WO2018179540A1 - Light-emitting element and light-emitting device - Google Patents

Light-emitting element and light-emitting device Download PDF

Info

Publication number
WO2018179540A1
WO2018179540A1 PCT/JP2017/037787 JP2017037787W WO2018179540A1 WO 2018179540 A1 WO2018179540 A1 WO 2018179540A1 JP 2017037787 W JP2017037787 W JP 2017037787W WO 2018179540 A1 WO2018179540 A1 WO 2018179540A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
excitation light
emitting element
refractive index
Prior art date
Application number
PCT/JP2017/037787
Other languages
French (fr)
Japanese (ja)
Inventor
市橋 宏基
林 克彦
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018179540A1 publication Critical patent/WO2018179540A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action

Definitions

  • the present disclosure relates to a light-emitting element and a light-emitting device that emit fluorescence based on excitation light.
  • Non-Patent Document 1 discloses a technique using a one-dimensional photonic crystal to enhance fluorescence emission based on excitation light.
  • the one-dimensional photonic crystal of Non-Patent Document 1 is configured by repeatedly laminating a layer containing a quantum dot phosphor and a layer made of another material, and an electric field of excitation light inside each phosphor layer.
  • the strength is designed to be greater than another adjacent layer. Thereby, even if excitation light with small intensity
  • the present disclosure provides a light-emitting element and a light-emitting device that can reduce light density quenching due to irradiated excitation light in a light-emitting element that emits fluorescence.
  • the light-emitting element emits fluorescence based on excitation light.
  • the light emitting element includes a periodic structure including a plurality of phosphor layers and a plurality of object layers.
  • the plurality of phosphor layers include a phosphor that emits fluorescence.
  • the plurality of object layers have a refractive index different from that of the plurality of phosphor layers.
  • the light emitting device includes an excitation light source and a light emitting element.
  • the excitation light source irradiates the light emitting element with excitation light.
  • the peak position of the electric field intensity is outside the phosphor layer. Therefore, the light density quenching by the excitation light irradiated to the light emitting element can be reduced.
  • FIG. 1 is a diagram illustrating a configuration of a projector according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration of the light emitting element according to the first embodiment.
  • FIG. 3 is a diagram for explaining the function of the light emitting device according to the first embodiment.
  • FIG. 4 is a graph for explaining the light dispersion relationship in the photonic crystal of the light-emitting element.
  • FIG. 5 is a graph showing a simulation result of the electric field analysis regarding the light emitting element.
  • FIG. 6 is a view for explaining a modification of the light emitting device according to the first embodiment.
  • FIG. 7 is a diagram illustrating a configuration of a light emitting device according to another embodiment.
  • FIG. 1 is a diagram showing a configuration of a projector 1 in the present embodiment.
  • the projector 1 includes a light emitting device 2, a light guide optical system 3, a DMD (digital mirror device) 49, and a projection lens 51.
  • the projector 1 projects projection light indicating an image on a screen or the like.
  • the light emitting device 2 emits yellow light, for example.
  • the projector 1 further includes, for example, a blue light source (not shown) that emits blue light, and generates projection light using the yellow light from the light emitting device 2 and the blue light.
  • the light emitting device 2 includes an excitation light source 41, a collimating lens system 42, a dichroic mirror 43, a condensing optical system 44, and a phosphor wheel 20.
  • the light emitting device 2 uses the phosphor wheel 20 to perform wavelength conversion from, for example, blue light excitation light to yellow light fluorescence.
  • the excitation light source 41 emits blue light having a wavelength of 450 nm as excitation light.
  • the excitation light source 41 is composed of, for example, a plurality of semiconductor lasers.
  • the excitation light source 41 is not limited to a semiconductor laser, and may be composed of various light source elements such as a light emitting diode.
  • the collimating lens system 42 includes a plurality of lenses such as a collimating lens, and is disposed between the excitation light source 41 and the phosphor wheel 20.
  • the collimating lens system 42 collimates light incident on the light emitting element 10.
  • the dichroic mirror 43 has, for example, an optical characteristic of transmitting blue light and reflecting yellow light.
  • the dichroic mirror 43 is disposed to face the excitation light source 41 via the collimating lens system 42, the phosphor wheel 20, and the condensing optical system 44.
  • the condensing optical system 44 includes, for example, a plurality of optical lenses.
  • the condensing optical system 44 is disposed such that the focal position is located on the main surface of the phosphor wheel 20.
  • the focal position of the condensing optical system 44 may be in the vicinity of the main surface of the phosphor wheel 20.
  • the excitation light emitted from the excitation light source 41 is collimated in the collimator lens system 42 as shown in FIG. 1 and corresponds to the focal position of the condensing optical system 44 on the main surface of the phosphor wheel 20.
  • the position is irradiated.
  • the optical system inside the light emitting device 2 is not limited to the above configuration, and may be set as appropriate.
  • the phosphor wheel 20 includes a light emitting element 10 that emits fluorescence based on excitation light, a base material 21 having a main surface, and a rotating device 22 including a motor and the like.
  • the light emitting element 10 is provided on the main surface of the substrate 21.
  • the rotating device 22 rotationally drives the base material 21 using the main surface as a rotating surface.
  • the phosphor wheel 20 converts the excitation light into fluorescence while rotating the light emitting element 10 on the base material 21 while cooling the light emitting element 10.
  • light density quenching can be reduced.
  • light density quenching means that the internal quantum efficiency in conversion from excitation light to fluorescence decreases when the light intensity of the excitation light is increased.
  • the configuration of the light emitting element 10 will be described later.
  • the phosphor wheel 20 is a transmission type, and emits the converted fluorescence in the same direction as the incident direction of the excitation light. Fluorescence (yellow light) emitted from the phosphor wheel 20 is incident on the dichroic mirror 43 in a parallel state by reversing the condensing optical system 44. The light emitting device 2 reflects the yellow light after wavelength conversion by the dichroic mirror 43 and emits it to the light guide optical system 3.
  • the light guide optical system 3 includes a condenser lens 45, a rod integrator 46, a relay lens 47, a field lens 48, and a total reflection prism 50.
  • the light guide optical system 3 condenses the yellow light from the light emitting device 2 on the rod integrator 46 by the condenser lens 45, and combines the yellow light and the separately supplied blue light into white light in the rod integrator 46.
  • the synthesized white light is guided to the DMD 49 via the relay lens 47, the field lens 48 and the total reflection prism 50.
  • the DMD 49 spatially modulates the white light guided from the light guide optical system 3 so as to represent an image based on an external video signal, and generates projection light.
  • the projector 1 is not limited to the DMD 49, and various spatial light modulation elements such as a liquid crystal panel may be used.
  • the projection lens 51 projects the projection light generated by the DMD 49 to the outside of the projector 1. Thereby, based on the projection light from the projector 1, a desired image is projected. At this time, the upper limit of the luminance of the image is defined by the light output from the light emitting device 2 or the like.
  • the light emitting element 10 reduces light density quenching due to excitation light emitted from the excitation light source 41.
  • the configuration of the light emitting element 10 according to the present embodiment will be described.
  • FIG. 2 is a diagram illustrating a configuration of the light emitting element 10 according to the present embodiment.
  • the light emitting device 10 is configured by laminating a multilayer film on a base material 21 of a phosphor wheel 20 (see FIG. 1).
  • FIG. 2 shows a cross-sectional structure of the light emitting element 10.
  • the thickness direction of the light emitting element 10 is defined as an X direction, and two directions orthogonal to each other along the main surface of the light emitting element 10 are defined as a Y direction and a Z direction.
  • the excitation light is incident from the ⁇ X side of the light emitting element 10.
  • the light emitting element 10 includes a plurality of phosphor layers 11, a plurality of low refractive index layers 12, a substrate 16, and a dichroic filter 17.
  • the phosphor layer 11 includes a phosphor that is excited by incident excitation light (blue light) and emits fluorescence (yellow light).
  • the refractive index n1 of the phosphor layer 11 is, for example, 1.8, and the thickness TH1 of the phosphor layer 11 is, for example, 75 nm.
  • the phosphor layer 11 is made of a nanocomposite material including the quantum dots 13 constituting the phosphor particles.
  • the quantum dots 13 are made of, for example, CdSe, CuInS 2 or the like. According to the phosphor layer 11 in the present embodiment, desired physical characteristics such as the refractive index n1 can be obtained by controlling the density and the like of the quantum dots 13.
  • the low refractive index layer 12 is made of various materials that transmit excitation light (for example, PMMA, CA resin, etc.).
  • the refractive index n2 of the low refractive index layer 12 is, for example, 1.5, and the thickness TH2 of the low refractive index layer 12 is, for example, 72 nm.
  • the low refractive index layer 12 may be made of a nanocomposite material.
  • the low refractive index layer 12 is an example of an object layer in the present embodiment.
  • a plurality of phosphor layers 11 and low refractive index layers 12 are alternately stacked.
  • the plurality of stacked phosphor layers 11 and the plurality of low refractive index layers 12 constitute a photonic crystal 5.
  • the number of phosphor layers 11 and the number of low refractive index layers 12 in the photonic crystal 5 are, for example, 10 layers or more, for example, several hundred layers.
  • a photonic crystal in which the phosphor layer 11 and the low refractive index layer 12 set to the above-described thicknesses TH1 and TH2 and refractive indexes n1 and n2 are periodically arranged.
  • the periodic structure of 5 controls the intensity distribution of the excitation light and reduces the light density quenching.
  • the photonic crystal 5 is an example of a periodic structure in the present embodiment. Details of the photonic crystal 5 will be described later.
  • the substrate 16 is, for example, a sapphire substrate.
  • the substrate 16 may be fixed on the main surface of the base material 21 in the phosphor wheel 20 (see FIG. 1), or may be configured integrally with the base material 21.
  • the dichroic filter 17 is a dielectric multilayer film, and has an optical characteristic of transmitting excitation light (for example, blue light) and reflecting fluorescence (for example, yellow light).
  • the dichroic filter 17 is provided on the surface of the substrate 16 where the excitation light is incident.
  • the excitation light source 41 irradiates the light emitting element 10 with excitation light.
  • the excitation light from the excitation light source 41 is incident in the + X direction from the ⁇ X side of the light emitting element 10.
  • the excitation light is transmitted through the dichroic filter 17 in the light emitting element 10 and propagates so as to sequentially pass through the phosphor layer 11 and the low refractive index layer 12 that are stacked as the photonic crystal 5.
  • the excitation light propagates through the phosphor layer 11, it is absorbed by the phosphor quantum dots 13 and converted into fluorescence.
  • the converted fluorescence in the light emitting element 10 includes light that is emitted from the + X side while maintaining the + X direction, and light that is reflected by the dichroic filter 17 and emitted from the + X side in the ⁇ X direction.
  • the light emitting element 10 emits the converted light so as to be transmitted from the + X side based on the excitation light incident from the ⁇ X side.
  • the light emitting device 2 outputs fluorescence (yellow light) emitted from the light emitting element 10.
  • the light emitting element 10 has a function of controlling the electric field distribution of the excitation light by the periodic structure of the photonic crystal 5 when the excitation light is converted into fluorescence in the light emitting device 2 as described above.
  • the function of the light emitting element 10 will be described with reference to FIG.
  • FIG. 3 shows a spatial distribution of the electric field intensity distributed inside the photonic crystal 5 when the excitation light enters the light emitting element 10.
  • the excitation light is a TE wave (Transverse ⁇ Electric Wave) propagating in the X direction
  • the vibration direction of the transverse wave component of the electric field is the Y direction.
  • the horizontal axis indicates the position in the X direction
  • the vertical axis indicates the intensity of the Y component Ey of the electric field (that is, the light intensity of the TE wave).
  • the excitation light When the excitation light is incident on the light emitting element 10, it is distributed as a wave having a wave number kx corresponding to the frequency of the excitation light in accordance with the light dispersion relationship defined by the periodic structure of the photonic crystal 5. At this time, as shown in FIG. 3, periodic peaks (maximum values) and valleys (minimum values) are formed in the electric field intensity distribution of the excitation light.
  • the light intensity of the excitation light becomes larger than the surroundings, and it is considered that the influence of light density quenching is large.
  • periodic valleys having an electric field intensity Ey 2 are located in each phosphor layer 11 (see FIG. 3).
  • the light emitting element 10 when the light emitting element 10 is irradiated with excitation light, the electric field intensity Ey 2 in the phosphor layer 11 becomes lower than the peak value inside the light emitting element 10. Therefore, the light density quenching in the light emitting element 10 can be reduced rather than the light density quenching that can occur at the peak value. Thereby, when the light intensity of the excitation light output from the excitation light source 41 is increased, loss due to light density quenching can be reduced, and the conversion efficiency from excitation light to fluorescence in the light emitting device 2 can be improved.
  • FIG. 4 is a graph for explaining the light dispersion relationship in the photonic crystal 5 of the light-emitting element 10.
  • the horizontal axis in FIG. 4 represents the wave number kx in the X direction.
  • the vertical axis in FIG. 4 is the wavelength ⁇ .
  • Curves C ⁇ b> 1 and C ⁇ b> 2 indicate the light dispersion relationship in the photonic crystal 5.
  • the light dispersion relationship is defined as follows in the photonic crystal 5 due to the periodic structure of the phosphor layer 11 and the low refractive index layer 12. Is done.
  • a is a parameter representing the thickness of the phosphor layer 11
  • b is a parameter representing the thickness of the low refractive index layer 12
  • c is the speed of light (in a vacuum or in air). is there.
  • the wave number k1x depends on the refractive index n1 of the phosphor layer 11 and the angular frequency ⁇ of light (2 ⁇ times the light frequency) as shown in the above equation (2)
  • the wave number k2x is as shown in the above equation (3). It depends on the refractive index n2 of the low refractive index layer 12 and the angular frequency ⁇ of light.
  • Equation (1) substitutes an electromagnetic wave solution corresponding to the periodic structure of the photonic crystal 5 based on Bloch's theorem in the wave equation (Maxwell's equation) of the electromagnetic wave propagating in the X direction, and expands the dielectric constant in a Fourier series. Can be obtained.
  • the wave number kx corresponding to the angular frequency ⁇ of light becomes a complex number according to the equation (1), and a frequency section that does not exist as a real number, that is, a photonic band gap is generated (see FIG. 4).
  • the photonic crystal 5 has first and second photonic bands that define the dispersion relation of light having an angular frequency ⁇ of light outside the photonic band gap based on the formula (1).
  • the first photonic band associates the angular frequency ⁇ of light below the photonic band gap with the real wave number kx in the photonic crystal 5.
  • the second photonic band associates the angular frequency ⁇ of light equal to or greater than the photonic band gap with the real wave number kx.
  • curve C1 corresponds to the first photonic band.
  • Curve C2 corresponds to the second photonic band.
  • the curve C1 of the first photonic band is above the curve C2 of the second photonic band.
  • the minimum value of the curve C1 of the first photonic band represents the photonic band edge (PBE) on the first photonic band side, that is, the band edge in the first photonic band.
  • the maximum value of the curve C2 of the second photonic band represents the PBE on the second photonic band side, that is, the band edge in the second photonic band.
  • the angular frequency (or equivalently the wavelength) of the excitation light irradiated from the excitation light source 41 of the light emitting device 2 matches the vicinity of the PBE on the second photonic band side.
  • the photonic crystal 5 is formed (see FIG. 4).
  • the vicinity of PBE is, for example, a frequency position at which the reflectance is minimized in the frequency spectrum of the reflectance of light by the photonic crystal 5 and is within a range including a frequency position adjacent to PBE.
  • the thickness TH1 of the phosphor layer 11 and the low refractive index layer 12 is set so that the angular frequency near the PBE based on the formula (1) matches the angular frequency of the excitation light as a reference. It is obtained by setting TH2 and refractive indexes n1 and n2.
  • the values of the various parameters TH1, TH2, n1, and n2 can be appropriately selected from the formula (1) within the range where the above relationship is established. Further, the frequency of the excitation light used as a reference may be set as appropriate.
  • the angular frequency of the excitation light is in the vicinity of the position of the minimum angular frequency in the vicinity of PBE, the loss due to reflection when the excitation light is incident on the light emitting element 10 can be reduced, and the excitation light The conversion efficiency from fluorescence to fluorescence can be improved.
  • FIG. 5 is a graph showing the results of an electric field analysis simulation in the photonic crystal 5 of the light emitting element 10. 5 the horizontal axis, the converted distance (cT [ ⁇ m]), represents using the time T and the speed of light c, the vertical axis represents the electric field intensity Ey 2 in arbitrary units.
  • the intensity of the electric field when the excitation light (TE wave) is incident on the photonic crystal 5 of the light emitting element 10 according to the present embodiment is simulated by the FDTD (Finite-difference time-domain) method. did. At this time, the assumption that excitation light was not attenuated by fluorescence emission was used.
  • the temporal change of the electric field intensity Ey 2 is numerically calculated for the transmitted light, the reflected light, and the light passing through a predetermined position inside the phosphor layer 11, FIG. The result was obtained.
  • the electric field intensity Ey 2 of the excitation light is reduced to about 20% of the transmitted light inside the phosphor layer 11.
  • the transmitted light curve in FIG. 5 corresponds to the electric field intensity Ey 2 generated in the conventional phosphor structure (for example, bulk structure) that does not use the periodic structure like the photonic crystal 5 in the present embodiment. It is done. Therefore, according to the photonic crystal 5 in the present embodiment, it was confirmed that the light intensity of the excitation light can be reduced in the phosphor layer 11 as compared with the conventional structure.
  • the light-emitting element 10 emits fluorescence based on preset excitation light.
  • the light emitting element 10 includes a phosphor layer 11 and a low refractive index layer 12 as an object layer.
  • the phosphor layer 11 includes phosphor quantum dots 13 that emit fluorescence.
  • the low refractive index layer 12 has a refractive index n2 different from the refractive index n1 in the phosphor layer 11.
  • a plurality of phosphor layers 11 and low refractive index layers 12 are alternately stacked.
  • the peak of the electric field intensity distribution when the excitation light is incident is positioned in the low refractive index layer 12.
  • the phosphor layer 11 and the low refractive index layer 12 are periodically arranged.
  • the peak position of the electric field intensity is outside the phosphor layer 11. Therefore, the optical density quenching by the excitation light irradiated to the light emitting element 10 can be reduced.
  • the photonic crystal 5 has a photonic band gap, a first photonic band that defines a dispersion relationship of light having a frequency smaller than a frequency corresponding to the photonic band gap, and a photonic band gap.
  • a second photonic band defining a dispersion relationship of light having a frequency higher than the corresponding frequency. Based on such a photonic band structure, the distribution of the electric field intensity of the excitation light can be controlled, and light density quenching can be reduced.
  • the refractive index n2 in the low refractive index layer 12 is lower than the refractive index n1 in the phosphor layer 11.
  • the angular frequency of the photonic band edge in the second photonic band has an angular frequency near the angular frequency of the excitation light (see FIG. 4). Specifically, the angular frequency of the photonic band edge in the second photonic band is lower than the angular frequency of the excitation light.
  • refractive index n2 ⁇ refractive index n1 light density quenching in the light emitting element 10 can be reduced by setting the PBE on the second photonic band side in the vicinity of the frequency of the excitation light.
  • the periodic structure functions as the photonic crystal 5 and the electric field intensity distribution can be controlled.
  • the light emitting device 2 includes the light emitting element 10 and the excitation light source 41 that irradiates the light emitting element 10 with excitation light.
  • the light emitting element 10 includes a photonic crystal 5.
  • the photonic crystal 5 is a periodic structure in which a plurality of phosphor layers 11 and a plurality of low refractive index layers 12 having a refractive index n2 lower than the refractive index n1 in the phosphor layer 11 are alternately stacked.
  • the photonic crystal 5 has a first photonic band and a second photonic band.
  • the excitation light has a frequency near the band edge in the second photonic band.
  • the light emitting device 2 in the light emitting element 10 that emits fluorescence, it is possible to reduce light density quenching due to excitation light applied to the light emitting element 10.
  • the light emitting element 10 according to the first embodiment includes a photonic crystal 5.
  • a periodic structure like the photonic crystal 5 may be partially provided. This modification will be described with reference to FIG.
  • FIG. 6 is a view for explaining a light emitting element 10A according to a modification of the first embodiment.
  • the light emitting element 10A according to this modification includes a photonic crystal 5 and a bulk structure 6, as shown in FIG.
  • the bulk structure 6 is made of, for example, the same material as the phosphor layer 11 of the photonic crystal 5 or a material having the same fluorescence characteristics.
  • the photonic crystal 5 is stacked on the ⁇ X side (excitation light incident side) of the bulk structure 6.
  • the photonic crystal 5 is provided on the incident side of the excitation light, and a bulk phosphor (bulk structure 6) is used for the remaining part.
  • the thickness TH1 of the phosphor layer 11 per layer is 70 nm
  • the phosphor absorptance ⁇ is Consider the case of 1000 cm ⁇ 1 .
  • the total thickness of the portions of the phosphor layer 11 in the photonic crystal 5 is 14 ⁇ m.
  • the light intensity after the excitation light has propagated through the photonic crystal 5 can be calculated as follows.
  • the bulk structure 6 since the light intensity of the excitation light is reduced through the photonic crystal 5, the influence of light density quenching is suppressed. Therefore, the bulk structure 6 can efficiently absorb excitation light and convert it into fluorescence.
  • the thickness of the bulk structure 6 can be set as appropriate in consideration of the light intensity of the excitation light reduced by the photonic crystal 5 to such a degree that the excitation light is assumed to be sufficiently absorbed. (For example, 100 ⁇ m to 200 ⁇ m).
  • the light emitting element 10A further includes the bulk structure 6 made of a phosphor that emits fluorescence.
  • the photonic crystal 5 that is a periodic structure is provided closer to the incident side ( ⁇ X side) of the excitation light than the bulk structure 6. Thereby, light density quenching can be reduced in the photonic crystal 5, and excitation light can be efficiently converted into fluorescence even in the bulk structure 6.
  • the light emitting element 10 in the transmissive phosphor wheel 20 has been described.
  • the light emitting element according to the present disclosure is not limited to the transmission type, but can be applied to a reflection type phosphor wheel.
  • the reflective light emitting element 10B will be described with reference to FIG.
  • FIG. 7 is a diagram illustrating the configuration of a light emitting device 10B according to another embodiment.
  • the substrate 16 and the dichroic filter 17 provided on the ⁇ X side are omitted in the same configuration as that of the first embodiment (see FIG. 2), and instead the metal substrate 15 and the adhesive layer are disposed on the + X side. 14 is provided.
  • the metal substrate 15 is made of, for example, silver, and has a reflective surface 15a that reflects light such as fluorescence on the side opposite to the incident side ( ⁇ X side) of excitation light (+ X side) in the light emitting element 10B.
  • the adhesive layer 14 is composed of various adhesives, and adheres the photonic crystal 5 and the metal substrate 15.
  • the light emitting element 10B of this example light propagating in the + X direction is reflected by the reflecting surface 15a of the metal substrate 15 and propagates in the -X direction. For this reason, as in the first embodiment, when the excitation light is incident in the + X direction from the ⁇ X side, the fluorescence converted from the excitation light is emitted in the ⁇ X direction of the light emitting element 10.
  • the reflective surface 15a of the light emitting element 10B may be formed by a metal coating or the like.
  • the light emitting element 10B of this example is further provided with the reflecting surface 15a that reflects light on the side opposite to the excitation light incident side ( ⁇ X side) (+ X side). Thereby, the light emitting element 10B emits the converted fluorescence so as to reflect the incident excitation light.
  • the low refractive index layer 12 is used as the object layer in the light emitting elements 10 to 10B.
  • the object layer is not limited to the low refractive index layer 12 and may be a high refractive index layer having a refractive index higher than that of the phosphor layer 11.
  • a photonic crystal having a periodic structure of the phosphor layer 11 and the high refractive index layer is configured so that the vicinity of the PBE on the first photonic band side matches the angular frequency of the excitation light (see FIG. 4). ).
  • the said photonic crystal when excitation light injects, it can set so that the peak of the intensity distribution of an electric field may be located in a high refractive index layer.
  • the refractive index in the object layer may be higher than the refractive index in the phosphor layer 11.
  • the angular frequency of the photonic band edge in the first photonic band is an angular frequency near the angular frequency of the excitation light.
  • the angular frequency of the photonic band edge in the first photonic band is higher than the angular frequency of the excitation light.
  • quantum dots are used as the phosphors in the phosphor layer 11 in the light emitting elements 10 to 10B.
  • the phosphor in the phosphor layer or the like is not limited to the quantum dot, and various phosphor materials may be used, for example, YAG.
  • the example in which the light emitting device 2 converts the excitation light of blue light into fluorescence and outputs yellow light has been described.
  • the light emitting device according to the present disclosure is not limited to this.
  • the light emitting device may convert part of the excitation light of blue light into yellow light and generate white light by combining the remaining blue light.
  • a separate blue light source can be omitted in the projector 1.
  • the excitation light is not limited to blue light, and may be light in various wavelength bands. Further, the fluorescence is not limited to yellow light, and may be light in various wavelength bands. As described above, the light emitting device according to the present disclosure may output various types of light based on various types of excitation light.
  • the application example in which the light emitting device 2 is applied to the projector 1 has been described.
  • the light-emitting device according to the present disclosure is not limited to the projector 1 and can be applied to various technologies using fluorescence emission based on excitation light.
  • the light emitting device 2 includes the light emitting element 10 incorporated in the phosphor wheel 20.
  • the light emitting device according to the present disclosure may include the light emitting element according to the present disclosure without being incorporated in the phosphor wheel.
  • the rotating device 22 may be omitted from the light emitting device 2 when the light emitting element is not particularly required to be cooled or when it can be cooled by another mechanism.
  • the present disclosure can be applied to various technologies using fluorescence emission based on excitation light, for example, a projector.

