WO2018179688A1 - Color conversion element and lighting device - Google Patents

Color conversion element and lighting device Download PDF

Info

Publication number
WO2018179688A1
WO2018179688A1 PCT/JP2018/001122 JP2018001122W WO2018179688A1 WO 2018179688 A1 WO2018179688 A1 WO 2018179688A1 JP 2018001122 W JP2018001122 W JP 2018001122W WO 2018179688 A1 WO2018179688 A1 WO 2018179688A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conversion element
color conversion
phosphor
main surface
Prior art date
Application number
PCT/JP2018/001122
Other languages
French (fr)
Japanese (ja)
Inventor
孝典 明田
平野 徹
公輝 大石
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018179688A1 publication Critical patent/WO2018179688A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to a color conversion element in which a phosphor layer is laminated on a substrate and a lighting device including the same.
  • a technique in which a phosphor layer and a substrate are metal-bonded is disclosed in order to improve heat dissipation (see, for example, Patent Document 1). .
  • the plate-like phosphor layer may be metal-bonded to the substrate. At this time, heat at the time of metal bonding is transmitted to the phosphor layer and the substrate, but due to the difference in thermal expansion coefficient between them, the color conversion element is warped, or cracks or peeling occurs at the metal bonding portion, There was a risk of malfunction.
  • an object of the present invention is to suppress the occurrence of defects due to metal bonding.
  • a color conversion element includes a phosphor layer containing at least one kind of phosphor, a substrate on which the phosphor layer is disposed on one main surface side, and between the phosphor layer and the substrate. It comprises a joint for interposing the phosphor layer and the substrate with metal nano-joining, and at least one of the first main surface on the phosphor layer side and the second main surface on the substrate side in the joint, A concavo-convex structure including a plurality of convex portions and a concave portion between the plurality of convex portions is formed.
  • An illumination device includes the color conversion element and a light source unit that emits excitation light for exciting a phosphor of the color conversion element.
  • FIG. 1 is a schematic diagram illustrating a schematic configuration of a lighting apparatus according to an embodiment.
  • FIG. 2 is a cross-sectional view illustrating a schematic configuration of the color conversion element according to the embodiment.
  • FIG. 3 is a plan view showing a schematic configuration of a part of the concavo-convex structure according to the embodiment.
  • FIG. 4 is a plan view showing a modification of the concavo-convex structure according to the embodiment.
  • FIG. 5 is a plan view showing a modification of the concavo-convex structure according to the embodiment.
  • FIG. 6 is a cross-sectional view illustrating a first step of the method for manufacturing the color conversion element according to the embodiment.
  • FIG. 1 is a schematic diagram illustrating a schematic configuration of a lighting apparatus according to an embodiment.
  • FIG. 2 is a cross-sectional view illustrating a schematic configuration of the color conversion element according to the embodiment.
  • FIG. 3 is a plan view showing a schematic configuration of a part of the
  • FIG. 7 is a cross-sectional view showing a second step of the method of manufacturing the color conversion element according to the embodiment.
  • FIG. 8 is a cross-sectional view illustrating a third step of the method for manufacturing the color conversion element according to the embodiment.
  • FIG. 9 is a cross-sectional view illustrating a fourth step of the method for manufacturing the color conversion element according to the embodiment.
  • FIG. 10 is a cross-sectional view illustrating a schematic configuration of the color conversion element according to the first modification.
  • FIG. 11 is a cross-sectional view illustrating a schematic configuration of a color conversion element according to Modification 2.
  • FIG. 12 is a cross-sectional view illustrating a schematic configuration of a color conversion element according to Modification 3.
  • FIG. 13 is a cross-sectional view illustrating a schematic configuration of a color conversion element according to Modification 4.
  • FIG. 14 is a cross-sectional view illustrating a schematic configuration of a color conversion element according to Modification 5.
  • FIG. 15 is a cross-sectional view illustrating a schematic configuration of a color conversion element according to Modification 6.
  • FIG. 1 is a schematic diagram illustrating a schematic configuration of a lighting device 1 according to an embodiment.
  • the illumination device 1 includes a light source unit 2, a light guide member 3, and a color conversion element 4.
  • the light source unit 2 is a device that generates laser light and supplies the laser light to the color conversion element 4 via a light guide member 3 such as an optical fiber.
  • the light source unit 2 is a semiconductor laser element that emits laser light having a wavelength of bluish purple to blue (430 to 490 nm).
  • the color conversion element 4 is a light emitting element that emits white light to the surface side using the laser light transmitted from the light guide member 3 and irradiated from the surface side of the color conversion element 4 as excitation light.
  • FIG. 2 is a sectional view showing a schematic configuration of the color conversion element 4 according to the embodiment.
  • the color conversion element 4 includes a substrate 41, a first electrode layer 42, a bonding portion 43, a second electrode layer 44, and a phosphor layer 45.
  • the substrate 41 is a substrate whose planar view shape is, for example, a rectangular shape or a circular shape.
  • the substrate 41 is a substrate having higher thermal conductivity than the phosphor layer 45. Thereby, the heat conducted from the phosphor layer 45 can be efficiently radiated from the substrate 41.
  • the substrate 41 is made of a metal material such as Cu or Al.
  • the substrate 41 may be made of a material other than a metal material as long as it has a higher thermal conductivity than the phosphor layer 45. Examples of the material other than the metal material include glass and sapphire.
  • a heat sink such as a mirror surface heat sink may be in contact with and attached to the substrate 41 in order to further improve heat dissipation.
  • the first electrode layer 42 is laminated on the main surface 411 of the substrate 41 on the phosphor layer 45 side.
  • the first electrode layer 42 is formed of a metal material such as Au, Ag, Ni, Pd, Ti, for example.
  • the first electrode layer 42 is formed by forming a metal material on the main surface 411 of the substrate 41 by a known film forming method such as sputtering or plating.
  • the junction 43 is a junction for interposing between the phosphor layer 45 and the substrate 41 and metal nano-joining the phosphor layer 45 and the substrate 41.
  • the joint portion 43 is laminated on the main surface 421 on the phosphor layer 45 side in the first electrode layer 42.
  • the joint portion 43 is formed of a metal material capable of metal nanojoining.
  • the joint part 43 is formed by sintering metal nanoparticles.
  • the metal nanoparticles include silver nanoparticles and copper nanoparticles. In the case of using silver nanoparticles, copper nanoparticles, etc., they are easily available and have excellent heat dissipation.
  • the first main surface 431 on the phosphor layer 45 side in the joint portion 43 has a concavo-convex structure 434 including a plurality of convex portions 432 and a plurality of concave portions 433 between the plurality of convex portions 432. It is formed on the entire main surface 431.
  • FIG. 3 is a plan view showing a schematic configuration of a part of the concavo-convex structure 434 according to the embodiment.
  • the concave portion 433 is shaded.
  • the plurality of convex portions 432 in the concavo-convex structure 434 are arranged with regularity with respect to the first main surface 431 of the joint portion 43.
  • the plurality of convex portions 432 are arranged in a matrix.
  • the interval H1 between the plurality of convex portions 432 is on the order of several tens to several hundreds of nanometers. Specifically, the interval H1 is 100 ⁇ m.
  • the recessed part 433 which is between the some convex parts 432 of the uneven structure 434 is also arrange
  • the recesses 433 are formed in a lattice shape in plan view.
  • the lattice-shaped recess 433 can be viewed as a plurality of recesses in a cross-sectional view, but continuously covers a plurality of recesses 433 in a plan view, and is viewed as a single recess as a whole. Can do.
  • This recess 433 is a gap.
  • the plurality of convex portions 432 may be arranged in any manner as long as they are arranged with a predetermined regularity in the first main surface 431.
  • FIGS. 4 and 5 are plan views showing modifications of the concavo-convex structure according to the embodiment.
  • the structure etc. which are made are mentioned.
  • the concave portions 433a and 433b formed between the plurality of convex portions 432a and 432b are divided into the convex portions 432a and 432b. Can do.
  • the second electrode layer 44 is laminated on the first main surface 431 of the phosphor layer 45. Specifically, the second electrode layer 44 is laminated on the tip surfaces of the plurality of convex portions 432 so as not to fill the concave portions 433.
  • the second electrode layer 44 is made of a metal material such as Au, Ag, Ni, Pd, or Ti.
  • the second electrode layer 44 is formed by forming a metal material on the main surface 452 of the phosphor layer 45 by a film forming method such as sputtering or plating.
  • the phosphor layer 45 is disposed on the main surface 411 side of the substrate 41 with the first electrode layer 42, the joint 43 and the second electrode layer 44 interposed therebetween.
  • the phosphor layer 45 is formed in the same shape as the substrate 41 in plan view.
  • the phosphor layer 45 includes, for example, phosphor particles (phosphor particles 451) that are excited by laser light to emit fluorescence in a dispersed state, and the phosphor particles 451 emit fluorescence when irradiated with laser light. . For this reason, the outer main surface of the phosphor layer 45 becomes a light emitting surface.
  • the phosphor layer 45 emits white light, and a first phosphor that emits red light when irradiated with laser light, a second phosphor that emits blue light, and a third phosphor that emits green light.
  • a first phosphor that emits red light when irradiated with laser light a second phosphor that emits blue light
  • a third phosphor that emits green light a third phosphor that emits green light.
  • Three types of phosphor particles of the phosphor are included at an appropriate ratio.
  • the type and characteristics of the phosphor are not particularly limited. However, since a relatively high output laser beam serves as excitation light, it is desirable that the phosphor has high heat resistance.
  • the type of the substrate that holds the phosphor in a dispersed state is not particularly limited, but the substrate should be highly transparent with respect to the wavelength of the excitation light and the wavelength of the light emitted from the phosphor. desirable.
  • the base material which consists of glass or ceramics is mentioned.
  • the phosphor layer 45 may be a polycrystal or a single crystal made of one kind of phosphor.
  • 6 to 9 are cross-sectional views showing one process of the method for manufacturing the color conversion element 4 according to the embodiment.
  • a substrate 41 on which the first electrode layer 42 is laminated is prepared, and a screen printing frame 80 is prepared.
  • a mask 81 having a plurality of holes (not shown) corresponding to the plurality of convex portions 432 is fixed to the opening of the frame 80 in a pulled state.
  • the frame body 80 is overlaid on the substrate 41, and paste-like silver nanoparticles 90 are placed on the frame body 80. Then, the squeegee 82 is slid so that the silver nanoparticles 90 are stretched on the mask 81. As a result, the silver nanoparticles 90 are extruded from the plurality of holes of the mask 81 and applied onto the first electrode layer 42.
  • the joint portion 43 made of the silver nanoparticles 90 is formed on the substrate 41.
  • the concavo-convex structure 434 is formed on the first main surface 431 of the joint portion 43 by the plurality of holes of the mask 81.
  • a phosphor layer 45 on which the second electrode layer 44 is laminated is prepared, and the phosphor is arranged so that the second electrode layer 44 contacts the first main surface 431 of the joint portion 43.
  • the layer 45 is pressed against the substrate 41.
  • the amount of compressive deformation of the plurality of convex portions 432 of the joint portion 43 is adjusted. That is, the contact area between the first main surface 431 of the joint portion 43 and the second electrode layer 44 can be adjusted.
  • the junction 43 is heated by applying current to the first electrode layer 42 and the second electrode layer 44.
  • the joining portion 43 is sintered, and the substrate 41 and the phosphor layer 45 are metal nano-joined via the first electrode layer 42 and the second electrode layer 44.
  • thermal stress acts on the joint 43, but deformation of the joint 43 due to the thermal stress is alleviated by the recess 433, so that thermal deformation of the entire joint 43 can be suppressed.
  • the color conversion element 4 shown in FIG. 2 is completed by cutting the substrate 41 into a desired shape.
  • the phosphor particles 451 generate heat, but the heat is transferred to the substrate 41 through the second electrode layer 44, the joint 43, and the first electrode layer 42 to be dissipated.
  • thermal stress acts on the joint 43, but thermal deformation of the joint 43 due to the thermal stress is alleviated by the concave portion 433, so that thermal deformation of the entire joint 43 can be suppressed.
  • produces in a joining interface, and peeling can be suppressed.
  • the color conversion element 4 includes the phosphor layer 45 including at least one kind of phosphor (phosphor particles 451), and the phosphor layer 45 on one main surface 411 side. And a bonding portion 43 interposed between the phosphor layer 45 and the substrate 41 for metal nano-bonding the phosphor layer 45 and the substrate 41, and the phosphor in the bonding portion 43 On the first main surface 431 on the layer 45 side, a concavo-convex structure 434 including a plurality of convex portions 432 and concave portions 433 between the plurality of convex portions 432 is formed.
  • the lighting device 1 also includes the color conversion element 4 and a light source unit 2 that emits excitation light for exciting the phosphor of the color conversion element 4.
  • the concave portion 433 of the concavo-convex structure 434 can be suppressed. Therefore, generation
  • the plurality of convex portions 432 are arranged with regularity with respect to the first main surface 431.
  • the thermal stress acting on the joint portion 43 can be dispersed without variation. Therefore, thermal deformation of the joint portion 43 can be further suppressed.
  • the concavo-convex structure 434 is formed on the entire first main surface 431.
  • the concavo-convex structure 434 is formed on the entire first main surface 431, thermal stress can be suppressed over the entire first main surface 431. Therefore, thermal deformation of the joint portion 43 can be further suppressed.
  • FIG. 10 is a cross-sectional view illustrating a schematic configuration of a color conversion element 4A according to Modification Example 1, and specifically corresponds to FIG.
  • parts that are the same as those of the color conversion element 4 according to the above-described embodiment are given the same reference numerals and explanation thereof is omitted, and only different parts are described.
  • the color conversion element 4 ⁇ / b> A of Modification 1 is obtained by adding an adhesion layer 46 and a reflection layer 47 to the color conversion element 4 of the above embodiment.
  • the adhesion layer 46 and the reflection layer 47 are laminated and are interposed between the phosphor layer 45 and the second electrode layer 44. Specifically, the adhesion layer 46 is on the phosphor layer 45 side, and the reflective layer 47 is on the second electrode layer 44 side.
  • the adhesion layer 46 is laminated on the main surface 452 on the substrate 41 side in the phosphor layer 45.
  • the adhesion layer 46 is formed from a light-transmitting compound and is in close contact with the phosphor layer 45 and the reflection layer 47.
  • the adhesion layer 46 is formed by depositing a compound on the main surface 452 of the phosphor layer 45 by a known film forming method such as sputtering or plating.
  • examples of the compound forming the adhesion layer 46 include oxides, halides, nitrides, and fluorides.
  • the oxide include metal oxides such as ITO, IZO, and Al 2 O 3 .
  • the reflective layer 47 is laminated on the main surface 461 of the adhesion layer 46 on the substrate 41 side.
  • the reflective layer 47 reflects the laser light and the light emitted from the phosphor particles 451.
  • the reflective layer 47 is formed of a material having a high reflectivity with respect to the laser light and the light emitted from the phosphor particles 451.
  • the material having high reflectivity is a metal material such as Ag or Al.
  • the reflective layer 47 is formed by forming a metal material on the main surface 461 of the adhesion layer 46 by a known film forming method such as sputtering or plating. Further, for example, an increased reflection film such as a dielectric multilayer film may be formed on the layer formed of these metal materials.
  • the second electrode layer 44 is laminated on the main surface 471 of the reflective layer 47 on the substrate 41 side. Specifically, the second electrode layer 44 is formed by forming a metal material on the main surface 471 of the reflective layer 47 by a film forming method such as sputtering or plating.
  • the reflection layer 47 is laminated on the phosphor layer 45 through the light-transmitting adhesion layer 46, white light emitted from the phosphor particles 451 is reflected by the reflection layer 47.
  • the phosphor layer 45 can be emitted to the outside. That is, if there is no reflective layer 47, white light that can be absorbed by the second electrode layer 44 and the joint portion 43 can be emitted outward by the reflective layer 47, so that the luminous efficiency can be increased. Moreover, the heat_generation
  • a minute gap may be formed between the reflection layer 47 and the phosphor layer 45. If there is such a minute gap, the heat transfer from the phosphor layer 45 to the substrate 41 is weakened.
  • Modification 1 since the phosphor layer 45 and the reflective layer 47 are in close contact with the adhesive layer 46, it is possible to suppress a decrease in heat transfer due to the gap. Therefore, heat dissipation efficiency can be increased.
  • FIG. 11 is a cross-sectional view illustrating a schematic configuration of the color conversion element 4B according to the second modification, and specifically corresponds to FIG.
  • the phosphor particles 451 are substantially uniformly dispersed in the entire phosphor layer 45 is exemplified.
  • the phosphor particles 451 are arranged on the substrate 41 side in the phosphor layer 45b.
  • the color conversion element 4B arranged in the above will be described.
  • the phosphor layer 45b has a two-layer structure.
  • a second layer 457 is formed by laminating 456. The second layer 457 is disposed on the substrate 41 side, and the first layer 455 is disposed on the side opposite to the substrate 41, whereby the phosphor particles 451 are disposed on the substrate 41 side in the phosphor layer 45b.
  • the phosphor particles 451 are arranged so as to be biased toward the substrate 41 in the phosphor layer 45b, the interval between any phosphor particles 451 and the substrate 41 can be reduced. For this reason, heat can be efficiently transferred to the substrate 41 side.
  • the phosphor layer 45b has a two-layer structure, the second layer 457 containing the phosphor particles 451 can be protected by the first layer 455.
  • the phosphor particles are aggregated on one main surface side of the phosphor layer so that the main surface is on the substrate 41 side. You may arrange.
  • FIG. 12 is a cross-sectional view showing a schematic configuration of a color conversion element 4C according to Modification 3, and specifically corresponds to FIG.
  • the color conversion element 4C of Modification 3 is obtained by adding a through-hole 5 to the color conversion element 4 of the above embodiment.
  • the through hole 5 that is continuous in the normal direction of the main surface 411 of the substrate 41 with respect to the substrate 41, the first electrode layer 42, the joint 43, and the second electrode layer 44. Is formed.
  • the through-hole 5 can be used as an optical path of excitation light (laser light) incident from the substrate 41 side. Thereby, white light can be emitted in the traveling direction of the excitation light.
  • the light source part 2 and the light guide member 3 can be arrange
  • the through-hole 5 is continuous in the normal direction of the main surface 411 of the substrate 41 in the third modification.
  • the through-hole 5 is formed in any direction as long as the direction intersects the main surface 411. May be continuous.
  • FIG. 13 is a cross-sectional view showing a schematic configuration of a color conversion element 4D according to Modification Example 4, and specifically corresponds to FIG.
  • the color conversion element 4D of the modification 4 is obtained by adding a reflective layer 48 to the color conversion element 4C of the modification 3.
  • the reflective layer 48 is laminated so as to cover the through hole 5 with respect to the main surface 452 on the substrate 41 side in the phosphor layer 45. That is, the reflective layer 48 is interposed between the phosphor layer 45 and the second electrode layer 44.
  • the reflective layer 48 is a dichroic mirror that transmits laser light and reflects light emitted from the phosphor particles 451, and is, for example, a dielectric multilayer film.
  • the laser light incident from the through hole 5 can be allowed to enter the phosphor layer 45 without being blocked. Further, the white light emitted from the phosphor particles 451 can be reflected by the reflecting layer 48 and emitted to the outside of the phosphor layer 45. That is, if the reflective layer 48 is not provided, white light that can be absorbed by the second electrode layer 44 and the joint portion 43 can be emitted outward by the reflective layer 48, so that the light emission efficiency can be increased. Moreover, the heat_generation
  • FIG. 14 is a cross-sectional view showing a schematic configuration of a color conversion element 4E according to Modification 5, and specifically corresponds to FIG.
  • the color conversion element 4 ⁇ / b> B of the modification 5 is obtained by adding a reflection suppression layer 49 to the color conversion element 4 ⁇ / b> D of the modification 4.
  • the reflection suppressing layer 49 is laminated on the main surface 481 on the substrate 41 side in the reflecting layer 48 so as to cover the through hole 5.
  • the reflection suppression layer 49 suppresses transmission of the laser light and reflection of the transmitted laser light on the main surface 481 of the reflection layer 48.
  • an AR coating layer is exemplified.
  • the AR coat layer is formed of a material having a lower refractive index than that of the reflective layer 48.
  • the reflection suppression layer 49 Since such a reflection suppressing layer 49 is provided, it can be suppressed that the laser light incident from the through hole 5 is reflected by the main surface 481 of the reflecting layer 48 and becomes return light, and the light emission efficiency. Can be increased.
  • the reflection suppression layer 49 may be provided only in the area
  • FIG. 15 is a cross-sectional view showing a schematic configuration of a color conversion element 4F according to Modification Example 6, and specifically corresponds to FIG.
  • the color conversion element 4 ⁇ / b> F of Modification 6 is different from the color conversion element 4 of the above embodiment in the formation portion of the concavo-convex structure.
  • the concavo-convex structure 434 f of the color conversion element 4 F is formed on the entire second main surface 435 on the substrate 41 side in the joint portion 43.
  • the plurality of convex portions 432f of the concavo-convex structure 434f are arranged with regularity with respect to the second main surface 435.
  • the concave portions 433 f that are between the plurality of convex portions 432 f of the concave-convex structure 434 are also arranged with regularity with respect to the second main surface 435.
  • the color conversion element 4 can also be used in other illumination systems.
  • other illumination systems include a projector and an in-vehicle headlight.
  • the color conversion element 4 is used as a phosphor wheel.
  • a reflection suppressing layer such as an AR coating layer may be laminated on the surface of the phosphor layer 45 opposite to the main surface 452, that is, the light emitting surface. Thereby, the light extraction efficiency can be increased.
  • the uneven structure 434 is formed by screen printing.
  • the uneven structure 434 can be formed by a method other than screen printing. Other methods include nanoimprint.
  • the plurality of convex portions 432 and 432f of the concavo-convex structure 434 and 434f are arranged with regularity with respect to the first main surface 431 or the second main surface 435 of the joint portion 43.
  • the plurality of convex portions may not have regularity as long as they are arranged discretely.
  • the concavo-convex structure 434, 434f is formed on the entire first main surface 431 or the second main surface 435 of the joint portion 43 is exemplified.
  • the concavo-convex structure should just be formed in one part of one of the 1st main surface and the 2nd main surface in a junction part.
  • the color conversion element 4 including the first electrode layer 42 and the second electrode layer 44 has been described as an example. However, even if the first electrode layer 42 and the second electrode layer 44 are not provided, the joint portion is provided. It is possible to sinter 43 to perform metal nanojoining.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

This color conversion element (4) is provided with: a phosphor layer (45) including at least one type of phosphor (a phosphor particle (451)); a substrate (41) having one main surface (411) on which the phosphor layer (45) is disposed; and a junction part (43) interposed between the phosphor layer (45) and the substrate (41) to form a metal nanojunction between the phosphor layer (45) and the substrate (41). A recess and protrusion structure (434) having a plurality of protrusions (432) and a plurality of recesses (433) between the plurality of protrusions (432) is formed on a first main surface (431) of the junction part (43), the first main surface (431) being on the side of the phosphor layer (45).

Description

色変換素子および照明装置Color conversion element and lighting device
 本発明は、基板上に蛍光体層が積層された色変換素子およびこれを備える照明装置に関する。 The present invention relates to a color conversion element in which a phosphor layer is laminated on a substrate and a lighting device including the same.
 例えば、プロジェクタなどの投影装置に用いられる蛍光体ホイール(色変換素子)においては、放熱性を高めるべく、蛍光体層と基板とを金属接合した技術が開示されている(例えば特許文献1参照)。 For example, in a phosphor wheel (color conversion element) used in a projection apparatus such as a projector, a technique in which a phosphor layer and a substrate are metal-bonded is disclosed in order to improve heat dissipation (see, for example, Patent Document 1). .
特開2015-230760号公報Japanese Patent Laying-Open No. 2015-230760
 ところで、色変換素子の製造時においては、板状の蛍光体層を基板に金属接合する場合がある。このとき、金属接合時の熱が蛍光体層と基板とに伝わるが、両者の熱膨張係数の差によって、色変換素子に反りが生じたり、金属接合部にクラック又は剥離が発生したりと、不具合が発生するおそれがあった。 By the way, when manufacturing the color conversion element, the plate-like phosphor layer may be metal-bonded to the substrate. At this time, heat at the time of metal bonding is transmitted to the phosphor layer and the substrate, but due to the difference in thermal expansion coefficient between them, the color conversion element is warped, or cracks or peeling occurs at the metal bonding portion, There was a risk of malfunction.
 そこで本発明の目的は、金属接合を起因とした不具合の発生を抑制することである。 Therefore, an object of the present invention is to suppress the occurrence of defects due to metal bonding.
 本発明の一態様に係る色変換素子は、少なくとも一種類の蛍光体を含む蛍光体層と、蛍光体層が1つの主面側に配置された基板と、蛍光体層と基板との間に介在して蛍光体層と基板とを金属ナノ接合するための接合部とを備え、接合部における蛍光体層側の第一主面と、基板側の第二主面との少なくとも一方には、複数の凸部と、複数の凸部の間である凹部とからなる凹凸構造が形成されている。 A color conversion element according to one embodiment of the present invention includes a phosphor layer containing at least one kind of phosphor, a substrate on which the phosphor layer is disposed on one main surface side, and between the phosphor layer and the substrate. It comprises a joint for interposing the phosphor layer and the substrate with metal nano-joining, and at least one of the first main surface on the phosphor layer side and the second main surface on the substrate side in the joint, A concavo-convex structure including a plurality of convex portions and a concave portion between the plurality of convex portions is formed.
 本発明の一態様に係る照明装置は、上記色変換素子と、色変換素子の蛍光体を励起するための励起光を照射する光源部と、を備える。 An illumination device according to an aspect of the present invention includes the color conversion element and a light source unit that emits excitation light for exciting a phosphor of the color conversion element.
 本発明によれば、金属接合を起因とした不具合の発生を抑制することができる。 According to the present invention, it is possible to suppress the occurrence of defects due to metal bonding.
図1は、実施の形態に係る照明装置の概略構成を示す模式図である。FIG. 1 is a schematic diagram illustrating a schematic configuration of a lighting apparatus according to an embodiment. 図2は、実施の形態に係る色変換素子の概略構成を示す断面図である。FIG. 2 is a cross-sectional view illustrating a schematic configuration of the color conversion element according to the embodiment. 図3は、実施の形態に係る凹凸構造の一部の概略構成を示す平面図である。FIG. 3 is a plan view showing a schematic configuration of a part of the concavo-convex structure according to the embodiment. 図4は、実施の形態に係る凹凸構造の変形例を示す平面図である。FIG. 4 is a plan view showing a modification of the concavo-convex structure according to the embodiment. 図5は、実施の形態に係る凹凸構造の変形例を示す平面図である。FIG. 5 is a plan view showing a modification of the concavo-convex structure according to the embodiment. 図6は、実施の形態に係る色変換素子の製造方法の第一工程を示す断面図である。FIG. 6 is a cross-sectional view illustrating a first step of the method for manufacturing the color conversion element according to the embodiment. 図7は、実施の形態に係る色変換素子の製造方法の第二工程を示す断面図である。FIG. 7 is a cross-sectional view showing a second step of the method of manufacturing the color conversion element according to the embodiment. 図8は、実施の形態に係る色変換素子の製造方法の第三工程を示す断面図である。FIG. 8 is a cross-sectional view illustrating a third step of the method for manufacturing the color conversion element according to the embodiment. 図9は、実施の形態に係る色変換素子の製造方法の第四工程を示す断面図である。FIG. 9 is a cross-sectional view illustrating a fourth step of the method for manufacturing the color conversion element according to the embodiment. 図10は、変形例1に係る色変換素子の概略構成を示す断面図である。FIG. 10 is a cross-sectional view illustrating a schematic configuration of the color conversion element according to the first modification. 図11は、変形例2に係る色変換素子の概略構成を示す断面図である。FIG. 11 is a cross-sectional view illustrating a schematic configuration of a color conversion element according to Modification 2. 図12は、変形例3に係る色変換素子の概略構成を示す断面図である。FIG. 12 is a cross-sectional view illustrating a schematic configuration of a color conversion element according to Modification 3. 図13は、変形例4に係る色変換素子の概略構成を示す断面図である。FIG. 13 is a cross-sectional view illustrating a schematic configuration of a color conversion element according to Modification 4. 図14は、変形例5に係る色変換素子の概略構成を示す断面図である。FIG. 14 is a cross-sectional view illustrating a schematic configuration of a color conversion element according to Modification 5. 図15は、変形例6に係る色変換素子の概略構成を示す断面図である。FIG. 15 is a cross-sectional view illustrating a schematic configuration of a color conversion element according to Modification 6.
 以下では、本発明の実施の形態に係る色変換素子及び照明装置について、図面を用いて説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。従って、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態等は、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, the color conversion element and the illumination device according to the embodiment of the present invention will be described with reference to the drawings. Note that each of the embodiments described below shows a preferred specific example of the present invention. Therefore, the numerical values, shapes, materials, components, arrangement of components, connection forms, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected about the same structural member.
 以下、実施の形態について説明する。 Hereinafter, embodiments will be described.
 [照明装置]
 まず、実施の形態に係る照明装置について説明する。
[Lighting device]
First, the illumination device according to the embodiment will be described.
 図1は、実施の形態に係る照明装置1の概略構成を示す模式図である。 FIG. 1 is a schematic diagram illustrating a schematic configuration of a lighting device 1 according to an embodiment.
 図1に示すように、照明装置1は、光源部2と、導光部材3と、色変換素子4とを備える。 As shown in FIG. 1, the illumination device 1 includes a light source unit 2, a light guide member 3, and a color conversion element 4.
 光源部2は、レーザー光を発生させ、例えば光ファイバーなどの導光部材3を介して色変換素子4にレーザー光を供給する装置である。例えば、光源部2は、青紫~青色(430~490nm)の波長のレーザー光を放射する半導体レーザー素子である。 The light source unit 2 is a device that generates laser light and supplies the laser light to the color conversion element 4 via a light guide member 3 such as an optical fiber. For example, the light source unit 2 is a semiconductor laser element that emits laser light having a wavelength of bluish purple to blue (430 to 490 nm).
 色変換素子4は、導光部材3から伝送され、当該色変換素子4の表面側から照射されたレーザー光を励起光として、白色光を表面側に放射する発光素子である。 The color conversion element 4 is a light emitting element that emits white light to the surface side using the laser light transmitted from the light guide member 3 and irradiated from the surface side of the color conversion element 4 as excitation light.
 [色変換素子]
 以下、色変換素子4について詳細に説明する。
[Color conversion element]
Hereinafter, the color conversion element 4 will be described in detail.
 図2は、実施の形態に係る色変換素子4の概略構成を示す断面図である。 FIG. 2 is a sectional view showing a schematic configuration of the color conversion element 4 according to the embodiment.
 図2に示すように、色変換素子4は、基板41と、第一電極層42と、接合部43と、第二電極層44と、蛍光体層45とを備えている。 As shown in FIG. 2, the color conversion element 4 includes a substrate 41, a first electrode layer 42, a bonding portion 43, a second electrode layer 44, and a phosphor layer 45.
 基板41は、平面視形状が例えば矩形状或いは円形状の基板である。そして基板41は、蛍光体層45よりも熱伝導率の高い基板である。これにより、蛍光体層45から伝導した熱を基板41から効率的に放熱できるようになっている。具体的には、基板41は、Cu、Alなどの金属材料から形成されている。なお、基板41は、蛍光体層45よりも熱伝導率が高いのであれば、金属材料以外から形成されていてもよい。金属材料以外の材料としては、ガラス、サファイアなどが挙げられる。また、より放熱性を高めるべく、基板41に対して、例えば鏡面ヒートシンクなどのヒートシンクを当接して取り付けていてもよい。 The substrate 41 is a substrate whose planar view shape is, for example, a rectangular shape or a circular shape. The substrate 41 is a substrate having higher thermal conductivity than the phosphor layer 45. Thereby, the heat conducted from the phosphor layer 45 can be efficiently radiated from the substrate 41. Specifically, the substrate 41 is made of a metal material such as Cu or Al. The substrate 41 may be made of a material other than a metal material as long as it has a higher thermal conductivity than the phosphor layer 45. Examples of the material other than the metal material include glass and sapphire. In addition, a heat sink such as a mirror surface heat sink may be in contact with and attached to the substrate 41 in order to further improve heat dissipation.
 第一電極層42は、基板41における蛍光体層45側の主面411に積層されている。第一電極層42は、例えばAu、Ag、Ni、Pd、Tiなどの金属材料から形成されている。第一電極層42は、例えばスパッタリング、メッキなどの周知の製膜方法によって、基板41の主面411に金属材料を製膜することにより形成されている。 The first electrode layer 42 is laminated on the main surface 411 of the substrate 41 on the phosphor layer 45 side. The first electrode layer 42 is formed of a metal material such as Au, Ag, Ni, Pd, Ti, for example. The first electrode layer 42 is formed by forming a metal material on the main surface 411 of the substrate 41 by a known film forming method such as sputtering or plating.
 接合部43は、蛍光体層45と基板41との間に介在して、蛍光体層45と基板41とを金属ナノ接合するための接合部である。具体的には、接合部43は、第一電極層42における蛍光体層45側の主面421に積層されている。接合部43は、金属ナノ接合が可能な金属材料により形成されている。例えば、接合部43は、金属ナノ粒子が焼結されることで形成されている。金属ナノ粒子としては、例えば銀ナノ粒子、銅ナノ粒子などが挙げられる。銀ナノ粒子、銅ナノ粒子などを用いる場合においては、入手も容易であり、放熱性も優れている。 The junction 43 is a junction for interposing between the phosphor layer 45 and the substrate 41 and metal nano-joining the phosphor layer 45 and the substrate 41. Specifically, the joint portion 43 is laminated on the main surface 421 on the phosphor layer 45 side in the first electrode layer 42. The joint portion 43 is formed of a metal material capable of metal nanojoining. For example, the joint part 43 is formed by sintering metal nanoparticles. Examples of the metal nanoparticles include silver nanoparticles and copper nanoparticles. In the case of using silver nanoparticles, copper nanoparticles, etc., they are easily available and have excellent heat dissipation.
 そして、接合部43における蛍光体層45側の第一主面431には、複数の凸部432と、複数の凸部432の間である複数の凹部433とからなる凹凸構造434が、第一主面431の全体に形成されている。 The first main surface 431 on the phosphor layer 45 side in the joint portion 43 has a concavo-convex structure 434 including a plurality of convex portions 432 and a plurality of concave portions 433 between the plurality of convex portions 432. It is formed on the entire main surface 431.
