WO2018180053A1 - シール装置及び圧縮機 - Google Patents

シール装置及び圧縮機 Download PDF

Info

Publication number
WO2018180053A1
WO2018180053A1 PCT/JP2018/006401 JP2018006401W WO2018180053A1 WO 2018180053 A1 WO2018180053 A1 WO 2018180053A1 JP 2018006401 W JP2018006401 W JP 2018006401W WO 2018180053 A1 WO2018180053 A1 WO 2018180053A1
Authority
WO
WIPO (PCT)
Prior art keywords
peripheral surface
outer peripheral
gas
fin
fin group
Prior art date
Application number
PCT/JP2018/006401
Other languages
English (en)
French (fr)
Inventor
中庭 彰宏
大輔 平田
Original Assignee
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工コンプレッサ株式会社 filed Critical 三菱重工コンプレッサ株式会社
Priority to US16/487,241 priority Critical patent/US11035471B2/en
Priority to EP18774370.3A priority patent/EP3569899B1/en
Publication of WO2018180053A1 publication Critical patent/WO2018180053A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/002Sealings comprising at least two sealings in succession
    • F16J15/004Sealings comprising at least two sealings in succession forming of recuperation chamber for the leaking fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals

Definitions

  • the present invention relates to a sealing device and a compressor.
  • the compressor is provided with a sealing device in order to prevent the gas (process gas) compressed in the machine from leaking outside from the casing (see, for example, Patent Document 1).
  • a dry gas seal is known as a kind of such a sealing device.
  • This sealing device has a first fin group disposed on the inner side of the machine and a second fin group disposed on the outer side of the machine. Each of the first fin group and the second fin group forms a clearance between the outer peripheral surface of the rotating shaft. A small amount of process gas that has passed through a filter is supplied as a seal gas between the first fin groups. An inert gas is supplied as a seal gas between the second fin groups. Between the first fin group and the second fin group, a discharge gas that exhausts the mixed gas of the process gas that has passed through the clearance of the first fin group and the inert gas that has passed through the clearance of the second fin group as a vent gas is discharged to the outside. A road is formed.
  • the process gas supplied to the sealing device may pass through the second fin group as a jet along the outer peripheral surface of the rotating shaft after passing through the clearance of the first fin group. is there. Such a jet of process gas leaks out of the compressor through the second fin group.
  • the present invention provides a seal device and a compressor that can suppress leakage of seal gas from the inside of the machine.
  • a sealing device is provided between the rotary shaft and the casing in a compressor having a rotary shaft and a casing surrounding the rotary shaft,
  • the rotary shaft includes a first outer peripheral surface, a second outer peripheral surface having an outer diameter smaller than the first outer peripheral surface adjacent to the machine outer surface of the first outer peripheral surface, and A stepped surface connecting the first outer peripheral surface and the second outer peripheral surface, an annular ring portion fixed to the casing and surrounding the axis, and protruding from an inner peripheral surface of the ring portion, A first fin group composed of a plurality of fins forming a clearance with the first outer peripheral surface; and a tip protruding from the inner peripheral surface of the ring portion and positioned at a radially inner side than the first outer peripheral surface; A compound that forms a clearance with the second outer peripheral surface A second fin group consisting of the second fins, and the ring portion is provided between the first fin group and the first fin supply path capable of supplying a first seal gas between the first
  • the second gas supply path capable of supplying the second seal gas, and the first seal gas and the second gas that have passed through the clearance of the first fin group from between the first fin group and the second fin group.
  • a mixed gas discharge path capable of discharging a mixed gas with the second seal gas that has passed through the clearance of the fin group.
  • the first seal gas that passes through the clearance of the first fin group to the outside of the machine travels toward the second fin along the first outer peripheral surface as a jet.
  • the second seal gas that has passed through the clearance of the second fin group to the inside of the machine is bent toward the outside in the radial direction by colliding with the step surface, and forms a vortex in front of the second fin on the inside of the machine. . Therefore, the jet flow of the first seal gas traveling toward the second fin is guided radially outward by the vortex without directly colliding with the second fin. Therefore, the jet of the first seal gas is kept away from the clearance of the second fin group toward the radially outer side. Further, the jet of the seal gas guided outward in the radial direction is guided further outward in the radial direction along the second fin. Therefore, it can suppress that the jet flow of the first seal gas breaks through the clearance of the second fin group.
  • the axial distance between the leading second fin located on the innermost side among the plurality of second fins and the stepped surface is W
  • the leading second fin and the second outer peripheral surface are CL ⁇ W ⁇ 2D, where CL is the clearance dimension and D is the radial distance between the inner peripheral surface of the ring portion where the second fin group is provided and the second outer peripheral surface.
  • the leading second fin is disposed closer to the step surface. For this reason, the jet of the first seal gas easily collides with the second fin. Therefore, coupled with the induction by the vortex, the jet can be further away from the clearance of the second fin group.
  • leading second fin may be inclined toward the inner side as it goes radially inward.
  • the ring portion is located on the machine outside of the first outer peripheral surface and on the machine inner side of the leading second fin located on the machine inner side among the plurality of second fins.
  • the first seal gas that has passed through the clearance of one fin group has a wall surface that collides, and the wall surface is inclined toward the outer side as it goes radially outward.
  • the jet of the first seal gas that has passed through the first fin group collides with the wall surface, and is guided radially outward along the wall surface.
  • the vortex of the second seal gas is formed on the inner side in the radial direction of the wall surface, thereby suppressing the first seal gas from entering the inner side in the radial direction. As a result, it is possible to suppress the jet from passing through the clearance of the second fin group.
  • a compressor according to a second aspect of the present invention includes the rotating shaft, the casing, and the sealing device according to any one of claims 1 to 3.
  • the first seal gas may be a process gas compressed in the machine
  • the second seal gas may be an inert gas supplied from the outside.
  • the sealing device and the compressor of the present invention it is possible to suppress leakage of seal gas from the inside of the machine.
  • FIG. 3 is a partially enlarged view of FIG. 2. It is the elements on larger scale of the longitudinal cross-sectional view of the compressor which concerns on 2nd embodiment. It is the elements on larger scale of the longitudinal cross-sectional view of the compressor which concerns on 3rd embodiment. It is the elements on larger scale of the longitudinal cross-sectional view of the compressor which concerns on the modification of 3rd embodiment.
  • the refrigeration cycle system 1 is a system for cooling a cooling target (not shown).
  • the refrigeration cycle system 1 of the present embodiment may be used, for example, in a liquefied natural gas (hereinafter, LNG) plant.
  • the refrigeration cycle system 1 is an LNG that excavates and liquefies natural gas from the sea floor such as offshore plants and shipboard plants where it is difficult to replenish the process gas G1 and it is difficult to secure a space for adding a refrigerator as a cooling source. It may be applied to a plant.
  • the refrigeration cycle system 1 includes a compressor 2, a condenser 3, a storage unit 4, and an evaporator 5. These components are connected by the pipe 6 in the order described above.
  • the compressor 2 compresses a refrigerant in a gaseous state (hereinafter referred to as process gas G1).
  • a drive machine 7 such as a motor for driving the rotor 11 of the compressor 2 is connected to the rotor 11.
  • the condenser 3 cools and condenses the high-temperature and high-pressure process gas G1 compressed in the compressor 2.
  • the storage unit 4 temporarily stores the process gas G ⁇ b> 1 in a liquid state in the condenser 3.
  • the evaporator 5 performs heat exchange between the process gas G1 in a liquid state supplied from the storage unit 4 in a state where the pressure and temperature are reduced by adiabatic expansion by the valve 8 and a cooling target (not shown),
  • the process gas G1 in the liquid state is evaporated.
  • the process gas G1 vaporized by evaporation is sent to the compressor 2 again.
  • the process gas G1 is, for example, a hydrocarbon (hydrocarbon).
  • the hydrocarbon used as the process gas G1 may be, for example, one or more types of hydrocarbons appropriately selected from methane, ethane, propane, butane, and the like.
  • the compressor 2 of the present embodiment may compress a toxic gas such as NOX as the process gas G1 in addition to the combustible gas such as the hydrocarbon.
  • the rotor 11 of the compressor 2 includes a rotating shaft 12 that rotates around an axis O and an impeller (not shown) attached thereto.
  • the compressor 2 includes a casing 40 that houses the rotor 11.
  • the 1st end part 13 and the 2nd end part 14 which are the both ends of the axis line O direction protrude outside the casing 40 together.
  • the rotating shaft 12 is rotatably supported with respect to the casing 40 by the bearing 16 outside the casing 40. In FIG. 2, only the first end 13 on one side of the rotating shaft 12 in the axis O direction is supported by the bearing 16 with respect to the casing 40, but the second end 14 on the other side of the rotating shaft 12 in the axis O direction. Are also supported by bearings 16.
  • a gap is formed between the rotating shaft 12 and the casing 40 in the portion on the first end 13 side.
  • a sealing device 50 is provided in this gap.
  • the sealing device 50 is configured so that the process gas G1 that serves as a working fluid in the compressor 2 flows from the inside of the casing 40 to the outside, that is, from the inside of the compressor 2 (left side in FIG. 2, the other side in the axis O direction) Leakage to the right side in FIG. 2, one side in the direction of the axis O) is suppressed.
  • the sealing device 50 is provided so as to surround the first outer peripheral surface 21, the second outer peripheral surface 22, and the third outer peripheral surface 23 of the outer peripheral surface 20 of the rotary shaft 12 from the radially outer side.
  • the first outer peripheral surface 21, the second outer peripheral surface 22, and the third outer peripheral surface 23 are each circular in a cross-sectional view orthogonal to the axis O.
  • the first outer peripheral surface 21 is located inside the aircraft.
  • the second outer peripheral surface 22 is provided adjacent to the machine outer side of the first outer peripheral surface 21.
  • the outer diameter of the second outer peripheral surface 22 is smaller than the outer diameter of the first outer peripheral surface 21.
  • an annular step surface 31 is formed between the first outer peripheral surface 21 and the second outer peripheral surface 22 and forms a plane perpendicular to the axis O and faces the outside of the machine.
  • the third outer peripheral surface 23 is provided adjacent to the machine outer side of the second outer peripheral surface 22.
  • the outer diameter of the third outer peripheral surface 23 is smaller than that of the second outer peripheral surface 22.
  • a step 32 is also formed between the second outer peripheral surface 22 and the second outer peripheral surface 22.
  • the sealing device 50 facing the outer peripheral surface of the rotating shaft 12 has a ring portion 60, a first fin group 81, a second fin group 83, and a third fin group 85.
  • the ring portion 60 has a cylindrical shape with the axis O as the center.
  • the outer peripheral surface of the ring part 60 has a cylindrical surface shape having a uniform outer diameter in the axis O direction.
  • the outer peripheral surface of the ring part 60 is integrally fixed to the inner peripheral surface 41 of the casing 40. That is, the sealing device 50 is fixed to the casing 40.
  • the inner peripheral surface 61 of the ring part 60 is a first inner peripheral surface 62 that faces the first outer peripheral surface 21 of the rotating shaft 12 from the radially outer side, and a second inner peripheral surface 61 that faces the second outer peripheral surface 22 of the rotating shaft 12 from the radially outer side.
  • the second inner peripheral surface 63 and the third inner peripheral surface 64 facing the third outer peripheral surface 23 of the rotating shaft 12 from the radially outer side are provided.
  • a first discharge space R ⁇ b> 1 is defined by the first discharge recess 71 of the ring portion 60 and the outer peripheral surface 20 of the rotating shaft 12.
  • the step surface 31 that is the boundary between the first outer peripheral surface 21 and the second outer peripheral surface 22 in the outer peripheral surface 20 of the rotary shaft 12 is located within the range of the first discharge space R1 in the axis O direction.
  • the first discharge recess 71 in the ring portion 60 has a wall surface 72 facing the machine inner side.
  • the wall surface 72 has a planar shape perpendicular to the axis O.
  • the wall surface 72 extends in an annular shape around the axis O.
  • the wall surface 72 is located on the outer side of the step surface 31 of the rotating shaft 12.
  • the radially inner end of the wall surface 72 is connected to the second inner peripheral surface 63 of the ring portion 60 over the entire circumferential direction.
  • the second inner peripheral surface 63 of the ring portion 60 is opposed to the second outer peripheral surface 22 of the rotating shaft 12 and is located on the radially outer side than the first outer peripheral surface 21.
  • a second discharge recess 73 is formed between the second inner peripheral surface 63 and the third inner peripheral surface 64 so as to be recessed in an annular shape centering on the axis O toward the radially outer side.
  • a second discharge space R ⁇ b> 2 is defined by the second discharge recess 73 of the ring portion 60 and the outer peripheral surface 20 of the rotating shaft 12.
  • a first supply recess 74 is formed on the first outer peripheral surface 21 of the ring portion 60.
  • the first supply recess 74 is formed on the inner side in the axial direction of both ends of the first outer peripheral surface 21 in the axis O direction so as to divide the first outer peripheral surface 21 into two in the axis O direction.
  • a first supply space R ⁇ b> 3 is defined by the first supply recess 74 of the ring portion 60 and the outer peripheral surface 20 (first outer peripheral surface 21) of the rotating shaft 12.
  • a second supply recess 75 is formed on the second outer peripheral surface 22 of the ring portion 60.
  • the second supply recess 75 is formed on the inner side in the axis O direction at both ends of the second outer peripheral surface 22 in the axis O direction so as to divide the second outer peripheral surface 22 into two in the axis O direction.
  • a second supply space R4 is defined by the second supply recess 75 of the ring portion 60 and the outer peripheral surface 20 (second outer peripheral surface 22) of the rotating shaft 12.
  • a first gas supply path 76, a second gas supply path 77, a mixed gas discharge path 78, and an inert gas discharge path 79 are formed in the ring portion 60.
  • a plurality of first gas supply passages 76 are formed at intervals in the circumferential direction so as to penetrate the first supply recess 74 and the outer peripheral surface of the ring portion 60 in the radial direction.
  • An introduction path 42 is formed. That is, a part of the process gas G1 to be compressed by the compressor 2 is extracted into the first gas introduction path 42, and then the process gas G1 that has passed through the filter is supplied.
  • a plurality of second gas supply passages 77 are formed at intervals in the circumferential direction so as to penetrate the second supply recess 75 and the outer peripheral surface of the ring portion 60 in the radial direction.
  • a portion of the inner peripheral surface 41 of the casing 40 corresponding to the second gas supply path 77 is formed with a second gas introduction path 43 through which the inert gas G2 in the compressor 2 can be introduced into the second gas supply path 77.
  • an inert gas G ⁇ b> 2 such as nitrogen is supplied to the second gas introduction path 43 from an inert gas supply source 9 provided outside the compressor 2.
  • a plurality of mixed gas discharge passages 78 are formed at intervals in the circumferential direction so as to penetrate the first discharge recess 71 and the outer peripheral surface of the ring portion 60 in the radial direction.
  • a mixed gas lead-out path 44 through which the mixed gas of the process gas G 1 and the inert gas G 2 can be led out from the mixed gas discharge path 78. Is formed. Only the process gas G1 is recovered by the gas recovery unit 10 shown in FIG. 1 and the process gas G1 is supplied to the pipe 6 of the refrigeration cycle system 1 from the mixed gas outlet path 44 to the outside of the compressor 2. returned.
  • the inert gas G2 separated by the gas recovery unit may be released to the atmosphere, or may be recovered and used again.
  • a plurality of inert gas discharge paths 79 are formed at intervals in the circumferential direction so as to penetrate the second discharge recess 73 and the outer peripheral surface of the ring portion 60 in the radial direction.
  • An inert gas outlet passage 45 for discharging the inert gas G ⁇ b> 2 from the inert gas discharge passage 79 to the outside is formed in a portion corresponding to the inert gas discharge passage 79 on the inner peripheral surface 41 of the casing 40.
  • the first fin group 81 is provided on the first inner peripheral surface 62 of the ring portion 60.
  • the first fin group 81 includes a plurality of first fins 82.
  • the plurality of first fins 82 project radially inward from the first inner peripheral surface 62 to form a clearance with the first outer peripheral surface 21 of the rotating shaft 12.
  • the first fins 82 each extend in an annular shape about the axis O.
  • the plurality of first fins 82 are juxtaposed at intervals in the axis O direction.
  • the first fin group 81 is divided into two groups in the axis O direction by the first supply recess 74.
  • the second fin group 83 is provided on the second inner peripheral surface 63 of the ring portion 60.
  • the second fin group 83 includes a plurality of first fins 82.
  • the second fins 84 each extend in an annular shape about the axis O.
  • the second fin group 83 projects radially inward from the second inner peripheral surface 63 to form a clearance with the second outer peripheral surface 22 of the rotating shaft 12.
  • the plurality of second fins 84 are juxtaposed at intervals in the axis O direction.
  • the second fin group 83 is divided into two groups in the axis O direction by the second supply recess 75. Specifically, as shown in FIG. 3, the tips (radially inner ends) of the plurality of second fins 84 constituting the second fin group 83 are located radially inward from the first outer peripheral surface 21. .
  • the third fin group 85 is provided on the third inner peripheral surface 64 of the ring portion 60.
  • the third fin group 85 includes a plurality of third fins 86.
  • the plurality of third fins 86 protrude radially inward from the third inner peripheral surface 64 and form a clearance with the third outer peripheral surface 23 of the rotary shaft 12.
  • the third fins 86 each extend in an annular shape about the axis O.
  • the plurality of third fins 86 are juxtaposed at intervals in the axis O direction.
  • the interval in the axis O direction between the leading second fin 84 a located on the innermost side among the plurality of second fins 84 and the stepped surface 31 is defined as W.
  • the clearance dimension between the leading second fin 84a and the second outer peripheral surface 22 is defined as CL.
  • D be the radial interval between the inner peripheral surface of the ring portion 60 where the second fin group 83 is provided and the second outer peripheral surface 22. In this case, in the present embodiment, the relationship of CL ⁇ W ⁇ 2D is established.
  • the sealing device 50 suppresses leakage of the process gas G ⁇ b> 1 from both ends of the rotor 11 of the compressor 2.
  • the sealing process gas G ⁇ b> 1 from the first gas introduction path 42 of the casing 40 is introduced into the first supply space R ⁇ b> 3 through the first gas supply path 76.
  • This process gas G1 passes through the clearance of the first fin group 81 from the first supply space R3 and proceeds to the inside and the outside of the machine.
  • the inert gas G ⁇ b> 2 from the second gas introduction path 43 of the casing 40 is introduced into the second supply space R ⁇ b> 4 through the second gas supply path 77.
  • the inert gas G2 passes through the clearance of the second fin group 83 from the second supply space R4 and proceeds to the inside and the outside of the machine.
  • the process gas G1 that has passed through the clearance of the first fin group 81 toward the outside of the machine reaches the first discharge space R1, and the inert gas G2 that has passed through the clearance of the second fin group 83 toward the inside of the machine. Reach.
  • the process gas G1 and the inert gas G2 are mixed to generate a mixed gas.
  • the mixed gas is discharged out of the compressor 2 from the first discharge space R ⁇ b> 1 through the mixed gas discharge path 78 and the mixed gas outlet path 44.
  • the inert gas G2 that has passed through the clearance of the second fin group 83 toward the outside of the machine reaches the second discharge space R2.
  • the inert gas G2 is discharged out of the compressor 2 from the second discharge space R2 via the inert gas discharge path 79 and the inert gas outlet path 45.
  • the process gas G1 for sealing and the inert gas G2 are supplied to suppress the leakage of the process gas G1 in the machine. Further, the leakage of the sealing process gas G1 is suppressed by the inert gas G2.
  • the process gas G ⁇ b> 1 passing through the clearance of the first fin group 81 to the outside of the machine is jetted toward the second fin group 83 along the first outer peripheral surface 21.
  • the inert gas G ⁇ b> 2 passing through the clearance of the second fin group 83 toward the inside of the machine is guided radially outward by colliding with the step surface 31.
  • a vortex V is formed in front of the leading second fin 84a that is the second fin 84 on the innermost side.
  • the jet of the process gas G1 traveling toward the second fin 84 is guided radially outward by the vortex V. Thereby, it is suppressed that the jet of process gas G1 collides with the head 2nd fin 84a directly.
  • the vortex V guides the process gas G1 jet away from the clearance of the second fin group 83 toward the radially outer side.
  • the jet of the process gas G1 thus guided radially outward is guided further radially outward along the second fin 84. Therefore, it is possible to suppress the jet of the process gas G1 from breaking through the clearance of the second fin group 83. Therefore, it is possible to avoid the process gas G1 from leaking out of the apparatus.
  • the process gas G1 is a flammable gas or a toxic gas such as NOX
  • the leakage of the process gas G1 is avoided in the present embodiment. Therefore, a safer system can be constructed.
  • more appropriate management of the process gas G1 can be performed.
  • the relationship of CL ⁇ W ⁇ 2D is established. Therefore, the leading second fin 84 a is disposed closer to the step surface 31. Therefore, the jet of the process gas G1 easily collides with the second fin 84. Therefore, coupled with the induction by the vortex V, the jet can be further away from the clearance of the second fin group 83.
  • the rotating shaft 12 is set to have a smaller outer diameter on the second outer peripheral surface 22 on the outer side than on the first outer peripheral surface 21 on the inner side.
  • the second fin group 83 protrudes radially inward from the first fin group 81. Therefore, the sealing device 50 can be easily attached and detached from the outside of the machine.
  • the leading second fin 84a located on the innermost side among the plurality of second fins 84 of the second fin group 83 is inclined toward the inner side as it goes radially inward from the ring portion 60. Yes.
  • the surface of the leading second fin 84a facing the machine inner side is an inclined guide surface 84b extending toward the radial outer side as going to the machine outer side.
  • the second fins 84 other than the leading second fin 84a protrude in the radial direction as in the first embodiment.
  • the jet of the process gas G1 is guided radially outward by the vortex V, and further guided radially outward by the inclined guide surface 84b of the leading second fin 84a. . That is, the jet of the process gas G1 can be guided more easily outward in the radial direction. Therefore, it is possible to further suppress the jet of the process gas G1 from penetrating the second fin group 83 and leaking out of the machine.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the portion from the inner end to the leading second fin 84 a is directed radially inward.
  • the inner peripheral surface 63a protrudes one step. Accordingly, the wall surface 72 of the ring portion 60 connected to the end of the second inner peripheral surface 63 on the machine inner side extends radially inward from the first embodiment.
  • the protruding inner peripheral surface 63a is the same radial position as the first outer peripheral surface 21 of the rotating shaft 12, or radially inward of the first outer peripheral surface 21, and from the tip of the leading second fin 84a. Is also located radially outward. Accordingly, the radially inner end of the wall surface 72 is located radially inward from the first outer peripheral surface 21 from the same radial position as the first outer peripheral surface 21. Furthermore, the wall surface 72 is inclined toward the outside of the machine as it goes from the radially inner end to the radially outer side. The inclination angle of the wall surface 72 is inclined at an angle of, for example, 5 ° to 15 ° with respect to the radial direction. The inclination angle of the wall surface 72 is preferably 10 °.
  • the jet of the process gas G1 that has passed through the first fin group 81 collides with the wall surface 72 and is guided radially outward along the wall surface 72. Further, the vortex V of the second seal gas is formed on the inner side in the radial direction of the wall surface 72, so that the process gas G1 is prevented from entering the inner side in the radial direction. As a result, the jet flow can be further suppressed from passing through the clearance of the second fin group 83, and the leakage of the process gas G1 can be effectively suppressed.
  • the leading second fin 84a may be inclined as in the second embodiment.
  • the vortex V is more easily formed in front of the leading second fin 84a. Therefore, it can further suppress that the jet which flows along the 1st outer peripheral surface 21 enters into the 2nd outer peripheral surface 22 side.
  • the present invention has been described above, but the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the present invention.
  • the sealing device 50 is applied to the compressor 2 of the refrigeration cycle system 1 has been described.
  • the compressor 2 and the sealing device 50 may be applied to other systems.
  • the gas is not limited to the inert gas G2, and other gas may be used as the second seal gas.
  • the sealing device and the compressor of the present invention it is possible to suppress leakage of seal gas from the inside of the machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Compressor (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

リング部(60)と、第一外周面(21)との間でクリアランスを形成する第一フィン群(81)と、先端が第一外周面(21)よりも径方向内側に位置するとともに第二外周面(22)との間でクリアランスを形成する第二フィン群(83)と、備える。リング部(60)が、第一フィン群(81)の間に第一シールガスを供給可能な第一ガス供給路(76)と、第二フィン群(83)の間に第二シールガスを供給可能な第二ガス供給路(77)と、第一フィン群(81)と第二フィン群(83)との間から、第一シールガスと第二シールガスとの混合ガスを排出可能な混合ガス排出路(78)と、を有する。

Description

シール装置及び圧縮機
 本発明は、シール装置及び圧縮機に関する。
 本願は、2017年3月30日に日本に出願された特願2017-067380号について優先権を主張し、その内容をここに援用する。
 圧縮機には、機内で圧縮されるガス(プロセスガス)がケーシングから外部に漏えいすることを抑制するためにシール装置が設けられている(例えば特許文献1参照)。このようなシール装置の一種として、ドライガスシールが知られている。
 このシール装置は、機内側に配置された第一フィン群と機外側に配置された第二フィン群とを有している。これら第一フィン群、第二フィン群はそれぞれ回転軸の外周面との間にクリアランスを形成している。
 第一フィン群の間には、フィルタを通した微量のプロセスガスがシールガスとして供給される。第二フィン群の間には不活性ガスがシールガスとして供給される。第一フィン群と第二フィン群の間には、第一フィン群のクリアランスを通過したプロセスガスと第二フィン群のクリアランスを通過した不活性ガスとの混合ガスをベントガスとして外部に排出する排出路が形成されている。
実開昭58-53961号公報
 ところで、上記のシール装置では、該シール装置に供給されるプロセスガスが、第一フィン群のクリアランスを通過した後に、回転軸の外周面に沿う噴流として第二フィン群も通過してしまう場合がある。このようなプロセスガスの噴流は、第二フィン群を突き抜けることで圧縮機の外部へと漏れてしまう。
 本発明は、機内側からのシールガスの漏れを抑制することができるシール装置及び圧縮機を提供する。
 本発明の第一態様に係るシール装置は、回転軸と該回転軸を囲うケーシングを有する圧縮機における前記回転軸と前記ケーシングとの間に設けられて、該圧縮機の機内側と機外側とを軸線方向に隔てるシール装置であって、前記回転軸は、第一外周面、該第一外周面の機外側に隣接して該第一外周面よりも外径が小さい第二外周面、及び、前記第一外周面と前記第二外周面とを接続する段差面を有し、前記ケーシングに固定されて前記軸線を囲う環状をなすリング部と、該リング部の内周面から突出して前記第一外周面との間でクリアランスを形成する複数のフィンからなる第一フィン群と、前記リング部の内周面から突出して先端が前記第一外周面よりも径方向内側に位置するとともに前記第二外周面との間でクリアランスを形成する複数の第二フィンからなる第二フィン群と、備え、前記リング部が、前記第一フィン群の間に第一シールガスを供給可能な第一ガス供給路と、前記第二フィン群の間に第二シールガスを供給可能な第二ガス供給路と、前記第一フィン群と前記第二フィン群との間から、前記第一フィン群のクリアランスを通過した前記第一シールガスと前記第二フィン群のクリアランスを通過した第二シールガスとの混合ガスを排出可能な混合ガス排出路と、を有する。
 上記態様によれば、第一フィン群のクリアランスを機外側に通過する第一シールガスは、噴流として第一外周面に沿って第二フィンに向かって進行する。一方、第二フィン群のクリアランスを機内側に通過した第二シールガスは、段差面に衝突することで径方向外側に向かって曲げられ、最も機内側の第二フィンの手前に渦を形成する。そのため、当該第二フィンに向かって進行する第一シールガスの噴流は、直接的に第二フィンに衝突することなく、上記渦によって径方向外側に向かって誘導される。したがって、第一シールガスの噴流は、第二フィン群のクリアランスから径方向外側に向かって遠ざけられる。また、径方向外側に誘導されたシールガスの噴流は、第二フィンに沿ってより径方向外側に案内される。よって、第一シールガスの噴流が、第二フィン群のクリアランスを突破してしまうことを抑制できる。
 上記態様では、複数の前記第二フィンのうち最も機内側に位置する前記先頭第二フィンと前記段差面との前記軸線方向の間隔をWとし、前記先頭第二フィンと前記第二外周面とのクリアランスの寸法をCLとし、前記リング部における前記第二フィン群が設けられた内周面と前記第二外周面との径方向の間隔をDとした場合に、CL<W<2Dの関係が成立してもよい。
 上記関係が成立することで、先頭第二フィンは段差面により近接して配置される。そのため、第一シールガスの噴流が第二フィンに衝突し易くなる。そのため、上記渦による誘導と相まって、当該噴流をより第二フィン群のクリアランスから遠ざけることができる。
 上記態様では、前記先頭第二フィンは、径方向内側に向かうに従って機内側に向かって傾斜していてもよい。
 これによって、先頭第二フィンに衝突する第一シールガスの噴流を、傾斜に沿って径方向外側により案内し易くすることができる。
 上記態様では、前記リング部は、前記第一外周面よりも機外側、かつ、複数の前記第二フィンのうち最も機内側に位置する先頭第二フィンよりも機内側に位置するとともに、前記第一フィン群のクリアランスを通過した第一シールガスが衝突する壁面を有し、該壁面は、径方向外側に向かうにしたがって機外側に向かって傾斜している。
 この場合、第一フィン群を通過した第一シールガスの噴流は、壁面に衝突し、該壁面に沿って径方向外側に案内される。また、壁面の径方向内側では、第二シールガスの上記渦が形成されることで、第一シールガスの径方向内側への入り込みが抑制される。その結果、上記噴流が第二フィン群のクリアランスを通過してしまうことを抑制できる。
 本発明の第二態様に係る圧縮機は、前記回転軸と、前記ケーシングと、請求項1から3のいずれか一項に記載のシール装置と、を備える。
 上記態様では、前記第一シールガスは、機内で圧縮されたプロセスガスであって、前記第二シールガスは、外部から供給される不活性ガスであってもよい。
 これによって、プロセスガスが第二フィン群のクリアランスを通過してしまうことを抑制できる。よって、プロセスガスとしてNOX等の有害ガスや可燃ガスを用いた場合等、プロセスガスの取扱いにより注意を払う必要がある場合であっても、該プロセスガスの漏れを抑制することで、より適切な管理を行うことができる。
 本発明のシール装置及び圧縮機によれば、機内側からのシールガスの漏れを抑制することができる。
第一実施形態に係る圧縮機を備えた冷凍サイクルシステムの主要部を示す模式図である。 第一実施形態に係る圧縮機の要部を示す縦断面図である。 図2の部分拡大図である。 第二実施形態に係る圧縮機の縦断面図の部分拡大図である。 第三実施形態に係る圧縮機の縦断面図の部分拡大図である。 第三実施形態の変形例に係る圧縮機の縦断面図の部分拡大図である。
 以下、本発明の第一実施形態に係るシール装置及び圧縮機を備えたシステムの一例について図1~図3を参照して詳細に説明する。第一実施形態に係る冷凍サイクルシステム1は、図示しない冷却対象を冷却するためのシステムである。本実施形態の冷凍サイクルシステム1は、例えば、液化天然ガス(以下、LNG)プラントに用いられてもよい。特に、冷凍サイクルシステム1は、プロセスガスG1の補充が困難であり、冷却源として冷凍機を追加するスペースの確保も困難な洋上プラントや船上プラントのような海底から天然ガスを掘り出して液化するLNGプラントに適用されてもよい。
 冷凍サイクルシステム1は、圧縮機2と、凝縮器3と、貯留部4と、蒸発器5と、を備える。これらの構成は、上記した順番で配管6によって接続されている。
 圧縮機2は、気体状態の冷媒(以下、プロセスガスG1と呼ぶ。)を圧縮する。圧縮機2のロータ11には、これを駆動するモータ等の駆動機7が接続されている。
 凝縮器3は、圧縮機2において圧縮された高温高圧のプロセスガスG1を冷却して凝縮する。
 貯留部4は、凝縮器3において液体状態とされたプロセスガスG1を一時的に貯留する。
 蒸発器5は、貯留部4からバルブ8により断熱膨張して圧力及び温度が低下した状態で供給される液体状態のプロセスガスG1と、不図示の冷却対象との間で熱交換することで、液体状態のプロセスガスG1を蒸発させる。蒸発することで気化したプロセスガスG1は、再び圧縮機2に送り込まれる。
 上記のプロセスガスG1は、例えば炭化水素(ハイドロカーボン)である。プロセスガスG1として用いる炭化水素は、例えばメタン、エタン、プロパン、ブタン等のうち適宜選択された一種類又は複数種類の炭化水素であってよい。
 なお、本実施形態の圧縮機2は、上記炭化水素のような可燃性ガスの他、NOX等の有毒ガスをプロセスガスG1として圧縮してもよい。
 図1及び図2に示すように、圧縮機2のロータ11は、軸線O回りに回転する回転軸12及びこれに取り付けられた不図示のインペラを備える。圧縮機2は、ロータ11を収容するケーシング40を備える。回転軸12は、軸線O方向の両端である第一端部13及び第二端部14が共にケーシング40の外側に突出している。回転軸12は、ケーシング40の外側で軸受16によってケーシング40に対して回転自在に支持されている。図2では、回転軸12の軸線O方向一方側の第一端部13のみが軸受16によってケーシング40に対して支持されているが、回転軸12の軸線O方向他方側の第二端部14も同様に軸受16によって支持されている。
 図2及び図3に示すように、回転軸12の第一端部13側の部分には、ケーシング40との間に隙間が形成されている。この隙間には、シール装置50が設けられている。シール装置50は、圧縮機2での作動流体となるプロセスガスG1がケーシング40の内側から外側に、即ち、圧縮機2の機内側(図2の左側、軸線O方向他方側)から機外側(図2の右側、軸線O方向一方側)に漏れることを抑制する。
 シール装置50は、回転軸12の外周面20のうち第一外周面21、第二外周面22及び第三外周面23を径方向外側から囲うように設けられている。これら第一外周面21、第二外周面22及び第三外周面23は、それぞれ軸線Oに直交する断面視で円形をなしている。
 第一外周面21は、機内側に位置している。第二外周面22は、第一外周面21の機外側に隣接して設けられている。第二外周面22の外径は第一外周面21の外径よりも小さい。これによって、第一外周面21と第二外周面22との間には、軸線Oに直交する平面状をなして機外側を向く円環状の段差面31が形成されている。第三外周面23は、第二外周面22の機外側に隣接して設けられている。第三外周面23の外径は第二外周面22よりも小さい。これによって第二外周面22と第二外周面22との間にも段差部32が形成されている。
 このような回転軸12の外周面に対向するシール装置50は、リング部60、第一フィン群81、第二フィン群83及び第三フィン群85を有する。
 リング部60は、軸線Oを中心とした円筒形状をなしている。リング部60の外周面は、軸線O方向に一様な外径をなす円筒面状をなしている。リング部60の外周面は、ケーシング40の内周面41に一体に固定されている。即ち、シール装置50はケーシング40に固定されている。
 リング部60の内周面61は、回転軸12の第一外周面21に径方向外側から対向する第一内周面62、回転軸12の第二外周面22に径方向外側から対向する第二内周面63、及び、回転軸12の第三外周面23に径方向外側から対向する第三内周面64を有している。
 リング部60における第一内周面62と第二内周面63との間には、径方向外側に向かって軸線Oを中心とした環状に凹む第一排出凹部71が形成されている。リング部60の第一排出凹部71と回転軸12の外周面20とによって第一排出空間R1が区画形成されている。回転軸12の外周面20における第一外周面21と第二外周面22との境界となる段差面31は、当該第一排出空間R1の軸線O方向の範囲内に位置している。
 詳しくは図3に示すように、リング部60における第一排出凹部71は、機内側を向く壁面72を有している。該壁面72は、軸線Oに直交する平面状をなしている。壁面72は、軸線Oを中心とした環状に延びている。壁面72は、回転軸12の段差面31よりも機外側に位置している。壁面72の径方向内側の端部は、リング部60の第二内周面63と周方向全域にわたって接続されている。リング部60の第二内周面63は、回転軸12の第二外周面22に対向するとともに、第一外周面21よりも径方向外側に位置している。
 図2に示すように、第二内周面63と第三内周面64との間には、径方向外側に向かって軸線Oを中心とした環状に凹む第二排出凹部73が形成されている。リング部60の第二排出凹部73と回転軸12の外周面20とによって第二排出空間R2が区画形成されている。
 リング部60における第一外周面21には、第一供給凹部74が形成されている。第一供給凹部74は、該第一外周面21の軸線O方向両端の軸線方向内側に、第一外周面21を軸線O方向に2つに分断するようにして形成されている。リング部60の第一供給凹部74と回転軸12の外周面20(第一外周面21)とによって第一供給空間R3が区画形成されている。
 リング部60における第二外周面22には、第二供給凹部75が形成されている。第二供給凹部75は、該第二外周面22の軸線O方向両端の軸線O方向内側に、第二外周面22を軸線O方向に2つに分断するようにして形成されている。リング部60の第二供給凹部75と回転軸12の外周面20(第二外周面22)とによって第二供給空間R4が区画形成されている。
 ここで、リング部60には、第一ガス供給路76、第二ガス供給路77、混合ガス排出路78、及び不活性ガス排出路79(シールガス排出路)が形成されている。
 第一ガス供給路76は、第一供給凹部74と該リング部60の外周面とを径方向に貫通するように周方向に間隔をあけて複数形成されている。
 ケーシング40の内周面41における第一ガス供給路76に対応する部分には、第一ガス供給路76に圧縮機2内のプロセスガスG1をシール用のプロセスガスG1として導入可能な第一ガス導入路42が形成されている。即ち、第一ガス導入路42には、圧縮機2の圧縮対象となるプロセスガスG1の一部が抽気されて、その後にフィルタを通過したプロセスガスG1が供給される。
 第二ガス供給路77は、第二供給凹部75と該リング部60の外周面とを径方向に貫通するように周方向に間隔をあけて複数形成されている。
 ケーシング40の内周面41における第二ガス供給路77に対応する部分には、第二ガス供給路77に圧縮機2内の不活性ガスG2を導入可能な第二ガス導入路43が形成されている。第二ガス導入路43には、図1に示すように、圧縮機2の外部に設けられた不活性ガス供給源9から、窒素等の不活性ガスG2が供給される。
 混合ガス排出路78は、第一排出凹部71と該リング部60の外周面とを径方向に貫通するように周方向に間隔をあけて複数形成されている。
 ケーシング40の内周面41における混合ガス排出路78に対応する部分には、該混合ガス排出路78からプロセスガスG1と不活性ガスG2との混合ガスを外部に導出可能な混合ガス導出路44が形成されている。混合ガス導出路44から圧縮機2の外部に排出された混合ガスは、図1に示すガス回収部10によってプロセスガスG1のみが回収され、該プロセスガスG1が冷凍サイクルシステム1の配管6へと返される。ガス回収部によって分離された不活性ガスG2は大気開放されてもよいし、回収して再度使用してもよい。
 不活性ガス排出路79(シールガス排出路)は、第二排出凹部73と該リング部60の外周面とを径方向に貫通するように周方向に間隔をあけて複数形成されている。
 ケーシング40の内周面41における不活性ガス排出路79に対応する部分には、不活性ガス排出路79から不活性ガスG2を外部に排出する不活性ガス導出路45が形成されている。
 第一フィン群81は、リング部60における第一内周面62に設けられている。第一フィン群81は、複数の第一フィン82から構成されている。複数の第一フィン82は、第一内周面62から径方向内側に突出して回転軸12の第一外周面21との間にクリアランスを形成している。第一フィン82はそれぞれ軸線Oを中心とした環状に延在している。複数の第一フィン82は、軸線O方向に間隔をあけて並設されている。第一フィン群81は、第一供給凹部74によって軸線O方向に2つのグループに分断されている。
 第二フィン群83は、リング部60における第二内周面63に設けられている。第二フィン群83は、複数の第一フィン82から構成されている。第二フィン84はそれぞれ軸線Oを中心とした環状に延在している。第二フィン群83は、第二内周面63から径方向内側に突出して回転軸12の第二外周面22との間にクリアランスを形成している。複数の第二フィン84は、軸線O方向に間隔をあけて並設されている。第二フィン群83は、第二供給凹部75によって軸線O方向に2つのグループに分断されている。
 詳しくは図3に示すように、第二フィン群83を構成する複数の第二フィン84の先端(径方向内側の端部)は、第一外周面21よりも径方向内側に位置している。
 第三フィン群85は、リング部60における第三内周面64に設けられている。第三フィン群85は、複数の第三フィン86から構成されている。複数の第三フィン86は、第三内周面64から径方向内側に突出して回転軸12の第三外周面23との間にクリアランスを形成している。第三フィン86はそれぞれ軸線Oを中心とした環状に延在している。複数の第三フィン86は、軸線O方向に間隔をあけて並設されている。
 ここで、図3に示すように、複数の第二フィン84のうち最も機内側に位置する先頭第二フィン84aと段差面31との軸線O方向の間隔をWとする。先頭第二フィン84aと第二外周面22とのクリアランスの寸法をCLとする。リング部60における第二フィン群83が設けられた内周面と第二外周面22との径方向の間隔をDとする。この場合、本実施形態では、CL<W<2Dの関係が成立している。
 次に本実施形態の作用について説明する。
 冷凍サイクルシステム1の運転時には、圧縮機2のロータ11が回転しており、シール装置50によって圧縮機2のロータ11の両端からのプロセスガスG1の漏れが抑制される。
 シール装置50では、ケーシング40の第一ガス導入路42からのシール用のプロセスガスG1が、第一ガス供給路76を介して第一供給空間R3内に導入される。このプロセスガスG1は、第一供給空間R3から第一フィン群81のクリアランスを通過して機内側及び機外側に進行する。また、ケーシング40の第二ガス導入路43からの不活性ガスG2が、第二ガス供給路77を介して第二供給空間R4内に導入される。この不活性ガスG2は、第二供給空間R4から第二フィン群83のクリアランスを通過して機内側及び機外側に進行する。
 第一排出空間R1には、第一フィン群81のクリアランスを機外側に向かって通過したプロセスガスG1が到達するとともに、第二フィン群83のクリアランスを機内側に向かって通過した不活性ガスG2が到達する。第一排出空間R1では、これらプロセスガスG1と不活性ガスG2とが混ざり合って混合ガスが生成される。混合ガスは、第一排出空間R1から混合ガス排出路78、及び混合ガス導出路44を介して、圧縮機2外に排出される。
 第二排出空間R2には、第二フィン群83のクリアランスを機外側に向かって通過した不活性ガスG2が到達する。この不活性ガスG2は、第二排出空間R2から不活性ガス排出路79、及び不活性ガス導出路45を介して、圧縮機2外に排出される。
 このようにシール装置50では、シール用のプロセスガスG1、及び不活性ガスG2が供給されることで、機内のプロセスガスG1が漏出されてしまうことを抑制している。また、シール用のプロセスガスG1の漏れは、不活性ガスG2によって抑制されている。
 ここで本実施形態では、図3に示すように、第一フィン群81のクリアランスを機外側に通過するプロセスガスG1は、噴流として第一外周面21に沿って第二フィン群83に向かって進行する。一方、第二フィン群83のクリアランスを機内側に通過する不活性ガスG2は、段差面31に衝突することで径方向外側に向かって案内される。その結果、最も機内側の第二フィン84である先頭第二フィン84aの手前に渦Vが形成される。この渦Vによって、第二フィン84に向かって進行するプロセスガスG1の噴流は、上記渦Vによって径方向外側に向かって誘導される。これにより、プロセスガスG1の噴流が直接的に先頭第二フィン84aに衝突することが抑制される。
 また、渦Vの案内によって、プロセスガスG1の噴流は、第二フィン群83のクリアランスから径方向外側に向かって遠ざけられる。このように径方向外側に誘導されたプロセスガスG1の噴流は、第二フィン84に沿って、より径方向外側に案内される。よって、プロセスガスG1の噴流が、第二フィン群83のクリアランスを突破してしまうことを抑制できる。したがって、プロセスガスG1が機外に漏れ出てしまうことを回避することができる。特にプロセスガスG1が可燃性のガスの場合やNOX等の有毒ガスの場合であっても、本実施形態では当該プロセスガスG1の漏れが回避される。そのため、より安全なシステムを構築することができる。また、より適切なプロセスガスG1の管理を行うことができる。
 さらに、本実施形態では、上述の通り、CL<W<2Dの関係が成立している。そのため、先頭第二フィン84aは段差面31により近接して配置される。そのため、プロセスガスG1の噴流が第二フィン84に衝突し易くなる。そのため、上記渦Vによる誘導と相まって、当該噴流をより第二フィン群83のクリアランスから遠ざけることができる。
 また、本実施形態では、回転軸12は、機内側の第一外周面21よりも機外側の第二外周面22の方が、外径が小さく設定されている。また、これに対応して、第一フィン群81よりも第二フィン群83の方が径方向内側に突出している。そのため、シール装置50の機外側からの着脱を容易に行うことができる。
 次に第二実施形態について図4を参照して説明する。第二実施形態では第一実施形態と同様の構成要素には同一の符号を付して詳細な説明を省略する。
 第二実施形態では、第二フィン群83の複数の第二フィン84における最も機内側に位置する先頭第二フィン84aが、リング部60から径方向内側に向かうに従って機内側に向かって傾斜している。これによって、先頭第二フィン84aの機内側を向く面は、機外側に向かうに従って径方向外側に向かって延びる傾斜案内面84bとされている。複数の第二フィン84のうち先頭第二フィン84a以外の第二フィン84は、第一実施形態と同様、径方向に突出している。
 第二実施形態では、上記構成によって、プロセスガスG1の噴流は渦Vによって径方向外側に案内されることに加えて、先頭第二フィン84aの傾斜案内面84bによってさらに径方向外側に案内される。即ち、プロセスガスG1の噴流をより容易に径方向外側に向かって案内することができる。そのため、プロセスガスG1の噴流が、第二フィン群83を突き抜けて機外に漏れ出てしまうことをより一層抑制することができる。
 次に第三実施形態について図5を参照して説明する。第三実施形態では第一実施形態と同様の構成要素には同一の符号を付して詳細な説明を省略する。
 第三実施形態では、リング部60における第二フィン群83が設けられた第二内周面63のうち、機内側の端部から先頭第二フィン84aまでの部分が、径方向内側に向かって一段突出する突出内周面63aとされている。これにともなって、第二内周面63の機内側の端部に接続されたリング部60の壁面72は、第一実施形態よりも径方向内側に向かって延びている。
 本実施形態では、突出内周面63aは、回転軸12の第一外周面21と同一の径方向位置又は該第一外周面21よりも径方向内側、かつ、先頭第二フィン84aの先端よりも径方向外側に位置している。これに伴って、壁面72の径方向内側の端部は、第一外周面21と同一の径方向位置から該第一外周面21よりも径方向内側に位置している。
 さらに、壁面72は、径方向内側の端部から径方向外側に向かうにしたがって機外側に向かって傾斜している。壁面72の傾斜角度は、径方向に対して例えば5°~15°の角度で傾斜している。壁面72の傾斜角度は10°とすることが好ましい。
 本実施形態によれば、第一フィン群81を通過したプロセスガスG1の噴流は、壁面72に衝突し、該壁面72に沿って径方向外側に案内される。また、壁面72の径方向内側では、第二シールガスの上記渦Vが形成されることで、プロセスガスG1の径方向内側への入り込みが抑制される。その結果、上記噴流が第二フィン群83のクリアランスを通過してしまうことをより一層抑制することができ、プロセスガスG1の漏れを効果的に抑制することができる。
 なお、第三実施形態の変形例として、例えば図6に示すように、先頭第二フィン84aが第二実施形態同様、傾斜していてもよい。この場合、先頭第二フィン84aの手前でより渦Vが形成され易くなる。そのため、第一外周面21に沿って流れる噴流が、第二外周面22側に入り込むことをより一層抑制できる。
 以上、本発明の実施の形態について説明したが、本発明はこれに限定されることなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば実施形態では、冷凍サイクルシステム1の圧縮機2にシール装置50を適用した例について説明したが、他のシステムに圧縮機2及びシール装置50を適用してもよい。
 実施形態では、第一フィン群81の間に第一シールガスとしてプロセスガスG1を供給する例について説明したが、第一シールガスとして例えば外部から供給される他のガスを用いてもよい。当該ガスがNOX等の有毒ガス、可燃性ガスの場合であっても、その漏れを効果的に抑制することができる。また、第一シールガスとしては、上記ガス以外の他のガスを用いてもよい。
 段差面31は、軸線Oに直交する平面状に限られず、機内側に向かって又は機外側に向かって傾斜していてもよい。
 実施形態では、第二フィン群83の間に第二シールガスとして窒素を供給する例について説明したが、他の不活性ガスG2を第二シールガスとして用いてもよい。また、不活性ガスG2に限られず、他のガスを第二シールガスとして用いてもよい。
 本発明のシール装置及び圧縮機によれば、機内側からのシールガスの漏れを抑制することができる。
1  冷凍サイクルシステム
2  圧縮機
3  凝縮器
4  貯留部
5  蒸発器
6  配管
7  駆動機
8  バルブ
9  不活性ガス供給源
10 ガス回収部
11 ロータ
12 回転軸
13 第一端部
14 第二端部
16 軸受
20 外周面
21 第一外周面
22 第二外周面
23 第三外周面
31 段差面
32 段差部
40 ケーシング
41 内周面
42 第一ガス導入路
43 第二ガス導入路
44 混合ガス導出路
45 不活性ガス導出路
50 シール装置
60 リング部
61 内周面
62 第一内周面
63 第二内周面
63a    突出内周面
64 第三内周面
71 第一排出凹部
72 壁面
73 第二排出凹部
74 第一供給凹部
75 第二供給凹部
76 第一ガス供給路
77 第二ガス供給路
78 混合ガス排出路
79 不活性ガス排出路
81 第一フィン群
82 第一フィン 
83 第二フィン群
84 第二フィン
84a    先頭第二フィン
84b    傾斜案内面
85 第三フィン群
86 第三フィン 
R1 第一排出空間
R2 第二排出空間
R3 第一供給空間
R4 第二供給空間
G1 プロセスガス
G2 不活性ガス
V  渦
O  軸線

Claims (6)

  1.  軸線回りに回転する回転軸と該回転軸を囲うケーシングを有する圧縮機における前記回転軸と前記ケーシングとの間に設けられて、該圧縮機の機内側と機外側とを軸線方向に隔てるシール装置であって、
     前記回転軸は、第一外周面、該第一外周面の機外側に隣接して該第一外周面よりも外径が小さい第二外周面、及び、前記第一外周面と前記第二外周面とを接続する段差面を有し、
     前記ケーシングに固定されて前記軸線を囲う環状をなすリング部と、
     該リング部の内周面から突出して前記第一外周面との間でクリアランスを形成する複数のフィンからなる第一フィン群と、
     前記リング部の内周面から突出して先端が前記第一外周面よりも径方向内側に位置するとともに前記第二外周面との間でクリアランスを形成する複数の第二フィンからなる第二フィン群と、
     備え、
     前記リング部が、
     前記第一フィン群の間に第一シールガスを供給可能な第一ガス供給路と、
     前記第二フィン群の間に第二シールガスを供給可能な第二ガス供給路と、
     前記第一フィン群と前記第二フィン群との間から、前記第一フィン群のクリアランスを通過した前記第一シールガスと前記第二フィン群のクリアランスを通過した第二シールガスとの混合ガスを排出可能な混合ガス排出路と、
     を有するシール装置。
  2.  複数の前記第二フィンのうち最も機内側に位置する先頭第二フィンと前記段差面との前記軸線方向の間隔をWとし、
     前記先頭第二フィンと前記第二外周面とのクリアランスの寸法をCLとし、
     前記リング部における前記第二フィン群が設けられた内周面と前記第二外周面との径方向の間隔をDとした場合に、
     CL<W<2Dの関係が成立する請求項1に記載のシール装置。
  3.  複数の前記第二フィンのうち最も機内側に位置する先頭第二フィンは、径方向内側に向かうに従って機内側に向かって傾斜している請求項1又は2に記載のシール装置。
  4.  前記リング部は、
     前記第一外周面よりも機外側、かつ、複数の前記第二フィンのうち最も機内側に位置する先頭第二フィンよりも機内側に位置するとともに、前記第一フィン群のクリアランスを通過した第一シールガスが衝突する壁面を有し、
     該壁面は、径方向外側に向かうにしたがって機外側に向かって傾斜している請求項1から3のいずれか一項に記載のシール装置。
  5.  前記回転軸と、前記ケーシングと、請求項1から4のいずれか一項に記載のシール装置と、を備える圧縮機。
  6.  前記第一シールガスは、機内で圧縮されたプロセスガスであって、
     前記第二シールガスは、外部から供給される不活性ガスである請求項5に記載の圧縮機。
PCT/JP2018/006401 2017-03-30 2018-02-22 シール装置及び圧縮機 WO2018180053A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/487,241 US11035471B2 (en) 2017-03-30 2018-02-22 Sealing device and compressor
EP18774370.3A EP3569899B1 (en) 2017-03-30 2018-02-22 Sealing device and compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017067380A JP6871041B2 (ja) 2017-03-30 2017-03-30 シール装置及び圧縮機
JP2017-067380 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018180053A1 true WO2018180053A1 (ja) 2018-10-04

Family

ID=63675461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006401 WO2018180053A1 (ja) 2017-03-30 2018-02-22 シール装置及び圧縮機

Country Status (4)

Country Link
US (1) US11035471B2 (ja)
EP (1) EP3569899B1 (ja)
JP (1) JP6871041B2 (ja)
WO (1) WO2018180053A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230213037A1 (en) * 2021-12-30 2023-07-06 Trane International Inc. Method and system for controlling differential pressure for an externally pressurized gas bearing apparatus
US11867064B1 (en) * 2022-09-26 2024-01-09 Pratt & Whitney Canada Corp. Seal assembly for aircraft engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853961U (ja) 1981-10-09 1983-04-12 株式会社日立製作所 軸封装置
JPH11108201A (ja) * 1997-10-07 1999-04-20 Mitsubishi Heavy Ind Ltd 軸封装置
JP2010014051A (ja) * 2008-07-04 2010-01-21 Hitachi Plant Technologies Ltd 遠心圧縮機
JP2017067380A (ja) 2015-09-30 2017-04-06 青島海爾股▲フン▼有限公司 冷蔵庫

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5344160A (en) 1992-12-07 1994-09-06 General Electric Company Shaft sealing of steam turbines
US6000701A (en) * 1997-12-15 1999-12-14 Dresser-Rand Company Labyrinth seal assembly and method
DE10322027B4 (de) * 2003-05-16 2013-03-07 Siemens Aktiengesellschaft Bahnantrieb mit Dichtungsanordnung
GB2492546A (en) 2011-07-04 2013-01-09 Alstom Technology Ltd A labyrinth seal for an axial fluid flow turbomachine
US9175565B2 (en) * 2012-08-03 2015-11-03 General Electric Company Systems and apparatus relating to seals for turbine engines
JP6344735B2 (ja) 2014-01-30 2018-06-20 三菱重工業株式会社 シール構造、及び回転機械
GB201419766D0 (en) * 2014-11-06 2014-12-24 Rolls Royce Plc A sealing arrangement for a gas turbine engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853961U (ja) 1981-10-09 1983-04-12 株式会社日立製作所 軸封装置
JPH11108201A (ja) * 1997-10-07 1999-04-20 Mitsubishi Heavy Ind Ltd 軸封装置
JP2010014051A (ja) * 2008-07-04 2010-01-21 Hitachi Plant Technologies Ltd 遠心圧縮機
JP2017067380A (ja) 2015-09-30 2017-04-06 青島海爾股▲フン▼有限公司 冷蔵庫

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3569899A4

Also Published As

Publication number Publication date
JP6871041B2 (ja) 2021-05-12
EP3569899B1 (en) 2021-09-08
US20210131568A1 (en) 2021-05-06
EP3569899A1 (en) 2019-11-20
JP2018168973A (ja) 2018-11-01
EP3569899A4 (en) 2020-03-04
US11035471B2 (en) 2021-06-15

Similar Documents

Publication Publication Date Title
JP6483106B2 (ja) 軸流膨張機を利用するシステム及び方法
WO2018180053A1 (ja) シール装置及び圧縮機
US10197063B2 (en) Centrifugal fluid machine
US8444379B2 (en) Sealing device for rotary fluid machine, and rotary fluid machine
US9759083B2 (en) Cryogenic liquid expansion turbine
WO2013125074A1 (ja) ガスタービン
KR20120115336A (ko) 축방향 오프셋을 갖는 마모성 시일
CN103321688A (zh) 用于使流经燃气涡轮机的热气再循环的系统和方法
JP5034847B2 (ja) 2つのタービン段の間の移行チャネル
CN105715308A (zh) 用于防涡轮增压器爆裂的压缩机组件
JP6442914B2 (ja) ターボポンプ
WO2017158636A1 (ja) ガスタービン設備
JP2015224629A (ja) ターボ機械用の冷却供給回路
WO2016103744A1 (ja) 圧縮機用のガス回収システム、圧縮機システム及び冷凍サイクルシステム
JP6271352B2 (ja) ガスタービン設備
MX2014012988A (es) Compresor, suministro de gas de sellado, y metodo.
WO2015151844A1 (ja) 遠心圧縮機、過給機、および遠心圧縮機の製造方法
WO2018131142A1 (ja) トランジションピース
JP2009121274A (ja) 過給機
JP7446908B2 (ja) スクロールおよびガスタービン設備
JP7504655B2 (ja) 冷凍サイクル装置
US20230031560A1 (en) Rotating machine and refrigeration device using same
JP2022001751A (ja) タービンロータおよび軸流タービン
KR20180056934A (ko) 터보펌프 및 이를 구비하는 액체 로켓 엔진
RU2624691C1 (ru) Устройство охлаждения уплотнительных гребней бандажных полок рабочих лопаток турбины

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774370

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018774370

Country of ref document: EP

Effective date: 20190813

NENP Non-entry into the national phase

Ref country code: DE