Abstract

A light-emitting element (10) emits fluorescence on the basis of excitation light. The light-emitting element (10) is provided with a periodic structure (5) including a plurality of phosphor layers (11) and a plurality of object layers (12). The plurality of phosphor layers (11) includes a phosphor for emitting fluorescence. The plurality of object layers (12) has a refractive index different from the refractive index of the plurality of phosphor layers (11). The plurality of phosphor layers (11) and the plurality of object layers (12) are periodically layered in alternating fashion so that a plurality of peaks in the intensity distribution of an electric field of the excitation light when the excitation light is incident on the periodic structure (5) is positioned on the plurality of object layers (12).

Description

発光素子及び発光装置Light emitting element and light emitting device
 本開示は、励起光に基づき蛍光を発光する発光素子及び発光装置に関する。 The present disclosure relates to a light-emitting element and a light-emitting device that emit fluorescence based on excitation light.
 非特許文献1は、励起光に基づく蛍光発光を増強するために1次元フォトニック結晶を用いた技術を開示している。非特許文献1の1次元フォトニック結晶は、量子ドットの蛍光体を含んだ層と、別の材質の層とを繰り返し積層して構成され、各々の蛍光体の層の内部における励起光の電場強度が、隣接する別の層よりも大きくなるように設計されている。これにより、強度が小さい励起光を用いても大きな蛍光発光の強度が得られる。 Non-Patent Document 1 discloses a technique using a one-dimensional photonic crystal to enhance fluorescence emission based on excitation light. The one-dimensional photonic crystal of Non-Patent Document 1 is configured by repeatedly laminating a layer containing a quantum dot phosphor and a layer made of another material, and an electric field of excitation light inside each phosphor layer. The strength is designed to be greater than another adjacent layer. Thereby, even if excitation light with small intensity | strength is used, the intensity | strength of a big fluorescence emission is obtained.
 本開示は、蛍光を発光する発光素子において、照射される励起光による光密度消光を低減することができる発光素子及び発光装置を提供する。 The present disclosure provides a light-emitting element and a light-emitting device that can reduce light density quenching due to irradiated excitation light in a light-emitting element that emits fluorescence.
 本開示の一態様に係る発光素子は、励起光に基づき蛍光を発光する。発光素子は、複数の蛍光体層と、複数の物体層とを含む周期構造体を備える。複数の蛍光体層は、蛍光を発光する蛍光体を含む。複数の物体層は、複数の蛍光体層における屈折率とは異なる屈折率を有する。周期構造体に励起光が入射した場合における、励起光の電場の強度分布の複数のピークが複数の物体層に位置するように、複数の蛍光体層及び複数の物体層が交互に周期的に積層されている。 The light-emitting element according to one embodiment of the present disclosure emits fluorescence based on excitation light. The light emitting element includes a periodic structure including a plurality of phosphor layers and a plurality of object layers. The plurality of phosphor layers include a phosphor that emits fluorescence. The plurality of object layers have a refractive index different from that of the plurality of phosphor layers. When the excitation light is incident on the periodic structure, the plurality of phosphor layers and the plurality of object layers are alternately and periodically so that the plurality of peaks of the intensity distribution of the electric field of the excitation light are located in the plurality of object layers. Are stacked.
 本開示の一態様に係る発光装置は、励起光源と、発光素子とを備える。励起光源は、発光素子に励起光を照射する。 The light emitting device according to one embodiment of the present disclosure includes an excitation light source and a light emitting element. The excitation light source irradiates the light emitting element with excitation light.
 本開示に係る発光素子及び発光装置によると、励起光が発光素子に入射した際に、電場強度のピーク位置が蛍光体層の外部になる。これにより、発光素子に照射される励起光による光密度消光を低減することができる。 According to the light emitting element and the light emitting device according to the present disclosure, when excitation light is incident on the light emitting element, the peak position of the electric field intensity is outside the phosphor layer. Thereby, the light density quenching by the excitation light irradiated to the light emitting element can be reduced.
図1は、本開示の実施形態1におけるプロジェクタの構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a projector according to the first embodiment of the present disclosure. 図2は、実施形態1に係る発光素子の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of the light emitting element according to the first embodiment. 図3は、実施形態1に係る発光素子の機能を説明するための図である。FIG. 3 is a diagram for explaining the function of the light emitting device according to the first embodiment. 図4は、発光素子のフォトニック結晶における光の分散関係を説明するためのグラフである。FIG. 4 is a graph for explaining the light dispersion relationship in the photonic crystal of the light-emitting element. 図5は、発光素子に関する電場解析のシミュレーション結果を示すグラフである。FIG. 5 is a graph showing a simulation result of the electric field analysis regarding the light emitting element. 図6は、実施形態1に係る発光素子の変形例を説明するための図である。FIG. 6 is a view for explaining a modification of the light emitting device according to the first embodiment. 図7は、他の実施形態に係る発光素子の構成を例示する図である。FIG. 7 is a diagram illustrating a configuration of a light emitting device according to another embodiment.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、出願人は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。 In addition, the applicant provides the accompanying drawings and the following description in order for those skilled in the art to fully understand the present disclosure, and is not intended to limit the claimed subject matter. .
 (実施形態1)
 実施形態1では、本開示に係る発光素子及び発光装置について、プロジェクタへの適用例を用いて説明する。
(Embodiment 1)
In the first embodiment, a light-emitting element and a light-emitting device according to the present disclosure will be described using an application example to a projector.
 [1.構成]
 本実施形態に係る発光装置及び発光素子の構成について、以下説明する。
[1. Constitution]
The configurations of the light emitting device and the light emitting element according to this embodiment will be described below.
 [1-1.プロジェクタについて]
 本開示に係る発光装置は、例えばプロジェクタにおける光源として用いられる。実施形態1におけるプロジェクタ及び発光装置の構成について、図1を用いて説明する。図1は、本実施形態におけるプロジェクタ1の構成を示す図である。
[1-1. About the projector]
The light emitting device according to the present disclosure is used as a light source in a projector, for example. The configuration of the projector and the light emitting device in Embodiment 1 will be described with reference to FIG. FIG. 1 is a diagram showing a configuration of a projector 1 in the present embodiment.
 プロジェクタ1は、図1に示すように、発光装置2と、導光光学系3と、DMD(デジタルミラーデバイス)49と、投写レンズ51とを備える。プロジェクタ1は、映像を示す投写光をスクリーン等に投写する。発光装置2は、例えば黄色光を発光する。プロジェクタ1は、例えば青色光を発光する青色光源(不図示)をさらに備え、発光装置2からの黄色光と上記の青色光とを用いて、投写光を生成する。 As shown in FIG. 1, the projector 1 includes a light emitting device 2, a light guide optical system 3, a DMD (digital mirror device) 49, and a projection lens 51. The projector 1 projects projection light indicating an image on a screen or the like. The light emitting device 2 emits yellow light, for example. The projector 1 further includes, for example, a blue light source (not shown) that emits blue light, and generates projection light using the yellow light from the light emitting device 2 and the blue light.
 発光装置2は、励起光源41と、コリメートレンズ系42と、ダイクロイックミラー43と、集光光学系44と、蛍光体ホイール20とを備える。発光装置2は、蛍光体ホイール20を用いて、例えば青色光の励起光から、黄色光の蛍光への波長変換を行う。 The light emitting device 2 includes an excitation light source 41, a collimating lens system 42, a dichroic mirror 43, a condensing optical system 44, and a phosphor wheel 20. The light emitting device 2 uses the phosphor wheel 20 to perform wavelength conversion from, for example, blue light excitation light to yellow light fluorescence.
 励起光源41は、本実施形態では、励起光として波長450nmを有する青色光を発光する。励起光源41は、例えば複数の半導体レーザで構成される。励起光源41は、半導体レーザに限らず、例えば発光ダイオードなどの種々の光源素子で構成されてもよい。 In this embodiment, the excitation light source 41 emits blue light having a wavelength of 450 nm as excitation light. The excitation light source 41 is composed of, for example, a plurality of semiconductor lasers. The excitation light source 41 is not limited to a semiconductor laser, and may be composed of various light source elements such as a light emitting diode.
 コリメートレンズ系42は、コリメートレンズ等の複数のレンズを含み、励起光源41と蛍光体ホイール20との間に配置される。コリメートレンズ系42は、発光素子10に入射する光を平行化する。 The collimating lens system 42 includes a plurality of lenses such as a collimating lens, and is disposed between the excitation light source 41 and the phosphor wheel 20. The collimating lens system 42 collimates light incident on the light emitting element 10.
 ダイクロイックミラー43は、例えば青色光を透過すると共に黄色光を反射する光学特性を有する。ダイクロイックミラー43は、コリメートレンズ系42、蛍光体ホイール20及び集光光学系44を介して励起光源41に対向して配置される。 The dichroic mirror 43 has, for example, an optical characteristic of transmitting blue light and reflecting yellow light. The dichroic mirror 43 is disposed to face the excitation light source 41 via the collimating lens system 42, the phosphor wheel 20, and the condensing optical system 44.
 集光光学系44は、例えば複数の光学レンズを含む。集光光学系44は、焦点位置が蛍光体ホイール20の主面上に位置するように配置される。なお、集光光学系44の焦点位置は、蛍光体ホイール20の主面の近傍であってもよい。 The condensing optical system 44 includes, for example, a plurality of optical lenses. The condensing optical system 44 is disposed such that the focal position is located on the main surface of the phosphor wheel 20. The focal position of the condensing optical system 44 may be in the vicinity of the main surface of the phosphor wheel 20.
 発光装置2において、励起光源41から出射した励起光は、コリメートレンズ系42において図1に示すように平行化され、蛍光体ホイール20の主面上における集光光学系44の焦点位置に対応する位置に照射される。なお、発光装置2内部の光学系は上記の構成に限らず、適宜、設定されてもよい。 In the light emitting device 2, the excitation light emitted from the excitation light source 41 is collimated in the collimator lens system 42 as shown in FIG. 1 and corresponds to the focal position of the condensing optical system 44 on the main surface of the phosphor wheel 20. The position is irradiated. The optical system inside the light emitting device 2 is not limited to the above configuration, and may be set as appropriate.
 蛍光体ホイール20は、励起光に基づき蛍光を発光する発光素子10と、主面を有する基材21と、モータ等を含む回転装置22とを備える。発光素子10は、基材21の主面上に設けられる。回転装置22は、同主面を回転面として、基材21を回転駆動する。蛍光体ホイール20は、基材21上の発光素子10を回転させることによって、発光素子10を冷却しながら励起光から蛍光への変換を行う。 The phosphor wheel 20 includes a light emitting element 10 that emits fluorescence based on excitation light, a base material 21 having a main surface, and a rotating device 22 including a motor and the like. The light emitting element 10 is provided on the main surface of the substrate 21. The rotating device 22 rotationally drives the base material 21 using the main surface as a rotating surface. The phosphor wheel 20 converts the excitation light into fluorescence while rotating the light emitting element 10 on the base material 21 while cooling the light emitting element 10.
 本実施形態に係る発光素子10によると、光密度消光を低減可能である。ここで、光密度消光とは、励起光の光強度を大きくした際に励起光から蛍光への変換における内部量子効率が低下することを意味する。発光素子10の構成については後述する。 According to the light emitting element 10 according to the present embodiment, light density quenching can be reduced. Here, light density quenching means that the internal quantum efficiency in conversion from excitation light to fluorescence decreases when the light intensity of the excitation light is increased. The configuration of the light emitting element 10 will be described later.
 本実施形態において、蛍光体ホイール20は透過型であり、励起光の入射方向と同じ方向に変換後の蛍光を出射する。蛍光体ホイール20から出射した蛍光(黄色光)は、集光光学系44を逆行することにより、平行化された状態でダイクロイックミラー43に入射する。発光装置2は、波長変換後の黄色光をダイクロイックミラー43で反射して、導光光学系3に出射する。 In the present embodiment, the phosphor wheel 20 is a transmission type, and emits the converted fluorescence in the same direction as the incident direction of the excitation light. Fluorescence (yellow light) emitted from the phosphor wheel 20 is incident on the dichroic mirror 43 in a parallel state by reversing the condensing optical system 44. The light emitting device 2 reflects the yellow light after wavelength conversion by the dichroic mirror 43 and emits it to the light guide optical system 3.
 導光光学系3は、集光レンズ45と、ロッドインテグレータ46と、リレーレンズ47と、フィールドレンズ48と、全反射プリズム50とを備える。導光光学系3は、発光装置2からの黄色光を集光レンズ45でロッドインテグレータ46に集光し、ロッドインテグレータ46において黄色光と、別途供給される青色光とを白色光に合成する。合成された白色光は、リレーレンズ47、フィールドレンズ48及び全反射プリズム50を経由して、DMD49に導光される。 The light guide optical system 3 includes a condenser lens 45, a rod integrator 46, a relay lens 47, a field lens 48, and a total reflection prism 50. The light guide optical system 3 condenses the yellow light from the light emitting device 2 on the rod integrator 46 by the condenser lens 45, and combines the yellow light and the separately supplied blue light into white light in the rod integrator 46. The synthesized white light is guided to the DMD 49 via the relay lens 47, the field lens 48 and the total reflection prism 50.
 DMD49は、外部からの映像信号に基づく映像を表すように、導光光学系3から導光された白色光を空間変調して、投写光を生成する。なお、プロジェクタ1においては、DMD49に限らず、例えば液晶パネルなど、種々の空間光変調素子が用いられてもよい。 The DMD 49 spatially modulates the white light guided from the light guide optical system 3 so as to represent an image based on an external video signal, and generates projection light. The projector 1 is not limited to the DMD 49, and various spatial light modulation elements such as a liquid crystal panel may be used.
 投写レンズ51は、DMD49によって生成された投写光をプロジェクタ1の外部に投写する。これにより、プロジェクタ1からの投写光に基づいて、所望の映像が映し出される。この際、映像の輝度の上限は、発光装置2による光出力などによって規定される。 The projection lens 51 projects the projection light generated by the DMD 49 to the outside of the projector 1. Thereby, based on the projection light from the projector 1, a desired image is projected. At this time, the upper limit of the luminance of the image is defined by the light output from the light emitting device 2 or the like.
 以上のようなプロジェクタ1においては、投写光の輝度を高くする高輝度化が求められている。プロジェクタ1の高輝度化を実現するためには、発光装置2の光出力を増大するべく、励起光源41による励起光の光強度を大きくすることが必要である。 In the projector 1 as described above, there is a demand for higher brightness that increases the brightness of the projection light. In order to increase the brightness of the projector 1, it is necessary to increase the light intensity of the excitation light from the excitation light source 41 in order to increase the light output of the light emitting device 2.
 従来のプロジェクタにおいては、励起光の光強度を大きくした場合に、光密度消光の影響によって励起光から蛍光への変換効率が低下するという課題があった。そこで、本実施形態に係る発光装置2では、発光素子10によって、励起光源41から照射する励起光による光密度消光を低減する。以下、本実施形態に係る発光素子10の構成について説明する。 In the conventional projector, when the light intensity of the excitation light is increased, there is a problem that the conversion efficiency from the excitation light to the fluorescence is lowered due to the influence of the light density quenching. Therefore, in the light emitting device 2 according to the present embodiment, the light emitting element 10 reduces light density quenching due to excitation light emitted from the excitation light source 41. Hereinafter, the configuration of the light emitting element 10 according to the present embodiment will be described.
 [1-2.発光素子の構成]
 実施形態1に係る発光素子10の構成について、図2を用いて説明する。図2は、本実施形態に係る発光素子10の構成を示す図である。
[1-2. Configuration of light emitting element]
A configuration of the light-emitting element 10 according to Embodiment 1 will be described with reference to FIG. FIG. 2 is a diagram illustrating a configuration of the light emitting element 10 according to the present embodiment.
 本実施形態に係る発光素子10は、蛍光体ホイール20(図1参照)の基材21上に多層膜を積層して構成される。図2では、発光素子10の断面構造を示している。 The light emitting device 10 according to this embodiment is configured by laminating a multilayer film on a base material 21 of a phosphor wheel 20 (see FIG. 1). FIG. 2 shows a cross-sectional structure of the light emitting element 10.
 以下では、発光素子10の厚さ方向をX方向とし、発光素子10の主面に沿って互いに直交する二方向をY方向及びZ方向とする。また、励起光は、発光素子10の-X側から入射することとする。 Hereinafter, the thickness direction of the light emitting element 10 is defined as an X direction, and two directions orthogonal to each other along the main surface of the light emitting element 10 are defined as a Y direction and a Z direction. The excitation light is incident from the −X side of the light emitting element 10.
 発光素子10は、図2に示すように、複数の蛍光体層11と、複数の低屈折率層12と、基板16と、ダイクロイックフィルタ17とを備える。 As shown in FIG. 2, the light emitting element 10 includes a plurality of phosphor layers 11, a plurality of low refractive index layers 12, a substrate 16, and a dichroic filter 17.
 蛍光体層11は、入射する励起光(青色光)によって励起して、蛍光(黄色光)を発光する蛍光体を含む。蛍光体層11の屈折率n1は、例えば1.8であり、蛍光体層11の厚さTH1は、例えば75nmである。 The phosphor layer 11 includes a phosphor that is excited by incident excitation light (blue light) and emits fluorescence (yellow light). The refractive index n1 of the phosphor layer 11 is, for example, 1.8, and the thickness TH1 of the phosphor layer 11 is, for example, 75 nm.
 本実施形態では、蛍光体層11は、蛍光体の粒子を構成する量子ドット13を含んだナノコンポジット材料で構成される。量子ドット13は、例えばCdSe,CuInS等で構成される。本実施形態における蛍光体層11によると、量子ドット13の密度等を制御することにより、所望の屈折率n1等の物理特性を得ることができる。 In the present embodiment, the phosphor layer 11 is made of a nanocomposite material including the quantum dots 13 constituting the phosphor particles. The quantum dots 13 are made of, for example, CdSe, CuInS 2 or the like. According to the phosphor layer 11 in the present embodiment, desired physical characteristics such as the refractive index n1 can be obtained by controlling the density and the like of the quantum dots 13.
 低屈折率層12は、励起光を透過する各種材料(例えばPMMAやCA樹脂など)で構成される。低屈折率層12の屈折率n2は、例えば1.5であり、低屈折率層12の厚さTH2は、例えば72nmである。低屈折率層12は、ナノコンポジット材料で構成されてもよい。低屈折率層12は、本実施形態における物体層の一例である。 The low refractive index layer 12 is made of various materials that transmit excitation light (for example, PMMA, CA resin, etc.). The refractive index n2 of the low refractive index layer 12 is, for example, 1.5, and the thickness TH2 of the low refractive index layer 12 is, for example, 72 nm. The low refractive index layer 12 may be made of a nanocomposite material. The low refractive index layer 12 is an example of an object layer in the present embodiment.
 本実施形態に係る発光素子10においては、図2に示すように、蛍光体層11と低屈折率層12とが交互に複数、積層されている。積層された複数の蛍光体層11と複数の低屈折率層12とは、フォトニック結晶5を構成する。フォトニック結晶5における蛍光体層11の層数と低屈折率層12の層数とはそれぞれ、例えば10層以上であり、例えば数百層である。 In the light emitting device 10 according to this embodiment, as shown in FIG. 2, a plurality of phosphor layers 11 and low refractive index layers 12 are alternately stacked. The plurality of stacked phosphor layers 11 and the plurality of low refractive index layers 12 constitute a photonic crystal 5. The number of phosphor layers 11 and the number of low refractive index layers 12 in the photonic crystal 5 are, for example, 10 layers or more, for example, several hundred layers.
 本実施形態に係る発光素子10では、例えば上記のような厚さTH1,TH2及び屈折率n1,n2に設定された蛍光体層11と低屈折率層12とを周期的に配置したフォトニック結晶5の周期構造により、励起光の強度分布を制御し、光密度消光を低減する。フォトニック結晶5は、本実施形態における周期構造体の一例である。フォトニック結晶5の詳細については後述する。 In the light emitting device 10 according to the present embodiment, for example, a photonic crystal in which the phosphor layer 11 and the low refractive index layer 12 set to the above-described thicknesses TH1 and TH2 and refractive indexes n1 and n2 are periodically arranged. The periodic structure of 5 controls the intensity distribution of the excitation light and reduces the light density quenching. The photonic crystal 5 is an example of a periodic structure in the present embodiment. Details of the photonic crystal 5 will be described later.
 基板16は、例えばサファイア基板である。基板16は、蛍光体ホイール20(図1参照)における基材21の主面上に固定されてもよいし、基材21と一体的に構成されてもよい。 The substrate 16 is, for example, a sapphire substrate. The substrate 16 may be fixed on the main surface of the base material 21 in the phosphor wheel 20 (see FIG. 1), or may be configured integrally with the base material 21.
 ダイクロイックフィルタ17は誘電体多層膜であり、励起光(例えば青色光)を透過し、蛍光(例えば黄色光)を反射する光学特性を有する。ダイクロイックフィルタ17は、基板16の励起光の入射する面に設けられる。 The dichroic filter 17 is a dielectric multilayer film, and has an optical characteristic of transmitting excitation light (for example, blue light) and reflecting fluorescence (for example, yellow light). The dichroic filter 17 is provided on the surface of the substrate 16 where the excitation light is incident.
 [2.動作]
 本実施形態に係る発光装置2及び発光素子10の動作について以下に説明する。
[2. Operation]
Operations of the light emitting device 2 and the light emitting element 10 according to the present embodiment will be described below.
 本実施形態に係る発光装置2(図1参照)において、励起光源41は励起光を発光素子10に照射する。図2に示すように、励起光源41からの励起光は、発光素子10の-X側から+X向きに入射する。励起光は、発光素子10においてダイクロイックフィルタ17を透過し、フォトニック結晶5として複数、積層された蛍光体層11と低屈折率層12とを順次、通過するように伝播する。励起光は、蛍光体層11を伝播する度に蛍光体の量子ドット13に吸収されて、蛍光に変換される。 In the light emitting device 2 according to the present embodiment (see FIG. 1), the excitation light source 41 irradiates the light emitting element 10 with excitation light. As shown in FIG. 2, the excitation light from the excitation light source 41 is incident in the + X direction from the −X side of the light emitting element 10. The excitation light is transmitted through the dichroic filter 17 in the light emitting element 10 and propagates so as to sequentially pass through the phosphor layer 11 and the low refractive index layer 12 that are stacked as the photonic crystal 5. Each time the excitation light propagates through the phosphor layer 11, it is absorbed by the phosphor quantum dots 13 and converted into fluorescence.
 発光素子10における変換後の蛍光には、図2に示すように、+X向きのままで+X側から出射する光と、-X向きの蛍光でダイクロイックフィルタ17により反射され+X側から出射する光との2種類の光がある。すなわち、発光素子10は、-X側から入射した励起光に基づいて、+X側から透過させるように上記の変換後の光を出射する。発光装置2は、発光素子10から出射した蛍光(黄色光)を出力する。 As shown in FIG. 2, the converted fluorescence in the light emitting element 10 includes light that is emitted from the + X side while maintaining the + X direction, and light that is reflected by the dichroic filter 17 and emitted from the + X side in the −X direction. There are two types of light. That is, the light emitting element 10 emits the converted light so as to be transmitted from the + X side based on the excitation light incident from the −X side. The light emitting device 2 outputs fluorescence (yellow light) emitted from the light emitting element 10.
 [2-1.発光素子について]
 本実施形態に係る発光素子10は、以上のように発光装置2において励起光を蛍光に変換する際に、フォトニック結晶5の周期構造によって励起光の電場分布を制御する機能を有する。このような発光素子10の機能について、図3を用いて説明する。
[2-1. About Light Emitting Element]
The light emitting element 10 according to the present embodiment has a function of controlling the electric field distribution of the excitation light by the periodic structure of the photonic crystal 5 when the excitation light is converted into fluorescence in the light emitting device 2 as described above. The function of the light emitting element 10 will be described with reference to FIG.
 図3では、励起光が発光素子10に入射した際に、フォトニック結晶5の内部に分布する電場強度の空間分布を示している。以下、励起光は、X方向に伝播するTE波(Transverse Electric Wave)であり、電場の横波成分の振動方向がY方向であることとする。図3において、横軸はX方向の位置を示し、縦軸は電場のY成分Eyの強度(即ちTE波の光強度)を示している。 FIG. 3 shows a spatial distribution of the electric field intensity distributed inside the photonic crystal 5 when the excitation light enters the light emitting element 10. Hereinafter, the excitation light is a TE wave (Transverse 波 Electric Wave) propagating in the X direction, and the vibration direction of the transverse wave component of the electric field is the Y direction. In FIG. 3, the horizontal axis indicates the position in the X direction, and the vertical axis indicates the intensity of the Y component Ey of the electric field (that is, the light intensity of the TE wave).
 励起光は、発光素子10に入射すると、フォトニック結晶5の周期構造によって規定される光の分散関係に従って、励起光の周波数に対応する波数kxの波として分布する。この際、図3に示すように、励起光の電場強度の分布には、周期的なピーク(極大値)及びバレー(極小値)が形成される。ここで、励起光の電場強度のピーク近傍では、励起光の光強度が周囲よりも大きくなり、光密度消光の影響が大きいと考えられる。 When the excitation light is incident on the light emitting element 10, it is distributed as a wave having a wave number kx corresponding to the frequency of the excitation light in accordance with the light dispersion relationship defined by the periodic structure of the photonic crystal 5. At this time, as shown in FIG. 3, periodic peaks (maximum values) and valleys (minimum values) are formed in the electric field intensity distribution of the excitation light. Here, in the vicinity of the peak of the electric field intensity of the excitation light, the light intensity of the excitation light becomes larger than the surroundings, and it is considered that the influence of light density quenching is large.
 そこで、本実施形態では、フォトニック結晶5の内部における励起光の電場強度Eyの周期的なピークが、それぞれ低屈折率層12に位置するように、フォトニック結晶5を構成しておく。この際、各々の蛍光体層11には、例えば電場強度Eyの周期的なバレーが位置する(図3参照)。 Therefore, in the present embodiment, the periodic peaks of the electric field intensity Ey 2 of the excitation light inside the photonic crystal 5, to be located in the low refractive index layer 12, respectively, keep constituting the photonic crystal 5. At this time, for example, periodic valleys having an electric field intensity Ey 2 are located in each phosphor layer 11 (see FIG. 3).
 以上のような発光素子10によると、励起光を発光素子10に照射した際、発光素子10の内部では蛍光体層11における電場強度Eyがピーク値よりも低くなる。そのため、当該ピーク値で生じ得る光密度消光よりも、発光素子10中での光密度消光を低減することができる。これにより、励起光源41から出力する励起光の光強度を大きくした際に光密度消光による損失を減らして、発光装置2における励起光から蛍光への変換効率を良くすることができる。 According to the light emitting element 10 as described above, when the light emitting element 10 is irradiated with excitation light, the electric field intensity Ey 2 in the phosphor layer 11 becomes lower than the peak value inside the light emitting element 10. Therefore, the light density quenching in the light emitting element 10 can be reduced rather than the light density quenching that can occur at the peak value. Thereby, when the light intensity of the excitation light output from the excitation light source 41 is increased, loss due to light density quenching can be reduced, and the conversion efficiency from excitation light to fluorescence in the light emitting device 2 can be improved.
 [2-1-1.フォトニック結晶について]
 以上のような発光素子10の機能を実現するためのフォトニック結晶5の詳細について、図4を用いて説明する。
[2-1-1. About Photonic Crystal]
Details of the photonic crystal 5 for realizing the function of the light emitting element 10 as described above will be described with reference to FIG.
 図4は、発光素子10のフォトニック結晶5における光の分散関係を説明するためのグラフである。図4の横軸は、X方向における波数kxである。図4の縦軸は、波長λである。曲線C1,C2は、フォトニック結晶5における光の分散関係を示している。 FIG. 4 is a graph for explaining the light dispersion relationship in the photonic crystal 5 of the light-emitting element 10. The horizontal axis in FIG. 4 represents the wave number kx in the X direction. The vertical axis in FIG. 4 is the wavelength λ. Curves C <b> 1 and C <b> 2 indicate the light dispersion relationship in the photonic crystal 5.
 本実施形態に係る発光素子10(図2参照)では、蛍光体層11と低屈折率層12との周期構造により、フォトニック結晶5の内部において、光の分散関係が次式のように規定される。 In the light emitting device 10 according to the present embodiment (see FIG. 2), the light dispersion relationship is defined as follows in the photonic crystal 5 due to the periodic structure of the phosphor layer 11 and the low refractive index layer 12. Is done.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上式(1)において、aは蛍光体層11の厚さを表すパラメータであり、bは低屈折率層12の厚さを表すパラメータであり、cは(真空中又は空気中の)光速である。また、波数k1xは上式(2)のとおり蛍光体層11の屈折率n1と光の角振動数ω(光の周波数の2π倍)とに依存し、波数k2xは上式(3)のとおり低屈折率層12の屈折率n2と光の角振動数ωとに依存する。 In the above formula (1), a is a parameter representing the thickness of the phosphor layer 11, b is a parameter representing the thickness of the low refractive index layer 12, and c is the speed of light (in a vacuum or in air). is there. The wave number k1x depends on the refractive index n1 of the phosphor layer 11 and the angular frequency ω of light (2π times the light frequency) as shown in the above equation (2), and the wave number k2x is as shown in the above equation (3). It depends on the refractive index n2 of the low refractive index layer 12 and the angular frequency ω of light.
 式(1)は、X方向に伝播する電磁波の波動方程式(マクスウェル方程式)において、ブロッホの定理に基づきフォトニック結晶5の周期構造に対応する電磁波解を代入すると共に、誘電率をフーリエ級数展開すること等により得られる。 Equation (1) substitutes an electromagnetic wave solution corresponding to the periodic structure of the photonic crystal 5 based on Bloch's theorem in the wave equation (Maxwell's equation) of the electromagnetic wave propagating in the X direction, and expands the dielectric constant in a Fourier series. Can be obtained.
 フォトニック結晶5においては、式(1)に従って光の角振動数ωに対応する波数kxが複素数になり、実数で存在しない周波数区間、即ちフォトニックバンドギャップが生じる(図4参照)。フォトニック結晶5は、式(1)に基づきフォトニックバンドギャップ外の光の角振動数ωの光の分散関係を規定する第1及び第2フォトニックバンドを有する。 In the photonic crystal 5, the wave number kx corresponding to the angular frequency ω of light becomes a complex number according to the equation (1), and a frequency section that does not exist as a real number, that is, a photonic band gap is generated (see FIG. 4). The photonic crystal 5 has first and second photonic bands that define the dispersion relation of light having an angular frequency ω of light outside the photonic band gap based on the formula (1).
 第1フォトニックバンドは、フォトニック結晶5において上記のフォトニックバンドギャップ以下の光の角振動数ωと実数の波数kxとを対応付ける。第2フォトニックバンドは、同フォトニックバンドギャップ以上の光の角振動数ωと実数の波数kxとを対応付ける。 The first photonic band associates the angular frequency ω of light below the photonic band gap with the real wave number kx in the photonic crystal 5. The second photonic band associates the angular frequency ω of light equal to or greater than the photonic band gap with the real wave number kx.
 図4において、曲線C1は第1フォトニックバンドに対応する。また、曲線C2は第2フォトニックバンドに対応する。図4では、縦軸に波長λ(=2πc/ω)を用いているため、第1フォトニックバンドの曲線C1が、第2フォトニックバンドの曲線C2よりも上側にある。 In FIG. 4, curve C1 corresponds to the first photonic band. Curve C2 corresponds to the second photonic band. In FIG. 4, since the wavelength λ (= 2πc / ω) is used for the vertical axis, the curve C1 of the first photonic band is above the curve C2 of the second photonic band.
 第1フォトニックバンドの曲線C1の最小値は、第1フォトニックバンド側のフォトニックバンドエッジ(PBE)、即ち第1フォトニックバンドにおけるバンド端を表す。また、第2フォトニックバンドの曲線C2の最大値は、第2フォトニックバンド側のPBE、即ち第2フォトニックバンドにおけるバンド端を表す。 The minimum value of the curve C1 of the first photonic band represents the photonic band edge (PBE) on the first photonic band side, that is, the band edge in the first photonic band. The maximum value of the curve C2 of the second photonic band represents the PBE on the second photonic band side, that is, the band edge in the second photonic band.
 本実施形態では、発光装置2(図1参照)の励起光源41から照射する励起光の角振動数(或いは等価的に波長)と、第2フォトニックバンド側のPBEの近傍とが合致するように、フォトニック結晶5を構成する(図4参照)。PBEの近傍は、例えば、フォトニック結晶5による光の反射率の周波数スペクトルにおいて反射率が極小となる周波数位置であって、PBEに隣接する周波数位置を含む範囲内である。 In the present embodiment, the angular frequency (or equivalently the wavelength) of the excitation light irradiated from the excitation light source 41 of the light emitting device 2 (see FIG. 1) matches the vicinity of the PBE on the second photonic band side. Next, the photonic crystal 5 is formed (see FIG. 4). The vicinity of PBE is, for example, a frequency position at which the reflectance is minimized in the frequency spectrum of the reflectance of light by the photonic crystal 5 and is within a range including a frequency position adjacent to PBE.
 上記のフォトニック結晶5の構成によると、励起光がフォトニック結晶5内部に分布する場合に、上述のように、電場強度のピークが低屈折率層12に位置するようになる(図3参照)。このような構成は、式(1)に基づくPBE近傍の角振動数を、基準とする励起光の角振動数に合致させるように、蛍光体層11,低屈折率層12の厚さTH1,TH2及び屈折率n1,n2を設定することによって得られる。各種パラメータTH1,TH2,n1,n2の値は、式(1)から上記の関係が成立する範囲内で適宜、選択することができる。また、基準とする励起光の周波数を適宜、設定してもよい。 According to the configuration of the photonic crystal 5 described above, when excitation light is distributed inside the photonic crystal 5, the peak of the electric field intensity is located in the low refractive index layer 12 as described above (see FIG. 3). ). In such a configuration, the thickness TH1 of the phosphor layer 11 and the low refractive index layer 12 is set so that the angular frequency near the PBE based on the formula (1) matches the angular frequency of the excitation light as a reference. It is obtained by setting TH2 and refractive indexes n1 and n2. The values of the various parameters TH1, TH2, n1, and n2 can be appropriately selected from the formula (1) within the range where the above relationship is established. Further, the frequency of the excitation light used as a reference may be set as appropriate.
 また、励起光の角振動数が、PBE近傍において、反射率スペクトルが極小の角振動数位置付近となることにより、励起光を発光素子10に入射させる際の反射による損失を低減でき、励起光から蛍光への変換効率を良くすることができる。 Further, since the angular frequency of the excitation light is in the vicinity of the position of the minimum angular frequency in the vicinity of PBE, the loss due to reflection when the excitation light is incident on the light emitting element 10 can be reduced, and the excitation light The conversion efficiency from fluorescence to fluorescence can be improved.
 [2-2.シミュレーションについて]
 以上のようなフォトニック結晶5に基づく発光素子10に関して、本願発明者が行ったシミュレーションについて、図5を用いて説明する。
[2-2. About simulation]
With respect to the light emitting element 10 based on the photonic crystal 5 as described above, a simulation performed by the present inventor will be described with reference to FIG.
 図5は、発光素子10のフォトニック結晶5における電場の解析シミュレーションの結果を示すグラフである。図5において、横軸は、換算距離(cT[μm])を、時間Tおよび光速cを用いて表しており、縦軸は、電場強度Eyを任意単位で表している。 FIG. 5 is a graph showing the results of an electric field analysis simulation in the photonic crystal 5 of the light emitting element 10. 5, the horizontal axis, the converted distance (cT [μm]), represents using the time T and the speed of light c, the vertical axis represents the electric field intensity Ey 2 in arbitrary units.
 図5の解析シミュレーションでは、本実施形態に係る発光素子10のフォトニック結晶5に、励起光(TE波)を入射させた場合の電場の強度をFDTD(Finite-difference time-domain)法でシミュレーションした。この際、蛍光発光による励起光の減衰はないこととするという仮定を用いた。このようなフォトニック結晶5のシミュレーションモデルにおいて、透過光と、反射光と、蛍光体層11内部の所定位置を通過する光とについて、電場強度Eyの時間変化を数値計算すると、図5のような結果が得られた。 In the analysis simulation of FIG. 5, the intensity of the electric field when the excitation light (TE wave) is incident on the photonic crystal 5 of the light emitting element 10 according to the present embodiment is simulated by the FDTD (Finite-difference time-domain) method. did. At this time, the assumption that excitation light was not attenuated by fluorescence emission was used. In the simulation model of the photonic crystal 5, when the temporal change of the electric field intensity Ey 2 is numerically calculated for the transmitted light, the reflected light, and the light passing through a predetermined position inside the phosphor layer 11, FIG. The result was obtained.
 図5によると、蛍光体層11の内部では、励起光の電場強度Eyが、透過光の2割程度にまで低減されている。上記の仮定によると、フォトニック結晶5のシミュレーションモデルに入射した光は吸収されずに透過することとなる。このことから、図5における透過光の曲線は、本実施形態におけるフォトニック結晶5のような周期構造を用いない従来の蛍光体構造(例えばバルク構造)中で生じる電場強度Eyに対応すると考えられる。よって、本実施形態におけるフォトニック結晶5によると、蛍光体層11において、従来構造よりも励起光の光強度を低減できることが確認された。 According to FIG. 5, the electric field intensity Ey 2 of the excitation light is reduced to about 20% of the transmitted light inside the phosphor layer 11. According to the above assumption, the light incident on the simulation model of the photonic crystal 5 is transmitted without being absorbed. From this, it is considered that the transmitted light curve in FIG. 5 corresponds to the electric field intensity Ey 2 generated in the conventional phosphor structure (for example, bulk structure) that does not use the periodic structure like the photonic crystal 5 in the present embodiment. It is done. Therefore, according to the photonic crystal 5 in the present embodiment, it was confirmed that the light intensity of the excitation light can be reduced in the phosphor layer 11 as compared with the conventional structure.
 [3.効果等]
 以上のように、本実施形態に係る発光素子10は、予め設定された励起光に基づき蛍光を発光する。発光素子10は、蛍光体層11と、物体層としての低屈折率層12とを備える。蛍光体層11は、蛍光を発光する蛍光体の量子ドット13を含む。低屈折率層12は、蛍光体層11における屈折率n1とは異なる屈折率n2を有する。蛍光体層11と低屈折率層12とは、交互に複数、積層されている。積層された蛍光体層11及び低屈折率層12を含む周期構造体であるフォトニック結晶5において、励起光が入射した場合における電場の強度分布のピークが低屈折率層12に位置するように、蛍光体層11及び低屈折率層12が周期的に配置されている。
[3. Effect]
As described above, the light-emitting element 10 according to the present embodiment emits fluorescence based on preset excitation light. The light emitting element 10 includes a phosphor layer 11 and a low refractive index layer 12 as an object layer. The phosphor layer 11 includes phosphor quantum dots 13 that emit fluorescence. The low refractive index layer 12 has a refractive index n2 different from the refractive index n1 in the phosphor layer 11. A plurality of phosphor layers 11 and low refractive index layers 12 are alternately stacked. In the photonic crystal 5 that is a periodic structure including the phosphor layer 11 and the low refractive index layer 12 that are stacked, the peak of the electric field intensity distribution when the excitation light is incident is positioned in the low refractive index layer 12. The phosphor layer 11 and the low refractive index layer 12 are periodically arranged.
 以上の発光素子10によると、励起光が発光素子10に入射した際に、電場強度のピーク位置が蛍光体層11の外部になる。これにより、発光素子10に照射される励起光による光密度消光を低減することができる。 According to the above light emitting element 10, when excitation light is incident on the light emitting element 10, the peak position of the electric field intensity is outside the phosphor layer 11. Thereby, the optical density quenching by the excitation light irradiated to the light emitting element 10 can be reduced.
 本実施形態において、フォトニック結晶5は、フォトニックバンドギャップと、フォトニックバンドギャップに対応する周波数よりも小さい周波数を有する光の分散関係を規定する第1フォトニックバンドと、フォトニックバンドギャップに対応する周波数よりも大きい周波数を有する光の分散関係を規定する第2フォトニックバンドとを有する。このようなフォトニックバンド構造に基づいて、励起光の電場強度の分布を制御し、光密度消光を低減することができる。 In this embodiment, the photonic crystal 5 has a photonic band gap, a first photonic band that defines a dispersion relationship of light having a frequency smaller than a frequency corresponding to the photonic band gap, and a photonic band gap. A second photonic band defining a dispersion relationship of light having a frequency higher than the corresponding frequency. Based on such a photonic band structure, the distribution of the electric field intensity of the excitation light can be controlled, and light density quenching can be reduced.
 また、本実施形態において、低屈折率層12における屈折率n2は、蛍光体層11における屈折率n1よりも低い。第2フォトニックバンドにおけるフォトニックバンドエッジの角振動数が、励起光の角振動数近傍の角振動数を有する(図4参照)。具体的には、第2フォトニックバンドにおけるフォトニックバンドエッジの角振動数は、励起光の角振動数よりも低い。屈折率n2<屈折率n1の場合には、第2フォトニックバンド側のPBEを励起光の周波数近傍に設定することで、発光素子10における光密度消光を低減できる。 In this embodiment, the refractive index n2 in the low refractive index layer 12 is lower than the refractive index n1 in the phosphor layer 11. The angular frequency of the photonic band edge in the second photonic band has an angular frequency near the angular frequency of the excitation light (see FIG. 4). Specifically, the angular frequency of the photonic band edge in the second photonic band is lower than the angular frequency of the excitation light. When refractive index n2 <refractive index n1, light density quenching in the light emitting element 10 can be reduced by setting the PBE on the second photonic band side in the vicinity of the frequency of the excitation light.
 また、本実施形態では、周期構造体において、蛍光体層11と低屈折率層12とがそれぞれ、少なくとも10層積層される。これにより、周期構造体がフォトニック結晶5として機能し、電場強度の分布を制御できる。 In this embodiment, at least 10 layers of the phosphor layer 11 and the low refractive index layer 12 are laminated in the periodic structure. Thereby, the periodic structure functions as the photonic crystal 5 and the electric field intensity distribution can be controlled.
 また、本実施形態において、発光装置2は、発光素子10と、発光素子10に励起光を照射する励起光源41とを備える。発光素子10は、フォトニック結晶5を備える。フォトニック結晶5は、蛍光体層11と、蛍光体層11における屈折率n1よりも低い屈折率n2を有する低屈折率層12とを交互に複数、積層した周期構造体である。フォトニック結晶5は、第1フォトニックバンドと第2フォトニックバンドとを有する。励起光は、第2フォトニックバンドにおけるバンド端近傍の周波数を有する。 In this embodiment, the light emitting device 2 includes the light emitting element 10 and the excitation light source 41 that irradiates the light emitting element 10 with excitation light. The light emitting element 10 includes a photonic crystal 5. The photonic crystal 5 is a periodic structure in which a plurality of phosphor layers 11 and a plurality of low refractive index layers 12 having a refractive index n2 lower than the refractive index n1 in the phosphor layer 11 are alternately stacked. The photonic crystal 5 has a first photonic band and a second photonic band. The excitation light has a frequency near the band edge in the second photonic band.
 以上の発光装置2によると、蛍光を発光する発光素子10において、発光素子10に照射される励起光による光密度消光を低減することができる。 According to the light emitting device 2 described above, in the light emitting element 10 that emits fluorescence, it is possible to reduce light density quenching due to excitation light applied to the light emitting element 10.
 (変形例)
 実施形態1に係る発光素子10は、フォトニック結晶5を備えた。本開示に係る発光素子においては、フォトニック結晶5のような周期構造が部分的に設けられてもよい。この変形例について、図6を用いて説明する。
(Modification)
The light emitting element 10 according to the first embodiment includes a photonic crystal 5. In the light emitting device according to the present disclosure, a periodic structure like the photonic crystal 5 may be partially provided. This modification will be described with reference to FIG.
 図6は、実施形態1の変形例に係る発光素子10Aを説明するための図である。本変形例に係る発光素子10Aは、図6に示すように、フォトニック結晶5と、バルク構造6とを備える。バルク構造6は、例えばフォトニック結晶5の蛍光体層11と同様の材料、或いは同様の蛍光特性を有する材料で構成される。フォトニック結晶5は、バルク構造6の-X側(励起光の入射側)に積層される。 FIG. 6 is a view for explaining a light emitting element 10A according to a modification of the first embodiment. The light emitting element 10A according to this modification includes a photonic crystal 5 and a bulk structure 6, as shown in FIG. The bulk structure 6 is made of, for example, the same material as the phosphor layer 11 of the photonic crystal 5 or a material having the same fluorescence characteristics. The photonic crystal 5 is stacked on the −X side (excitation light incident side) of the bulk structure 6.
 発光装置2において、励起光による光密度消光は、発光素子10Aにおける励起光の入射側において顕著であると考えられる。そこで、本変形例に係る発光素子10Aでは、励起光の入射側にフォトニック結晶5を設け、残りの部分についてはバルク状の蛍光体(バルク構造6)を用いる。 In the light-emitting device 2, it is considered that light density quenching due to excitation light is significant on the incident side of excitation light in the light-emitting element 10A. Therefore, in the light emitting element 10A according to this modification, the photonic crystal 5 is provided on the incident side of the excitation light, and a bulk phosphor (bulk structure 6) is used for the remaining part.
 一例として、フォトニック結晶5において、蛍光体層11と低屈折率層12とがそれぞれ200層、積層され、1層当たりの蛍光体層11の厚さTH1が70nm、蛍光体の吸収率αが1000cm-1の場合について検討する。この場合、フォトニック結晶5における蛍光体層11の部分の厚さの合計は14μmになる。この場合、励起光の発光素子10Aへの入射前の光強度をI0とすると、励起光がフォトニック結晶5の内部を伝播した後の光強度は、次式のように計算できる。 As an example, in the photonic crystal 5, 200 layers of the phosphor layer 11 and the low refractive index layer 12 are laminated, the thickness TH1 of the phosphor layer 11 per layer is 70 nm, and the phosphor absorptance α is Consider the case of 1000 cm −1 . In this case, the total thickness of the portions of the phosphor layer 11 in the photonic crystal 5 is 14 μm. In this case, assuming that the light intensity of the excitation light before entering the light emitting element 10A is I0, the light intensity after the excitation light has propagated through the photonic crystal 5 can be calculated as follows.
 I0*exp(-0.0014*1000)=0.247*I0 …(4)
 上式(4)によると、フォトニック結晶5の内部を伝播した後の光強度は、約1/4倍に減衰している。よって、上記のようにフォトニック結晶5をバルク構造6の-X側に設けることで、励起光がフォトニック結晶5を通ってバルク構造6に入射する際に、励起光の光強度を約1/4倍にまで低減させることができる。
I0 * exp (−0.0014 * 1000) = 0.247 * I0 (4)
According to the above equation (4), the light intensity after propagating through the photonic crystal 5 is attenuated by about 1/4 times. Therefore, by providing the photonic crystal 5 on the −X side of the bulk structure 6 as described above, when the excitation light enters the bulk structure 6 through the photonic crystal 5, the light intensity of the excitation light is about 1 / 4 times.
 バルク構造6においては、励起光の光強度がフォトニック結晶5を介して低減されていることから、光密度消光の影響が抑制される。そのため、バルク構造6は、励起光を効率良く吸収して蛍光に変換することができる。バルク構造6の厚さは、フォトニック結晶5で低減された励起光の光強度を考慮して、当該励起光が充分に吸収されると想定される程度の厚さに適宜、設定することができる(例えば100μm~200μm)。 In the bulk structure 6, since the light intensity of the excitation light is reduced through the photonic crystal 5, the influence of light density quenching is suppressed. Therefore, the bulk structure 6 can efficiently absorb excitation light and convert it into fluorescence. The thickness of the bulk structure 6 can be set as appropriate in consideration of the light intensity of the excitation light reduced by the photonic crystal 5 to such a degree that the excitation light is assumed to be sufficiently absorbed. (For example, 100 μm to 200 μm).
 以上のように、本変形例に係る発光素子10Aは、蛍光を発光する蛍光体で構成されるバルク構造6をさらに備える。周期構造体であるフォトニック結晶5は、バルク構造6よりも励起光の入射側(-X側)に設けられる。これにより、フォトニック結晶5において光密度消光を低減し、バルク構造6においても効率良く励起光を蛍光に変換することができる。 As described above, the light emitting element 10A according to this modification further includes the bulk structure 6 made of a phosphor that emits fluorescence. The photonic crystal 5 that is a periodic structure is provided closer to the incident side (−X side) of the excitation light than the bulk structure 6. Thereby, light density quenching can be reduced in the photonic crystal 5, and excitation light can be efficiently converted into fluorescence even in the bulk structure 6.
 (他の実施形態)
 以上のように、本出願において開示する技術の例示として、実施形態1及びその変形例を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置換、付加、省略などを行った実施の形態にも適用可能である。また、上記各実施形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。そこで、以下、他の実施形態を例示する。
(Other embodiments)
As described above, the first embodiment and the modifications thereof have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, substitutions, additions, omissions, and the like are appropriately performed. Moreover, it is also possible to combine each component demonstrated by each said embodiment into a new embodiment. Accordingly, other embodiments will be exemplified below.
 上記の各実施形態では、透過型の蛍光体ホイール20における発光素子10について説明した。しかし、本開示に係る発光素子は、透過型に限らず、反射型の蛍光体ホイールにも適用することができる。図7を用いて、反射型の発光素子10Bについて説明する。 In each of the above embodiments, the light emitting element 10 in the transmissive phosphor wheel 20 has been described. However, the light emitting element according to the present disclosure is not limited to the transmission type, but can be applied to a reflection type phosphor wheel. The reflective light emitting element 10B will be described with reference to FIG.
 図7は、他の実施形態に係る発光素子10Bの構成を例示する図である。本例の発光素子10Bでは、実施形態1と同様の構成(図2参照)において、-X側に設けられた基板16及びダイクロイックフィルタ17が省略され、代わりに+X側に金属基板15及び接着層14が設けられる。金属基板15は、例えば銀等で構成され、発光素子10Bにおいて励起光の入射側(-X側)とは反対側(+X側)に、蛍光等の光を反射する反射面15aを有する。接着層14は、各種接着剤で構成され、フォトニック結晶5と金属基板15とを接着する。 FIG. 7 is a diagram illustrating the configuration of a light emitting device 10B according to another embodiment. In the light emitting element 10B of this example, the substrate 16 and the dichroic filter 17 provided on the −X side are omitted in the same configuration as that of the first embodiment (see FIG. 2), and instead the metal substrate 15 and the adhesive layer are disposed on the + X side. 14 is provided. The metal substrate 15 is made of, for example, silver, and has a reflective surface 15a that reflects light such as fluorescence on the side opposite to the incident side (−X side) of excitation light (+ X side) in the light emitting element 10B. The adhesive layer 14 is composed of various adhesives, and adheres the photonic crystal 5 and the metal substrate 15.
 本例の発光素子10Bにおいては、+X向きに伝播する光は、金属基板15の反射面15aにおいて反射し、-X向きに伝播する。このため、実施形態1と同様に-X側から励起光が+X向きに入射すると、励起光から変換された蛍光は、発光素子10の-X向きに出射する。発光素子10Bの反射面15aは、金属コーティング等によって形成されてもよい。 In the light emitting element 10B of this example, light propagating in the + X direction is reflected by the reflecting surface 15a of the metal substrate 15 and propagates in the -X direction. For this reason, as in the first embodiment, when the excitation light is incident in the + X direction from the −X side, the fluorescence converted from the excitation light is emitted in the −X direction of the light emitting element 10. The reflective surface 15a of the light emitting element 10B may be formed by a metal coating or the like.
 以上のように、本例の発光素子10Bには、励起光の入射側(-X側)とは反対側(+X側)に、光を反射する反射面15aがさらに設けられる。これにより、発光素子10Bは、入射した励起光を反射するように、変換後の蛍光を出射する。 As described above, the light emitting element 10B of this example is further provided with the reflecting surface 15a that reflects light on the side opposite to the excitation light incident side (−X side) (+ X side). Thereby, the light emitting element 10B emits the converted fluorescence so as to reflect the incident excitation light.
 上記の各実施形態では、発光素子10~10Bにおける物体層として低屈折率層12を用いた。本開示に係る発光素子において、物体層は、低屈折率層12に限らず、蛍光体層11の屈折率よりも高い屈折率を有する高屈折率層であってもよい。 In each of the above embodiments, the low refractive index layer 12 is used as the object layer in the light emitting elements 10 to 10B. In the light emitting device according to the present disclosure, the object layer is not limited to the low refractive index layer 12 and may be a high refractive index layer having a refractive index higher than that of the phosphor layer 11.
 この場合、第1フォトニックバンド側のPBEの近傍が励起光の角振動数に合致するように、蛍光体層11と高屈折率層との周期構造によるフォトニック結晶を構成する(図4参照)。これにより、当該フォトニック結晶において、励起光が入射した場合における電場の強度分布のピークが高屈折率層に位置するように設定することができる。 In this case, a photonic crystal having a periodic structure of the phosphor layer 11 and the high refractive index layer is configured so that the vicinity of the PBE on the first photonic band side matches the angular frequency of the excitation light (see FIG. 4). ). Thereby, in the said photonic crystal, when excitation light injects, it can set so that the peak of the intensity distribution of an electric field may be located in a high refractive index layer.
 以上のように、物体層における屈折率は、蛍光体層11における屈折率よりも高くてもよい。この場合、第1フォトニックバンドにおけるフォトニックバンドエッジの角振動数が、励起光の角振動数近傍の角振動数である。具体的には、第1フォトニックバンドにおけるフォトニックバンドエッジの角振動数は、励起光の角振動数よりも高い。これにより、高屈折率層を用いて発光素子10における光密度消光を低減できる。 As described above, the refractive index in the object layer may be higher than the refractive index in the phosphor layer 11. In this case, the angular frequency of the photonic band edge in the first photonic band is an angular frequency near the angular frequency of the excitation light. Specifically, the angular frequency of the photonic band edge in the first photonic band is higher than the angular frequency of the excitation light. Thereby, the optical density quenching in the light emitting element 10 can be reduced using a high refractive index layer.
 また、上記の各実施形態では、発光素子10~10Bにおいて、蛍光体層11における蛍光体として量子ドットを用いた。本開示において、蛍光体層等における蛍光体は特に量子ドットに限らず、種々の蛍光体材料を用いてもよく、例えばYAG等であってもよい。 Further, in each of the above embodiments, quantum dots are used as the phosphors in the phosphor layer 11 in the light emitting elements 10 to 10B. In the present disclosure, the phosphor in the phosphor layer or the like is not limited to the quantum dot, and various phosphor materials may be used, for example, YAG.
 また、上記の各実施形態では、発光装置2が青色光の励起光を蛍光に変換して黄色光を出力する例を説明した。本開示に係る発光装置はこれに限定されない。例えば、発光装置は、青色光の励起光の一部を黄色光に変換し、残りの青色光を併せて白色光を生成してもよい。この場合、プロジェクタ1において、別途の青色光源を省略することができる。 In each of the above embodiments, the example in which the light emitting device 2 converts the excitation light of blue light into fluorescence and outputs yellow light has been described. The light emitting device according to the present disclosure is not limited to this. For example, the light emitting device may convert part of the excitation light of blue light into yellow light and generate white light by combining the remaining blue light. In this case, a separate blue light source can be omitted in the projector 1.
 また、本開示において、励起光は、青色光に限らず、種々の波長帯の光であってもよい。また、蛍光も、黄色光に限らず、種々の波長帯の光であってもよい。以上のように、本開示に係る発光装置は、種々の励起光に基づき各種の光を出力してもよい。 In the present disclosure, the excitation light is not limited to blue light, and may be light in various wavelength bands. Further, the fluorescence is not limited to yellow light, and may be light in various wavelength bands. As described above, the light emitting device according to the present disclosure may output various types of light based on various types of excitation light.
 また、上記の各実施形態では、発光装置2をプロジェクタ1に適用する適用例について説明した。本開示に係る発光装置はプロジェクタ1に限らず、励起光に基づく蛍光発光を用いる種々の技術に適用可能である。 In each of the above embodiments, the application example in which the light emitting device 2 is applied to the projector 1 has been described. The light-emitting device according to the present disclosure is not limited to the projector 1 and can be applied to various technologies using fluorescence emission based on excitation light.
 また、上記の各実施形態では、発光装置2は、蛍光体ホイール20に組み込まれた発光素子10を備えた。本開示に係る発光装置は、特に蛍光体ホイールに組み込まれずに、本開示に係る発光素子を備えてもよい。例えば発光素子の冷却が特に必要でない場合や他の機構によって冷却可能な場合など、発光装置2において回転装置22が省略されてもよい。 In each of the above embodiments, the light emitting device 2 includes the light emitting element 10 incorporated in the phosphor wheel 20. The light emitting device according to the present disclosure may include the light emitting element according to the present disclosure without being incorporated in the phosphor wheel. For example, the rotating device 22 may be omitted from the light emitting device 2 when the light emitting element is not particularly required to be cooled or when it can be cooled by another mechanism.
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。 As described above, the embodiments have been described as examples of the technology in the present disclosure. For this purpose, the accompanying drawings and detailed description are provided.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 Accordingly, among the components described in the accompanying drawings and the detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the above technique. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において、種々の変更、置換、付加、省略などを行うことができる。 In addition, since the above-described embodiments are for illustrating the technique in the present disclosure, various modifications, substitutions, additions, omissions, and the like can be made within the scope of the claims or an equivalent scope thereof.
 本開示は、励起光に基づく蛍光発光を用いる種々の技術に適用可能であり、例えばプロジェクタに適用可能である。 The present disclosure can be applied to various technologies using fluorescence emission based on excitation light, for example, a projector.
  10,10A,10B  発光素子
  11  蛍光体層
  12  低屈折率層(物体層)
  13  量子ドット
  2  発光装置
  41  励起光源
  5  フォトニック結晶(周期構造体)
10, 10A, 10B Light emitting element 11 Phosphor layer 12 Low refractive index layer (object layer)
13 Quantum dot 2 Light emitting device 41 Excitation light source 5 Photonic crystal (periodic structure)

