WO2018179592A1 - Welding condition derivation device, welding power source device, and welding technique learning device - Google Patents

Welding condition derivation device, welding power source device, and welding technique learning device Download PDF

Info

Publication number
WO2018179592A1
WO2018179592A1 PCT/JP2017/043390 JP2017043390W WO2018179592A1 WO 2018179592 A1 WO2018179592 A1 WO 2018179592A1 JP 2017043390 W JP2017043390 W JP 2017043390W WO 2018179592 A1 WO2018179592 A1 WO 2018179592A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
unit
work condition
input
welding work
Prior art date
Application number
PCT/JP2017/043390
Other languages
French (fr)
Japanese (ja)
Inventor
和道 細谷
雅徳 宮城
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018179592A1 publication Critical patent/WO2018179592A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a welding work condition deriving device, a welding power source device, and a welding technique learning device.
  • Patent Document 1 Conventionally, an invention relating to a welding work management / recording system using an RFID tag has been known (see Patent Document 1 below).
  • This conventional system includes a database, RFID tag registration means, an information terminal, and a network.
  • the said database memorize
  • the RFID tag registration means stores in the RFID tag for welding part in advance the second welding condition information including at least RFID tag identification information for identifying the RFID tag for welding part before welding.
  • the RFID tag registering unit associates the second welding condition information with the first welding condition information including the specific welding number in the database.
  • the information terminal reads the second welding condition information from the welded RFID tag affixed to the vicinity of the welded part of the welding object or a welding work instruction of the welded part. Further, the information terminal displays the welding condition data on the display unit based on the read second welding condition information.
  • the network connects the information terminal and the database in a connectable manner.
  • the information terminal allows the welding operator to confirm the welding condition data for the welded part before starting the welding work for the welded part. Further, the information terminal stores a record relating to the welding condition data input from the input operation unit of the information terminal by a welding operator as welding record information in the database via the network (the same document, claim). (See 1 etc.).
  • the welding condition data includes the material to be welded, the thickness of the material to be welded, the welding method, the type (material) of the welding rod, the diameter of the welding rod, the current during welding, the preheating temperature, the type of shield gas, and the shield. Includes gas flow rate, holding temperature of post-weld heat treatment, temperature holding time of post-weld heat treatment, heating / cooling rate of post-weld heat treatment, welding qualification code set corresponding to each required welding qualification (Id., Paragraph) See 0022).
  • the conventional welding work management / recording system using an RFID tag enables a welding operator to confirm the welding condition data for the welded part before starting the welding work of the welded part.
  • the number of skilled and highly skilled welding workers is decreasing, and the number of welding workers who are relatively inexperienced is increasing. For this reason, when the designated welding work condition does not match the skill of the welding operator, it may be difficult to perform a welding work that matches the welding work condition.
  • the present invention has been made in view of the above problems, and includes a welding work condition derivation device that enables a welding operator to perform welding work under welding work conditions suitable for each skill, and the same. It is an object of the present invention to provide a welding power supply device and a welding technology learning device.
  • the welding work condition deriving device of the present invention is a device for deriving welding work conditions of a welded portion to be welded by a semi-automatic welding machine, and is a skill of a welding operator who performs welding of the welded portion.
  • a database in which data related to a plurality of welding operations corresponding to a plurality of skill levels is recorded, an input unit to which input information including the skill level is input, and the skill level input to the input unit
  • a derivation unit that obtains the data from the database and derives the welding work condition.
  • the database of the welding work condition deriving device of the present invention data relating to a plurality of welding operations corresponding to a plurality of skill levels indicating the skill of the welding operator is recorded.
  • a welding operator who performs welding of the welded portion to the input portion is welded.
  • Input information including a skill level indicating the skill is input.
  • the derivation unit selects data corresponding to the input skill level from among data related to a plurality of welding operations corresponding to the plurality of skill levels recorded in the database. To obtain welding work conditions. Thereby, it is possible to derive welding work conditions corresponding to each skill level for welding workers having a high skill level and welding workers having a low experience level and a low level of experience.
  • a welding work condition deriving device that enables a welding operator to perform a welding work under welding work conditions suitable for each skill, a welding power supply device and a welding technique learning device provided with the welding work condition deriving device. be able to.
  • the block diagram which shows an example of schematic structure of a semi-automatic welding machine The block diagram which shows schematic structure of the welding power supply device (welding technique acquisition apparatus) of FIG.
  • the graph which shows an example of the output characteristic of the welding power supply device of FIG. The graph which shows the relationship between the setting welding current of the welding power supply device of FIG. 1, and an output welding current.
  • FIG. 1 is a block diagram showing a schematic configuration of a semi-automatic welding machine 100 provided with a welding power source device 20 (welding technique learning device 30) according to the present embodiment.
  • the semi-automatic welding machine 100 is an apparatus for performing semi-automatic arc welding on, for example, a welding portion WP that is a welding portion of a welding object O to be welded, which is used by a welding operator who performs a welding operation.
  • the semi-automatic welding machine 100 includes, for example, a welding torch 10, a welding power source device 20 (welding technique learning device 30), and a feeding device 40.
  • the welding torch 10 may be referred to as a welding gun, for example, and is a part that is used by a welding operator.
  • the cylindrical welding nozzle 11 at the tip of the welding torch 10 is not illustrated, for example, an insulator that electrically insulates the welding material wire W and the welding torch 10 from contact with the wire W. It has a contact tip for passing an electric current through the wire W and an ejection hole for ejecting the shield gas SG.
  • the welding torch 10 projects the wire W from the insulator inside the welding nozzle 11 by a contact tip distance before use.
  • the welding power supply device 20 of the present embodiment is a power supply device for the semi-automatic welding machine 100 and supplies power to the welding torch 10, the feeding device 40, and the welding object O. Moreover, the welding power supply apparatus 20 is connected to the cylinder etc. which abbreviate
  • the welding power supply device 20 controls, for example, the welding torch 10 and the feeding device 40 to control the supply speed of the welding material wire W and the supply amount of the shield gas SG.
  • the welding power supply device 20 of the present embodiment includes a welding work condition deriving device 50, and is a welding technique learning device 30 that supports the welding work and the skill improvement for the welding worker. It also has a function as.
  • the feeding device 40 pulls out a wire W of a welding material wound in a coil shape on a cylindrical bobbin 41 and passes the wire W through a hose 42 connecting the welding torch 10 and the feeding device 40 to the welding torch. 10 is sent.
  • the wire W is, for example, a welding wire whose main component is the same metal as the welding object O.
  • the feeding device 40 supplies the shield gas SG supplied from the welding power source device 20 to the welding torch 10 through the hose 42 used for feeding the wire W.
  • FIG. 2 is a block diagram showing a schematic configuration of the welding power source apparatus 20 shown in FIG.
  • the welding power supply device 20 of the present embodiment mainly includes a welding work condition deriving device 50, an output control unit 21, and a display unit 22.
  • the welding work condition deriving device 50 of this embodiment includes a database 51, an input unit 52, and a deriving unit 53.
  • the database 51 is configured by, for example, a storage device such as a memory or a hard disk, and records data related to a plurality of welding operations corresponding to a plurality of skill levels indicating the skill of a welding operator who performs welding of the welded portion WP.
  • the skill level may be, for example, a qualification class based on a certification test standard such as JIS (Japanese Industrial Standards) or WES (Welding Engineering Engineering Society).
  • the skill level may be a grade set based on an arbitrary evaluation item for evaluating the skill of the welding operator, such as the quality of the welded portion WP and the time required for welding. That is, a high skill level indicates that the skill of the welding worker is high, and a low skill level indicates that the skill of the welding worker is low.
  • the data related to the plurality of welding operations recorded in the database 51 can include, for example, one or more types of data among various types of data of the welding method, filler metal, shield gas, welding power source, and torch rod operation.
  • the welding method is, for example, a type of welding method such as mag welding, a combination of TIG welding and MAG welding, or self-shielded arc welding.
  • the filler material is, for example, the type of wire W fed to the welding torch 10.
  • Shield gas is a type of shield gas SG such as argon or carbon dioxide.
  • the welding power source is, for example, a set welding current set in the welding power source device 20 at the time of welding, an output welding current flowing through the base metal that is the wire W and the welding object O during welding, and welding applied to the welded portion WP. Including voltage.
  • the torch bar movement includes, for example, welding speed, wire protrusion length, torch angle, and the like.
  • the input unit 52 is configured to be able to input input information including a welding worker's skill level by using, for example, a keyboard, a touch panel, and voice recognition.
  • the input information input to the input unit 52 can include the specification of the welded part WP to be welded by the welding operator in addition to the skill level of the welding operator.
  • the specifications of the welded part WP include, for example, the material of the base material that is the welding object O, the joint shape, the groove shape, and the bead shape.
  • the specifications of the welded portion WP may include the thickness of the base metal, the welding posture, the order of passes, the presence or absence of a backing, the wire diameter, groove angle, route interval, route surface dimensions, shield gas flow rate, etc. Good.
  • the welding posture is, for example, a type such as downward (F), vertical (V), or horizontal (H).
  • the input information input to the input unit 52 may include, for example, worker information related to the welding operator in addition to the skill level or in addition to the skill level and the specification of the welding part WP.
  • the worker information can include, for example, the height or arm length of the welding worker, the dominant arm, and the like.
  • the worker information may include, for example, name, affiliation, nationality, gender, age, personal identification number, and other personal information of the welding worker.
  • the derivation unit 53 includes, for example, a calculation unit such as a central processing unit, a storage unit such as a memory and a hard disk, and data and programs recorded in the storage unit.
  • the deriving unit 53 obtains data relating to the welding operation corresponding to the skill level input to the input unit 52 from the database 51 and derives the welding operation condition.
  • the welding work conditions derived by the derivation unit 53 are, for example, the welding method, filler metal, shield gas, welding power source, torch rod operation, torch angle, and the like, as with the data relating to the welding work recorded in the database 51.
  • One or more conditions may be included among various conditions of the wire protrusion length.
  • the derivation unit 53 uses the specifications of the welded portion WP when the input information input to the input unit 52 includes the specification of the welded portion WP, or when the data regarding the welding operation acquired from the database 51 includes the specification of the welded portion WP. And the data acquired from the database 51, the welding work conditions can be derived. Specifically, the derivation unit 53 includes, for example, the thickness of the base material, the welding posture, the pass order, the presence / absence of the backing, the wire diameter, the groove angle, the route interval, the route surface dimension, the flow rate of the shield gas, and the like. Based on the specifications of the welded portion WP, welding work conditions such as a welding method, filler metal, shield gas, welding power source, torch rod operation, torch angle, welding speed, and wire protruding length can be derived.
  • welding work conditions such as a welding method, filler metal, shield gas, welding power source, torch rod operation, torch angle, welding speed, and wire protruding length can be derived.
  • the derivation unit 53 includes the worker information and the database. Based on the data acquired from 51, welding work conditions can be derived. Specifically, the deriving unit 53 can derive welding work conditions such as a torch bar movement based on, for example, the height or arm length of the welding operator, the dominant arm, and other personal information.
  • the derivation unit 53 Based on the height or arm length of the worker and the data relating to the welding operation acquired from the database 51, an operation model of the welding operator during welding may be calculated.
  • Such an operation model can be created, for example, by analyzing the operation of a skilled welding engineer with a high skill level.
  • the motion model can include, for example, a motion model that models the movements of the welding operator's arm and wrist.
  • the deriving unit 53 may derive the welding operation condition based on the specifications of the semi-automatic welding machine 100 in addition to the data related to the welding operation acquired from the database 51 and other information, for example.
  • the specifications of the semi-automatic welder 100 include, for example, a welding voltage set in the welding power source device 20 during welding, and can include a set welding current or a wire feed speed, a torch diameter, and the like.
  • FIG. 3 is a graph showing an example of the output characteristics of the welding power source device 20, and the set welding current [A] and the wire feed speed [m / min] set in the welding power source device 20 during welding by the semi-automatic welding machine 100. Shows the relationship.
  • the wire feed speed is determined according to the set welding current. That is, for example, the set welding current and the wire feed speed have a direct proportional relationship in which one increases when the other increases and the other decreases when one decreases.
  • the derivation unit 53 is, for example, based on the relationship between the set welding current of the welding power source apparatus 20 and the wire feed speed, which is the specification of the semi-automatic welding machine 100 as shown in FIG. It is possible to derive welding operation conditions such as the wire protruding length.
  • FIG. 4 shows the relationship between the set welding current [A] set in the welding power source device 20 and the output welding current [A] flowing through the base material that is the wire W and the welding object O during welding by the semi-automatic welding machine 100. It is a graph which shows. Even if the set welding current set in the welding power source device 20 at the time of welding by the semi-automatic welding machine 100 is constant, the output welding current flowing through the wire W and the base material that is the object to be welded O varies in the protruding length of the wire, etc. Fluctuates due to fluctuations in electrical resistance.
  • the wire protruding length can be increased or decreased by increasing or decreasing the distance between the welding nozzle 11 at the tip of the welding torch 10 and the base material that is the welding object O by the welding operator.
  • the derivation unit 53 performs, for example, a welding operation based on the relationship between the set welding current of the welding power source device 20 that is the specification of the semi-automatic welding machine 100 as shown in FIG. 4 and the output welding current flowing in the wire W and the base material.
  • a condition can be derived.
  • the derivation unit 53 sets an appropriate output welding current value range R1 corresponding to the set welding current value, so that the wire protrusion included in the torch carrying rod operation is set. Welding work conditions such as length can be derived.
  • FIG. 5 is a graph showing an example of the relationship between the welding speed [cm / min] by the semi-automatic welding machine 100 and the wire protruding length [mm].
  • the amount of heat input to the welded part WP of the welding object O is determined by the welding speed related to the output welding current flowing through the welded part WP, the welding voltage applied to the welded part WP, and the moving speed of the tip of the welding torch 10. In order to manage the quality of the weld WP, it is necessary to manage the heat input.