 図3は、実施の形態に係る凹凸構造434の一部の概略構成を示す平面図である。図3においては、凹部433に網掛けを施している。図3に示すように、凹凸構造434における複数の凸部432は、接合部43の第一主面431に対して規則性を持って配置されている。具体的には、複数の凸部432は、マトリクス状に配置されている。そして、複数の凸部432の間隔H1は、数十~数百ナノメートルオーダーである。具体的には間隔H1は100μmである。 FIG. 3 is a plan view showing a schematic configuration of a part of the concavo-convex structure 434 according to the embodiment. In FIG. 3, the concave portion 433 is shaded. As shown in FIG. 3, the plurality of convex portions 432 in the concavo-convex structure 434 are arranged with regularity with respect to the first main surface 431 of the joint portion 43. Specifically, the plurality of convex portions 432 are arranged in a matrix. The interval H1 between the plurality of convex portions 432 is on the order of several tens to several hundreds of nanometers. Specifically, the interval H1 is 100 μm.
 そして、凹凸構造434の複数の凸部432の間である凹部433も、第一主面431に対して規則性を持って配置されている。具体的には、凹部433は、平面視において格子状に形成されている。格子状の凹部433は、断面視においては、複数の凹部として見ることができるが、平面視においては、複数の凹部433の間を連続して網羅しており、全体として一つの凹部として見ることができる。この凹部433内は、空隙となっている。 And the recessed part 433 which is between the some convex parts 432 of the uneven structure 434 is also arrange | positioned with regularity with respect to the 1st main surface 431. Specifically, the recesses 433 are formed in a lattice shape in plan view. The lattice-shaped recess 433 can be viewed as a plurality of recesses in a cross-sectional view, but continuously covers a plurality of recesses 433 in a plan view, and is viewed as a single recess as a whole. Can do. This recess 433 is a gap.
 なお、複数の凸部432は、第一主面431内において所定の規則性を持って配置されているのであれば如何様に配置されていてもよい。 The plurality of convex portions 432 may be arranged in any manner as long as they are arranged with a predetermined regularity in the first main surface 431.
 図4及び図5は、実施の形態に係る凹凸構造の変形例を示す平面図である。マトリクス状以外の規則性を持つ配置例としては、図4に示すような複数の凸部432aが縞状に配置されている構造、図5に示すような複数の凸部432bが多重環状に配置されている構造などが挙げられる。図4及び図5に示すように、複数の凸部432a、432bの間をなす凹部433a、433bは、各凸部432a、432bに分断されているので、平面視においても複数の凹部として見ることができる。 4 and 5 are plan views showing modifications of the concavo-convex structure according to the embodiment. As an arrangement example having regularity other than the matrix shape, a structure in which a plurality of convex portions 432a as shown in FIG. 4 are arranged in stripes, and a plurality of convex portions 432b as shown in FIG. 5 are arranged in multiple rings. The structure etc. which are made are mentioned. As shown in FIGS. 4 and 5, the concave portions 433a and 433b formed between the plurality of convex portions 432a and 432b are divided into the convex portions 432a and 432b. Can do.
 図2に示すように、第二電極層44は、蛍光体層45の第一主面431に積層されている。具体的には、第二電極層44は、凹部433を埋めないように、複数の凸部432の先端面に積層されている。第二電極層44は、例えばAu、Ag、Ni、Pd、Tiなどの金属材料から形成されている。第二電極層44は、例えばスパッタリング、メッキなどの製膜方法によって、蛍光体層45の主面452に金属材料を製膜することにより形成されている。 As shown in FIG. 2, the second electrode layer 44 is laminated on the first main surface 431 of the phosphor layer 45. Specifically, the second electrode layer 44 is laminated on the tip surfaces of the plurality of convex portions 432 so as not to fill the concave portions 433. The second electrode layer 44 is made of a metal material such as Au, Ag, Ni, Pd, or Ti. The second electrode layer 44 is formed by forming a metal material on the main surface 452 of the phosphor layer 45 by a film forming method such as sputtering or plating.
 蛍光体層45は、第一電極層42、接合部43及び第二電極層44を介して基板41の主面411側に配置されている。蛍光体層45は、平面視形状が基板41と同じ形状に形成されている。また、蛍光体層45は、例えば、レーザー光によって励起されて蛍光を発する蛍光体の粒子(蛍光体粒子451)を分散状態で備えており、レーザー光の照射により蛍光体粒子451が蛍光を発する。このため、蛍光体層45の外方の主面が発光面となる。 The phosphor layer 45 is disposed on the main surface 411 side of the substrate 41 with the first electrode layer 42, the joint 43 and the second electrode layer 44 interposed therebetween. The phosphor layer 45 is formed in the same shape as the substrate 41 in plan view. The phosphor layer 45 includes, for example, phosphor particles (phosphor particles 451) that are excited by laser light to emit fluorescence in a dispersed state, and the phosphor particles 451 emit fluorescence when irradiated with laser light. . For this reason, the outer main surface of the phosphor layer 45 becomes a light emitting surface.
 本実施の形態の場合、蛍光体層45は白色光を放射するものであり、レーザー光の照射によって赤色を発光する第一蛍光体、青色を発光する第二蛍光体、緑色を発光する第三蛍光体の3種類の蛍光体粒子が適切な割合で含まれている。 In the case of the present embodiment, the phosphor layer 45 emits white light, and a first phosphor that emits red light when irradiated with laser light, a second phosphor that emits blue light, and a third phosphor that emits green light. Three types of phosphor particles of the phosphor are included at an appropriate ratio.
 蛍光体の種類および特性は特に限定されるものではないが、比較的高い出力のレーザー光が励起光となるため、熱耐性が高いものが望ましい。また、蛍光体を分散状態で保持する基材の種類は特に限定されるものではないが、励起光の波長および蛍光体から発光する光の波長に対して透明性の高い基材であることが望ましい。具体的には、ガラス又はセラミックなどからなる基材が挙げられる。また、蛍光体層45は、1種類の蛍光体による多結晶体又は単結晶体であってもよい。 The type and characteristics of the phosphor are not particularly limited. However, since a relatively high output laser beam serves as excitation light, it is desirable that the phosphor has high heat resistance. In addition, the type of the substrate that holds the phosphor in a dispersed state is not particularly limited, but the substrate should be highly transparent with respect to the wavelength of the excitation light and the wavelength of the light emitted from the phosphor. desirable. Specifically, the base material which consists of glass or ceramics is mentioned. Further, the phosphor layer 45 may be a polycrystal or a single crystal made of one kind of phosphor.
 次に、色変換素子4の製造方法について説明する。図6~図9は、実施の形態に係る色変換素子4の製造方法の一工程を示す断面図である。 Next, a method for manufacturing the color conversion element 4 will be described. 6 to 9 are cross-sectional views showing one process of the method for manufacturing the color conversion element 4 according to the embodiment.
 図6に示すように、まず、第一電極層42が積層された基板41を準備するとともに、スクリーン印刷用の枠体80を準備する。枠体80の開口部には、複数の凸部432に対応した複数の孔(図示省略)を有するマスク81が、引っ張った状態で固定されている。 As shown in FIG. 6, first, a substrate 41 on which the first electrode layer 42 is laminated is prepared, and a screen printing frame 80 is prepared. A mask 81 having a plurality of holes (not shown) corresponding to the plurality of convex portions 432 is fixed to the opening of the frame 80 in a pulled state.
 次に、図7に示すように、枠体80を基板41上に重ね合わせ、枠体80にペースト状の銀ナノ粒子90を設置する。そして、銀ナノ粒子90がマスク81上で伸ばされるようにスキージ82をスライドさせる。これにより、マスク81の複数の孔から銀ナノ粒子90が押し出されて、第一電極層42上に塗布される。 Next, as shown in FIG. 7, the frame body 80 is overlaid on the substrate 41, and paste-like silver nanoparticles 90 are placed on the frame body 80. Then, the squeegee 82 is slid so that the silver nanoparticles 90 are stretched on the mask 81. As a result, the silver nanoparticles 90 are extruded from the plurality of holes of the mask 81 and applied onto the first electrode layer 42.
 次に、図8に示すように、枠体80を基板41から離間させると、基板41上には、銀ナノ粒子90からなる接合部43が形成される。このとき、マスク81の複数の孔によって、接合部43の第一主面431には、凹凸構造434が形成される。 Next, as shown in FIG. 8, when the frame body 80 is separated from the substrate 41, the joint portion 43 made of the silver nanoparticles 90 is formed on the substrate 41. At this time, the concavo-convex structure 434 is formed on the first main surface 431 of the joint portion 43 by the plurality of holes of the mask 81.
 次に、図9に示すように、第二電極層44が積層された蛍光体層45を準備し、第二電極層44が接合部43の第一主面431に接触するように、蛍光体層45を基板41に押さえつける。このときの押圧力を調整することで、接合部43の複数の凸部432の圧縮変形量が調整される。つまり、接合部43の第一主面431と、第二電極層44との接触面積を調整することができる。 Next, as shown in FIG. 9, a phosphor layer 45 on which the second electrode layer 44 is laminated is prepared, and the phosphor is arranged so that the second electrode layer 44 contacts the first main surface 431 of the joint portion 43. The layer 45 is pressed against the substrate 41. By adjusting the pressing force at this time, the amount of compressive deformation of the plurality of convex portions 432 of the joint portion 43 is adjusted. That is, the contact area between the first main surface 431 of the joint portion 43 and the second electrode layer 44 can be adjusted.
 次いで、第一電極層42及び第二電極層44に電流を印加することで、接合部43を加熱する。これにより、接合部43は焼結されて、第一電極層42及び第二電極層44を介して、基板41と蛍光体層45とを金属ナノ接合する。この加熱時においては、接合部43に対して熱応力が作用するが、当該熱応力による接合部43の変形が凹部433によって緩和されるので、接合部43全体の熱変形を抑えることができる。 Next, the junction 43 is heated by applying current to the first electrode layer 42 and the second electrode layer 44. Thereby, the joining portion 43 is sintered, and the substrate 41 and the phosphor layer 45 are metal nano-joined via the first electrode layer 42 and the second electrode layer 44. During this heating, thermal stress acts on the joint 43, but deformation of the joint 43 due to the thermal stress is alleviated by the recess 433, so that thermal deformation of the entire joint 43 can be suppressed.
 そして、金属ナノ接合後には、基板41を所望の形状に切断することで、図2に示す色変換素子4が完成する。 Then, after the metal nano-joining, the color conversion element 4 shown in FIG. 2 is completed by cutting the substrate 41 into a desired shape.
 [照明装置の動作]
 次に、照明装置1の動作について説明する。
[Operation of lighting device]
Next, operation | movement of the illuminating device 1 is demonstrated.
 光源部2から導光部材3を介してレーザー光が色変換素子4の蛍光体層45に照射されると、一部のレーザー光は直接蛍光体粒子451に当たる。また、蛍光体粒子451に直接当たらなかった一部のレーザー光は、第二電極層44で反射され、蛍光体粒子451に当たる。蛍光体粒子451に到達したレーザー光は、蛍光体粒子451によって白色光に変換されて、放射される。蛍光体粒子451から放射された白色光の一部は、蛍光体層45から直接外方に放出される。また、蛍光体粒子451から放射された光のその他の一部は、第二電極層44で反射されることで、蛍光体層45から外方へ放出される。 When a laser beam is irradiated from the light source unit 2 through the light guide member 3 to the phosphor layer 45 of the color conversion element 4, a part of the laser beam directly strikes the phosphor particles 451. Further, a part of the laser light that does not directly hit the phosphor particles 451 is reflected by the second electrode layer 44 and hits the phosphor particles 451. The laser light that has reached the phosphor particles 451 is converted into white light by the phosphor particles 451 and emitted. Part of the white light emitted from the phosphor particles 451 is directly emitted outward from the phosphor layer 45. Further, another part of the light emitted from the phosphor particles 451 is reflected by the second electrode layer 44, and is emitted outward from the phosphor layer 45.
 レーザー光の照射中においては、蛍光体粒子451は発熱するが、その熱は、第二電極層44、接合部43及び第一電極層42を介して、基板41に伝わって放熱される。このとき、接合部43に対して熱応力が作用するが、当該熱応力による接合部43の熱変形が凹部433によって緩和されるので、接合部43全体の熱変形を抑えることができる。これにより、接合界面に発生するクラック及び剥離の発生を抑制することができる。 During the irradiation of the laser light, the phosphor particles 451 generate heat, but the heat is transferred to the substrate 41 through the second electrode layer 44, the joint 43, and the first electrode layer 42 to be dissipated. At this time, thermal stress acts on the joint 43, but thermal deformation of the joint 43 due to the thermal stress is alleviated by the concave portion 433, so that thermal deformation of the entire joint 43 can be suppressed. Thereby, generation | occurrence | production of the crack which generate | occur | produces in a joining interface, and peeling can be suppressed.
 [効果など]
 以上のように、本実施の形態によれば、色変換素子4は、少なくとも一種類の蛍光体(蛍光体粒子451)を含む蛍光体層45と、蛍光体層45が1つの主面411側に配置された基板41と、蛍光体層45と基板41との間に介在して蛍光体層45と基板41とを金属ナノ接合するための接合部43とを備え、接合部43における蛍光体層45側の第一主面431には、複数の凸部432と、複数の凸部432の間である凹部433とからなる凹凸構造434が形成されている。
[Effects, etc.]
As described above, according to the present embodiment, the color conversion element 4 includes the phosphor layer 45 including at least one kind of phosphor (phosphor particles 451), and the phosphor layer 45 on one main surface 411 side. And a bonding portion 43 interposed between the phosphor layer 45 and the substrate 41 for metal nano-bonding the phosphor layer 45 and the substrate 41, and the phosphor in the bonding portion 43 On the first main surface 431 on the layer 45 side, a concavo-convex structure 434 including a plurality of convex portions 432 and concave portions 433 between the plurality of convex portions 432 is formed.
 また、照明装置1は、上記色変換素子4と、色変換素子4の蛍光体を励起するための励起光を照射する光源部2と、を備える。 The lighting device 1 also includes the color conversion element 4 and a light source unit 2 that emits excitation light for exciting the phosphor of the color conversion element 4.
 この構成によれば、接合部43における蛍光体層45側の第一主面431が、凹凸構造434を有しているので、接合部43に熱応力が作用したとしても凹凸構造434の凹部433によって接合部43の熱変形を抑制することができる。これにより、熱応力を起因としたクラック及び剥離の発生を抑制することができる。したがって、金属接合を起因とした不具合の発生を抑制することができる。 According to this configuration, since the first main surface 431 on the phosphor layer 45 side in the joint portion 43 has the concavo-convex structure 434, even if thermal stress acts on the joint portion 43, the concave portion 433 of the concavo-convex structure 434. Thus, thermal deformation of the joint 43 can be suppressed. Thereby, generation | occurrence | production of the crack resulting from a thermal stress and peeling can be suppressed. Therefore, it is possible to suppress the occurrence of defects due to metal bonding.
 また、複数の凸部432は、第一主面431に対して規則性を持って配置されている。 Further, the plurality of convex portions 432 are arranged with regularity with respect to the first main surface 431.
 この構成によれば、第一主面431に対して規則性を持って複数の凸部432が配置されているので、接合部43に作用する熱応力をばらつきなく分散させることができる。したがって、接合部43の熱変形をより抑制することができる。 According to this configuration, since the plurality of convex portions 432 are arranged with regularity with respect to the first main surface 431, the thermal stress acting on the joint portion 43 can be dispersed without variation. Therefore, thermal deformation of the joint portion 43 can be further suppressed.
 また、凹凸構造434は、第一主面431の全体に形成されている。 Further, the concavo-convex structure 434 is formed on the entire first main surface 431.
 この構成によれば、第一主面431の全体に凹凸構造434が形成されているので、第一主面431の全体にわたって熱応力を抑制することができる。したがって、接合部43の熱変形をより抑制することができる。 According to this configuration, since the concavo-convex structure 434 is formed on the entire first main surface 431, thermal stress can be suppressed over the entire first main surface 431. Therefore, thermal deformation of the joint portion 43 can be further suppressed.
 [変形例1]
 図10は、変形例1に係る色変換素子4Aの概略構成を示す断面図であり、具体的には図2に対応した図である。なお、以降の説明においては、上記実施の形態に係る色変換素子4と同等の部分には同じ符号を付してその説明を省略し、異なる部分についてのみ説明する。
[Modification 1]
FIG. 10 is a cross-sectional view illustrating a schematic configuration of a color conversion element 4A according to Modification Example 1, and specifically corresponds to FIG. In the following description, parts that are the same as those of the color conversion element 4 according to the above-described embodiment are given the same reference numerals and explanation thereof is omitted, and only different parts are described.
 図10に示すように、変形例1の色変換素子4Aは、上記実施の形態の色変換素子4に対して密着層46及び反射層47を追加したものである。 As shown in FIG. 10, the color conversion element 4 </ b> A of Modification 1 is obtained by adding an adhesion layer 46 and a reflection layer 47 to the color conversion element 4 of the above embodiment.
 密着層46及び反射層47は積層された状態で、蛍光体層45と第二電極層44との間に介在している。具体的には、密着層46が蛍光体層45側であり、反射層47が第二電極層44側である。 The adhesion layer 46 and the reflection layer 47 are laminated and are interposed between the phosphor layer 45 and the second electrode layer 44. Specifically, the adhesion layer 46 is on the phosphor layer 45 side, and the reflective layer 47 is on the second electrode layer 44 side.
 密着層46は、蛍光体層45における基板41側の主面452に積層されている。密着層46は、透光性を有する化合物から形成されており、蛍光体層45と反射層47とに密着している。密着層46は、例えばスパッタリング、メッキなどの周知の製膜方法によって、蛍光体層45の主面452に化合物を製膜することにより形成されている。具体的に、密着層46をなす化合物としては、酸化物、ハロゲン化物、窒化物、フッ化物などが挙げられる。酸化物としては、例えば、ITO、IZO、Alなどの金属酸化物が挙げられる。金属酸化物を用いることにより、蛍光体層45と反射層47との両者に対する密着性を高めることが可能である。 The adhesion layer 46 is laminated on the main surface 452 on the substrate 41 side in the phosphor layer 45. The adhesion layer 46 is formed from a light-transmitting compound and is in close contact with the phosphor layer 45 and the reflection layer 47. The adhesion layer 46 is formed by depositing a compound on the main surface 452 of the phosphor layer 45 by a known film forming method such as sputtering or plating. Specifically, examples of the compound forming the adhesion layer 46 include oxides, halides, nitrides, and fluorides. Examples of the oxide include metal oxides such as ITO, IZO, and Al 2 O 3 . By using a metal oxide, it is possible to improve the adhesiveness with respect to both the fluorescent substance layer 45 and the reflection layer 47. FIG.
 反射層47は、密着層46における基板41側の主面461に積層されている。反射層47は、レーザー光と、蛍光体粒子451から放射された光とを反射する。このため、反射層47は、レーザー光と、蛍光体粒子451から放射された光とに対して反射率の高い材料により形成されている。具体的に、反射率の高い材料としては、Ag、Alなどの金属材料である。反射層47は、例えばスパッタリング、メッキなどの周知の製膜方法によって、密着層46の主面461に金属材料を製膜することにより形成されている。また、これらの金属材料から形成された層に対して、例えば誘電体多層膜などの増反射膜を製膜してもよい。そして、反射層47における基板41側の主面471には、第二電極層44が積層されている。具体的には、第二電極層44は、例えばスパッタリング、メッキなどの製膜方法によって、反射層47における主面471に金属材料を製膜することにより形成されている。 The reflective layer 47 is laminated on the main surface 461 of the adhesion layer 46 on the substrate 41 side. The reflective layer 47 reflects the laser light and the light emitted from the phosphor particles 451. For this reason, the reflective layer 47 is formed of a material having a high reflectivity with respect to the laser light and the light emitted from the phosphor particles 451. Specifically, the material having high reflectivity is a metal material such as Ag or Al. The reflective layer 47 is formed by forming a metal material on the main surface 461 of the adhesion layer 46 by a known film forming method such as sputtering or plating. Further, for example, an increased reflection film such as a dielectric multilayer film may be formed on the layer formed of these metal materials. The second electrode layer 44 is laminated on the main surface 471 of the reflective layer 47 on the substrate 41 side. Specifically, the second electrode layer 44 is formed by forming a metal material on the main surface 471 of the reflective layer 47 by a film forming method such as sputtering or plating.
 このように、蛍光体層45に対しては透光性の密着層46を介して反射層47が積層されているので、蛍光体粒子451から発せられた白色光を反射層47で反射させて、蛍光体層45の外方へと放出することができる。つまり、反射層47がなければ第二電極層44及び接合部43で吸収され得る白色光を、反射層47によって外方へと放出することができるので、発光効率を高めることができる。また、白色光を吸収することによる発熱も抑制することができる。 As described above, since the reflection layer 47 is laminated on the phosphor layer 45 through the light-transmitting adhesion layer 46, white light emitted from the phosphor particles 451 is reflected by the reflection layer 47. The phosphor layer 45 can be emitted to the outside. That is, if there is no reflective layer 47, white light that can be absorbed by the second electrode layer 44 and the joint portion 43 can be emitted outward by the reflective layer 47, so that the luminous efficiency can be increased. Moreover, the heat_generation | fever by absorbing white light can also be suppressed.
 ここで、蛍光体層45に対して反射層47を直接積層した場合では、反射層47と蛍光体層45との間に微小な隙間が形成される場合がある。このような微小な隙間があると蛍光体層45から基板41への伝熱性が弱まってしまう。しかしながら、変形例1では、蛍光体層45と反射層47とが密着層46に密着しているので、隙間を起因とした伝熱性の低下を抑制することができる。したがって、放熱効率を高めることができる。 Here, in the case where the reflection layer 47 is directly laminated on the phosphor layer 45, a minute gap may be formed between the reflection layer 47 and the phosphor layer 45. If there is such a minute gap, the heat transfer from the phosphor layer 45 to the substrate 41 is weakened. However, in Modification 1, since the phosphor layer 45 and the reflective layer 47 are in close contact with the adhesive layer 46, it is possible to suppress a decrease in heat transfer due to the gap. Therefore, heat dissipation efficiency can be increased.
 [変形例2]
 次に、本実施の形態に係る変形例2について説明する。
[Modification 2]
Next, Modification 2 according to the present embodiment will be described.
 図11は、変形例2に係る色変換素子4Bの概略構成を示す断面図であり、具体的には図2に対応した図である。 FIG. 11 is a cross-sectional view illustrating a schematic configuration of the color conversion element 4B according to the second modification, and specifically corresponds to FIG.
 上記変形例1では、蛍光体粒子451が蛍光体層45の全体に概ね均等に分散している場合を例示したが、この変形例2では、蛍光体粒子451が蛍光体層45bにおける基板41側に配置された色変換素子4Bについて説明する。 In the first modification, the case where the phosphor particles 451 are substantially uniformly dispersed in the entire phosphor layer 45 is exemplified. However, in the second modification, the phosphor particles 451 are arranged on the substrate 41 side in the phosphor layer 45b. The color conversion element 4B arranged in the above will be described.
 図11に示すように、蛍光体層45bは、二層構造になっており、例えばガラスなどの透過性の板材からなる第一層455に対して、多数の蛍光体粒子451を含有する無機バインダ456を積層することで第二層457を形成している。第二層457が基板41側に配置され、第一層455が基板41とは反対側に配置されることにより、蛍光体粒子451が蛍光体層45bにおける基板41側に配置されている。 As shown in FIG. 11, the phosphor layer 45b has a two-layer structure. For example, an inorganic binder containing a large number of phosphor particles 451 with respect to the first layer 455 made of a transparent plate material such as glass. A second layer 457 is formed by laminating 456. The second layer 457 is disposed on the substrate 41 side, and the first layer 455 is disposed on the side opposite to the substrate 41, whereby the phosphor particles 451 are disposed on the substrate 41 side in the phosphor layer 45b.
 このように、蛍光体粒子451が蛍光体層45bにおける基板41側に偏って配置されているので、いずれの蛍光体粒子451と基板41との間隔を狭めることができる。このため、基板41側に効率的に伝熱することができる。 As described above, since the phosphor particles 451 are arranged so as to be biased toward the substrate 41 in the phosphor layer 45b, the interval between any phosphor particles 451 and the substrate 41 can be reduced. For this reason, heat can be efficiently transferred to the substrate 41 side.
 また、蛍光体層45bが二層構造であるので、蛍光体粒子451を含有する第二層457を第一層455で保護することも可能である。 Further, since the phosphor layer 45b has a two-layer structure, the second layer 457 containing the phosphor particles 451 can be protected by the first layer 455.
 なお、蛍光体層45bを二層構造にしなくとも、蛍光体層を形成する際に、当該蛍光体層の一方の主面側に蛍光体粒子を凝集させて、当該主面を基板41側に配置してもよい。 Even when the phosphor layer 45b is not formed in a two-layer structure, when forming the phosphor layer, the phosphor particles are aggregated on one main surface side of the phosphor layer so that the main surface is on the substrate 41 side. You may arrange.
 [変形例3]
 次に、本実施の形態に係る変形例3について説明する。
[Modification 3]
Next, Modification 3 according to the present embodiment will be described.
 図12は、変形例3に係る色変換素子4Cの概略構成を示す断面図であり、具体的には図2に対応した図である。 FIG. 12 is a cross-sectional view showing a schematic configuration of a color conversion element 4C according to Modification 3, and specifically corresponds to FIG.
 図12に示すように、変形例3の色変換素子4Cは、上記実施の形態の色変換素子4に貫通孔5を追加したものである。具体的には、色変換素子4Cには、基板41、第一電極層42、接合部43及び第二電極層44に対して、基板41の主面411の法線方向に連続する貫通孔5が形成されている。この貫通孔5には、蛍光体層45の蛍光体粒子451を励起させるため、基板41側から入射する励起光(レーザー光)の光路とすることができる。これにより、励起光の進行方向に白色光を放出することができる。また、基板41の背面側に光源部2および導光部材3を配置することができるので、照明装置1全体をコンパクトにすることができる。 As shown in FIG. 12, the color conversion element 4C of Modification 3 is obtained by adding a through-hole 5 to the color conversion element 4 of the above embodiment. Specifically, in the color conversion element 4 </ b> C, the through hole 5 that is continuous in the normal direction of the main surface 411 of the substrate 41 with respect to the substrate 41, the first electrode layer 42, the joint 43, and the second electrode layer 44. Is formed. In order to excite the phosphor particles 451 of the phosphor layer 45, the through-hole 5 can be used as an optical path of excitation light (laser light) incident from the substrate 41 side. Thereby, white light can be emitted in the traveling direction of the excitation light. Moreover, since the light source part 2 and the light guide member 3 can be arrange | positioned at the back side of the board | substrate 41, the illuminating device 1 whole can be made compact.
 なお、変形例3では、基板41の主面411の法線方向に貫通孔5が連続している場合を例示して説明したが、主面411に交差する方向ならば如何なる方向に貫通孔5が連続していてもよい。 In the third modification, the case where the through-hole 5 is continuous in the normal direction of the main surface 411 of the substrate 41 has been described as an example. However, the through-hole 5 is formed in any direction as long as the direction intersects the main surface 411. May be continuous.
 [変形例4]
 次に、本実施の形態に係る変形例4について説明する。
[Modification 4]
Next, Modification 4 according to the present embodiment will be described.
 図13は、変形例4に係る色変換素子4Dの概略構成を示す断面図であり、具体的には図2に対応した図である。 FIG. 13 is a cross-sectional view showing a schematic configuration of a color conversion element 4D according to Modification Example 4, and specifically corresponds to FIG.
 図13に示すように、変形例4の色変換素子4Dは、上記変形例3の色変換素子4Cに対して反射層48を追加したものである。具体的には反射層48は、蛍光体層45における基板41側の主面452に対して、貫通孔5を覆うように積層されている。つまり、反射層48は、蛍光体層45と第二電極層44との間に介在している。そして、反射層48は、レーザー光を透過し、かつ蛍光体粒子451から放射された光を反射するダイクロイックミラーであり、例えば誘電体多層膜である。 As shown in FIG. 13, the color conversion element 4D of the modification 4 is obtained by adding a reflective layer 48 to the color conversion element 4C of the modification 3. Specifically, the reflective layer 48 is laminated so as to cover the through hole 5 with respect to the main surface 452 on the substrate 41 side in the phosphor layer 45. That is, the reflective layer 48 is interposed between the phosphor layer 45 and the second electrode layer 44. The reflective layer 48 is a dichroic mirror that transmits laser light and reflects light emitted from the phosphor particles 451, and is, for example, a dielectric multilayer film.
 このような反射層48が色変換素子4Dに設けられているので、貫通孔5から入射したレーザー光を遮らず蛍光体層45に進入させることができる。また、蛍光体粒子451から発せられた白色光を反射層48で反射させて、蛍光体層45の外方へと放出することができる。つまり、反射層48がなければ第二電極層44及び接合部43で吸収され得る白色光を、反射層48によって外方へと放出することができるので、発光効率を高めることができる。また、白色光を吸収することによる発熱も抑制することができる。 Since such a reflective layer 48 is provided in the color conversion element 4D, the laser light incident from the through hole 5 can be allowed to enter the phosphor layer 45 without being blocked. Further, the white light emitted from the phosphor particles 451 can be reflected by the reflecting layer 48 and emitted to the outside of the phosphor layer 45. That is, if the reflective layer 48 is not provided, white light that can be absorbed by the second electrode layer 44 and the joint portion 43 can be emitted outward by the reflective layer 48, so that the light emission efficiency can be increased. Moreover, the heat_generation | fever by absorbing white light can also be suppressed.
 [変形例5]
 次に、本実施の形態に係る変形例5について説明する。
[Modification 5]
Next, Modification 5 according to the present embodiment will be described.
 図14は、変形例5に係る色変換素子4Eの概略構成を示す断面図であり、具体的には図2に対応した図である。 FIG. 14 is a cross-sectional view showing a schematic configuration of a color conversion element 4E according to Modification 5, and specifically corresponds to FIG.
 図14に示すように、変形例5の色変換素子4Bは、変形例4の色変換素子4Dに対して反射抑制層49を追加したものである。具体的には反射抑制層49は、反射層48における基板41側の主面481に対して、貫通孔5を覆うように積層されている。反射抑制層49は、レーザー光が透過し、かつ当該透過したレーザー光が反射層48の主面481で反射することを抑制する。反射抑制層49としては、例えばARコート層が挙げられる。ARコート層は、反射層48よりも屈折率の低い材料により形成されている。 As shown in FIG. 14, the color conversion element 4 </ b> B of the modification 5 is obtained by adding a reflection suppression layer 49 to the color conversion element 4 </ b> D of the modification 4. Specifically, the reflection suppressing layer 49 is laminated on the main surface 481 on the substrate 41 side in the reflecting layer 48 so as to cover the through hole 5. The reflection suppression layer 49 suppresses transmission of the laser light and reflection of the transmitted laser light on the main surface 481 of the reflection layer 48. As the reflection suppressing layer 49, for example, an AR coating layer is exemplified. The AR coat layer is formed of a material having a lower refractive index than that of the reflective layer 48.
 このような反射抑制層49が設けられているので、貫通孔5から入射したレーザー光が反射層48の主面481で反射して戻り光となってしまうことを抑制することができ、発光効率を高めることができる。なお、反射抑制層49は、反射層48の主面481における貫通孔5を覆う領域のみに設けてもよいし、レーザー光が照射される領域にのみ設けてもよい。 Since such a reflection suppressing layer 49 is provided, it can be suppressed that the laser light incident from the through hole 5 is reflected by the main surface 481 of the reflecting layer 48 and becomes return light, and the light emission efficiency. Can be increased. In addition, the reflection suppression layer 49 may be provided only in the area | region which covers the through-hole 5 in the main surface 481 of the reflection layer 48, and may be provided only in the area | region where a laser beam is irradiated.
 [変形例6]
 次に、本実施の形態に係る変形例6について説明する。
[Modification 6]
Next, Modification 6 according to the present embodiment will be described.
 図15は、変形例6に係る色変換素子4Fの概略構成を示す断面図であり、具体的には図2に対応した図である。 FIG. 15 is a cross-sectional view showing a schematic configuration of a color conversion element 4F according to Modification Example 6, and specifically corresponds to FIG.
 図15に示すように、変形例6の色変換素子4Fは、上記実施の形態の色変換素子4と比べて、凹凸構造の形成箇所が異なっている。具体的には、色変換素子4Fの凹凸構造434fは、接合部43における基板41側の第二主面435の全体に形成されている。凹凸構造434fの複数の凸部432fは、第二主面435に対して規則性を持って配置されている。換言すると、凹凸構造434の複数の凸部432fの間である凹部433fも第二主面435に対して規則性を持って配置されている。 As shown in FIG. 15, the color conversion element 4 </ b> F of Modification 6 is different from the color conversion element 4 of the above embodiment in the formation portion of the concavo-convex structure. Specifically, the concavo-convex structure 434 f of the color conversion element 4 F is formed on the entire second main surface 435 on the substrate 41 side in the joint portion 43. The plurality of convex portions 432f of the concavo-convex structure 434f are arranged with regularity with respect to the second main surface 435. In other words, the concave portions 433 f that are between the plurality of convex portions 432 f of the concave-convex structure 434 are also arranged with regularity with respect to the second main surface 435.
 なお、接合部の第一主面及び第二主面のそれぞれに凹凸構造を形成することも可能である。 In addition, it is also possible to form an uneven structure on each of the first main surface and the second main surface of the joint.
 [その他の実施の形態]
 以上、本発明に係る照明装置について、上記実施の形態および各変形例に基づいて説明したが、本発明は、上記の実施の形態および各変形例に限定されるものではない。
[Other embodiments]
The lighting device according to the present invention has been described above based on the above-described embodiments and modifications. However, the present invention is not limited to the above-described embodiments and modifications.
 上記実施の形態および各変形例では、色変換素子4が照明装置1に適用された場合を例示して説明したが、色変換素子4は、その他の照明系に用いることも可能である。その他の照明系としては、例えば、プロジェクタ、車載用ヘッドライト等が挙げられる。プロジェクタに適用される場合、色変換素子4は蛍光体ホイールとして用いられる。 In the above embodiment and each modification, the case where the color conversion element 4 is applied to the lighting device 1 has been described as an example, but the color conversion element 4 can also be used in other illumination systems. Examples of other illumination systems include a projector and an in-vehicle headlight. When applied to a projector, the color conversion element 4 is used as a phosphor wheel.
 また、蛍光体層45における主面452とは反対側の面、つまり光出射側の面に対して、例えばARコート層などの反射抑制層を積層してもよい。これにより、光取り出し効率を高めることが可能である。 Further, for example, a reflection suppressing layer such as an AR coating layer may be laminated on the surface of the phosphor layer 45 opposite to the main surface 452, that is, the light emitting surface. Thereby, the light extraction efficiency can be increased.
 また、上記実施の形態では、凹凸構造434がスクリーン印刷によって形成される場合を例示した。この凹凸構造434をスクリーン印刷以外の手法によって形成することも可能である。その他の手法としては、ナノインプリントなどが挙げられる。 In the above embodiment, the case where the uneven structure 434 is formed by screen printing is exemplified. The uneven structure 434 can be formed by a method other than screen printing. Other methods include nanoimprint.
 また、上記実施の形態及び変形例6では、凹凸構造434、434fの複数の凸部432、432fが接合部43の第一主面431または第二主面435に対して規則性を持って配置されている場合を例示したが、複数の凸部は離散的に配置されているのであれば規則性を持っていなくてもよい。 Further, in the above embodiment and Modification 6, the plurality of convex portions 432 and 432f of the concavo-convex structure 434 and 434f are arranged with regularity with respect to the first main surface 431 or the second main surface 435 of the joint portion 43. However, the plurality of convex portions may not have regularity as long as they are arranged discretely.
 また、上記実施の形態及び変形例6では、凹凸構造434、434fが接合部43の第一主面431または第二主面435の全体に形成されている場合を例示した。しかし、凹凸構造は、接合部における第一主面及び第二主面の一方の一部に形成されていればよい。 Further, in the above embodiment and Modification 6, the case where the concavo-convex structure 434, 434f is formed on the entire first main surface 431 or the second main surface 435 of the joint portion 43 is exemplified. However, the concavo-convex structure should just be formed in one part of one of the 1st main surface and the 2nd main surface in a junction part.
 また、上記実施の形態では、第一電極層42及び第二電極層44を備える色変換素子4を例示して説明したが、第一電極層42及び第二電極層44はなくても接合部43を焼結させて金属ナノ接合することは可能である。 In the above embodiment, the color conversion element 4 including the first electrode layer 42 and the second electrode layer 44 has been described as an example. However, even if the first electrode layer 42 and the second electrode layer 44 are not provided, the joint portion is provided. It is possible to sinter 43 to perform metal nanojoining.
 その他、実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で実施の形態および各変形例における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 Other forms realized by various modifications conceived by those skilled in the art for the embodiments, and any combination of the components and functions in the embodiments and each modification without departing from the spirit of the present invention. Forms to be made are also included in the invention.
1 照明装置
2 光源部
4、4A、4B、4C、4D、4E、4F 色変換素子
41 基板
43 接合部
45、45b 蛍光体層
411 主面
431 第一主面
432、432a、432b、432f 凸部
433、433a、433b、433f 凹部
434、434f 凹凸構造
435 第二主面
451 蛍光体粒子(蛍光体)
DESCRIPTION OF SYMBOLS 1 Illuminating device 2 Light source part 4, 4A, 4B, 4C, 4D, 4E, 4F Color conversion element 41 Board | substrate 43 Junction part 45, 45b Phosphor layer 411 Main surface 431 1st main surface 432, 432a, 432b, 432f Convex part 433, 433a, 433b, 433f Concave part 434, 434f Concave structure 435 Second main surface 451 Phosphor particle (phosphor)

Claims (5)

  1.  少なくとも一種類の蛍光体を含む蛍光体層と、
     前記蛍光体層が1つの主面側に配置された基板と、
     前記蛍光体層と前記基板との間に介在して前記蛍光体層と前記基板とを金属ナノ接合するための接合部とを備え、
     前記接合部における前記蛍光体層側の第一主面と、前記基板側の第二主面との少なくとも一方には、複数の凸部と、前記複数の凸部の間である凹部とからなる凹凸構造が形成されている
     色変換素子。
    A phosphor layer comprising at least one phosphor;
    A substrate on which the phosphor layer is disposed on one main surface side;
    A junction for interposing between the phosphor layer and the substrate to metal nano-bond the phosphor layer and the substrate;
    At least one of the first main surface on the phosphor layer side and the second main surface on the substrate side in the joint portion includes a plurality of convex portions and a concave portion between the plurality of convex portions. A color conversion element having an uneven structure.
  2.  前記複数の凸部は、前記第一主面または前記第二主面に対して規則性を持って配置されている
     請求項1に記載の色変換素子。
    The color conversion element according to claim 1, wherein the plurality of convex portions are arranged with regularity with respect to the first main surface or the second main surface.
  3.  前記凹凸構造は、前記第一主面及び前記第二主面の少なくとも一方の全体に形成されている
     請求項1に記載の色変換素子。
    The color conversion element according to claim 1, wherein the uneven structure is formed on at least one of the first main surface and the second main surface.
  4.  さらに、
     前記基板と前記接合部との間に介在した第一電極層と、
     前記蛍光体層と前記接合部との間に介在した第二電極層と、を有する
     請求項1~3のいずれか一項に記載の色変換素子。
    further,
    A first electrode layer interposed between the substrate and the joint;
    The color conversion element according to any one of claims 1 to 3, further comprising a second electrode layer interposed between the phosphor layer and the joint.
  5.  請求項1~4のいずれか一項に記載の色変換素子と、
     前記色変換素子の前記蛍光体を励起するための励起光を照射する光源部と、を備える
     照明装置。
    The color conversion element according to any one of claims 1 to 4,
    A light source unit that emits excitation light for exciting the phosphor of the color conversion element.
PCT/JP2018/001122 2017-03-28 2018-01-17 Color conversion element and lighting device WO2018179688A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017064021A JP2020095066A (en) 2017-03-28 2017-03-28 Color conversion element and luminaire
JP2017-064021 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018179688A1 true WO2018179688A1 (en) 2018-10-04

Family

ID=63674641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001122 WO2018179688A1 (en) 2017-03-28 2018-01-17 Color conversion element and lighting device

Country Status (2)

Country Link
JP (1) JP2020095066A (en)
WO (1) WO2018179688A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153144A1 (en) * 2019-01-25 2020-07-30 パナソニックIpマネジメント株式会社 Color conversion element
JP2020118946A (en) * 2019-01-25 2020-08-06 パナソニックIpマネジメント株式会社 Color conversion element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123145A1 (en) * 2013-02-08 2014-08-14 ウシオ電機株式会社 Fluorescent light source device
WO2017043180A1 (en) * 2015-09-11 2017-03-16 日立マクセル株式会社 Light source device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123145A1 (en) * 2013-02-08 2014-08-14 ウシオ電機株式会社 Fluorescent light source device
WO2017043180A1 (en) * 2015-09-11 2017-03-16 日立マクセル株式会社 Light source device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153144A1 (en) * 2019-01-25 2020-07-30 パナソニックIpマネジメント株式会社 Color conversion element
JP2020118946A (en) * 2019-01-25 2020-08-06 パナソニックIpマネジメント株式会社 Color conversion element
CN113272687A (en) * 2019-01-25 2021-08-17 松下知识产权经营株式会社 Color conversion element
EP3916439A4 (en) * 2019-01-25 2022-06-22 Panasonic Intellectual Property Management Co., Ltd. Color conversion element
JP7308475B2 (en) 2019-01-25 2023-07-14 パナソニックIpマネジメント株式会社 color conversion element
CN113272687B (en) * 2019-01-25 2023-11-17 松下知识产权经营株式会社 color conversion element

Also Published As

Publication number Publication date
JP2020095066A (en) 2020-06-18

Similar Documents

Publication Publication Date Title
JP6493713B2 (en) LIGHT EMITTING ELEMENT AND LIGHTING DEVICE
JP6176171B2 (en) Method for manufacturing light emitting device
JP7109236B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP5372009B2 (en) Optoelectronic component and manufacturing method thereof
JP2017183427A (en) Light-emitting device
JP6221950B2 (en) Light emitting device
WO2018042825A1 (en) Color conversion element
JP2016100090A (en) Light-emitting module and light-emitting device using the same
JP2019186513A (en) Manufacturing method of light-emitting device
JP4604819B2 (en) Light emitting device
TW201708922A (en) Phosphor wheel and wavelength-converting device applying the same
JP6265227B2 (en) Light distribution member manufacturing method, light emitting device manufacturing method, light distribution member, and light emitting device
JP2017152475A (en) Light-emitting device
JP2016058619A (en) Light-emitting device
JP2008078401A (en) Lighting device
WO2018179688A1 (en) Color conversion element and lighting device
JP2005191192A (en) Substrate for mounting light emitting element and light emitting device
JP6741982B2 (en) Light emitting device and lighting device
JP6319026B2 (en) Light emitting device and manufacturing method thereof
WO2021010273A1 (en) Wavelength conversion member for soldering, wavelength conversion device, and light source device
CN215264353U (en) Wavelength conversion device and light source system
TW202002337A (en) Color conversion element and illumination device
CN113272687A (en) Color conversion element
WO2022085507A1 (en) Semiconductor light emitting device and semiconductor light emitting module
JP2020502569A (en) Light conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP