WO2018179512A1 - Plaque d'acier haute résistance pour tuyau de canalisation résistant à l'acidité, son procédé de fabrication, et tuyau en acier haute résistance utilisant une plaque d'acier haute résistance pour tuyau de canalisation résistant à l'acidité - Google Patents

Plaque d'acier haute résistance pour tuyau de canalisation résistant à l'acidité, son procédé de fabrication, et tuyau en acier haute résistance utilisant une plaque d'acier haute résistance pour tuyau de canalisation résistant à l'acidité Download PDF

Info

Publication number
WO2018179512A1
WO2018179512A1 PCT/JP2017/034800 JP2017034800W WO2018179512A1 WO 2018179512 A1 WO2018179512 A1 WO 2018179512A1 JP 2017034800 W JP2017034800 W JP 2017034800W WO 2018179512 A1 WO2018179512 A1 WO 2018179512A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
less
temperature
strength
steel sheet
Prior art date
Application number
PCT/JP2017/034800
Other languages
English (en)
Japanese (ja)
Inventor
横田 智之
純二 嶋村
周作 太田
雄太 田村
上岡 悟史
長谷 和邦
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to BR112019019696-0A priority Critical patent/BR112019019696B1/pt
Priority to KR1020197030659A priority patent/KR20190129957A/ko
Priority to JP2018564992A priority patent/JP6521197B2/ja
Priority to KR1020217029889A priority patent/KR102478368B1/ko
Priority to CN201780089150.6A priority patent/CN110462080B/zh
Priority to EP17903712.2A priority patent/EP3604584B1/fr
Publication of WO2018179512A1 publication Critical patent/WO2018179512A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0231Warm rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention is suitable for use in line pipes in the fields of architecture, offshore structures, shipbuilding, civil engineering, and construction industrial machines, and is a high-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacture. It is about the method.
  • the present invention also relates to a high-strength steel pipe using the above-described high-strength steel plate for sour line pipes.
  • a line pipe is manufactured by forming a steel plate manufactured by a thick plate mill or a hot rolling mill into a steel pipe by UOE forming, press bend forming, roll forming, or the like.
  • line pipes used for transporting crude oil and natural gas containing hydrogen sulfide are resistant to hydrogen induced cracking (HIC (Hydrogen Induced Cracking)) and sulfides in addition to strength, toughness and weldability.
  • So-called sour resistance such as stress corrosion cracking resistance (SSCC (Sulfide-Stress-Corrosion-Cracking) resistance) is required.
  • SSCC stress corrosion cracking resistance
  • HIC hydrogen ions from the corrosion reaction are adsorbed on the steel surface, penetrate into the steel as atomic hydrogen, and diffuse and accumulate around non-metallic inclusions such as MnS and hard second-phase structures in the steel.
  • TMCP Thermo-Mechanical Control Process
  • TMCP Thermo-Mechanical Control Process
  • it is effective to increase the cooling rate during controlled cooling.
  • controlled cooling is performed at a high cooling rate, the surface layer portion of the steel sheet is rapidly cooled, so that the hardness of the surface layer portion is higher than that inside the steel plate, and the hardness distribution in the thickness direction varies. Therefore, it becomes a problem from the viewpoint of ensuring the material uniformity in the steel plate.
  • Patent Documents 1 and 2 in the sheet thickness direction, by performing controlled cooling at a high cooling rate to reheat the surface after rolling, before the surface layer portion completes the bainite transformation A method of manufacturing a steel sheet having a small material difference is disclosed.
  • Patent Documents 3 and 4 disclose a method for manufacturing a steel plate for a line pipe, which uses a high-frequency induction heating device to heat the steel plate surface after accelerated cooling to a higher temperature from the inside to reduce the hardness of the surface layer portion. Has been.
  • Patent Documents 5 and 6 disclose a method for improving the steel plate shape by reducing the uneven cooling due to the uneven thickness of the scale by performing descaling immediately before the cooling.
  • Japanese Patent No. 3951428 Japanese Patent No. 3951429 JP 2002-327212 A Japanese Patent No. 3711896 JP-A-9-57327 Japanese Patent No. 3796133
  • the high-strength steel sheets obtained by the production methods described in Patent Documents 1 to 6 may have room for improvement in terms of SSCC resistance under a more severe corrosive environment. found. The reason is as follows.
  • Patent Documents 1 and 2 if the transformation behavior differs depending on the steel plate components, the effect of sufficient material homogenization by recuperation may not be obtained.
  • the structure in the surface layer of the steel sheet obtained by the manufacturing method described in Patent Documents 1 and 2 is a multiphase structure such as a ferrite-bainite two-phase structure, in the low load micro Vickers test, the indenter has any structure. The hardness value varies greatly depending on whether or not the test is performed.
  • Patent Documents 5 and 6 improve the steel sheet shape by descaling to reduce surface quality defects due to indentation of the scale during hot correction and to reduce variation in the cooling stop temperature of the steel sheet.
  • the cooling conditions for obtaining a uniform material no consideration is given to the cooling conditions for obtaining a uniform material. This is because if the cooling rate of the steel sheet surface varies, the hardness of the steel sheet varies. That is, when the cooling rate is slow, when the steel sheet surface cools, a film of bubbles is generated between the steel sheet surface and the cooling water, and the film is separated from the surface by the cooling water before the bubbles form the film. "Nucleate boiling" occurs simultaneously, and the cooling rate of the steel sheet surface varies. As a result, the hardness of the steel sheet surface varies. This is not considered in the techniques described in Patent Documents 5 and 6.
  • the present invention provides a high-strength steel sheet for sour line pipes that is excellent not only in HIC resistance but also in SSCC resistance under more severe corrosive environments, together with its advantageous manufacturing method. With the goal.
  • Another object of the present invention is to propose a high-strength steel pipe using the high-strength steel sheet for sour-resistant pipes.
  • the present inventors repeated numerous experiments and examinations on the component composition, microstructure, and manufacturing conditions of the steel material in order to ensure the SSCC resistance under a more severe corrosive environment.
  • the structure of the extreme surface layer portion of the steel sheet specifically the steel sheet surface
  • the increase in hardness can be reduced in the coating process after pipe forming. It has been found that the SSCC resistance of the steel pipe is improved as a result.
  • the present invention has been made based on this finding.
  • the gist configuration of the present invention is as follows. [1] By mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.50 to 1.80%, P: 0.001 to 0.015% , S: 0.0002 to 0.0015%, Al: 0.01 to 0.08% and Ca: 0.0005 to 0.005%, with the balance being composed of Fe and inevitable impurities
  • the steel structure at 0.5 mm below the steel sheet surface is a bainite structure having a dislocation density of 1.0 ⁇ 10 14 to 7.0 ⁇ 10 14 (m ⁇ 2 ),
  • the variation in Vickers hardness at 0.5 mm below the steel sheet surface is 30 HV or less at 3 ⁇ when the standard deviation is ⁇ .
  • a high-strength steel sheet for sour line pipes characterized by having a tensile strength of 520 MPa or more.
  • the component composition was further selected by mass% from Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, and Mo: 0.50% or less.
  • the component composition further includes, in mass%, Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, Ti: 0.005 to 0.1%, Zr: 0 [1] or above containing one or more selected from 0005 to 0.02%, Mg: 0.0005 to 0.02%, and REM: 0.0005 to 0.02%
  • Nb 0.005 to 0.1%
  • V 0.005 to 0.1%
  • Ti 0.005 to 0.1%
  • Zr 0 [1] or above containing one or more selected from 0005 to 0.02%
  • Mg 0.0005 to 0.02%
  • REM 0.0005 to 0.02%
  • the high-strength steel sheet for sour-resistant pipes according to [2].
  • the component composition is further selected by mass% from Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, and Mo: 0.50% or less.
  • the component composition further includes, in mass%, Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, Ti: 0.005 to 0.1%, Zr: 0 [5] above, containing one or more selected from .0005 to 0.02%, Mg: 0.0005 to 0.02%, and REM: 0.0005 to 0.02% [5]
  • Nb 0.005 to 0.1%
  • V 0.005 to 0.1%
  • Ti 0.005 to 0.1%
  • Zr 0 [5] above
  • Mg 0.0005 to 0.02%
  • REM 0.0005 to 0.02%
  • the high-strength steel plate for sour line pipe and the high-strength steel pipe using the high-strength steel plate for sour line pipe of the present invention are excellent not only in HIC resistance but also in SSCC resistance under more severe corrosive environment.
  • a high-strength steel sheet for sour line pipes that is excellent not only in HIC resistance but also in SSCC resistance under more severe corrosive environments. Can be manufactured.
  • C 0.02 to 0.08% C contributes effectively to improving the strength, but if the content is less than 0.02%, sufficient strength cannot be ensured. On the other hand, if it exceeds 0.08%, the hardness of the surface layer portion and the center segregation portion is reduced during accelerated cooling. Therefore, SSCC resistance and HIC resistance deteriorate. In addition, toughness deteriorates. For this reason, the C content is limited to a range of 0.02 to 0.08%.
  • Si 0.01 to 0.50% Si is added for deoxidation, but if the content is less than 0.01%, the deoxidation effect is not sufficient. On the other hand, if it exceeds 0.50%, the toughness and weldability are deteriorated. It is limited to the range of 01 to 0.50%.
  • Mn 0.50 to 1.80% Mn contributes effectively to the improvement of strength and toughness, but if the content is less than 0.50%, the effect of addition is poor, while if it exceeds 1.80%, the hardness of the surface layer part and the center segregation part during accelerated cooling Increases, the SSCC resistance and the HIC resistance deteriorate. Moreover, weldability also deteriorates. For this reason, the amount of Mn is limited to the range of 0.50 to 1.80%.
  • P 0.001 to 0.015%
  • P is an inevitable impurity element, and deteriorates the weldability and also increases the hardness of the center segregation part to deteriorate the HIC resistance. Since the tendency will become remarkable when it exceeds 0.015%, an upper limit is prescribed
  • S 0.0002 to 0.0015%
  • S is an unavoidable impurity element, and is preferably MnS inclusion in the steel, so that the HIC resistance is degraded. The lower the content, the better, but 0.0002% or more from the viewpoint of refining costs.
  • Al 0.01 to 0.08% Al is added as a deoxidizer, but if it is less than 0.01%, there is no effect of addition. On the other hand, if it exceeds 0.08%, the cleanliness of the steel is lowered and the toughness is deteriorated. It is limited to the range of 01 to 0.08%.
  • Ca 0.0005 to 0.005%
  • Ca is an element effective for improving the HIC resistance by controlling the form of sulfide inclusions, but if it is less than 0.0005%, the effect of addition is not sufficient. On the other hand, if it exceeds 0.005%, not only the effect is saturated, but also the HIC resistance is deteriorated due to a decrease in the cleanliness of the steel, so the Ca content is limited to the range of 0.0005 to 0.005%. .
  • the component composition of the present disclosure may be one or more selected from Cu, Ni, Cr, and Mo in order to further improve the strength and toughness of the steel sheet. Can be optionally contained within the following range.
  • Cu 0.50% or less Cu is an element effective for improving toughness and increasing strength. To obtain this effect, it is preferable to contain 0.05% or more, but if the content is too large, welding is performed. When Cu is added, the upper limit is 0.50%.
  • Ni 0.50% or less
  • Ni is an element effective for improving toughness and increasing strength. To obtain this effect, it is preferable to contain 0.05% or more, but if the content is too large, it is economical. This is not only disadvantageous, but also the toughness of the weld heat affected zone deteriorates. Therefore, when Ni is added, the upper limit is 0.50%.
  • Cr 0.50% or less Cr, like Mn, is an element effective for obtaining sufficient strength even at low C. To obtain this effect, it is preferable to contain 0.05% or more. If the amount is too large, the hardenability becomes excessive, so that the dislocation density described later increases and the SSCC resistance deteriorates. Moreover, weldability also deteriorates. For this reason, when adding Cr, 0.50% is made the upper limit.
  • Mo 0.50% or less Mo is an element effective for improving toughness and increasing strength. To obtain this effect, it is preferable to contain 0.05% or more, but if the content is too large, Since the hardenability becomes excessive, the dislocation density described later increases, and the SSCC resistance deteriorates. Moreover, weldability also deteriorates. For this reason, when Mo is added, the upper limit is 0.50%.
  • the component composition of the present disclosure may further contain one or more selected from Nb, V and Ti within the following ranges.
  • Nb 0.005 to 0.1%
  • V 0.005 to 0.1%
  • Ti 0.005 to 0.1%
  • Zr 0.0005 to 0.02%
  • Mg 0.0005 to One or more selected from 0.02% and REM: 0.0005 to 0.02%
  • Nb, V, and Ti are all optionally added to increase the strength and toughness of the steel sheet. It is an element that can When the content of each element is less than 0.005%, the effect of addition is poor. On the other hand, when the content exceeds 0.1%, the toughness of the welded portion deteriorates. It is preferable to be in the range.
  • Zr, Mg, and REM are elements that can be optionally added to increase toughness through crystal grain refinement or to improve crack resistance through control of inclusion physical properties. Any of these elements has a poor effect of addition when the content is less than 0.0005%, while the effect is saturated when the content exceeds 0.02%. A range of 02% is preferable.
  • This disclosure discloses a technique for improving the SSCC resistance of a high-strength steel pipe using a high-strength steel plate for sour line pipes.
  • the sour-proof performance is not limited to HIC resistance. It is necessary to satisfy simultaneously.
  • the CP value is an expression devised for estimating the material of the center segregation part from the content of each alloy element.
  • the higher the CP value of the above formula (1) the higher the component concentration of the center segregation part. Increases and the hardness of the central segregation part increases. Therefore, it is possible to suppress the occurrence of cracks in the HIC test by setting the CP value obtained in the above equation (1) to 1.00 or less. Further, the lower the CP value, the lower the hardness of the center segregation part. Therefore, when higher HIC resistance is required, the upper limit may be set to 0.95.
  • N is an element inevitably contained in the steel, but if the content is 0.007% or less, preferably 0.006% or less, it is acceptable in the present invention.
  • the steel structure of the high-strength steel sheet for sour line pipes In order to increase the tensile strength of 520 MPa or more, the steel structure needs to be a bainite structure.
  • a hard phase such as martensite or island martensite (MA)
  • the surface layer hardness is increased, the hardness variation in the steel sheet is increased, and the material uniformity is inhibited.
  • the steel structure of the surface layer portion is a bainite structure.
  • the bainite structure includes a structure called bainitic ferrite or granular ferrite that transforms during or after accelerated cooling that contributes to transformation strengthening.
  • bainitic ferrite or granular ferrite that transforms during or after accelerated cooling that contributes to transformation strengthening.
  • different types of structures such as ferrite, martensite, pearlite, island-like martensite, and retained austenite
  • the strength decreases, the toughness deteriorates, and the surface hardness increases.
  • the smaller the fraction the better.
  • the volume fraction of the structure other than the bainite phase is sufficiently low, the influence thereof can be ignored, so that a certain amount is acceptable.
  • the structure of the extreme surface layer portion of the steel sheet specifically, the steel structure of 0.5 mm below the steel sheet surface, the dislocation density of 1. It is important to have a bainite structure of 0 ⁇ 10 14 to 7.0 ⁇ 10 14 (m ⁇ 2 ). Since the dislocation density decreases in the coating process after pipe forming, if the dislocation density 0.5 mm below the steel sheet surface is 7.0 ⁇ 10 14 (m ⁇ 2 ) or less, the increase in hardness due to age hardening is minimized. To the limit.
  • dislocation density of 0.5 mm below the steel sheet surface exceeds 7.0 ⁇ 10 14 (m ⁇ 2 )
  • the dislocation density does not decrease in the coating process after pipe forming, and the hardness increases greatly by age hardening.
  • a preferable range of dislocation density is 6.0 ⁇ 10 14 (m ⁇ 2 ) or less.
  • the dislocation density 0.5 mm below the steel sheet surface is less than 1.0 ⁇ 10 14 (m ⁇ 2 )
  • the strength of the steel sheet cannot be maintained.
  • the dislocation density in the steel structure 0.5 mm below the steel sheet surface is in the above range, the extreme surface layer part in the range of 0.5 mm depth from the steel sheet surface also has an equivalent dislocation density. As a result, the effect of improving the SSCC resistance can be obtained.
  • HV0.1 at 0.5 mm below the surface is 230 or less. From the viewpoint of securing the SSCC resistance of the steel pipe, it is important to suppress the surface hardness of the steel sheet. However, by setting the HV0.1 at 0.5 mm below the surface of the steel sheet to 230 or less, coating after pipe forming After the process, HV0.1 at 0.5 mm below the surface can be suppressed to 260 or less, and SSCC resistance can be ensured.
  • the Vickers hardness variation at 0.5 mm below the steel sheet surface is 30 HV or less at 3 ⁇ when the standard deviation is ⁇ .
  • 3 ⁇ at the time of measuring Vickers hardness at 0.5 mm below the steel sheet surface exceeds 30 HV, the hardness variation in the extreme surface layer of the steel sheet, that is, the presence of a local high hardness site in the extreme surface layer, This is because the SSCC resistance deteriorates starting from.
  • the high-strength steel sheet of the present disclosure is a steel pipe steel sheet having an API 5L X60 grade or higher strength, it has a tensile strength of 520 MPa or higher.
  • the manufacturing method of this indication heats the steel slab which has the said component composition, Then, it hot-rolls into a steel plate, and performs the controlled cooling on predetermined conditions with respect to the said steel plate after that.
  • slab heating temperature 1000-1300 ° C If the slab heating temperature is less than 1000 ° C., the required strength cannot be obtained due to insufficient solid solution of the carbide. On the other hand, if the slab heating temperature exceeds 1300 ° C., the toughness deteriorates, so the slab heating temperature is set to 1000 to 1300 ° C. This temperature is the furnace temperature of the heating furnace, and the slab is heated to this temperature up to the center.
  • the rolling end temperature at the steel sheet surface temperature is the required base material toughness and rolling. It is necessary to set in consideration of efficiency. From the viewpoint of improving strength and HIC resistance, it is preferable that the rolling end temperature is not less than the Ar 3 transformation point at the steel sheet surface temperature.
  • the Ar 3 transformation point means a ferrite transformation start temperature during cooling, and can be obtained from the steel components by the following formula, for example.
  • austenite non-recrystallization temperature range be 60% or more.
  • surface temperature of a steel plate can be measured with a radiation thermometer or the like.
  • Ar 3 (° C.) 910-310 [% C] -80 [% Mn] -20 [% Cu] -15 [% Cr] -55 [% Ni] -80 [% Mo]
  • [% X] indicates the content (mass%) of element X in steel.
  • Cooling start temperature (Ar 3 ⁇ 10 ° C.) or more at the steel sheet surface temperature If the steel sheet surface temperature at the start of cooling is low, the amount of ferrite produced before controlled cooling increases, and in particular, the temperature drop from the Ar 3 transformation point is 10 When the temperature exceeds °C, ferrite with a volume fraction exceeding 5% is generated, and the strength decreases and the HIC resistance deteriorates. Therefore, the steel sheet surface temperature at the start of cooling is set to (Ar 3 -10 ° C) or more. .
  • Average cooling rate from 750 ° C. to 550 ° C. at a steel plate temperature of 0.5 mm below the steel plate surface 80 ° C./s or less Average cooling rate from 750 ° C. to 550 ° C. at a steel plate temperature of 0.5 mm below the steel plate surface is 80 ° C. /
  • the dislocation density in the 0.5 mm below the steel sheet surface exceeds 7.0 ⁇ 10 14 (m ⁇ 2 ).
  • HV0.1 of 0.5 mm below the steel sheet surface exceeds 230, and after passing through the coating process after pipe forming, HV0.1 at 0.5 mm below the surface exceeds 260, and the SSCC resistance of the steel pipe deteriorates. To do.
  • the said average cooling rate shall be 80 degrees C / s or less. Preferably it is 50 degrees C / s or less.
  • the lower limit of the average cooling rate is not particularly limited. However, if the cooling rate is excessively small, ferrite and pearlite are generated and the strength is insufficient. Therefore, from the viewpoint of preventing this, it is preferably 20 ° C./s or more.
  • Average cooling rate from 750 ° C. to 550 ° C. at the average temperature of the steel plate 15 ° C./s or more
  • the average cooling rate from 750 ° C. to 550 ° C. at the average temperature of the steel plate is less than 15 ° C./s, the bainite structure is not obtained and the strength Decrease and deterioration of HIC resistance occur.
  • the cooling rate at the steel plate average temperature is set to 15 ° C./s or more.
  • the average cooling rate of the steel plate is preferably 20 ° C./s or more.
  • the upper limit of the average cooling rate is not particularly limited, but is preferably set to 80 ° C./s or less so that the low temperature transformation product is not excessively generated.
  • stable nucleate boiling Cooling in the state is necessary, and an increase in water density is essential.
  • the said average cooling rate shall be 150 degrees C / s or more. Preferably it is 170 degrees C / s or more.
  • the upper limit of the average cooling rate is not particularly limited, but is preferably set to 250 ° C./s or less because of restrictions on equipment.
  • the 0.5 mm below the steel plate surface and the average steel plate temperature cannot be physically measured directly, but the surface temperature at the start of cooling measured with a radiation thermometer and the surface temperature at the target cooling stop are also measured.
  • the temperature distribution in the cross section of the plate thickness can be obtained in real time by difference calculation using a process computer.
  • the temperature at 0.5 mm below the steel sheet surface in the temperature distribution is defined as “steel temperature at 0.5 mm below the steel sheet surface” in this specification, and the average value of the temperature in the plate thickness direction in the temperature distribution is “ Average temperature ”.
  • Cooling stop temperature 250 to 550 ° C at the average temperature of the steel plate
  • the bainite phase is generated by quenching to 250 to 550 ° C., which is the temperature range of bainite transformation, by controlled cooling.
  • the cooling stop temperature exceeds 550 ° C.
  • the bainite transformation is incomplete and sufficient strength cannot be obtained.
  • the cooling stop temperature is less than 250 ° C.
  • the hardness of the surface layer is remarkably increased, and the dislocation density at 0.5 mm below the steel sheet surface exceeds 7.0 ⁇ 10 14 (m ⁇ 2 ). Deteriorates.
  • the hardness of the center segregation part is increased and the HIC resistance is also deteriorated. Therefore, in order to suppress deterioration of material uniformity in the steel plate, the cooling stop temperature of the controlled cooling is set to 250 to 550 ° C. as the steel plate average temperature.
  • High-strength steel pipe The high-strength steel sheet of the present disclosure is formed into a tubular shape by press bend forming, roll forming, UOE forming, etc., and then the butt portion is welded to provide excellent material uniformity in the steel sheet suitable for transporting crude oil and natural gas.
  • High strength steel pipes for sour-resistant pipes UOE steel pipes, ERW steel pipes, spiral steel pipes, etc. can be manufactured.
  • the end of a steel plate is grooved and formed into a steel pipe shape by C press, U press, and O press, and then the butt portion is seam welded by inner surface welding and outer surface welding.
  • Any welding method may be used as long as sufficient joint strength and joint toughness can be obtained, but it is preferable to use submerged arc welding from the viewpoint of excellent welding quality and manufacturing efficiency.
  • Steels (steel types A to K) having the composition shown in Table 1 were made into slabs by a continuous casting method, heated to the temperatures shown in Table 2, and then hot-rolled at the rolling finish temperatures and reduction rates shown in Table 2. Thus, a steel plate having a thickness shown in Table 2 was obtained. Thereafter, the steel sheet was controlled to be cooled using a water-cooled control cooling device under the conditions shown in Table 2.
  • Dislocation density A sample for X-ray diffraction was collected from a position having an average hardness, the sample surface was polished to remove the scale, and X-ray diffraction measurement was performed at a position 0.5 mm below the steel sheet surface. The dislocation density was converted from the strain obtained from the half width ⁇ of the X-ray diffraction measurement. In the diffraction intensity curve obtained by normal X-ray diffraction, the K ⁇ 1 line and the K ⁇ 2 line having different wavelengths overlap each other, so that they are separated by the Rachinger method. The Williamsson-Hall method shown below is used for distortion extraction.
  • the spread of the half width is affected by the size D of the crystallite and the strain ⁇ , and can be calculated by the following equation as the sum of both factors.
  • 14.4 ⁇ 2 / b 2
  • means the peak angle calculated by the ⁇ -2 ⁇ method of X-ray diffraction
  • means the wavelength of X-rays used in X-ray diffraction
  • b is a Burgers vector of Fe ( ⁇ ), and in this example, it was 0.25 nm.
  • SSCC resistance was evaluated by pipe forming using a part of each of these steel plates. Pipe making is performed after the end of the steel plate is grooved and formed into a steel pipe shape by C-press, U-press and O-press, then the butt part of the inner and outer surfaces is seam welded by submerged arc welding, and the tube is expanded. did. As shown in FIG. 1, after flattening a coupon cut out from the obtained steel pipe, a 5 ⁇ 15 ⁇ 115 mm SSCC test piece was collected from the inner surface of the steel pipe. At this time, the inner surface, which is the test surface, was left with a black skin to leave the outermost layer.
  • the collected SSCC test piece was loaded with 90% of the actual yield strength (0.5% YS) of each steel pipe, and using NACE TM0177 Solution A solution, hydrogen sulfide partial pressure: 1 bar, EFC16 standard
  • NACE TM0177 Solution A solution, hydrogen sulfide partial pressure: 1 bar, EFC16 standard The four-point bending SSCC test was conducted. A case where no crack was observed after immersing for 720 hours was judged as good when the SSCC resistance was good, and a case where a crack occurred was judged as poor and was marked as x.
  • Table 2 The results are shown in Table 2.
  • HIC resistance was examined by a 96-hour immersion HIC test using a NACE standard TM0177 Solution A solution. As for HIC resistance, a case where the crack length ratio (CLR) was 15% or less in the HIC test was judged as good, and a case where it exceeded 15% was evaluated as x. The results are shown in Table 2.
  • the target range of the present invention is that the tensile strength is 520 MPa or more as a high-strength steel plate for sour line pipes, the microstructure is a bainite structure at 0.5 mm below the surface and the t / 2 position, and HV0.1 is 0.5 mm below the surface. No higher than 230, no cracks were observed in the SSCC test in high strength steel pipes made using the steel sheet, and the crack length ratio (CLR) was 15% or less in the HIC test.
  • CLR crack length ratio
  • No. 1-No. 15 is an invention example in which the component composition and production conditions satisfy the appropriate range of the present invention.
  • the tensile strength is 520 MPa or more as a steel plate
  • the microstructure is a bainite structure at 0.5 mm below the surface and the t / 2 position
  • the HV0.1 is 0.5 or less at 0.5 mm below the surface.
  • the SSCC resistance and HIC resistance were also good in the high strength steel pipes made.
  • No. 16-No. No. 23 is a comparative example in which the component composition is within the scope of the present invention, but the production conditions are outside the scope of the present invention.
  • No. No. 16 had a low strength because the slab heating temperature was low, and the homogenization of the microstructure and the solid solution of the carbides were insufficient.
  • No. No. 17 had a low cooling start temperature and a layered structure in which ferrite was deposited, so that the strength was low and the HIC resistance after pipe formation deteriorated.
  • No. 18 has a controlled cooling condition outside the scope of the present invention, a bainite structure is not obtained as a microstructure in the center of the plate thickness, and has a ferrite + pearlite structure.
  • a steel pipe (such as an electric resistance steel pipe, a spiral steel pipe, or a UOE steel pipe) manufactured by cold forming this steel sheet can be suitably used for transporting crude oil or natural gas containing hydrogen sulfide that requires sour resistance. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

La présente invention concerne une plaque d'acier haute résistance pour tuyau de canalisation résistant à l'acidité présentant non seulement des propriétés anti-HIC, mais également des propriétés anti-SSCC supérieures dans un environnement plus fortement corrosif. Cette plaque d'acier haute résistance pour tuyau de canalisation résistant à l'acidité est caractérisée en ce qu'elle comprend comme constituants, en pourcentage en masse, de 0,02 à 0,08 % de C, de 0,01 à 0,50 % de Si, 0,50 à 1,80 % de Mn, de 0,001 à 0 015 % de P, de 0,0002 à 0,0015 % de S, de 0,01 à 0,08 % d'Al et de 0,0005 à 0,005 % de Ca, le reste étant du Fe et des impuretés inévitables, et en ce que la structure d'acier à 0,5 mm au-dessous de la surface de la plaque d'acier est une structure de bainite avec une densité de dislocations de 1,0 × 1014à 7,0 × 1014 (m-2), la variation de la dureté Vickers à 0,5 mm au-dessous de la surface de la plaque d'acier est de 30 HV ou moins à 3σ, σ étant l'écart type, et la résistance à la traction est de 520 MPa ou plus.
PCT/JP2017/034800 2017-03-30 2017-09-26 Plaque d'acier haute résistance pour tuyau de canalisation résistant à l'acidité, son procédé de fabrication, et tuyau en acier haute résistance utilisant une plaque d'acier haute résistance pour tuyau de canalisation résistant à l'acidité WO2018179512A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112019019696-0A BR112019019696B1 (pt) 2017-03-30 2017-09-26 Chapa de aço de alta resistibilidade para tubo de linha resistente à acidez, método para fabricar a mesma e tubo de aço de alta resistibilidade que usa chapa de aço de alta resistibilidade para tubo de linha resistente à acidez
KR1020197030659A KR20190129957A (ko) 2017-03-30 2017-09-26 내사우어 라인 파이프용 고강도 강판 및 그의 제조 방법 그리고 내사우어 라인 파이프용 고강도 강판을 이용한 고강도 강관
JP2018564992A JP6521197B2 (ja) 2017-03-30 2017-09-26 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
KR1020217029889A KR102478368B1 (ko) 2017-03-30 2017-09-26 내사우어 라인 파이프용 고강도 강판 및 그의 제조 방법 그리고 내사우어 라인 파이프용 고강도 강판을 이용한 고강도 강관
CN201780089150.6A CN110462080B (zh) 2017-03-30 2017-09-26 耐酸性管线管用高强度钢板及其制造方法和使用耐酸性管线管用高强度钢板的高强度钢管
EP17903712.2A EP3604584B1 (fr) 2017-03-30 2017-09-26 Plaque d'acier haute résistance pour tuyau de canalisation résistant à l'acidité, son procédé de fabrication, et tuyau en acier haute résistance utilisant une plaque d'acier haute résistance pour tuyau de canalisation résistant à l'acidité

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2017/013405 2017-03-30
JP2017013405 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018179512A1 true WO2018179512A1 (fr) 2018-10-04

Family

ID=63674800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034800 WO2018179512A1 (fr) 2017-03-30 2017-09-26 Plaque d'acier haute résistance pour tuyau de canalisation résistant à l'acidité, son procédé de fabrication, et tuyau en acier haute résistance utilisant une plaque d'acier haute résistance pour tuyau de canalisation résistant à l'acidité

Country Status (6)

Country Link
EP (1) EP3604584B1 (fr)
JP (1) JP6521197B2 (fr)
KR (2) KR20190129957A (fr)
CN (1) CN110462080B (fr)
BR (1) BR112019019696B1 (fr)
WO (1) WO2018179512A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067210A1 (fr) * 2018-09-28 2020-04-02 Jfeスチール株式会社 Tôle d'acier haute résistance pour tuyau de canalisation résistant à l'acidité, son procédé de production, et tuyau en acier haute résistance utilisant une tôle d'acier haute résistance pour tuyau de canalisation résistant à l'acidité
WO2020067209A1 (fr) * 2018-09-28 2020-04-02 Jfeスチール株式会社 Tôle d'acier haute résistance pour tuyau de canalisation résistant à l'acidité, son procédé de production, et tuyau en acier haute résistance utilisant une tôle d'acier haute résistance pour tuyau de canalisation résistant à l'acidité
JPWO2021020220A1 (fr) * 2019-07-31 2021-02-04
JPWO2021176590A1 (fr) * 2020-03-04 2021-09-10
EP3872219A4 (fr) * 2018-10-26 2021-12-15 Posco Tôle d'acier à haute résistance ayant une excellente résistance à la fissuration par contrainte de sulfure, et son procédé de fabrication
RU2788419C1 (ru) * 2019-07-31 2023-01-19 ДжФЕ СТИЛ КОРПОРЕЙШН Высокопрочный стальной лист для сероводородостойкой магистральной трубы, способ его изготовления и высокопрочная стальная труба, полученная с использованием высокопрочного стального листа для сероводородостойкой магистральной трубы
WO2023162571A1 (fr) * 2022-02-24 2023-08-31 Jfeスチール株式会社 Tôle en acier, et procédé de fabrication de celle-ci

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6665822B2 (ja) * 2017-03-30 2020-03-13 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
CN109517959A (zh) * 2018-12-17 2019-03-26 包头钢铁(集团)有限责任公司 一种低成本输送管用热轧钢带及其制备方法
CN117187679A (zh) * 2022-05-30 2023-12-08 宝山钢铁股份有限公司 一种高强度石油套管及其制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0957327A (ja) 1995-08-22 1997-03-04 Sumitomo Metal Ind Ltd 厚鋼板のスケール除去方法
JP2002327212A (ja) 2001-02-28 2002-11-15 Nkk Corp 耐サワーラインパイプ用鋼板の製造方法
JP3711896B2 (ja) 2001-06-26 2005-11-02 Jfeスチール株式会社 高強度ラインパイプ用鋼板の製造方法
WO2006003775A1 (fr) * 2004-06-14 2006-01-12 Sumitomo Metal Industries, Ltd. Acier faiblement allie destine a un tuyau pour puits de petrole possedant une excellente resistance au craquelement du a la sulfuration
JP3796133B2 (ja) 2000-04-18 2006-07-12 新日本製鐵株式会社 厚鋼板冷却方法およびその装置
JP3951428B2 (ja) 1998-03-30 2007-08-01 Jfeスチール株式会社 板厚方向材質差の小さい高張力鋼板の製造方法
JP3951429B2 (ja) 1998-03-30 2007-08-01 Jfeスチール株式会社 板厚方向材質差の小さい高張力鋼板の製造方法
JP2012077331A (ja) * 2010-09-30 2012-04-19 Jfe Steel Corp 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
JP2013139630A (ja) * 2011-12-09 2013-07-18 Jfe Steel Corp 鋼板内の材質均一性に優れた耐サワーラインパイプ用高強度鋼板とその製造方法
WO2016056216A1 (fr) * 2014-10-07 2016-04-14 Jfeスチール株式会社 Tôle d'acier pour tube de canalisation, procédé pour la fabrication de cette dernière et tube d'acier pour tube de canalisation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330786C (zh) * 2005-12-27 2007-08-08 东北大学 一种抗拉强度780MPa级复相钢板及制造方法
CN102301026B (zh) * 2009-01-30 2014-11-05 杰富意钢铁株式会社 低温韧性优良的厚壁高强度热轧钢板及其制造方法
CA2750291C (fr) * 2009-01-30 2014-05-06 Jfe Steel Corporation Tole forte d'acier laminee a chaud a resistance elevee a la traction presentant une excellente resistance de hic et son procede de fabrication
JP5126326B2 (ja) * 2010-09-17 2013-01-23 Jfeスチール株式会社 耐疲労特性に優れた高強度熱延鋼板およびその製造方法
JP5724267B2 (ja) * 2010-09-17 2015-05-27 Jfeスチール株式会社 打抜き加工性に優れた高強度熱延鋼板およびその製造方法
JP5776377B2 (ja) * 2011-06-30 2015-09-09 Jfeスチール株式会社 耐サワー性に優れたラインパイプ用溶接鋼管向け高強度熱延鋼板およびその製造方法
JP5991174B2 (ja) * 2011-12-09 2016-09-14 Jfeスチール株式会社 鋼板内の材質均一性に優れた耐サワーラインパイプ用高強度鋼板とその製造方法
CN105821301A (zh) * 2016-04-21 2016-08-03 河北钢铁股份有限公司邯郸分公司 一种800MPa级热轧高强度扩孔钢及其生产方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0957327A (ja) 1995-08-22 1997-03-04 Sumitomo Metal Ind Ltd 厚鋼板のスケール除去方法
JP3951428B2 (ja) 1998-03-30 2007-08-01 Jfeスチール株式会社 板厚方向材質差の小さい高張力鋼板の製造方法
JP3951429B2 (ja) 1998-03-30 2007-08-01 Jfeスチール株式会社 板厚方向材質差の小さい高張力鋼板の製造方法
JP3796133B2 (ja) 2000-04-18 2006-07-12 新日本製鐵株式会社 厚鋼板冷却方法およびその装置
JP2002327212A (ja) 2001-02-28 2002-11-15 Nkk Corp 耐サワーラインパイプ用鋼板の製造方法
JP3711896B2 (ja) 2001-06-26 2005-11-02 Jfeスチール株式会社 高強度ラインパイプ用鋼板の製造方法
WO2006003775A1 (fr) * 2004-06-14 2006-01-12 Sumitomo Metal Industries, Ltd. Acier faiblement allie destine a un tuyau pour puits de petrole possedant une excellente resistance au craquelement du a la sulfuration
JP2012077331A (ja) * 2010-09-30 2012-04-19 Jfe Steel Corp 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
JP2013139630A (ja) * 2011-12-09 2013-07-18 Jfe Steel Corp 鋼板内の材質均一性に優れた耐サワーラインパイプ用高強度鋼板とその製造方法
WO2016056216A1 (fr) * 2014-10-07 2016-04-14 Jfeスチール株式会社 Tôle d'acier pour tube de canalisation, procédé pour la fabrication de cette dernière et tube d'acier pour tube de canalisation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604584A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020067210A1 (ja) * 2018-09-28 2021-02-15 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
WO2020067209A1 (fr) * 2018-09-28 2020-04-02 Jfeスチール株式会社 Tôle d'acier haute résistance pour tuyau de canalisation résistant à l'acidité, son procédé de production, et tuyau en acier haute résistance utilisant une tôle d'acier haute résistance pour tuyau de canalisation résistant à l'acidité
WO2020067210A1 (fr) * 2018-09-28 2020-04-02 Jfeスチール株式会社 Tôle d'acier haute résistance pour tuyau de canalisation résistant à l'acidité, son procédé de production, et tuyau en acier haute résistance utilisant une tôle d'acier haute résistance pour tuyau de canalisation résistant à l'acidité
JPWO2020067209A1 (ja) * 2018-09-28 2021-02-15 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
EP3872219A4 (fr) * 2018-10-26 2021-12-15 Posco Tôle d'acier à haute résistance ayant une excellente résistance à la fissuration par contrainte de sulfure, et son procédé de fabrication
US12037667B2 (en) 2018-10-26 2024-07-16 Posco Co., Ltd High-strength steel having excellent resistance to sulfide stress cracking, and method for manufacturing same
WO2021020220A1 (fr) * 2019-07-31 2021-02-04 Jfeスチール株式会社 Feuille d'acier à haute résistance pour tuyau de canalisation résistant à l'acidité, procédé de fabrication correspondant et tuyau d'acier à haute résistance utilisant une feuille d'acier à haute résistance pour tuyau de canalisation résistant à l'acidité
JPWO2021020220A1 (fr) * 2019-07-31 2021-02-04
CN114174547A (zh) * 2019-07-31 2022-03-11 杰富意钢铁株式会社 耐酸性管线管用高强度钢板及其制造方法以及使用耐酸性管线管用高强度钢板的高强度钢管
EP4006180A4 (fr) * 2019-07-31 2022-10-12 JFE Steel Corporation Feuille d'acier à haute résistance pour tuyau de canalisation résistant à l'acidité, procédé de fabrication correspondant et tuyau d'acier à haute résistance utilisant une feuille d'acier à haute résistance pour tuyau de canalisation résistant à l'acidité
RU2788419C1 (ru) * 2019-07-31 2023-01-19 ДжФЕ СТИЛ КОРПОРЕЙШН Высокопрочный стальной лист для сероводородостойкой магистральной трубы, способ его изготовления и высокопрочная стальная труба, полученная с использованием высокопрочного стального листа для сероводородостойкой магистральной трубы
JP7272442B2 (ja) 2019-07-31 2023-05-12 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
JPWO2021176590A1 (fr) * 2020-03-04 2021-09-10
WO2021176590A1 (fr) * 2020-03-04 2021-09-10 日本製鉄株式会社 Tube en acier, et plaque en acier
JP7360075B2 (ja) 2020-03-04 2023-10-12 日本製鉄株式会社 鋼管および鋼板
WO2023162571A1 (fr) * 2022-02-24 2023-08-31 Jfeスチール株式会社 Tôle en acier, et procédé de fabrication de celle-ci

Also Published As

Publication number Publication date
JP6521197B2 (ja) 2019-05-29
BR112019019696B1 (pt) 2022-07-19
EP3604584A1 (fr) 2020-02-05
JPWO2018179512A1 (ja) 2019-04-18
CN110462080B (zh) 2022-01-04
CN110462080A (zh) 2019-11-15
EP3604584A4 (fr) 2020-03-04
EP3604584B1 (fr) 2022-05-18
KR20210118961A (ko) 2021-10-01
BR112019019696A2 (pt) 2020-04-14
KR20190129957A (ko) 2019-11-20
KR102478368B1 (ko) 2022-12-15

Similar Documents

Publication Publication Date Title
WO2018179512A1 (fr) Plaque d'acier haute résistance pour tuyau de canalisation résistant à l'acidité, son procédé de fabrication, et tuyau en acier haute résistance utilisant une plaque d'acier haute résistance pour tuyau de canalisation résistant à l'acidité
JP6825748B2 (ja) 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
JP6844691B2 (ja) 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
WO2015151469A1 (fr) Matériau en acier destiné à des tuyaux de canalisation fortement déformables et présentant des caractéristiques de vieillissement après déformation et des caractéristiques anti-hic supérieures, son procédé de fabrication et tuyau en acier soudé
JP6825749B2 (ja) 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
JP6665822B2 (ja) 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
WO2021020220A1 (fr) Feuille d'acier à haute résistance pour tuyau de canalisation résistant à l'acidité, procédé de fabrication correspondant et tuyau d'acier à haute résistance utilisant une feuille d'acier à haute résistance pour tuyau de canalisation résistant à l'acidité
WO2015151468A1 (fr) Matériau en acier pour tuyaux de canalisation hautement déformables ayant des caractéristiques de vieillissement après déformation et caractéristiques anti-hic supérieures, procédé de fabrication de ce dernier et tuyau en acier soudé
WO2021193383A1 (fr) Tôle d'acier à haute résistance pour tuyau de canalisation résistant à l'acidité, procédé de fabrication correspondant et tuyau d'acier à haute résistance utilisant une tôle d'acier à haute résistance pour tuyau de canalisation résistant à l'acidité
JP2019131840A (ja) 耐サワーラインパイプ用高強度鋼板の製造方法、及び耐サワーラインパイプ用高強度鋼板、並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
JP6521196B1 (ja) 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
RU2805165C1 (ru) Высокопрочный стальной лист для кислотостойких магистральных труб и способ его изготовления, и высокопрочная стальная труба с использованием высокопрочного стального листа для кислотостойкой магистральной трубы

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903712

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564992

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019019696

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197030659

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017903712

Country of ref document: EP

Effective date: 20191030

ENP Entry into the national phase

Ref document number: 112019019696

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190920