  • the derivation unit 53 can derive the optimum welding speed and the wire protrusion length as the recommended welding condition C1 as shown in FIG. 5 according to the derived set welding current, for example. Further, for example, as shown in FIG. 5, the deriving unit 53 can derive the allowable range of the welding speed and the wire protruding length as the allowable range R2 of the welding work condition according to the derived set welding current. .
  • the derivation unit 53 can set the welding speed according to the skill level of the welding engineer, for example. Specifically, for example, when the skill level of the welding engineer is equal to or lower than a predetermined level, the derivation unit 53 is within the allowable range R2 of the welding work condition shown in FIG. 5 and is lower than the recommended condition C1.
  • the range of welding speed can be derived as welding work conditions.
  • the derivation unit 53 is within the allowable range R2 of the welding work condition shown in FIG. Can be derived as welding work conditions.
  • the welding power source device 20 includes the output control unit 21 and the display unit 22 in addition to the welding work condition deriving device 50 as described above.
  • the display unit 22 has an arbitrary configuration and can be omitted.
  • the output control unit 21 controls, for example, the power output by the welding power supply device 20, the shield gas SG, and the image signal in accordance with the welding work condition derived by the welding work condition deriving device 50.
  • the output control unit 21 controls the welding power source device 20 to control the power supplied to the welding torch 10 and the welding object O via the cables 23, 24, 43, for example.
  • the output control unit 21 controls the welding power source device 20 to control the shield gas SG supplied to the welding torch 10 via the hoses 25 and 42, for example.
  • the output control unit 21 outputs an image signal to the display unit 22 connected via a signal line.
  • the welding power source device 20 or the welding technique learning device 30 includes an audio output unit (not shown)
  • the output control unit 21 transmits a signal line to the audio output unit.
  • An audio signal may be output.
  • the welding power source device 20 or the welding technique learning device 30 may not include the display unit 22, but the welding work condition deriving device 50 may include the display unit 22.
  • the welding work condition deriving device 50 may include the display unit 22 that displays the welding work conditions derived by the deriving unit 53.
  • the derivation unit 53 and the display unit 22 can be connected via a signal line, and an image signal can be output from the derivation unit 53 to the display unit 22.
  • the display unit 22 can be configured by an image display device such as a liquid crystal display device or an organic EL display device, for example.
  • the display unit 22 may include a touch panel on the screen as the input unit 52 of the welding work condition deriving device 50.
  • FIG. 6 is an image diagram illustrating an example of the display screen 22 a of the display unit 22.
  • the display part 22 is provided with the input part 52 by a touch panel in a part of display screen 22a, for example.
  • the welded portion WP such as the base material 52a, the joint shape 52b, the plate combination 52c, the groove shape 52d, the bead shape 52e, etc.
  • the display screen 22 a of the display unit 22 has a condition display region 22 b for displaying the welding work condition derived by the welding work condition deriving device 50, for example, adjacent to the input unit 52. is doing.
  • the condition display area 22b has, for example, an illustrated area 22c at the top and an item display area 22d below it.
  • the illustrated region 22c for example, a diagram or a graph showing the specification, condition range, operation, and the like of the welded portion WP may be switched and displayed, or these may be displayed side by side.
  • items of welding work conditions such as a welding method 22e, a filler material 22f, a shield gas 22g, a welding power source 22h, and a torch rod operation 22i can be displayed side by side.
  • the display unit 22 includes, for example, a welded joint WP such as a welded joint such as a T joint or a butt joint, a torch diameter D1, a wire protruding length L1, a joint shape dimension, and a base material M1, M2 plate. Thicknesses T1, T2, and torch angle ⁇ can be illustrated.
  • the joint shape dimension includes, for example, a groove angle ⁇ , a butt portion dimension R, a route interval G, and the like.
  • the wire protruding length L1 is the contact tip distance in the initial state.
  • the illustrated region 22c may illustrate the penetration of the welded portion WP, the bead shape, or the like as the specification of the welded portion WP.
  • the illustrated region 22c is formed by the derivation unit 53 based on the specifications of the semi-automatic welding machine 100 such as the torch diameter D1.
  • the torch angle ⁇ and the wire protruding length L1 suitable for welding the derived welded portion WP can be illustrated.
  • the illustrated region 22 c is, for example, a groove angle ⁇ , a butt portion dimension R, and a groove width in the butt direction when the weld joint included in the specification of the weld portion WP is a butt joint.
  • W1, the groove width W2 in the plate thickness direction, the wire protruding length L1, the torch diameter D1, and the like can be illustrated.
  • FIG. 9 is an image diagram illustrating an example of an operation model that is an operation displayed in the illustrated region 22c of the display unit 22 illustrated in FIG.
  • the operation model at the time of welding by the welding operator is calculated by the derivation unit 53, as shown in FIG. 9, the operation model at the time of welding by the welding operator is displayed in the illustrated region 22c of the display unit 22.
  • M can be illustrated.
  • the motion model M can be created, for example, by analyzing the motion of a skilled welding engineer with a high skill level.
  • the motion model M can include, for example, a motion model that models the movements of the welding operator's arm and wrist.
  • the welding power source device 20, the welding technique acquisition device 30, or the welding work condition derivation device 50 of the present embodiment measures the welding operation of the welding operator as shown in FIG.
  • An operation information acquisition unit 60 that acquires operation information can be provided.
  • the welding power supply device 20, the welding technique learning device 30, or the welding work condition derivation device 50 can include an operation comparison unit 70 that calculates comparison information based on a comparison between the operation model M and the operation information.
  • the operation comparison unit 70 can display the calculated comparison information on the display unit 22.
  • the motion information acquisition unit 60 is not particularly limited, but for example, an imaging device such as a video camera or an infrared camera, a motion capture device or a line-of-sight camera using the imaging device, or various types of devices such as an ultrasonic measurement device or an inertial sensor.
  • a sensor can be used.
  • the operation comparison unit 70 is, for example, similar to the derivation unit 53 of the welding work condition derivation device 50 described above, a computation unit such as a central processing unit, a storage unit such as a memory or a hard disk, and data recorded in the storage unit. It consists of programs. Therefore, a function as the operation comparison unit 70 may be added to the derivation unit 53 illustrated in FIG.
  • the motion model M displayed in the illustrated area 22c of the display unit 22 includes a positional relationship between the welding worker and the welding object O, a movement direction A1 of the welding worker's body, welding by the welding worker.
  • the configuration may be such that the confirmation direction A2 of the part WP is shown.
  • the motion model M it is conceivable to extract and use information such as position and direction from data obtained by tracing the actual welding engineer's motion.
  • the length of the weld line in the object to be welded O is short, the work can be performed within the movable range of the arm, and if it is monotonous such as a straight line even if the length of the weld line is long, the welding torch The direction of movement of 10 is a linear motion parallel to it.
  • the degree of information necessary to create the motion model M and show it to the welding operator varies depending on the specifications of the welded portion WP.
  • the method for acquiring data necessary for creating the behavior model M is not particularly limited, and it is only necessary to select a method for obtaining information appropriately and acquire the data.
  • FIG. 10 is a flowchart showing the elution work condition deriving method S100 by the welding work condition deriving device 50 shown in FIGS.
  • the welding work condition deriving device 50 of the present embodiment is a device for deriving the welding work conditions of the welded portion WP to be welded by the semi-automatic welding machine 100.
  • the welding work condition deriving device 50 mainly includes a database 51, an input unit 52, and a deriving unit 53.
  • the database 51 stores data related to a plurality of welding operations corresponding to a plurality of skill levels indicating the skills of a welding operator who performs welding of the welded portion WP.
  • the input unit 52 receives input information including the skill level of the welding operator.
  • the deriving unit 53 obtains data corresponding to the skill level input to the input unit 52 from the database 51 and derives the welding work condition.
  • the database 51 of the welding work condition deriving device 50 of the present embodiment data related to a plurality of welding operations corresponding to a plurality of skill levels indicating the skill of the welding operator is recorded.
  • Input information including a skill level indicating a welding skill of a welding operator who welds the welded portion WP to 52 is input.
  • a welding work condition derivation step S20 is performed as shown in FIG.
  • the derivation unit 53 acquires data corresponding to the input skill level from among a plurality of welding work data corresponding to the plurality of skill levels recorded in the database 51 to perform welding. Deriving work conditions. Thereby, it is possible to derive welding work conditions corresponding to each skill level for welding workers having a high skill level and welding workers having a low experience level and a low level of experience.
  • a welding operation condition output step S30 is performed as shown in FIG.
  • the derivation unit 53 can display the welding operation condition derived on the display unit 22 via the output control unit 21, for example, as shown in FIG.
  • the welding operation condition deriving device 50, the welding power source device 20, or the welding technique learning device 30 displays the welding operation condition derived by the deriving unit 53 as described above. 22 can be provided. Thereby, the welding operation condition can be visually displayed to the welding operator by the display unit 22, the understanding of the welding operation condition by the welding operator can be deepened, and the quality of the welding portion WP can be further improved.
  • the display unit 22 displays images as shown in FIGS. 6 to 8 as the specifications of the welded portion WP, displays a graph as shown in FIG. 5 as the condition range, and shows the operation as shown in FIG. A simple operation model M can be displayed.
  • the welding operator appropriately grasps the positional relationship between the base material that is the object to be welded O and the welding torch 10 and appropriately controls the welding speed and the wire protruding length L1 by the rod movement of the welding torch 10. It is possible to manage the heat input amount of the welded portion WP and improve the welding quality.
  • the derivation unit 53 displays the welding work condition on the display unit 22 or displays the welding work condition on the display unit 22, and displays the welding work condition on the display unit 22 by voice or warning sound. May be output.
  • the voice output unit can provide voice guidance that the welding work condition is within the condition range, or can emit a warning sound when the welding work condition is outside the condition range.
  • the welding work condition derivation device 50 of the present embodiment can include the specification of the welded portion WP to be welded by the welding operator as input information input to the input unit 52.
  • the deriving unit 53 derives the welding work condition based on the specification of the welded portion WP input to the input unit 52 and the data acquired from the database 51 as described above.
  • the welding operation condition according to the specification of the welding part WP can be derived
  • the specifications of the welded portion WP input to the input unit 52 include the base material, joint shape, groove shape, and bead shape.
  • these pieces of information can be reflected in the welding work conditions derived by the deriving unit 53. This makes it possible to derive more detailed welding work conditions that match the more detailed characteristics of each welded part WP, deepen the understanding of the welding work conditions by the welding operator, and further improve the quality of the welded part WP. Can do.
  • the welding work condition deriving device 50 of the present embodiment can include worker information regarding the welding worker as input information input to the input unit 52 as described above.
  • the deriving unit 53 derives the welding work condition based on the worker information input to the input unit 52 and the data acquired from the database 51.
  • the welding operation conditions according to worker information can be derived. That is, the quality of the welded portion WP can be further improved by deriving welding work conditions that match the individual characteristics of the welder.
  • the welding work condition deriving device 50 of the present embodiment when the worker information input to the input unit 52 includes the height of the welding worker or the length of the arm, these pieces of information are included. Can be reflected in the welding work conditions derived by the deriving unit 53. As a result, it is possible to derive more detailed welding work conditions according to the physical characteristics of each welding worker, making the welding worker conditions more smoothly and easily performed, and improving the quality of the welded portion WP. It can be improved further.
  • the welding work condition deriving device 50 is based on the height or arm length input to the input unit 52 by the deriving unit 53 and the data acquired from the database 51.
  • An operation model M at the time of welding of the operator can be calculated.
  • the welding operator can confirm the operation model M created according to each physical characteristic, and can image a welding operation condition.
  • understanding of the welding operation conditions by the welding operator can be deepened, and the quality of the welded portion WP can be further improved.
  • the welding work condition deriving device 50 can include the movement of the welding worker's arm and wrist in the motion model M calculated by the deriving unit 53.
  • the welding worker's arm and wrist can learn with the image of the ideal arm and wrist angles and how to move them in order to realize the welding work conditions derived by the derivation unit 53. be able to.
  • understanding of the welding operation conditions by the welding operator can be deepened, and the quality of the welded portion WP can be further improved.
  • the deriving unit 53 can derive the welding work conditions based on the specifications of the semi-automatic welding machine 100 as described above. In this case, the deriving unit 53 derives the welding work condition based on the specifications of the semi-automatic welding machine 100 and the data acquired from the database 51. Thereby, in addition to the skill level of a welding operator, the welding operation conditions according to the specification of the semi-automatic welding machine 100 can be derived. That is, by deriving welding work conditions that match the specifications of the semi-automatic welding machine 100, the quality of the welded portion WP can be further improved.
  • the welding work condition deriving device 50 has the specifications of the semi-automatic welding machine 100 when the deriving unit 53 derives the welding work conditions based on the specifications of the semi-automatic welding machine 100.
  • the welding voltage and the set welding current or wire feed rate can be included.
  • leading-out part 53 the welding operation conditions matched with the setting welding current of the semi-automatic welding machine 100, the welding voltage, and the wire feed speed can be derived
  • the welding work condition derivation device 50 measures the motion of the welding worker during welding and acquires the motion information, the calculated motion model M, and the acquisition.
  • An operation comparison unit that calculates comparison information based on the comparison with the operation information thus performed and causes the display unit 22 to display the comparison information.
  • the display unit 22 and the audio output unit perform correct operations on the welding operator.
  • Can communicate when the difference between the calculated motion model M and the acquired motion information exceeds a predetermined range, it is necessary for the welding operator to correct the motion by the display unit 22 or the audio output unit. Can be transmitted.
  • the welding power supply device 20 and the welding technique learning device 30 of the present embodiment include the welding work condition deriving device 50 described above. Therefore, according to the welding power supply apparatus 20 of this embodiment, it becomes possible for a welding worker to perform welding work on the welding work conditions suitable for each skill.
  • welding work conditions corresponding to each skill level are derived for a welding worker having a low experience level and a low skill level, and by gaining experience, welding is performed.
  • the operator can be trained in welding technology.
  • the welding work condition deriving device 50 has a configuration as described with reference to FIGS. 1 to 9, the welding worker can imagine the welding work conditions, and the welding worker Can deepen the understanding of welding work conditions, and promote the acquisition of welding techniques.

Abstract

Provided is a welding condition derivation device that enables a welder to perform welding under welding conditions appropriate to the skill of the welder. A welding condition derivation device 50 is provided with the following: a database 51 that records data pertaining to a plurality of welding jobs corresponding to a plurality of skill levels indicating the skill of the welder who performs welding of a portion to be welded; an input unit 52 into which input information including the skill level is inputted; and a derivation unit 53 that derives welding conditions by acquiring, from the database 51, data corresponding to the skill level inputted to the input unit 52.

Description

溶接作業条件導出装置、溶接電源装置、および溶接技術習得装置Welding operation condition deriving device, welding power source device, and welding technique learning device
 本発明は、溶接作業条件導出装置、溶接電源装置、および溶接技術習得装置に関する。 The present invention relates to a welding work condition deriving device, a welding power source device, and a welding technique learning device.
 従来からRFIDタグを用いた溶接作業管理・記録システムに関する発明が知られている(下記特許文献1を参照)。この従来のシステムは、データベースと、RFIDタグ登録手段と、情報端末と、ネットワークを備えている。前記データベースは、溶接部の溶接番号と、溶接方法に関する情報を含む溶接条件データを含む第1の溶接条件情報を記憶する。 Conventionally, an invention relating to a welding work management / recording system using an RFID tag has been known (see Patent Document 1 below). This conventional system includes a database, RFID tag registration means, an information terminal, and a network. The said database memorize | stores the 1st welding condition information containing the welding condition data containing the welding number of a welding part, and the information regarding a welding method.
 前記RFIDタグ登録手段は、溶接部用RFIDタグを識別するRFIDタグ識別情報を少なくとも含む第2の溶接条件情報を溶接前にあらかじめ溶接部用RFIDタグに記憶させる。かつ、前記RFIDタグ登録手段は、前記第2の溶接条件情報を前記データベースの特定の前記溶接番号を含む第1の溶接条件情報と関係付ける。 The RFID tag registration means stores in the RFID tag for welding part in advance the second welding condition information including at least RFID tag identification information for identifying the RFID tag for welding part before welding. The RFID tag registering unit associates the second welding condition information with the first welding condition information including the specific welding number in the database.
 前記情報端末は、溶接対象物の当該前記溶接部近傍または当該前記溶接部の溶接作業指示書に貼付された前記溶接部用RFIDタグから前記第2の溶接条件情報を読み出す。また、前記情報端末は、読み出された前記第2の溶接条件情報にもとづいてその表示部に前記溶接条件データを表示する。ネットワークは、情報端末とデータベースとを接続可能に結ぶ。 The information terminal reads the second welding condition information from the welded RFID tag affixed to the vicinity of the welded part of the welding object or a welding work instruction of the welded part. Further, the information terminal displays the welding condition data on the display unit based on the read second welding condition information. The network connects the information terminal and the database in a connectable manner.
 前記情報端末は、溶接部の溶接作業を始める前に、溶接作業者に対して、当該溶接部に対する前記溶接条件データを確認させることを可能とする。また、前記情報端末は、溶接作業者によって前記情報端末の入力操作部から入力された前記溶接条件データに関する記録を、前記ネットワークを介して前記データベースに溶接記録情報として記憶させる(同文献、請求項1等を参照)。 The information terminal allows the welding operator to confirm the welding condition data for the welded part before starting the welding work for the welded part. Further, the information terminal stores a record relating to the welding condition data input from the input operation unit of the information terminal by a welding operator as welding record information in the database via the network (the same document, claim). (See 1 etc.).
 前記溶接条件データは、被溶接材の材質、被溶接材の肉厚、溶接方法、溶接棒の種類(材質)、溶接棒の棒径、溶接時の電流、予熱温度、シールドガスの種類、シールドガスの流量、溶接後熱処理の保持温度、溶接後熱処理の温度保持時間、溶接後熱処理の加熱・冷却速度、要求される溶接資格ごと対応して設定された溶接資格コードを含む(同文献、段落0022等を参照)。 The welding condition data includes the material to be welded, the thickness of the material to be welded, the welding method, the type (material) of the welding rod, the diameter of the welding rod, the current during welding, the preheating temperature, the type of shield gas, and the shield. Includes gas flow rate, holding temperature of post-weld heat treatment, temperature holding time of post-weld heat treatment, heating / cooling rate of post-weld heat treatment, welding qualification code set corresponding to each required welding qualification (Id., Paragraph) See 0022).
 この従来のシステムによれば、溶接部の溶接条件を確認しやすく、また、溶接記録を溶接作業現場で入力でき、溶接作業のヒューマンエラーを低減または防止できる(同文献、段落0010等を参照)。 According to this conventional system, it is easy to confirm the welding conditions of the welded portion, and welding records can be input at the welding work site, so that human errors in the welding work can be reduced or prevented (see the same document, paragraph 0010, etc.). .
特開2008-59116号公報JP 2008-59116 A
 前記従来のRFIDタグを用いた溶接作業管理・記録システムは、溶接部の溶接作業を始める前に、溶接作業者に対して、当該溶接部に対する前記溶接条件データを確認させることを可能とする。しかし、最近は、熟練した技量の高い溶接作業者が減少しており、比較的に経験の浅い溶接作業者が多くなっている。そのため、指定された溶接作業条件が溶接作業者の技量に適合していない場合には、溶接作業条件に適合した溶接作業を行うことが困難になる場合がある。 The conventional welding work management / recording system using an RFID tag enables a welding operator to confirm the welding condition data for the welded part before starting the welding work of the welded part. However, recently, the number of skilled and highly skilled welding workers is decreasing, and the number of welding workers who are relatively inexperienced is increasing. For this reason, when the designated welding work condition does not match the skill of the welding operator, it may be difficult to perform a welding work that matches the welding work condition.
 本発明は、前記課題に鑑みてなされたものであり、溶接作業者がそれぞれの技量に適合した溶接作業条件で溶接作業を行うことを可能にする溶接作業条件導出装置、ならびに、それを備えた溶接電源装置および溶接技術習得装置を提供することを目的とする。 The present invention has been made in view of the above problems, and includes a welding work condition derivation device that enables a welding operator to perform welding work under welding work conditions suitable for each skill, and the same. It is an object of the present invention to provide a welding power supply device and a welding technology learning device.
 前記目的を達成すべく、本発明の溶接作業条件導出装置は、半自動溶接機によって溶接される溶接部の溶接作業条件を導出する装置であって、前記溶接部の溶接を行う溶接作業者の技量を示す複数の技量レベルに対応する複数の溶接作業に関するデータが記録されたデータベースと、前記技量レベルを含む入力情報が入力される入力部と、前記入力部に入力された前記技量レベルに対応する前記データを前記データベースから取得して前記溶接作業条件を導出する導出部と、を備えることを特徴とする。 In order to achieve the above object, the welding work condition deriving device of the present invention is a device for deriving welding work conditions of a welded portion to be welded by a semi-automatic welding machine, and is a skill of a welding operator who performs welding of the welded portion. A database in which data related to a plurality of welding operations corresponding to a plurality of skill levels is recorded, an input unit to which input information including the skill level is input, and the skill level input to the input unit A derivation unit that obtains the data from the database and derives the welding work condition.
 このように、本発明の溶接作業条件導出装置のデータベースには、溶接作業者の技量を示す複数の技量レベルに対応する複数の溶接作業に関するデータが記録されている。このようなデータベースを備えた溶接作業条件導出装置によって溶接作業条件を導出して特定の溶接部を溶接するには、まず、入力部に対して当該溶接部の溶接を行う溶接作業者の溶接の技量を示す技量レベルを含む入力情報を入力する。 Thus, in the database of the welding work condition deriving device of the present invention, data relating to a plurality of welding operations corresponding to a plurality of skill levels indicating the skill of the welding operator is recorded. In order to derive a welding work condition and weld a specific welded portion by using a welding work condition deriving device having such a database, first, a welding operator who performs welding of the welded portion to the input portion is welded. Input information including a skill level indicating the skill is input.
 入力部に技量レベルを含む入力情報が入力されると、導出部は、データベースに記録された複数の技量レベルに対応する複数の溶接作業に関するデータの中から、入力された技量レベルに対応するデータを取得して溶接作業条件を導出する。これにより、熟練した技量レベルの高い溶接作業者や、経験が浅く技量レベルの低い溶接作業者に対し、各自の技量レベルに対応した溶接作業条件を導出することができる。 When input information including a skill level is input to the input unit, the derivation unit selects data corresponding to the input skill level from among data related to a plurality of welding operations corresponding to the plurality of skill levels recorded in the database. To obtain welding work conditions. Thereby, it is possible to derive welding work conditions corresponding to each skill level for welding workers having a high skill level and welding workers having a low experience level and a low level of experience.
 本発明によれば、溶接作業者がそれぞれの技量に適合した溶接作業条件で溶接作業を行うことが可能な溶接作業条件導出装置ならびに、それを備えた溶接電源装置および溶接技術習得装置を提供することができる。 According to the present invention, there is provided a welding work condition deriving device that enables a welding operator to perform a welding work under welding work conditions suitable for each skill, a welding power supply device and a welding technique learning device provided with the welding work condition deriving device. be able to.
半自動溶接機の概略構成の一例を示すブロック図。The block diagram which shows an example of schematic structure of a semi-automatic welding machine. 図1の溶接電源装置(溶接技術習得装置)の概略構成を示すブロック図。The block diagram which shows schematic structure of the welding power supply device (welding technique acquisition apparatus) of FIG. 図1の溶接電源装置の出力特性の一例を示すグラフ。The graph which shows an example of the output characteristic of the welding power supply device of FIG. 図1の溶接電源装置の設定溶接電流と出力溶接電流との関係を示すグラフ。The graph which shows the relationship between the setting welding current of the welding power supply device of FIG. 1, and an output welding current. 図1の半自動溶接機の溶接速度とワイヤ突出し長さとの関係を示すグラフ。The graph which shows the relationship between the welding speed and wire protrusion length of the semi-automatic welding machine of FIG. 図1の表示部の表示画面の一例を示す画像図。The image figure which shows an example of the display screen of the display part of FIG. 図6の図解領域に表示される溶接部の仕様の一例を示す画像図。The image figure which shows an example of the specification of the welding part displayed on the illustration area | region of FIG. 図6の図解領域に表示される溶接部の仕様の一例を示す画像図。The image figure which shows an example of the specification of the welding part displayed on the illustration area | region of FIG. 図6の図解領域に表示される動作モデルの一例を示す画像図。The image figure which shows an example of the behavior model displayed on the illustration area | region of FIG. 図1の溶接作業条件導出装置による溶出作業条件導出方法を示すフロー図。The flowchart which shows the elution work condition derivation | leading-out method by the welding work condition derivation | leading-out apparatus of FIG.
 以下、図面を参照して本発明の溶接作業条件導出装置ならびにそれを備えた溶接電源装置および溶接技術習得装置の実施の形態の一例を説明する。 Hereinafter, an example of an embodiment of a welding operation condition deriving device of the present invention, a welding power source device and a welding technology learning device having the same will be described with reference to the drawings.
 図1は、本実施の形態に係る溶接電源装置20(溶接技術習得装置30)を備えた半自動溶接機100の概略構成を示すブロック図である。半自動溶接機100は、たとえば、溶接作業を行う溶接作業者によって使用され、溶接が行われる溶接対象物Oの溶接個所である溶接部WPに、半自動アーク溶接を行うための機器である。半自動溶接機100は、たとえば、溶接トーチ10と、溶接電源装置20(溶接技術習得装置30)と、送給装置40とを備えている。 FIG. 1 is a block diagram showing a schematic configuration of a semi-automatic welding machine 100 provided with a welding power source device 20 (welding technique learning device 30) according to the present embodiment. The semi-automatic welding machine 100 is an apparatus for performing semi-automatic arc welding on, for example, a welding portion WP that is a welding portion of a welding object O to be welded, which is used by a welding operator who performs a welding operation. The semi-automatic welding machine 100 includes, for example, a welding torch 10, a welding power source device 20 (welding technique learning device 30), and a feeding device 40.
 溶接トーチ10は、たとえば、溶接ガンと称される場合もあり、溶接作業者が手に持って使用する部分である。溶接トーチ10の先端の筒状の溶接ノズル11は、図示を省略するが、たとえば、溶接材のワイヤWと溶接トーチ10との間を電気的に絶縁する絶縁体と、ワイヤWに接触してワイヤWに電流を流すコンタクトチップと、シールドガスSGを噴出させる噴出孔とを有している。溶接トーチ10は、使用前の状態で、溶接ノズル11の内部の絶縁体から、ワイヤWをコンタクトチップ距離で突出させている。 The welding torch 10 may be referred to as a welding gun, for example, and is a part that is used by a welding operator. Although the cylindrical welding nozzle 11 at the tip of the welding torch 10 is not illustrated, for example, an insulator that electrically insulates the welding material wire W and the welding torch 10 from contact with the wire W. It has a contact tip for passing an electric current through the wire W and an ejection hole for ejecting the shield gas SG. The welding torch 10 projects the wire W from the insulator inside the welding nozzle 11 by a contact tip distance before use.
 本実施形態の溶接電源装置20は、半自動溶接機100用の電源装置であり、溶接トーチ10、送給装置40、および溶接対象物Oに電力を供給する。また、溶接電源装置20は、たとえば、シールドガスSGが充填された図示を省略するボンベ等に接続されている。溶接電源装置20は、たとえば、溶接トーチ10や送給装置40を制御して、溶接材のワイヤWの供給速度やシールドガスSGの供給量を制御する。詳細については後述するが、本実施形態の溶接電源装置20は、溶接作業条件導出装置50を備えることを特徴とし、溶接作業者に対する溶接作業の習得および技量の向上を支援する溶接技術習得装置30としての機能も備えている。 The welding power supply device 20 of the present embodiment is a power supply device for the semi-automatic welding machine 100 and supplies power to the welding torch 10, the feeding device 40, and the welding object O. Moreover, the welding power supply apparatus 20 is connected to the cylinder etc. which abbreviate | omitted illustration with which the shielding gas SG was filled, for example. The welding power supply device 20 controls, for example, the welding torch 10 and the feeding device 40 to control the supply speed of the welding material wire W and the supply amount of the shield gas SG. Although the details will be described later, the welding power supply device 20 of the present embodiment includes a welding work condition deriving device 50, and is a welding technique learning device 30 that supports the welding work and the skill improvement for the welding worker. It also has a function as.
 送給装置40は、たとえば、円筒状のボビン41にコイル状に巻回された溶接材のワイヤWを引き出し、溶接トーチ10と送給装置40とを接続するホース42を通して、ワイヤWを溶接トーチ10に送給する。ワイヤWは、たとえば、溶接対象物Oと同一の金属を主成分とした溶接ワイヤである。また、送給装置40は、溶接電源装置20から供給されたシールドガスSGを、ワイヤWの送給に用いられるホース42を通して溶接トーチ10に供給する。 For example, the feeding device 40 pulls out a wire W of a welding material wound in a coil shape on a cylindrical bobbin 41 and passes the wire W through a hose 42 connecting the welding torch 10 and the feeding device 40 to the welding torch. 10 is sent. The wire W is, for example, a welding wire whose main component is the same metal as the welding object O. Further, the feeding device 40 supplies the shield gas SG supplied from the welding power source device 20 to the welding torch 10 through the hose 42 used for feeding the wire W.
 図2は、図1に示す溶接電源装置20の概略構成を示すブロック図である。本実施形態の溶接電源装置20は、主に、溶接作業条件導出装置50と、出力制御部21と、表示部22とを備えている。本実施形態の溶接作業条件導出装置50は、データベース51と、入力部52と、導出部53とを備えている。 FIG. 2 is a block diagram showing a schematic configuration of the welding power source apparatus 20 shown in FIG. The welding power supply device 20 of the present embodiment mainly includes a welding work condition deriving device 50, an output control unit 21, and a display unit 22. The welding work condition deriving device 50 of this embodiment includes a database 51, an input unit 52, and a deriving unit 53.
