WO2018179910A1 - Automatic drive control device - Google Patents

Automatic drive control device Download PDF

Info

Publication number
WO2018179910A1
WO2018179910A1 PCT/JP2018/004671 JP2018004671W WO2018179910A1 WO 2018179910 A1 WO2018179910 A1 WO 2018179910A1 JP 2018004671 W JP2018004671 W JP 2018004671W WO 2018179910 A1 WO2018179910 A1 WO 2018179910A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
automatic driving
vehicle
automatic
determination unit
Prior art date
Application number
PCT/JP2018/004671
Other languages
French (fr)
Japanese (ja)
Inventor
光晴 東谷
宣昭 池本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018179910A1 publication Critical patent/WO2018179910A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/06Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • This disclosure relates to an automatic operation control device.
  • the vehicle control device described in Patent Literature 1 includes a vehicle control device and a brain activity sensor.
  • the brain activity sensor detects an activated part inside the brain of the driver of the vehicle.
  • the vehicle control device determines whether or not the driver's anxiety level exceeds a threshold value using the detection result of the brain activity sensor before switching the driving mode of the vehicle from manual driving to automatic driving.
  • the vehicle control device switches the driving mode from manual driving to automatic driving.
  • the driver's anxiety level exceeds a predetermined value
  • the vehicle control device controls the vehicle to respond to the fact that the driver's anxiety level is high.
  • An object of the present disclosure is to provide an automatic driving control device capable of more appropriately maintaining vehicle driving when a tire is not in a state suitable for automatic driving in a vehicle capable of automatic driving.
  • the automatic driving control device includes an automatic driving control unit and a tire condition determination unit.
  • the automatic driving control unit executes automatic driving control of the vehicle.
  • the tire condition determination unit determines whether or not the condition of the tire is suitable for automatic driving.
  • the automatic driving control unit limits the automatic driving control when it is determined that the tire state is not suitable for automatic driving based on the determination result of the tire state determining unit.
  • FIG. 1 is a block diagram showing a schematic configuration of the vehicle system of the first embodiment.
  • FIG. 2 is a graph showing an example of a change with time of the radius of the tire in the vehicle system of the first embodiment.
  • FIG. 3 is a graph illustrating an example of a change with time of the radius of the tire in the vehicle system of the first embodiment.
  • FIG. 4 is a flowchart illustrating a procedure of processes executed by the automatic operation ECU according to the first embodiment.
  • FIG. 5 is a flowchart illustrating a procedure of processes executed by the automatic operation ECU according to the first embodiment.
  • FIG. 6 is a chart illustrating an example of a restriction pattern of functions of automatic driving control by the automatic driving ECU according to the first embodiment.
  • FIG. 7 is a graph illustrating an example of a change over time in the traveling speed of the vehicle in the vehicle system according to the fourth modified example of the first embodiment.
  • FIG. 8 is a graph illustrating an example of a change over time in the traveling speed of the vehicle in the vehicle system according to the fourth modified example of the first embodiment.
  • FIG. 9 is a flowchart illustrating a procedure of processes executed by the automatic operation ECU according to the second embodiment.
  • FIG. 10 is a flowchart illustrating a procedure of processes executed by the automatic operation ECU according to the second embodiment.
  • FIG. 11 is a flowchart illustrating a procedure of processes executed by the automatic operation ECU according to the third embodiment.
  • FIG. 12 is a flowchart illustrating a procedure of processes executed by the automatic operation ECU according to the third embodiment.
  • FIG. 13 is a flowchart illustrating a procedure of processes executed by the automatic operation ECU according to the fourth embodiment.
  • FIG. 14 is a flowchart illustrating a procedure of processes executed by the automatic operation ECU according to the fourth embodiment.
  • FIG. 15 is a flowchart illustrating a procedure of processes executed by the automatic operation ECU according to the fifth embodiment.
  • a power system 20, an automatic driving system 30, an electric power steering device 60, and an electronically controlled brake system 70 are mounted on the vehicle system 10.
  • the power system 20 is a part that comprehensively manages the power of the vehicle.
  • the power system 20 includes an engine 21, a rotation sensor 22, and an engine ECU (Electronic Control Unit) 23.
  • the engine 21 is an internal combustion engine that generates power for the vehicle to travel.
  • the rotation sensor 22 detects the rotation speed of the crankshaft that is the output shaft of the engine 21 and outputs a signal corresponding to the detected rotation speed.
  • the engine ECU 23 is mainly composed of a microcomputer having a CPU, a memory and the like.
  • the engine ECU 23 is a part that comprehensively controls the engine 21. Specifically, the engine ECU 23 performs so-called engine start control that starts the engine 21 when detecting an engine start operation by the driver. Further, the engine ECU 23 calculates information on the engine rotation speed Ns based on the output signal of the rotation sensor 22. The engine ECU 23 controls the driving of the engine 21 based on the engine speed Ns, the engine coolant temperature, the accelerator pedal depression amount, the intake air amount, and the like.
  • the electric power steering device 60 executes assist control for assisting the driver's steering by applying an assist torque corresponding to the steering torque applied to the steering wheel of the vehicle to the steering wheel.
  • the electronically controlled brake system 70 is a so-called antilock brake that optimally distributes the braking force applied to each wheel according to the rotational speed and turning state of the front and rear wheels of the vehicle when the driver depresses the brake pedal. Execute control etc.
  • the automatic driving system 30 is a part that performs overall automatic driving control of the vehicle.
  • the automatic driving system 30 includes a camera 31, a laser device 32, a radar device 33, an operating device 34, and an automatic driving ECU (Electronic Control Unit) 36.
  • the automatic driving ECU 36 corresponds to an automatic driving control device.
  • the camera 31 captures a predetermined range set around the vehicle, such as a predetermined range in front of the vehicle and a predetermined range in the rear of the vehicle, and outputs the captured image data.
  • the laser device 32 is, for example, a laser radar device.
  • the radar device 33 is, for example, a millimeter wave radar device.
  • the laser device 32 and the radar device 33 detect an object existing in the search range set around the vehicle and output a signal corresponding to the detected position of the object.
  • the operating device 34 is a part operated by the driver of the vehicle.
  • the operation device 34 includes an operation switch or the like that is operated when starting or stopping automatic driving.
  • the automatic operation ECU 36 is mainly composed of a microcomputer having a CPU, a ROM, a RAM, and the like.
  • the automatic driving ECU 36 is a part that executes automatic driving control of the vehicle by controlling the automatic driving device 80 of the vehicle.
  • the automatic driving device 80 includes a power system device, a braking system device, and a steering system device.
  • the power system device is, for example, the engine 21 or the transmission.
  • the brake system device is, for example, an electronically controlled brake system 70 or a brake device.
  • the steering system device is, for example, the electric power steering device 60.
  • the automatic driving ECU 36 corresponds to an automatic driving control device.
  • the engine ECU 23 and the automatic operation ECU 36 are connected to each other via a vehicle-mounted network 50 so as to communicate with each other. Therefore, the engine ECU 23 and the automatic operation ECU 36 can exchange information with each other and instruct operations. For example, the automatic operation ECU 36 can acquire information on various state quantities of the engine 21 by communicating with the engine ECU 23. Further, the automatic operation ECU 36 can automatically control the rotational speed of the engine 21 by instructing the engine ECU 23 to operate the engine 21 in the automatic operation control.
  • the automatic operation ECU 36 includes an automatic operation control unit 360 and a tire state determination unit 361.
  • the automatic driving control unit 360 is a part that executes automatic driving control of the vehicle. Specifically, the automatic driving control unit 360 starts the automatic driving control when detecting that the driving operation is started by the driver based on the output signal of the operating device 34.
  • the automatic driving control unit 360 of the present embodiment includes a vehicle power system including the engine 21 and a transmission, a vehicle braking system including an electronically controlled brake system 70 and a brake device, and the electric power steering device 60 as automatic driving control. Automatically control the steering system of the vehicle including the above.
  • the automatic operation control unit 360 detects a lane boundary line in front of the vehicle, a vehicle ahead, an obstacle that obstructs the traveling of the vehicle, based on the image data of the camera 31.
  • the automatic operation control unit 360 detects a vehicle ahead, an obstacle, and the like based on the output signals of the laser device 32 and the radar device 33.
  • the automatic operation control unit 360 sets the target travel line of the vehicle based on the detected information such as the lane boundary line ahead of the vehicle, the preceding vehicle, and an obstacle, and sets the target steering angle according to the target travel line. Calculate.
  • the automatic operation control unit 360 outputs the calculated target steering angle to the electric power steering device 60, thereby causing the electric power steering device 60 to execute automatic steering control based on the target steering angle.
  • the automatic steering control is a control in which the steering angle of the vehicle is automatically changed by applying a torque to the steering shaft without depending on the steering wheel of the driver. Thereby, since the steering angle of the vehicle changes according to the target operating angle, the vehicle automatically travels along the target travel line.
  • the automatic operation control unit 360 determines whether or not the vehicle may come into contact with the preceding vehicle or the obstacle based on the position of the preceding vehicle or the obstacle.
  • the electronic brake system 70 is caused to execute automatic brake control.
  • the automatic brake control is a control that automatically applies a braking force to each wheel of the vehicle without depending on the driver's depression operation of the brake pedal. This makes it possible to avoid vehicle contact during automatic driving control.
  • the tire condition determination unit 361 detects the condition of the vehicle tire and determines whether or not the condition of the tire is suitable for automatic driving based on the detected condition of the tire. Specifically, the tire state determination unit 361 estimates the amount of tire wear based on the deviation ⁇ r between the ideal radius r1 of the tire and the average value r2a of the actual radius of the tire. The ideal radius r1 of the tire is determined in advance by a manufacturer or the like and is stored in the memory of the automatic operation ECU 36. Further, the tire state determination unit 361 calculates the actual radius r2 of the tire by using, for example, the following formula f1.
  • RG is a reduction ratio from the installation location of the rotation sensor 22 to the drive shaft of the vehicle. That is, in the present embodiment, since the rotation sensor 22 is installed on the crankshaft of the engine 21, the reduction ratio RG corresponds to the reduction ratio from the crankshaft to the drive shaft.
  • V2 indicates the actual traveling speed of the vehicle. The unit of the speed V2 is “km / h”.
  • Ns indicates the engine rotation speed Ns detected by the rotation sensor 22, in other words, the rotation speed of the crankshaft. The unit of the engine rotation speed Ns is “rpm”.
  • the traveling speed of the vehicle can be calculated based on, for example, the rotational speed of the drive shaft and the ideal radius r1 of the tire.
  • the deviation between the ideal radius of the tire used for the calculation and the actual radius of the tire is large.
  • the tire condition determination unit 361 of the present embodiment calculates the actual traveling speed V2 of the vehicle using the camera 31 and the like. Specifically, the tire condition determination unit 361 periodically acquires image data in front of the vehicle with the camera 31, and based on the correspondence relationship between the feature points between the continuous image data, the actual traveling speed V2 of the vehicle. Is calculated. Note that the tire condition determination unit 361 is not limited to the camera 31 and periodically detects an object in front of the vehicle using, for example, the laser device 32 or the radar device 33, and based on a correspondence relationship between successive positions of the detected object. The actual traveling speed V2 of the vehicle may be calculated.
  • the tire state determination unit 361 sequentially calculates the actual radius r2 of the tire at a predetermined cycle, for example, as shown in FIG.
  • the actual radius r2 of the tire that is sequentially calculated is likely to fluctuate due to the influence of the traveling speed of the vehicle, the road surface condition, and the like. That is, an error is likely to occur in the actual radius r2 of the tire that is sequentially calculated. Therefore, for example, assuming that the current time is “t11”, the tire state determination unit 361 calculates the average value r2a of the actual tire radius calculated during the period from the current time t11 to the time t10 before the predetermined time T1. Is calculated.
  • the average value r2a of the actual radius of the tire deviates from the ideal radius r1 of the tire as the tire wears. That is, the tendency of “r1> r2a” becomes stronger as the tire wears.
  • the tire condition determination unit 361 determines the condition of the tire based on the deviation ⁇ r being equal to or greater than a predetermined value rth, that is, based on the tire wear amount being equal to or greater than the predetermined value. Is not in a state suitable for automatic driving.
  • the automatic driving ECU 36 restricts the automatic driving control based on the determination result of the tire condition determining unit 361.
  • FIG. 4 is a process that is repeatedly executed at a predetermined cycle by the automatic driving ECU 36 when the vehicle is operated by manual driving.
  • the tire state determination unit 361 determines whether the tire state is suitable for automatic driving as the process of step S10. Determine whether. Subsequently, the automatic operation control unit 360 determines whether or not an operation for starting automatic operation has been performed on the controller device 34 as the process of step S11. If the automatic operation control unit 360 makes a negative determination in the process of step S11, that is, if the start operation of the automatic operation is not performed on the controller device 34, the series of processes is temporarily ended.
  • step S11 When an affirmative determination is made in step S11, that is, when an operation for starting automatic driving is performed on the controller device 34, the automatic driving control unit 360 performs a tire state determination unit 361 as processing in step S12. Based on the determination result, it is determined whether the tire is in a state suitable for automatic driving. If the determination result in step S12 is affirmative, that is, if the tire is in a state suitable for automatic driving, the automatic driving control unit 360 starts automatic driving control as processing in step S13. In this case, automatic driving control of the vehicle is executed as usual.
  • the automatic driving control unit 360 restricts the automatic driving control as the processing of step S14 when a negative determination is made in the processing of step S12, that is, when the state of the tire is not suitable for automatic driving. Specifically, the automatic driving control unit 360 restricts at least one of a power function, a braking function, and a steering function in the automatic driving device 80.
  • the power function indicates a function related to the power system of the vehicle such as the engine 21 or the transmission.
  • the braking function indicates a function related to a braking system of the vehicle such as a brake device or an electronically controlled brake system 70.
  • the steering function indicates a function related to the steering system of the vehicle such as the electric power steering device 60.
  • the automatic operation control unit 360 executes any one of the patterns P1 to P7 shown in FIG.
  • “No restriction” shown in FIG. 6 means that the automatic driving device 80 corresponding to the corresponding function is executed without restriction.
  • “With restriction” shown in FIG. 6 means that a part of the automatic driving device 80 corresponding to the corresponding function is restricted or the automatic driving device 80 corresponding to the corresponding function is stopped.
  • the power function is “restricted”.
  • the engine 21 and the transmission can be automatically controlled with the upper limit speed set for the vehicle traveling speed. Alternatively, automatic control of the engine 21 and the transmission is prohibited, that is, it is possible to switch to manual operation by the driver.
  • all of the power function, the braking function, and the steering function are “restricted”.
  • all functions of the automatic driving device 80 may be prohibited by prohibiting all of the power function, the braking function, and the steering function in the automatic driving device 80.
  • the braking function and the steering function in the automatic driving device 80 may be prohibited, and the power function may be limited.
  • the braking function and the steering function are switched to manual operation by the driver, and the engine 21 and the transmission are automatically controlled after an upper limit speed is set for the traveling speed of the vehicle.
  • the tire condition determination unit 361 first determines whether or not the condition of the tire is suitable for automatic driving as the process of step S20. Subsequently, the automatic driving control unit 360 determines whether or not the tire state is suitable for automatic driving based on the determination result of the tire state determining unit 361 as the process of step S21. When the automatic operation control unit 360 makes an affirmative determination in the process of step S21, the series of processes is temporarily terminated. That is, in this case, the automatic operation control unit 360 executes the automatic operation control as usual.
  • the automatic operation control unit 360 performs an authority transfer process to manual operation as the process in step S22. Specifically, the automatic driving control unit 360 prompts the driver to switch from the automatic driving to the manual driving based on the display on the display device, the sound emitted from the speaker device, and the like, and the driver is prepared for the manual operation. When completed, switch from automatic operation control to manual operation control.
  • the automatic operation control unit 360 may limit the automatic operation control as the process of step S22. As a method for limiting the automatic operation control, a method similar to the processing in step S14 shown in FIG. 4 can be used.
  • the automatic driving control unit 360 limits the automatic driving control when it is determined that the tire state is not suitable for automatic driving based on the determination result of the tire state determining unit 361. As a result, it is possible to avoid the automatic driving control of the vehicle being executed as usual even though the tire state is not suitable for the automatic driving. As a result, it becomes difficult to cause a situation that hinders the automatic driving of the vehicle due to the state of the tire that is not suitable for the automatic driving, and thus it is possible to maintain the vehicle traveling more appropriately.
  • the tire condition determination unit 361 detects the amount of tire wear based on the deviation ⁇ r between the ideal radius r1 of the tire and the average value r2a of the actual radius of the tire. The tire state determination unit 361 then determines that the tire state is not suitable for automatic driving based on the deviation ⁇ r being equal to or greater than the predetermined value rth, that is, based on the tire wear amount being greater than or equal to the predetermined amount. Is determined. Thereby, it can be easily determined whether or not the tire is in a state suitable for automatic driving.
  • the automatic driving control unit 360 determines whether or not the tire is in a state suitable for automatic driving before the automatic driving control is started. Thereby, it is possible to avoid a situation in which automatic driving control is started even though the tire is not in a state suitable for automatic driving. (4) The automatic driving control unit 360 determines whether or not the tire is in a state suitable for automatic driving during the period in which the automatic driving control is executed. As a result, when the state of the tire becomes unsuitable for automatic driving during execution of automatic driving control, processing that reflects the situation, specifically, authority transfer processing to manual driving or automatic driving control Restrictions are possible.
  • the automatic operation control unit 360 restricts a part of the function of the automatic operation control as the restriction of the automatic operation control. Specifically, the automatic driving control unit 360 restricts at least one of a vehicle power function, a vehicle braking function, and a vehicle steering function. Thereby, since the automatic driving control is partially executed, the convenience of the driver can be ensured.
  • the automatic operation control unit 360 prohibits all functions of the automatic operation control as a limitation of the automatic operation control. Accordingly, since the vehicle is not automatically driven in a situation where the tire state is not suitable for automatic driving, it becomes easier to ensure more appropriate vehicle travel.
  • the tire condition determination unit 361 of the present modification defines conditions such as the average value V2a of the actual traveling speed of the vehicle in the traveling section used for the determination. For example, the tire condition determination unit 361 calculates the actual radius r2 of the tire using the expression f1 on the condition that the average value V2a of the actual traveling speed of the vehicle is equal to or higher than a predetermined speed.
  • the tire state determination unit 361 may correct the deviation ⁇ r by multiplying the deviation ⁇ r by a coefficient.
  • the coefficient is a value that changes according to the actual traveling speed V2 of the vehicle.
  • the relationship between the coefficient and the speed V2 is obtained in advance through experiments or the like, and a map indicating the relationship is stored in the memory of the automatic operation ECU 36.
  • the tire condition determination unit 361 calculates a coefficient from the actual traveling speed V2 of the vehicle based on the map stored in the memory.
  • the actual traveling speed V2 of the vehicle can be calculated with higher accuracy. As a result, it is more accurately determined whether or not the tire state is suitable for automatic driving. It becomes possible to judge.
  • the actual traveling speed V2 of the vehicle is equal to or lower than a predetermined value and the ideal traveling speed V1 of the vehicle is equal to or higher than the predetermined value, that is, in a roller test at a maintenance site, a snowy road, a muddy road, etc. If the possibility of wheel spin is high, this is not included in the calculation for tire deterioration determination.
  • the predetermined value set for the actual traveling speed V2 of the vehicle is set to almost zero.
  • the ideal traveling speed V1 of the vehicle can be obtained from, for example, the rotational speed of the axle and the ideal radius of the tire.
  • processing that does not include this in the tire deterioration determination calculation may be performed by authentication with an external communication device.
  • the vehicle system 10 further includes a rain sensor 37 and an outside air temperature sensor 38.
  • the rain sensor 37 detects the amount of raindrops adhering to the window glass of the vehicle and outputs a signal corresponding to the detected amount of raindrops.
  • the outside air temperature sensor 38 detects the outside air temperature, which is the temperature of the air outside the passenger compartment, and outputs a signal corresponding to the detected outside air temperature.
  • the tire state determination unit 361 calculates a coefficient based on the raindrop amount detected by the rain sensor 37 or the outside air temperature detected by the outside air temperature sensor 38.
  • the relationship between the coefficient and the amount of raindrops, or the relationship between the coefficient and the outside air temperature is obtained in advance by experiments or the like, and a map indicating the relationship is stored in the memory of the automatic operation ECU 36. For example, when the amount of raindrops exceeds a predetermined amount, the road surface becomes wet, and the vehicle is likely to slip. In such a situation, since the actual radius r2 of the tire is estimated to be smaller, the coefficient is set to a value larger than “1”.
  • the tire condition determination unit 361 calculates a coefficient from the raindrop amount or the outside air temperature based on the map stored in the memory.
  • the tire state determination unit 361 determines whether or not the calculation error of the actual radius r2 of the tire is small based on the raindrop amount or the outside temperature, and the calculation error of the actual radius r2 of the tire is small. Only in this case, the actual radius r2 of the tire may be calculated using the formula f1. According to such a configuration, the actual traveling speed V2 of the vehicle can be calculated with higher accuracy. As a result, it is more accurately determined whether or not the tire state is suitable for automatic driving. It becomes possible to judge.
  • the tire condition determination unit 361 of the present modification calculates an average value r2a of the actual radius of the tire when the tire is replaced.
  • the operation device 34 is provided with a switch or the like that is operated when the tire is changed.
  • the tire condition determination unit 361 detects the tire replacement time based on the operation information of the switch and the like.
  • the tire state determination unit 361 calculates the actual radius r2 of the tire at a predetermined period during a period until a predetermined time elapses from the time when the replacement of the tire is detected or the vehicle travels a predetermined distance. Then, the tire condition determination unit 361 stores the calculated average value r2a of the actual tire radius in the memory as the ideal tire radius r1.
  • the tire state determination unit 361 of the present modification example is in a state where the tire state is suitable for automatic driving based on the deviation ⁇ V between the ideal traveling speed V1 of the vehicle and the average value V2a of the actual traveling speed of the vehicle. It is determined whether or not there is. Specifically, the tire state determination unit 361 calculates an ideal traveling speed V1 of the vehicle based on the following formula f2.
  • the tire state determination unit 361 calculates the actual traveling speed V2 of the vehicle using the camera 31 and the like. Specifically, the tire condition determination unit 361 periodically acquires image data in front of the vehicle with the camera 31, and based on the correspondence relationship between the feature points between the continuous image data, the actual traveling speed V2 of the vehicle. Is calculated. Note that the tire condition determination unit 361 is not limited to the camera 31 and periodically detects an object in front of the vehicle using, for example, the laser device 32 or the radar device 33, and based on a correspondence relationship between successive positions of the detected object. The actual traveling speed V2 of the vehicle may be calculated.
  • the tire state determination unit 361 sequentially calculates the ideal traveling speed V1 of the vehicle and the actual traveling speed V2 of the vehicle in a predetermined cycle, for example, as shown in FIG. For example, assuming that the current time is “t11”, the tire state determination unit 361 has an average value V1a of the ideal traveling speed of the vehicle in a period from the current time t11 to a time t10 before the predetermined time T1. And the average value V2a of the actual traveling speed of the vehicle is calculated. The average value V2a of the actual traveling speed of the vehicle deviates from the average value V1a of the ideal traveling speed of the vehicle as shown in FIG. 8 as the tire wears. That is, as the tire wears, the tendency of “V1a> V2a” becomes stronger.
  • the tire state determination unit 361 determines that the tire state is suitable for automatic driving based on the deviation ⁇ V being less than the predetermined value Vth, that is, based on the tire wear amount being less than the predetermined amount. judge.
  • the tire state determination unit 361 determines that the tire state is not suitable for automatic driving based on the deviation ⁇ V being equal to or greater than the predetermined value Vth, that is, based on the tire wear amount being greater than or equal to the predetermined amount. Is determined.
  • the tire condition determination unit 361 may perform processing according to the first to third modifications. That is, the tire state determination unit 361 calculates an average value V2a of the actual traveling speed of the vehicle at the time of tire replacement, and uses the calculated average value V2a of the actual traveling speed of the vehicle as an ideal traveling speed of the vehicle. May be used as the average value V1a. Further, the tire condition determination unit 361 may limit the calculation of the actual radius r2 of the tire based on the average value V2a of the actual traveling speed of the vehicle in the traveling section used for the determination, and the deviation ⁇ V may be calculated. It may be corrected. Alternatively, the tire state determination unit 361 may limit the calculation of the actual radius r2 of the tire based on the amount of raindrops detected by the rain sensor 37 and the outside air temperature detected by the outside air temperature sensor 38, The deviation ⁇ V may be corrected.
  • the tire state determination unit 361 of the present modified example is a state in which the tire state is suitable for automatic driving based on the deviation between the ideal travel distance d1 of the vehicle and the average value d2a of the actual travel distance of the vehicle. It is determined whether or not. Specifically, the tire state determination unit 361 calculates an ideal travel distance d1 of the vehicle based on the following formula f3.
  • V1 is an ideal traveling speed of the vehicle calculated by the equation f2. Further, the tire state determination unit 361 calculates the actual travel distance d2 of the vehicle based on the following formula f4.
  • V2 is an actual travel distance d2 of the vehicle calculated using the camera 31 or the like.
  • the tire state determination unit 361 sequentially calculates the ideal travel distance d1 of the vehicle and the actual travel distance d2 of the vehicle at a predetermined cycle. Then, for example, the tire state determination unit 361 calculates an average value d1a of the ideal travel distance of the vehicle and an average value d2a of the actual travel distance of the vehicle in a period from the current time to a time before a predetermined time.
  • the average value d2a of the actual travel distance of the vehicle deviates from the average value d1a of the ideal travel distance of the vehicle as the tire wears. That is, the tendency of “d1a> d2a” increases as the tire wears.
  • the tire state determination unit 361 determines that the tire state is suitable for automatic driving based on the deviation ⁇ d being less than a predetermined value, that is, based on the amount of wear of the tire being less than the predetermined amount. To do.
  • the tire condition determination unit 361 determines that the tire condition is not suitable for automatic driving based on the deviation ⁇ d being equal to or greater than a predetermined value, that is, based on the tire wear amount being equal to or greater than the predetermined value. judge.
  • the tire condition determination unit 361 may perform processing according to the first to third modifications. That is, the tire state determination unit 361 calculates the average value d2a of the actual travel distance of the vehicle at the time of replacing the tire, and uses the calculated average value d2a of the actual travel distance of the vehicle as the ideal travel distance of the vehicle. May be used as the average value d1a. Further, the tire condition determination unit 361 may limit the calculation of the actual radius r2 of the tire based on the average value d2a of the actual travel distance of the vehicle in the travel section used for the determination, and the deviation ⁇ d may be calculated. It may be corrected. Alternatively, the tire state determination unit 361 may limit the calculation of the actual radius r2 of the tire based on the amount of raindrops detected by the rain sensor 37 and the outside air temperature detected by the outside air temperature sensor 38, The deviation ⁇ d may be corrected.
  • the automatic operation ECU 36 of the present modification corrects the ideal radius r1 of the tire by multiplying the ideal radius r1 of the tire by a coefficient.
  • the vehicle system 10 further includes an authentication device 39.
  • the authentication device 39 is a device for acquiring information such as a tire diameter ⁇ a and a tire type by reading authentication information provided on the tire or the wheel.
  • the authentication information is, for example, a barcode.
  • Information read by the authentication device 39 is transmitted to the automatic driving ECU 36.
  • the automatic driving ECU 36 acquires information such as the tire diameter ⁇ a based on the information transmitted from the authentication device 39.
  • the automatic operation ECU 36 calculates a coefficient by dividing the reference value ⁇ b of the tire radius by the tire diameter ⁇ a.
  • the vehicle system 10 of this embodiment further includes an air pressure sensor 40.
  • the air pressure sensor 40 detects the air pressure Pt of each tire of the vehicle and outputs a signal corresponding to the detected air pressure Pt to the automatic operation ECU 36. Based on the tire pressure Pt detected by the air pressure sensor 40, the automatic driving ECU 36 determines whether the tire is in a state suitable for automatic driving.
  • the automatic driving ECU 36 when the vehicle is operated by manual driving, the automatic driving ECU 36 repeatedly executes the process shown in FIG. 9 at a predetermined cycle instead of the process shown in FIG.
  • the automatic driving ECU 36 makes a positive determination in the process of step S ⁇ b> 11, that is, when an operation for starting automatic driving is performed on the operating device 34, the tire condition determining unit 361 In the process of S30, it is determined whether or not the air pressure Pt of all tires satisfies the relationship “Pt1 ⁇ Pt ⁇ Pt2”.
  • the predetermined values Pt1 and Pt2 are preset values and are stored in the memory of the automatic operation ECU 36.
  • step S30 If the tire state determination unit 361 makes an affirmative determination in step S30, the tire state determination unit 361 determines that the tire state is suitable for automatic driving. In this case, the automatic operation control unit 360 starts automatic operation control as the process of step S13. If a negative determination is made in step S30, the tire condition determination unit 361 determines that the tire condition is not suitable for automatic driving. In this case, the automatic operation control unit 360 restricts automatic operation control as the process of step S14.
  • the automatic driving ECU 36 When the vehicle is operated by automatic driving, the automatic driving ECU 36 repeatedly executes the process shown in FIG. 10 at a predetermined cycle instead of the process shown in FIG.
  • the tire state determination unit 361 determines whether or not the air pressure Pt of all tires satisfies the relationship “Pt1 ⁇ Pt ⁇ Pt2” as the process of step S40. If the tire state determination unit 361 makes an affirmative determination in step S40, that is, if the tire state is suitable for automatic driving, the automatic driving ECU 36 once ends a series of processing.
  • step S40 If the tire state determination unit 361 makes a negative determination in step S40, that is, if the tire state is not suitable for automatic driving, the automatic driving control unit 360 proceeds to manual driving as processing in step S22.
  • the authority transfer process or automatic operation control is restricted.
  • the automatic operation ECU 36 of the present embodiment described above in addition to the operations and effects (1), (3) to (6) according to the first embodiment, the operations and effects shown in the following (7) are obtained. be able to.
  • the tire condition determination unit 361 detects the tire pressure Pt and determines that the tire condition is not suitable for automatic driving based on the tire pressure Pt being out of a predetermined range. Thereby, it can be easily determined whether or not the tire is in a state suitable for automatic driving.
  • the operation device 34 is provided with a switch or the like that is operated when the tire is changed. Based on the switch operation information, the automatic operation ECU 36 detects the tire replacement time and determines the detected replacement time as the tire use start time. The automatic driving ECU 36 determines whether or not the tire is in a state suitable for automatic driving based on the elapsed time from the tire use start timing.
  • the automatic driving ECU 36 repeatedly executes the process shown in FIG. 11 at a predetermined cycle instead of the process shown in FIG.
  • the tire condition determination unit 361 first determines whether or not the use of the tire has been started as the process of step S50.
  • the tire state determination unit 361 makes an affirmative determination in the process of step S50, that is, when the use of the tire is started, the measurement time Tm is reset as the process of step S51.
  • the tire state determination unit 361 performs the process of step S51, and then performs the count process of the measurement time Tm as the process of step S52. Further, the tire state determination unit 361 performs the counting process of the measurement time Tm as the process of step S52 even when a negative determination is made in the process of step S50, that is, when the tire is being used. That is, the measurement time Tm corresponds to the elapsed time from the time when the use of the tire is started.
  • the automatic operation control unit 360 determines whether or not an automatic operation start operation has been performed as a process of step S11 following step S52.
  • the tire state determination unit 361 sets a predetermined measurement time Tm as the process of step S53. It is determined whether or not the time Tth or less.
  • step S53 If the tire state determination unit 361 makes an affirmative determination in step S53, that is, if the measurement time Tm is equal to or shorter than the predetermined time Tth, the tire state determination unit 361 determines that the tire state is suitable for automatic driving. In this case, the automatic operation control unit 360 starts automatic operation control as the process of step S13.
  • the tire state determination unit 361 makes a negative determination in the process of step S53, that is, if the measurement time Tm exceeds the predetermined time Tth, the tire state determination unit 361 determines that the tire state is not suitable for automatic driving. In this case, the automatic operation control unit 360 restricts automatic operation control as the process of step S14.
  • the automatic driving ECU 36 When the vehicle is operated by automatic driving, the automatic driving ECU 36 repeatedly executes the process shown in FIG. 12 at a predetermined period instead of the process shown in FIG.
  • the tire state determination unit 361 performs the counting process of the measurement time Tm as the process of step S60, and as the process of step S61, is the measurement time Tm equal to or less than the predetermined time Tth? Judge whether or not. If the tire state determination unit 361 makes an affirmative determination in step S61, that is, if the tire state is suitable for automatic driving, the automatic driving ECU 36 once ends a series of processing.
  • step S61 If the tire condition determination unit 361 makes a negative determination in step S61, that is, if the tire condition is not suitable for automatic driving, the automatic driving control unit 360 proceeds to manual driving as processing in step S22.
  • the authority transfer process or automatic operation control is restricted.
  • the automatic operation ECU 36 of the present embodiment described above in addition to the operations and effects of (1), (3) to (6) according to the first embodiment, the operations and effects shown in the following (8) are obtained. be able to.
  • the tire condition determination unit 361 determines that the condition of the tire is not suitable for automatic driving based on the fact that the predetermined time Tth has elapsed from the tire use start timing. Thereby, it can be easily determined whether or not the tire is in a state suitable for automatic driving.
  • a fourth embodiment of the automatic operation ECU 36 will be described. Hereinafter, the difference from the automatic operation ECU 36 of the third embodiment will be mainly described.
  • the automatic driving ECU 36 of the present embodiment determines whether or not the tire is in a state suitable for automatic driving based on the travel distance of the vehicle from the tire use start time. Specifically, when the vehicle is operated by manual driving, the automatic driving ECU 36 repeatedly executes the process shown in FIG. 13 at a predetermined period instead of the process shown in FIG. As shown in FIG. 13, when the tire state determination unit 361 makes an affirmative determination in the process of step S50, that is, when the use of the tire is started, the measurement distance dm is reset as the process of step S70. To do.
  • the tire state determination unit 361 When the process of step S70 is executed, the tire state determination unit 361 performs a count process of the measurement distance dm as the process of step S71.
  • the counting process of the measurement distance dm is performed using, for example, the expression f3 of the fifth modification example of the first embodiment.
  • the tire state determination unit 361 performs the measurement distance dm counting process as the process of step S71 even when a negative determination is made in the process of step S50, that is, when the tire is being used. That is, the measurement distance dm corresponds to the travel distance of the vehicle from the time when the use of the tire is started.
  • the automatic operation control unit 360 determines whether or not an automatic operation start operation has been performed as a process of step S11 following step S71.
  • the tire state determination unit 361 determines that the measurement distance dm is a predetermined value as the process of step S72. It is determined whether or not the distance is less than dth.
  • step S72 If the tire state determination unit 361 makes an affirmative determination in step S72, that is, if the measurement distance dm is equal to or less than the predetermined distance dth, the tire state determination unit 361 determines that the tire state is suitable for automatic driving. In this case, the automatic operation control unit 360 starts automatic operation control as the process of step S13.
  • the tire state determination unit 361 determines that the tire state is not suitable for automatic driving when a negative determination is made in step S72, that is, when the measurement distance dm exceeds the predetermined distance dth. In this case, the automatic operation control unit 360 restricts automatic operation control as the process of step S14.
  • the automatic driving ECU 36 When the vehicle is operated by automatic driving, the automatic driving ECU 36 repeatedly executes the process shown in FIG. 14 at a predetermined period instead of the process shown in FIG.
  • the tire state determination unit 361 performs a count process of the measurement time Tm as a process of step S80, and as a process of step S81, is the measurement distance dm equal to or less than a predetermined distance dth? Judge whether or not. If the tire state determination unit 361 makes an affirmative determination in step S81, that is, if the tire state is suitable for automatic driving, the automatic driving ECU 36 once ends a series of processing.
  • step S81 If the tire condition determination unit 361 makes a negative determination in step S81, that is, if the tire condition is not suitable for automatic driving, the automatic driving control unit 360 proceeds to manual driving as processing in step S22.
  • the authority transfer process or automatic operation control is restricted. According to the automatic operation ECU 36 of the present embodiment described above, the following actions and effects shown in (9) can be obtained as actions and effects in place of (8) according to the third embodiment.
  • the tire condition determination unit 361 determines that the condition of the tire is not suitable for automatic driving based on the fact that the vehicle has traveled a predetermined distance dth from the start of tire use. Thereby, it can be easily determined whether or not the tire is in a state suitable for automatic driving.
  • the tire condition determination unit 361 of the present embodiment first determines whether or not a tire has been replaced based on switch operation information of the operation device 34 as a process of step S90. . If the tire state determination unit 361 makes an affirmative determination in the process of step S90, that is, if a tire is replaced, the tire condition determination unit 361 performs tire authentication as the process of step S91. Specifically, the tire condition determination unit 361 acquires information such as the type of tire through the authentication device 39 illustrated in FIG. 1, and authenticates whether the acquired tire type is a predetermined type of tire. I do.
  • the predetermined type of tire is a tire that has been certified for an autonomous vehicle, such as a run-flat tire.
  • the automatic operation control unit 360 determines whether or not an automatic operation start operation has been performed as a process of step S11 following step S91. If the automatic driving control unit 360 makes an affirmative determination in step S11, that is, if an automatic driving start operation is performed, the tire state determination unit 361 is mounted on the vehicle as the processing in step S92. It is determined whether or not the type of tire being used is a tire for automatic driving. For example, when the type of tire authenticated in the process of step S91 is a run-flat tire, the tire state determination unit 361 determines that the type of tire mounted on the vehicle is a tire for automatic driving. That is, the tire condition determination unit 361 determines that the condition of the tire is suitable for automatic driving. In this case, the automatic operation control unit 360 starts automatic operation control as the process of step S13.
  • step S92 If the tire state determination unit 361 makes a negative determination in the process of step S92, that is, if the type of tire mounted on the vehicle is not an automatic driving tire, the tire state is suitable for automatic driving. It is determined that it is not. In this case, the automatic operation control unit 360 restricts automatic operation control as the process of step S14.
  • the tire state determination unit 361 determines that the tire state is not suitable for automatic driving based on the fact that the tire type is not the predetermined tire type.
  • the predetermined tire type is a tire that has been certified for an autonomous driving vehicle, such as a run-flat tire. Thereby, it can be easily determined whether or not the tire is in a state suitable for automatic driving.
  • each embodiment can also be implemented with the following forms.
  • the tire state determination unit 361 of the first embodiment may use a ratio between the ideal radius r1 of the tire and the average value r2a of the actual radius of the tire instead of the deviation ⁇ r.
  • the tire condition determination unit 361 of the fourth modification example of the first embodiment replaces the deviation ⁇ V with an average value V1a of the ideal traveling speed of the vehicle and an average value V2a of the actual traveling speed of the vehicle.
  • the ratio may be used.
  • the tire condition determination unit 361 of the fifth modification of the first embodiment replaces the deviation ⁇ d with an average value d1a of the ideal travel distance of the vehicle and an average value d2a of the actual travel distance of the vehicle.
  • a ratio may be used.
  • the detection method of the air pressure Pt of each tire suitably. For example, it may be detected that the air pressure Pt of each tire is not suitable for automatic driving using a method described in “US Patent Application Publication No. 2014/0327535”. More specifically, as shown in FIG. 1, the tire radius calculated from the tire air pressure detected by the air pressure sensor 40 in the tire state determination unit 361, the wheel speed detected by the wheel speed sensor 41, The position information detected by the GPS 42 is compared with the tire radius calculated by inputting the inertia information such as acceleration detected by the inertia sensor 43 into a predetermined physical model. It may be determined whether the air pressure is suitable for automatic operation.
  • the tire condition determination unit 361 of the third and fourth embodiments may use the tire manufacturing time instead of the tire use starting time. In this case, the tire condition determination unit 361 acquires the tire manufacturing time based on the tire information acquired by the authentication device 39 shown in FIG.
  • the position of the rotation sensor 22 can be changed as appropriate.
  • the rotation sensor 22 may detect the rotation speed of the drive shaft of the vehicle.
  • the value of the reduction ratio RG may be changed as appropriate according to the installation location of the rotation sensor 22.
  • the tire condition determination unit 361 may estimate the amount of tire wear by comparing the actual rotation speed detected by the rotation sensor 22 with its ideal value.
  • the tire condition determination unit 361 acquires time-dependent position information of the vehicle using GPS or the like, and based on the acquired time-dependent position information of the vehicle, the actual traveling speed V2 of the vehicle or the actual traveling of the vehicle The distance d2 may be detected.
  • the tire condition determination unit 361 may calculate the actual tire radius r2 using the equation f1 from the actual vehicle traveling speed V2 detected using GPS or the like.
  • the means and / or functions provided by the automatic operation ECU 36 can be provided by software stored in a substantial memory and a computer that executes the software, only software, only hardware, or a combination thereof.
  • the autonomous driving ECU 36 when the autonomous driving ECU 36 is provided by an electronic circuit which is hardware, it can be provided by a digital circuit including a large number of logic circuits or an analog circuit.

Abstract

An automatic drive control device (36) comprises: an automatic drive control unit (360); and a tire condition determination unit (361). The automatic drive control unit (360) executes automatic drive control of a vehicle. The tire condition determination unit (361) determines whether the condition of a tire is suited to automatic driving. The automatic drive control unit (360) limits the automatic drive control if it is determined that the tire condition is not suited to automatic driving on the basis of the determination results of the tire condition determination unit (361).

Description

自動運転制御装置Automatic operation control device 関連出願の相互参照Cross-reference of related applications
 本出願は、2017年3月29日に出願された日本国特許出願2017-064991号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2017-064991 filed on Mar. 29, 2017, and claims the benefit of its priority. Which is incorporated herein by reference.
 本開示は、自動運転制御装置に関する。 This disclosure relates to an automatic operation control device.
 従来、特許文献1に記載の車両制御装置がある。特許文献1に記載の車両制御装置は、車両制御装置と、脳活動センサとを備えている。脳活動センサは、車両の運転者の脳内部の活性化した部位を検出する。車両制御装置は、車両の運転モードを手動運転から自動運転に切り替える前に、脳活動センサの検出結果を用いて、運転者の不安度合いが閾値を超えているか否かを判定する。車両制御装置は、運転者の不安度合いが所定値を超えていないと判定した場合、運転モードを手動運転から自動運転に切り替える。車両制御装置は、運転者の不安度合いが所定値を超えている場合、運転者の不安度合いが高いことに対応するように車両を制御する。 Conventionally, there is a vehicle control device described in Patent Document 1. The vehicle control device described in Patent Literature 1 includes a vehicle control device and a brain activity sensor. The brain activity sensor detects an activated part inside the brain of the driver of the vehicle. The vehicle control device determines whether or not the driver's anxiety level exceeds a threshold value using the detection result of the brain activity sensor before switching the driving mode of the vehicle from manual driving to automatic driving. When it is determined that the driver's degree of anxiety does not exceed a predetermined value, the vehicle control device switches the driving mode from manual driving to automatic driving. When the driver's anxiety level exceeds a predetermined value, the vehicle control device controls the vehicle to respond to the fact that the driver's anxiety level is high.
特開2016-64773号公報Japanese Unexamined Patent Publication No. 2016-64773
 特許文献1に記載されるような車両を含め、自動運転機能が搭載されている車両では、車両の状態が自動運転に適した状態であることを前提として自動運転制御がなされる。例えば、タイヤの空気圧等が自動運転制御において前提としている所定の条件から外れると、つまり自動運転に適した状態でない場合、適切な自動運転制御を継続することが困難になる。
 本開示の目的は、自動運転の可能な車両においてタイヤの状態が自動運転に適した状態でない場合に、より適切に車両走行を維持することの可能な自動運転制御装置を提供することにある。
In vehicles equipped with an automatic driving function, including vehicles described in Patent Document 1, automatic driving control is performed on the assumption that the vehicle is in a state suitable for automatic driving. For example, if the tire air pressure or the like deviates from a predetermined condition assumed in the automatic driving control, that is, if it is not in a state suitable for automatic driving, it is difficult to continue appropriate automatic driving control.
An object of the present disclosure is to provide an automatic driving control device capable of more appropriately maintaining vehicle driving when a tire is not in a state suitable for automatic driving in a vehicle capable of automatic driving.
 本開示の一態様による自動運転制御装置は、自動運転制御部と、タイヤ状態判定部と、を備える。自動運転制御部は、車両の自動運転制御を実行する。タイヤ状態判定部は、タイヤの状態が自動運転に適した状態であるか否かを判定する。自動運転制御部は、タイヤ状態判定部の判定結果に基づいて、タイヤの状態が自動運転に適した状態でないと判定した場合には、自動運転制御を制限する。 The automatic driving control device according to an aspect of the present disclosure includes an automatic driving control unit and a tire condition determination unit. The automatic driving control unit executes automatic driving control of the vehicle. The tire condition determination unit determines whether or not the condition of the tire is suitable for automatic driving. The automatic driving control unit limits the automatic driving control when it is determined that the tire state is not suitable for automatic driving based on the determination result of the tire state determining unit.
 この構成によれば、タイヤの状態が自動運転に適した状態でない場合には、自動運転制御が制限されるため、タイヤの状態が自動運転に適していないにも関わらず、車両の自動運転制御がタイヤの状態が自動運転に適した状態の時と同じように実行されることを回避でき、より適切に車両走行を維持することが可能となる。 According to this configuration, when the tire state is not suitable for automatic driving, automatic driving control is limited. Therefore, the vehicle automatic driving control is performed even though the tire state is not suitable for automatic driving. However, it is possible to prevent the tire from being executed in the same manner as when the tire is in a state suitable for automatic driving, and it is possible to maintain the vehicle traveling more appropriately.
図1は、第1実施形態の車両システムの概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of the vehicle system of the first embodiment. 図2は、第1実施形態の車両システムにおけるタイヤの半径の経時的な変化の一例を示すグラフである。FIG. 2 is a graph showing an example of a change with time of the radius of the tire in the vehicle system of the first embodiment. 図3は、第1実施形態の車両システムにおけるタイヤの半径の経時的な変化の一例を示すグラフである。FIG. 3 is a graph illustrating an example of a change with time of the radius of the tire in the vehicle system of the first embodiment. 図4は、第1実施形態の自動運転ECUにより実行される処理の手順を示すフローチャートである。FIG. 4 is a flowchart illustrating a procedure of processes executed by the automatic operation ECU according to the first embodiment. 図5は、第1実施形態の自動運転ECUにより実行される処理の手順を示すフローチャートである。FIG. 5 is a flowchart illustrating a procedure of processes executed by the automatic operation ECU according to the first embodiment. 図6は、第1実施形態の自動運転ECUによる自動運転制御の機能の制限パターンの一例を示す図表である。FIG. 6 is a chart illustrating an example of a restriction pattern of functions of automatic driving control by the automatic driving ECU according to the first embodiment. 図7は、第1実施形態の第4変形例の車両システムにおける車両の走行速度の経時的な変化の一例を示すグラフである。FIG. 7 is a graph illustrating an example of a change over time in the traveling speed of the vehicle in the vehicle system according to the fourth modified example of the first embodiment. 図8は、第1実施形態の第4変形例の車両システムにおける車両の走行速度の経時的な変化の一例を示すグラフである。FIG. 8 is a graph illustrating an example of a change over time in the traveling speed of the vehicle in the vehicle system according to the fourth modified example of the first embodiment. 図9は、第2実施形態の自動運転ECUにより実行される処理の手順を示すフローチャートである。FIG. 9 is a flowchart illustrating a procedure of processes executed by the automatic operation ECU according to the second embodiment. 図10は、第2実施形態の自動運転ECUにより実行される処理の手順を示すフローチャートである。FIG. 10 is a flowchart illustrating a procedure of processes executed by the automatic operation ECU according to the second embodiment. 図11は、第3実施形態の自動運転ECUにより実行される処理の手順を示すフローチャートである。FIG. 11 is a flowchart illustrating a procedure of processes executed by the automatic operation ECU according to the third embodiment. 図12は、第3実施形態の自動運転ECUにより実行される処理の手順を示すフローチャートである。FIG. 12 is a flowchart illustrating a procedure of processes executed by the automatic operation ECU according to the third embodiment. 図13は、第4実施形態の自動運転ECUにより実行される処理の手順を示すフローチャートである。FIG. 13 is a flowchart illustrating a procedure of processes executed by the automatic operation ECU according to the fourth embodiment. 図14は、第4実施形態の自動運転ECUにより実行される処理の手順を示すフローチャートである。FIG. 14 is a flowchart illustrating a procedure of processes executed by the automatic operation ECU according to the fourth embodiment. 図15は、第5実施形態の自動運転ECUにより実行される処理の手順を示すフローチャートである。FIG. 15 is a flowchart illustrating a procedure of processes executed by the automatic operation ECU according to the fifth embodiment.
 以下、自動運転制御装置の実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 <第1実施形態>
 はじめに、自動運転制御装置の第1実施形態について説明する。まず、第1実施形態の自動運転制御装置が搭載される車両システムの概略構成について説明する。
Hereinafter, an embodiment of an automatic operation control device will be described with reference to the drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.
<First Embodiment>
First, a first embodiment of the automatic operation control device will be described. First, a schematic configuration of a vehicle system in which the automatic driving control device of the first embodiment is mounted will be described.
 図1に示されるように、車両システム10には、動力システム20と、自動運転システム30と、電動パワーステアリング装置60と、電子制御ブレーキシステム70とが搭載されている。
 動力システム20は、車両の動力を統括的に管理する部分である。動力システム20は、エンジン21と、回転センサ22と、エンジンECU(Electronic Control Unit)23とを備えている。
As shown in FIG. 1, a power system 20, an automatic driving system 30, an electric power steering device 60, and an electronically controlled brake system 70 are mounted on the vehicle system 10.
The power system 20 is a part that comprehensively manages the power of the vehicle. The power system 20 includes an engine 21, a rotation sensor 22, and an engine ECU (Electronic Control Unit) 23.
 エンジン21は、車両が走行するための動力を生成する内燃機関である。
 回転センサ22は、エンジン21の出力軸であるクランクシャフトの回転速度を検出するとともに、検出された回転速度に応じた信号を出力する。
The engine 21 is an internal combustion engine that generates power for the vehicle to travel.
The rotation sensor 22 detects the rotation speed of the crankshaft that is the output shaft of the engine 21 and outputs a signal corresponding to the detected rotation speed.
 エンジンECU23は、CPUやメモリ等を有するマイクロコンピュータを中心に構成されている。エンジンECU23は、エンジン21を統括的に制御する部分である。
 具体的には、エンジンECU23は、運転者によるエンジン始動操作を検出した際にエンジン21を始動させる、いわゆるエンジン始動制御を実行する。また、エンジンECU23は、回転センサ22の出力信号に基づいてエンジン回転速度Nsの情報を算出する。エンジンECU23は、エンジン回転速度Nsの他、エンジン冷却水の温度やアクセルペダルの踏み込み量、吸入空気量等に基づいてエンジン21の駆動を制御する。
The engine ECU 23 is mainly composed of a microcomputer having a CPU, a memory and the like. The engine ECU 23 is a part that comprehensively controls the engine 21.
Specifically, the engine ECU 23 performs so-called engine start control that starts the engine 21 when detecting an engine start operation by the driver. Further, the engine ECU 23 calculates information on the engine rotation speed Ns based on the output signal of the rotation sensor 22. The engine ECU 23 controls the driving of the engine 21 based on the engine speed Ns, the engine coolant temperature, the accelerator pedal depression amount, the intake air amount, and the like.
 電動パワーステアリング装置60は、車両のステアリングホイールに付与される操舵トルクに応じたアシストトルクをステアリングホイールに付与することにより運転者の操舵を補助するアシスト制御を実行する。 The electric power steering device 60 executes assist control for assisting the driver's steering by applying an assist torque corresponding to the steering torque applied to the steering wheel of the vehicle to the steering wheel.
 電子制御ブレーキシステム70は、運転者がブレーキペダルを踏み込んだ際に車両の前輪及び後輪のそれぞれの回転速度や旋回状態に応じて各車輪に加わる制動力を最適に分配する、いわゆるアンチロックブレーキ制御等を実行する。 The electronically controlled brake system 70 is a so-called antilock brake that optimally distributes the braking force applied to each wheel according to the rotational speed and turning state of the front and rear wheels of the vehicle when the driver depresses the brake pedal. Execute control etc.
 自動運転システム30は、車両の自動運転制御を統括的に実行する部分である。自動運転システム30は、カメラ31と、レーザ装置32と、レーダ装置33と、操作装置34と、自動運転ECU(Electronic Control Unit)36とを備えている。本実施形態では、自動運転ECU36が自動運転制御装置に相当する。 The automatic driving system 30 is a part that performs overall automatic driving control of the vehicle. The automatic driving system 30 includes a camera 31, a laser device 32, a radar device 33, an operating device 34, and an automatic driving ECU (Electronic Control Unit) 36. In the present embodiment, the automatic driving ECU 36 corresponds to an automatic driving control device.
 カメラ31は、車両の前方の所定範囲や車両の後方の所定範囲等、車両の周辺に設定された所定範囲を撮像するとともに、撮像された画像データを出力する。レーザ装置32は、例えばレーザレーダ装置である。レーダ装置33は、例えばミリ波レーダ装置である。レーザ装置32及びレーダ装置33は、車両の周辺に設定された探査範囲に存在する物体を検知するとともに、検知された物体の位置に応じた信号を出力する。操作装置34は、車両の運転者により操作される部分である。操作装置34は、自動運転を開始又は停止する際に操作される操作スイッチ等を備えている。 The camera 31 captures a predetermined range set around the vehicle, such as a predetermined range in front of the vehicle and a predetermined range in the rear of the vehicle, and outputs the captured image data. The laser device 32 is, for example, a laser radar device. The radar device 33 is, for example, a millimeter wave radar device. The laser device 32 and the radar device 33 detect an object existing in the search range set around the vehicle and output a signal corresponding to the detected position of the object. The operating device 34 is a part operated by the driver of the vehicle. The operation device 34 includes an operation switch or the like that is operated when starting or stopping automatic driving.
 自動運転ECU36は、CPUやROM、RAM等を有するマイクロコンピュータを中心に構成されている。自動運転ECU36は、車両の自動運転機器80を制御することにより、車両の自動運転制御を実行する部分である。自動運転機器80には、動力系の機器、制動系の機器、及び操舵系の機器が含まれる。動力系の機器は、例えばエンジン21やトランスミッションである。制動系の機器は、例えば電子制御ブレーキシステム70やブレーキ装置である。操舵系の機器は、例えば電動パワーステアリング装置60である。本実施形態では、自動運転ECU36が自動運転制御装置に相当する。 The automatic operation ECU 36 is mainly composed of a microcomputer having a CPU, a ROM, a RAM, and the like. The automatic driving ECU 36 is a part that executes automatic driving control of the vehicle by controlling the automatic driving device 80 of the vehicle. The automatic driving device 80 includes a power system device, a braking system device, and a steering system device. The power system device is, for example, the engine 21 or the transmission. The brake system device is, for example, an electronically controlled brake system 70 or a brake device. The steering system device is, for example, the electric power steering device 60. In the present embodiment, the automatic driving ECU 36 corresponds to an automatic driving control device.
 エンジンECU23及び自動運転ECU36は、車載ネットワーク50を介して通信可能に接続されている。したがって、エンジンECU23及び自動運転ECU36は、相互に情報を授受することや、動作を指示することが可能である。
 例えば、自動運転ECU36は、エンジンECU23と通信を行うことにより、エンジン21の各種状態量の情報を取得することができる。また、自動運転ECU36は、自動運転制御において、エンジンECU23に対してエンジン21の動作を指示することにより、エンジン21の回転速度等を自動的に制御することができる。
The engine ECU 23 and the automatic operation ECU 36 are connected to each other via a vehicle-mounted network 50 so as to communicate with each other. Therefore, the engine ECU 23 and the automatic operation ECU 36 can exchange information with each other and instruct operations.
For example, the automatic operation ECU 36 can acquire information on various state quantities of the engine 21 by communicating with the engine ECU 23. Further, the automatic operation ECU 36 can automatically control the rotational speed of the engine 21 by instructing the engine ECU 23 to operate the engine 21 in the automatic operation control.
 自動運転ECU36は、自動運転制御部360と、タイヤ状態判定部361とを有している。
 自動運転制御部360は、車両の自動運転制御を実行する部分である。具体的には、自動運転制御部360は、操作装置34の出力信号に基づいて、運転者により自動運転の開始操作が行われたことを検出すると、自動運転制御を開始する。本実施形態の自動運転制御部360は、自動運転制御として、エンジン21やトランスミッション等を含む車両の動力系、電子制御ブレーキシステム70やブレーキ装置等を含む車両の制動系、及び電動パワーステアリング装置60等を含む車両の操舵系を自動的に制御する。
The automatic operation ECU 36 includes an automatic operation control unit 360 and a tire state determination unit 361.
The automatic driving control unit 360 is a part that executes automatic driving control of the vehicle. Specifically, the automatic driving control unit 360 starts the automatic driving control when detecting that the driving operation is started by the driver based on the output signal of the operating device 34. The automatic driving control unit 360 of the present embodiment includes a vehicle power system including the engine 21 and a transmission, a vehicle braking system including an electronically controlled brake system 70 and a brake device, and the electric power steering device 60 as automatic driving control. Automatically control the steering system of the vehicle including the above.
 例えば、自動運転制御部360は、カメラ31の画像データに基づいて車両前方の車線境界線や前方車両、車両の走行にとって障害となる障害物等を検出する。また、自動運転制御部360は、レーザ装置32及びレーダ装置33のそれぞれの出力信号に基づいて、前方車両や障害物等を検出する。自動運転制御部360は、検出された車両前方の車線境界線や前方車両、障害物等の情報に基づいて、車両の目標走行ラインを設定するとともに、この目標走行ラインに応じた目標操舵角を演算する。自動運転制御部360は、演算された目標操舵角を電動パワーステアリング装置60に出力することにより、目標操舵角に基づいた自動操舵制御を電動パワーステアリング装置60に実行させる。自動操舵制御は、ステアリングシャフトにトルクを付与することにより、運転者のステアリングホイールの操舵によらずに、車両の操舵角を自動的に変化させる制御である。これにより、車両の操舵角が目標動作角に応じて変化するため、車両が目標走行ラインに沿って自動的に走行する。 For example, the automatic operation control unit 360 detects a lane boundary line in front of the vehicle, a vehicle ahead, an obstacle that obstructs the traveling of the vehicle, based on the image data of the camera 31. The automatic operation control unit 360 detects a vehicle ahead, an obstacle, and the like based on the output signals of the laser device 32 and the radar device 33. The automatic operation control unit 360 sets the target travel line of the vehicle based on the detected information such as the lane boundary line ahead of the vehicle, the preceding vehicle, and an obstacle, and sets the target steering angle according to the target travel line. Calculate. The automatic operation control unit 360 outputs the calculated target steering angle to the electric power steering device 60, thereby causing the electric power steering device 60 to execute automatic steering control based on the target steering angle. The automatic steering control is a control in which the steering angle of the vehicle is automatically changed by applying a torque to the steering shaft without depending on the steering wheel of the driver. Thereby, since the steering angle of the vehicle changes according to the target operating angle, the vehicle automatically travels along the target travel line.
 また、自動運転制御部360は、前方車両や障害物の位置に基づいて、車両が前方車両や障害物に接触する可能性があるか否かを判定し、接触する可能性がある場合には、電子制御ブレーキシステム70に自動ブレーキ制御を実行させる。自動ブレーキ制御は、運転者のブレーキペダルの踏み込み操作によらずに、車両の各車輪に制動力を自動的に付与する制御である。これにより、自動運転制御中において車両の接触を未然に回避することが可能となっている。 In addition, the automatic operation control unit 360 determines whether or not the vehicle may come into contact with the preceding vehicle or the obstacle based on the position of the preceding vehicle or the obstacle. The electronic brake system 70 is caused to execute automatic brake control. The automatic brake control is a control that automatically applies a braking force to each wheel of the vehicle without depending on the driver's depression operation of the brake pedal. This makes it possible to avoid vehicle contact during automatic driving control.
 タイヤ状態判定部361は、車両のタイヤの状態を検出するとともに、検出されたタイヤの状態に基づいて、タイヤの状態が自動運転に適した状態であるか否かを判定する。具体的には、タイヤ状態判定部361は、タイヤの理想的な半径r1と、タイヤの実際の半径の平均値r2aとの偏差Δrに基づいてタイヤの摩耗量を推定する。タイヤの理想的な半径r1は、メーカ等により予め定められており、自動運転ECU36のメモリに記憶されている。また、タイヤ状態判定部361は、例えば以下の式f1を用いることにより、タイヤの実際の半径r2を演算する。 The tire condition determination unit 361 detects the condition of the vehicle tire and determines whether or not the condition of the tire is suitable for automatic driving based on the detected condition of the tire. Specifically, the tire state determination unit 361 estimates the amount of tire wear based on the deviation Δr between the ideal radius r1 of the tire and the average value r2a of the actual radius of the tire. The ideal radius r1 of the tire is determined in advance by a manufacturer or the like and is stored in the memory of the automatic operation ECU 36. Further, the tire state determination unit 361 calculates the actual radius r2 of the tire by using, for example, the following formula f1.
Figure JPOXMLDOC01-appb-M000001
 「RG」は、回転センサ22の設置箇所から車両のドライブシャフトまでの減速比である。すなわち、本実施形態では、回転センサ22がエンジン21のクランクシャフトに設置されているため、減速比RGは、クランクシャフトからドライブシャフトまでの減速比に相当する。「V2」は、車両の実際の走行速度を示す。速度V2の単位は、「km/h」である。「Ns」は、回転センサ22により検出されるエンジン回転速度Ns、換言すればクランクシャフトの回転速度を示す。エンジン回転速度Nsの単位は「rpm」である。
Figure JPOXMLDOC01-appb-M000001
“RG” is a reduction ratio from the installation location of the rotation sensor 22 to the drive shaft of the vehicle. That is, in the present embodiment, since the rotation sensor 22 is installed on the crankshaft of the engine 21, the reduction ratio RG corresponds to the reduction ratio from the crankshaft to the drive shaft. “V2” indicates the actual traveling speed of the vehicle. The unit of the speed V2 is “km / h”. “Ns” indicates the engine rotation speed Ns detected by the rotation sensor 22, in other words, the rotation speed of the crankshaft. The unit of the engine rotation speed Ns is “rpm”.
 ところで、車両の走行速度は、例えばドライブシャフトの回転速度とタイヤの理想的な半径r1とに基づいて演算することができる。しかしながら、このような演算方法を用いた場合、タイヤの摩耗の影響を考慮していないため、タイヤが摩耗すると、演算に用いられるタイヤの理想的な半径とタイヤの実際の半径との偏差が大きくなり、車両の実際の走行速度V2を検出することが困難となる。そのため、タイヤの摩耗の影響を受けない、実際の走行速度V2を検出する手段が必要である。 Incidentally, the traveling speed of the vehicle can be calculated based on, for example, the rotational speed of the drive shaft and the ideal radius r1 of the tire. However, when such a calculation method is used, since the influence of tire wear is not taken into consideration, when the tire wears, the deviation between the ideal radius of the tire used for the calculation and the actual radius of the tire is large. Thus, it is difficult to detect the actual traveling speed V2 of the vehicle. Therefore, a means for detecting the actual running speed V2 that is not affected by tire wear is required.
 そこで、本実施形態のタイヤ状態判定部361は、カメラ31等を用いて車両の実際の走行速度V2を演算する。具体的には、タイヤ状態判定部361は、カメラ31により車両前方の画像データを周期的に取得するとともに、その連続する画像データ間の特徴点の対応関係に基づいて車両の実際の走行速度V2を演算する。なお、タイヤ状態判定部361は、カメラ31に限らず、例えばレーザ装置32やレーダ装置33により車両前方の物体を周期的に検出するとともに、検出される物体の連続する位置の対応関係に基づいて車両の実際の走行速度V2を演算してもよい。 Therefore, the tire condition determination unit 361 of the present embodiment calculates the actual traveling speed V2 of the vehicle using the camera 31 and the like. Specifically, the tire condition determination unit 361 periodically acquires image data in front of the vehicle with the camera 31, and based on the correspondence relationship between the feature points between the continuous image data, the actual traveling speed V2 of the vehicle. Is calculated. Note that the tire condition determination unit 361 is not limited to the camera 31 and periodically detects an object in front of the vehicle using, for example, the laser device 32 or the radar device 33, and based on a correspondence relationship between successive positions of the detected object. The actual traveling speed V2 of the vehicle may be calculated.
 タイヤ状態判定部361は、例えば図2に示されるようにタイヤの実際の半径r2を所定の周期で逐次演算する。この逐次演算されるタイヤの実際の半径r2は、車両の走行速度や路面状態等の影響により変動し易い。すなわち、逐次演算されるタイヤの実際の半径r2には誤差が生じ易い。そこで、タイヤ状態判定部361は、例えば現在の時刻が「t11」であるとすると、現在の時刻t11から所定時間T1前の時刻t10までの期間に演算されたタイヤの実際の半径の平均値r2aを演算する。このタイヤの実際の半径の平均値r2aは、タイヤが摩耗するほど、タイヤの理想的な半径r1から乖離することになる。すなわち、タイヤが摩耗するほど、「r1>r2a」の傾向が強くなる。 The tire state determination unit 361 sequentially calculates the actual radius r2 of the tire at a predetermined cycle, for example, as shown in FIG. The actual radius r2 of the tire that is sequentially calculated is likely to fluctuate due to the influence of the traveling speed of the vehicle, the road surface condition, and the like. That is, an error is likely to occur in the actual radius r2 of the tire that is sequentially calculated. Therefore, for example, assuming that the current time is “t11”, the tire state determination unit 361 calculates the average value r2a of the actual tire radius calculated during the period from the current time t11 to the time t10 before the predetermined time T1. Is calculated. The average value r2a of the actual radius of the tire deviates from the ideal radius r1 of the tire as the tire wears. That is, the tendency of “r1> r2a” becomes stronger as the tire wears.
 これを利用し、タイヤ状態判定部361は、タイヤの理想的な半径r1とタイヤの実際の半径の平均値r2aとからタイヤの摩耗量を推定する。具体的には、タイヤ状態判定部361は、タイヤの理想的な半径r1とタイヤの実際の半径の平均値r2aとの偏差Δr(=r1-r2a)を演算する。この偏差Δrは、タイヤの摩耗量と相関関係がある。そこで、タイヤ状態判定部361は、図2に示されるように、偏差Δrが所定値rth未満であることに基づいて、すなわちタイヤの摩耗量が所定量未満であることに基づいて、タイヤの状態が自動運転に適した状態であると判定する。また、タイヤ状態判定部361は、図3に示されるように、偏差Δrが所定値rth以上になることに基づいて、すなわちタイヤの摩耗量が所定量以上であることに基づいて、タイヤの状態が自動運転に適した状態でないと判定する。 Using this, the tire condition determination unit 361 estimates the amount of tire wear from the ideal radius r1 of the tire and the average value r2a of the actual radius of the tire. Specifically, the tire state determination unit 361 calculates a deviation Δr (= r1−r2a) between the ideal radius r1 of the tire and the average value r2a of the actual radius of the tire. This deviation Δr has a correlation with the amount of tire wear. Therefore, as shown in FIG. 2, the tire condition determination unit 361 determines the tire condition based on the deviation Δr being less than the predetermined value rth, that is, based on the tire wear amount being less than the predetermined value. Is determined to be suitable for automatic driving. Further, as shown in FIG. 3, the tire condition determination unit 361 determines the condition of the tire based on the deviation Δr being equal to or greater than a predetermined value rth, that is, based on the tire wear amount being equal to or greater than the predetermined value. Is not in a state suitable for automatic driving.
 自動運転ECU36は、このようなタイヤ状態判定部361の判定結果に基づいて自動運転制御を制限する。次に、図4及び図5を参照して、この自動運転ECU36により実行される処理の手順について具体的に説明する。図4は、車両が手動運転で操作されている場合に自動運転ECU36により所定の周期で繰り返し実行される処理である。 The automatic driving ECU 36 restricts the automatic driving control based on the determination result of the tire condition determining unit 361. Next, with reference to FIG. 4 and FIG. 5, a procedure of processing executed by the automatic operation ECU 36 will be specifically described. FIG. 4 is a process that is repeatedly executed at a predetermined cycle by the automatic driving ECU 36 when the vehicle is operated by manual driving.
 図4に示されるように、車両が手動運転で操作されている場合には、まず、タイヤ状態判定部361が、ステップS10の処理として、タイヤの状態が自動運転に適した状態であるか否かを判定する。続いて、自動運転制御部360は、ステップS11の処理として、自動運転の開始操作が操作装置34に対して行われたか否かを判断する。自動運転制御部360は、ステップS11の処理で否定判断した場合には、すなわち自動運転の開始操作が操作装置34に対して行われていない場合には、一連の処理を一旦終了する。 As shown in FIG. 4, when the vehicle is operated manually, first, the tire state determination unit 361 determines whether the tire state is suitable for automatic driving as the process of step S10. Determine whether. Subsequently, the automatic operation control unit 360 determines whether or not an operation for starting automatic operation has been performed on the controller device 34 as the process of step S11. If the automatic operation control unit 360 makes a negative determination in the process of step S11, that is, if the start operation of the automatic operation is not performed on the controller device 34, the series of processes is temporarily ended.
 自動運転制御部360は、ステップS11の処理で肯定判断した場合には、すなわち自動運転の開始操作が操作装置34に対して行われた場合には、ステップS12の処理として、タイヤ状態判定部361の判定結果に基づいて、タイヤの状態が自動運転に適した状態であるか否かを判断する。自動運転制御部360は、ステップS12の判断処理で肯定判断した場合には、すなわちタイヤの状態が自動運転に適した状態である場合には、ステップS13の処理として、自動運転制御を開始する。この場合、車両の自動運転制御が通常通り実行される。 When an affirmative determination is made in step S11, that is, when an operation for starting automatic driving is performed on the controller device 34, the automatic driving control unit 360 performs a tire state determination unit 361 as processing in step S12. Based on the determination result, it is determined whether the tire is in a state suitable for automatic driving. If the determination result in step S12 is affirmative, that is, if the tire is in a state suitable for automatic driving, the automatic driving control unit 360 starts automatic driving control as processing in step S13. In this case, automatic driving control of the vehicle is executed as usual.
 自動運転制御部360は、ステップS12の処理で否定判断した場合には、すなわちタイヤの状態が自動運転に適した状態でない場合には、ステップS14の処理として、自動運転制御を制限する。具体的には、自動運転制御部360は、自動運転機器80における動力機能、制動機能、及び操舵機能の少なくとも一つの機能を制限する。動力機能は、エンジン21やトランスミッション等の車両の動力系に関連する機能を示す。制動機能は、ブレーキ装置や電子制御ブレーキシステム70等の車両の制動系に関連する機能を示す。操舵機能は、電動パワーステアリング装置60等の車両の操舵系に関連する機能を示す。 The automatic driving control unit 360 restricts the automatic driving control as the processing of step S14 when a negative determination is made in the processing of step S12, that is, when the state of the tire is not suitable for automatic driving. Specifically, the automatic driving control unit 360 restricts at least one of a power function, a braking function, and a steering function in the automatic driving device 80. The power function indicates a function related to the power system of the vehicle such as the engine 21 or the transmission. The braking function indicates a function related to a braking system of the vehicle such as a brake device or an electronically controlled brake system 70. The steering function indicates a function related to the steering system of the vehicle such as the electric power steering device 60.
 より詳細には、自動運転制御部360は、図6に示されるパターンP1~P7のいずれかを実行する。図6に示される「制限なし」とは、該当する機能に対応する自動運転機器80に制限を設けずに実行することを意味する。図6に示される「制限あり」とは、該当する機能に対応する自動運転機器80の一部に制限を設けること、あるいは該当する機能に対応する自動運転機器80を停止させることを意味する。例えばパターンP5では動力機能に関して「制限あり」となっているが、その一例としては車両の走行速度に上限速度を設けた上でのエンジン21及びトランスミッションの自動制御が可能な状態である。あるいは、エンジン21及びトランスミッションの自動制御を禁止する、すなわち運転者の手動操作に切り替えることも可能な状態である。 More specifically, the automatic operation control unit 360 executes any one of the patterns P1 to P7 shown in FIG. “No restriction” shown in FIG. 6 means that the automatic driving device 80 corresponding to the corresponding function is executed without restriction. “With restriction” shown in FIG. 6 means that a part of the automatic driving device 80 corresponding to the corresponding function is restricted or the automatic driving device 80 corresponding to the corresponding function is stopped. For example, in the pattern P5, the power function is “restricted”. As an example, the engine 21 and the transmission can be automatically controlled with the upper limit speed set for the vehicle traveling speed. Alternatively, automatic control of the engine 21 and the transmission is prohibited, that is, it is possible to switch to manual operation by the driver.
 なお、図6に示されるパターンP7では、動力機能、制動機能、及び操舵機能の全てが「制限あり」となっている。このパターンP7では、自動運転機器80における動力機能、制動機能、及び操舵機能の全てを禁止することにより、自動運転機器80の全ての機能を禁止してもよい。また、パターンP7では、例えば自動運転機器80における制動機能及び操舵機能を禁止しつつ、動力機能に制限を設けてもよい。一例としては、制動機能及び操舵機能に関しては運転者の手動操作に切り替え、且つ車両の走行速度に上限速度を設けた上でエンジン21及びトランスミッションを自動制御する。 In the pattern P7 shown in FIG. 6, all of the power function, the braking function, and the steering function are “restricted”. In this pattern P7, all functions of the automatic driving device 80 may be prohibited by prohibiting all of the power function, the braking function, and the steering function in the automatic driving device 80. In the pattern P7, for example, the braking function and the steering function in the automatic driving device 80 may be prohibited, and the power function may be limited. As an example, the braking function and the steering function are switched to manual operation by the driver, and the engine 21 and the transmission are automatically controlled after an upper limit speed is set for the traveling speed of the vehicle.
 次に、図5を参照して、車両が自動運転制御されている場合に自動運転ECU36により所定の周期で繰り返し実行される処理の手順について説明する。
 図5に示されるように、タイヤ状態判定部361は、まず、ステップS20の処理として、タイヤの状態が自動運転に適した状態であるか否かを判定する。続いて、自動運転制御部360は、ステップS21の処理として、タイヤ状態判定部361の判定結果に基づいて、タイヤの状態が自動運転に適した状態であるか否かを判断する。自動運転制御部360は、ステップS21の処理で肯定判断した場合には、一連の処理を一旦終了する。すなわち、この場合には、自動運転制御部360は、自動運転制御を通常通りに実行する。
Next, with reference to FIG. 5, a description will be given of a procedure of processing that is repeatedly executed by the automatic operation ECU 36 at a predetermined cycle when the vehicle is controlled automatically.
As shown in FIG. 5, the tire condition determination unit 361 first determines whether or not the condition of the tire is suitable for automatic driving as the process of step S20. Subsequently, the automatic driving control unit 360 determines whether or not the tire state is suitable for automatic driving based on the determination result of the tire state determining unit 361 as the process of step S21. When the automatic operation control unit 360 makes an affirmative determination in the process of step S21, the series of processes is temporarily terminated. That is, in this case, the automatic operation control unit 360 executes the automatic operation control as usual.
 自動運転制御部360は、ステップS21の処理で否定判断した場合には、ステップS22の処理として、手動運転への権限移譲処理を行う。具体的には、自動運転制御部360は、表示装置における表示や、スピーカ装置から発せられる音声等により、自動運転から手動運転への切り替えを運転者に促すとともに、運転者による手動操作の準備が完了した時点で、自動運転制御から手動運転制御に切り替える。なお、自動運転制御部360は、ステップS22の処理として、自動運転制御を制限してもよい。自動運転制御を制限する方法としては、図4に示されるステップS14の処理と同様の方法を用いることができる。 If the automatic operation control unit 360 makes a negative determination in step S21, the automatic operation control unit 360 performs an authority transfer process to manual operation as the process in step S22. Specifically, the automatic driving control unit 360 prompts the driver to switch from the automatic driving to the manual driving based on the display on the display device, the sound emitted from the speaker device, and the like, and the driver is prepared for the manual operation. When completed, switch from automatic operation control to manual operation control. Note that the automatic operation control unit 360 may limit the automatic operation control as the process of step S22. As a method for limiting the automatic operation control, a method similar to the processing in step S14 shown in FIG. 4 can be used.
 以上説明した本実施形態の自動運転ECU36によれば、以下の(1)~(6)に示される作用及び効果を得ることができる。
 (1)自動運転制御部360は、タイヤ状態判定部361の判定結果に基づいて、タイヤの状態が自動運転に適した状態でないと判定した場合には、自動運転制御を制限する。これにより、タイヤの状態が自動運転に適していないにも関わらず、車両の自動運転制御が通常通りに実行されることを回避できる。結果として、自動運転に適していないタイヤの状態により車両の自動運転に支障をきたす状況が生じ難くなるため、より適切に車両走行を維持することが可能となる。
According to the automatic operation ECU 36 of the present embodiment described above, the operations and effects shown in the following (1) to (6) can be obtained.
(1) The automatic driving control unit 360 limits the automatic driving control when it is determined that the tire state is not suitable for automatic driving based on the determination result of the tire state determining unit 361. As a result, it is possible to avoid the automatic driving control of the vehicle being executed as usual even though the tire state is not suitable for the automatic driving. As a result, it becomes difficult to cause a situation that hinders the automatic driving of the vehicle due to the state of the tire that is not suitable for the automatic driving, and thus it is possible to maintain the vehicle traveling more appropriately.
 (2)タイヤ状態判定部361は、タイヤの理想的な半径r1とタイヤの実際の半径の平均値r2aとの偏差Δrに基づいて、タイヤの摩耗量を検出する。そして、タイヤ状態判定部361は、偏差Δrが所定値rth以上であることに基づいて、すなわちタイヤの摩耗量が所定量以上であることに基づいて、タイヤの状態が自動運転に適した状態でないと判定する。これにより、タイヤの状態が自動運転に適した状態であるか否かを容易に判定することができる。 (2) The tire condition determination unit 361 detects the amount of tire wear based on the deviation Δr between the ideal radius r1 of the tire and the average value r2a of the actual radius of the tire. The tire state determination unit 361 then determines that the tire state is not suitable for automatic driving based on the deviation Δr being equal to or greater than the predetermined value rth, that is, based on the tire wear amount being greater than or equal to the predetermined amount. Is determined. Thereby, it can be easily determined whether or not the tire is in a state suitable for automatic driving.
 (3)自動運転制御部360は、自動運転制御が開始される前に、タイヤの状態が自動運転に適した状態であるか否かを判定する。これにより、タイヤの状態が自動運転に適した状態でないにも関わらず自動運転制御が開始されるような状況を回避することができる。
 (4)自動運転制御部360は、自動運転制御を実行している期間に、タイヤの状態が自動運転に適した状態であるか否かを判定する。これにより、自動運転制御の実行中にタイヤの状態が自動運転に適さない状態になった場合に、その状況を反映した処理、具体的には手動運転への権限移譲処理、あるいは自動運転制御の制限が可能となる。
(3) The automatic driving control unit 360 determines whether or not the tire is in a state suitable for automatic driving before the automatic driving control is started. Thereby, it is possible to avoid a situation in which automatic driving control is started even though the tire is not in a state suitable for automatic driving.
(4) The automatic driving control unit 360 determines whether or not the tire is in a state suitable for automatic driving during the period in which the automatic driving control is executed. As a result, when the state of the tire becomes unsuitable for automatic driving during execution of automatic driving control, processing that reflects the situation, specifically, authority transfer processing to manual driving or automatic driving control Restrictions are possible.
 (5)自動運転制御部360は、図6のパターンP1~P7に示されるように、自動運転制御の制限として、自動運転制御の機能の一部を制限する。具体的には、自動運転制御部360は、車両の動力機能、車両の制動機能、及び車両の操舵機能のうちの少なくとも一つの機能を制限する。これにより、自動運転制御が部分的に実行されるため、運転者の利便性を確保することができる。 (5) As shown in the patterns P1 to P7 in FIG. 6, the automatic operation control unit 360 restricts a part of the function of the automatic operation control as the restriction of the automatic operation control. Specifically, the automatic driving control unit 360 restricts at least one of a vehicle power function, a vehicle braking function, and a vehicle steering function. Thereby, since the automatic driving control is partially executed, the convenience of the driver can be ensured.
 (6)自動運転制御部360は、図6のパターンP7に示されるように、自動運転制御の制限として、自動運転制御の全ての機能を禁止する。これにより、タイヤの状態が自動運転に適していない状況では車両の自動運転が行われないため、より適切な車両走行を確保し易くなる。 (6) As shown in the pattern P7 in FIG. 6, the automatic operation control unit 360 prohibits all functions of the automatic operation control as a limitation of the automatic operation control. Accordingly, since the vehicle is not automatically driven in a situation where the tire state is not suitable for automatic driving, it becomes easier to ensure more appropriate vehicle travel.
 (第1変形例)
 次に、第1実施形態の自動運転ECU36の第1変形例について説明する。
 車両が低速で走行している場合、カメラ31等を用いて演算される車両の実際の走行速度V2の誤差が大きくなる。
(First modification)
Next, a first modification of the automatic operation ECU 36 of the first embodiment will be described.
When the vehicle is traveling at a low speed, an error in the actual traveling speed V2 of the vehicle calculated using the camera 31 or the like increases.
 そこで、本変形例のタイヤ状態判定部361は、判定に用いられる走行区間における車両の実際の走行速度の平均値V2a等に条件を規定する。例えば、タイヤ状態判定部361は、車両の実際の走行速度の平均値V2aが所定速度以上であることを条件に、式f1を用いてタイヤの実際の半径r2を演算する。 Therefore, the tire condition determination unit 361 of the present modification defines conditions such as the average value V2a of the actual traveling speed of the vehicle in the traveling section used for the determination. For example, the tire condition determination unit 361 calculates the actual radius r2 of the tire using the expression f1 on the condition that the average value V2a of the actual traveling speed of the vehicle is equal to or higher than a predetermined speed.
 あるいは、タイヤ状態判定部361は、偏差Δrに係数を乗算することにより、偏差Δrを補正してもよい。係数は、車両の実際の走行速度V2に応じて変化する値である。係数と速度V2との関係は予め実験等により求められており、それらの関係を示すマップが自動運転ECU36のメモリに記憶されている。タイヤ状態判定部361は、メモリに記憶されているマップに基づいて、車両の実際の走行速度V2から係数を演算する。 Alternatively, the tire state determination unit 361 may correct the deviation Δr by multiplying the deviation Δr by a coefficient. The coefficient is a value that changes according to the actual traveling speed V2 of the vehicle. The relationship between the coefficient and the speed V2 is obtained in advance through experiments or the like, and a map indicating the relationship is stored in the memory of the automatic operation ECU 36. The tire condition determination unit 361 calculates a coefficient from the actual traveling speed V2 of the vehicle based on the map stored in the memory.
 このような構成によれば、より高い精度で車両の実際の走行速度V2を演算することができるため、結果的にタイヤの状態が自動運転に適した状態であるか否かを、より的確に判定することが可能となる。
 なお、車両の実際の走行速度V2が所定値以下であって、且つ車両の理想的な走行速度V1が所定値以上である場合、すなわち整備場等のローラ上試験、並びに雪道や泥道等でのホイールスピンの可能性が高い場合には、タイヤ劣化判定のための演算にこれを含めない。車両の実際の走行速度V2に対して設定される所定値は、ほぼ零に設定されている。また、車両の理想的な走行速度V1は、例えば車軸の回転速度とタイヤの理想的な半径とから求めることができる。
 または、ローラ上試験の際は、外部通信機器との認証により、タイヤ劣化判定演算にこれを含めない処理をしてもよい。
According to such a configuration, the actual traveling speed V2 of the vehicle can be calculated with higher accuracy. As a result, it is more accurately determined whether or not the tire state is suitable for automatic driving. It becomes possible to judge.
In addition, when the actual traveling speed V2 of the vehicle is equal to or lower than a predetermined value and the ideal traveling speed V1 of the vehicle is equal to or higher than the predetermined value, that is, in a roller test at a maintenance site, a snowy road, a muddy road, etc. If the possibility of wheel spin is high, this is not included in the calculation for tire deterioration determination. The predetermined value set for the actual traveling speed V2 of the vehicle is set to almost zero. The ideal traveling speed V1 of the vehicle can be obtained from, for example, the rotational speed of the axle and the ideal radius of the tire.
Alternatively, in the on-roller test, processing that does not include this in the tire deterioration determination calculation may be performed by authentication with an external communication device.
 (第2変形例)
 次に、第1実施形態の自動運転ECU36の第2変形例について説明する。
 路面状態や外気温等の環境因子によっても、車両の実際の走行速度V2の誤差が大きくなる状況が考えられる。そこで、路面状態や外気温に応じて、偏差Δrに乗算される係数を変化させてもよい。
(Second modification)
Next, a second modification of the automatic operation ECU 36 of the first embodiment will be described.
A situation in which an error in the actual traveling speed V2 of the vehicle increases due to environmental factors such as a road surface condition and an outside temperature. Therefore, the coefficient multiplied by the deviation Δr may be changed according to the road surface condition and the outside air temperature.
 具体的には、図1に破線で示されるように、車両システム10は、レインセンサ37、及び外気温センサ38を更に備えている。レインセンサ37は、車両の窓ガラス等に付着する雨滴量を検出するとともに、検出された雨滴量に応じた信号を出力する。外気温センサ38は、車室外の空気の温度である外気温を検出するとともに、検出された外気温に応じた信号を出力する。タイヤ状態判定部361は、レインセンサ37により検出される雨滴量、あるいは外気温センサ38により検出される外気温に基づいて、係数を演算する。係数と雨滴量との関係、あるいは係数と外気温との関係は予め実験等により求められており、それらの関係を示すマップが自動運転ECU36のメモリに記憶されている。例えば雨滴量が所定量以上になると、路面が濡れた状態となるため、車両がスリップし易い状況となる。このような状況では、タイヤの実際の半径r2が小さめに見積もられるため、係数は「1」よりも大きい値に設定される。タイヤ状態判定部361は、メモリに記憶されているマップに基づいて、雨滴量あるいは外気温から係数を演算する。 Specifically, as indicated by a broken line in FIG. 1, the vehicle system 10 further includes a rain sensor 37 and an outside air temperature sensor 38. The rain sensor 37 detects the amount of raindrops adhering to the window glass of the vehicle and outputs a signal corresponding to the detected amount of raindrops. The outside air temperature sensor 38 detects the outside air temperature, which is the temperature of the air outside the passenger compartment, and outputs a signal corresponding to the detected outside air temperature. The tire state determination unit 361 calculates a coefficient based on the raindrop amount detected by the rain sensor 37 or the outside air temperature detected by the outside air temperature sensor 38. The relationship between the coefficient and the amount of raindrops, or the relationship between the coefficient and the outside air temperature is obtained in advance by experiments or the like, and a map indicating the relationship is stored in the memory of the automatic operation ECU 36. For example, when the amount of raindrops exceeds a predetermined amount, the road surface becomes wet, and the vehicle is likely to slip. In such a situation, since the actual radius r2 of the tire is estimated to be smaller, the coefficient is set to a value larger than “1”. The tire condition determination unit 361 calculates a coefficient from the raindrop amount or the outside air temperature based on the map stored in the memory.
 なお、タイヤ状態判定部361は、雨滴量あるいは外気温に基づいてタイヤの実際の半径r2の演算誤差が小さい状況であるか否かを判定し、タイヤの実際の半径r2の演算誤差が小さい状況でのみ、式f1を用いてタイヤの実際の半径r2を演算してもよい。
 このような構成によれば、より高い精度で車両の実際の走行速度V2を演算することができるため、結果的にタイヤの状態が自動運転に適した状態であるか否かを、より的確に判定することが可能となる。
The tire state determination unit 361 determines whether or not the calculation error of the actual radius r2 of the tire is small based on the raindrop amount or the outside temperature, and the calculation error of the actual radius r2 of the tire is small. Only in this case, the actual radius r2 of the tire may be calculated using the formula f1.
According to such a configuration, the actual traveling speed V2 of the vehicle can be calculated with higher accuracy. As a result, it is more accurately determined whether or not the tire state is suitable for automatic driving. It becomes possible to judge.
 (第3変形例)
 次に、第1実施形態の自動運転ECU36の第3変形例について説明する。
 本変形例のタイヤ状態判定部361は、タイヤの交換時にタイヤの実際の半径の平均値r2aを演算する。具体的には、操作装置34には、タイヤ交換が行われた際に操作されるスイッチ等が設けられている。タイヤ状態判定部361は、このスイッチ等の操作情報に基づいて、タイヤの交換時期を検出する。タイヤ状態判定部361は、タイヤの交換を検出した時点から所定時間が経過するまでの期間、あるいは車両が所定距離だけ走行する期間、タイヤの実際の半径r2を所定の周期で演算する。そして、タイヤ状態判定部361は、演算されたタイヤの実際の半径の平均値r2aをタイヤの理想的な半径r1としてメモリに記憶する。
(Third Modification)
Next, a third modification of the automatic operation ECU 36 of the first embodiment will be described.
The tire condition determination unit 361 of the present modification calculates an average value r2a of the actual radius of the tire when the tire is replaced. Specifically, the operation device 34 is provided with a switch or the like that is operated when the tire is changed. The tire condition determination unit 361 detects the tire replacement time based on the operation information of the switch and the like. The tire state determination unit 361 calculates the actual radius r2 of the tire at a predetermined period during a period until a predetermined time elapses from the time when the replacement of the tire is detected or the vehicle travels a predetermined distance. Then, the tire condition determination unit 361 stores the calculated average value r2a of the actual tire radius in the memory as the ideal tire radius r1.
 このような構成であっても、タイヤの状態が自動運転に適した状態であるか否かを容易に判定することができる。
 (第4変形例)
 次に、第1実施形態の自動運転ECU36の第4変形例について説明する。
Even with such a configuration, it can be easily determined whether or not the tire is in a state suitable for automatic driving.
(Fourth modification)
Next, a fourth modification of the automatic operation ECU 36 of the first embodiment will be described.
 本変形例のタイヤ状態判定部361は、車両の理想的な走行速度V1と、車両の実際の走行速度の平均値V2aとの偏差ΔVに基づいて、タイヤの状態が自動運転に適した状態であるか否かを判定する。具体的には、タイヤ状態判定部361は、以下の式f2に基づいて、車両の理想的な走行速度V1を演算する。 The tire state determination unit 361 of the present modification example is in a state where the tire state is suitable for automatic driving based on the deviation ΔV between the ideal traveling speed V1 of the vehicle and the average value V2a of the actual traveling speed of the vehicle. It is determined whether or not there is. Specifically, the tire state determination unit 361 calculates an ideal traveling speed V1 of the vehicle based on the following formula f2.
Figure JPOXMLDOC01-appb-M000002
 また、タイヤ状態判定部361は、カメラ31等を用いて車両の実際の走行速度V2を演算する。具体的には、タイヤ状態判定部361は、カメラ31により車両前方の画像データを周期的に取得するとともに、その連続する画像データ間の特徴点の対応関係に基づいて車両の実際の走行速度V2を演算する。なお、タイヤ状態判定部361は、カメラ31に限らず、例えばレーザ装置32やレーダ装置33により車両前方の物体を周期的に検出するとともに、検出される物体の連続する位置の対応関係に基づいて車両の実際の走行速度V2を演算してもよい。
Figure JPOXMLDOC01-appb-M000002
In addition, the tire state determination unit 361 calculates the actual traveling speed V2 of the vehicle using the camera 31 and the like. Specifically, the tire condition determination unit 361 periodically acquires image data in front of the vehicle with the camera 31, and based on the correspondence relationship between the feature points between the continuous image data, the actual traveling speed V2 of the vehicle. Is calculated. Note that the tire condition determination unit 361 is not limited to the camera 31 and periodically detects an object in front of the vehicle using, for example, the laser device 32 or the radar device 33, and based on a correspondence relationship between successive positions of the detected object. The actual traveling speed V2 of the vehicle may be calculated.
 タイヤ状態判定部361は、例えば図7に示されるように車両の理想的な走行速度V1及び車両の実際の走行速度V2を所定の周期で逐次演算する。そして、タイヤ状態判定部361は、例えば現在の時刻が「t11」であるとすると、現在の時刻t11から所定時間T1前の時刻t10までの期間における車両の理想的な走行速度の平均値V1a、及び車両の実際の走行速度の平均値V2aを演算する。この車両の実際の走行速度の平均値V2aは、タイヤが摩耗するほど、図8に示されるように車両の理想的な走行速度の平均値V1aから乖離することになる。すなわち、タイヤが摩耗するほど、「V1a>V2a」の傾向が強くなる。 The tire state determination unit 361 sequentially calculates the ideal traveling speed V1 of the vehicle and the actual traveling speed V2 of the vehicle in a predetermined cycle, for example, as shown in FIG. For example, assuming that the current time is “t11”, the tire state determination unit 361 has an average value V1a of the ideal traveling speed of the vehicle in a period from the current time t11 to a time t10 before the predetermined time T1. And the average value V2a of the actual traveling speed of the vehicle is calculated. The average value V2a of the actual traveling speed of the vehicle deviates from the average value V1a of the ideal traveling speed of the vehicle as shown in FIG. 8 as the tire wears. That is, as the tire wears, the tendency of “V1a> V2a” becomes stronger.
 タイヤ状態判定部361は、車両の理想的な走行速度の平均値V1aと車両の実際の走行速度の平均値V2aとの偏差ΔV(=V1a-V2a)を演算する。この偏差ΔVは、タイヤの摩耗量と相関関係のある値である。タイヤ状態判定部361は、偏差ΔVが所定値Vth未満であることに基づいて、すなわちタイヤの摩耗量が所定量未満であることに基づいて、タイヤの状態が自動運転に適した状態であると判定する。また、タイヤ状態判定部361は、偏差ΔVが所定値Vth以上であることに基づいて、すなわちタイヤの摩耗量が所定量以上であることに基づいて、タイヤの状態が自動運転に適した状態でないと判定する。 The tire condition determination unit 361 calculates a deviation ΔV (= V1a−V2a) between the average value V1a of the ideal traveling speed of the vehicle and the average value V2a of the actual traveling speed of the vehicle. This deviation ΔV is a value correlated with the amount of tire wear. The tire state determination unit 361 determines that the tire state is suitable for automatic driving based on the deviation ΔV being less than the predetermined value Vth, that is, based on the tire wear amount being less than the predetermined amount. judge. Further, the tire state determination unit 361 determines that the tire state is not suitable for automatic driving based on the deviation ΔV being equal to or greater than the predetermined value Vth, that is, based on the tire wear amount being greater than or equal to the predetermined amount. Is determined.
 なお、タイヤ状態判定部361は、上記の第1~第3変形例に準じた処理を行ってもよい。すなわち、タイヤ状態判定部361は、タイヤ交換の際に車両の実際の走行速度の平均値V2aを演算するとともに、演算された車両の実際の走行速度の平均値V2aを車両の理想的な走行速度の平均値V1aとして用いてもよい。また、タイヤ状態判定部361は、判定に用いられる走行区間における車両の実際の走行速度の平均値V2a等に基づいて、タイヤの実際の半径r2の演算を制限してもよいし、偏差ΔVを補正してもよい。あるいは、タイヤ状態判定部361は、レインセンサ37により検出される雨滴量や、外気温センサ38により検出される外気温に基づいて、タイヤの実際の半径r2の演算を制限してもよいし、偏差ΔVを補正してもよい。 The tire condition determination unit 361 may perform processing according to the first to third modifications. That is, the tire state determination unit 361 calculates an average value V2a of the actual traveling speed of the vehicle at the time of tire replacement, and uses the calculated average value V2a of the actual traveling speed of the vehicle as an ideal traveling speed of the vehicle. May be used as the average value V1a. Further, the tire condition determination unit 361 may limit the calculation of the actual radius r2 of the tire based on the average value V2a of the actual traveling speed of the vehicle in the traveling section used for the determination, and the deviation ΔV may be calculated. It may be corrected. Alternatively, the tire state determination unit 361 may limit the calculation of the actual radius r2 of the tire based on the amount of raindrops detected by the rain sensor 37 and the outside air temperature detected by the outside air temperature sensor 38, The deviation ΔV may be corrected.
 このような構成であっても、タイヤの状態が自動運転に適した状態であるか否かを容易に判定することができる。
 (第5変形例)
 次に、第1実施形態の自動運転ECU36の第5変形例について説明する。
Even with such a configuration, it can be easily determined whether or not the tire is in a state suitable for automatic driving.
(5th modification)
Next, a fifth modification of the automatic operation ECU 36 of the first embodiment will be described.
 本変形例のタイヤ状態判定部361は、車両の理想的な走行距離d1と、車両の実際の走行距離の平均値d2aとの偏差に基づいて、タイヤの状態が自動運転に適した状態であるか否かを判定する。具体的には、タイヤ状態判定部361は、以下の式f3に基づいて、車両の理想的な走行距離d1を演算する。 The tire state determination unit 361 of the present modified example is a state in which the tire state is suitable for automatic driving based on the deviation between the ideal travel distance d1 of the vehicle and the average value d2a of the actual travel distance of the vehicle. It is determined whether or not. Specifically, the tire state determination unit 361 calculates an ideal travel distance d1 of the vehicle based on the following formula f3.
Figure JPOXMLDOC01-appb-M000003
 なお、「V1」は、式f2により演算される車両の理想的な走行速度である。
 また、タイヤ状態判定部361は、以下の式f4に基づいて、車両の実際の走行距離d2を演算する。
Figure JPOXMLDOC01-appb-M000003
“V1” is an ideal traveling speed of the vehicle calculated by the equation f2.
Further, the tire state determination unit 361 calculates the actual travel distance d2 of the vehicle based on the following formula f4.
Figure JPOXMLDOC01-appb-M000004
 なお、「V2」は、カメラ31等を用いて演算される車両の実際の走行距離d2である。
 タイヤ状態判定部361は、車両の理想的な走行距離d1及び車両の実際の走行距離d2を所定の周期で逐次演算する。そして、タイヤ状態判定部361は、例えば現在の時刻から所定時間前の時刻までの期間における車両の理想的な走行距離の平均値d1a、及び車両の実際の走行距離の平均値d2aを演算する。この車両の実際の走行距離の平均値d2aは、タイヤが摩耗するほど、車両の理想的な走行距離の平均値d1aから乖離することになる。すなわち、タイヤが摩耗するほど、「d1a>d2a」の傾向が強くなる。
Figure JPOXMLDOC01-appb-M000004
“V2” is an actual travel distance d2 of the vehicle calculated using the camera 31 or the like.
The tire state determination unit 361 sequentially calculates the ideal travel distance d1 of the vehicle and the actual travel distance d2 of the vehicle at a predetermined cycle. Then, for example, the tire state determination unit 361 calculates an average value d1a of the ideal travel distance of the vehicle and an average value d2a of the actual travel distance of the vehicle in a period from the current time to a time before a predetermined time. The average value d2a of the actual travel distance of the vehicle deviates from the average value d1a of the ideal travel distance of the vehicle as the tire wears. That is, the tendency of “d1a> d2a” increases as the tire wears.
 タイヤ状態判定部361は、車両の理想的な走行距離の平均値d1aと車両の実際の走行距離の平均値d2aとの偏差Δd(=d1a-d2a)を演算する。この偏差Δdは、タイヤの摩耗量と相関関係がある。タイヤ状態判定部361は、偏差Δdが所定値未満であることに基づいて、すなわちタイヤの摩耗量が所定量未満であることに基づいて、タイヤの状態が自動運転に適した状態であると判定する。また、タイヤ状態判定部361は、偏差Δdが所定値以上であることに基づいて、すなわちタイヤの摩耗量が所定量以上であることに基づいて、タイヤの状態が自動運転に適した状態でないと判定する。 The tire condition determination unit 361 calculates a deviation Δd (= d1a−d2a) between the average value d1a of the ideal travel distance of the vehicle and the average value d2a of the actual travel distance of the vehicle. This deviation Δd has a correlation with the amount of tire wear. The tire state determination unit 361 determines that the tire state is suitable for automatic driving based on the deviation Δd being less than a predetermined value, that is, based on the amount of wear of the tire being less than the predetermined amount. To do. In addition, the tire condition determination unit 361 determines that the tire condition is not suitable for automatic driving based on the deviation Δd being equal to or greater than a predetermined value, that is, based on the tire wear amount being equal to or greater than the predetermined value. judge.
 なお、タイヤ状態判定部361は、上記の第1~第3変形例に準じた処理を行ってもよい。すなわち、タイヤ状態判定部361は、タイヤ交換の際に車両の実際の走行距離の平均値d2aを演算するとともに、演算された車両の実際の走行距離の平均値d2aを車両の理想的な走行距離の平均値d1aとして用いてもよい。また、タイヤ状態判定部361は、判定に用いられる走行区間における車両の実際の走行距離の平均値d2a等に基づいて、タイヤの実際の半径r2の演算を制限してもよいし、偏差Δdを補正してもよい。あるいは、タイヤ状態判定部361は、レインセンサ37により検出される雨滴量や、外気温センサ38により検出される外気温に基づいて、タイヤの実際の半径r2の演算を制限してもよいし、偏差Δdを補正してもよい。 The tire condition determination unit 361 may perform processing according to the first to third modifications. That is, the tire state determination unit 361 calculates the average value d2a of the actual travel distance of the vehicle at the time of replacing the tire, and uses the calculated average value d2a of the actual travel distance of the vehicle as the ideal travel distance of the vehicle. May be used as the average value d1a. Further, the tire condition determination unit 361 may limit the calculation of the actual radius r2 of the tire based on the average value d2a of the actual travel distance of the vehicle in the travel section used for the determination, and the deviation Δd may be calculated. It may be corrected. Alternatively, the tire state determination unit 361 may limit the calculation of the actual radius r2 of the tire based on the amount of raindrops detected by the rain sensor 37 and the outside air temperature detected by the outside air temperature sensor 38, The deviation Δd may be corrected.
 このような構成であっても、タイヤの状態が自動運転に適した状態であるか否かを容易に判定することができる。
 (第6変形例)
 次に、第1実施形態の自動運転ECU36の第6変形例について説明する。
Even with such a configuration, it can be easily determined whether or not the tire is in a state suitable for automatic driving.
(Sixth Modification)
Next, a sixth modification of the automatic operation ECU 36 of the first embodiment will be described.
 例えばタイヤ交換の際にインチアップ等によりタイヤの理想的な半径r1が変化する可能性がある。そこで、本変形例の自動運転ECU36は、タイヤの理想的な半径r1に係数を乗算することにより、タイヤの理想的な半径r1を補正する。
 具体的には、図1に破線で示されるように、車両システム10は、認証機器39を更に備えている。認証機器39は、タイヤやホイールに設けられた認証情報を読み込むことにより、タイヤの直径φaやタイヤの種類等の情報を取得するための機器である。認証情報は、例えばバーコードである。認証機器39により読み込まれた情報は、自動運転ECU36に送信される。自動運転ECU36は、認証機器39から送信される情報に基づいて、タイヤの直径φa等の情報を取得する。自動運転ECU36は、タイヤの半径の基準値φbをタイヤの直径φaにより除算することにより係数を演算する。
For example, there is a possibility that the ideal radius r1 of the tire changes due to inch-up or the like when the tire is replaced. Therefore, the automatic operation ECU 36 of the present modification corrects the ideal radius r1 of the tire by multiplying the ideal radius r1 of the tire by a coefficient.
Specifically, as indicated by a broken line in FIG. 1, the vehicle system 10 further includes an authentication device 39. The authentication device 39 is a device for acquiring information such as a tire diameter φa and a tire type by reading authentication information provided on the tire or the wheel. The authentication information is, for example, a barcode. Information read by the authentication device 39 is transmitted to the automatic driving ECU 36. The automatic driving ECU 36 acquires information such as the tire diameter φa based on the information transmitted from the authentication device 39. The automatic operation ECU 36 calculates a coefficient by dividing the reference value φb of the tire radius by the tire diameter φa.
 このような構成であれば、より高い精度でタイヤの理想的な半径r1を演算することができるため、タイヤの状態が自動運転に適した状態であるか否かを、より的確に判定することができる。
 <第2実施形態>
 次に、自動運転ECU36の第2実施形態について説明する。以下、第1実施形態の自動運転ECU36との相違点を中心に説明する。
With such a configuration, since the ideal radius r1 of the tire can be calculated with higher accuracy, it is possible to more accurately determine whether or not the tire is in a state suitable for automatic driving. Can do.
Second Embodiment
Next, a second embodiment of the automatic operation ECU 36 will be described. Hereinafter, the difference from the automatic operation ECU 36 of the first embodiment will be mainly described.
 図1に破線で示されるように、本実施形態の車両システム10は、空気圧センサ40を更に備えている。空気圧センサ40は、車両の各タイヤの空気圧Ptを検出するとともに、検出された空気圧Ptに応じた信号を自動運転ECU36に出力する。自動運転ECU36は、空気圧センサ40により検出される各タイヤの空気圧Ptに基づいて、タイヤの状態が自動運転に適した状態であるか否かを判定する。 As shown by a broken line in FIG. 1, the vehicle system 10 of this embodiment further includes an air pressure sensor 40. The air pressure sensor 40 detects the air pressure Pt of each tire of the vehicle and outputs a signal corresponding to the detected air pressure Pt to the automatic operation ECU 36. Based on the tire pressure Pt detected by the air pressure sensor 40, the automatic driving ECU 36 determines whether the tire is in a state suitable for automatic driving.
 具体的には、車両が手動運転で操作されている場合、自動運転ECU36は、図4に示される処理に代えて、図9に示される処理を所定の周期で繰り返し実行する。図9に示されるように、自動運転ECU36がステップS11の処理で肯定判断した場合、すなわち自動運転の開始操作が操作装置34に対して行われた場合には、タイヤ状態判定部361が、ステップS30の処理として、全てのタイヤの空気圧Ptが「Pt1≦Pt≦Pt2」なる関係を満たしているか否かを判定する。なお、所定値Pt1,Pt2は、予め設定されている値であり、自動運転ECU36のメモリに記憶されている。 Specifically, when the vehicle is operated by manual driving, the automatic driving ECU 36 repeatedly executes the process shown in FIG. 9 at a predetermined cycle instead of the process shown in FIG. As shown in FIG. 9, when the automatic driving ECU 36 makes a positive determination in the process of step S <b> 11, that is, when an operation for starting automatic driving is performed on the operating device 34, the tire condition determining unit 361 In the process of S30, it is determined whether or not the air pressure Pt of all tires satisfies the relationship “Pt1 ≦ Pt ≦ Pt2”. The predetermined values Pt1 and Pt2 are preset values and are stored in the memory of the automatic operation ECU 36.
 タイヤ状態判定部361は、ステップS30の処理で肯定判断した場合には、タイヤの状態が自動運転に適した状態であると判定する。この場合、自動運転制御部360は、ステップS13の処理として、自動運転制御を開始する。
 タイヤ状態判定部361は、ステップS30の処理で否定判断した場合には、タイヤの状態が自動運転に適した状態でないと判定する。この場合、自動運転制御部360は、ステップS14の処理として、自動運転制御を制限する。
If the tire state determination unit 361 makes an affirmative determination in step S30, the tire state determination unit 361 determines that the tire state is suitable for automatic driving. In this case, the automatic operation control unit 360 starts automatic operation control as the process of step S13.
If a negative determination is made in step S30, the tire condition determination unit 361 determines that the tire condition is not suitable for automatic driving. In this case, the automatic operation control unit 360 restricts automatic operation control as the process of step S14.
 自動運転ECU36は、車両が自動運転で操作されている場合、図5に示される処理に代えて、図10に示される処理を所定の周期で繰り返し実行する。図10に示される処理では、まず、タイヤ状態判定部361が、ステップS40の処理として、全てのタイヤの空気圧Ptが「Pt1≦Pt≦Pt2」なる関係を満たしているか否かを判定する。タイヤ状態判定部361がステップS40の処理で肯定判断した場合には、すなわちタイヤの状態が自動運転に適した状態である場合には、自動運転ECU36は一連の処理を一旦終了する。 When the vehicle is operated by automatic driving, the automatic driving ECU 36 repeatedly executes the process shown in FIG. 10 at a predetermined cycle instead of the process shown in FIG. In the process shown in FIG. 10, first, the tire state determination unit 361 determines whether or not the air pressure Pt of all tires satisfies the relationship “Pt1 ≦ Pt ≦ Pt2” as the process of step S40. If the tire state determination unit 361 makes an affirmative determination in step S40, that is, if the tire state is suitable for automatic driving, the automatic driving ECU 36 once ends a series of processing.
 タイヤ状態判定部361がステップS40の処理で否定判断した場合には、すなわちタイヤの状態が自動運転に適した状態でない場合には、自動運転制御部360は、ステップS22の処理として、手動運転への権限移譲処理、あるいは自動運転制御の制限を行う。
 以上説明した本実施形態の自動運転ECU36によれば、第1実施形態による(1),(3)~(6)の作用及び効果に加え、以下の(7)に示される作用及び効果を得ることができる。
If the tire state determination unit 361 makes a negative determination in step S40, that is, if the tire state is not suitable for automatic driving, the automatic driving control unit 360 proceeds to manual driving as processing in step S22. The authority transfer process or automatic operation control is restricted.
According to the automatic operation ECU 36 of the present embodiment described above, in addition to the operations and effects (1), (3) to (6) according to the first embodiment, the operations and effects shown in the following (7) are obtained. be able to.
 (7)タイヤ状態判定部361は、タイヤの空気圧Ptを検出するとともに、タイヤの空気圧Ptが所定の範囲から外れることに基づいて、タイヤの状態が自動運転に適した状態でないと判定する。これにより、タイヤの状態が自動運転に適した状態であるか否かを容易に判定することができる。 (7) The tire condition determination unit 361 detects the tire pressure Pt and determines that the tire condition is not suitable for automatic driving based on the tire pressure Pt being out of a predetermined range. Thereby, it can be easily determined whether or not the tire is in a state suitable for automatic driving.
 <第3実施形態>
 次に、自動運転ECU36の第3実施形態について説明する。以下、第1実施形態の自動運転ECU36との相違点を中心に説明する。
 本実施形態の操作装置34には、タイヤ交換が行われた際に操作されるスイッチ等が設けられている。自動運転ECU36は、このスイッチの操作情報に基づいて、タイヤの交換時期を検出するとともに、検出された交換時期をタイヤの使用開始時期と判断する。自動運転ECU36は、タイヤの使用開始時期からの経過時間に基づいて、タイヤの状態が自動運転に適した状態であるか否かを判定する。
<Third Embodiment>
Next, a third embodiment of the automatic operation ECU 36 will be described. Hereinafter, the difference from the automatic operation ECU 36 of the first embodiment will be mainly described.
The operation device 34 according to the present embodiment is provided with a switch or the like that is operated when the tire is changed. Based on the switch operation information, the automatic operation ECU 36 detects the tire replacement time and determines the detected replacement time as the tire use start time. The automatic driving ECU 36 determines whether or not the tire is in a state suitable for automatic driving based on the elapsed time from the tire use start timing.
 具体的には、車両が手動運転で操作されている場合、自動運転ECU36は、図4に示される処理に代えて、図11に示される処理を所定の周期で繰り返し実行する。図11に示されるように、タイヤ状態判定部361は、まず、ステップS50の処理として、タイヤの使用が開始されたか否かを判定する。タイヤ状態判定部361は、ステップS50の処理で肯定判断した場合には、すなわちタイヤの使用が開始された場合には、ステップS51の処理として、計測時間Tmをリセットする。 Specifically, when the vehicle is operated by manual driving, the automatic driving ECU 36 repeatedly executes the process shown in FIG. 11 at a predetermined cycle instead of the process shown in FIG. As shown in FIG. 11, the tire condition determination unit 361 first determines whether or not the use of the tire has been started as the process of step S50. When the tire state determination unit 361 makes an affirmative determination in the process of step S50, that is, when the use of the tire is started, the measurement time Tm is reset as the process of step S51.
 タイヤ状態判定部361は、ステップS51の処理を実行した後、ステップS52の処理として、計測時間Tmのカウント処理を行う。また、タイヤ状態判定部361は、ステップS50の処理で否定判定した場合にも、すなわちタイヤの使用中である場合にも、ステップS52の処理として、計測時間Tmのカウント処理を行う。すなわち、計測時間Tmは、タイヤの使用が開始された時点からの経過時間に相当する。 The tire state determination unit 361 performs the process of step S51, and then performs the count process of the measurement time Tm as the process of step S52. Further, the tire state determination unit 361 performs the counting process of the measurement time Tm as the process of step S52 even when a negative determination is made in the process of step S50, that is, when the tire is being used. That is, the measurement time Tm corresponds to the elapsed time from the time when the use of the tire is started.
 自動運転制御部360は、ステップS52に続いて、ステップS11の処理として、自動運転の開始操作が行われたか否かを判断する。自動運転制御部360がステップS11の処理で肯定判断した場合には、すなわち自動運転の開始操作が行われた場合には、タイヤ状態判定部361は、ステップS53の処理として、計測時間Tmが所定時間Tth以下であるか否かを判断する。 The automatic operation control unit 360 determines whether or not an automatic operation start operation has been performed as a process of step S11 following step S52. When the automatic driving control unit 360 makes an affirmative determination in the process of step S11, that is, when an automatic driving start operation is performed, the tire state determination unit 361 sets a predetermined measurement time Tm as the process of step S53. It is determined whether or not the time Tth or less.
 タイヤ状態判定部361は、ステップS53の処理で肯定判断した場合には、すなわち計測時間Tmが所定時間Tth以下である場合には、タイヤの状態が自動運転に適した状態であると判定する。この場合、自動運転制御部360は、ステップS13の処理として、自動運転制御を開始する。 If the tire state determination unit 361 makes an affirmative determination in step S53, that is, if the measurement time Tm is equal to or shorter than the predetermined time Tth, the tire state determination unit 361 determines that the tire state is suitable for automatic driving. In this case, the automatic operation control unit 360 starts automatic operation control as the process of step S13.
 タイヤ状態判定部361は、ステップS53の処理で否定判断した場合には、すなわち計測時間Tmが所定時間Tthを超えている場合には、タイヤの状態が自動運転に適した状態でないと判定する。この場合、自動運転制御部360は、ステップS14の処理として、自動運転制御を制限する。 If the tire state determination unit 361 makes a negative determination in the process of step S53, that is, if the measurement time Tm exceeds the predetermined time Tth, the tire state determination unit 361 determines that the tire state is not suitable for automatic driving. In this case, the automatic operation control unit 360 restricts automatic operation control as the process of step S14.
 自動運転ECU36は、車両が自動運転で操作されている場合、図5に示される処理に代えて、図12に示される処理を所定の周期で繰り返し実行する。図12に示される処理では、まず、タイヤ状態判定部361が、ステップS60の処理として、計測時間Tmのカウント処理を行うとともに、ステップS61の処理として、計測時間Tmが所定時間Tth以下であるか否かを判断する。タイヤ状態判定部361がステップS61の処理で肯定判断した場合には、すなわちタイヤの状態が自動運転に適した状態である場合には、自動運転ECU36は一連の処理を一旦終了する。 When the vehicle is operated by automatic driving, the automatic driving ECU 36 repeatedly executes the process shown in FIG. 12 at a predetermined period instead of the process shown in FIG. In the process shown in FIG. 12, first, the tire state determination unit 361 performs the counting process of the measurement time Tm as the process of step S60, and as the process of step S61, is the measurement time Tm equal to or less than the predetermined time Tth? Judge whether or not. If the tire state determination unit 361 makes an affirmative determination in step S61, that is, if the tire state is suitable for automatic driving, the automatic driving ECU 36 once ends a series of processing.
 タイヤ状態判定部361がステップS61の処理で否定判断した場合には、すなわちタイヤの状態が自動運転に適した状態でない場合には、自動運転制御部360は、ステップS22の処理として、手動運転への権限移譲処理、あるいは自動運転制御の制限を行う。
 以上説明した本実施形態の自動運転ECU36によれば、第1実施形態による(1),(3)~(6)の作用及び効果に加え、以下の(8)に示される作用及び効果を得ることができる。
If the tire condition determination unit 361 makes a negative determination in step S61, that is, if the tire condition is not suitable for automatic driving, the automatic driving control unit 360 proceeds to manual driving as processing in step S22. The authority transfer process or automatic operation control is restricted.
According to the automatic operation ECU 36 of the present embodiment described above, in addition to the operations and effects of (1), (3) to (6) according to the first embodiment, the operations and effects shown in the following (8) are obtained. be able to.
 (8)タイヤ状態判定部361は、タイヤの使用開始時期から所定時間Tthが経過していることに基づいて、タイヤの状態が自動運転に適した状態でないと判定する。これにより、タイヤの状態が自動運転に適した状態であるか否かを容易に判定することができる。
 <第4実施形態>
 次に、自動運転ECU36の第4実施形態について説明する。以下、第3実施形態の自動運転ECU36との相違点を中心に説明する。
(8) The tire condition determination unit 361 determines that the condition of the tire is not suitable for automatic driving based on the fact that the predetermined time Tth has elapsed from the tire use start timing. Thereby, it can be easily determined whether or not the tire is in a state suitable for automatic driving.
<Fourth embodiment>
Next, a fourth embodiment of the automatic operation ECU 36 will be described. Hereinafter, the difference from the automatic operation ECU 36 of the third embodiment will be mainly described.
 本実施形態の自動運転ECU36は、タイヤの使用開始時期からの車両の走行距離に基づいて、タイヤの状態が自動運転に適した状態であるか否かを判定する。
 具体的には、車両が手動運転で操作されている場合、自動運転ECU36は、図11に示される処理に代えて、図13に示される処理を所定の周期で繰り返し実行する。図13に示されるように、タイヤ状態判定部361は、ステップS50の処理で肯定判断した場合には、すなわちタイヤの使用が開始された場合には、ステップS70の処理として、計測距離dmをリセットする。
The automatic driving ECU 36 of the present embodiment determines whether or not the tire is in a state suitable for automatic driving based on the travel distance of the vehicle from the tire use start time.
Specifically, when the vehicle is operated by manual driving, the automatic driving ECU 36 repeatedly executes the process shown in FIG. 13 at a predetermined period instead of the process shown in FIG. As shown in FIG. 13, when the tire state determination unit 361 makes an affirmative determination in the process of step S50, that is, when the use of the tire is started, the measurement distance dm is reset as the process of step S70. To do.
 タイヤ状態判定部361は、ステップS70の処理を実行した場合、ステップS71の処理として、計測距離dmのカウント処理を行う。この計測距離dmのカウント処理は、例えば第1実施形態の第5変形例の式f3を利用して行われる。また、タイヤ状態判定部361は、ステップS50の処理で否定判定した場合にも、すなわちタイヤの使用中である場合にも、ステップS71の処理として、計測距離dmのカウント処理を行う。すなわち、計測距離dmは、タイヤの使用が開始された時点からの車両の走行距離に相当する。 When the process of step S70 is executed, the tire state determination unit 361 performs a count process of the measurement distance dm as the process of step S71. The counting process of the measurement distance dm is performed using, for example, the expression f3 of the fifth modification example of the first embodiment. In addition, the tire state determination unit 361 performs the measurement distance dm counting process as the process of step S71 even when a negative determination is made in the process of step S50, that is, when the tire is being used. That is, the measurement distance dm corresponds to the travel distance of the vehicle from the time when the use of the tire is started.
 自動運転制御部360は、ステップS71に続いて、ステップS11の処理として、自動運転の開始操作が行われたか否かを判断する。自動運転制御部360がステップS11の処理で肯定判断した場合には、すなわち自動運転の開始操作が行われた場合には、タイヤ状態判定部361は、ステップS72の処理として、計測距離dmが所定距離dth以下であるか否かを判断する。 The automatic operation control unit 360 determines whether or not an automatic operation start operation has been performed as a process of step S11 following step S71. When the automatic driving control unit 360 makes an affirmative determination in the process of step S11, that is, when an automatic driving start operation is performed, the tire state determination unit 361 determines that the measurement distance dm is a predetermined value as the process of step S72. It is determined whether or not the distance is less than dth.
 タイヤ状態判定部361は、ステップS72の処理で肯定判断した場合には、すなわち計測距離dmが所定距離dth以下である場合には、タイヤの状態が自動運転に適した状態であると判定する。この場合、自動運転制御部360は、ステップS13の処理として、自動運転制御を開始する。 If the tire state determination unit 361 makes an affirmative determination in step S72, that is, if the measurement distance dm is equal to or less than the predetermined distance dth, the tire state determination unit 361 determines that the tire state is suitable for automatic driving. In this case, the automatic operation control unit 360 starts automatic operation control as the process of step S13.
 タイヤ状態判定部361は、ステップS72の処理で否定判断した場合には、すなわち計測距離dmが所定距離dthを超えている場合には、タイヤの状態が自動運転に適した状態でないと判定する。この場合、自動運転制御部360は、ステップS14の処理として、自動運転制御を制限する。 The tire state determination unit 361 determines that the tire state is not suitable for automatic driving when a negative determination is made in step S72, that is, when the measurement distance dm exceeds the predetermined distance dth. In this case, the automatic operation control unit 360 restricts automatic operation control as the process of step S14.
 自動運転ECU36は、車両が自動運転で操作されている場合、図12に示される処理に代えて、図14に示される処理を所定の周期で繰り返し実行する。図14に示される処理では、まず、タイヤ状態判定部361が、ステップS80の処理として、計測時間Tmのカウント処理を行うとともに、ステップS81の処理として、計測距離dmが所定距離dth以下であるか否かを判断する。タイヤ状態判定部361がステップS81の処理で肯定判断した場合には、すなわちタイヤの状態が自動運転に適した状態である場合には、自動運転ECU36は一連の処理を一旦終了する。 When the vehicle is operated by automatic driving, the automatic driving ECU 36 repeatedly executes the process shown in FIG. 14 at a predetermined period instead of the process shown in FIG. In the process illustrated in FIG. 14, first, the tire state determination unit 361 performs a count process of the measurement time Tm as a process of step S80, and as a process of step S81, is the measurement distance dm equal to or less than a predetermined distance dth? Judge whether or not. If the tire state determination unit 361 makes an affirmative determination in step S81, that is, if the tire state is suitable for automatic driving, the automatic driving ECU 36 once ends a series of processing.
 タイヤ状態判定部361がステップS81の処理で否定判断した場合には、すなわちタイヤの状態が自動運転に適した状態でない場合には、自動運転制御部360は、ステップS22の処理として、手動運転への権限移譲処理、あるいは自動運転制御の制限を行う。
 以上説明した本実施形態の自動運転ECU36によれば、第3実施形態による(8)に代わる作用及び効果として、以下の(9)に示される作用及び効果を得ることができる。
If the tire condition determination unit 361 makes a negative determination in step S81, that is, if the tire condition is not suitable for automatic driving, the automatic driving control unit 360 proceeds to manual driving as processing in step S22. The authority transfer process or automatic operation control is restricted.
According to the automatic operation ECU 36 of the present embodiment described above, the following actions and effects shown in (9) can be obtained as actions and effects in place of (8) according to the third embodiment.
 (9)タイヤ状態判定部361は、タイヤの使用開始時から車両が所定距離dthだけ走行していることに基づいて、タイヤの状態が自動運転に適した状態でないと判定する。これにより、タイヤの状態が自動運転に適した状態であるか否かを容易に判定することができる。 (9) The tire condition determination unit 361 determines that the condition of the tire is not suitable for automatic driving based on the fact that the vehicle has traveled a predetermined distance dth from the start of tire use. Thereby, it can be easily determined whether or not the tire is in a state suitable for automatic driving.
 <第5実施形態>
 次に、自動運転ECU36の第5実施形態について説明する。以下、第1実施形態の自動運転ECU36との相違点を中心に説明する。
 図15に示されるように、本実施形態のタイヤ状態判定部361は、まず、ステップS90の処理として、操作装置34のスイッチの操作情報に基づいて、タイヤ交換が行われたか否かを判断する。タイヤ状態判定部361は、ステップS90の処理で肯定判断した場合には、すなわちタイヤ交換が行われた場合には、ステップS91の処理として、タイヤの認証を行う。具体的には、タイヤ状態判定部361は、図1に示される認証機器39を通じてタイヤの種類等の情報を取得するとともに、取得したタイヤの種類が所定の種類のタイヤであるか否かの認証を行う。所定の種類のタイヤは、自動運転車両用の認定を受けたタイヤ、例えばランフラットタイヤである。
<Fifth Embodiment>
Next, a fifth embodiment of the automatic operation ECU 36 will be described. Hereinafter, the difference from the automatic operation ECU 36 of the first embodiment will be mainly described.
As shown in FIG. 15, the tire condition determination unit 361 of the present embodiment first determines whether or not a tire has been replaced based on switch operation information of the operation device 34 as a process of step S90. . If the tire state determination unit 361 makes an affirmative determination in the process of step S90, that is, if a tire is replaced, the tire condition determination unit 361 performs tire authentication as the process of step S91. Specifically, the tire condition determination unit 361 acquires information such as the type of tire through the authentication device 39 illustrated in FIG. 1, and authenticates whether the acquired tire type is a predetermined type of tire. I do. The predetermined type of tire is a tire that has been certified for an autonomous vehicle, such as a run-flat tire.
 自動運転制御部360は、ステップS91に続いて、ステップS11の処理として、自動運転の開始操作が行われたか否かを判断する。自動運転制御部360がステップS11の処理で肯定判断した場合には、すなわち自動運転の開始操作が行われた場合には、タイヤ状態判定部361が、ステップS92の処理として、車両に装着されているタイヤの種類が自動運転用のタイヤであるか否かを判断する。タイヤ状態判定部361は、例えばステップS91の処理で認証されたタイヤの種類がランフラットタイヤである場合には、車両に装着されているタイヤの種類が自動運転用のタイヤであると判断する。すなわち、タイヤ状態判定部361は、タイヤの状態が自動運転に適した状態であると判定する。この場合、自動運転制御部360は、ステップS13の処理として、自動運転制御を開始する。 The automatic operation control unit 360 determines whether or not an automatic operation start operation has been performed as a process of step S11 following step S91. If the automatic driving control unit 360 makes an affirmative determination in step S11, that is, if an automatic driving start operation is performed, the tire state determination unit 361 is mounted on the vehicle as the processing in step S92. It is determined whether or not the type of tire being used is a tire for automatic driving. For example, when the type of tire authenticated in the process of step S91 is a run-flat tire, the tire state determination unit 361 determines that the type of tire mounted on the vehicle is a tire for automatic driving. That is, the tire condition determination unit 361 determines that the condition of the tire is suitable for automatic driving. In this case, the automatic operation control unit 360 starts automatic operation control as the process of step S13.
 タイヤ状態判定部361は、ステップS92の処理で否定判断した場合には、すなわち車両に装着されているタイヤの種類が自動運転用のタイヤでない場合には、タイヤの状態が自動運転に適した状態でないと判定する。この場合、自動運転制御部360は、ステップS14の処理として、自動運転制御を制限する。 If the tire state determination unit 361 makes a negative determination in the process of step S92, that is, if the type of tire mounted on the vehicle is not an automatic driving tire, the tire state is suitable for automatic driving. It is determined that it is not. In this case, the automatic operation control unit 360 restricts automatic operation control as the process of step S14.
 以上説明した本実施形態の自動運転ECU36によれば、第1実施形態による(1),(5),(6)に示される作用及び効果に加え、以下の(10)に示される作用及び効果を得ることができる。
 (10)タイヤ状態判定部361は、タイヤの種類が所定のタイヤの種類でないことに基づいて、タイヤの状態が自動運転に適した状態でないと判定する。所定のタイヤの種類は、自動運転車両用に認定を受けたタイヤ、例えばランフラットタイヤである。これにより、タイヤの状態が自動運転に適した状態であるか否かを容易に判定することができる。
According to the automatic operation ECU 36 of the present embodiment described above, in addition to the actions and effects shown in (1), (5), and (6) according to the first embodiment, the actions and effects shown in the following (10). Can be obtained.
(10) The tire state determination unit 361 determines that the tire state is not suitable for automatic driving based on the fact that the tire type is not the predetermined tire type. The predetermined tire type is a tire that has been certified for an autonomous driving vehicle, such as a run-flat tire. Thereby, it can be easily determined whether or not the tire is in a state suitable for automatic driving.
 <他の実施形態>
 なお、各実施形態は、以下の形態にて実施することもできる。
 ・第1実施形態のタイヤ状態判定部361は、偏差Δrに代えて、タイヤの理想的な半径r1とタイヤの実際の半径の平均値r2aとの比率を用いてもよい。同様に、第1実施形態の第4変形例のタイヤ状態判定部361は、偏差ΔVに代えて、車両の理想的な走行速度の平均値V1aと、車両の実際の走行速度の平均値V2aとの比率を用いてもよい。また、第1実施形態の第5変形例のタイヤ状態判定部361は、偏差Δdに代えて、車両の理想的な走行距離の平均値d1aと、車両の実際の走行距離の平均値d2aとの比率を用いてもよい。
<Other embodiments>
In addition, each embodiment can also be implemented with the following forms.
The tire state determination unit 361 of the first embodiment may use a ratio between the ideal radius r1 of the tire and the average value r2a of the actual radius of the tire instead of the deviation Δr. Similarly, the tire condition determination unit 361 of the fourth modification example of the first embodiment replaces the deviation ΔV with an average value V1a of the ideal traveling speed of the vehicle and an average value V2a of the actual traveling speed of the vehicle. The ratio may be used. Further, the tire condition determination unit 361 of the fifth modification of the first embodiment replaces the deviation Δd with an average value d1a of the ideal travel distance of the vehicle and an average value d2a of the actual travel distance of the vehicle. A ratio may be used.
 ・第2実施形態の自動運転ECU36では、各タイヤの空気圧Ptの検出方法を適宜変更してもよい。例えば「米国特許出願公開第2014/0327535号明細書」に記載されている方法を用いて各タイヤの空気圧Ptが自動運転に適していない状態であることを検出してもよい。より具体的には、図1に示すように、タイヤ状態判定部361にて空気圧センサ40にて検出されたタイヤ空気圧から演算したタイヤ半径と、車輪速センサ41にて検出された車輪速と、GPS42にて検出された位置情報と、慣性センサ43にて検出された加速度等の慣性情報とを所定の物理モデルに入力することで演算したタイヤ半径とを比較し、比較結果に基づいてタイヤの空気圧が自動運転に適しているかどうかを判定するようにしてもよい。
 ・第3及び第4実施形態のタイヤ状態判定部361は、タイヤの使用開始時期に代えて、タイヤの製造時期を用いてもよい。この場合、タイヤ状態判定部361は、図1に示される認証機器39により取得されるタイヤの情報に基づいて、タイヤの製造時期を取得する。
-In automatic operation ECU36 of 2nd Embodiment, you may change the detection method of the air pressure Pt of each tire suitably. For example, it may be detected that the air pressure Pt of each tire is not suitable for automatic driving using a method described in “US Patent Application Publication No. 2014/0327535”. More specifically, as shown in FIG. 1, the tire radius calculated from the tire air pressure detected by the air pressure sensor 40 in the tire state determination unit 361, the wheel speed detected by the wheel speed sensor 41, The position information detected by the GPS 42 is compared with the tire radius calculated by inputting the inertia information such as acceleration detected by the inertia sensor 43 into a predetermined physical model. It may be determined whether the air pressure is suitable for automatic operation.
The tire condition determination unit 361 of the third and fourth embodiments may use the tire manufacturing time instead of the tire use starting time. In this case, the tire condition determination unit 361 acquires the tire manufacturing time based on the tire information acquired by the authentication device 39 shown in FIG.
 ・回転センサ22の位置は適宜変更可能である。例えば回転センサ22は、車両のドライブシャフトの回転速度を検出するものであってもよい。また、回転センサ22の設置箇所に応じて、減速比RGの値を適宜変更してもよい。さらに、タイヤ状態判定部361は、回転センサ22により検出される実際の回転速度とその理想値とを比較することにより、タイヤの摩耗量を推定してもよい。 · The position of the rotation sensor 22 can be changed as appropriate. For example, the rotation sensor 22 may detect the rotation speed of the drive shaft of the vehicle. Further, the value of the reduction ratio RG may be changed as appropriate according to the installation location of the rotation sensor 22. Further, the tire condition determination unit 361 may estimate the amount of tire wear by comparing the actual rotation speed detected by the rotation sensor 22 with its ideal value.
 ・タイヤ状態判定部361は、GPS等を用いて車両の経時的な位置情報を取得するとともに、取得した車両の経時的な位置情報に基づいて車両の実際の走行速度V2や車両の実際の走行距離d2を検出してもよい。また、タイヤ状態判定部361は、GPS等を用いて検出された車両の実際の走行速度V2から式f1を用いてタイヤの実際の半径r2を演算してもよい。 The tire condition determination unit 361 acquires time-dependent position information of the vehicle using GPS or the like, and based on the acquired time-dependent position information of the vehicle, the actual traveling speed V2 of the vehicle or the actual traveling of the vehicle The distance d2 may be detected. The tire condition determination unit 361 may calculate the actual tire radius r2 using the equation f1 from the actual vehicle traveling speed V2 detected using GPS or the like.
 ・自動運転ECU36が提供する手段及び/又は機能は、実体的なメモリに記憶されたソフトウェア及びそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組み合わせにより提供することができる。例えば自動運転ECU36がハードウェアである電子回路により提供される場合、それは多数の論理回路を含むデジタル回路、又はアナログ回路により提供することができる。 The means and / or functions provided by the automatic operation ECU 36 can be provided by software stored in a substantial memory and a computer that executes the software, only software, only hardware, or a combination thereof. For example, when the autonomous driving ECU 36 is provided by an electronic circuit which is hardware, it can be provided by a digital circuit including a large number of logic circuits or an analog circuit.
 ・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 ・ This disclosure is not limited to the above specific examples. Any of the above specific examples that are appropriately modified by those skilled in the art are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the specific examples described above, and the arrangement, conditions, shape, and the like thereof are not limited to those illustrated, and can be appropriately changed. Each element included in each of the specific examples described above can be appropriately combined as long as no technical contradiction occurs.

Claims (13)

  1.  車両の自動運転制御を実行する自動運転制御部(360)と、
     タイヤの状態が自動運転に適した状態であるか否かを判定するタイヤ状態判定部(361)と、を備え、
     前記自動運転制御部は、
     前記タイヤ状態判定部の判定結果に基づいて、前記タイヤの状態が自動運転に適した状態でないと判定した場合には、前記自動運転制御を制限する
     自動運転制御装置。
    An automatic driving control unit (360) for executing automatic driving control of the vehicle;
    A tire condition determination unit (361) that determines whether or not the condition of the tire is suitable for automatic driving,
    The automatic operation control unit is
    An automatic driving control device that restricts the automatic driving control when it is determined that the state of the tire is not suitable for automatic driving based on the determination result of the tire condition determining unit.
  2.  前記タイヤ状態判定部は、
     前記タイヤの摩耗量が所定量以上であることに基づいて、前記タイヤの状態が自動運転に適した状態でないと判定する
     請求項1に記載の自動運転制御装置。
    The tire condition determination unit
    The automatic driving control device according to claim 1, wherein the tire is determined not to be in a state suitable for automatic driving based on a wear amount of the tire being a predetermined amount or more.
  3.  前記タイヤ状態判定部は、
     前記タイヤの空気圧が所定の範囲から外れていることに基づいて、前記タイヤの状態が自動運転に適した状態でないと判定する
     請求項1に記載の自動運転制御装置。
    The tire condition determination unit
    The automatic driving control device according to claim 1, wherein it is determined that the tire is not in a state suitable for automatic driving based on the fact that the tire air pressure is out of a predetermined range.
  4.  前記タイヤ状態判定部は、
     前記タイヤの製造時期から所定時間が経過していること、または前記タイヤの使用開始時期から所定時間が経過していることに基づいて、前記タイヤの状態が自動運転に適した状態でないと判定する
     請求項1に記載の自動運転制御装置。
    The tire condition determination unit
    Based on the fact that a predetermined time has elapsed from the manufacturing time of the tire or that a predetermined time has elapsed since the use start time of the tire, it is determined that the state of the tire is not suitable for automatic driving. The automatic operation control device according to claim 1.
  5.  前記タイヤ状態判定部は、
     前記タイヤの製造時から前記車両が所定距離だけ走行していること、あるいは前記タイヤの使用開始時から前記車両が所定距離だけ走行していることに基づいて、前記タイヤの状態が自動運転に適した状態でないと判定する
     請求項1に記載の自動運転制御装置。
    The tire condition determination unit
    Based on the fact that the vehicle has traveled a predetermined distance since the manufacture of the tire, or that the vehicle has traveled a predetermined distance since the start of use of the tire, the condition of the tire is suitable for automatic driving. The automatic operation control device according to claim 1, wherein the automatic operation control device is determined to be not in a state in which the vehicle is not in a state.
  6.  前記タイヤ状態判定部は、
     前記タイヤの種類が所定のタイヤの種類でないことに基づいて、前記タイヤの状態が自動運転に適した状態でないと判定する
     請求項1に記載の自動運転制御装置。
    The tire condition determination unit
    The automatic driving control device according to claim 1, wherein the tire state is determined not to be a state suitable for automatic driving based on the tire type not being a predetermined tire type.
  7.  前記所定のタイヤの種類は、自動運転車両用に認定を受けたタイヤである
     請求項6に記載の自動運転制御装置。
    The automatic driving control apparatus according to claim 6, wherein the predetermined tire type is a tire that has been certified for an autonomous driving vehicle.
  8.  前記所定のタイヤの種類は、ランフラットタイヤである
     請求項6に記載の自動運転制御装置。
    The automatic operation control device according to claim 6, wherein the predetermined tire type is a run-flat tire.
  9.  前記自動運転制御部は、
     前記自動運転制御を開始する前に、前記タイヤの状態が自動運転に適した状態であるか否かを判定する
     請求項1~8のいずれか一項に記載の自動運転制御装置。
    The automatic operation control unit is
    The automatic driving control device according to any one of claims 1 to 8, wherein before starting the automatic driving control, it is determined whether or not the tire is in a state suitable for automatic driving.
  10.  前記自動運転制御部は、
     前記自動運転制御を実行している期間に、前記タイヤの状態が自動運転に適した状態であるか否かを判定する
     請求項1~8のいずれか一項に記載の自動運転制御装置。
    The automatic operation control unit is
    The automatic driving control device according to any one of claims 1 to 8, wherein it is determined whether or not the tire is in a state suitable for automatic driving during a period of executing the automatic driving control.
  11.  前記自動運転制御部は、
     前記自動運転制御の制限として、前記自動運転制御の機能の一部を制限する
     請求項1~10のいずれか一項に記載の自動運転制御装置。
    The automatic operation control unit is
    The automatic driving control device according to any one of claims 1 to 10, wherein a part of the function of the automatic driving control is limited as the limitation of the automatic driving control.
  12.  前記自動運転制御部は、
     前記自動運転制御の制限として、前記車両の動力機能、前記車両の制動機能、及び前記車両の操舵機能のうちの少なくとも一つの機能を制限する
     請求項11に記載の自動運転制御装置。
    The automatic operation control unit is
    The automatic driving control device according to claim 11, wherein at least one of a power function of the vehicle, a braking function of the vehicle, and a steering function of the vehicle is limited as the limitation of the automatic driving control.
  13.  前記自動運転制御部は、
     前記自動運転制御の制限として、前記自動運転制御を禁止する
     請求項1~10のいずれか一項に記載の自動運転制御装置。
    The automatic operation control unit is
    The automatic operation control device according to any one of claims 1 to 10, wherein the automatic operation control is prohibited as a limitation of the automatic operation control.
PCT/JP2018/004671 2017-03-29 2018-02-09 Automatic drive control device WO2018179910A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-064991 2017-03-29
JP2017064991A JP6790960B2 (en) 2017-03-29 2017-03-29 Automatic operation control device

Publications (1)

Publication Number Publication Date
WO2018179910A1 true WO2018179910A1 (en) 2018-10-04

Family

ID=63675066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004671 WO2018179910A1 (en) 2017-03-29 2018-02-09 Automatic drive control device

Country Status (2)

Country Link
JP (1) JP6790960B2 (en)
WO (1) WO2018179910A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7180354B2 (en) * 2018-12-14 2022-11-30 株式会社Soken Tire wear detector
CN109808709B (en) * 2019-01-15 2021-08-03 北京百度网讯科技有限公司 Vehicle driving guarantee method, device and equipment and readable storage medium
JP2023081213A (en) * 2021-11-30 2023-06-09 株式会社ブリヂストン Information processing device, information processing method, program, operation control device, operation control method, and program
KR20230108932A (en) * 2022-01-12 2023-07-19 주식회사 미래오토스 Braking assistance system and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016016812A (en) * 2014-07-10 2016-02-01 高周波粘弾性株式会社 Operation control device, automobile, and operation control method
JP2016088334A (en) * 2014-11-06 2016-05-23 本田技研工業株式会社 Automatic-drive control apparatus
WO2016080452A1 (en) * 2014-11-19 2016-05-26 エイディシーテクノロジー株式会社 Automatic driving control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016016812A (en) * 2014-07-10 2016-02-01 高周波粘弾性株式会社 Operation control device, automobile, and operation control method
JP2016088334A (en) * 2014-11-06 2016-05-23 本田技研工業株式会社 Automatic-drive control apparatus
WO2016080452A1 (en) * 2014-11-19 2016-05-26 エイディシーテクノロジー株式会社 Automatic driving control device

Also Published As

Publication number Publication date
JP2018167645A (en) 2018-11-01
JP6790960B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
WO2018179910A1 (en) Automatic drive control device
US10077050B2 (en) Automated driving system for evaluating lane cut-out and method of using the same
JP7001349B2 (en) Automatic operation control device
CN106515734B (en) Method for automatically adapting acceleration in a motor vehicle
US9487212B1 (en) Method and system for controlling vehicle with automated driving system
KR101320223B1 (en) Method and system for assisting a driver when parking or manoeuvring a motor vehicle
KR101675586B1 (en) Method, control device and system for determining a profile depth of a profile of a tyre
US20130124061A1 (en) System and method for determining a speed of a vehicle
US11565706B2 (en) Method and apparatus for controlling terrain mode using road condition judgement model based on deep learning
CN105774691A (en) Parking auxiliary system for vehicle and corresponding vehicle
US8935072B2 (en) Method for determining the speed of a vehicle and vehicle
US11217045B2 (en) Information processing system and server
US10564662B2 (en) Systems and methods for determining pedal actuator states
US10814907B2 (en) Steering correction for steer-by-wire
KR20200119932A (en) Autonomous vehicle and diagnosis method therefor
JP7368181B2 (en) Wear amount estimation system and calculation model generation system
WO2019244522A1 (en) Steering control device
CN107719373B (en) Method and system for estimating road friction
US10970945B2 (en) Control apparatus for vehicle and control method for vehicle
JP6756273B2 (en) Automatic operation control device
JP2011123734A (en) Position correction device and method, and driving support device
US11453402B2 (en) Method for determining the fatigue of a driver and appropriate device
US20230101031A1 (en) Vehicle assist server, processing method for vehicle assist server, and storage medium
JP6027477B2 (en) Vehicle forward / reverse determination device
US20240096143A1 (en) Information processing device, vehicle, and information processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775914

Country of ref document: EP

Kind code of ref document: A1