WO2018179726A1 - 二軸配向ポリエステルフィルム及びその製造方法 - Google Patents

二軸配向ポリエステルフィルム及びその製造方法 Download PDF

Info

Publication number
WO2018179726A1
WO2018179726A1 PCT/JP2018/001900 JP2018001900W WO2018179726A1 WO 2018179726 A1 WO2018179726 A1 WO 2018179726A1 JP 2018001900 W JP2018001900 W JP 2018001900W WO 2018179726 A1 WO2018179726 A1 WO 2018179726A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin composition
biaxially oriented
oriented polyester
polybutylene terephthalate
Prior art date
Application number
PCT/JP2018/001900
Other languages
English (en)
French (fr)
Inventor
考道 後藤
昇 玉利
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to US16/494,552 priority Critical patent/US20200009777A1/en
Priority to CN201880021674.6A priority patent/CN110494476A/zh
Priority to KR1020197030711A priority patent/KR20190125491A/ko
Priority to EP18774777.9A priority patent/EP3604401A4/en
Priority to JP2019508612A priority patent/JPWO2018179726A1/ja
Publication of WO2018179726A1 publication Critical patent/WO2018179726A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a polyester film used for packaging materials for contents that require heat sterilization at high temperatures such as boil sterilization and retort sterilization. More specifically, the present invention relates to a biaxially oriented polyester film that has excellent impact resistance, flex resistance, mechanical strength, and uniform mechanical properties, and is less likely to elute oligomer components contained in the film, and a method for producing the same. .
  • a packaging material for boil sterilization treatment or retort sterilization treatment for example, a laminate laminate in which at least a film base layer having a transparent gas barrier property, an adhesive layer, and a sealant film layer are laminated in this order is used. ing.
  • a technique using a biaxially stretched multilayer film obtained by biaxially stretching a multilayer sheet composed of a polyester resin layer and a polyamide resin layer as a film base layer having a transparent gas barrier property is disclosed (for example, a patent) Reference 1 etc.).
  • a packaging material for boil sterilization treatment or retort sterilization treatment excellent in low elution property of various chemical substances can be obtained.
  • a polyester-based material is obtained. Since peeling easily occurs at the interface between the resin layer and the polyamide-based resin layer, there is a problem that the bag is broken when the bag is dropped and the contents are likely to leak.
  • any of a polybutylene terephthalate resin or a polyester-based resin composition containing at least 70% by weight of a polybutylene terephthalate resin and 30% by weight or less of another resin such as a polyethylene terephthalate resin as a film used for the base material layer A technique using a biaxially oriented polybutylene terephthalate film made of the above is disclosed. (For example, Patent Document 2) According to this technique, it is difficult to break the bag even if a bag made from a packaging material using the same is dropped.
  • the biaxially oriented polybutylene terephthalate film mainly contains oligomer components such as cyclic dimers and cyclic trimers, and these oligomer components undergo high-temperature heat treatment such as retort sterilization treatment.
  • oligomer components such as cyclic dimers and cyclic trimers
  • undergo high-temperature heat treatment such as retort sterilization treatment.
  • survives in a film tends to elute, and there existed a problem which caused the fall of the external appearance quality of a film and impaired the flavor of the content.
  • other film characteristics had to be improved.
  • the object of the present invention is to provide an excellent impact resistance, bending resistance, and uniform mechanical properties suitable for food packaging materials subjected to boil sterilization or retort sterilization, and an oligomer contained in a film.
  • the object is to provide a biaxially oriented polyester film in which components are hardly eluted.
  • FDA US Food and Drug Administration
  • the present inventor made the amount of oligomers contained in the biaxially oriented polybutylene terephthalate film below a specific range, and made the thickness accuracy of the biaxially oriented polyester film uniform.
  • the content of oligomer components contained in the film is equivalent. Even so, it has been found that the elution of oligomer components in the film can be within a specific range after retort sterilization treatment or high-temperature heat treatment in a microwave oven.
  • the polybutylene terephthalate film can satisfy the criteria shown in FDA (US Food and Drug Administration) ⁇ 177.1660 (c) (2), and have completed the present invention.
  • a biaxially oriented polyester film having the following characteristics (a) to (d): (A) It consists of a resin composition containing 60% by mass or more of polybutylene terephthalate. (B) The thickness accuracy in the width direction of the film is 1 to 20%. (C) The oligomer component contained in the film is 2000 to 12000 ppm. (D) When the film is immersed in a 50% aqueous ethanol solution and heated at 66 ° C. for 2 hours, the mass of the oligomer component eluted in the 50% ethanol is 0.02 mg or less per square inch of the film. 2. 1. The plane orientation coefficient of the film is 0.136 to 0.160. The biaxially oriented polyester film described. 3. 1.
  • step (c) Molten resin Step of multilayering the composition into 60 layers or more
  • step (d) Step of obtaining a molten resin composition sheet by extruding the molten resin composition from a T die
  • step (e) Contacting the molten resin composition sheet with a cooling roll, cooling and unstretching Step of obtaining resin sheet
  • step (f) Step of biaxially stretching unstretched sheet
  • step (b) the time from when the molten resin composition reaches 240 ° C. until it is extruded from the T-die is 2 to 13 minutes. 4).
  • the biaxial stretching step is a simultaneous biaxial stretching step or a sequential biaxial stretching step. The manufacturing method of the biaxially-oriented polyester film of description.
  • the present inventors have obtained, Even if the oligomer component is contained in the film, it is difficult for the oligomer component in the film to elute even after retort sterilization treatment or high-temperature heat treatment in a microwave oven, so that the deterioration of the flavor of the contents can be suppressed, and the film The appearance quality of can be maintained.
  • the polyester resin composition used in the present invention is mainly composed of a polybutylene terephthalate (sometimes abbreviated as PBT) resin, and has a polybutylene terephthalate content of 60% by mass or more. Preferably 70 mass% or more is preferable. If it is less than 60% by mass, impact strength and pinhole resistance are lowered, and the film properties are not sufficient.
  • the polybutylene terephthalate resin used as the main constituent component is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 98 mol% or more, most preferably as the dicarboxylic acid component. Is 100 mol%.
  • 1,4-butanediol is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 97 mol% or more, and most preferably 1,4-butane during polymerization. Except for the by-product produced by the ether bond of the diol, it is not included.
  • the polybutylene terephthalate resin contains oligomer components such as linear oligomers, cyclic dimers, and cyclic trimers.
  • the total amount of these oligomers contained in the polybutylene terephthalate resin used in the present invention is preferably 12000 ppm or less, more preferably 10,000 ppm or less, and most preferably 8000 ppm or less.
  • the method for setting the amount of oligomer in the polybutylene terephthalate resin to 12000 ppm or less is not particularly limited, but it is general that the polyethylene terephthalate resin produced by melt polymerization is further subjected to solid phase polymerization.
  • the upper limit of the total amount of these oligomers contained in the polybutylene terephthalate resin used in the present invention is preferably 12000 ppm, more preferably 10,000 ppm, and particularly preferably 5000 ppm. From the viewpoint of reducing the amount of oligomers in the resulting film, it is preferable to reduce the amount of oligomers in the polybutylene terephthalate resin as much as possible. In addition, the lower limit is 2000 ppm because the effect of improving low elution and fragrance retention may be saturated.
  • the polyester resin composition used in the present invention can contain a polyester resin other than polybutylene terephthalate for the purpose of adjusting the film forming property during biaxial stretching and the mechanical properties of the obtained film.
  • Polyester resins other than polybutylene terephthalate include polyethylene terephthalate (sometimes abbreviated as PET), polyethylene naphthalate (sometimes abbreviated as PEN), polybutylene naphthalate (sometimes abbreviated as PBN), and polypropylene.
  • polyester resins such as terephthalate (sometimes abbreviated as PPT)
  • dicarboxylic acids such as isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, cyclohexanedicarboxylic acid, adipic acid, azelaic acid, and sebacic acid are copolymerized.
  • Polybutylene terephthalate resin ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, neopentyl glycol, 1,5-pentanediol, 1,6-hexene Njioru, diethylene glycol, cyclohexanediol, polyethylene glycol, polytetramethylene glycol, diol components such as polycarbonate diol is copolymerized polybutylene terephthalate resin.
  • the upper limit of the amount of the polyester resin other than polybutylene terephthalate is preferably less than 40% by mass, more preferably 30% by mass or less. If the amount of polyester resin other than polybutylene terephthalate exceeds 40% by mass, the mechanical properties of polybutylene terephthalate will be impaired, impact strength, resistance to bag breakage, pinhole resistance will be insufficient, and transparency. And gas barrier properties may decrease.
  • the lower limit of the intrinsic viscosity of the polybutylene terephthalate resin used in the present invention is preferably 0.9 dl / g, more preferably 0.95 dl / g, and still more preferably 1.0 dl / g.
  • the upper limit of the intrinsic viscosity of the polybutylene terephthalate resin is preferably 1.3 dl / g.
  • the polyester resin may contain a conventionally known additive such as a lubricant, a stabilizer, a colorant, an antioxidant, an antistatic agent, and an ultraviolet absorber as necessary.
  • the lubricant in addition to inorganic lubricants such as silica, calcium carbonate and alumina, organic lubricants are preferred, silica and calcium carbonate fine particles are more preferred, and silica fine particles are particularly preferred in terms of reducing haze.
  • the lower limit of the lubricant concentration is preferably 100 ppm, more preferably 500 ppm, and still more preferably 800 ppm. If it is less than the above, the slipperiness of the film may be lowered.
  • the upper limit of the lubricant concentration is preferably 20000 ppm, more preferably 10,000 ppm, and even more preferably 1800 ppm. When the above is exceeded, the transparency may be lowered.
  • a preferred production method for obtaining a film according to the present invention is characterized by having the following steps (a) to (f) and the following condition (g), which will be described in order. However, it is not limited to these.
  • step (c) Molten resin Step of multilayering the composition into 60 layers or more
  • step (d) Step of obtaining a molten resin composition sheet by extruding the molten resin composition from a T die
  • step (e) Contacting the molten resin composition sheet with a cooling roll, cooling and unstretching Step of obtaining resin sheet
  • step (f) Step of biaxially stretching unstretched sheet
  • step (b) the time from when the molten resin composition reaches 240 ° C. until it is extruded from the T-die is 2 to 13 minutes.
  • (A) Step of charging a resin composition containing 60% by mass or more of polybutylene terephthalate into an extruder The resin is charged into an extruder using only one extruder.
  • the resin can be put into each of two or more extruders, and the molten resin can be merged before being extruded from the T die.
  • the polyester in film production In the process of melt extrusion of raw materials, by making the resin temperature of the polyester in the extruder and the melt line from the extruder to the die as low as possible, by making the residence time in the melt line from the extruder to the die as short as possible Done.
  • the minimum of resin melting temperature is 240 degreeC, More preferably, it is 250 degreeC, More preferably, it is 260 degreeC. If it is less than the above, ejection may become unstable.
  • the upper limit of the resin melting temperature is preferably 290 ° C, more preferably 280 ° C. When the above is exceeded, decomposition of the resin proceeds, and as a result, the amount of oligomer components remaining in the film increases.
  • Step of multilayering molten resin composition to 60 layers or more a general multilayering device (multilayer feed block, static mixer, multilayer multimanifold, etc.) can be used.
  • the above-mentioned multilayering apparatus can be introduced into the melt line from the extruder to the die using only one extruder.
  • a method of laminating thermoplastic resins sent out from different flow paths using two or more extruders using a field block, a static mixer, a multi-manifold die, or the like can be used.
  • polybutylene terephthalate has a higher crystallization speed than other crystalline polyester resins such as polyethylene terephthalate, crystallization proceeds even during casting. Since the end of the unstretched original fabric after casting is difficult to cool, the degree of crystallinity tends to increase. At this time, when cast as a single layer without being multi-layered, there is no barrier that can suppress crystal growth, so the end of the unstretched raw fabric is a sphere that is larger in size than the center. Grows into crystals. That is, the difference in crystallinity in the width direction is increased.
  • Step D Step of obtaining molten resin composition sheet by extruding molten resin composition from T-die
  • a molten polyester resin is extruded from T-die and cast on a cooling roll.
  • the lower limit of the time required to pass through the melt line from the resin extruder to the die (hereinafter referred to as residence time) is preferably 2 minutes, more preferably 3 minutes. In order to make it less than the above, it is necessary to increase the discharge amount per hour in the melting / extrusion process, and the melt pressure in the melt-extrusion process becomes too high, so that the load on the extruder and the polymer filter increases.
  • the upper limit of the residence time is preferably 13 minutes, more preferably 11 minutes, and even more preferably 10 minutes.
  • (E) A step of bringing the molten resin composition sheet into contact with a cooling roll and cooling to obtain an unstretched resin sheet
  • the molten polyester resin is extruded and cast on the cooling roll.
  • the lower limit of the cooling roll temperature is preferably ⁇ 10 ° C. It is. If it is less than the above, the effect of suppressing crystallization may be saturated.
  • the upper limit of the cooling roll temperature is preferably 40 ° C. If the above is exceeded, the crystallinity becomes too high and stretching may be difficult. Further, when the temperature of the cooling roll is in the above range, it is preferable to reduce the humidity of the environment near the cooling roll in order to prevent condensation.
  • the surface of the cooling roll rises because high temperature resin contacts the surface.
  • the cooling roll is cooled by flowing cooling water through the pipe inside, but the cooling roll is secured by securing a sufficient amount of cooling water, devising the arrangement of the pipe, and performing maintenance so that sludge does not adhere to the pipe. It is necessary to reduce the temperature difference in the width direction of the surface.
  • the thickness of the unstretched sheet is preferably in the range of 15 to 2500 ⁇ m.
  • the casting in the multilayer structure described above is performed with at least 60 layers, preferably 250 layers or more, more preferably 1000 layers or more. When the number of layers is small, the effect of improving stretchability is lost.
  • the difference between the maximum thickness and the minimum thickness at the full width is preferably in the range of 0 to 20%, more preferably 0 to 15 with respect to the average thickness (thickness accuracy). % Is preferable. If it exceeds 20%, the roll appearance is deteriorated and distortion occurs during secondary processing, which is not preferable.
  • the stretching ratio in the width direction is uniform. For that purpose, it is necessary to make the crystallinity when unstretched uniform. is there.
  • the stretching method can be either simultaneous biaxial stretching or sequential biaxial stretching, but it increases the impact strength of the film and further elutes the oligomer components inherent in the film. In order to suppress this, it is necessary to increase the plane orientation coefficient, and sequential biaxial stretching is most preferable in terms of high film forming speed and high productivity.
  • the lower limit of the longitudinal stretching direction (hereinafter abbreviated as MD) stretching temperature is preferably 55 ° C, more preferably 60 ° C. If it is less than 55 ° C., breakage may easily occur, and the orientation in the longitudinal direction becomes too strong due to stretching at low temperature, and the film forming property in the biaxial stretching process is unstable due to easy breakage. In addition, an increase in the shrinkage stress during the heat setting process increases the strain in the molecular orientation in the width direction, and as a result, the linear tearing property in the longitudinal direction may decrease.
  • the upper limit of the MD stretching temperature is preferably 100 ° C, more preferably 95 ° C. If the temperature exceeds 100 ° C., the orientation is not applied, so that the mechanical properties are lowered, and the oligomer components inherent in the film may be easily eluted.
  • the lower limit of the MD draw ratio is preferably 2.6 times, particularly preferably 2.8 times. If it is less than the above, the orientation is not applied and the mechanical properties and thickness unevenness may be deteriorated. In addition, the orientational crystallization is insufficient, so that the oligomer component contained in the film is likely to be eluted.
  • the upper limit of the MD draw ratio is preferably 4.3 times, more preferably 4.0 times, and particularly preferably 3.8 times. If the above is exceeded, the orientation in the longitudinal direction becomes too strong due to stretching, and it becomes easy to break, so that the film forming property in the biaxial stretching process becomes unstable and the effect of improving the mechanical strength and thickness unevenness is saturated. In addition, since the longitudinal orientation becomes stronger, the shrinkage stress during the heat setting process increases, resulting in an increase in the distortion of the molecular orientation in the width direction, resulting in a decrease in the straight tearing property in the longitudinal direction. Sometimes.
  • the lower limit of the transverse stretching direction (hereinafter abbreviated as TD) stretching temperature is preferably 60 ° C. If it is less than the above, breakage may easily occur.
  • the upper limit of the TD stretching temperature is preferably 100 ° C, and if it exceeds the above, the orientation may not take place and the mechanical properties may deteriorate. In addition, the orientational crystallization is insufficient, and the oligomer components inherent in the film are eluted. May be easier.
  • the lower limit of the TD stretch ratio is preferably 3.5 times, more preferably 3.6 times, and particularly preferably 3.7 times. If it is less than the above, since orientation is not applied, mechanical properties and thickness unevenness may be deteriorated. In addition, orientational crystallization is insufficient, so that oligomer components present in the film may be easily eluted.
  • the upper limit of the TD stretch ratio is preferably 5 times, more preferably 4.5 times, and particularly preferably 4.0 times. If the above is exceeded, the effect of improving the mechanical strength and thickness unevenness may be saturated.
  • the lower limit of the TD heat setting temperature is preferably 200 ° C, and more preferably 205 ° C. If it is less than the above, the thermal shrinkage rate increases, and displacement or shrinkage during processing may occur.
  • the upper limit of the TD heat setting temperature is preferably 240 ° C., and if it exceeds the above, the film will melt, and even if it does not melt, it may become extremely brittle.
  • the lower limit of the TD relaxation rate is preferably 0.5%, and if it is less than the above, breakage may easily occur during heat setting.
  • the upper limit of the TD relaxation rate is preferably 5%. If the upper limit is exceeded, sagging or the like may occur and thickness unevenness may occur, and the shrinkage in the longitudinal direction during heat setting increases. The strain of molecular orientation becomes large, and the straight tearing property may be lowered.
  • the lower limit of the film thickness is preferably 3 ⁇ m, more preferably 5 ⁇ m, and even more preferably 8 ⁇ m. If it is less than 3 ⁇ m, the strength as a film may be insufficient.
  • the upper limit of the film thickness is preferably 100 ⁇ m, more preferably 75 ⁇ m, and still more preferably 50 ⁇ m. If it exceeds 100 ⁇ m, it may become too thick and processing for the purpose of the present invention may be difficult.
  • the upper limit of the thickness accuracy of the biaxially oriented polyester film of the present invention is preferably 20%, and if it exceeds 20%, the physical properties of the film become non-uniform in the film plane, and the film processability deteriorates. Moreover, impact strength and the like may be reduced.
  • the upper limit of the thickness accuracy of the film is more preferably 15%, still more preferably 10%.
  • a lower limit of the thickness accuracy of about 1% is sufficient.
  • sequential biaxial stretching particularly sequential biaxial stretching in which the film is stretched in the MD direction and then stretched in the TD direction is preferable as the stretching method.
  • the upper limit of the total amount of oligomers contained in the biaxially oriented polyester film of the present invention is 12000 ppm, more preferably 10,000 ppm, and even more preferably 5000 ppm. Although it is preferable to reduce the amount of oligomer in the film as much as possible, the lower limit is 2000 pp in consideration of productivity and the effect of improving low elution and aroma retention.
  • the lower limit of the total amount of oligomers contained in the biaxially oriented polyester film of the present invention is preferably 2000 ppm, and more preferably 2500 ppm. From the viewpoint of reducing the amount of oligomers in the resulting film, it is preferable to reduce the amount of oligomers in polybutylene terephthalate as much as possible, but this requires a lot of polymerization time in the solid phase polymerization step, and from the viewpoint of productivity. In addition to being disadvantageous, if it is less than the above, the effect of improving low elution and aroma retention may be saturated.
  • the oligomer elution amount of the biaxially oriented polyester film of the present invention is 0.02 mg or less per square inch of film area.
  • the fragrance retention property of the laminate laminate using the oligomer elution amount is inferior. More preferably, it is 0.018 mg or less, More preferably, it is 0.016 mg or less, Especially preferably, it is 0.014 mg or less.
  • the oligomer elution amount in the film was measured by the following method based on the description of FDA (US Food and Drug Administration) ⁇ 177.1660 (c) (2).
  • the lower limit of the plane orientation coefficient of the biaxially oriented polyester film of the present invention is preferably 0.136. If it is less than 0.136, the orientational crystallization is insufficient and the oligomer component present in the film may be easily eluted.
  • the upper limit of the plane orientation coefficient is preferably 0.160. If it exceeds 0.160, the film tends to break during film formation, and the productivity decreases. In addition, a decrease in flexibility may be observed.
  • the plane orientation coefficient can be set within a range by setting the MD magnification and the heat setting temperature to appropriate values. Further, in order to increase the plane orientation coefficient of the film, as a stretching method, sequential biaxial stretching is preferable to simultaneous biaxial stretching, and in particular, sequential biaxial stretching in which stretching is performed in the MD direction and then stretching in the TD direction is preferable.
  • the biaxially oriented polyester film of the present invention preferably has a resin having the same composition over the entire film. Moreover, you may laminate
  • the lower limit of the impact strength of the biaxially oriented polyester film of the present invention is preferably 0.045 J / ⁇ m. If it is less than the above, the strength may be insufficient when used as a bag.
  • the upper limit of impact strength is preferably 0.2 J / ⁇ m. If the above is exceeded, the improvement effect may be saturated.
  • the upper limit of the haze per thickness of the biaxially oriented polyester film of the present invention is preferably 0.66% / ⁇ m, more preferably 0.60% / ⁇ m, still more preferably 0.53% / ⁇ m. . If the above is exceeded, there is a possibility of degrading the quality of the printed characters and images when the film is printed.
  • the lower limit of the thermal shrinkage after heating for 15 minutes at 150 ° C. in the MD direction and TD direction of the biaxially oriented polyester film of the present invention is preferably ⁇ 2.0%. If it is less than the above, the effect of improvement is saturated, and it may become mechanically brittle.
  • the upper limit of the heat shrinkage ratio after heating for 15 minutes at 150 ° C. in the MD direction and the TD direction of the biaxially oriented polyester film of the present invention is preferably 4.0%, more preferably 2%, and even more preferably 1 .5%. If the above is exceeded, the dimensions may change during processing such as printing, and pitch deviation may occur.
  • the biaxially oriented polyester film of the present invention can impart excellent gas barrier properties by forming a laminated film in which an inorganic thin film layer is provided on at least one side of the film.
  • a thin film made of a metal or an inorganic oxide is preferably used as the inorganic thin film layer laminated on the biaxially oriented polyester film of the present invention.
  • the material for forming the inorganic thin film layer is not particularly limited as long as it can be formed into a thin film, but from the viewpoint of gas barrier properties, inorganic oxidation such as silicon oxide (silica), aluminum oxide (alumina), a mixture of silicon oxide and aluminum oxide, etc. A thing is mentioned preferably.
  • a composite oxide of silicon oxide and aluminum oxide is preferable from the viewpoint that both flexibility and denseness of the thin film layer can be achieved.
  • the mixing ratio of silicon oxide and aluminum oxide is preferably such that Al is in the range of 20 to 70% by mass ratio of metal. If the Al concentration is less than 20%, the water vapor barrier property may be lowered. On the other hand, if it exceeds 70%, the inorganic thin film layer tends to be hard, and the film may be broken during the secondary processing such as printing or laminating, and the gas barrier property may be lowered.
  • silicon oxide is various silicon oxides such as SiO and SiO 2 or a mixture thereof
  • aluminum oxide is various aluminum oxides such as AlO and Al 2 O 3 or a mixture thereof.
  • the film thickness of the inorganic thin film layer is usually 1 to 800 nm, preferably 5 to 500 nm. If the film thickness of the inorganic thin film layer is less than 1 nm, satisfactory gas barrier properties may be difficult to obtain. On the other hand, even if the thickness exceeds 800 nm, the corresponding gas barrier property improvement effect is obtained. However, it is disadvantageous in terms of bending resistance and manufacturing cost.
  • the method for forming the inorganic thin film layer is not particularly limited.
  • a known vapor deposition method such as a vacuum vapor deposition method, a sputtering method, a physical vapor deposition method such as an ion plating method (PVD method), or a chemical vapor deposition method (CVD method).
  • PVD method physical vapor deposition method
  • CVD method chemical vapor deposition method
  • a typical method for forming the inorganic thin film layer will be described by taking a silicon oxide / aluminum oxide thin film as an example.
  • a vacuum deposition method a mixture of SiO 2 and Al 2 O 3 or a mixture of SiO 2 and Al is preferably used as a deposition material.
  • particles are used as these vapor deposition materials.
  • the size of each particle is desirably such that the pressure during vapor deposition does not change, and the preferred particle diameter is 1 mm to 5 mm.
  • heating methods such as resistance heating, high frequency induction heating, electron beam heating, and laser heating can be employed.
  • reactive vapor deposition using oxygen, nitrogen, hydrogen, argon, carbon dioxide gas, water vapor or the like as a reactive gas, or using means such as ozone addition or ion assist.
  • the film forming conditions can be arbitrarily changed, for example, by applying a bias to the deposition target (laminated film to be deposited) or heating or cooling the deposition target.
  • a bias to the deposition target (laminated film to be deposited) or heating or cooling the deposition target.
  • Such a vapor deposition material, reaction gas, bias of the deposition target, heating / cooling, and the like can be similarly changed when a sputtering method or a CVD method is employed.
  • the biaxially oriented polyester film of the present invention can be provided with a coating layer between the biaxially oriented polyester film and the inorganic thin film layer for the purpose of ensuring gas barrier properties and laminate strength after retort sterilization.
  • a coating layer provided between the biaxially oriented polyester film and the inorganic thin film layer resins such as urethane, polyester, acrylic, titanium, isocyanate, imine, polybutadiene, epoxy, isocyanate, etc. , Melamine-based hardeners and the like are added.
  • the solvent examples include aromatic solvents such as benzene and toluene; alcohol solvents such as methanol and ethanol; ketone solvents such as acetone and methyl ethyl ketone; ester solvents such as ethyl acetate and butyl acetate; Examples thereof include polyhydric alcohol derivatives such as glycol monomethyl ether.
  • the resin composition used for these coating layers contains a silane coupling agent having at least one organic functional group.
  • the organic functional group include an alkoxy group, an amino group, an epoxy group, and an isocyanate group.
  • the resin compositions used for the coating layer it is preferable to use a mixture of a resin containing an oxazoline group, an acrylic resin, and a urethane resin.
  • the oxazoline group has a high affinity with the inorganic thin film, and can react with the oxygen deficient part of the inorganic oxide and metal hydroxide generated during the formation of the inorganic thin film layer, and exhibits strong adhesion with the inorganic thin film layer.
  • the unreacted oxazoline group present in the coating layer can react with the carboxylic acid terminal generated by hydrolysis of the base film and the coating layer to form a crosslink.
  • the method for forming the coating layer is not particularly limited, and a conventionally known method such as a coating method can be employed.
  • Preferred examples of the coating method include an offline coating method and an in-line coating method.
  • the drying and heat treatment conditions during coating depend on the thickness of the coat and the conditions of the equipment, but are sent to the right-angled stretching process immediately after coating and stretched. It is preferable to dry in the preheating zone or the stretching zone of the process. In such a case, it is usually preferable to set the temperature to about 50 to 250 ° C.
  • a heat-sealable resin layer called a sealant.
  • the heat-sealable resin layer is usually provided on the protective layer, but may be provided on the outer side of the base film (the surface opposite to the coating layer forming surface).
  • the heat-sealable resin layer is usually formed by an extrusion lamination method or a dry lamination method.
  • the thermoplastic polymer for forming the heat-sealable resin layer is not particularly limited as long as the sealant adhesiveness can be sufficiently exhibited, such as polyethylene resins such as HDPE, LDPE, LLDPE, polypropylene resin, and ethylene-vinyl acetate copolymer.
  • Ethylene- ⁇ -olefin random copolymers ionomer resins, and the like can be used.
  • a polypropylene resin is preferable as one having heat resistance that can withstand retort sterilization.
  • the oligomer dissolution test in the film was carried out by the following method based on the description of FDA (US Food and Drug Administration) ⁇ 177.1660 (c) (2).
  • urethane-based two-component curable adhesive (“Takelac (registered trademark) A525S” and “Takenate (registered trademark) A50” manufactured by Mitsui Chemicals, Inc.) 5: 1 (mixed at a ratio of mass ratio) was used, and a 70 ⁇ m-thick unstretched polypropylene film (“P1147” manufactured by Toyobo Co., Ltd.) was bonded as a heat-sealable resin layer by a dry laminating method, The laminate laminate for evaluation was obtained by aging for 4 days. In addition, all the thickness after drying of the adhesive bond layer formed with a urethane type 2 liquid curable adhesive was about 4 micrometers.
  • the laminated laminate produced above is subjected to a wet heat treatment that is kept in hot water at 130 ° C. for 30 minutes, and cut into a test piece with a width of 15 mm and a length of 200 mm in an undried state.
  • the laminate strength (after retort) was measured using a Tensilon universal material testing machine (“Tensilon UMT-II-500 type” manufactured by Toyo Baldwin Co., Ltd.) under the conditions of °C and relative humidity of 65%.
  • the laminate strength was the strength when the tensile speed was 200 mm / min, water was applied between the laminated film and the heat-sealable resin layer, and the film was peeled at a peeling angle of 90 degrees.
  • PBT-2 Polybutylene terephthalate resin
  • the polymerization of PBT-1 was carried out in the same manner as the polymerization of PBT-1, except that the polycondensation reaction time was changed to 1.5 hours and the solid phase polymerization reaction was changed to 10 hours, and the intrinsic viscosity was 1.18 dl / g.
  • PBT-3 Polybutylene terephthalate resin
  • the polymerization of PBT-1 was carried out in the same manner as the polymerization of PBT-1, except that the polycondensation reaction time was changed to 1.5 hours and the solid phase polymerization reaction was changed to 6 hours, and the intrinsic viscosity was 1.04 dl / g.
  • Example 1 Using a single screw extruder, PBT-1 and silica particles having an average particle diameter of 2.4 ⁇ m as inert particles were blended so as to have a silica concentration of 1600 ppm, and then melted at 270 ° C. Introduced into the static mixer. Thus, the polybutylene terephthalate melt was divided and laminated to obtain a multilayer melt made of the same raw material. The sheet was cast from a T-die at 270 ° C. and adhered to a cooling roll at 15 ° C. by an electrostatic adhesion method to obtain an unstretched sheet.
  • the film was stretched 3.5 times in the machine direction (MD) at 60 ° C., then stretched 4.0 times in the transverse direction (TD) at 90 ° C. through a tenter, and subjected to a tension heat treatment at 210 ° C. for 3 seconds. After a relaxation treatment of 5% for 1 second, the gripping portions at both ends were cut and removed 10% at a time to obtain a polybutylene terephthalate film mill roll having a thickness of 15 ⁇ m.
  • Table 1 shows the film forming conditions, physical properties, and evaluation results of the obtained film.
  • Example 1 it carried out like Example 1 except having changed the polybutylene terephthalate resin to be used, raw material composition, and film forming conditions into the biaxially stretched film described in Table 1 or Table 2.
  • the film forming conditions, physical properties and evaluation results of the obtained film are shown in Table 1 or Table 2.
  • Comparative Example 7 Comparative Example 6 was carried out in the same manner as Comparative Example 6 except that the film was stretched 3.5 times in the machine direction (MD) and 4.0 times in the transverse direction (TD). Table 2 shows the film forming conditions, physical properties, and evaluation results of the obtained film.
  • the biaxially oriented polyester films of Examples 1 to 8 are not only excellent in impact resistance, but also the elution shown in FDA (US Food and Drug Administration) ⁇ 177.1660 (c) (2) Also in the test, the elution amount of the oligomer component was small, and even after heating at 135 ° C. corresponding to the retort sterilization temperature, it had excellent fragrance retention.
  • the biaxially oriented polybutylene terephthalate film of Comparative Examples 1, 3, 4, and 6 has a large amount of oligomer remaining in the film when the amount of oligomer in the raw material is high or the resin temperature in the extrusion process is high, The amount of oligomer dissolution after the dissolution test was large and the incense retention was poor.
  • the biaxially oriented ester film of Comparative Example 5 has a high PET content in the film, the amount of oligomer elution can be reduced, but the impact strength is reduced and the intended properties cannot be satisfied.
  • stacked by the structure of the commercially available PET / polyamide (Ny) / PET of a reference example is excellent in impact resistance and aroma retention property, delamination of a film is not possible in the lamination strength measurement after retort sterilization treatment. It occurred and a decrease in laminate strength was observed.
  • a biaxially oriented polyester film having excellent impact resistance, flexibility and mechanical strength suitable for food packaging materials for performing boil / retort sterilization treatment and having both low elution properties is obtained.
  • it since it can be widely applied as a packaging material particularly suitably used for retort pouch packaging, it is expected to greatly contribute to the industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

【課題】 ボイル殺菌処理やレトルト殺菌処理が行われる食品用包装材料に好適な、優れた耐衝撃性、耐屈曲性、及び均一な力学特性を有するとともに、フィルムに含まれるオリゴマー成分が溶出しにくい二軸配向ポリエステルフィルムを提供すること。 【解決手段】 下記特徴(a)~(d)を有することを特徴とする二軸配向ポリエステルフィルム。 (a)ポリブチレンテレフタレートを60質量%以上含む樹脂組成物からなる。 (b)フィルムの幅方向の厚み精度が1~20%以下である。 (c)フィルム中に含まれるオリゴマー成分が2000~12000ppmである。 (d)フィルムを50%エタノール水溶液に浸漬させて66℃で2時間加熱した際に、該50%エタノール中に溶出するオリゴマー成分の質量がフィルム1平方インチあたり0.02mg以下である。

Description

二軸配向ポリエステルフィルム及びその製造方法
 本発明は、ボイル殺菌処理やレトルト殺菌処理といった高温で加熱殺菌が必要な内容物の包装材料に使用されるポリエステルフィルムに関するものである。更に詳しくは、優れた耐衝撃性や耐屈曲性、力学強度、及び均一な力学特性を有するとともに、フィルム中に含まれるオリゴマー成分が溶出しにくい二軸配向ポリエステルフィルム及びその製造方法に関するものである。
 ボイル殺菌処理用またはレトルト殺菌処理用の包装材料として、例えば、少なくとも、透明なガスバリア性を有するフィルム基材層、接着剤層、及び、シーラントフィルム層、をこの順に積層したラミネート積層体が使用されている。透明なガスバリア性を有するフィルム基材層としてポリエステル系樹脂層及びポリアミド系樹脂層からなる多層シートを二軸延伸することにより得られた二軸延伸多層フィルムを用いる技術が開示されている(例えば特許文献1等参照。)。
 かかる技術によれば、種々の化学物質の低溶出性に優れた、ボイル殺菌処理用またはレトルト殺菌処理用の包装材料が得られるものであるが、包装材料に衝撃が加わった際に、ポリエステル系樹脂層とポリアミド系樹脂層の間の界面で剥離しやすいため、袋の落下時に破袋し、内容物が漏れやすいといった問題があった。
 基材層に使用されるフィルムとして少なくともポリブチレンテレフタレート樹脂、またはポリブチレンテレフタレート樹脂を70重量%以上、ポリエチレンテレフタレート樹脂などの他の樹脂を30重量%以下の範囲で含むポリエステル系樹脂組成物のいずれかからなる二軸配向ポリブチレンテレフタレート系フィルムを使用する技術が開示されている。(例えば、特許文献2)
 かかる技術によれば、これを用いた包装材料から作成された袋を落下させても破袋しにくくなる。
しかしながら、二軸配向ポリブチレンテレフタレート系フィルム中には、主に環状2量体や環状3量体のようなオリゴマー成分が含まれており、これらのオリゴマー成分がレトルト殺菌処理などの高温加熱処理を行うと、フィルム中に残存するオリゴマーが溶出しやすく、フィルムの外観品位の低下を引き起したり、内容物の風味を損ねてしまう問題があった。また、その他のフィルム特性にも改善すべき点があった。
特開2013-154605号公報 特開2012-214248号公報
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、ボイル殺菌処理やレトルト殺菌処理が行われる食品用包装材料に好適な、優れた耐衝撃性、耐屈曲性、及び均一な力学特性を有するとともに、フィルムに含まれるオリゴマー成分が溶出しにくい二軸配向ポリエステルフィルムを提供することにある。
 また、二軸配向ポリエステルフィルムを特に米国において食品包装用途として用いる場合、FDA(米国食品医薬品局)§177.1660に示された基準を満足している必要がある。
 先に挙げた特許文献に記載の技術においては、ポリブチレンテレフタレートフィルム中のオリゴマー成分の溶出を抑制するための手段についての具体的な記載はなく、またそれを課題とする認識もなかった。
 本発明者は、かかる目的を達成するために鋭意検討した結果、二軸配向ポリブチレンテレフタレートフィルム中に含まれるオリゴマー量を特定の範囲以下とし、二軸配向ポリエステルフィルムのフィルムの厚み精度を均一にすること、及び面配向度を特定の範囲とすることにより、優れた耐衝撃性、耐屈曲性、及び均一な力学特性を得られるのに加え、フィルム中に含まれるオリゴマー成分の含有量が同等であっても、レトルト殺菌処理や電子レンジでの高温加熱処理後においてフィルム中のオリゴマー成分の溶出を特定範囲以下のできることを見出した。 その結果、内容物の風味の低下を抑制でき、かつ、フィルムの外観品位を維持できる。また、ポリブチレンテレフタレートフィルムとしてFDA(米国食品医薬品局)§177.1660(c)(2)に示される基準を満足させることが出来ることを見出し、本発明の完成に至った。
 すなわち本発明は、
1.下記特徴(a)~(d)を有することを特徴とする二軸配向ポリエステルフィルム。
(a)ポリブチレンテレフタレートを60質量%以上含む樹脂組成物からなる。
(b)フィルムの幅方向の厚み精度が1~20%である。
(c)フィルム中に含まれるオリゴマー成分が2000~12000ppmである。
(d)フィルムを50%エタノール水溶液に浸漬させて66℃で2時間加熱した際に、該50%エタノール中に溶出するオリゴマー成分の質量がフィルム1平方インチあたり0.02mg以下である。
2.フィルムの面配向係数が0.136~0.160であることを特徴とする1.記載の二軸配向ポリエステルフィルム。
3.下記工程(a)~(f)及び下記条件(g)を有することを特徴とする1.又は2.に記載の二軸配向ポリエステルフィルムの製造方法。
(a)ポリブチレンテレフタレートを60質量%以上含む樹脂組成物を押出機に投入する工程
(b)樹脂組成物を加熱溶融し、240~290℃の溶融樹脂組成物を得る工程
(c)溶融樹脂組成物を60層以上に多層化する工程
(d)溶融樹脂組成物をTダイスから押出し溶融樹脂組成物シートを得る工程
(e)溶融樹脂組成物シートを冷却ロールに接触させ冷却して未延伸樹脂シートを得る工程
(f)未延伸シートを二軸延伸する工程
(g)工程(b)において、溶融樹脂組成物が240℃に達してから、Tダイスから押出されるまでの時間が2~13分である。
4.二軸延伸工程が同時二軸延伸工程または逐次二軸延伸工程である3.に記載の二軸配向ポリエステルフィルムの製造方法。
 本発明者らは、かかる技術によって、ボイル殺菌処理又はレトルト殺菌処理を行うための食品包装材料に好適な、優れた耐衝撃性、耐屈曲性、及び均一な力学特性を得られるのに加え、フィルム中にオリゴマー成分が含まれていても、レトルト殺菌処理や電子レンジでの高温加熱処理後においてもフィルム中のオリゴマー成分が溶出しにくいため、内容物の風味の低下を抑制でき、かつ、フィルムの外観品位を維持できる。
 以下、本発明について詳細に説明する。
[ポリエステル樹脂組成物]
 本発明に用いられるポリエステル樹脂組成物は、ポリブチレンテレフタレート(PBTと略記する場合がある)樹脂を主たる構成成分とするものであり、ポリブチレンテレフタレートの含有率60質量%以上である。好ましくは70質量%以上が好ましい。60質量%未満であるとインパクト強度および耐ピンホール性が低下してしまい、フィルム特性としては十分なものでなくなってしまう。
 主たる構成成分として用いるポリブチレンテレフタレート樹脂は、ジカルボン酸成分として、テレフタル酸が90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは98モル%以上であり最も好ましくは100モル%である。グリコール成分として1,4-ブタンジオールが90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは97モル%以上であり、最も好ましくは重合時に1,4-ブタンジオールのエーテル結合により生成する副生物以外は含まれないことである。
 ポリブチレンテレフタレート樹脂中には、線状オリゴマーや環状2量体、環状3量体などのオリゴマー成分が含まれている。本発明で用いられるポリブチレンテレフタレート樹脂中に含まれるこれらオリゴマーの総量としては、12000ppm以下であることが好ましく、10000ppm以下がさらに好ましく、8000ppm以下であることが最も好ましい。
 ポリブチレンテレフタレート樹脂中のオリゴマー量を12000ppm以下とする方法としては特に限定されないが、溶融重合により製造されたポリエチレンテレフタレート樹脂を更に固相重合に付することが一般的である。
 本発明で用いられるポリブチレンテレフタレート樹脂中に含まれるこれらオリゴマーの総量の上限としては、好ましくは12000ppmであり、さらに好ましくは10000ppmであり、特に好ましくは5000ppmである。得られるフィルム中のオリゴマー量を少なくする観点ではポリブチレンテレフタレート樹脂中のオリゴマー量を可能な限り少なくすることが好ましいが、前記固相重合工程で多くの重合時間を要することとなり、生産性の観点で不利となるほか、上記を下回ると低溶出性や保香性の改善効果が飽和することがあるので、下限は2000ppmである。
 本発明に用いられるポリエステル樹脂組成物は、二軸延伸時の製膜性や得られたフィルムの力学特性を調整する目的でポリブチレンテレフタレート以外のポリエステル樹脂を含有することができる。
 ポリブチレンテレフタレート以外のポリエステル樹脂としては、ポリエチレンテレフタレート(PETと略記する場合がある)、ポリエチレンナフタレート(PENと略記する場合がある)、ポリブチレンナフタレート(PBNと略記する場合がある)、ポリプロピレンテレフタレート(PPTと略記する場合がある)などのポリエステル樹脂のほか、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸、セバシン酸などのジカルボン酸が共重合されたポリブチレンテレフタレート樹脂や、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール、ポリカーボネートジオール等のジオール成分が共重合されたポリブチレンテレフタレート樹脂が挙げられる。
 これらポリブチレンテレフタレート以外のポリエステル樹脂の添加量の上限としては、40質量%未満が好ましく、より好ましくは30質量%以下が好ましい。ポリブチレンテレフタレート以外のポリエステル樹脂の添加量が40質量%を超えると、ポリブチレンテレフタレートとしての力学特性が損なわれ、インパクト強度や耐破袋性、耐ピンホール性が不十分となるほか、透明性やガスバリア性の低下などが起こることがある。
 本発明に用いるポリブチレンテレフタレート樹脂の固有粘度の下限は好ましくは0.9dl/gであり、より好ましくは0.95dl/gであり、更に好ましくは1.0dl/gである。
 原料であるポリブチレンテレフタレート樹脂の固有粘度が0.9dl/g未満の場合、製膜して得られるフィルムの固有粘度が低下し、突き刺し強度、衝撃強度、耐破袋性などが低下するとなることがある。
 ポリブチレンテレフタレート樹脂の固有粘度の上限は好ましくは1.3dl/gである。上記を越えると延伸時の応力が高くなりすぎ、製膜性が悪化するとなることがある。固有粘度の高いポリブチレンテレフタレート樹脂を使用した場合、樹脂の溶融粘度が高くなるため押出し温度を高温にする必要があるが、ポリブチレンテレフタレート樹脂をより高温で押出しすると分解物が出やすくなることがある。
 前記ポリエステル樹脂は必要に応じ、従来公知の添加剤、例えば、滑剤、安定剤、着色剤、酸化防止剤、静電防止剤、紫外線吸収剤等を含有していてもよい。
 滑剤としてはシリカ、炭酸カルシウム、アルミナなどの無機系滑剤のほか、有機系滑剤が好ましく、シリカ、炭酸カルシウムの微粒子がより好ましく、中でもシリカ微粒子がヘイズを低減する点で特に好ましい。これらにより透明性と滑り性を同時に発現することができる。
 滑剤濃度の下限は好ましくは100ppmであり、より好ましくは500ppmであり、さらに好ましくは800ppmである。上記未満であるとフィルムの滑り性が低下することがある。滑剤濃度の上限は好ましくは20000ppmであり、より好ましくは10000ppmであり、さらに好ましくは1800ppmである。上記を越えると透明性が低下することがある。
[フィルム製造方法]
 本発明にかかるフィルムを得るための好適な製造方法は下記工程(a)~(f)及び下記条件(g)を有することを特徴とするが、これらを順に説明する。しかし、これらに限定されるものではない。
(a)ポリブチレンテレフタレートを60質量%以上含む樹脂組成物を押出機に投入する工程
(b)樹脂組成物を加熱溶融し、240~290℃の溶融樹脂組成物を得る工程
(c)溶融樹脂組成物を60層以上に多層化する工程
(d)溶融樹脂組成物をTダイスから押出し溶融樹脂組成物シートを得る工程
(e)溶融樹脂組成物シートを冷却ロールに接触させ冷却して未延伸樹脂シートを得る工程
(f)未延伸シートを二軸延伸する工程
(g)工程(b)において、溶融樹脂組成物が240℃に達してから、Tダイスから押出されるまでの時間が2~13分である。
(a)ポリブチレンテレフタレートを60質量%以上含む樹脂組成物を押出機に投入する工程樹脂を一台の押出機のみを用いて、押出機に投入する。その他、例えば、二台以上の押出機それぞれに樹脂を投入し、Tダイスから押し出すまでに溶融樹脂を合流させることが出来る。
(b)樹脂組成物を加熱溶融し、240~290℃の溶融樹脂組成物を得る工程
 本発明において、二軸配向ポリエステルフィルムに含まれるオリゴマー量を特定範囲とするため、フィルム製造での、ポリエステル原料を溶融押出する工程において、押出機および押出機からダイまでのメルトライン内でのポリエステルの樹脂温度をできるだけ低くすること、押出機からダイまでのメルトラインにおける滞留時間をできるだけ短くすることなどによって行われる。
 樹脂溶融温度の下限は好ましくは240℃であり、より好ましくは250℃であり、さらに好ましくは260℃である。上記未満であると吐出が不安定となることがある。樹脂溶融温度の上限は好ましくは290℃であり、より好ましくは280℃である。上記を越えると樹脂の分解が進行し、結果としてフィルム中に残存するオリゴマー成分の量が多くなってしまう。
(c)溶融樹脂組成物を60層以上に多層化する工程
 多層化の具体的な方法として、一般的な多層化装置(多層フィードブロック、スタティックミキサー、多層マルチマニホールドなど)を用いることができる。
本発明のように同一の組成で多層化する場合、一台の押出機のみを用いて、押出機からダイまでのメルトラインに上述の多層化装置を導入することができる。
その他、例えば、二台以上の押出機を用いて異なる流路から送り出された熱可塑性樹脂をフィールドブロックやスタティックミキサー、マルチマニホールドダイ等を用いて多層に積層する方法等も使用することができる。
 ポリブチレンテレフタレートはポリエチレンテレフタレートなどの他の結晶性ポリエステル樹脂に比べて結晶化速度が速いため、キャスト時にも結晶化が進行する。キャスティングされた後の未延伸原反の端部は冷却されにくいため結晶化度が高くなりやすい。
このとき、多層化せずに単層でキャストした場合には、結晶の成長を抑制しうるような障壁が存在しないために、未延伸原反の端部は中央部に比べてサイズの大きな球晶へと成長してしまう。つまり、幅方向の結晶化度の差が大きくなる。
 中央部の面配向度を所定の範囲まで上げようとすると、同じ延伸倍率であっても結晶化度の大きい端部の面配向度が高くなりすぎて、厚み精度が不均一になったり、場合によっては破断が生じるなど製膜性が不安定となる
 一方、端部の面配向度を所定の範囲としようとすると、中央部の面配向度が低くなり、オリゴマー成分の溶出を抑えることができない。
(d)溶融樹脂組成物をTダイスから押出し溶融樹脂組成物シートを得る工程
 溶融したポリエステル樹脂をTダイスから押出し、冷却ロール上にキャスティングする。樹脂の押出機からダイまでのメルトラインを通過する時間(以下滞留時間)の下限は好ましくは2分であり、より好ましくは3分である。上記未満とするためには溶融・押出し工程における時間当たりの吐出量を多くする必要があり、溶融押出し工程における溶融圧力が高くなりすぎるため、押出機やポリマーフィルターへの負荷が高くなる。
 滞留時間の上限は好ましくは13分であり、より好ましくは11分であり、さらに好ましくは10分である。上記を超えると、樹脂の分解が進行し、結果としてフィルム中に残存するオリゴマー成分の量が多くなってしまう。
(e)溶融樹脂組成物シートを冷却ロールに接触させ冷却して未延伸樹脂シートを得る工程
 溶融したポリエステル樹脂を押出し、冷却ロール上にキャスティングするが、 冷却ロール温度の下限は好ましくは-10℃である。上記未満であると結晶化抑制の効果が飽和することがある。冷却ロール温度の上限は好ましくは40℃である。上記を越えると結晶化度が高くなりすぎて延伸が困難となることがある。また冷却ロールの温度を上記の範囲とする場合、結露防止のため冷却ロール付近の環境の湿度を下げておくことが好ましい。
 キャスティングでは、表面に高温の樹脂が接触するため冷却ロール表面の温度が上昇する。通常、冷却ロールは内部に配管を通して冷却水を流して冷却するが、充分な冷却水量を確保する、配管の配置を工夫する、配管にスラッジが付着しないようメンテナンスを行う、などして、冷却ロール表面の幅方向の温度差を少なくする必要がある。このとき、未延伸シートの厚みは15~2500μmの範囲が好適である。
 上述における多層構造でのキャストは、少なくとも60層以上、好ましくは250層以上、更に好ましくは1000層以上で行う。層数が少ないと、延伸性の改善効果が失われる。
 ロール全幅での未延伸シートの厚みムラについて、全幅での最大厚みと最小厚みの差が平均厚み(厚み精度)に対して0~20%の範囲にあることが好ましく、更に好ましくは0~15%の範囲にあることが好ましい。20%を超えると、ロール外観の低下や二次加工での歪みなどが発生するため好ましくない。全幅での最大厚みと最小厚みの差を小さくするためには、幅方向の延伸倍率が均一であることが必要であるが、そのためには未延伸時の結晶化度を均一にしておく必要がある。
(f)未延伸シートを二軸延伸する工程
 延伸方法は、同時二軸延伸でも逐次二軸延伸でも可能であるが、フィルムの衝撃強度を高め、さらにはフィルム中に内在するオリゴマー成分が溶出してくるのを抑制するためには、面配向係数を高めておく必要があり、製膜速度が速く生産性が高いという点においても逐次二軸延伸が最も好ましい。
 縦延伸方向(以下MDと略す)延伸温度の下限は好ましくは55℃であり、より好ましくは60℃である。55℃未満であると破断が起こりやすくなることがあるばかりか、低温での延伸により縦方向の配向が強くなりすぎ、破断しやすくなることによって、二軸延伸工程での製膜性が不安定となるほか、熱固定処理の際の収縮応力が大きくなることによって、幅方向の分子配向の歪みが大きくなり、結果として長手方向の直進引裂き性が低下することがある。MD延伸温度の上限は好ましくは100℃であり、より好ましくは95℃である。100℃を越えると配向がかからないため力学特性が低下することに加え、フィルム中に内在するオリゴマー成分が溶出しやすくなることがある。
 MD延伸倍率の下限は好ましくは2.6倍であり、特に好ましくは2.8倍である。上記未満であると配向がかからないため力学特性や厚みムラが悪くなることがあることに加え、配向結晶化が不十分なためフィルム中に内在するオリゴマー成分が溶出しやすくなることがある。MD延伸倍率の上限は好ましくは4.3倍であり、より好ましくは4.0倍であり、特に好ましくは3.8倍である。上記を越えると延伸により縦方向の配向が強くなりすぎ、破断しやすくなることによって、二軸延伸工程での製膜性が不安定となるほか、力学強度や厚みムラ改善の効果が飽和することがあるばかりか、縦方向の配向が強くなるため、熱固定処理の際の収縮応力が大きくなることによって、幅方向の分子配向の歪みが大きくなり、結果として長手方向の直進引裂き性が低下することがある。
 横延伸方向(以下TDと略す)延伸温度の下限は好ましくは60℃であり、上記未満であると破断が起こりやすくなることがある。TD延伸温度の上限は好ましくは100℃であり、上記を越えると配向がかからないため力学特性が低下することがあるのに加え、配向結晶化が不十分なためフィルム中に内在するオリゴマー成分が溶出しやすくなることがある。
 TD延伸倍率の下限は好ましくは3.5倍であり、より好ましくは3.6倍であり、特に好ましくは3.7倍である。上記未満であると配向がかからないため力学特性や厚みムラが悪くなることがあるのに加え、配向結晶化が不十分なためフィルム中に内在するオリゴマー成分が溶出しやすくなることがある。TD延伸倍率の上限は好ましくは5倍であり、より好ましくは4.5倍であり、特に好ましくは4.0倍である。上記を越えると力学強度や厚みムラ改善の効果が飽和することがある。
 TD熱固定温度の下限は好ましくは200℃であり、より好ましくは205℃である。上記未満であると熱収縮率が大きくなり、加工時のズレや縮みが起こることがある。TD熱固定温度の上限は好ましくは240℃であり、上記を越えるとフィルムが融けてしまうほか、融けない場合でも著しく脆くなることがある。
 TDリラックス率の下限は好ましくは0.5%であり、上記未満であると熱固定時に破断が起こりやすくなることがある。TDリラックス率の上限は好ましくは5%であり、上記を越えるとたるみなどが生じて厚みムラが発生することがあるばかりか、熱固定時の長手方向への収縮が大きくなる結果、端部の分子配向の歪みが大きくなり、直進引裂き性が低下することがある。
 本発明の二軸配向フィルムでは、フィルム厚みの下限は好ましくは3μmであり、より好ましくは5μmであり、さらに好ましくは8μmである。3μm未満であるとフィルムとしての強度が不足することがある。
 フィルム厚みの上限は好ましくは100μmであり、より好ましくは75μmであり、さらに好ましくは50μmである。100μmを越えると厚くなりすぎて本発明の目的における加工が困難となることがある。
 本発明の二軸配向ポリエステルフィルムの厚み精度の上限は20%であることが好ましく、20%を超えるとフィルムの物性がフィルム面内で不均一となり、フィルム加工性が悪くなる。また衝撃強度などが低下することがある。フィルムの厚み精度の上限は、より好ましくは15%であり、更に好ましくは10%である。厚み精度の下限は1%程度あれば十分である。
 フィルムの厚み精度を小さくするには、未延伸シートの厚み精度を小さくすることが好ましい。また、フィルムの厚み精度を小さくする上で、延伸方法として同時二軸延伸よりも逐次二軸延伸、特に、MD方向に延伸した後TD方向に延伸する逐次二軸延伸が好適である。
 本発明の二軸配向ポリエステルフィルムに含まれるオリゴマーの総量の上限は、12000ppmであり、より好ましくは10000ppmであり、さらに好ましくは5000ppmである。フィルム中のオリゴマー量を可能な限り少なくすることが好ましいが、生産性の観点や低溶出性や保香性の改善効果が飽和することを考慮すると下限は2000ppである。
 本発明の二軸配向ポリエステルフィルムに含まれるオリゴマーの総量の下限は、好ましくは2000ppmであり、さらに好ましくは2500ppmである。得られるフィルム中のオリゴマー量を少なくする観点ではポリブチレンテレフタレート中のオリゴマー量を可能な限り少なくすることが好ましいが、前記固相重合工程で多くの重合時間を要することとなり、生産性の観点で不利となるほか、上記を下回ると低溶出性や保香性の改善効果が飽和することがある。
 本発明の二軸配向ポリエステルフィルムのオリゴマー溶出量は、フィルム面積1平方インチあたり0.02mg以下である。オリゴマー溶出量が0.02mgを越えると、それを用いたラミネート積層体の保香性に劣る。より好ましくは0.018mg以下であり、更に好ましくは0.016mg以下であり、特に好ましくは0.014mg以下である。
 フィルム中のオリゴマー溶出量は、FDA(米国食品医薬品局)§177.1660(c)(2)の記載に基づき、以下の方法で測定した。
 得られたフィルムを試料とし、20cm×28cm(560cm=86平方インチ)にカットし、50%エタノール100mLで各試料を浸漬、66℃にて2時間抽出試験を実施した。各抽出液を乾固し、抽出物重量を測定し、フィルム面積1平方インチあたりの溶出量(mg)に換算し、溶出量とした。
 本発明の二軸配向ポリエステルフィルムの面配向係数の下限は好ましくは0.136である。0.136未満であると、配向結晶化が不十分なためフィルム中に内在するオリゴマー成分が溶出しやすくなることがある。面配向係数の上限は好ましくは0.160である。0.160を越えると製膜中に破断しやすくなり生産性が低下する。また屈曲性などの低下が見られる場合がある。面配向係数はMD倍率や熱固定温度を適切な値にすることにより、範囲内とすることが出来る。
 また、フィルムの面配向係数を高くする上で、延伸方法として同時二軸延伸よりも逐次二軸延伸、特に、MD方向に延伸した後TD方向に延伸する逐次二軸延伸が好適である。
 本発明の二軸配向ポリエステルフィルムはフィルム全域に亘って同一組成の樹脂があることが好ましい。
 また、本発明の二軸配向ポリエステルフィルムに他素材の層を積層して良く、その方法として、本発明の二軸配向ポリエステルフィルムを作製後に貼り合わせるか、製膜中に貼り合わせることができる。
 本発明の二軸配向ポリエステルフィルムの衝撃強度の下限は、好ましくは0.045J/μmである。上記未満であると袋として用いる際に強度が不足することがある。
 衝撃強度の上限は好ましくは0.2J/μmである。上記を越えると改善の効果が飽和することがある。
 本発明の二軸配向ポリエステルフィルムの厚みあたりのヘイズの上限は好ましくは0.66%/μmであり、より好ましくは0.60%/μmであり、更に好ましくは0.53%/μmである。
 上記を超えるとフィルムに印刷を施した際に、印刷された文字や画像の品位を損ねる可能性がある。
 本発明の二軸配向ポリエステルフィルムのMD方向及びTD方向における150℃で15分間加熱後の熱収縮率の下限は好ましくは-2.0%である。上記未満であると改善の効果が飽和するほか、力学的に脆くなってしまうことがある。
 本発明の二軸配向ポリエステルフィルムのMD方向及びTD方向における150℃で15分間加熱後の熱収縮率の上限は好ましくは4.0%であり、より好ましくは2%であり、さらに好ましくは1.5%である。上記を越えると印刷などの加工時に寸法が変化して、ピッチズレなどが起こることがある。
 本発明の二軸配向ポリエステルフィルムは、フィルムの少なくとも片面に無機薄膜層を設けた積層フィルムとすることによって、優れたガスバリア性を付与することができる。
 本発明の二軸配向ポリエステルフィルムに積層する無機薄膜層としては、金属または無機酸化物からなる薄膜が好ましく用いられる。
無機薄膜層を形成する材料は、薄膜にできるものなら特に制限はないが、ガスバリア性の観点から、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化ケイ素と酸化アルミニウムとの混合物等の無機酸化物が好ましく挙げられる。特に、薄膜層の柔軟性と緻密性を両立できる点からは、酸化ケイ素と酸化アルミニウムとの複合酸化物が好ましい。
 この複合酸化物において、酸化ケイ素と酸化アルミニウムとの混合比は、金属分の質量比でAlが20~70%の範囲であることが好ましい。Al濃度が20%未満であると、水蒸気バリア性が低くなる場合がある。一方、70%を超えると、無機薄膜層が硬くなる傾向があり、印刷やラミネートといった二次加工の際に膜が破壊されてガスバリア性が低下する虞がある。なお、ここでいう酸化ケイ素とはSiOやSiO等の各種珪素酸化物又はそれらの混合物であり、酸化アルミニウムとは、AlOやAl等の各種アルミニウム酸化物又はそれらの混合物である。
 無機薄膜層の膜厚は、通常1~800nm、好ましくは5~500nmである。無機薄膜層の膜厚が1nm未満であると、満足のいくガスバリア性が得られ難くなる場合があり、一方、800nmを超えて過度に厚くしても、それに相当するガスバリア性の向上効果は得られず、耐屈曲性や製造コストの点でかえって不利となる。
 無機薄膜層を形成する方法としては、特に制限はなく、例えば真空蒸着法、スパッタリング法、イオンプレーティング法などの物理蒸着法(PVD法)、あるいは化学蒸着法(CVD法)など、公知の蒸着法を適宜採用すればよい。以下、無機薄膜層を形成する典型的な方法を、酸化ケイ素・酸化アルミニウム系薄膜を例に説明する。例えば、真空蒸着法を採用する場合は、蒸着原料としてSiOとAlの混合物、あるいはSiOとAlの混合物等が好ましく用いられる。これら蒸着原料としては通常粒子が用いられるが、その際、各粒子の大きさは蒸着時の圧力が変化しない程度の大きさであることが望ましく、好ましい粒子径は1mm~5mmである。
 加熱には、抵抗加熱、高周波誘導加熱、電子ビーム加熱、レーザー加熱などの方式を採用することができる。また、反応ガスとして酸素、窒素、水素、アルゴン、炭酸ガス、水蒸気等を導入したり、オゾン添加、イオンアシスト等の手段を用いた反応性蒸着を採用することも可能である。さらに、被蒸着体(蒸着に供する積層フィルム)にバイアスを印加したり、被蒸着体を加熱もしくは冷却するなど、成膜条件も任意に変更することができる。このような蒸着材料、反応ガス、被蒸着体のバイアス、加熱・冷却などは、スパッタリング法やCVD法を採用する場合にも同様に変更可能である。
 本発明の二軸配向ポリエステルフィルムは、レトルト殺菌処理後のガスバリア性やラミネート強度を確保することを目的として、二軸配向ポリエステルフィルムと前記無機薄膜層との間に被覆層を設けることができる。
 二軸配向ポリエステルフィルムと前記無機薄膜層との間に設ける被覆層としては、ウレタン系、ポリエステル系、アクリル系、チタン系、イソシアネート系、イミン系、ポリブタジエン系等の樹脂に、エポキシ系、イソシアネート系、メラミン系等の硬化剤を添加したものが挙げられる。前記溶媒(溶剤)としては、例えば、ベンゼン、トルエン等の芳香族系溶剤;メタノール、エタノール等のアルコール系溶剤;アセトン、メチルエチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;エチレングリコールモノメチルエーテル等の多価アルコール誘導体等が挙げられる。これらの被覆層に用いる樹脂組成物は、有機官能基を少なくとも1種類以上有するシランカップリング剤を含有することが好ましい。前記有機官能基としては、アルコキシ基、アミノ基、エポキシ基、イソシアネート基等が挙げられる。前記シランカップリング剤の添加によって、レトルト殺菌処理後のラミネート強度がより向上する。
 前記被覆層に用いる樹脂組成物の中でも、オキサゾリン基を含有する樹脂とアクリル系樹脂及びウレタン系樹脂の混合物を用いることが好ましい。オキサゾリン基は無機薄膜との親和性が高く、また無機薄膜層形成時に発生する無機酸化物の酸素欠損部分や金属水酸化物とが反応することができ、無機薄膜層と強固な密着性を示す。また被覆層中に存在する未反応のオキサゾリン基は、基材フィルムおよび被覆層の加水分解により発生したカルボン酸末端と反応し、架橋を形成することができる。
 前記被覆層を形成するための方法としては、特に限定されるものではなく、例えばコート法など従来公知の方法を採用することができる。コート法の中でも好適な方法としては、オフラインコート法、インラインコート法を挙げることができる。例えば基材フィルムを製造する工程で行うインラインコート法の場合、コート時の乾燥や熱処理の条件は、コート厚みや装置の条件にもよるが、コート後直ちに直角方向の延伸工程に送入し延伸工程の予熱ゾーンあるいは延伸ゾーンで乾燥させることが好ましく、そのような場合には通常50~250℃程度の温度とすることが好ましい。
 本発明にかかるレトルト用包材としては、シーラントと呼ばれるヒートシール性樹脂層を形成することが好ましい。ヒートシール性樹脂層は通常、保護層上に設けられるが、基材フィルムの外側(被覆層形成面の反対側の面)に設けることもある。ヒートシール性樹脂層の形成は、通常押出しラミネート法あるいはドライラミネート法によりなされる。ヒートシール性樹脂層を形成する熱可塑性重合体としては、シーラント接着性が十分に発現できるものであればよく、HDPE、LDPE、LLDPEなどのポリエチレン樹脂類、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体、エチレン-α-オレフィンランダム共重合体、アイオノマー樹脂等を使用できる。中でもレトルト殺菌処理に耐えうる耐熱性を有するものとしては、ポリプロピレン樹脂が好ましい。
 次に、実施例により本発明をさらに詳細に説明するが、本発明は以下の例に限定されるものではない。なお、フィルムの評価は次の測定法によって行った。
[製膜安定性]
 二軸延伸フィルムの製膜性を次の基準で評価した。「○」であれば、生産性が良いと判断した。
○:破断無く製膜でき、連続生産が可能であった
△:製膜性が多少不安定で、断続的破断が発生するレベル。
×:頻繁に破断が発生し、連続生産が困難であった。
[フィルムの厚み]
 JIS K7130-1999 A法に準拠し、ダイアルゲージを用いて測定した。[厚み精度(Tv(%))]
 得られたフィルムロールの中央部から縦方向にフィルム片を切り出し、5cmピッチで、100箇所をダイアルゲージを用いて測定したときの最大厚みをTmax,最小厚みをTmin、平均厚みをTaveとし、下記の式(1)より厚み精度(Tv)を求めた。
 Tv(%)={(Tmax-Tmin)/Tave}×100%)  (1)
[ヘイズ]
 JIS-K-7105に準ずる方法で、試料をヘイズメーター(日本電色製、NDH2000)を用いて異なる箇所3ヶ所について測定し、その平均値をヘイズとした。
[PBT樹脂及びフィルム中のオリゴマー量]
 得られたPBT樹脂及びフィルム中のオリゴマー量の測定方法を以下に示す。
 PBT樹脂またはフィルム100mgを精秤し、HFIP/クロロホルム(=2/3(vol/vol))3mLで溶解した。クロロホルム20mLを加え、メタノール10mLでポリマーを析出させた。析出させたポリマーをろ過したのちにろ液を濃縮乾固し、ジメチルホルムアミド10mLを加え、ろ液を下記条件のHPLC分析に供し、クロマトグラムを得た。
・装置:島津製作所社製 UFLC
・カラム:Shim-pack XR-ODS
     (2.2μm 2×100mm)
・移動相:A:0.2%酢酸、B:アセトニトリル
    (0分(10%B)-28(100)-33(100)33.01(10)
・流速:0.5mL/min
・カラム温度:50℃
・注入量:5μL
・検出波長:258nm
 尚、PBTオリゴマーの線状体の定量値はビスヒドロキシエチルテレフタレート(BHET)、環状体の定量値はPET環状3量体換算で算出し、検出されたすべてのオリゴマー成分の総和をフィルム中のオリゴマー量とした。
[オリゴマー溶出量]
 フィルム中のオリゴマー溶出試験として、FDA(米国食品医薬品局)§177.1660(c)(2)の記載に基づき、以下の方法で実施した。
 得られたフィルムを試料とし、20cm×28cm(560cm=86平方インチ)にカットし、50%エタノール100mLで各試料を浸漬、66℃にて2時間抽出試験を実施した。各抽出液を乾固し、抽出物重量を測定し、フィルム面積1平方インチあたりの溶出量(mg)に換算し、溶出量とした。
[フィルムの面配向係数]
 サンプルについてJIS K 7142-1996 により、ナトリウムD線を光源としてアッベ屈折計によりフィルム長手方向の屈折率(Nx)、幅方向の屈折率(Ny)、厚み方向の屈折率(Nz)を測定し、式(2)の計算式により面配向係数を算出した。
面配向係数(ΔP)=(Nx+Ny)/2-Nz     (2)
[衝撃強度(インパクト強度)]
 JIS K7160-1996に準じて、株式会社東洋精機製作所製のインパクトテスターを用い、23℃の雰囲気下におけるフィルムの衝撃打ち抜きに対する強度を測定した。衝撃球面は、直径1/2インチのものを用いた。単位はJ/μmを用いた。
[熱収縮率]
 ポリエステルフィルムの熱収縮率は試験温度150℃、加熱時間15分間とした以外は、JIS-C-2151-2006.21に記載の寸法変化試験法で測定した。
試験片は21.1(a)に記載に従い使用した。
[評価用ラミネート積層体の作製]
 後述する実施例および比較例で得られた各フィルムの片面に、ウレタン系2液硬化型接着剤(三井化学社製「タケラック(登録商標)A525S」と「タケネート(登録商標)A50」を13.5:1(質量比)の割合で配合)を用いてドライラミネート法により、ヒートシール性樹脂層として厚さ70μmの無延伸ポリプロピレンフィルム(東洋紡株式会社製「P1147」)を貼り合わせ、40℃にて4日間エージングを施すことにより、評価用のラミネート積層体を得た。なお、ウレタン系2液硬化型接着剤で形成される接着剤層の乾燥後の厚みはいずれも約4μmであった。
[ラミネート強度]
上記で作製したラミネート積層体に対して、130℃の熱水中に30分間保持する湿熱処理を行い、未乾燥のままの状態で、幅15mm、長さ200mmに切り出して試験片とし、温度23℃、相対湿度65%の条件下で、テンシロン万能材料試験機(東洋ボールドウイン社製「テンシロンUMT-II-500型」)を用いてラミネート強度(レトルト後)を測定した。ラミネート強度は、引張速度を200mm/分とし、積層フィルムとヒートシール性樹脂層との間に水を付けて、剥離角度90度で剥離させたときの強度とした。
[保香性]
 前述のラミネート積層体を15cm四方の大きさにカットし、シーラントが内側になるように2枚を重ね合わせ、3方を160℃のシール温度、シール幅1.0cmにてヒートシールすることで内寸13cmの3方シール袋を得た。
 得られた3方シール袋に、イオン交換水を充填したのちにヒートシールして閉口し、レトルト殺菌処理機で135℃、1時間のレトルト殺菌処理を行い、しかる後、80℃にて1週間保管した。その浸漬液を用いて30人のパネラーにて試飲テストを行い、比較用のイオン交換水と比較した。比較用のイオン交換水と較べて味の変化を感じた人数が30人中3人以下の場合を○、4~10人の場合を△、11人以上の場合を×とした。
[原料樹脂]
(ポリブチレンテレフタレート樹脂;PBT-1)
  撹拌機、蒸留塔、圧力調整器を備えたステンレス製オートクレーブにテレフタル酸、1,4-ブタンジオール(BDと略す)(BD/テレフタル酸=2/1(モル比))、得られるポリブチレンテレフタレート樹脂の質量に対し、チタン原子として70ppm残存するようにテトラブチルチタネートを加えて215℃、101kPaで、エステル化反応で生成する水やTHFを逐次除去しながら4時間エステル化反応を行った。続いて、1時間で系の温度を250℃まで昇温して、この間に系の圧力を徐々に減じて0.15kPaとし、この条件下で2時間重縮合反応を行い、固有粘度1.07dL/gのポリブチレンテレフタレート樹脂のペレットを得た。
 続いて上記で得られたポリブチレンテレフタレート樹脂を、バッチ式の固相重合装置を使用し、200℃にて、減圧下、3時間固相重合し、固有粘度1.17dL/g、オリゴマー成分含有量10600ppmのポリブチレンテレフタレート樹脂(PBT-1)を得た。
(ポリブチレンテレフタレート樹脂;PBT-2)
 前記PBT-1の重合において、重縮合反応時間を1.5時間、固相重合反応を10時間に変更した以外は前記PBT-1の重合と同様に行い、固有粘度1.18dl/g、オリゴマー含有量3100ppmのポリブチレンテレフタレート樹脂(PBT-2)を得た。
(ポリブチレンテレフタレート樹脂;PBT-3)
 前記PBT-1の重合において、重縮合反応時間を1.5時間、固相重合反応を6時間に変更した以外は前記PBT-1の重合と同様に行い、固有粘度1.04dl/g、オリゴマー含有量8800ppmのポリブチレンテレフタレート樹脂(PBT-3)を得た。
(ポリブチレンテレフタレート樹脂;PBT-4)
 撹拌機、蒸留塔、圧力調整器を備えたステンレス製オートクレーブにテレフタル酸、BD(BD/テレフタル酸=2/1(モル比))、得られるポリブチレンテレフタレート樹脂の質量に対し、チタン原子として70ppm残存するようにテトラブチルチタネートを加えて215℃、101kPaで、エステル化反応で生成する水やTHFを逐次除去しながら4時間エステル化反応を行った。続いて、1時間で系の温度を250℃まで昇温して、この間に系の圧力を徐々に減じて0.15kPaとし、この条件下で1時間重縮合反応を行い、固有粘度0.8dL/g、オリゴマー成分量13700ppmのポリブチレンテレフタレート樹脂のペレットを得た。
[実施例1]
 一軸押出機を用い、PBT-1と、不活性粒子として平均粒径2.4μmのシリカ粒子をシリカ濃度として1600ppmとなるように配合したものを270℃で溶融させた後、メルトラインを12エレメントのスタティックミキサーに導入した。これにより、ポリブチレンテレフタレート溶融体の分割・積層を行い、同一の原料からなる多層溶融体を得た。270℃のT-ダイスからキャストし、15℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。
 次いで、60℃で縦方向(MD)に3.5倍ロール延伸し、次いで、テンターに通して90℃で横方向(TD)に4.0倍延伸し、210℃で3秒間の緊張熱処理と1秒間5%の緩和処理を実施した後、両端の把持部を10%ずつ切断除去して厚みが15μmのポリブチレンテレフタレートフィルムのミルロールを得た。得られたフィルムの製膜条件、物性および評価結果を表1に示した。
[実施例2~7、比較例1~5]
 実施例1において、使用するポリブチレンテレフタレート樹脂、原料組成、製膜条件を表1あるいは表2に記載した二軸延伸フィルムに変えた以外は実施例1と同様に行った。得られたフィルムの製膜条件、物性および評価結果を表1あるいは表2に示した。
[比較例6]
 一軸押出機を用い、PBT-1と、不活性粒子として平均粒径2.4μmのシリカ粒子をシリカ濃度として1600ppmとなるように配合したものを270℃で溶融させた後、265℃のT-ダイスからキャストし、15℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。
 次いで、60℃で縦方向(MD)に2.8倍ロール延伸し、次いで、テンターに通して90℃で横方向(TD)に3倍延伸し、210℃で3秒間の緊張熱処理と1秒間5%の緩和処理を実施した後、両端の把持部を10%ずつ切断除去して厚みが15μmのポリブチレンテレフタレートフィルムのミルロールを得た。ポリブチレンテレフタレート溶融体の分割・積層を行なわなかった。得られたフィルムの製膜条件、物性および評価結果を表2に示した。
[比較例7]
 比較例6において、縦方向(MD)に3.5倍延伸し、横方向(TD)に4.0倍延伸することに変更する以外は、比較例6と同様に行った。得られたフィルムの製膜条件、物性および評価結果を表2に示した。
[参考例]
 参考例として、市販のPET/ポリアミド(Ny)/PETの構成で積層された延伸フィルム(全厚み15μm)を用いた。

Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
 
 表1に示すように、実施例1~8の二軸配向ポリエステルフィルムは、耐衝撃性に優れるだけでなく、FDA(米国食品医薬品局)§177.1660(c)(2)に示される溶出テストにおいても、オリゴマー成分の溶出量が少なく、また、レトルト殺菌処理温度に相当する135℃加熱後においても、優れた保香性を有していた。
 一方、比較例1、3、4、6の二軸配向ポリブチレンテレフタレートフィルムは原料中のオリゴマー量が多い場合や押し出し工程での樹脂温度が高いと、フィルム中に残存するオリゴマー量が多くなり、溶出テスト後のオリゴマー溶出量が多く、保香性に劣っていた。
 また比較例5の二軸配向エステルフィルムはフィルム中のPET含有量が多い場合、オリゴマー溶出量は低減できるものの、衝撃強度低下し、目的としている特性を満足させることが出来ない。
 また、参考例の市販のPET/ポリアミド(Ny)/PETの構成で積層された延伸フィルムでは、耐衝撃性や保香性に優れるものの、レトルト殺菌処理後にラミネート強度測定において、フィルムの層間剥離が発生しラミネート強度の低下が観られた。
 また、比較例6に示した結果から、製膜安定性を確保するために、延伸倍率を低くすると、十分な面配向度が得られず、フィルムからのオリゴマー成分の溶出が多くなり、さらには加熱後のヘーズ値の変化も大きくなった。
またさらに、比較例7に示した結果から、多層化を行わずに面配向度を高くするために延伸倍率を上げると、製膜中の破断が多くなり、安定的な製膜が困難であった。
 本発明により、ボイル・レトルト殺菌処理を行うための食品包装材料に好適な、優れた耐衝撃性や屈曲性、力学強度を有するとともに、低溶出性を兼ねそろえた二軸配向ポリエステルフィルムを得ることができ、特にレトルトパウチ包装に対して特に好適に用いる包装材料として広く適用でき得ることから、産業界に大きく寄与することが期待される。

Claims (4)

  1.  下記特徴(a)~(d)を有することを特徴とする二軸配向ポリエステルフィルム。
    (a)ポリブチレンテレフタレートを60質量%以上含む樹脂組成物からなる。
    (b)フィルムの幅方向の厚み精度が1~20%である。
    (c)フィルム中に含まれるオリゴマー成分が2000~12000ppmである。
    (d)フィルムを50%エタノール水溶液に浸漬させて66℃で2時間加熱した際に、該50%エタノール中に溶出するオリゴマー成分の質量がフィルム1平方インチあたり0.02mg以下である。
  2.  フィルムの面配向係数が0.136~0.160であることを特徴とする請求項1に記載の二軸配向ポリエステルフィルム。
  3.  下記工程(a)~(f)及び下記条件(g)を有することを特徴とする請求項1又は2に記載の二軸配向ポリエステルフィルムの製造方法。
    (a)ポリブチレンテレフタレートを60質量%以上含む樹脂組成物を押出機に投入する工程
    (b)樹脂組成物を加熱溶融し、240~290℃の溶融樹脂組成物を得る工程
    (c)溶融樹脂組成物を60層以上に多層化する工程
    (d)溶融樹脂組成物をTダイスから押出し溶融樹脂組成物シートを得る工程
    (e)溶融樹脂組成物シートを冷却ロールに接触させ冷却して未延伸樹脂シートを得る工程
    (f)未延伸シートを二軸延伸する工程
    (g)工程(b)において、溶融樹脂組成物が240℃に達してから、Tダイスから押出されるまでの時間が2~13分である。
  4.  二軸延伸工程が同時二軸延伸工程または逐次二軸延伸工程である請求項3に記載の二軸配向ポリエステルフィルムの製造方法。
PCT/JP2018/001900 2017-03-28 2018-01-23 二軸配向ポリエステルフィルム及びその製造方法 WO2018179726A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/494,552 US20200009777A1 (en) 2017-03-28 2018-01-23 Biaxially oriented polyester film and method for producing same
CN201880021674.6A CN110494476A (zh) 2017-03-28 2018-01-23 双轴取向聚酯薄膜和其制造方法
KR1020197030711A KR20190125491A (ko) 2017-03-28 2018-01-23 2축 배향 폴리에스테르 필름 및 그의 제조 방법
EP18774777.9A EP3604401A4 (en) 2017-03-28 2018-01-23 BIAXIAL ORIENTED POLYESTER FILM AND METHOD FOR MANUFACTURING IT
JP2019508612A JPWO2018179726A1 (ja) 2017-03-28 2018-01-23 二軸配向ポリエステルフィルム及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017062979 2017-03-28
JP2017-062982 2017-03-28
JP2017-062979 2017-03-28
JP2017062982 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018179726A1 true WO2018179726A1 (ja) 2018-10-04

Family

ID=63674998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001900 WO2018179726A1 (ja) 2017-03-28 2018-01-23 二軸配向ポリエステルフィルム及びその製造方法

Country Status (7)

Country Link
US (1) US20200009777A1 (ja)
EP (1) EP3604401A4 (ja)
JP (1) JPWO2018179726A1 (ja)
KR (1) KR20190125491A (ja)
CN (1) CN110494476A (ja)
TW (1) TW201836854A (ja)
WO (1) WO2018179726A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020175064A1 (ja) * 2019-02-26 2020-09-03

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117736A1 (ja) * 2019-12-13 2021-06-17 東洋紡株式会社 二軸配向ポリエステルフィルム及びその製造方法
US20230183434A1 (en) * 2020-04-30 2023-06-15 C.I. Takiron Corporation Polyester-based shrink film
CN113999420B (zh) * 2021-11-05 2022-11-25 衢州市闻天化工有限公司 一种建材的防水复合膜及其制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145252A (ja) * 1993-11-24 1995-06-06 Teijin Ltd 金属缶蓋貼合せ被覆透明フィルム
JP2003026824A (ja) * 2001-07-16 2003-01-29 Unitika Ltd 金属板ラミネート用ポリエステルフィルム
JP2005154640A (ja) * 2003-11-27 2005-06-16 Nippon Ester Co Ltd 金属ラミネートフィルム用ポリエステル樹脂組成物
JP2012214248A (ja) 2011-04-01 2012-11-08 Kohjin Co Ltd 二軸延伸ポリブチレンテレフタレート系フィルムを含むレトルト用包材
JP2013154605A (ja) 2012-01-31 2013-08-15 Dainippon Printing Co Ltd ボイル・レトルト処理用包装材料及びパウチ
WO2015178390A1 (ja) * 2014-05-21 2015-11-26 東洋紡株式会社 二軸延伸ポリブチレンテレフタレートフィルムおよびその製造方法、並びにガスバリア性積層フィルム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104321372B (zh) * 2012-05-14 2018-07-06 东洋纺株式会社 聚酯薄膜及其制造方法
CN109593217A (zh) * 2012-07-24 2019-04-09 尤尼吉可株式会社 冷成型用聚酯膜及其制造方法
EP3069849A4 (en) * 2013-11-13 2017-06-28 Toyobo Co., Ltd. Biaxially stretched polyester film and method for producing same
WO2016171173A1 (ja) * 2015-04-24 2016-10-27 東洋紡株式会社 二軸延伸ポリエステルフィルムおよびその製造方法
MY195397A (en) * 2015-04-24 2023-01-18 Toyo Boseki Biaxially Stretched Polyester Film, and Production Method Therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145252A (ja) * 1993-11-24 1995-06-06 Teijin Ltd 金属缶蓋貼合せ被覆透明フィルム
JP2003026824A (ja) * 2001-07-16 2003-01-29 Unitika Ltd 金属板ラミネート用ポリエステルフィルム
JP2005154640A (ja) * 2003-11-27 2005-06-16 Nippon Ester Co Ltd 金属ラミネートフィルム用ポリエステル樹脂組成物
JP2012214248A (ja) 2011-04-01 2012-11-08 Kohjin Co Ltd 二軸延伸ポリブチレンテレフタレート系フィルムを含むレトルト用包材
JP2013154605A (ja) 2012-01-31 2013-08-15 Dainippon Printing Co Ltd ボイル・レトルト処理用包装材料及びパウチ
WO2015178390A1 (ja) * 2014-05-21 2015-11-26 東洋紡株式会社 二軸延伸ポリブチレンテレフタレートフィルムおよびその製造方法、並びにガスバリア性積層フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604401A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020175064A1 (ja) * 2019-02-26 2020-09-03
WO2020175064A1 (ja) * 2019-02-26 2020-09-03 東洋紡株式会社 二軸配向ポリエステルフィルム、及び、二軸配向ポリエステルフィルムの製造方法
JP7365569B2 (ja) 2019-02-26 2023-10-20 東洋紡株式会社 二軸配向ポリエステルフィルム、及び、二軸配向ポリエステルフィルムの製造方法

Also Published As

Publication number Publication date
TW201836854A (zh) 2018-10-16
EP3604401A4 (en) 2020-12-16
JPWO2018179726A1 (ja) 2020-02-06
US20200009777A1 (en) 2020-01-09
EP3604401A1 (en) 2020-02-05
CN110494476A (zh) 2019-11-22
KR20190125491A (ko) 2019-11-06

Similar Documents

Publication Publication Date Title
WO2017126563A1 (ja) 二軸延伸ポリエステルフィルム、積層体及び包装用袋
JP6874277B2 (ja) 二軸延伸ポリエステルフィルムおよびその製造方法
JP6962364B2 (ja) 積層フィルム
WO2020203106A1 (ja) ポリエステルフィルム及びその製造方法
WO2018179726A1 (ja) 二軸配向ポリエステルフィルム及びその製造方法
JP6927336B2 (ja) ガスバリア性積層フィルムおよびその製造方法
JP6819816B2 (ja) ポリエステルフィルムロール
JPWO2018225559A1 (ja) 二軸配向ポリエステルフィルム
TW202146236A (zh) 層合積層體
JP7006445B2 (ja) ポリエステルフィルムおよびガスバリア性積層フィルム
JP7060842B2 (ja) ラミネート積層体
JP6879473B2 (ja) 二軸配向ポリエステルフィルム
WO2020145254A1 (ja) 積層フィルム
WO2020080131A1 (ja) 積層フィルム
JPWO2019142781A1 (ja) 二軸配向ポリエステルフィルム
JP7310876B2 (ja) ポリエステルフィルムおよびガスバリア性積層フィルム
JP2019171587A (ja) ポリエステルフィルムおよびガスバリア性積層フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774777

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508612

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197030711

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018774777

Country of ref document: EP

Effective date: 20191028