 データベース51は、たとえば、メモリやハードディスクなどの記憶装置によって構成され、溶接部WPの溶接を行う溶接作業者の技量を示す複数の技量レベルに対応する複数の溶接作業に関するデータが記録されている。 The database 51 is configured by, for example, a storage device such as a memory or a hard disk, and records data related to a plurality of welding operations corresponding to a plurality of skill levels indicating the skill of a welding operator who performs welding of the welded portion WP.
 技量レベルは、たとえば、JIS(Japanese Industrial Standards:日本工業規格)、WES(Welding Engineering Society:溶接協会)などの検定試験規格に基づく資格の級別であってもよい。また、技量レベルは、たとえば、溶接部WPの品質や溶接に要する時間など、溶接作業者の技量を評価するための任意の評価項目に基づいて設定された等級であってもよい。すなわち、高い技量レベルは、溶接作業者の技量が高いことを示し、低い技量レベルは、溶接作業者の技量が低いことを示す。 The skill level may be, for example, a qualification class based on a certification test standard such as JIS (Japanese Industrial Standards) or WES (Welding Engineering Engineering Society). The skill level may be a grade set based on an arbitrary evaluation item for evaluating the skill of the welding operator, such as the quality of the welded portion WP and the time required for welding. That is, a high skill level indicates that the skill of the welding worker is high, and a low skill level indicates that the skill of the welding worker is low.
 データベース51に記録された複数の溶接作業に関するデータは、たとえば、溶接法、溶加材、シールドガス、溶接電源、およびトーチ運棒動作の各種のデータのうち、一種以上のデータを含むことができる。ここで、溶接法は、たとえば、マグ溶接、ティグ溶接とマグ溶接との組合せ、またはセルフシールドアーク溶接などの溶接法の種別である。溶加材は、たとえば、溶接トーチ10に送給されるワイヤWの種類である。 The data related to the plurality of welding operations recorded in the database 51 can include, for example, one or more types of data among various types of data of the welding method, filler metal, shield gas, welding power source, and torch rod operation. . Here, the welding method is, for example, a type of welding method such as mag welding, a combination of TIG welding and MAG welding, or self-shielded arc welding. The filler material is, for example, the type of wire W fed to the welding torch 10.
 シールドガスは、たとえば、アルゴンや炭酸ガスなどのシールドガスSGの種別である。溶接電源は、たとえば、溶接時に溶接電源装置20において設定される設定溶接電流、溶接時に溶加材であるワイヤWおよび溶接対象物Oである母材に流れる出力溶接電流、溶接部WPにかかる溶接電圧などを含む。トーチ運棒動作は、たとえば、溶接速度、ワイヤ突出し長さ、トーチ角度などを含む。 Shield gas is a type of shield gas SG such as argon or carbon dioxide. The welding power source is, for example, a set welding current set in the welding power source device 20 at the time of welding, an output welding current flowing through the base metal that is the wire W and the welding object O during welding, and welding applied to the welded portion WP. Including voltage. The torch bar movement includes, for example, welding speed, wire protrusion length, torch angle, and the like.
 入力部52は、たとえば、キーボード、タッチパネル、音声認識などにより、溶接作業者の技量レベルを含む入力情報を入力可能に構成されている。入力部52に入力される入力情報は、溶接作業者の技量レベルの他に、溶接作業者によって溶接される溶接部WPの仕様を含むことができる。溶接部WPの仕様は、たとえば、溶接対象物Oである母材の材料、継手形状、開先形状、およびビード形状を含む。また、溶接部WPの仕様は、母材の厚さ、溶接姿勢、パスの順序、裏あての有無、ワイヤ径、開先角度、ルート間隔、ルート面の寸法、シールドガスの流量などを含んでもよい。なお、溶接姿勢は、たとえば、下向(F)、立向(V)、横向(H)などの種別である。 The input unit 52 is configured to be able to input input information including a welding worker's skill level by using, for example, a keyboard, a touch panel, and voice recognition. The input information input to the input unit 52 can include the specification of the welded part WP to be welded by the welding operator in addition to the skill level of the welding operator. The specifications of the welded part WP include, for example, the material of the base material that is the welding object O, the joint shape, the groove shape, and the bead shape. In addition, the specifications of the welded portion WP may include the thickness of the base metal, the welding posture, the order of passes, the presence or absence of a backing, the wire diameter, groove angle, route interval, route surface dimensions, shield gas flow rate, etc. Good. Note that the welding posture is, for example, a type such as downward (F), vertical (V), or horizontal (H).
 入力部52に入力される入力情報は、たとえば、技量レベルに加え、または、技量レベルおよび溶接部WPの仕様に加えて、溶接作業者に関する作業者情報を含んでもよい。作業者情報は、たとえば、溶接作業者の身長または腕の長さ、利き腕などを含むことができる。また、作業者情報は、たとえば、氏名、所属、国籍、性別、年齢、個人識別番号、その他の溶接作業者の個人情報を含んでもよい。 The input information input to the input unit 52 may include, for example, worker information related to the welding operator in addition to the skill level or in addition to the skill level and the specification of the welding part WP. The worker information can include, for example, the height or arm length of the welding worker, the dominant arm, and the like. The worker information may include, for example, name, affiliation, nationality, gender, age, personal identification number, and other personal information of the welding worker.
 導出部53は、たとえば、中央演算処理装置などの演算部、メモリやハードディスクなどの記憶部、および記憶部に記録されたデータやプログラムなどによって構成される。導出部53は、入力部52に入力された技量レベルに対応する溶接作業に関するデータをデータベース51から取得して溶接作業条件を導出する。導出部53によって導出される溶接作業条件は、たとえば、データベース51に記録された溶接作業に関するデータと同様に、溶接法、溶加材、シールドガス、溶接電源、トーチ運棒動作、トーチ角度、およびワイヤ突出し長さの各種の条件のうち、一種以上の条件を含むことができる。 The derivation unit 53 includes, for example, a calculation unit such as a central processing unit, a storage unit such as a memory and a hard disk, and data and programs recorded in the storage unit. The deriving unit 53 obtains data relating to the welding operation corresponding to the skill level input to the input unit 52 from the database 51 and derives the welding operation condition. The welding work conditions derived by the derivation unit 53 are, for example, the welding method, filler metal, shield gas, welding power source, torch rod operation, torch angle, and the like, as with the data relating to the welding work recorded in the database 51. One or more conditions may be included among various conditions of the wire protrusion length.
 導出部53は、入力部52に入力される入力情報が溶接部WPの仕様を含む場合や、データベース51から取得する溶接作業に関するデータが溶接部WPの仕様を含む場合に、溶接部WPの仕様とデータベース51から取得したデータとに基づいて、溶接作業条件を導出することができる。具体的には、導出部53は、たとえば、母材の厚さ、溶接姿勢、パスの順序、裏あての有無、ワイヤ径、開先角度、ルート間隔、ルート面の寸法、シールドガスの流量などの溶接部WPの仕様に基づいて、溶接法、溶加材、シールドガス、溶接電源、トーチ運棒動作、トーチ角度、溶接速度およびワイヤ突出し長さなどの溶接作業条件を導出することができる。 The derivation unit 53 uses the specifications of the welded portion WP when the input information input to the input unit 52 includes the specification of the welded portion WP, or when the data regarding the welding operation acquired from the database 51 includes the specification of the welded portion WP. And the data acquired from the database 51, the welding work conditions can be derived. Specifically, the derivation unit 53 includes, for example, the thickness of the base material, the welding posture, the pass order, the presence / absence of the backing, the wire diameter, the groove angle, the route interval, the route surface dimension, the flow rate of the shield gas, and the like. Based on the specifications of the welded portion WP, welding work conditions such as a welding method, filler metal, shield gas, welding power source, torch rod operation, torch angle, welding speed, and wire protruding length can be derived.
 導出部53は、入力部52に入力される入力情報が溶接作業者に関する作業者情報を含む場合や、データベース51から取得する溶接作業に関するデータが作業者情報を含む場合に、作業者情報とデータベース51から取得したデータとに基づいて溶接作業条件を導出することができる。具体的には、導出部53は、たとえば、溶接作業者の身長または腕の長さ、利き腕、その他の個人情報に基づいて、トーチ運棒動作などの溶接作業条件を導出することができる。 When the input information input to the input unit 52 includes worker information related to the welding worker, or when the data related to the welding operation acquired from the database 51 includes worker information, the derivation unit 53 includes the worker information and the database. Based on the data acquired from 51, welding work conditions can be derived. Specifically, the deriving unit 53 can derive welding work conditions such as a torch bar movement based on, for example, the height or arm length of the welding operator, the dominant arm, and other personal information.
 導出部53は、入力情報が溶接作業者の身長または腕の長さを含む場合や、データベース51から取得する溶接作業に関するデータが溶接作業者の身長または腕の長さを含む場合に、その溶接作業者の身長または腕の長さとデータベース51から取得した溶接作業に関するデータとに基づいて、溶接作業者の溶接時の動作モデルを算出してもよい。このような動作モデルは、たとえば、熟練した技量レベルの高い溶接技術者の動作を解析することによって作成することができる。動作モデルは、たとえば、溶接作業者の腕と手首の動きをモデル化した動作モデルを含むことができる。 When the input information includes the height or arm length of the welding operator, or when the data regarding the welding operation acquired from the database 51 includes the height or arm length of the welding operator, the derivation unit 53 Based on the height or arm length of the worker and the data relating to the welding operation acquired from the database 51, an operation model of the welding operator during welding may be calculated. Such an operation model can be created, for example, by analyzing the operation of a skilled welding engineer with a high skill level. The motion model can include, for example, a motion model that models the movements of the welding operator's arm and wrist.
 導出部53は、たとえば、データベース51から取得した溶接作業に関するデータやその他の情報に加えて、半自動溶接機100の仕様に基づいて溶接作業条件を導出してもよい。半自動溶接機100の仕様は、たとえば、溶接時に溶接電源装置20において設定される溶接電圧を含み、設定溶接電流またはワイヤ送給速度、およびトーチ径などを含むことができる。 The deriving unit 53 may derive the welding operation condition based on the specifications of the semi-automatic welding machine 100 in addition to the data related to the welding operation acquired from the database 51 and other information, for example. The specifications of the semi-automatic welder 100 include, for example, a welding voltage set in the welding power source device 20 during welding, and can include a set welding current or a wire feed speed, a torch diameter, and the like.
 図3は、溶接電源装置20の出力特性の一例を示すグラフであり、半自動溶接機100による溶接時に溶接電源装置20において設定される設定溶接電流[A]とワイヤ送給速度[m/min]との関係を示している。ワイヤ送給速度は、設定溶接電流に応じて決定される。すなわち、設定溶接電流とワイヤ送給速度は、たとえば、一方が増加すれば他方も増加し、一方が減少すれば他方も減少する正比例の関係にある。 FIG. 3 is a graph showing an example of the output characteristics of the welding power source device 20, and the set welding current [A] and the wire feed speed [m / min] set in the welding power source device 20 during welding by the semi-automatic welding machine 100. Shows the relationship. The wire feed speed is determined according to the set welding current. That is, for example, the set welding current and the wire feed speed have a direct proportional relationship in which one increases when the other increases and the other decreases when one decreases.
 導出部53は、たとえば、図3に示すような半自動溶接機100の仕様である溶接電源装置20の設定溶接電流とワイヤ送給速度との関係に基づいて、トーチ運棒動作に含まれる溶接速度、ワイヤ突出し長さなどの溶接作業条件を導出することができる。 The derivation unit 53 is, for example, based on the relationship between the set welding current of the welding power source apparatus 20 and the wire feed speed, which is the specification of the semi-automatic welding machine 100 as shown in FIG. It is possible to derive welding operation conditions such as the wire protruding length.
 図4は、半自動溶接機100による溶接時に、溶接電源装置20において設定される設定溶接電流[A]と、ワイヤWおよび溶接対象物Oである母材に流れる出力溶接電流[A]との関係を示すグラフである。半自動溶接機100による溶接時に溶接電源装置20において設定される設定溶接電流が一定であっても、ワイヤWおよび溶接対象物Oである母材に流れる出力溶接電流は、ワイヤ突出し長さの変動などによる電気抵抗の変動によって変動する。 FIG. 4 shows the relationship between the set welding current [A] set in the welding power source device 20 and the output welding current [A] flowing through the base material that is the wire W and the welding object O during welding by the semi-automatic welding machine 100. It is a graph which shows. Even if the set welding current set in the welding power source device 20 at the time of welding by the semi-automatic welding machine 100 is constant, the output welding current flowing through the wire W and the base material that is the object to be welded O varies in the protruding length of the wire, etc. Fluctuates due to fluctuations in electrical resistance.
 すなわち、ワイヤ突出し長さが増加すれば、ワイヤWの電気抵抗が増加して出力溶接電流は減少する。また、ワイヤ突出し長さが減少すれば、ワイヤWの電気抵抗が減少して出力溶接電流は増加する。ワイヤ突出し長さは、溶接作業者が溶接トーチ10の先端の溶接ノズル11と溶接対象物Oである母材との距離を増減させることによって、増減させることができる。 That is, if the wire protrusion length increases, the electrical resistance of the wire W increases and the output welding current decreases. Moreover, if the wire protrusion length decreases, the electrical resistance of the wire W decreases and the output welding current increases. The wire protruding length can be increased or decreased by increasing or decreasing the distance between the welding nozzle 11 at the tip of the welding torch 10 and the base material that is the welding object O by the welding operator.
 導出部53は、たとえば、図4に示すような半自動溶接機100の仕様である溶接電源装置20の設定溶接電流と、ワイヤWおよび母材に流れる出力溶接電流との関係に基づいて、溶接作業条件を導出することができる。具体的には、導出部53は、たとえば、図4に示すように、設定溶接電流の値に応じた適切な出力溶接電流の値の範囲R1を設定し、トーチ運棒動作に含まれるワイヤ突出し長さなどの溶接作業条件を導出することができる。 The derivation unit 53 performs, for example, a welding operation based on the relationship between the set welding current of the welding power source device 20 that is the specification of the semi-automatic welding machine 100 as shown in FIG. 4 and the output welding current flowing in the wire W and the base material. A condition can be derived. Specifically, for example, as shown in FIG. 4, the derivation unit 53 sets an appropriate output welding current value range R1 corresponding to the set welding current value, so that the wire protrusion included in the torch carrying rod operation is set. Welding work conditions such as length can be derived.
 図5は、半自動溶接機100による溶接速度[cm/min]とワイヤ突出し長さ[mm]との関係の一例を示すグラフである。たとえば、溶接対象物Oの溶接部WPに対する入熱量は、溶接部WPに流れる出力溶接電流と、溶接部WPにかかる溶接電圧と、溶接トーチ10の先端の移動速度に関係する溶接速度によって定まる。溶接部WPの品質を管理するためには、入熱量を管理する必要がある。 FIG. 5 is a graph showing an example of the relationship between the welding speed [cm / min] by the semi-automatic welding machine 100 and the wire protruding length [mm]. For example, the amount of heat input to the welded part WP of the welding object O is determined by the welding speed related to the output welding current flowing through the welded part WP, the welding voltage applied to the welded part WP, and the moving speed of the tip of the welding torch 10. In order to manage the quality of the weld WP, it is necessary to manage the heat input.
 導出部53は、たとえば、導出した設定溶接電流に応じて、図5に示すように、最適な溶接速度とワイヤ突出し長さを溶接作業条件の推奨条件C1として導出することができる。また、導出部53は、たとえば、導出した設定溶接電流に応じて、図5に示すように、溶接速度とワイヤ突出し長さの許容範囲を、溶接作業条件の許容範囲R2として導出することができる。 The derivation unit 53 can derive the optimum welding speed and the wire protrusion length as the recommended welding condition C1 as shown in FIG. 5 according to the derived set welding current, for example. Further, for example, as shown in FIG. 5, the deriving unit 53 can derive the allowable range of the welding speed and the wire protruding length as the allowable range R2 of the welding work condition according to the derived set welding current. .
 導出部53は、たとえば、溶接技術者の技量レベルに応じて、溶接速度を設定することができる。具体的には、導出部53は、たとえば、溶接技術者の技量レベルが所定のレベル以下である場合に、図5に示す溶接作業条件の許容範囲R2内で、推奨条件C1およびそれよりも低い溶接速度の範囲を溶接作業条件として導出することができる。一方、導出部53は、たとえば、溶接技術者の技量レベルが所定のレベル以上である場合に、図5に示す溶接作業条件の許容範囲R2内で、推奨条件およびそれよりも高い溶接速度の範囲を溶接作業条件として導出することができる。 The derivation unit 53 can set the welding speed according to the skill level of the welding engineer, for example. Specifically, for example, when the skill level of the welding engineer is equal to or lower than a predetermined level, the derivation unit 53 is within the allowable range R2 of the welding work condition shown in FIG. 5 and is lower than the recommended condition C1. The range of welding speed can be derived as welding work conditions. On the other hand, for example, when the skill level of the welding engineer is equal to or higher than a predetermined level, the derivation unit 53 is within the allowable range R2 of the welding work condition shown in FIG. Can be derived as welding work conditions.
 図1および図2示す例において、溶接電源装置20は、前述のように、溶接作業条件導出装置50に加えて、出力制御部21と表示部22とを備えている。なお、溶接電源装置20において、表示部22は任意の構成であり、省略することも可能である。 1 and 2, the welding power source device 20 includes the output control unit 21 and the display unit 22 in addition to the welding work condition deriving device 50 as described above. In the welding power supply device 20, the display unit 22 has an arbitrary configuration and can be omitted.
 出力制御部21は、たとえば、溶接作業条件導出装置50によって導出された溶接作業条件に応じて、溶接電源装置20によって出力する電力、シールドガスSG、および画像信号などを制御する。出力制御部21は、溶接電源装置20を制御して、たとえばケーブル23,24,43を介して溶接トーチ10および溶接対象物Oに供給される電力を制御する。また、出力制御部21は、溶接電源装置20を制御して、たとえばホース25,42を介して溶接トーチ10に供給されるシールドガスSGを制御する。また、出力制御部21は、信号線を介して接続された表示部22に、画像信号を出力する。 The output control unit 21 controls, for example, the power output by the welding power supply device 20, the shield gas SG, and the image signal in accordance with the welding work condition derived by the welding work condition deriving device 50. The output control unit 21 controls the welding power source device 20 to control the power supplied to the welding torch 10 and the welding object O via the cables 23, 24, 43, for example. In addition, the output control unit 21 controls the welding power source device 20 to control the shield gas SG supplied to the welding torch 10 via the hoses 25 and 42, for example. The output control unit 21 outputs an image signal to the display unit 22 connected via a signal line.
 なお、溶接作業条件導出装置50、溶接電源装置20、または溶接技術習得装置30が、図示を省略する音声出力部を備える場合に、出力制御部21は、音声出力部に対して信号線を介して音声信号を出力するようにしてもよい。また、溶接電源装置20または溶接技術習得装置30が表示部22を備えるのではなく、溶接作業条件導出装置50が表示部22を備えるようにしてもよい。 When the welding work condition deriving device 50, the welding power source device 20, or the welding technique learning device 30 includes an audio output unit (not shown), the output control unit 21 transmits a signal line to the audio output unit. An audio signal may be output. Further, the welding power source device 20 or the welding technique learning device 30 may not include the display unit 22, but the welding work condition deriving device 50 may include the display unit 22.
 すなわち、本実施形態の溶接作業条件導出装置50は、導出部53によって導出された溶接作業条件を表示する表示部22を備えていてもよい。この場合、信号線を介して導出部53と表示部22を接続し、導出部53から表示部22へ画像信号を出力することができる。表示部22は、たとえば、液晶表示装置や有機EL表示装置などの画像表示装置によって構成することができる。なお、表示部22は、溶接作業条件導出装置50の入力部52として、画面にタッチパネルを備えていてもよい。 That is, the welding work condition deriving device 50 according to the present embodiment may include the display unit 22 that displays the welding work conditions derived by the deriving unit 53. In this case, the derivation unit 53 and the display unit 22 can be connected via a signal line, and an image signal can be output from the derivation unit 53 to the display unit 22. The display unit 22 can be configured by an image display device such as a liquid crystal display device or an organic EL display device, for example. The display unit 22 may include a touch panel on the screen as the input unit 52 of the welding work condition deriving device 50.
 図6は、表示部22の表示画面22aの一例を示す画像図である。表示部22は、たとえば、表示画面22aの一部に、タッチパネルによる入力部52を備えている。表示部22は、入力部52の入力項目として、たとえば、母材の材質52a、継手形状52b、板組合せ52c、開先形状52d、ビード形状52eなどの溶接部WPの仕様に加えて、溶接作業者の技量レベルを入力するための技量レベル52fの項目を有している。 FIG. 6 is an image diagram illustrating an example of the display screen 22 a of the display unit 22. The display part 22 is provided with the input part 52 by a touch panel in a part of display screen 22a, for example. In addition to the specifications of the welded portion WP such as the base material 52a, the joint shape 52b, the plate combination 52c, the groove shape 52d, the bead shape 52e, etc. Has an item of skill level 52f for inputting the skill level of the person.
 図6に示す例において、表示部22の表示画面22aは、たとえば、入力部52に隣接して、溶接作業条件導出装置50によって導出された溶接作業条件を表示するための条件表示領域22bを有している。条件表示領域22bは、たとえば、最上部に図解領域22cを有し、その下方に項目表示領域22dを有している。図解領域22cは、たとえば、溶接部WPの仕様、条件範囲、動作などを示す図やグラフを切り替えて表示するようにしてもよいし、これらを並べて表示するようにしてもよい。項目表示領域22dは、たとえば、溶接法22e、溶加材22f、シールドガス22g、溶接電源22h、トーチ運棒動作22iなど、溶接作業条件の各項目を並べて表示することができる。 In the example shown in FIG. 6, the display screen 22 a of the display unit 22 has a condition display region 22 b for displaying the welding work condition derived by the welding work condition deriving device 50, for example, adjacent to the input unit 52. is doing. The condition display area 22b has, for example, an illustrated area 22c at the top and an item display area 22d below it. In the illustrated region 22c, for example, a diagram or a graph showing the specification, condition range, operation, and the like of the welded portion WP may be switched and displayed, or these may be displayed side by side. In the item display area 22d, for example, items of welding work conditions such as a welding method 22e, a filler material 22f, a shield gas 22g, a welding power source 22h, and a torch rod operation 22i can be displayed side by side.
 図7および図8は、図6に示す表示部22の図解領域22cに表示される溶接部WPの仕様の一例を示す画像図である。表示部22は、図解領域22cに、溶接部WPの仕様として、たとえば、T継手や突合せ継手などの溶接継手、トーチ径D1、ワイヤ突出し長さL1、継手形状寸法、母材M1,M2の板厚T1,T2、およびトーチ角度θなどを図示することができる。継手形状寸法は、たとえば、開先角度α、突合部寸法R、ルート間隔Gなどを含む。ワイヤ突出し長さL1は、初期状態では、コンタクトチップ距離である。また、図解領域22cは、溶接部WPの仕様として、溶接部WPの溶け込み、ビード形状などを図示してもよい。 7 and 8 are image diagrams showing an example of the specifications of the welded portion WP displayed in the illustrated region 22c of the display unit 22 shown in FIG. In the illustrated area 22c, the display unit 22 includes, for example, a welded joint WP such as a welded joint such as a T joint or a butt joint, a torch diameter D1, a wire protruding length L1, a joint shape dimension, and a base material M1, M2 plate. Thicknesses T1, T2, and torch angle θ can be illustrated. The joint shape dimension includes, for example, a groove angle α, a butt portion dimension R, a route interval G, and the like. The wire protruding length L1 is the contact tip distance in the initial state. Further, the illustrated region 22c may illustrate the penetration of the welded portion WP, the bead shape, or the like as the specification of the welded portion WP.
 図7に示すように、図解領域22cは、たとえば、溶接部WPの仕様に含まれる溶接継手がT継手である場合に、トーチ径D1などの半自動溶接機100の仕様に基づいて導出部53によって導出された溶接部WPの溶接に適したトーチ角度θとワイヤ突出し長さL1を図示することができる。また、図8に示すように、図解領域22cは、たとえば、溶接部WPの仕様に含まれる溶接継手が突合せ継手である場合に、開先角度α、突合部寸法R、突合せ方向の開先幅W1、板厚方向の開先幅W2、ワイヤ突出し長さL1、トーチ径D1などを図示することができる。 As shown in FIG. 7, for example, when the welded joint included in the specification of the welded portion WP is a T joint, the illustrated region 22c is formed by the derivation unit 53 based on the specifications of the semi-automatic welding machine 100 such as the torch diameter D1. The torch angle θ and the wire protruding length L1 suitable for welding the derived welded portion WP can be illustrated. Further, as shown in FIG. 8, the illustrated region 22 c is, for example, a groove angle α, a butt portion dimension R, and a groove width in the butt direction when the weld joint included in the specification of the weld portion WP is a butt joint. W1, the groove width W2 in the plate thickness direction, the wire protruding length L1, the torch diameter D1, and the like can be illustrated.
 図9は、図6に示す表示部22の図解領域22cに表示される動作である動作モデルの一例を示す画像図である。前述のように、導出部53によって溶接作業者の溶接時の動作モデルが算出される場合には、図9に示すように、表示部22の図解領域22cに溶接作業者の溶接時の動作モデルMを図示することができる。動作モデルMは、前述のように、たとえば、熟練した技量レベルの高い溶接技術者の動作を解析することによって作成することができる。動作モデルMは、たとえば、溶接作業者の腕と手首の動きをモデル化した動作モデルを含むことができる。 FIG. 9 is an image diagram illustrating an example of an operation model that is an operation displayed in the illustrated region 22c of the display unit 22 illustrated in FIG. As described above, when the operation model at the time of welding by the welding operator is calculated by the derivation unit 53, as shown in FIG. 9, the operation model at the time of welding by the welding operator is displayed in the illustrated region 22c of the display unit 22. M can be illustrated. As described above, the motion model M can be created, for example, by analyzing the motion of a skilled welding engineer with a high skill level. The motion model M can include, for example, a motion model that models the movements of the welding operator's arm and wrist.
 より具体的には、本実施形態の溶接電源装置20、溶接技術習得装置30、または溶接作業条件導出装置50は、たとえば図1に示すように、溶接作業者の溶接時の動作を測定して動作情報を取得する動作情報取得部60を備えることができる。また、溶接電源装置20、溶接技術習得装置30、または溶接作業条件導出装置50は、動作モデルMと動作情報との比較に基づく比較情報を算出する動作比較部70を備えることができる。動作比較部70は、たとえば、算出した比較情報を表示部22に表示させることができる。 More specifically, the welding power source device 20, the welding technique acquisition device 30, or the welding work condition derivation device 50 of the present embodiment measures the welding operation of the welding operator as shown in FIG. An operation information acquisition unit 60 that acquires operation information can be provided. In addition, the welding power supply device 20, the welding technique learning device 30, or the welding work condition derivation device 50 can include an operation comparison unit 70 that calculates comparison information based on a comparison between the operation model M and the operation information. For example, the operation comparison unit 70 can display the calculated comparison information on the display unit 22.
 動作情報取得部60は、特に限定されないが、たとえば、ビデオカメラや赤外線カメラなどの撮像装置、その撮像装置を用いたモーションキャプチャー装置や視線カメラ、または、超音波測定装置や慣性センサなどの各種のセンサを用いることができる。動作比較部70は、たとえば、前述の溶接作業条件導出装置50の導出部53と同様に、中央演算処理装置などの演算部、メモリやハードディスクなどの記憶部、および記憶部に記録されたデータやプログラムなどによって構成される。したがって、図2に示す導出部53に動作比較部70としての機能を付加してもよい。 The motion information acquisition unit 60 is not particularly limited, but for example, an imaging device such as a video camera or an infrared camera, a motion capture device or a line-of-sight camera using the imaging device, or various types of devices such as an ultrasonic measurement device or an inertial sensor. A sensor can be used. The operation comparison unit 70 is, for example, similar to the derivation unit 53 of the welding work condition derivation device 50 described above, a computation unit such as a central processing unit, a storage unit such as a memory or a hard disk, and data recorded in the storage unit. It consists of programs. Therefore, a function as the operation comparison unit 70 may be added to the derivation unit 53 illustrated in FIG.
 表示部22の図解領域22cに表示する動作モデルMは、図9に示すように、溶接作業者と溶接対象物Oとの位置関係、溶接作業者の身体の移動方向A1、溶接作業者による溶接部WPの確認方向A2などを示す構成とすることができる。溶接作業時の溶接作業者の動作が複雑になる場合は、たとえば、溶接部WPを溶接するときの溶接トーチ10の先端の軌跡を示すようにしてもよい。 As shown in FIG. 9, the motion model M displayed in the illustrated area 22c of the display unit 22 includes a positional relationship between the welding worker and the welding object O, a movement direction A1 of the welding worker's body, welding by the welding worker. The configuration may be such that the confirmation direction A2 of the part WP is shown. When the operation of the welding operator during the welding operation is complicated, for example, the locus of the tip of the welding torch 10 when welding the welded portion WP may be shown.
 動作モデルMの作成には、実際の溶接技術者の動作をトレースしたデータなどから位置や方向などの情報を抽出して用いることが考えられる。しかし、溶接対象物Oにおける溶接線の長さが短ければ腕の可動範囲内で作業が可能となるし、溶接線の長さが長くても直線状である場合など単調であれば、溶接トーチ10の移動方向はそれに平行な直線的な動作になる。このように、動作モデルMを作成して溶接作業者に示すのに必要な情報の程度は、溶接部WPの仕様によって異なる。そのため、動作モデルMを作成するのに必要なデータの取得方法は特に限定されず、適切に情報が得られる方法を選択してデータを取得すれば良い。 For creating the motion model M, it is conceivable to extract and use information such as position and direction from data obtained by tracing the actual welding engineer's motion. However, if the length of the weld line in the object to be welded O is short, the work can be performed within the movable range of the arm, and if it is monotonous such as a straight line even if the length of the weld line is long, the welding torch The direction of movement of 10 is a linear motion parallel to it. Thus, the degree of information necessary to create the motion model M and show it to the welding operator varies depending on the specifications of the welded portion WP. For this reason, the method for acquiring data necessary for creating the behavior model M is not particularly limited, and it is only necessary to select a method for obtaining information appropriately and acquire the data.
 以下、本実施形態の溶接作業条件導出装置50ならびにそれを備えた溶接電源装置20および溶接技術習得装置30の作用について説明する。図10は、図1および図2に示す溶接作業条件導出装置50による溶出作業条件導出方法S100を示すフロー図である。 Hereinafter, the operation of the welding work condition deriving device 50 of the present embodiment, the welding power source device 20 and the welding technology learning device 30 having the same will be described. FIG. 10 is a flowchart showing the elution work condition deriving method S100 by the welding work condition deriving device 50 shown in FIGS.
 前述のように、本実施形態の溶接作業条件導出装置50は、半自動溶接機100によって溶接される溶接部WPの溶接作業条件を導出する装置である。溶接作業条件導出装置50は、主にデータベース51と、入力部52と、導出部53と、を備える。データベース51は、溶接部WPの溶接を行う溶接作業者の技量を示す複数の技量レベルに対応する複数の溶接作業に関するデータが記録されている。入力部52は、溶接作業者の技量レベルを含む入力情報が入力される。導出部53は、入力部52に入力された技量レベルに対応するデータをデータベース51から取得して溶接作業条件を導出する。 As described above, the welding work condition deriving device 50 of the present embodiment is a device for deriving the welding work conditions of the welded portion WP to be welded by the semi-automatic welding machine 100. The welding work condition deriving device 50 mainly includes a database 51, an input unit 52, and a deriving unit 53. The database 51 stores data related to a plurality of welding operations corresponding to a plurality of skill levels indicating the skills of a welding operator who performs welding of the welded portion WP. The input unit 52 receives input information including the skill level of the welding operator. The deriving unit 53 obtains data corresponding to the skill level input to the input unit 52 from the database 51 and derives the welding work condition.
 このように、本実施形態の溶接作業条件導出装置50のデータベース51には、溶接作業者の技量を示す複数の技量レベルに対応する複数の溶接作業に関するデータが記録されている。このようなデータベース51を備えた溶接作業条件導出装置50によって溶接作業条件を導出して特定の溶接部WPを溶接するには、まず、図10に示すように、情報入力工程S10において、入力部52に対して溶接部WPの溶接を行う溶接作業者の溶接の技量を示す技量レベルを含む入力情報を入力する。 Thus, in the database 51 of the welding work condition deriving device 50 of the present embodiment, data related to a plurality of welding operations corresponding to a plurality of skill levels indicating the skill of the welding operator is recorded. In order to derive a welding operation condition by the welding operation condition deriving device 50 having such a database 51 and weld a specific welding portion WP, first, as shown in FIG. Input information including a skill level indicating a welding skill of a welding operator who welds the welded portion WP to 52 is input.
 情報入力工程S10において、入力部52に技量レベルを含む入力情報が入力されると、図10に示すように、溶接作業条件導出工程S20が行われる。溶接作業条件導出工程S20において、導出部53は、データベース51に記録された複数の技量レベルに対応する複数の溶接作業に関するデータの中から、入力された技量レベルに対応するデータを取得して溶接作業条件を導出する。これにより、熟練した技量レベルの高い溶接作業者や、経験が浅く技量レベルの低い溶接作業者に対し、各自の技量レベルに対応した溶接作業条件を導出することができる。 In the information input step S10, when input information including a skill level is input to the input unit 52, a welding work condition derivation step S20 is performed as shown in FIG. In the welding work condition derivation step S20, the derivation unit 53 acquires data corresponding to the input skill level from among a plurality of welding work data corresponding to the plurality of skill levels recorded in the database 51 to perform welding. Deriving work conditions. Thereby, it is possible to derive welding work conditions corresponding to each skill level for welding workers having a high skill level and welding workers having a low experience level and a low level of experience.
 溶接作業条件導出工程S20において、溶接作業条件を導出されると、図10に示すように、溶接作業条件出力工程S30が行われる。溶接作業条件出力工程S30において、導出部53は、たとえば、図2に示すように、出力制御部21を介して表示部22に導出した溶接作業条件を表示させることができる。 When the welding operation condition is derived in the welding operation condition deriving step S20, a welding operation condition output step S30 is performed as shown in FIG. In the welding operation condition output step S30, the derivation unit 53 can display the welding operation condition derived on the display unit 22 via the output control unit 21, for example, as shown in FIG.
 より具体的には、本実施形態の溶接作業条件導出装置50、溶接電源装置20、または溶接技術習得装置30は、前述のように、導出部53によって導出された溶接作業条件を表示する表示部22を備えることができる。これにより、表示部22によって溶接作業者に溶接作業条件を視覚的に表示することができ、溶接作業者による溶接作業条件の理解をより深め、溶接部WPの品質をより向上させることができる。 More specifically, the welding operation condition deriving device 50, the welding power source device 20, or the welding technique learning device 30 according to the present embodiment displays the welding operation condition derived by the deriving unit 53 as described above. 22 can be provided. Thereby, the welding operation condition can be visually displayed to the welding operator by the display unit 22, the understanding of the welding operation condition by the welding operator can be deepened, and the quality of the welding portion WP can be further improved.
 すなわち、表示部22によって、溶接部WPの仕様として図6から図8に示すような画像を表示したり、条件範囲として図5に示すようなグラフを表示したり、動作として図9に示すような動作モデルMを表示することができる。これにより、溶接作業者は、溶接対象物Oである母材と溶接トーチ10との位置関係を適切に把握し、溶接トーチ10の運棒動作で溶接速度やワイヤ突出し長さL1を適切に制御することができ、溶接部WPの入熱量が管理され、溶接品質が向上する。 That is, the display unit 22 displays images as shown in FIGS. 6 to 8 as the specifications of the welded portion WP, displays a graph as shown in FIG. 5 as the condition range, and shows the operation as shown in FIG. A simple operation model M can be displayed. As a result, the welding operator appropriately grasps the positional relationship between the base material that is the object to be welded O and the welding torch 10 and appropriately controls the welding speed and the wire protruding length L1 by the rod movement of the welding torch 10. It is possible to manage the heat input amount of the welded portion WP and improve the welding quality.
 したがって、本実施形態の溶接作業条件導出装置50によれば、溶接作業者がそれぞれの技量に適合した溶接作業条件で溶接作業を行うことが可能になる。なお、導出部53は、表示部22に溶接作業条件を表示させる代わりに、または、表示部22に溶接作業条件を表示させるのと併せて、音声出力部から溶接作業条件を音声や警告音などによって出力してもよい。この場合、音声出力部によって、たとえば、溶接作業条件が条件範囲内であることを音声で案内したり、溶接作業条件が条件範囲外である場合に警告音を発したりすることができる。 Therefore, according to the welding operation condition deriving device 50 of the present embodiment, it becomes possible for the welding operator to perform the welding operation under the welding operation conditions suitable for each skill. In addition, the derivation unit 53 displays the welding work condition on the display unit 22 or displays the welding work condition on the display unit 22, and displays the welding work condition on the display unit 22 by voice or warning sound. May be output. In this case, for example, the voice output unit can provide voice guidance that the welding work condition is within the condition range, or can emit a warning sound when the welding work condition is outside the condition range.
 また、本実施形態の溶接作業条件導出装置50は、前述のように、入力部52に入力される入力情報として、溶接作業者によって溶接される溶接部WPの仕様を含むことができる。この場合、導出部53は、前述のように、入力部52に入力された溶接部WPの仕様とデータベース51から取得したデータとに基づいて溶接作業条件を導出する。これにより、溶接作業者の技量レベルに加えて、溶接部WPの仕様に応じた溶接作業条件を導出することができる。すなわち、個々の溶接部WPの特性に合わせた溶接作業条件を導出することで、溶接部WPの品質をより向上させることができる。 Also, as described above, the welding work condition derivation device 50 of the present embodiment can include the specification of the welded portion WP to be welded by the welding operator as input information input to the input unit 52. In this case, the deriving unit 53 derives the welding work condition based on the specification of the welded portion WP input to the input unit 52 and the data acquired from the database 51 as described above. Thereby, in addition to the skill level of a welding operator, the welding operation condition according to the specification of the welding part WP can be derived | led-out. That is, the quality of the welded portion WP can be further improved by deriving the welding work conditions that match the characteristics of the individual welded portions WP.
 また、本実施形態の溶接作業条件導出装置50において、前述のように、入力部52に入力される溶接部WPの仕様が、母材の材料、継手形状、開先形状、およびビード形状を含む場合には、これらの情報を導出部53が導出する溶接作業条件に反映させることができる。これにより、個々の溶接部WPのより詳細な特性に合わせたより詳細な溶接作業条件を導出することができ、溶接作業者による溶接作業条件の理解を深め、溶接部WPの品質をより向上させることができる。 Further, in the welding work condition deriving device 50 of the present embodiment, as described above, the specifications of the welded portion WP input to the input unit 52 include the base material, joint shape, groove shape, and bead shape. In this case, these pieces of information can be reflected in the welding work conditions derived by the deriving unit 53. This makes it possible to derive more detailed welding work conditions that match the more detailed characteristics of each welded part WP, deepen the understanding of the welding work conditions by the welding operator, and further improve the quality of the welded part WP. Can do.
 また、本実施形態の溶接作業条件導出装置50は、前述のように、入力部52に入力される入力情報として、溶接作業者に関する作業者情報を含むことができる。この場合、導出部53は、入力部52に入力された作業者情報とデータベース51から取得したデータとに基づいて溶接作業条件を導出する。これにより、溶接作業者の技量レベルに加えて、作業者情報に応じた溶接作業条件を導出することができる。すなわち、溶接作業者の個人の特性に合わせた溶接作業条件を導出することで、溶接部WPの品質をより向上させることができる。 Also, the welding work condition deriving device 50 of the present embodiment can include worker information regarding the welding worker as input information input to the input unit 52 as described above. In this case, the deriving unit 53 derives the welding work condition based on the worker information input to the input unit 52 and the data acquired from the database 51. Thereby, in addition to the skill level of a welding operator, the welding operation conditions according to worker information can be derived. That is, the quality of the welded portion WP can be further improved by deriving welding work conditions that match the individual characteristics of the welder.
 また、本実施形態の溶接作業条件導出装置50において、前述のように、入力部52に入力される作業者情報が、溶接作業者の身長または腕の長さを含む場合には、これらの情報を導出部53が導出する溶接作業条件に反映させることができる。これにより、各々の溶接作業者の身体的特徴に合わせたより詳細な溶接作業条件を導出することができ、溶接作業者による溶接作業条件の履行をより円滑かつ容易にして、溶接部WPの品質をより向上させることができる。 Further, in the welding work condition deriving device 50 of the present embodiment, as described above, when the worker information input to the input unit 52 includes the height of the welding worker or the length of the arm, these pieces of information are included. Can be reflected in the welding work conditions derived by the deriving unit 53. As a result, it is possible to derive more detailed welding work conditions according to the physical characteristics of each welding worker, making the welding worker conditions more smoothly and easily performed, and improving the quality of the welded portion WP. It can be improved further.
 また、本実施形態の溶接作業条件導出装置50は、前述のように、導出部53によって、入力部52に入力された身長または腕の長さと、データベース51から取得したデータとに基づいて、溶接作業者の溶接時の動作モデルMを算出することができる。これにより、溶接作業者が、各々の身体的特徴に合わせて作成された動作モデルMを確認して、溶接作業条件をイメージすることができる。これにより、溶接作業者による溶接作業条件の理解をより深め、溶接部WPの品質をより向上させることができる。 Further, as described above, the welding work condition deriving device 50 according to the present embodiment is based on the height or arm length input to the input unit 52 by the deriving unit 53 and the data acquired from the database 51. An operation model M at the time of welding of the operator can be calculated. Thereby, the welding operator can confirm the operation model M created according to each physical characteristic, and can image a welding operation condition. Thereby, understanding of the welding operation conditions by the welding operator can be deepened, and the quality of the welded portion WP can be further improved.
 また、本実施形態の溶接作業条件導出装置50は、前述のように、導出部53によって算出された動作モデルMに溶接作業者の腕と手首の動きを含むことができる。これにより、経験の浅い技量レベルの低い溶接作業者であっても、導出部53によって導出された溶接作業条件を実現するための理想的な腕や手首の角度や動かし方をイメージして学習することができる。これにより、溶接作業者による溶接作業条件の理解をより深め、溶接部WPの品質をより向上させることができる。 Further, as described above, the welding work condition deriving device 50 according to the present embodiment can include the movement of the welding worker's arm and wrist in the motion model M calculated by the deriving unit 53. As a result, even a welding worker with a low skill level can learn with the image of the ideal arm and wrist angles and how to move them in order to realize the welding work conditions derived by the derivation unit 53. be able to. Thereby, understanding of the welding operation conditions by the welding operator can be deepened, and the quality of the welded portion WP can be further improved.
 また、本実施形態の溶接作業条件導出装置50は、前述のように、導出部53が、半自動溶接機100の仕様に基づいて溶接作業条件を導出することができる。この場合、導出部53は、半自動溶接機100の仕様と、データベース51から取得したデータとに基づいて溶接作業条件を導出する。これにより、溶接作業者の技量レベルに加えて、半自動溶接機100の仕様に応じた溶接作業条件を導出することができる。すなわち、半自動溶接機100の仕様に合わせた溶接作業条件を導出することで、溶接部WPの品質をより向上させることができる。 Also, in the welding work condition deriving device 50 according to the present embodiment, the deriving unit 53 can derive the welding work conditions based on the specifications of the semi-automatic welding machine 100 as described above. In this case, the deriving unit 53 derives the welding work condition based on the specifications of the semi-automatic welding machine 100 and the data acquired from the database 51. Thereby, in addition to the skill level of a welding operator, the welding operation conditions according to the specification of the semi-automatic welding machine 100 can be derived. That is, by deriving welding work conditions that match the specifications of the semi-automatic welding machine 100, the quality of the welded portion WP can be further improved.
 また、本実施形態の溶接作業条件導出装置50は、前述のように、導出部53が、半自動溶接機100の仕様に基づいて溶接作業条件を導出する場合に、半自動溶接機100の仕様が、溶接電圧と、設定溶接電流またはワイヤ送給速度と、を含むことができる。これにより、導出部53によって、半自動溶接機100の設定溶接電流、溶接電圧、およびワイヤ送給速度に合わせた溶接作業条件を導出することができ、溶接部WPの品質をより向上させることができる。 In addition, as described above, the welding work condition deriving device 50 according to the present embodiment has the specifications of the semi-automatic welding machine 100 when the deriving unit 53 derives the welding work conditions based on the specifications of the semi-automatic welding machine 100. The welding voltage and the set welding current or wire feed rate can be included. Thereby, by the derivation | leading-out part 53, the welding operation conditions matched with the setting welding current of the semi-automatic welding machine 100, the welding voltage, and the wire feed speed can be derived | led-out, and the quality of the welding part WP can be improved more. .
 また、本実施形態の溶接作業条件導出装置50は、前述のように、溶接作業者の溶接時の動作を測定して動作情報を取得する動作情報取得部と、算出された動作モデルMと取得された動作情報との比較に基づく比較情報を算出して表示部22に表示させる動作比較部と、を備えることができる。これにより、たとえば、算出された動作モデルMと取得された動作情報との間の差が所定範囲内である場合に、表示部22や音声出力部によって、溶接作業者に、正しい動作が行われていることを伝達することができる。また、算出された動作モデルMと取得された動作情報との間の差が所定範囲を超えた場合に、表示部22や音声出力部によって、溶接作業者に、動作の修正が必要であることを伝達することができる。 In addition, as described above, the welding work condition derivation device 50 according to the present embodiment measures the motion of the welding worker during welding and acquires the motion information, the calculated motion model M, and the acquisition. An operation comparison unit that calculates comparison information based on the comparison with the operation information thus performed and causes the display unit 22 to display the comparison information. Thereby, for example, when the difference between the calculated operation model M and the acquired operation information is within a predetermined range, the display unit 22 and the audio output unit perform correct operations on the welding operator. Can communicate. In addition, when the difference between the calculated motion model M and the acquired motion information exceeds a predetermined range, it is necessary for the welding operator to correct the motion by the display unit 22 or the audio output unit. Can be transmitted.
 また、本実施形態の溶接電源装置20および溶接技術習得装置30は、前述の溶接作業条件導出装置50を備えている。そのため、本実施形態の溶接電源装置20によれば、溶接作業者がそれぞれの技量に適合した溶接作業条件で溶接作業を行うことが可能になる。 Further, the welding power supply device 20 and the welding technique learning device 30 of the present embodiment include the welding work condition deriving device 50 described above. Therefore, according to the welding power supply apparatus 20 of this embodiment, it becomes possible for a welding worker to perform welding work on the welding work conditions suitable for each skill.
 また、本実施形態の溶接技術習得装置30によれば、経験が浅く技量レベルの低い溶接作業者に対し、各自の技量レベルに対応した溶接作業条件を導出し、経験を積ませることで、溶接作業者に溶接技術を習得させることができる。特に、前述のように、溶接作業条件導出装置50が図1から図9を用いて説明したような構成を備える場合には、溶接作業者が溶接作業条件をイメージすることができ、溶接作業者による溶接作業条件の理解をより深め、溶接技術の習得を促進させることができる。 Moreover, according to the welding technique acquisition apparatus 30 of this embodiment, welding work conditions corresponding to each skill level are derived for a welding worker having a low experience level and a low skill level, and by gaining experience, welding is performed. The operator can be trained in welding technology. In particular, as described above, when the welding work condition deriving device 50 has a configuration as described with reference to FIGS. 1 to 9, the welding worker can imagine the welding work conditions, and the welding worker Can deepen the understanding of welding work conditions, and promote the acquisition of welding techniques.
 以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。 The embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.
20  溶接電源装置
22  表示部
30  溶接技術習得装置
51  データベース
52  入力部
53  導出部
50  溶接作業条件導出装置
60  動作情報取得部
70  動作比較部
100 半自動溶接機
M   動作モデル
WP  溶接部
DESCRIPTION OF SYMBOLS 20 Welding power supply device 22 Display part 30 Welding technique acquisition apparatus 51 Database 52 Input part 53 Derivation part 50 Welding operation condition derivation apparatus 60 Operation information acquisition part 70 Operation comparison part 100 Semi-automatic welding machine M Operation model WP Welding part

Claims (13)

  1.  半自動溶接機によって溶接される溶接部の溶接作業条件を導出する装置であって、
     前記溶接部の溶接を行う溶接作業者の技量を示す複数の技量レベルに対応する複数の溶接作業に関するデータが記録されたデータベースと、
     前記技量レベルを含む入力情報が入力される入力部と、
     前記入力部に入力された前記技量レベルに対応する前記データを前記データベースから取得して前記溶接作業条件を導出する導出部と、を備えることを特徴とする溶接作業条件導出装置。
    An apparatus for deriving welding work conditions of a welded portion welded by a semi-automatic welding machine,
    A database in which data relating to a plurality of welding operations corresponding to a plurality of skill levels indicating the skill of a welding operator performing welding of the welded portion is recorded;
    An input unit to which input information including the skill level is input;
    A welding work condition derivation apparatus comprising: a derivation unit that obtains the data corresponding to the skill level input to the input unit from the database and derives the welding work condition.
  2.  前記入力情報は、前記溶接作業者によって溶接される溶接部の仕様を含み、
     前記導出部は、前記入力部に入力された前記溶接部の仕様と前記データとに基づいて前記溶接作業条件を導出することを特徴とする請求項1に記載の溶接作業条件導出装置。
    The input information includes a specification of a welded portion to be welded by the welding operator,
    The welding work condition deriving device according to claim 1, wherein the deriving unit derives the welding work condition based on the specification of the welded part and the data input to the input unit.
  3.  前記入力情報は、前記溶接作業者に関する作業者情報を含み、
     前記導出部は、前記入力部に入力された前記作業者情報と前記データとに基づいて前記溶接作業条件を導出することを特徴とする請求項1に記載の溶接作業条件導出装置。
    The input information includes worker information related to the welding worker,
    The welding work condition derivation device according to claim 1, wherein the derivation unit derives the welding work condition based on the worker information and the data input to the input unit.
  4.  前記導出部は、前記半自動溶接機の仕様に基づいて前記溶接作業条件を導出することを特徴とする請求項1に記載の溶接作業条件導出装置。 The welding work condition deriving device according to claim 1, wherein the deriving unit derives the welding work condition based on a specification of the semi-automatic welding machine.
  5.  前記溶接部の仕様は、母材の材料、継手形状、開先形状、およびビード形状を含むことを特徴とする請求項2に記載の溶接作業条件導出装置。 The welding work condition deriving device according to claim 2, wherein the specifications of the welded portion include a base material, a joint shape, a groove shape, and a bead shape.
  6.  前記作業者情報は、前記溶接作業者の身長または腕の長さを含むことを特徴とする請求項3に記載の溶接作業条件導出装置。 4. The welding work condition deriving device according to claim 3, wherein the worker information includes a height of the welding worker or a length of an arm.
  7.  前記導出部は、前記入力部に入力された前記身長または前記腕の長さと前記データとに基づいて、前記溶接作業者の溶接時の動作モデルを算出することを特徴とする請求項6に記載の溶接作業条件導出装置。 The said derivation | leading-out part calculates the operation | movement model at the time of the welding of the said welding operator based on the said height or the length of the said arm input into the said input part, and the said data. Welding work condition derivation device.
  8.  前記動作モデルは、前記溶接作業者の腕と手首の動きを含むことを特徴とする請求項7に記載の溶接作業条件導出装置。 The welding operation condition deriving device according to claim 7, wherein the motion model includes movements of an arm and a wrist of the welding operator.
  9.  前記溶接作業者の溶接時の動作を測定して動作情報を取得する動作情報取得部と、
     前記動作モデルと前記動作情報との比較に基づく比較情報を算出する動作比較部と、を備えることを特徴とする請求項7に記載の溶接作業条件導出装置。
    An operation information acquisition unit that acquires operation information by measuring the operation of the welding operator during welding;
    The welding operation condition deriving device according to claim 7, further comprising: an operation comparison unit that calculates comparison information based on a comparison between the operation model and the operation information.
  10.  前記半自動溶接機の仕様は、溶接電圧と、設定溶接電流またはワイヤ送給速度と、を含むことを特徴とする請求項4に記載の溶接作業条件導出装置。 The welding work condition derivation device according to claim 4, wherein the specifications of the semi-automatic welding machine include a welding voltage and a set welding current or a wire feed speed.
  11.  前記導出部によって導出された前記溶接作業条件を表示する表示部を備えることを特徴とする請求項1に記載の溶接作業条件導出装置。 The welding work condition deriving device according to claim 1, further comprising a display unit that displays the welding work condition derived by the deriving unit.
  12.  請求項1から請求項11のいずれか一項に記載の溶接作業条件導出装置を備えることを特徴とする溶接電源装置。 A welding power supply apparatus comprising the welding work condition deriving device according to any one of claims 1 to 11.
  13.  請求項1から請求項11のいずれか一項に記載の溶接作業条件導出装置を備えることを特徴とする溶接技術習得装置。 A welding technology learning device comprising the welding work condition deriving device according to any one of claims 1 to 11.
PCT/JP2017/043390 2017-03-31 2017-12-04 Welding condition derivation device, welding power source device, and welding technique learning device WO2018179592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-071929 2017-03-31
JP2017071929A JP2020108894A (en) 2017-03-31 2017-03-31 Welding work condition derivation device, welding power source device, and welding technique learning device

Publications (1)

Publication Number Publication Date
WO2018179592A1 true WO2018179592A1 (en) 2018-10-04

Family

ID=63674973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043390 WO2018179592A1 (en) 2017-03-31 2017-12-04 Welding condition derivation device, welding power source device, and welding technique learning device

Country Status (2)

Country Link
JP (1) JP2020108894A (en)
WO (1) WO2018179592A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021009963A1 (en) * 2019-07-17 2021-01-21 株式会社日立製作所 Welding work data storage device, welding work assistance system, and welding robot control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022134522A (en) * 2021-03-03 2022-09-15 株式会社神戸製鋼所 Control method of electroslag welding or electrogas welding, control device, welding system, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211378A (en) * 2002-01-18 2003-07-29 Yaskawa Electric Corp Work information processor
JP2011167756A (en) * 2010-02-22 2011-09-01 Hitachi Plant Technologies Ltd Hand welding training system and method
JP2012218058A (en) * 2011-04-13 2012-11-12 Sumitomo Heavy Industries Marine & Engineering Co Ltd Welding simulator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211378A (en) * 2002-01-18 2003-07-29 Yaskawa Electric Corp Work information processor
JP2011167756A (en) * 2010-02-22 2011-09-01 Hitachi Plant Technologies Ltd Hand welding training system and method
JP2012218058A (en) * 2011-04-13 2012-11-12 Sumitomo Heavy Industries Marine & Engineering Co Ltd Welding simulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021009963A1 (en) * 2019-07-17 2021-01-21 株式会社日立製作所 Welding work data storage device, welding work assistance system, and welding robot control device
JP2021016870A (en) * 2019-07-17 2021-02-15 株式会社日立製作所 Welding work data accumulation device, welding work support system, and welding robot control device
JP7261682B2 (en) 2019-07-17 2023-04-20 株式会社日立製作所 Welding work data storage device, welding work support system and welding robot control device

Also Published As

Publication number Publication date
JP2020108894A (en) 2020-07-16

Similar Documents

Publication Publication Date Title
US11524368B2 (en) Augmented vision system with active welder guidance
US10878591B2 (en) Welding trainer utilizing a head up display to display simulated and real-world objects
CN106061664B (en) Electric component for welding system
CN105960305B (en) The feedback of welding torch from welding system
CN105960304B (en) The feedback of welding torch from welding system
CN101218060B (en) Welding method and welding system with determination of the position of the welding torch
CN106104655B (en) Truing tool and method for welding system
US10821539B2 (en) System and method for pendant component for a welding system
JP6687543B2 (en) System and method for hand welding training
US20180126476A1 (en) Welding system providing visual and audio cues to a welding helmet with a display
CN105051802B (en) For welding the calibrating installation of training system
CN105144267B (en) Weld training system and device
EP3318360A1 (en) Communication between a welding machine and a live welding training device
CN105377493B (en) System and method for determining welding gait of march
CN105074796B (en) For welding the welding torch of training system
CN105051801B (en) Data for welding training system store and analysis
US20160214198A1 (en) Manual Tool Tracking and Guidance With Inertial Measurement Unit
CN103648703A (en) System and method for manual seam tracking during welding and welding assistance system
CN105960307A (en) Welding stand for a welding system
JP2017531558A (en) System for characterizing manual welding operations on pipes and other curved structures
CN105940437A (en) Welding software for detection and control of devices and for analysis of data
JP2001071140A (en) Device and method for supporting manual welding and device and method for training manual welding
WO2018179592A1 (en) Welding condition derivation device, welding power source device, and welding technique learning device
CN107617807A (en) For the method and system welded by temperature detector
EP3770887A1 (en) Learning management systems with shared weld training results

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP