns on 1st Example.
  • (C) is a flowchart showing details of the ground determination process. It is a flowchart which shows the ground determination process which concerns on 2nd Example. It is a flowchart which shows the map data recording process etc. which concern on 3rd Example
  • (a) is a flowchart which shows the said map data recording process
  • (b) is a flowchart which shows the ground determination process which concerns on 3rd Example. .
  • FIG. 1 is a block diagram illustrating a schematic configuration of the determination apparatus according to the embodiment.
  • the determination device S includes a first acquisition unit 1, a detection unit 2, a determination unit 3, and a second acquisition unit 4.
  • the first acquisition means 1 acquires the light reception information obtained by receiving the reflected light from the ground of the light emitted from the moving body to the surroundings.
  • the detection means 2 detects the inclination of the reflection point of light based on the light reception information acquired by the 1st acquisition means.
  • the second acquisition means 4 acquires threshold information indicating a threshold for determining the type of inclination from a recording medium in which the threshold information is recorded in association with map information corresponding to the ground.
  • the determination unit 3 determines whether the light reflection point is the ground or an object on the ground based on the comparison between the threshold indicated by the threshold information and the inclination detected by the detection unit 2.
  • the inclination of the reflection point is detected based on the light reception information obtained by receiving the reflected light from the ground, and the inclination corresponds to the ground. Whether the reflection point is the ground or an object is determined based on the comparison with the threshold value indicated by the threshold value information recorded in association with the map information. Therefore, since it is determined whether the reflection point is the ground or an object by comparison with the threshold value recorded for determining the type of inclination, the determination can be accurately performed without requiring complicated processing.
  • each Example demonstrated below is an Example at the time of applying to the threshold value used for the obstacle detection using the LiDAR system mounted in the vehicle.
  • FIG. 2 is a block diagram showing a schematic configuration of the map data system according to the first embodiment
  • FIG. 3 is a diagram showing a structure of map data according to the first embodiment
  • FIG. 4 is a diagram showing the first embodiment.
  • FIG. 5 is a flowchart showing a ground determination process according to the second embodiment
  • FIG. 6 is a flowchart showing a map data recording process according to the third embodiment. .
  • the map data system SS includes a map server device SV that can exchange data via a network NW such as the Internet, and a ground determination device C that is mounted on a vehicle. , Is configured.
  • the map server device SV includes a processing area determining unit 11, a map database 12, a graph / gradient calculating unit 13, an object recognizing unit 14, a discriminator 15, and an in-processing area gradient threshold determining unit 16.
  • the processing area gradient threshold value determination unit 16 is connected to the map database 17.
  • the map database 17 may be provided separately from the map server device SV, or may be provided in the map server device SV.
  • the processing area determining unit 11, the graph / gradient calculating unit 13, the object recognizing unit 14, and the in-processing area gradient threshold determining unit 16 are implemented by a hardware logic circuit including a CPU (not shown) provided in the map server device SV. It may be realized, or may be realized in software by the CPU or the like reading and executing a program corresponding to map data recording processing according to a first embodiment described later.
  • the ground determination device C includes a graph / gradient calculation unit 21 connected to the network NW and the LiDAR sensor 20, a processing area determination unit 22, a map database 23, and an in-processing area gradient threshold comparison unit 24.
  • the graph / gradient calculation unit 21, the processing area determination unit 22, and the in-processing area gradient threshold comparison unit 24 may be realized by a hardware logic circuit including a CPU (not shown) provided in the ground determination device C.
  • the program may be realized in software by causing the CPU or the like to read and execute a program corresponding to a ground determination process according to a first embodiment described later.
  • the processing area gradient threshold value comparison unit 24 corresponds to an example of the “first acquisition unit 1”, an example of the “second acquisition unit”, and an example of the “determination unit 3” according to the embodiment.
  • the graph / gradient calculation unit 21 corresponds to an example of the “detection unit 2” according to the embodiment.
  • the map database 17 corresponds to an example of a “recording medium” according to the present application.
  • the map database 12 of the map server device SV records map data for matching with data from the LiDAR sensor 10. Then, the processing area determination unit 11 of the map server device SV reads out the map data for matching from the map database 12 and sets a predetermined area on the map on which the gradient data according to the embodiment is generated. Determined by This area determination may be made manually.
  • the graph / gradient calculation unit 13 has four neighboring points of interest (for example, four directions centered on the point of interest (for example, up, down, left, and right directions))
  • the graphs connecting the neighborhoods of the graphs are created, and the gradients of the edges of the respective graphs are executed at all the points of interest. Details of the calculation method in the graph / gradient calculation unit 13 are described in, for example, the paper “On ⁇ the Segmentation of 3D LIDAR Point Clouds” ICRA, 2011, The University of Sydney, B. Douillard et al. SEGMENTATION ALGORITHMS, C Segmentation for Sparse Data, and 2) Mesh Based on Segmentation.
  • the above-described gradient calculation method is simply referred to as “gradient calculation method according to the embodiment”.
  • the object recognition unit 14 detects whether the target from which the data is obtained is the ground or an obstacle using the classifier 15 or manually.
  • the in-processing area gradient threshold value determination unit 16 determines a threshold value for determining the slope type of the ground in the area determined by the processing area determination unit 11 (that is, a threshold value for determining the inclination type in the area).
  • the determined threshold value is recorded in the map database 17 in association with the map data corresponding to the area.
  • the graph / gradient calculation unit 21 of the ground determination device C calculates the gradient at each point of interest based on the data from the LiDAR sensor 20, for example, by the gradient calculation method according to the above embodiment.
  • the map database 23 records map data for matching with data from the LiDAR sensor 20.
  • the processing area determination unit 22 reads the map data for matching from the map database 23, and determines an area on the map that is a target for detecting the inclination (gradient) according to the embodiment by a preset method. .
  • the processing area gradient threshold value comparison unit 24 acquires the threshold value recorded in the map database 17 of the map server device SV via the network NW as necessary, and the threshold value and the data from the LiDAR sensor 20. To detect the inclination (gradient) of the area to be processed.
  • the threshold for determining the type of inclination is recorded for each area as a map. That is, for example, as illustrated in FIG. 3A, for each of the areas A1 to A3 obtained by equally dividing the road on which the vehicle CC travels in the traveling direction, the threshold value is recorded in association with each of the areas A1 to A3. Has been. At this time, for example, the threshold value may be recorded for each of the areas B1 to B4 having different lengths in the traveling direction as shown in FIG. 3B, or along the curve as shown in FIG.
  • the threshold value may be recorded for each of the divided areas C1 to C3, or for each of the areas D1 to D8 divided corresponding to the intersection CR indicated by a broken line in FIG. It may be recorded. Furthermore, as illustrated in FIG. 3E, the threshold value may be recorded for each of the areas E1 to E6 that are freely divided with respect to the road R.
  • map data recording processing according to the first embodiment will be described with reference to FIG.
  • the map data recording process according to the first embodiment is started, for example, at the timing when the power switch of the map server device SV is turned on.
  • the processing area determination unit 11 selects, for example, any one of the areas A1 illustrated in FIG. 3 (step S2).
  • step S1 when the area to be processed is determined (step S1: YES or step S2), the graph / gradient calculation unit 13 uses the gradient calculation method according to the above embodiment based on the data from the LiDAR sensor 10. Then, the slope (the slope) based on the data for the determined area is calculated for each data (step S3).
  • the object recognizing unit 14 detects whether the target from which the data is obtained is the ground or an obstacle by a method using the discriminator 15 or visual observation (step S4).
  • the processing area gradient threshold value determination unit 16 determines the type of gradient in the determined area based on the gradient calculated from the data about the object in which whether the ground or the obstacle is detected in step S4.
  • the above threshold A of It is determined so that the maximum value of the gradient of the object that is the ground ⁇ the threshold A ⁇ the minimum value of the gradient of the object that is the obstacle.
  • the threshold A after this determination is recorded in the map database 17 in association with the area.
  • step S6 determines whether or not to determine the threshold value for the next area.
  • step S6 determines whether or not to determine the threshold value for the next area.
  • the ground determination process according to the first embodiment is started, for example, when the power switch of the ground determination device C is turned on.
  • the threshold value data is not acquired in the determination in step S10 (step S10: NO)
  • the map server 17 of the map server device SV is accessed to acquire the necessary threshold value data (step S11).
  • necessary threshold data is acquired (step S10: YES or step S11)
  • the ground determination process according to the first embodiment is then executed (step S12).
  • step S13 whether or not to end the ground determination processing according to the first embodiment is determined, for example, by determining whether or not the vehicle on which the ground determination device C is mounted has reached the destination (step) S13).
  • step S13: YES the ground determination process is terminated as it is. It is.
  • the in-process area gradient threshold value comparison unit 24 associates the threshold value with respect to one of the attention points (attention points on the ground) (i). It is determined whether or not (step S120). When the threshold value is not associated with the current attention point (i) in the determination in step S120 (step S120: NO), the in-processing area gradient threshold value comparison unit 24 performs the ground determination process for the next attention point (i + 1). It is determined whether or not to perform (step S121).
  • step S121 When the ground determination process is performed for the next attention point (i + 1) in the determination of step S121 (step S121: YES), the in-process area gradient threshold value comparison unit 24 returns to step S120 to determine the next attention point (i + 1). Repeat the ground determination process. On the other hand, when there is no point of interest to be subjected to the ground determination process next in the determination in step S120 (step S121: NO), the in-process area gradient threshold value comparison unit 24 returns to step S13. On the other hand, when the threshold value is associated with the current attention point (i) in the determination in step S120 (step S120: YES), the in-processing area gradient threshold value comparison unit 24 determines that the inclination of the attention point (i) is greater than the threshold value.
  • step S122 It is determined whether or not the inclination is smaller (step S122), and when the inclination of the attention point (i) is smaller than the threshold value (step S122: YES), the in-processing area gradient threshold value comparison unit 24 determines that the attention point (i) is the ground surface. It is determined that there is (step S123), and the process proceeds to step S121.
  • step S122: NO when the inclination of the point of interest (i) is equal to or greater than the threshold value in the determination in step S122 (step S122: NO), the in-processing area gradient threshold value comparison unit 24 determines that there is an obstacle at the point of interest (i). (Step S124), the process proceeds to Step S121.
  • the inclination of the reflection point is detected based on the data obtained by receiving the reflected light from the ground, and the inclination and the ground are detected. Based on the comparison with the threshold value recorded in association with the corresponding map data, it is determined whether the reflection point is the ground or an object. Therefore, since it is determined whether the reflection point is the ground or an object by comparison with the threshold value recorded for determining the type of inclination, the determination can be accurately performed without requiring complicated processing.
  • the threshold value is a threshold value for each ground corresponding to an area divided in advance, it is possible to accurately determine whether or not the surface is a ground by using a fine threshold value for each area.
  • the threshold value is determined / recorded finely at regular intervals in the moving direction. Can do.
  • the area for which the threshold is determined is an area divided at intervals corresponding to the change in the ground inclination in the moving direction of the vehicle, it corresponds to the change in the inclination of the ground in the moving direction (that is, the undulation of the ground).
  • the threshold value can be determined / recorded in detail.
  • the map server device SV executes the discrimination of the object on the ground based on the reflected light from the ground within the predetermined angle range by the LiDAR sensor 10, the gradient of the ground within the predetermined angle range is set.
  • a threshold for accurate detection can be recorded in association with the map data.
  • a plurality of threshold values for the ground are determined according to changes in the inclination of the ground, it is possible to more appropriately determine whether or not the ground is concerned.
  • a plurality of threshold values are determined according to the change in the inclination of the ground, for example, in an area where there is no change in the inclination of the ground, a single threshold value is determined for the area.
  • a plurality of threshold values are determined for the area in accordance with the change in inclination in the area.
  • a threshold corresponding to the speed limit of the vehicle in the same area is determined.
  • the threshold value is determined to be 0.7 when the speed limit is 80 km / h, and the threshold value is determined to be 1.0 when the speed limit is 20 km / h. It is mentioned that.
  • the moving speed of the management vehicle itself when the map management vehicle on which the LiDAR sensor 10 is mounted moves or the movement speed is set. Even when one or more threshold values for the ground are determined with reference, it is possible to more appropriately determine whether the ground is the ground.
  • one or a plurality of threshold values are determined according to the moving speed or with reference to the moving speed
  • a plurality of threshold values are determined according to the speed limit
  • the management vehicle is moved a plurality of times for one point, and a threshold value is determined for each movement.
  • the management vehicle is moved once for one point, one threshold is determined according to the moving speed of the one movement, and the other threshold for the one point is determined according to the moving speed.
  • the other threshold is determined manually or by a preset calculation method based on the determined one threshold. It is preferable that the relationship between the moving speed and the plurality of threshold values is tabulated, which is acquired by the ground determination device C according to the first embodiment and used for the type determination of the inclination.
  • the threshold is determined to be 0.7 when the moving speed of the management vehicle is 80 km / h, and the moving speed is In the case of 20 kilometers per hour, the threshold is determined to be 1.0.
  • the threshold value may be determined according to the moving speed of or referring to the moving speed.
  • the type of inclination is determined using the threshold value A as the value of the ground gradient.
  • the threshold value A is also used.
  • the type of inclination may be determined by further using a threshold value as a reflectance value from the ground (having a gradient) of the emitted light.
  • the threshold value as the reflectance value is referred to as “threshold value B”.
  • the threshold value B is set based on the data from the LiDAR sensor 10.
  • the maximum reflectance of the object that is the ground ⁇ the threshold B ⁇ the minimum value of the reflectance of the object that is the obstacle is determined, and this is recorded in the map database 17 in association with the area.
  • the reflectance as the threshold value B varies depending on the wavelength of the emitted light from the LiDAR sensor 10. Therefore, the threshold value B is recorded in the map database 17 in association with the wavelength of the emitted light from the used LiDAR sensor 10.
  • the LiDAR sensor 10 and the LiDAR sensor 20 originally use emitted light of various wavelengths, it is necessary to determine and record a threshold value B as a reflectance for each of a plurality of types of wavelengths. For this reason, for example, the reflectance data is collected and recorded by changing the wavelength of the light emitted from the LiDAR sensor 10, or the reflectance data is collected by a plurality of LiDAR sensors 10 having different original specifications (wavelengths). Is preferably configured to collect. Furthermore, at the time of the collection, it is preferable to record the emission angle of the emitted light from the LiDAR 10 in association with the distance to the target. This is because the emission angle and distance affect the threshold value B, which is a reflectance value.
  • the relationship with the threshold B as the reflectance value is also taken into consideration. Determine whether the area is the ground or there are obstacles. More specifically, “YES” is determined in step S122 of FIG. 4C, and the reflectance of the point of interest (i) when using emitted light having a predetermined angle, distance, and wavelength is the threshold value B. If it is less than the threshold value, the in-processing-area gradient threshold value comparing unit 24 determines that the attention point (i) is the ground (see step S123 in FIG. 4C). On the other hand, the determination in step S122 of FIG.
  • the processing area gradient threshold value comparison unit 24 determines that there is an obstacle at the attention point (i) (see step S124 in FIG. 4C).
  • the threshold value B as the reflectance value is used in a superimposed manner in addition to the threshold value A as the gradient value, the inclination type is determined.
  • the possibility that the type determination is erroneously determined can be reduced.
  • FIG. 5 is a flowchart showing the ground determination process according to the second embodiment.
  • a ground determination process corresponding to the speed of the vehicle is performed as the ground determination process.
  • the other configuration and processing (including map data recording processing) according to the second embodiment are the same as the configuration and processing according to the first embodiment, and thus detailed description thereof is omitted.
  • step S120 determines whether or not to perform the ground determination process according to the speed of the vehicle (step S130). And when not performing the ground determination process according to the speed of a vehicle (step S130: NO), the process area gradient threshold value comparison part 24 performs the process after step S122 similar to the ground determination process which concerns on 1st Example. .
  • step S130 determines that the inclination of the point of interest (i) corresponds to the threshold value according to the speed. It is determined whether or not the value is smaller than the value obtained by multiplying the correction value ⁇ (step S131). If the inclination of the attention point (i) is smaller than the result of the multiplication (step S131: YES), the process proceeds to step S123, and attention is paid. If the slope of the point (i) is equal to or greater than the result of the multiplication (step S131: NO), the process proceeds to step S124.
  • the ground is determined according to the speed at which the vehicle moves. This determination can be made.
  • the determination can be performed accurately according to the moving speed of the vehicle.
  • correction value ⁇ is smaller as the speed of movement of the vehicle is faster, a smaller object can be determined as the object as the vehicle moves at a higher speed, which can contribute to safer movement.
  • correction value ⁇ can be increased as the speed of movement of the vehicle is slower. In this case, when the vehicle moves at a low speed, determination accuracy corresponding to the low speed can be obtained.
  • FIG. 6 is a flowchart showing map data recording processing and the like according to the third embodiment.
  • a LiDAR sensor connected to the map server device The vertical inclination angle of the emitted light (that is, the pitch angle; the same applies hereinafter) ⁇ 1 according to the map data recording process and the pitch angle ⁇ 2 of the emitted light of the LiDAR sensor connected to the ground determination device The ground determination process is performed.
  • the same thing as the structure and process which concerns on 1st Example attaches
  • step S1 when the determination in step S1 according to the first embodiment or the area to be processed is determined in step S2 (step S1: YES or step S2), graph gradient calculation unit 13 then determines whether to perform a map data recording processing according to the pitch angle theta 1 (step S30).
  • the pitch angle ⁇ 1 in this case is detected by, for example, an acceleration sensor (not shown) provided in the LiDAR sensor 10.
  • the graph gradient calculation unit 13 a map data recording processing similar to step S3 and subsequent processing according to the first embodiment I do.
  • step S30 when performing the map data recording processing according to the pitch angle theta 1 is determined in step S30 (step S30: YES), the graph gradient calculation unit 13, for example, using a gradient calculation method or the like according to the embodiment
  • Is calculated for each piece of data as a correction slope based on the data from the LiDAR sensor 10 step S31.
  • step S4 and subsequent steps using the corrected inclination are executed.
  • the in-processing-area gradient threshold value comparison unit 24 determines whether or not to perform the ground determination processing according to the pitch angle ⁇ 2 (step S140).
  • the pitch angle ⁇ 2 in this case is detected by, for example, an acceleration sensor (not shown) provided in a vehicle on which the ground determination device C according to the third embodiment is mounted.
  • step S140: NO the process area gradient threshold value comparison part 24 is the process after step S122 similar to the ground determination process which concerns on 1st Example. I do.
  • step S140: YES the in-process area gradient threshold value comparison unit 24 determines the inclination of the point of interest (i) as the pitch angle ⁇ 2.
  • Step S141 a value obtained by dividing the parameter z at the inclination of the attention point (i) by the cosine of the pitch angle ⁇ 2 (that is, a value obtained by multiplying the parameter z by (1 / cos ⁇ 2 )) ) Is smaller than a threshold value associated with the point of interest (i) (step S141), and the corrected inclination of the point of interest (i) is smaller than the threshold value.
  • Step S141 YES
  • the process proceeds to step S123, and when the corrected inclination of the point of interest (i) is greater than or equal to the result of the threshold (step S141: NO), the step S 124.
  • the ground is determined according to the pitch angle ⁇ 2 of the emitted light from the LiDAR sensor 20. Since it determines, the said determination can be performed correctly.
  • programs corresponding to the flowcharts shown in FIGS. 4 and 5 are recorded on a recording medium such as an optical disk or a hard disk, or obtained via a network such as the Internet, and these are stored in a general-purpose microcomputer. It is possible to cause the microcomputer or the like to function as the in-process area gradient threshold value determination unit 16 or the in-process area gradient threshold value comparison unit 24 according to each embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Educational Technology (AREA)
  • Educational Administration (AREA)
  • Business, Economics & Management (AREA)
  • Mathematical Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Provided is a determination device that makes it possible to accurately determine the inclination (slope) of a ground surface. In the present invention, light reception information is acquired through the reception of light that has been emitted from a vehicle onto the surroundings thereof and reflected from a ground surface, and the inclination of a light reflection point is detected on the basis of the light reception information. Further, threshold information indicating a threshold for identifying inclination types is acquired from a map database 17 having the threshold information recorded thereon in association with map information corresponding to the ground surface. Thereafter, whether the reflection point is the ground surface or an object on the ground surface is determined on the basis of a comparison of the inclination and the threshold indicated by the threshold information.

Description

判定装置、判定方法並びに判定用プログラム及びデータ構造Determination apparatus, determination method, determination program, and data structure
 本願は、判定装置、判定方法並びに判定用プログラム及びデータ構造の技術分野に属する。より詳細には、地図に関連する判定を行う判定装置及び判定方法並びに当該判定用のプログラム及びデータ構造の技術分野に属する。 This application belongs to the technical field of determination apparatus, determination method, determination program, and data structure. More specifically, the present invention belongs to a technical field of a determination device and a determination method for performing determination related to a map, a program for the determination, and a data structure.
 近年、車両におけるいわゆる自動運転に関する研究が盛んに行われている。自動運転の実現に当たって必要な技術の一つに、地面にある障害物の検出がある。このような障害物の検出に用いることができる技術の一つにLiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)システムによる物体検出がある。LiDARシステムを用いた地面の障害物の検出では、例えば地面からの反射光から算出されたデータにより当該地面の部分の傾斜(勾配)を検出し、その傾斜が緩やかであれば地面からの反射光であると判定し、その傾斜が急であれば障害物からの反射光であると判定する。 In recent years, research on so-called automatic driving in vehicles has been actively conducted. One of the techniques necessary for realizing automatic driving is the detection of obstacles on the ground. One of the techniques that can be used to detect such an obstacle is object detection using a LiDAR (Light Detection Detection and Ranging, Laser Imaging Detection and Ranging) system. In the detection of an obstacle on the ground using the LiDAR system, for example, the inclination (gradient) of the portion of the ground is detected from data calculated from the reflected light from the ground, and if the inclination is gentle, the reflected light from the ground If the slope is steep, it is determined that the reflected light is from the obstacle.
 なお上記背景技術に関連する技術の一例としては、例えば下記特許文献1に記載された技術がある。 In addition, as an example of a technique related to the background art, there is a technique described in Patent Document 1 below, for example.
特開2014-95562号公報JP 2014-95562 A
 一方、上述したLiDARシステムを用いた地面の障害物の検出では、上記傾斜により障害物か否かを判定するための閾値が必要となるが、地面の傾斜の状況は様々であり、当該閾値を地面の各点についてその都度一意に決定するのは困難である。即ち、当該閾値を小さくし過ぎると例えば坂道であってもそれを障害物と判定してしまうし、また当該閾値を大きくし過ぎると小さな障害物を地面と判定してしまうという問題点がある。 On the other hand, in the detection of an obstacle on the ground using the LiDAR system described above, a threshold for determining whether or not the obstacle is an obstacle by the above inclination is necessary. However, there are various situations of the inclination of the ground. It is difficult to uniquely determine each point on the ground each time. That is, if the threshold value is too small, for example, even a slope is judged as an obstacle, and if the threshold value is too large, a small obstacle is judged as the ground.
 そこで本願は、上記の各問題点に鑑みて為されたもので、その課題の一例は、地面の傾斜(勾配)を正確に判定することを可能とする判定装置及び判定方法並びに当該判定装置用のプログラム及びデータ構造を提供することにある。 Therefore, the present application has been made in view of the above-described problems, and an example of the problem is a determination device and a determination method capable of accurately determining the inclination (gradient) of the ground, and the determination device. It is to provide a program and a data structure.
 上記の課題を解決するために、請求項1に記載の発明は、移動体から周囲に出射された光の地面からの反射光の受光により得られた受光情報を取得する第1取得手段と、前記受光情報に基づいて前記光の反射点の傾斜を検出する検出手段と、前記傾斜の種別を判別するための閾値を示す閾値情報を、当該地面に対応する地図情報に関連付けて当該閾値情報を記録している記録媒体から取得する第2取得手段と、前記閾値情報により示される前記閾値と前記検出された傾斜との比較に基づき、前記反射点が、前記地面か、当該地面にある物か、を判定する判定手段と、を備える。 In order to solve the above-mentioned problem, the invention according to claim 1 is a first acquisition unit that acquires light reception information obtained by receiving reflected light from the ground of light emitted from a moving body to the surroundings; Detection means for detecting the inclination of the reflection point of the light based on the light reception information, and threshold information indicating a threshold for determining the type of the inclination are associated with the map information corresponding to the ground, and the threshold information is obtained. Whether the reflection point is the ground or an object on the ground based on a comparison between the threshold value indicated by the threshold information and the detected inclination based on the second acquisition means for acquiring from the recording medium being recorded. Determining means for determining.
 上記の課題を解決するために、請求項14に記載の発明は、第1取得手段と、検出手段と、第2取得手段と、判定手段と、を備える判定装置において実行される判定方法において、移動体から周囲に出射された光の反射光の受光により得られた受光情報を前記第1取得手段により取得する第1取得工程と、前記受光情報に基づいて前記光の反射点の傾斜を前記検出手段により検出する検出工程と、前記傾斜の種別を判別するための閾値を示す閾値情報を、当該地面に対応する地図情報に関連付けて当該閾値情報を記録している記録媒体から前記第2取得手段により取得する第2取得工程と、前記閾値情報により示される前記閾値と前記検出された傾斜との比較に基づき、前記反射点が、前記地面か、当該地面にある物か、を前記判定手段により判定する判定工程と、を含む。 In order to solve the above-described problem, the invention according to claim 14 is a determination method executed in a determination apparatus including a first acquisition unit, a detection unit, a second acquisition unit, and a determination unit. A first acquisition step of acquiring light reception information obtained by receiving reflected light of light emitted from the moving body to the surroundings, and an inclination of the reflection point of the light based on the light reception information; The second acquisition from the recording medium in which the threshold value information indicating the threshold value for discriminating the type of inclination and the detection step detected by the detection means is recorded in association with the map information corresponding to the ground. Based on the second acquisition step acquired by the means and a comparison between the threshold value indicated by the threshold value information and the detected inclination, it is determined whether the reflection point is the ground or an object on the ground. In Ri determines comprising a determining step.
 上記の課題を解決するために、請求項15に記載の発明は、判定装置に含まれるコンピュータを、移動体から周囲に出射された光の地面からの反射光の受光により得られた受光情報を取得する第1取得手段、前記受光情報に基づいて前記光の反射点の傾斜を検出する検出手段、前記傾斜の種別を判別するための閾値を示す閾値情報を、当該地面に対応する地図情報に関連付けて当該閾値情報を記録している記録媒体から取得する第2取得手段、及び、前記閾値情報により示される前記閾値と前記検出された傾斜との比較に基づき、前記反射点が、前記地面か、当該地面にある物か、を判定する判定手段、として機能させる。 In order to solve the above-described problem, the invention according to claim 15 is directed to a computer included in the determination device, wherein the light reception information obtained by receiving the reflected light from the ground of the light emitted from the moving body to the surroundings is received. First acquisition means for acquiring, detection means for detecting the inclination of the reflection point of the light based on the received light information, and threshold information indicating a threshold value for determining the type of the inclination as map information corresponding to the ground Based on the second acquisition means for acquiring the threshold information in association with the recording medium, and comparing the threshold indicated by the threshold information with the detected inclination, whether the reflection point is the ground , And functioning as a determination means for determining whether the object is on the ground.
 上記の課題を解決するために、請求項16に記載の発明は、請求項1から請求項13のいずれか一項に記載の判定装置の前記第2取得手段により取得される前記閾値情報が前記地図情報に関連付けて記録されている記録媒体のデータ構造であって、前記閾値情報と、当該閾値情報により示される前記閾値が前記傾斜の種別判別に用いられる前記地面の地図上の位置を示す位置情報であって当該閾値情報と対を為す位置情報と、前記位置情報により示される前記位置を含む前記地図に対応する前記地図情報と、を含み、前記対を為す前記閾値情報及び前記位置情報が前記第2取得手段により読み出されることにより、当該読み出された位置情報により示される前記位置を含む前記地図に対応する前記地図情報が当該閾値情報と共に前記判定装置に読み出されるように構成される。 In order to solve the above-described problem, the invention according to claim 16 is characterized in that the threshold information acquired by the second acquisition means of the determination device according to any one of claims 1 to 13 is the threshold value information. A data structure of a recording medium recorded in association with map information, wherein the threshold value information and the threshold value indicated by the threshold value information indicate a position on the map of the ground used for the type determination of the inclination Position information that is paired with the threshold information and the map information corresponding to the map that includes the position indicated by the position information, and the threshold information and the position information that form the pair are The map information corresponding to the map including the position indicated by the read position information is read together with the threshold information by being read by the second acquisition unit. Configured to be read to.
 上記の課題を解決するために、請求項17に記載の発明は、出射手段から所定の領域に対して出射された光の、地面又は前記地面上の物からの反射光の受光により得られる受光情報を取得する第1取得手段と、前記受光情報に基づき、前記光の照射対象の傾斜、及び反射率を検出する検出手段と、前記所定の領域における前記光の照射対象が、地面であるか、前記地面上の物体であるかを、その傾斜状態に基づいて判別するための第1閾値、及びその反射率に基づいて判別するための第2閾値を示す閾値情報を、取得する第2取得手段と、前記閾値情報により示される前記第1閾値と前記検出された傾斜状態との比較、及び前記第2閾値と前記検出された反射率との比較、に基づき、前記照射対象が、地面であるか、前記地面上の物体か、を判定する判定手段と、を備える。 In order to solve the above problem, the invention according to claim 17 is the light reception obtained by receiving the reflected light from the ground or the object on the ground of the light emitted from the emitting means to the predetermined area. A first acquisition means for acquiring information; a detection means for detecting an inclination and a reflectance of the light irradiation target based on the light reception information; and whether the light irradiation target in the predetermined area is the ground. Second acquisition for acquiring threshold information indicating a first threshold value for determining whether the object is on the ground based on the inclination state and a second threshold value for determining based on the reflectance The irradiation target is on the ground on the basis of means, a comparison between the first threshold value indicated by the threshold value information and the detected inclination state, and a comparison between the second threshold value and the detected reflectance. Or an object on the ground, Comprising a determining means.
実施形態に係る判定装置の概要構成を示すブロック図である。It is a block diagram which shows the schematic structure of the determination apparatus which concerns on embodiment. 第1実施例に係る地図データシステムの概要構成を示すブロック図である。It is a block diagram which shows schematic structure of the map data system which concerns on 1st Example. 第1実施例に係る地図データの構造を示す図であり、(a)は当該構造の第1例を示す図であり、(b)は当該構造の第2例を示す図であり、(c)は当該構造の第3例を示す図であり、(d)は当該構造の第4例を示す図であり、(e)は当該構造の第5例を示す図である。It is a figure which shows the structure of the map data based on 1st Example, (a) is a figure which shows the 1st example of the said structure, (b) is a figure which shows the 2nd example of the said structure, (c () Is a diagram showing a third example of the structure, (d) is a diagram showing a fourth example of the structure, and (e) is a diagram showing a fifth example of the structure. 第1実施例に係る地図データ記録処理等を示すフローチャートであり、(a)は当該地図データ記録処理を示すフローチャートであり、(b)は第1実施例に係る地面判定処理の全体を示すフローチャートであり、(c)は当該地面判定処理の細部を示すフローチャートである。It is a flowchart which shows the map data recording process etc. which concern on 1st Example, (a) is a flowchart which shows the said map data recording process, (b) is a flowchart which shows the whole ground determination process which concerns on 1st Example. (C) is a flowchart showing details of the ground determination process. 第2実施例に係る地面判定処理を示すフローチャートである。It is a flowchart which shows the ground determination process which concerns on 2nd Example. 第3実施例に係る地図データ記録処理等を示すフローチャートであり、(a)は当該地図データ記録処理を示すフローチャートであり、(b)は第3実施例に係る地面判定処理を示すフローチャートである。It is a flowchart which shows the map data recording process etc. which concern on 3rd Example, (a) is a flowchart which shows the said map data recording process, (b) is a flowchart which shows the ground determination process which concerns on 3rd Example. .
 次に、本願を実施するための形態について、図1を用いて説明する。なお図1は、実施形態に係る判定装置の概要構成を示すブロック図である。 Next, an embodiment for carrying out the present application will be described with reference to FIG. FIG. 1 is a block diagram illustrating a schematic configuration of the determination apparatus according to the embodiment.
 図1に示すように、実施形態に係る判定装置Sは、第1取得手段1と、検出手段2と、判定手段3と、第2取得手段4と、を備えて構成されている。 As shown in FIG. 1, the determination device S according to the embodiment includes a first acquisition unit 1, a detection unit 2, a determination unit 3, and a second acquisition unit 4.
 この構成において第1取得手段1は、移動体から周囲に出射された光の地面からの反射光の受光により得られた受光情報を取得する。 In this configuration, the first acquisition means 1 acquires the light reception information obtained by receiving the reflected light from the ground of the light emitted from the moving body to the surroundings.
 そして検出手段2は、第1取得手段により取得された受光情報に基づき光の反射点の傾斜を検出する。 And the detection means 2 detects the inclination of the reflection point of light based on the light reception information acquired by the 1st acquisition means.
 一方第2取得手段4は、傾斜の種別を判別するための閾値を示す閾値情報を、当該地面に対応する地図情報に関連付けて当該閾値情報を記録している記録媒体から取得する。 On the other hand, the second acquisition means 4 acquires threshold information indicating a threshold for determining the type of inclination from a recording medium in which the threshold information is recorded in association with map information corresponding to the ground.
 これらにより判定手段3は、閾値情報により示される閾値と検出手段2により検出された傾斜との比較に基づき、光の反射点が、地面か、当該地面にある物か、を判定する。 Thus, the determination unit 3 determines whether the light reflection point is the ground or an object on the ground based on the comparison between the threshold indicated by the threshold information and the inclination detected by the detection unit 2.
 以上説明したように、実施形態に係る判定装置Sの動作によれば、地面からの反射光を受光して得られた受光情報に基づき反射点の傾斜を検出し、その傾斜と、地面に対応する地図情報に関連付けて記録されている閾値情報により示される閾値と、の比較に基づき、当該反射点が地面か物かを判定する。よって、傾斜の種別判別のために記録されている閾値との比較により、反射点が地面か物かを判定するので、複雑な処理を不要としつつ当該判定を正確に行うことができる。 As described above, according to the operation of the determination device S according to the embodiment, the inclination of the reflection point is detected based on the light reception information obtained by receiving the reflected light from the ground, and the inclination corresponds to the ground. Whether the reflection point is the ground or an object is determined based on the comparison with the threshold value indicated by the threshold value information recorded in association with the map information. Therefore, since it is determined whether the reflection point is the ground or an object by comparison with the threshold value recorded for determining the type of inclination, the determination can be accurately performed without requiring complicated processing.
 次に、上述した実施形態に対応する具体的な実施例について、図2乃至図5を用いて説明する。なお以下に説明する各実施例は、車両に搭載されたLiDARシステムを用いた障害物検出に用いられる閾値に適用した場合の実施例である。 Next, specific examples corresponding to the above-described embodiment will be described with reference to FIGS. In addition, each Example demonstrated below is an Example at the time of applying to the threshold value used for the obstacle detection using the LiDAR system mounted in the vehicle.
 また、図2は第1実施例に係る地図データシステムの概要構成を示すブロック図であり、図3は第1実施例に係る地図データの構造を示す図であり、図4は第1実施例に係る地図データ記録処理等を示すフローチャートであり、図5は第2実施例に係る地面判定処理を示すフローチャートであり、図6は第3実施例に係る地図データ記録処理等を示すフローチャートである。 2 is a block diagram showing a schematic configuration of the map data system according to the first embodiment, FIG. 3 is a diagram showing a structure of map data according to the first embodiment, and FIG. 4 is a diagram showing the first embodiment. FIG. 5 is a flowchart showing a ground determination process according to the second embodiment, and FIG. 6 is a flowchart showing a map data recording process according to the third embodiment. .
(I)第1実施例
 次に、実施形態に係る第1実施例について、図2乃至図4を用いて説明する。
(I) First Example Next, a first example according to the embodiment will be described with reference to FIGS.
 図2に示すように、第1実施例に係る地図データシステムSSは、インターネット等のネットワークNWを介してデータの授受が可能な地図サーバ装置SVと、車両に搭載されている地面判定装置Cと、により構成されている。 As shown in FIG. 2, the map data system SS according to the first embodiment includes a map server device SV that can exchange data via a network NW such as the Internet, and a ground determination device C that is mounted on a vehicle. , Is configured.
 また地図サーバ装置SVには、地図管理用の車両に搭載されるか又は固定設置された一又は複数のLiDARセンサ10からのデータが入力されている。そして地図サーバ装置SVは、処理エリア決定部11と、地図データベース12と、グラフ・勾配計算部13と、物体認識部14と、識別器15と、処理エリア内勾配閾値決定部16と、により構成されており、処理エリア内勾配閾値決定部16は地図データベース17に接続されている。この地図データベース17は地図サーバ装置SVとは別個に設けられてもよいし、地図サーバ装置SV内に設けられてもよい。なお、上記処理エリア決定部11、グラフ・勾配計算部13、物体認識部14及び処理エリア内勾配閾値決定部16は、地図サーバ装置SVに備えられた図示しないCPU等を含むハードウェアロジック回路により実現されてもよいし、後述する第1実施例に係る地図データ記録処理に相当するプログラムを上記CPU等が読み出して実行することにより、ソフトウェア的に実現されるものであってもよい。 In addition, data from one or a plurality of LiDAR sensors 10 mounted on a map management vehicle or fixedly installed is input to the map server SV. The map server device SV includes a processing area determining unit 11, a map database 12, a graph / gradient calculating unit 13, an object recognizing unit 14, a discriminator 15, and an in-processing area gradient threshold determining unit 16. The processing area gradient threshold value determination unit 16 is connected to the map database 17. The map database 17 may be provided separately from the map server device SV, or may be provided in the map server device SV. The processing area determining unit 11, the graph / gradient calculating unit 13, the object recognizing unit 14, and the in-processing area gradient threshold determining unit 16 are implemented by a hardware logic circuit including a CPU (not shown) provided in the map server device SV. It may be realized, or may be realized in software by the CPU or the like reading and executing a program corresponding to map data recording processing according to a first embodiment described later.
 一方地面判定装置Cは、ネットワークNW及びLiDARセンサ20に接続されたグラフ・勾配計算部21と、処理エリア決定部22と、地図データベース23と、処理エリア内勾配閾値比較部24と、により構成されている。このとき、グラフ・勾配計算部21、処理エリア決定部22及び処理エリア内勾配閾値比較部24は、地面判定装置Cに備えられた図示しないCPU等を含むハードウェアロジック回路により実現されてもよいし、後述する第1実施例に係る地面判定処理に相当するプログラムを上記CPU等が読み出して実行することにより、ソフトウェア的に実現されるものであってもよい。 On the other hand, the ground determination device C includes a graph / gradient calculation unit 21 connected to the network NW and the LiDAR sensor 20, a processing area determination unit 22, a map database 23, and an in-processing area gradient threshold comparison unit 24. ing. At this time, the graph / gradient calculation unit 21, the processing area determination unit 22, and the in-processing area gradient threshold comparison unit 24 may be realized by a hardware logic circuit including a CPU (not shown) provided in the ground determination device C. However, the program may be realized in software by causing the CPU or the like to read and execute a program corresponding to a ground determination process according to a first embodiment described later.
 なお上記の構成において、処理エリア内勾配閾値比較部24が、実施形態に係る「第1取得手段1」の一例に、「第2取得手段」の一例及び「判定手段3」の一例にそれぞれ相当し、グラフ・勾配計算部21が実施形態に係る「検出手段2」の一例に相当する。また、地図データベース17が本願に係る「記録媒体」の一例に相当する。 In the above-described configuration, the processing area gradient threshold value comparison unit 24 corresponds to an example of the “first acquisition unit 1”, an example of the “second acquisition unit”, and an example of the “determination unit 3” according to the embodiment. The graph / gradient calculation unit 21 corresponds to an example of the “detection unit 2” according to the embodiment. The map database 17 corresponds to an example of a “recording medium” according to the present application.
 以上の構成において地図サーバ装置SVの地図データベース12は、LiDARセンサ10からのデータとのマッチング用の地図データを記録している。そして地図サーバ装置SVの処理エリア決定部11は、当該マッチング用の地図データを地図データベース12から読み出しつつ、実施例に係る勾配データの生成の対象となる地図上のエリアを、予め設定された方法により決定する。このエリアの決定は手動で行われてもよい。 In the above configuration, the map database 12 of the map server device SV records map data for matching with data from the LiDAR sensor 10. Then, the processing area determination unit 11 of the map server device SV reads out the map data for matching from the map database 12 and sets a predetermined area on the map on which the gradient data according to the embodiment is generated. Determined by This area determination may be made manually.
 次にグラフ・勾配計算部13は、LiDARセンサ10からのデータに基づき、例えば予め設定された注目点の四つの近傍(例えば、当該注目点を中心とした四方向(例えば上下左右それぞれの方向)の近傍)を繋いだグラフを作成し、当該各グラフそれぞれのエッジの勾配することを、全ての注目点において実行する。なお、このようなグラフ・勾配計算部13における計算方法について詳細には、例えば、論文「On the Segmentation of 3D LIDAR Point Clouds」ICRA,2011,The University of Sydney, B. Douillard et al」の「III. SEGMENTATION ALGORITHMS、C. Segmentation for Sparse Data、2) Mesh Based Segmentation」に記載されている。また以下の説明において、上述した勾配の計算方法を単に「実施例に係る勾配計算方法」と称する。一方物体認識部14は、識別器15を用いて、又は手動により、当該データが得られた対象が地面か障害物かを検出する。これにより処理エリア内勾配閾値決定部16は、処理エリア決定部11により決定されたエリアにおける地面の傾斜の種別判別のための閾値(即ち、そのエリアにおける傾斜の種別判別のための閾値)を決定し、当該決定した閾値を、当該エリアに相当する地図データに関連付けて地図データベース17に記録する。 Next, based on the data from the LiDAR sensor 10, the graph / gradient calculation unit 13, for example, has four neighboring points of interest (for example, four directions centered on the point of interest (for example, up, down, left, and right directions)) The graphs connecting the neighborhoods of the graphs are created, and the gradients of the edges of the respective graphs are executed at all the points of interest. Details of the calculation method in the graph / gradient calculation unit 13 are described in, for example, the paper “On 論文 the Segmentation of 3D LIDAR Point Clouds” ICRA, 2011, The University of Sydney, B. Douillard et al. SEGMENTATION ALGORITHMS, C Segmentation for Sparse Data, and 2) Mesh Based on Segmentation. In the following description, the above-described gradient calculation method is simply referred to as “gradient calculation method according to the embodiment”. On the other hand, the object recognition unit 14 detects whether the target from which the data is obtained is the ground or an obstacle using the classifier 15 or manually. As a result, the in-processing area gradient threshold value determination unit 16 determines a threshold value for determining the slope type of the ground in the area determined by the processing area determination unit 11 (that is, a threshold value for determining the inclination type in the area). The determined threshold value is recorded in the map database 17 in association with the map data corresponding to the area.
 一方地面判定装置Cのグラフ・勾配計算部21は、LiDARセンサ20からのデータに基づき、例えば上記実施例に係る勾配計算方法により、各注目点における勾配を計算する。他方地図データベース23は、LiDARセンサ20からのデータとのマッチング用の地図データを記録している。そして処理エリア決定部22は、当該マッチング用の地図データを地図データベース23から読み出しつつ、実施例に係る傾斜(勾配)の検出の対象となる地図上のエリアを、予め設定された方法により決定する。そして処理エリア内勾配閾値比較部24は、地図サーバ装置SVの地図データベース17に記録されている上記閾値を、必要に応じてネットワークNWを介して取得しつつ、当該閾値とLiDARセンサ20からのデータを比較して、処理対象のエリアの傾斜(勾配)を検出する。 On the other hand, the graph / gradient calculation unit 21 of the ground determination device C calculates the gradient at each point of interest based on the data from the LiDAR sensor 20, for example, by the gradient calculation method according to the above embodiment. On the other hand, the map database 23 records map data for matching with data from the LiDAR sensor 20. Then, the processing area determination unit 22 reads the map data for matching from the map database 23, and determines an area on the map that is a target for detecting the inclination (gradient) according to the embodiment by a preset method. . Then, the processing area gradient threshold value comparison unit 24 acquires the threshold value recorded in the map database 17 of the map server device SV via the network NW as necessary, and the threshold value and the data from the LiDAR sensor 20. To detect the inclination (gradient) of the area to be processed.
 次に、実施例に係る地図データベース17に記録されている、実施例に係る地図データのデータ構造について、図3を用いて説明する。 Next, the data structure of the map data according to the embodiment recorded in the map database 17 according to the embodiment will be described with reference to FIG.
 図3に示すように、実施形態に係る地図データベース17では、地図としてのエリアごとに上記傾斜の種別判別のための閾値が記録されている。即ち、例えば図3(a)に例示するように、車両CCが進行する道路をその進行方向に等分したエリアA1乃至エリアA3ごとに、当該エリアA1乃至エリアA3それぞれに関連付けて上記閾値が記録されている。このとき、例えば図3(b)に示すように進行方向の長さが異なるエリアB1乃至エリアB4ごとに上記閾値が記録されていてもよいし、図3(c)に示すようにカーブに沿って分けられたエリアC1乃至エリアC3ごとに上記閾値が記録されていてもよいし、図3(d)に破線で示す交差点CRに対応して分けられたエリアD1乃至エリアD8ごとに上記閾値が記録されていてもよい。更には、図3(e)に例示するように道路Rに対して自由に分割されたエリアE1乃至エリアE6ごとに上記閾値が記録されていてもよい。 As shown in FIG. 3, in the map database 17 according to the embodiment, the threshold for determining the type of inclination is recorded for each area as a map. That is, for example, as illustrated in FIG. 3A, for each of the areas A1 to A3 obtained by equally dividing the road on which the vehicle CC travels in the traveling direction, the threshold value is recorded in association with each of the areas A1 to A3. Has been. At this time, for example, the threshold value may be recorded for each of the areas B1 to B4 having different lengths in the traveling direction as shown in FIG. 3B, or along the curve as shown in FIG. The threshold value may be recorded for each of the divided areas C1 to C3, or for each of the areas D1 to D8 divided corresponding to the intersection CR indicated by a broken line in FIG. It may be recorded. Furthermore, as illustrated in FIG. 3E, the threshold value may be recorded for each of the areas E1 to E6 that are freely divided with respect to the road R.
 次に、第1実施例に係る地図データ記録処理について、図4(a)を用いて説明する。図4(a)に示すように、第1実施例に係る地図データ記録処理は、例えば地図サーバ装置SVの電源スイッチがオンとされたタイミングで開始される。そして第1実施例に係る地図データ記録処理では、先ず処理エリア決定部11により処理対象となるエリアが決定されたか否かが確認される(ステップS1)。ステップS1の確認において当該エリアが決定されていない場合(ステップS1:NO)、処理エリア決定部11により、例えば図3にそれぞれ例示するエリアA1等のいずれかが選択される(ステップS2)。次に、処理対象のエリアが決定されたら(ステップS1:YES又はステップS2)、グラフ・勾配計算部13は、LiDARセンサ10からのデータに基づいて、上記実施例に係る勾配計算方法等を用いて、決定されたエリアについての当該データに基づく傾斜(上記勾配)を当該データごとに計算する(ステップS3)。次に物体認識部14は、識別器15を用いる方法又は目視等により、当該データが得られた対象が地面か障害物かを検出する(ステップS4)。そして処理エリア内勾配閾値決定部16は、地面か障害物かがステップS4により検出された上記対象についての上記データから計算された上記勾配に基づき、上記決定されたエリアにおける傾斜の種別判別のための上記閾値Aを、
 地面である上記対象の勾配の最大値≦閾値A<障害物である上記対象の勾配の最小値
 となるように決定する。この決定後の閾値Aは、当該エリアに関連付けて地図データベース17に記録される。
Next, map data recording processing according to the first embodiment will be described with reference to FIG. As shown in FIG. 4A, the map data recording process according to the first embodiment is started, for example, at the timing when the power switch of the map server device SV is turned on. In the map data recording process according to the first embodiment, first, it is confirmed whether or not an area to be processed has been determined by the processing area determination unit 11 (step S1). When the area is not determined in the confirmation in step S1 (step S1: NO), the processing area determination unit 11 selects, for example, any one of the areas A1 illustrated in FIG. 3 (step S2). Next, when the area to be processed is determined (step S1: YES or step S2), the graph / gradient calculation unit 13 uses the gradient calculation method according to the above embodiment based on the data from the LiDAR sensor 10. Then, the slope (the slope) based on the data for the determined area is calculated for each data (step S3). Next, the object recognizing unit 14 detects whether the target from which the data is obtained is the ground or an obstacle by a method using the discriminator 15 or visual observation (step S4). Then, the processing area gradient threshold value determination unit 16 determines the type of gradient in the determined area based on the gradient calculated from the data about the object in which whether the ground or the obstacle is detected in step S4. The above threshold A of
It is determined so that the maximum value of the gradient of the object that is the ground ≦ the threshold A <the minimum value of the gradient of the object that is the obstacle. The threshold A after this determination is recorded in the map database 17 in association with the area.
 その後、次のエリアについての閾値決定を行うか否かが判定され(ステップS6)、当該閾値決定を引き続き行う場合は(ステップS6:YES)、上記ステップS1以降の処理が繰り返される。一方ステップS6の判定において、処理を終了する場合は(ステップS6:NO)そのまま当該処理を終了する。 Thereafter, it is determined whether or not to determine the threshold value for the next area (step S6). When the threshold value determination is to be continued (step S6: YES), the processing from step S1 onward is repeated. On the other hand, in the determination of step S6, when the process is terminated (step S6: NO), the process is terminated as it is.
 次に、第1実施例に係る地面判定処理について、図4(b)を用いて説明する。 Next, the ground determination process according to the first embodiment will be described with reference to FIG.
 図4(b)に示すように、第1実施例に係る地面判定処理は、例えば地面判定装置Cの電源スイッチがオンとされたタイミングで開始される。そして第1実施例に係る地面判定処理では、先ず地図サーバ装置SVの地図データベース17から必要な上記閾値のデータを取得済みであるか否かが判定される(ステップS10)。ステップS10の判定において当該閾値のデータが取得されていない場合(ステップS10:NO)、地図サーバ装置SVの地図データベース17にアクセスして当該必要な閾値のデータが取得される(ステップS11)。必要な閾値のデータが取得されたら(ステップS10:YES又はステップS11)、次に第1実施例に係る地面判定処理が実行される(ステップS12)。その後、第1実施例に係る地面判定処理を終了するか否かが、例えば地面判定装置Cが搭載されている車両が目的地に到達したか否かを判定すること等により判定される(ステップS13)。ステップS13の判定において当該地面判定処理を終了する場合は(ステップS13:YES)、そのまま当該地面判定処理を終了し、一方引き続き実行する場合は(ステップS13:NO)上記ステップS10以降の処理が繰り返される。 As shown in FIG. 4B, the ground determination process according to the first embodiment is started, for example, when the power switch of the ground determination device C is turned on. In the ground determination process according to the first embodiment, it is first determined whether or not the necessary threshold data has been acquired from the map database 17 of the map server device SV (step S10). When the threshold value data is not acquired in the determination in step S10 (step S10: NO), the map server 17 of the map server device SV is accessed to acquire the necessary threshold value data (step S11). When necessary threshold data is acquired (step S10: YES or step S11), the ground determination process according to the first embodiment is then executed (step S12). Thereafter, whether or not to end the ground determination processing according to the first embodiment is determined, for example, by determining whether or not the vehicle on which the ground determination device C is mounted has reached the destination (step) S13). When the ground determination process is terminated in the determination of step S13 (step S13: YES), the ground determination process is terminated as it is. It is.
 次に、上記ステップS12の地面判定処理について、図4(c)を用いて説明する。図4(c)に示すように、ステップS13の地面判定処理では、先ず処理エリア内勾配閾値比較部24が、一つの上記注目点(地面上の注目点)(i)について上記閾値が関連付けられているか否かを判定する(ステップS120)。ステップS120の判定において現在の注目点(i)について上記閾値が関連付けられていない場合(ステップS120:NO)、処理エリア内勾配閾値比較部24は、次の注目点(i+1)について地面判定処理を行うか否かを判定する(ステップS121)。ステップS121の判定において次の注目点(i+1)について地面判定処理を行う場合(ステップS121:YES)、処理エリア内勾配閾値比較部24は上記ステップS120に戻って当該次の注目点(i+1)について地面判定処理を繰り返す。一方ステップS120の判定において次に地面判定処理を行うべき注目点がない場合(ステップS121:NO)、処理エリア内勾配閾値比較部24は上記ステップS13に戻る。他方ステップS120の判定において現在の注目点(i)について上記閾値が関連付けられている場合(ステップS120:YES)、処理エリア内勾配閾値比較部24は、注目点(i)の傾斜がその閾値より小さいか否かを判定し(ステップS122)、注目点(i)の傾斜がその閾値より小さい場合(ステップS122:YES)、処理エリア内勾配閾値比較部24はその注目点(i)が地面であると判定し(ステップS123)、上記ステップS121に移行する。一方ステップS122の判定において、注目点(i)の傾斜がその閾値以上である場合(ステップS122:NO)、処理エリア内勾配閾値比較部24はその注目点(i)に障害物があると判定し(ステップS124)、上記ステップS121に移行する。 Next, the ground determination process in step S12 will be described with reference to FIG. As shown in FIG. 4C, in the ground determination process in step S13, first, the in-process area gradient threshold value comparison unit 24 associates the threshold value with respect to one of the attention points (attention points on the ground) (i). It is determined whether or not (step S120). When the threshold value is not associated with the current attention point (i) in the determination in step S120 (step S120: NO), the in-processing area gradient threshold value comparison unit 24 performs the ground determination process for the next attention point (i + 1). It is determined whether or not to perform (step S121). When the ground determination process is performed for the next attention point (i + 1) in the determination of step S121 (step S121: YES), the in-process area gradient threshold value comparison unit 24 returns to step S120 to determine the next attention point (i + 1). Repeat the ground determination process. On the other hand, when there is no point of interest to be subjected to the ground determination process next in the determination in step S120 (step S121: NO), the in-process area gradient threshold value comparison unit 24 returns to step S13. On the other hand, when the threshold value is associated with the current attention point (i) in the determination in step S120 (step S120: YES), the in-processing area gradient threshold value comparison unit 24 determines that the inclination of the attention point (i) is greater than the threshold value. It is determined whether or not the inclination is smaller (step S122), and when the inclination of the attention point (i) is smaller than the threshold value (step S122: YES), the in-processing area gradient threshold value comparison unit 24 determines that the attention point (i) is the ground surface. It is determined that there is (step S123), and the process proceeds to step S121. On the other hand, when the inclination of the point of interest (i) is equal to or greater than the threshold value in the determination in step S122 (step S122: NO), the in-processing area gradient threshold value comparison unit 24 determines that there is an obstacle at the point of interest (i). (Step S124), the process proceeds to Step S121.
 以上それぞれ説明したように、第1実施例に係る地面判定処理によれば、地面からの反射光を受光して得られたデータに基づいて反射点の傾斜を検出し、その傾斜と、地面に対応する地図データに関連付けて記録されている閾値と、の比較に基づいて、当該反射点が地面か物かを判定する。よって、傾斜の種別判別のために記録されている閾値との比較により、反射点が地面か物かを判定するので、複雑な処理を不要としつつ当該判定を正確に行うことができる。 As described above, according to the ground determination processing according to the first embodiment, the inclination of the reflection point is detected based on the data obtained by receiving the reflected light from the ground, and the inclination and the ground are detected. Based on the comparison with the threshold value recorded in association with the corresponding map data, it is determined whether the reflection point is the ground or an object. Therefore, since it is determined whether the reflection point is the ground or an object by comparison with the threshold value recorded for determining the type of inclination, the determination can be accurately performed without requiring complicated processing.
 また上記閾値が、予め分割されたエリアに相当する地面ごと閾値であるので、エリアごとのきめ細かい閾値を用いて、地面か否かを正確に判定することができる。 Also, since the threshold value is a threshold value for each ground corresponding to an area divided in advance, it is possible to accurately determine whether or not the surface is a ground by using a fine threshold value for each area.
 このとき、閾値が決定されるエリアが、車両の移動方向について一定間隔で分割された領域である場合は(図3(a)参照)、移動方向について一定間隔できめ細かく閾値を決定/記録することができる。 At this time, if the area for which the threshold value is determined is an area that is divided at regular intervals in the moving direction of the vehicle (see FIG. 3A), the threshold value is determined / recorded finely at regular intervals in the moving direction. Can do.
 また、閾値が決定されるエリアを、車両の移動方向における地面の傾斜の変化に対応した間隔で分割されたエリアとすれば、移動方向について地面の傾斜の変化(即ち地面の起伏)に対応してきめ細かく閾値を決定/記録することができる。 Further, if the area for which the threshold is determined is an area divided at intervals corresponding to the change in the ground inclination in the moving direction of the vehicle, it corresponds to the change in the inclination of the ground in the moving direction (that is, the undulation of the ground). The threshold value can be determined / recorded in detail.
 更に、LiDARセンサ10により既定の角度範囲内にある地面からの反射光に基づいて、当該地面にある物の判別等を地図サーバ装置SVにおいて実行する場合は、既定の角度範囲の地面の勾配を正確に検出するための閾値を、地図データに関連付けて記録することができる。 Further, when the map server device SV executes the discrimination of the object on the ground based on the reflected light from the ground within the predetermined angle range by the LiDAR sensor 10, the gradient of the ground within the predetermined angle range is set. A threshold for accurate detection can be recorded in association with the map data.
 更にまた、車両が進入する交差点CR内の各進行方向のそれぞれにある地面の勾配検出のための閾値が決定されている場合は(図3(d)参照)、当該各進行方向それぞれにある地面についての判定を正確に行うことができる。 Furthermore, when thresholds for detecting the gradient of the ground in each traveling direction in the intersection CR where the vehicle enters are determined (see FIG. 3D), the ground in each traveling direction is determined. Can be accurately determined.
 また、地面の傾斜の変化に応じて当該地面についての複数の閾値が決定されている場合には、当該地面か否かの判定をより適切に行うことができる。ここで、上記地面の傾斜の変化に応じて複数の閾値が決定されている場合の例としては、例えば、地面の傾斜変化がないエリアでは、そのエリアについて単一の閾値が決定され、地面の傾斜変化が一定値以上に激しいエリアでは、そのエリア内の傾斜変化に応じて複数の閾値が当該エリアについて決定されている場合が挙げられる。 In addition, when a plurality of threshold values for the ground are determined according to changes in the inclination of the ground, it is possible to more appropriately determine whether or not the ground is concerned. Here, as an example in the case where a plurality of threshold values are determined according to the change in the inclination of the ground, for example, in an area where there is no change in the inclination of the ground, a single threshold value is determined for the area. In an area where the change in inclination is more than a certain value, there may be a case where a plurality of threshold values are determined for the area in accordance with the change in inclination in the area.
 更にまた、車両が移動する場合の既定の制限速度に応じて当該地面についての複数の閾値を決定されている場合にも、当該地面か否かの判定をより適切に行うことができる。ここで、上記制限速度に応じて複数の閾値を決定されている場合の例としては、例えば、車両の移動速度が速いときには、できるだけ小さな障害物を検出する必要があり、車両の移動速度が遅いときには障害物の検出設定条件を緩和可能にするという事情を考慮し、同じ一つのエリアに、そのエリアについての車両の制限速度に応じた閾値が決定されている場合が挙げられる。更に、制限速度と閾値との関係の一例としては、制限速度が時速80キロメートルの場合は当該閾値を0.7と決定され、制限時速が時速20キロメートルの場合は当該閾値を1.0と決定されることが挙げられる。 Furthermore, even when a plurality of threshold values for the ground are determined according to a predetermined speed limit when the vehicle moves, it is possible to more appropriately determine whether or not the ground is the ground. Here, as an example in the case where a plurality of threshold values are determined according to the speed limit, for example, when the moving speed of the vehicle is fast, it is necessary to detect as small an obstacle as possible, and the moving speed of the vehicle is slow. In some cases, in consideration of the situation that the obstacle detection setting condition can be relaxed, a threshold corresponding to the speed limit of the vehicle in the same area is determined. Further, as an example of the relationship between the speed limit and the threshold value, the threshold value is determined to be 0.7 when the speed limit is 80 km / h, and the threshold value is determined to be 1.0 when the speed limit is 20 km / h. It is mentioned that.
 更に、LiDARセンサ10が搭載されている地図管理用の車両(当該車両を、以下単に「管理用車両」と称する)が移動する場合の管理用車両自体の移動速度に応じて又は当該移動速度を参照して当該地面についての一又は複数の閾値が決定されている場合にも、当該地面か否かの判定をより適切に行うことができる。ここで、上記移動速度に応じて又は当該移動速度を参照して一又は複数の閾値が決定されている場合の例としては、例えば、上記制限速度に応じて複数の閾値が決定されている場合と同様の事情を考慮し、同じ一つのエリアに、そのエリアについての管理用車両の移動速度に基づいて複数の閾値が決定されている場合が挙げられる。より具体的には、一地点について管理用車両を複数回移動させ、当該移動ごとに閾値が決定されていることが考えられる。また、一地点についての管理用車両の移動は一回とし、当該一回の移動の移動速度に応じて閾値が一つ決定され、当該一地点についての他の閾値については当該移動速度に応じて決定された一の閾値に基づいて手動又は予め設定された計算手法により当該他の閾値が決定されていることが考えられる。そして、移動速度と複数の閾値との関係がテーブル化され、これを第1実施例に係る地面判定装置Cにより取得して傾斜の種別判別に用いるのが好適である。更に当該移動速度と閾値との関係の一例としては、上記制限速度の場合と同様に、管理用車両の移動速度が時速80キロメートルの場合は当該閾値が0.7と決定され、当該移動速度が時速20キロメートルの場合は当該閾値が1.0と決定されることが挙げられる。なお、移動速度に応じて又は移動速度を参照して地面についての一又は複数の閾値を決定する場合に、上記管理用車両の他に、LiDARセンサ20及び地面判定装置Cが搭載されている車両の移動速度に応じて又は当該移動速度を参照して、上記閾値を決定してもよい。 Further, according to the moving speed of the management vehicle itself when the map management vehicle on which the LiDAR sensor 10 is mounted (the vehicle is simply referred to as “management vehicle” hereinafter) moves or the movement speed is set. Even when one or more threshold values for the ground are determined with reference, it is possible to more appropriately determine whether the ground is the ground. Here, as an example in which one or a plurality of threshold values are determined according to the moving speed or with reference to the moving speed, for example, when a plurality of threshold values are determined according to the speed limit In consideration of the same situation, there are cases where a plurality of threshold values are determined for the same area based on the moving speed of the management vehicle for the area. More specifically, it is conceivable that the management vehicle is moved a plurality of times for one point, and a threshold value is determined for each movement. In addition, the management vehicle is moved once for one point, one threshold is determined according to the moving speed of the one movement, and the other threshold for the one point is determined according to the moving speed. It is conceivable that the other threshold is determined manually or by a preset calculation method based on the determined one threshold. It is preferable that the relationship between the moving speed and the plurality of threshold values is tabulated, which is acquired by the ground determination device C according to the first embodiment and used for the type determination of the inclination. Furthermore, as an example of the relationship between the moving speed and the threshold, as in the case of the speed limit, the threshold is determined to be 0.7 when the moving speed of the management vehicle is 80 km / h, and the moving speed is In the case of 20 kilometers per hour, the threshold is determined to be 1.0. In addition, when determining one or more threshold values for the ground according to the moving speed or referring to the moving speed, in addition to the management vehicle, a vehicle in which the LiDAR sensor 20 and the ground determination device C are mounted. The threshold value may be determined according to the moving speed of or referring to the moving speed.
 更にまた、LiDARセンサ10からの出射光の出射方向の水平に対する角度(即ちLiDARセンサ10の鉛直方向の傾き)を用いて各傾斜を検出する場合には、地面の勾配をより正確に検出するための閾値を地図データに関連付けて記録することができる。 Furthermore, when detecting each inclination using the angle of the emission direction of the light emitted from the LiDAR sensor 10 with respect to the horizontal (that is, the inclination of the LiDAR sensor 10 in the vertical direction), in order to detect the gradient of the ground more accurately. Can be recorded in association with the map data.
 なお、上述した第1実施例では、傾斜の種別判定を地面の勾配の値としての上記閾値Aを用いて行う構成としたが、これ以外に上記第1実施例の変形例として、当該閾値Aに加えて、上記出射光の(勾配を有する)地面からの反射率の値としての閾値を更に用いて傾斜の種別判定を行うように構成してもよい。なお以下の説明において、当該反射率の値としての閾値を「閾値B」と称する。 In the first embodiment described above, the type of inclination is determined using the threshold value A as the value of the ground gradient. However, as a modified example of the first embodiment, the threshold value A is also used. In addition, the type of inclination may be determined by further using a threshold value as a reflectance value from the ground (having a gradient) of the emitted light. In the following description, the threshold value as the reflectance value is referred to as “threshold value B”.
 より具体的に、先ず上記地図データ記録処理については、図4(a)のステップS5に加えて、LiDARセンサ10からのデータに基づき、上記閾値Bを、
 地面である上記対象の反射率の最大値≦閾値B<障害物である上記対象の反射率の最小値
 として決定し、これを上記エリアに関連付けて地図データベース17に記録する。このとき、上記閾値Bとしての反射率はLiDARセンサ10からの出射光の波長によって異なる。よって閾値Bは、使用したLiDARセンサ10からの当該出射光の波長とも関連付けられて地図データベース17に記録される。
More specifically, for the map data recording process, in addition to step S5 in FIG. 4A, the threshold value B is set based on the data from the LiDAR sensor 10.
The maximum reflectance of the object that is the ground ≦ the threshold B <the minimum value of the reflectance of the object that is the obstacle is determined, and this is recorded in the map database 17 in association with the area. At this time, the reflectance as the threshold value B varies depending on the wavelength of the emitted light from the LiDAR sensor 10. Therefore, the threshold value B is recorded in the map database 17 in association with the wavelength of the emitted light from the used LiDAR sensor 10.
 ここで、LiDARセンサ10及び上記LiDARセンサ20としては元々多種の波長の出射光を用いるため、複数種類の当該波長ごとの反射率としての閾値Bを決定して記録する必要がある。このため、例えば、LiDARセンサ10からの出射光の波長を変えて反射率のデータを収集して記録するか、或いは、本来の仕様(波長)の異なる複数のLiDARセンサ10で上記反射率のデータを収集するように構成するのが好ましい。更に、当該収集の際に、LiDAR10からの出射光の出射角度と対象までの距離とを関連付けて記録しておくのが好ましい。これは、当該出射角度及び距離は反射率の値である閾値Bに影響を与えるからである。 Here, since the LiDAR sensor 10 and the LiDAR sensor 20 originally use emitted light of various wavelengths, it is necessary to determine and record a threshold value B as a reflectance for each of a plurality of types of wavelengths. For this reason, for example, the reflectance data is collected and recorded by changing the wavelength of the light emitted from the LiDAR sensor 10, or the reflectance data is collected by a plurality of LiDAR sensors 10 having different original specifications (wavelengths). Is preferably configured to collect. Furthermore, at the time of the collection, it is preferable to record the emission angle of the emitted light from the LiDAR 10 in association with the distance to the target. This is because the emission angle and distance affect the threshold value B, which is a reflectance value.
 次に、閾値Bについての上記地面判定処理としては、地面の勾配の値としての上記閾値Aとの関係に加えて、反射率の値としての上記閾値Bとの関係をも考慮して、対象たるエリアが地面であるか障害物が存在するかを判断する。より具体的には、図4(c)のステップS122の判定で「YES」となり、更に、所定の角度、距離及び波長の出射光を用いた場合の注目点(i)の反射率が閾値B未満であった場合、処理エリア内勾配閾値比較部24はその注目点(i)が地面であると判定する(図4(c)ステップS123参照)。これに対し、図4(c)のステップS122の判定で「NO」となり、更に、上記所定の角度等の出射光を用いた場合の注目点(i)の反射率が閾値B以上であった場合、処理エリア内勾配閾値比較部24はその注目点(i)に障害物があると判定する(図4(c)ステップS124参照)。 Next, as the ground determination processing for the threshold B, in addition to the relationship with the threshold A as the value of the ground gradient, the relationship with the threshold B as the reflectance value is also taken into consideration. Determine whether the area is the ground or there are obstacles. More specifically, “YES” is determined in step S122 of FIG. 4C, and the reflectance of the point of interest (i) when using emitted light having a predetermined angle, distance, and wavelength is the threshold value B. If it is less than the threshold value, the in-processing-area gradient threshold value comparing unit 24 determines that the attention point (i) is the ground (see step S123 in FIG. 4C). On the other hand, the determination in step S122 of FIG. 4C is “NO”, and the reflectance at the point of interest (i) when the emitted light having the predetermined angle or the like is used is greater than or equal to the threshold value B. In this case, the processing area gradient threshold value comparison unit 24 determines that there is an obstacle at the attention point (i) (see step S124 in FIG. 4C).
 以上説明したような第1実施例の変形例によれば、勾配の値としての上記閾値Aに加えて、反射率の値としての閾値Bを重畳的に用いて傾斜の種別判定を行うので、当該種別判定が誤判定となる可能性を下げることができる。 According to the modification of the first embodiment as described above, since the threshold value B as the reflectance value is used in a superimposed manner in addition to the threshold value A as the gradient value, the inclination type is determined. The possibility that the type determination is erroneously determined can be reduced.
(II)第2実施例
 次に、実施形態に係る他の実施例である第2実施例について、図5を用いて説明する。図5は第2実施例に係る地面判定処理を示すフローチャートである。
(II) Second Example Next, a second example, which is another example according to the embodiment, will be described with reference to FIG. FIG. 5 is a flowchart showing the ground determination process according to the second embodiment.
 以下に説明する第2実施例では、地面判定処理として、車両の速度に応じた地面判定処理を行う。その他の第2実施例に係る構成及び処理(地図データ記録処理を含む)は第1実施例に係る構成及び処理と同一であるので、細部の説明は省略する。 In the second embodiment described below, a ground determination process corresponding to the speed of the vehicle is performed as the ground determination process. The other configuration and processing (including map data recording processing) according to the second embodiment are the same as the configuration and processing according to the first embodiment, and thus detailed description thereof is omitted.
 即ち図5に示す第2実施例に係る地面判定処理としては、第1実施例に係るステップS120の判定において現在の注目点(i)について上記閾値が関連付けられている場合(ステップS120:YES)、次に処理エリア内勾配閾値比較部24は、車両の速度に応じた地面判定処理を行うか否かを判定する(ステップS130)。そして車両の速度に応じた地面判定処理を行わない場合(ステップS130:NO)、処理エリア内勾配閾値比較部24は、第1実施例に係る地面判定処理と同様のステップS122以降の処理を行う。一方ステップS130の判定において車両の速度に応じた地面判定処理を行う場合(ステップS130:YES)、処理エリア内勾配閾値比較部24は、注目点(i)の傾斜がその閾値に速度に応じた補正値αを乗算した値より小さいか否かを判定し(ステップS131)、注目点(i)の傾斜がその乗算の結果より小さい場合は(ステップS131:YES)上記ステップS123に移行し、注目点(i)の傾斜がその乗算の結果以上である場合は(ステップS131:NO)上記ステップS124に移行する。このとき当該補正値αは、例えば、速度が大きくなるほど小さくなる値として予め設定される。具体的には、例えば時速20キロメートルまではα=1とされ、時速30キロメートルでα=0.9とされ、時速40キロメートルでα=0.8とされる。 That is, as the ground determination processing according to the second embodiment shown in FIG. 5, when the above threshold value is associated with the current attention point (i) in the determination at step S120 according to the first embodiment (step S120: YES). Next, the in-process area gradient threshold value comparison unit 24 determines whether or not to perform the ground determination process according to the speed of the vehicle (step S130). And when not performing the ground determination process according to the speed of a vehicle (step S130: NO), the process area gradient threshold value comparison part 24 performs the process after step S122 similar to the ground determination process which concerns on 1st Example. . On the other hand, when the ground determination process corresponding to the vehicle speed is performed in the determination of step S130 (step S130: YES), the in-process area gradient threshold value comparison unit 24 determines that the inclination of the point of interest (i) corresponds to the threshold value according to the speed. It is determined whether or not the value is smaller than the value obtained by multiplying the correction value α (step S131). If the inclination of the attention point (i) is smaller than the result of the multiplication (step S131: YES), the process proceeds to step S123, and attention is paid. If the slope of the point (i) is equal to or greater than the result of the multiplication (step S131: NO), the process proceeds to step S124. At this time, for example, the correction value α is set in advance as a value that decreases as the speed increases. Specifically, for example, α = 1 up to 20 km / h, α = 0.9 at 30 km / h, and α = 0.8 at 40 km / h.
 以上説明したように、第2実施例に係る地面判定処理によれば、第1実施例に係る地面判定処理による効果に加えて、車両が移動する速度に応じて地面を判定するので、正確に当該判定を行うことができる。 As described above, according to the ground determination process according to the second embodiment, in addition to the effect of the ground determination process according to the first embodiment, the ground is determined according to the speed at which the vehicle moves. This determination can be made.
 また、車両の移動の速度に対応する補正値αを用いる場合には、車両の移動速度に応じて正確に当該判定を行うことができる。 Further, when the correction value α corresponding to the moving speed of the vehicle is used, the determination can be performed accurately according to the moving speed of the vehicle.
 更に、補正値αが車両の移動の速度が速いほど小さい場合には、車両が高速で移動するほど、より小さい物を当該物として判定することができ、より安全な移動に資することができる。 Furthermore, when the correction value α is smaller as the speed of movement of the vehicle is faster, a smaller object can be determined as the object as the vehicle moves at a higher speed, which can contribute to safer movement.
 なお、補正値αを車両の移動の速度が遅いほど大きくすることも可能である。この場合には、車両が低速で移動する場合において、当該低速に対応した判定精度とすることができる。 Note that the correction value α can be increased as the speed of movement of the vehicle is slower. In this case, when the vehicle moves at a low speed, determination accuracy corresponding to the low speed can be obtained.
(III)第3実施例
 次に、実施形態に係る更に他の実施例である第3実施例について、図6を用いて説明する。なお図6は第3実施例に係る地図データ記録処理等を示すフローチャートである。
(III) Third Example Next, a third example, which is still another example of the embodiment, will be described with reference to FIG. FIG. 6 is a flowchart showing map data recording processing and the like according to the third embodiment.
 以下に説明する第3実施例では、第3実施例に係る地図サーバ装置における地図データ記録処理及び第3実施例に係る地面判定装置における地面判定処理として、当該地図サーバ装置に接続されたLiDARセンサの出射光の鉛直方向の傾きの角度(即ちピッチ角。以下同様。)θに応じた地図データ記録処理、及び当該地面判定装置に接続されたLiDARセンサの出射光のピッチ角θに応じた地面判定処理を行う。なお、第3実施例に係る構成及び処理について、第1実施例に係る構成及び処理と同一のものは、同一の部材番号又はステップ番号を付して、細部の説明は省略する。 In the third embodiment described below, as a map data recording process in the map server device according to the third embodiment and a ground determination process in the ground determination device according to the third embodiment, a LiDAR sensor connected to the map server device The vertical inclination angle of the emitted light (that is, the pitch angle; the same applies hereinafter) θ 1 according to the map data recording process and the pitch angle θ 2 of the emitted light of the LiDAR sensor connected to the ground determination device The ground determination process is performed. In addition, about the structure and process which concern on 3rd Example, the same thing as the structure and process which concerns on 1st Example attaches | subjects the same member number or step number, and abbreviate | omits detailed description.
 即ち図6(a)に示す第3実施例に係る地面データ記録処理としては、第1実施例に係るステップS1の判定又はステップS2において処理対象のエリアが決定されたら(ステップS1:YES又はステップS2)、次にグラフ・勾配計算部13は、上記ピッチ角θに応じた地図データ記録処理を行うか否かを判定する(ステップS30)。なおこの場合のピッチ角θは、例えばLiDARセンサ10に備えられた図示しない加速度センサ等により検出される。そして上記ピッチ角θに応じた地図データ記録処理を行わない場合(ステップS30:NO)、グラフ・勾配計算部13は、第1実施例に係る地図データ記録処理と同様のステップS3以降の処理を行う。一方ステップS30の判定において上記ピッチ角θに応じた地図データ記録処理を行う場合(ステップS30:YES)、グラフ・勾配計算部13は、例えば、上記実施例に係る勾配計算方法等を用いてLiDARセンサ10からのデータごとに計算された傾斜におけるパラメータzを上記ピッチ角θの余弦で除した値(即ち当該パラメータzに(1/cosθ)を乗じた値)とした場合の当該計算により得られる傾斜を、当該LiDARセンサ10からのデータに基づく補正傾斜として当該データごとに計算する(ステップS31)。その後は、当該補正傾斜を用いた上記ステップS4以降が実行される。 That is, in the ground data recording process according to the third embodiment shown in FIG. 6A, when the determination in step S1 according to the first embodiment or the area to be processed is determined in step S2 (step S1: YES or step S2), graph gradient calculation unit 13 then determines whether to perform a map data recording processing according to the pitch angle theta 1 (step S30). Note that the pitch angle θ 1 in this case is detected by, for example, an acceleration sensor (not shown) provided in the LiDAR sensor 10. And if you do not map data recording processing according to the pitch angle theta 1 (step S30: NO), the graph gradient calculation unit 13, a map data recording processing similar to step S3 and subsequent processing according to the first embodiment I do. On the other hand, when performing the map data recording processing according to the pitch angle theta 1 is determined in step S30 (step S30: YES), the graph gradient calculation unit 13, for example, using a gradient calculation method or the like according to the embodiment The calculation when the parameter z at the slope calculated for each data from the LiDAR sensor 10 is divided by the cosine of the pitch angle θ 1 (that is, the parameter z is multiplied by (1 / cos θ 1 )). Is calculated for each piece of data as a correction slope based on the data from the LiDAR sensor 10 (step S31). Thereafter, step S4 and subsequent steps using the corrected inclination are executed.
 一方図6(b)に示す第3実施例に係る地面判定処理としては、第1実施例に係るステップS120の判定において現在の注目点(i)について上記閾値が関連付けられている場合(ステップS120:YES)、次に処理エリア内勾配閾値比較部24は、上記ピッチ角θに応じた地面判定処理を行うか否かを判定する(ステップS140)。なおこの場合のピッチ角θは、例えば第3実施例に係る地面判定装置Cが搭載されている車両に備えられた図示しない加速度センサ等により検出される。そして上記ピッチ角θに応じた地面判定処理を行わない場合(ステップS140:NO)、処理エリア内勾配閾値比較部24は、第1実施例に係る地面判定処理と同様のステップS122以降の処理を行う。一方ステップS140の判定において上記ピッチ角θに応じた地面判定処理を行う場合(ステップS140:YES)、処理エリア内勾配閾値比較部24は、注目点(i)の傾斜を上記ピッチ角θにより補正した傾斜(より具体的には、例えば注目点(i)の傾斜におけるパラメータzを上記ピッチ角θの余弦で除した値(即ち当該パラメータzに(1/cosθ)を乗じた値)とした場合の当該傾斜)が注目点(i)に関連付けられている閾値より小さいか否かを判定し(ステップS141)、注目点(i)の当該補正後の傾斜が当該閾値より小さい場合は(ステップS141:YES)上記ステップS123に移行し、注目点(i)の当該補正後の傾斜が当該閾値の結果以上である場合は(ステップS141:NO)上記ステップS124に移行する。 On the other hand, as the ground determination processing according to the third embodiment shown in FIG. 6B, the above threshold value is associated with the current attention point (i) in the determination of step S120 according to the first embodiment (step S120). : YES), next, the in-processing-area gradient threshold value comparison unit 24 determines whether or not to perform the ground determination processing according to the pitch angle θ 2 (step S140). Note that the pitch angle θ 2 in this case is detected by, for example, an acceleration sensor (not shown) provided in a vehicle on which the ground determination device C according to the third embodiment is mounted. And when not performing the ground determination process according to the said pitch angle (theta) 2 , (step S140: NO), the process area gradient threshold value comparison part 24 is the process after step S122 similar to the ground determination process which concerns on 1st Example. I do. On the other hand, when the ground determination process corresponding to the pitch angle θ 2 is performed in the determination of step S140 (step S140: YES), the in-process area gradient threshold value comparison unit 24 determines the inclination of the point of interest (i) as the pitch angle θ 2. (Specifically, for example, a value obtained by dividing the parameter z at the inclination of the attention point (i) by the cosine of the pitch angle θ 2 (that is, a value obtained by multiplying the parameter z by (1 / cos θ 2 )) ) Is smaller than a threshold value associated with the point of interest (i) (step S141), and the corrected inclination of the point of interest (i) is smaller than the threshold value. (Step S141: YES) The process proceeds to step S123, and when the corrected inclination of the point of interest (i) is greater than or equal to the result of the threshold (step S141: NO), the step S 124.
 以上説明したように、第3実施例に係る地面判定処理によれば、第1実施例に係る地面判定処理による効果に加えて、LiDARセンサ20の出射光のピッチ角θに応じて地面を判定するので、正確に当該判定を行うことができる。 As described above, according to the ground determination process according to the third embodiment, in addition to the effect of the ground determination process according to the first embodiment, the ground is determined according to the pitch angle θ 2 of the emitted light from the LiDAR sensor 20. Since it determines, the said determination can be performed correctly.
 なお、図4及び図5にそれぞれ示したフローチャートに相当するプログラムを、光ディスク又はハードディスク等の記録媒体に記録しておき、或いはインターネット等のネットワークを介して取得しておき、これらを汎用のマイクロコンピュータ等に読み出して実行することにより、当該マイクロコンピュータ等を各実施例に係る処理エリア内勾配閾値決定部16又は処理エリア内勾配閾値比較部24として機能させることも可能である。 Note that programs corresponding to the flowcharts shown in FIGS. 4 and 5 are recorded on a recording medium such as an optical disk or a hard disk, or obtained via a network such as the Internet, and these are stored in a general-purpose microcomputer. It is possible to cause the microcomputer or the like to function as the in-process area gradient threshold value determination unit 16 or the in-process area gradient threshold value comparison unit 24 according to each embodiment.
 1  第1取得手段
 2  検出手段
 3  判定手段
 4  第2取得手段
 10、20  LiDARセンサ
 17  地図データベース
 24  処理エリア内勾配敷地比較部
 C  地面判定装置
 S  判定装置
 SV  地図サーバ装置
 SS  地図データシステム
DESCRIPTION OF SYMBOLS 1 1st acquisition means 2 Detection means 3 Judgment means 4 2nd acquisition means 10, 20 LiDAR sensor 17 Map database 24 Gradient site comparison part in processing area C Ground determination apparatus S Determination apparatus SV Map server apparatus SS Map data system

Claims (17)

  1.  移動体から周囲に出射された光の地面からの反射光の受光により得られた受光情報を取得する第1取得手段と、
     前記受光情報に基づき前記光の反射点の傾斜を検出する検出手段と、
     前記傾斜の種別を判別するための閾値を示す閾値情報を、当該地面に対応する地図情報に関連付けて当該閾値情報を記録している記録媒体から取得する第2取得手段と、
     前記閾値情報により示される前記閾値と前記検出された傾斜との比較に基づき、前記反射点が、前記地面か、当該地面にある物か、を判定する判定手段と、
     を備える判定装置。
    First acquisition means for acquiring light reception information obtained by receiving reflected light from the ground of light emitted from the moving body to the surroundings;
    Detecting means for detecting an inclination of a reflection point of the light based on the light reception information;
    Second acquisition means for acquiring threshold information indicating a threshold for discriminating the type of inclination from a recording medium that records the threshold information in association with map information corresponding to the ground;
    Determination means for determining whether the reflection point is the ground or an object on the ground based on a comparison between the threshold indicated by the threshold information and the detected inclination;
    A determination apparatus comprising:
  2.  請求項1に記載の判定装置において、
     前記移動体の移動の速度を示す速度情報を取得する第3取得手段を更に備え、
     前記判定手段は、前記検出された傾斜が、前記取得した速度情報により示される前記速度に対応する補正係数で前記閾値情報により示される前記閾値を補正した値以上である場合に、前記反射点が前記物であると判定することを特徴とする判定装置。
    The determination apparatus according to claim 1,
    Further comprising third acquisition means for acquiring speed information indicating the speed of movement of the mobile body;
    When the detected inclination is equal to or greater than a value obtained by correcting the threshold indicated by the threshold information with a correction coefficient corresponding to the speed indicated by the acquired speed information, the reflection point is The determination apparatus characterized by determining that it is the said thing.
  3.  請求項2に記載の判定装置において、
     前記補正係数は前記速度が速いほど小さく、
     前記判定手段は、前記検出された傾斜が、前記補正係数を前記閾値に乗じた値以上である場合に、前記反射点が前記物であると判定することを特徴とする判定装置。
    The determination apparatus according to claim 2,
    The correction factor is smaller as the speed is faster,
    The determination device determines that the reflection point is the object when the detected inclination is not less than a value obtained by multiplying the threshold by the correction coefficient.
  4.  請求項2又は請求項3に記載の判定装置において、
     前記補正係数は前記速度が遅いほど大きく、
     前記判定手段は、前記検出された傾斜が、前記補正係数を前記閾値に乗じた値以上である場合に、前記反射点が前記物であると判定することを特徴とする判定装置。
    In the determination apparatus according to claim 2 or claim 3,
    The correction factor increases as the speed decreases,
    The determination device determines that the reflection point is the object when the detected inclination is not less than a value obtained by multiplying the threshold by the correction coefficient.
  5.  請求項1から請求項4のいずれか一項に記載の判定装置において、
     前記光の出射方向の水平に対する角度を検出する角度検出手段を更に備え、
     前記検出手段は、前記取得した受光情報と、前記検出された角度を示す角度情報と、に基づいて前記反射点の前記傾斜を検出することを特徴とする判定装置。
    In the determination apparatus as described in any one of Claims 1-4,
    An angle detecting means for detecting an angle of the light emitting direction with respect to the horizontal;
    The determination device detects the inclination of the reflection point based on the acquired light reception information and angle information indicating the detected angle.
  6.  請求項1から請求項5のいずれか一項に記載の判定装置において、
     前記閾値は、予め分割された領域に相当する前記地面ごとの当該閾値であることを特徴とする判定装置。
    In the determination apparatus as described in any one of Claims 1-5,
    The said threshold value is the said threshold value for every said ground equivalent to the area | region divided | segmented previously, The determination apparatus characterized by the above-mentioned.
  7.  請求項6に記載の判定装置において、
     前記領域は、前記移動体の移動方向について一定間隔で分割された領域であることを特徴とする判定装置。
    The determination apparatus according to claim 6, wherein
    The determination device according to claim 1, wherein the region is a region divided at regular intervals in the moving direction of the moving body.
  8.  請求項6に記載の判定装置において、
     前記領域は、前記移動体の移動方向における前記地面の傾斜の変化に対応した間隔で分割された領域であることを特徴とする判定装置。
    The determination apparatus according to claim 6, wherein
    The determination device according to claim 1, wherein the region is a region divided at an interval corresponding to a change in the inclination of the ground in the moving direction of the moving body.
  9.  請求項1から請求項8のいずれか一項に記載の判定装置において、
     前記閾値が、前記移動体の移動方向を含んで予め設定された前記傾斜の種別を判断するための前記閾値であることを特徴とする判定装置。
    In the determination apparatus as described in any one of Claims 1-8,
    The determination apparatus according to claim 1, wherein the threshold value is a threshold value for determining a type of inclination set in advance including a moving direction of the moving body.
  10.  請求項1から請求項9のいずれか一項に記載の判定装置において、
     前記移動体は車両であり、
     前記閾値は、前記車両が進入する交差点における各進行方向のそれぞれにある前記傾斜の種別を判断するための前記閾値であることを特徴とする判定装置。
    In the determination apparatus according to any one of claims 1 to 9,
    The moving body is a vehicle;
    The determination apparatus according to claim 1, wherein the threshold value is the threshold value for determining the type of the inclination in each of the traveling directions at the intersection where the vehicle enters.
  11.  請求項1から請求項10のいずれか一項に記載の判定装置において、
     前記記録媒体には、前記地面の傾斜の変化の度合いにより、当該地面について複数の前記閾値が記録されていることを特徴とする判定装置。
    In the determination apparatus as described in any one of Claims 1-10,
    The determination apparatus according to claim 1, wherein a plurality of the threshold values are recorded for the ground according to a degree of change in the inclination of the ground.
  12.  請求項1から請求項10のいずれか一項に記載の判定装置において、
     前記記録媒体には、前記移動体が移動する場合について予め設定された制限速度に応じて、前記地面について複数の前記閾値が記録されていることを特徴とする判定装置。
    In the determination apparatus as described in any one of Claims 1-10,
    The determination apparatus according to claim 1, wherein a plurality of the threshold values are recorded for the ground according to a speed limit set in advance when the moving body moves.
  13.  請求項1から請求項10のいずれか一項に記載の判定装置において、
     前記記録媒体には、前記移動体の速度に応じて、前記地面についての一又は複数の前記閾値が記録されていることを特徴とする判定装置。
    In the determination apparatus as described in any one of Claims 1-10,
    The determination apparatus according to claim 1, wherein one or a plurality of the threshold values for the ground are recorded on the recording medium in accordance with a speed of the moving body.
  14.  第1取得手段と、検出手段と、第2取得手段と、判定手段と、を備える判定装置において実行される判定方法において、
     移動体から周囲に出射された光の反射光の受光により得られた受光情報を前記第1取得手段により取得する第1取得工程と、
     前記受光情報に基づき前記光の反射点の傾斜を前記検出手段により検出する検出工程と、
     前記傾斜の種別を判別するための閾値を示す閾値情報を、当該地面に対応する地図情報に関連付けて当該閾値情報を記録している記録媒体から前記第2取得手段により取得する第2取得工程と、
     前記閾値情報により示される前記閾値と前記検出された傾斜との比較に基づき、前記反射点が、前記地面か、当該地面にある物か、を前記判定手段により判定する判定工程と、
     を含む判定方法。
    In a determination method executed in a determination apparatus including a first acquisition unit, a detection unit, a second acquisition unit, and a determination unit,
    A first acquisition step of acquiring light reception information obtained by receiving reflected light of light emitted from the moving body by the first acquisition unit;
    A detection step of detecting the inclination of the reflection point of the light by the detection means based on the light reception information;
    A second acquisition step of acquiring, by the second acquisition means, threshold information indicating a threshold for determining the type of inclination, from a recording medium that records the threshold information in association with map information corresponding to the ground; ,
    A determination step of determining, by the determination means, whether the reflection point is the ground or an object on the ground based on a comparison between the threshold indicated by the threshold information and the detected inclination;
    A determination method including
  15.  判定装置に含まれるコンピュータを、
     移動体から当該移動体の周囲に出射された光の地面からの反射光の受光により得られた受光情報を取得する第1取得手段、
     前記受光情報に基づき前記光の反射点の傾斜を検出する検出手段、
     前記傾斜の種別を判別するための閾値を示す閾値情報を、当該地面に対応する地図情報に関連付けて当該閾値情報を記録している記録媒体から取得する第2取得手段、及び、
     前記閾値情報により示される前記閾値と前記検出された傾斜との比較に基づき、前記反射点が、前記地面か、当該地面にある物か、を判定する判定手段、
     として機能させる判定用プログラム。
    The computer included in the determination device
    First acquisition means for acquiring received light information obtained by receiving reflected light from the ground of light emitted from the moving body around the moving body;
    Detection means for detecting an inclination of the reflection point of the light based on the light reception information;
    Second acquisition means for acquiring threshold information indicating a threshold for discriminating the type of inclination from a recording medium that records the threshold information in association with map information corresponding to the ground; and
    Determination means for determining whether the reflection point is the ground or an object on the ground based on a comparison between the threshold indicated by the threshold information and the detected inclination;
    Judgment program to function as
  16.  請求項1から請求項13のいずれか一項に記載の判定装置の前記第2取得手段により取得される前記閾値情報が前記地図情報に関連付けて記録されている記録媒体のデータ構造であって、
     前記閾値情報と、
     当該閾値情報により示される前記閾値が前記傾斜の種別判別に用いられる前記地面の地図上の位置を示す位置情報であって当該閾値情報と対を為す位置情報と、
     前記位置情報により示される前記位置を含む前記地図に対応する前記地図情報と、
     を含み、
     前記対を為す前記閾値情報及び前記位置情報が前記第2取得手段により読み出されることにより、当該読み出された位置情報により示される前記位置を含む前記地図に対応する前記地図情報が当該閾値情報と共に前記判定装置に読み出されるデータ構造。
    A data structure of a recording medium in which the threshold information acquired by the second acquisition unit of the determination device according to any one of claims 1 to 13 is recorded in association with the map information,
    The threshold information;
    The threshold value indicated by the threshold value information is position information indicating a position on the map of the ground used for the type determination of the inclination, and position information paired with the threshold value information;
    The map information corresponding to the map including the position indicated by the position information;
    Including
    The map information corresponding to the map including the position indicated by the read position information is read together with the threshold information by reading the threshold information and the position information to be paired by the second acquisition unit. A data structure read by the determination device.
  17.  出射手段から所定の領域に対して出射された光の、地面又は前記地面上の物からの反射光の受光により得られる受光情報を取得する第1取得手段と、
     前記受光情報に基づき、前記光の照射対象の傾斜、及び反射率を検出する検出手段と、
     前記所定の領域における前記光の照射対象が、地面であるか、前記地面上の物体であるかを、その傾斜状態に基づいて判別するための第1閾値、及びその反射率に基づいて判別するための第2閾値を示す閾値情報を、取得する第2取得手段と、
     前記閾値情報により示される前記第1閾値と前記検出された傾斜状態との比較、及び前記第2閾値と前記検出された反射率との比較、に基づき、前記照射対象が、地面であるか、前記地面上の物体か、を判定する判定手段と、
     を備えることを特徴とする判定装置。
    First acquisition means for acquiring light reception information obtained by receiving reflected light from the ground or an object on the ground of light emitted from the emission means to a predetermined region;
    Based on the light reception information, the detecting means for detecting the inclination of the irradiation target of the light and the reflectance;
    Based on the first threshold for determining whether the light irradiation target in the predetermined region is the ground or an object on the ground based on the inclination state, and the reflectance thereof Second acquisition means for acquiring threshold information indicating a second threshold for
    Based on the comparison between the first threshold value indicated by the threshold information and the detected inclination state, and the comparison between the second threshold value and the detected reflectance, whether the irradiation target is the ground, Determining means for determining whether the object is on the ground;
    A determination apparatus comprising:
PCT/JP2018/007027 2017-03-31 2018-02-26 Determination device, determination method, program for determination, and data structure WO2018180104A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019509010A JPWO2018180104A1 (en) 2017-03-31 2018-02-26 Judgment device, judgment method, judgment program, and data structure
JP2021170759A JP7174131B2 (en) 2017-03-31 2021-10-19 Determination device, determination method and determination program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-072480 2017-03-31
JP2017072480 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018180104A1 true WO2018180104A1 (en) 2018-10-04

Family

ID=63675310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007027 WO2018180104A1 (en) 2017-03-31 2018-02-26 Determination device, determination method, program for determination, and data structure

Country Status (2)

Country Link
JP (2) JPWO2018180104A1 (en)
WO (1) WO2018180104A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110163871A (en) * 2019-05-07 2019-08-23 北京易控智驾科技有限公司 A kind of ground dividing method of multi-line laser radar

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065740A (en) * 2001-08-27 2003-03-05 Nissan Motor Co Ltd Device for determining slope of forward road
JP2008186384A (en) * 2007-01-31 2008-08-14 Toyota Motor Corp Controller for vehicle
JP2012192862A (en) * 2011-03-17 2012-10-11 Toyota Motor Corp Vehicle controller
JP2014095562A (en) * 2012-11-07 2014-05-22 Denso Corp On-vehicle radar device
JP2015127937A (en) * 2013-11-29 2015-07-09 富士通株式会社 Driving support device, method, and program

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050015201A1 (en) 2003-07-16 2005-01-20 Sarnoff Corporation Method and apparatus for detecting obstacles
US8466810B2 (en) 2008-05-30 2013-06-18 Navteq B.V. Data mining in a digital map database to identify intersections located at hill bottoms and enabling precautionary actions in a vehicle
JP6464410B2 (en) * 2014-09-26 2019-02-06 シャープ株式会社 Obstacle determination device and obstacle determination method
US10183659B2 (en) 2014-11-24 2019-01-22 Ford Global Technologies, Llc Vehicle underside impact avoidance
JP2017015409A (en) * 2015-06-26 2017-01-19 シャープ株式会社 Road surface detection device, mobile body, road surface detection method, and road surface detection program
JP2017015601A (en) 2015-07-02 2017-01-19 シャープ株式会社 Road surface detection device, mobile body, road surface detection method, and road surface detection program
US9761000B2 (en) 2015-09-18 2017-09-12 Qualcomm Incorporated Systems and methods for non-obstacle area detection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065740A (en) * 2001-08-27 2003-03-05 Nissan Motor Co Ltd Device for determining slope of forward road
JP2008186384A (en) * 2007-01-31 2008-08-14 Toyota Motor Corp Controller for vehicle
JP2012192862A (en) * 2011-03-17 2012-10-11 Toyota Motor Corp Vehicle controller
JP2014095562A (en) * 2012-11-07 2014-05-22 Denso Corp On-vehicle radar device
JP2015127937A (en) * 2013-11-29 2015-07-09 富士通株式会社 Driving support device, method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110163871A (en) * 2019-05-07 2019-08-23 北京易控智驾科技有限公司 A kind of ground dividing method of multi-line laser radar
CN110163871B (en) * 2019-05-07 2021-04-13 北京易控智驾科技有限公司 Ground segmentation method and device for multi-line laser radar

Also Published As

Publication number Publication date
JP2022009231A (en) 2022-01-14
JP7174131B2 (en) 2022-11-17
JPWO2018180104A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
US20210350149A1 (en) Lane detection method and apparatus,lane detection device,and movable platform
JP6349742B2 (en) Multi-lane detection method and detection system
JP4858574B2 (en) Object detection device
KR101609303B1 (en) Method to calibrate camera and apparatus therefor
CN109635816B (en) Lane line generation method, apparatus, device, and storage medium
CN110794406B (en) Multi-source sensor data fusion system and method
EP3601001B1 (en) Method and system for real-time estimation of road conditions and vehicle behavior
KR20210048552A (en) Road detection method for vehicles equipped with LIDAR sensor
JP4052291B2 (en) Image processing apparatus for vehicle
JP4662147B2 (en) Object recognition device
JP7174131B2 (en) Determination device, determination method and determination program
JP3925285B2 (en) Road environment detection device
JP5375249B2 (en) Moving path planning device, moving body control device, and moving body
CN113434788B (en) Picture construction method and device, electronic equipment and vehicle
JP5103722B2 (en) Stop vehicle discrimination device
JP2010250743A (en) Automatic running vehicle and road shape recognition system
WO2018180103A1 (en) Information recording device, information recording method, program for information recording, and data structure
JP2023068009A (en) Map information creation method
JP4618506B2 (en) Object recognition device
JP6813436B2 (en) Information processing equipment, mobiles, information processing methods, and programs
JP7344744B2 (en) Roadside edge detection method and roadside edge detection device
JP7165630B2 (en) Recognition system, vehicle control system, recognition method, and program
WO2020095673A1 (en) Vehicle-mounted control device
JP2013101534A (en) Vehicle driving support system
JP2009031299A (en) Peripheral monitoring sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509010

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774416

Country of ref document: EP

Kind code of ref document: A1