Claims (8)

  1.  励起光に基づき蛍光を発光する発光素子であって、
     前記蛍光を発光する蛍光体を含んだ複数の蛍光体層と、前記複数の蛍光体層における屈折率とは異なる屈折率を有する複数の物体層とを含む周期構造体を備え、
     前記周期構造体に前記励起光が入射した場合における、前記励起光の電場の強度分布の複数のピークが前記複数の物体層に位置するように、前記複数の蛍光体層及び前記複数の物体層が交互に周期的に積層された
    発光素子。
    A light-emitting element that emits fluorescence based on excitation light,
    A periodic structure including a plurality of phosphor layers containing a phosphor that emits fluorescence, and a plurality of object layers having a refractive index different from the refractive index of the plurality of phosphor layers;
    The plurality of phosphor layers and the plurality of object layers so that the plurality of peaks of the intensity distribution of the electric field of the excitation light are located in the plurality of object layers when the excitation light is incident on the periodic structure. A light emitting device in which are alternately and periodically stacked.
  2.  前記周期構造体は、フォトニックバンドギャップと、前記フォトニックバンドギャップに対応する周波数よりも小さい周波数を有する光の分散関係を規定する第1フォトニックバンドと、前記フォトニックバンドギャップに対応する周波数よりも大きい周波数を有する光の分散関係を規定する第2フォトニックバンドとを有する
    請求項1に記載の発光素子。
    The periodic structure includes a photonic band gap, a first photonic band that defines a dispersion relationship of light having a frequency smaller than a frequency corresponding to the photonic band gap, and a frequency corresponding to the photonic band gap. The light-emitting element according to claim 1, further comprising: a second photonic band that defines a dispersion relationship of light having a larger frequency.
  3.  前記複数の物体層における屈折率は、前記複数の蛍光体層における屈折率よりも低く、
     前記第2フォトニックバンドにおけるフォトニックバンドエッジの角振動数は、前記励起光の角振動数よりも低い
    請求項2に記載の発光素子。
    The refractive index in the plurality of object layers is lower than the refractive index in the plurality of phosphor layers,
    The light emitting device according to claim 2, wherein an angular frequency of a photonic band edge in the second photonic band is lower than an angular frequency of the excitation light.
  4.  前記複数の物体層における屈折率は、前記複数の蛍光体層における屈折率よりも高く、
     前記第1フォトニックバンドにおけるフォトニックバンドエッジの角振動数は、前記励起光の角振動数よりも高い
    請求項2に記載の発光素子。
    The refractive index in the plurality of object layers is higher than the refractive index in the plurality of phosphor layers,
    The light emitting device according to claim 2, wherein an angular frequency of a photonic band edge in the first photonic band is higher than an angular frequency of the excitation light.
  5.  前記蛍光を発光する蛍光体で構成されるバルク構造をさらに備え、
     前記周期構造体は、前記バルク構造よりも前記励起光の入射側に設けられる
    請求項1~4のいずれか1項に記載の発光素子。
    It further comprises a bulk structure composed of phosphors that emit fluorescence.
    The light-emitting element according to any one of claims 1 to 4, wherein the periodic structure is provided closer to the incident side of the excitation light than the bulk structure.
  6.  前記励起光の入射側とは反対側に、光を反射する反射面をさらに備えた
    請求項1~5のいずれか1項に記載の発光素子。
    6. The light emitting device according to claim 1, further comprising a reflection surface that reflects light on a side opposite to the incident side of the excitation light.
  7.  前記複数の蛍光体層は、少なくとも10層の蛍光体層を含み、
     前記複数の物体層は、少なくとも10層の物体層を含む
    請求項1~6のいずれか1項に記載の発光素子。
    The plurality of phosphor layers include at least 10 phosphor layers;
    The light emitting device according to any one of claims 1 to 6, wherein the plurality of object layers include at least 10 object layers.
  8.  請求項1~7のいずれか1項に記載の発光素子と、
     前記発光素子に前記励起光を照射する励起光源と
    を備えた発光装置。
    A light emitting device according to any one of claims 1 to 7,
    A light emitting device comprising: an excitation light source that irradiates the light emitting element with the excitation light.
PCT/JP2017/037787 2017-03-28 2017-10-19 Light-emitting element and light-emitting device WO2018179540A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017063556A JP2020095065A (en) 2017-03-28 2017-03-28 Light-emitting element and light-emitting device
JP2017-063556 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018179540A1 true WO2018179540A1 (en) 2018-10-04

Family

ID=63674792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037787 WO2018179540A1 (en) 2017-03-28 2017-10-19 Light-emitting element and light-emitting device

Country Status (2)

Country Link
JP (1) JP2020095065A (en)
WO (1) WO2018179540A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021187323A (en) 2020-05-29 2021-12-13 株式会社シマノ Drive unit for man-power-driven vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166717A (en) * 1999-12-07 2001-06-22 Canon Inc Fluorescent sheet and its manufacturing method
WO2013024558A1 (en) * 2011-08-15 2013-02-21 パナソニック株式会社 Fluorescent optical element and light-emitting device using same
JP2016143658A (en) * 2015-02-05 2016-08-08 シャープ株式会社 Light emitting element and display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166717A (en) * 1999-12-07 2001-06-22 Canon Inc Fluorescent sheet and its manufacturing method
WO2013024558A1 (en) * 2011-08-15 2013-02-21 パナソニック株式会社 Fluorescent optical element and light-emitting device using same
JP2016143658A (en) * 2015-02-05 2016-08-08 シャープ株式会社 Light emitting element and display device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU YUXIN ET AL.: "Multifunctional Reversible Fluorescent Controller Based on a One-Dimensional Photonic Crystal", ACS APPLIED MATERIALS & INERFACES, vol. 8, no. 42, 27 September 2016 (2016-09-27), pages 28844 - 28852, XP055613166 *

Also Published As

Publication number Publication date
JP2020095065A (en) 2020-06-18

Similar Documents

Publication Publication Date Title
US9874741B2 (en) Wavelength conversion element, light source device, and projector
US10061188B2 (en) Illumination system and projection apparatus having reflection cover
KR101621118B1 (en) Luminous means and projector comprising at least one luminous means of this type
KR102088741B1 (en) Light-emitting device and projection system
JP5664657B2 (en) Optical element, light source, and projection display device
US20140022818A1 (en) Optical element, illumination device, and projection display device
WO2012066654A1 (en) Light source apparatus, lighting apparatus, and projection-type display apparatus
WO2019097817A1 (en) Fluorescent light source device
US20180052386A1 (en) Wavelength conversion element, light source device, and projector
US20170052362A1 (en) Phosphor wheel and wavelength converting device applying the same
JP2015138168A (en) Fluorescence emitting element and projector
US20150153508A1 (en) Light source device and display device
JP2023088975A (en) Light-emitting element, light source device, and projector
WO2013175706A1 (en) Optical element, light-emitting device, and projection device
WO2018179540A1 (en) Light-emitting element and light-emitting device
WO2013132813A1 (en) Optical element, optical device, and display device
US20190064644A1 (en) Wavelength conversion element, wavelength conversion system, light source apparatus, and projector
JP2018147703A (en) Light source device
WO2012120738A1 (en) Light source, and projection display device using light source
WO2014010200A1 (en) Optical element, optical device, and display device
US20130242533A1 (en) Method and apparatus for a color filter
JP6451480B2 (en) Road marking structure and road marking system
JP5491571B2 (en) Projection display
WO2013175752A1 (en) Wavelength conversion member, optical element, light-emitting device, and projection device
JP2018045799A (en) Light emitting element, light source device and image projection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP