WO2018179482A1 - Compound for organic electroluminescence element and organic electroluminescence element - Google Patents

Compound for organic electroluminescence element and organic electroluminescence element Download PDF

Info

Publication number
WO2018179482A1
WO2018179482A1 PCT/JP2017/030908 JP2017030908W WO2018179482A1 WO 2018179482 A1 WO2018179482 A1 WO 2018179482A1 JP 2017030908 W JP2017030908 W JP 2017030908W WO 2018179482 A1 WO2018179482 A1 WO 2018179482A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
organic
layer
organic electroluminescent
Prior art date
Application number
PCT/JP2017/030908
Other languages
French (fr)
Japanese (ja)
Inventor
直子 矢内
桐生 池部
純一 星野
友美 岩本
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2018179482A1 publication Critical patent/WO2018179482A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C22/00Cyclic compounds containing halogen atoms bound to an acyclic carbon atom
    • C07C22/02Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings
    • C07C22/04Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings
    • C07C22/08Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/18Polycyclic aromatic halogenated hydrocarbons
    • C07C25/22Polycyclic aromatic halogenated hydrocarbons with condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/50Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings
    • C07C255/51Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings containing at least two cyano groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/52Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of six-membered aromatic rings being part of condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants

Definitions

  • the present invention relates to a compound for organic electroluminescence device and an organic electroluminescence device.
  • An organic electroluminescent element is an electronic element in which a thin film containing a luminescent organic compound is sandwiched between an anode and a cathode. By injecting holes and electrons from each electrode, excitons of the light-emitting organic compound are generated, and the organic electroluminescent element emits light when the excitons return to the ground state.
  • an element structure of an organic electroluminescent element As an element structure of an organic electroluminescent element, a two-layer type of a hole transport layer and an electron transport light-emitting layer, or a three-layer type of a hole transport layer, a light-emitting layer, and an electron transport layer has been studied. At present, in order to further enhance the recombination efficiency of injected holes and electrons, a structure in which a hole injection layer and an electron injection layer are inserted between an anode and a hole transport layer and a cathode and an electron transport layer, respectively, is the mainstream. It has become.
  • Organic electroluminescent elements are expected to be a technology for realizing light-emitting devices that are excellent in contrast, responsiveness, and viewing angle, low power consumption, thin and light, and are actively researched.
  • the light emitting efficiency and continuous drive life of the current elements are not sufficient in practical use, and further high-efficiency light emission and longer life are required.
  • these problems have not been sufficiently solved, especially for blue light emitting devices. There is a strong demand for improved properties of materials.
  • Patent Document 1 reports an example in which a benzofluorene having a diarylamino group and a dibenzofluorene derivative are used as a light emitting layer dopant.
  • Patent Documents 2 and 3 report examples in which a dibenzo [c, g] fluorene derivative having an aryl group is used as a light emitting layer host material.
  • Patent Document 4 reports a dibenzo [c, g] fluorene derivative substituted with a diarylamino group or an electron transporting substance.
  • the present invention has been made in view of the above circumstances, and when used as a constituent material of an organic electroluminescence device, the compound for organic electroluminescence device and organic electroluminescence exhibiting long-life and high-purity blue light emission.
  • An object is to provide an element.
  • the present invention contains a compound for an organic electroluminescence device represented by the following general formula (1) and the compound for an organic electroluminescence device alone or as a component of a mixture.
  • An organic electroluminescent device is provided.
  • Y 1 and Y 2 are each independently a linear or branched alkyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms.
  • X 1 and X 2 are each independently a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or a substituent represented by any one of the following general formulas (2), (3), and (4). Yes, at least one of X 1 and X 2 is a substituent represented by any one of the following general formulas (2), (3), and (4).
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 16 carbon atoms.
  • m is an integer of 1 to 2.
  • Ar 2 is a substituted or unsubstituted aryl group having 6 to 16 carbon atoms.
  • n is an integer of 1 to 5.
  • Ar 3 is a substituted or unsubstituted aryl group having 6 to 16 carbon atoms.
  • p is an integer of 1 to 2.
  • a dopant having a triarylamino group generally exhibits high fluorescence intensity, has a high highest occupied orbital (HOMO), and efficiently generates hole traps and charge recombination on the dopant.
  • An organic electroluminescent element can be realized. In such an organic electroluminescence device, it is generally considered that intensive charge recombination and subsequent dopant excitation and emission occur in the light emitting layer in the vicinity of the hole transport layer.
  • the charge recombination region is likely to be concentrated near the interface between the light emitting layer and the hole transport layer. It is considered that there is a possibility that the decrease in
  • the present inventors have a low minimum orbital (LUMO), and in an organic electroluminescent device using an electron-accepting light-emitting dopant, there is a high possibility of charge recombination in the vicinity of the interface between the light-emitting layer and the electron transport layer, We thought that the drive life could be improved because charge recombination near the interface between the light emitting layer and the hole transport layer could be suppressed.
  • LUMO low minimum orbital
  • At least one aryl group having a cyano group, a fluoro group, or a trifluoromethyl group is dibenzo [c, g] fluorene. It has a structure substituted at the 9th and 9th positions.
  • the dibenzo [c, g] fluorene derivative of the present invention has a low LUMO and a property of easily trapping electrons as compared with a polycyclic aromatic compound generally used as a light emitting layer host material. It can be considered that charge recombination in the vicinity of the interface between the hole transport layer and the hole transport layer can be suppressed, and a decrease in luminance accompanying driving of the element can be suppressed.
  • the driving lifetime is caused by the longer wavelength of the emission spectrum, that is, the color purity of blue light emission accompanying the decrease in LUMO, and the interaction with peripheral materials in the device.
  • the organic electroluminescence element cannot be extended in life and color purity can be improved.
  • the aryl group having a cyano group, a fluoro group, or a trifluoromethyl group imparts an appropriate electron accepting property to the dibenzo [c, g] fluorene of the present invention, and emits blue light having a high color purity around 430 nm to 470 nm and an organic electric field. The lifetime of the light emitting element can be extended.
  • X 1 and X 2 are each independently a substituent represented by any one of the general formulas (2), (3), and (4). Is preferred.
  • a compound for an organic electroluminescence device having such a structure has a suitable emission wavelength and electron acceptability that enable both high color purity and a long driving life as a blue light emitting dopant.
  • Ar 1 , Ar 2 , and Ar 3 are preferably a substituted or unsubstituted phenyl group, naphthyl group, or biphenyl group.
  • Ar 1 , Ar 2 , and Ar 3 are the above substituents, it is possible to realize blue light emission with higher color purity.
  • the compound is easy to synthesize, it is possible to produce a compound for an organic electroluminescence device with few impurities, and thus it is possible to obtain an organic electroluminescence device with a long driving life.
  • the organic layer has a light emitting layer, and the light emitting layer contains the compound.
  • the light emitting layer has a host material and a dopant, and the dopant contains the compound.
  • an organic electroluminescent device since the dopant has an appropriate electron accepting property, the concentration of charge recombination at the interface between the light emitting layer and the hole transport layer and the interaction with the surrounding materials can be suppressed, and a long driving life can be achieved. It is possible to realize. Moreover, such an organic electroluminescent element emits blue light with high color purity.
  • the organic layer has at least one of a hole injection layer or a hole transport layer, and at least a part of the hole injection layer or the hole transport layer functions as an electron acceptor, Or it is preferable that an organic compound is included.
  • the dopant sufficiently captures the carrier and counters the carrier. Is sufficiently supplied to the dopant in the light emitting layer.
  • both carriers do not recombine quickly, a compound in a radical state corresponding to excess carriers exists in the device, which inhibits light emission and causes a short life.
  • a compound that functions as an electron acceptor can generate holes by extracting electrons from an adjacent organic substance, in an organic electroluminescent device in which at least a part of a hole injection layer or a hole transport layer contains an electron acceptor, an anode
  • the injection barrier from the injection of holes to the light emitting layer can be significantly reduced.
  • holes can be sufficiently supplied to the electron-accepting dopant used in the organic electroluminescence device of the present invention, light emission with high efficiency and long life is possible.
  • an organic electroluminescent element that emits blue light with a long lifetime and high color purity.
  • FIG. 1 is a diagram showing a 1 HNMR spectrum of a compound (11) of the present invention of Synthesis Example 1.
  • FIG. It is a figure which shows the 13 CNMR spectrum of the compound (11) of this invention of the synthesis example 1.
  • 1 is a diagram showing a 1 HNMR spectrum of a compound (12) of the present invention in Synthesis Example 2.
  • FIG. It is a figure which shows the 13 CNMR spectrum of the compound (12) of this invention of the synthesis example 2.
  • 4 is a diagram showing a 1 HNMR spectrum of a compound (13) of the present invention in Synthesis Example 3.
  • the compound for organic electroluminescent elements is a dibenzo [c, g] fluorene compound having a specific structure represented by the following general formula (1).
  • Y 1 and Y 2 are each independently a linear or branched alkyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms.
  • X 1 and X 2 are each independently a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or a substituent represented by any one of the following general formulas (2), (3), and (4). Yes, at least one of X 1 and X 2 is a substituent represented by any one of the following general formulas (2), (3), and (4).
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 16 carbon atoms.
  • m is an integer of 1 to 2.
  • Ar 2 is a substituted or unsubstituted aryl group having 6 to 16 carbon atoms.
  • n is an integer of 1 to 5.
  • Ar 3 is a substituted or unsubstituted aryl group having 6 to 16 carbon atoms.
  • p is an integer of 1 to 2.
  • Y 1 and Y 2 are each independently a linear or branched alkyl group having 1 to 10 carbon atoms, specifically, a methyl group, an ethyl group, a linear or branched group.
  • a methyl group specifically, an ethyl group, a linear or branched group.
  • Propyl group butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group and decyl group.
  • Y 1 and Y 2 are each independently a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, and specific examples thereof include a phenyl group, a naphthyl group, and a biphenyl group. It is done.
  • Y 1 and Y 2 are preferably a methyl group, an ethyl group, a propyl group, a butyl group, a phenyl group, a naphthyl group, or a biphenylyl group from the viewpoint of the stability of the compound and the organic electroluminescent device and the ease of synthesis. Group, phenyl group, and biphenylyl group are more preferable.
  • Y 1 and Y 2 are each independently a phenyl group or a naphthyl group, Y 1 and Y 2 may be bonded to form a cyclic structure.
  • Y 1 and Y 2 may be the same or different.
  • the aryl group may be further substituted with a substituent.
  • substituents include an aryl group, an alkyl group, an alkoxy group, an aryloxy group, a halogeno group, and a silyl group.
  • an aryl group and an alkyl group are preferable from the viewpoint of the stability of the organic electroluminescent device, and a phenyl group, a naphthyl group, a biphenylyl group, a methyl group, an ethyl group, a propyl group, and a butyl group are more preferable.
  • X 1 and X 2 which are not a substituent represented by any one of the general formulas (2), (3) and (4) are substituted or unsubstituted 6 to 6 carbon atoms.
  • 20 aryl groups and specifically include phenyl, naphthyl, biphenylyl, fluorenyl, benzofluoryl, phenanthryl, anthracenyl, pyrenyl, chrysenyl, terphenylyl, tetracenyl and the like.
  • aryl group of X 1 and X 2 a phenyl group, a naphthyl group, a biphenylyl group, a fluorenyl group, a benzofluoryl group, and a phenanthryl group are preferable, and a phenyl group, a naphthyl group, and a biphenylyl group are preferable because blue light emission with high color purity can be obtained. Groups are more preferred.
  • the aryl group may be further substituted with a substituent.
  • substituents include an aryl group, an alkyl group, an alkoxy group, an aryloxy group, a halogeno group, and a silyl group.
  • an aryl group and an alkyl group are preferred from the viewpoint of obtaining blue light emission with high stability and stability of the organic electroluminescent device, and phenyl group, naphthyl group, biphenylyl group, methyl group, ethyl group, A propyl group and a butyl group are more preferable.
  • At least one of X 1 and X 2 is represented by any one of the general formulas (2), (3), and (4).
  • X 1 and X 2 are preferably each independently a substituent represented by any of the general formulas (2), (3), and (4).
  • the compound for an organic electroluminescence device having such a structure has a suitable emission wavelength and electron acceptability that enable both high color purity and a long drive life as a blue light emitting dopant.
  • At least one of X 1 and X 2 is preferably a substituent represented by the general formula (2).
  • the compound for an organic electroluminescence device having such a structure exhibits high luminous efficiency in addition to high color purity and a long driving life as a blue light emitting dopant.
  • X 1 and X 2 may be the same or different.
  • Ar 1 , Ar 2 , and Ar 3 are each independently a substituted or unsubstituted aryl group having 6 to 16 carbon atoms, specifically, examples thereof include a phenyl group, a naphthyl group, a biphenylyl group, a fluorenyl group, a phenanthryl group, an anthracenyl group, and a pyrenyl group.
  • a phenyl group, a naphthyl group, a biphenylyl group, and a fluorenyl group are preferable, and a phenyl group, a naphthyl group, and a biphenylyl group are more preferable because blue light emission with high color purity can be obtained. Since such a structure is easy to synthesize, it is possible to produce a compound for an organic electroluminescence device with few impurities, and thus an organic electroluminescence device with a long driving life can be obtained.
  • the aryl group may be further substituted with a substituent.
  • substituents include an aryl group, an alkyl group, an alkoxy group, an aryloxy group, a halogeno group, and a silyl group.
  • an aryl group and an alkyl group are preferable from the viewpoint that the compound and the organic electroluminescence device can be stable and blue light emission with high color purity is obtained, and a phenyl group, a naphthyl group, a biphenylyl group, a methyl group, an ethyl group are preferable.
  • a group, a propyl group, and a butyl group are more preferable.
  • n is an integer of 1 to 5
  • p is 1 to 2. It is an integer. According to such a structure, blue light emission with high color purity is possible.
  • the molecular weight of the compound according to the present embodiment is not particularly limited, but it is preferable that the molecular weight is 1300 or less in consideration of the element production process. This is because a compound having a molecular weight of 1300 or more is difficult to synthesize due to a decrease in solubility, and it is difficult to produce an organic electroluminescent device by a coating process. Further, even when an organic electroluminescent element is produced by a vapor deposition process, the vapor deposition temperature becomes high, which may cause decomposition of the material.
  • Preferable examples of the compound for organic electroluminescence device represented by the general formula (1) according to this embodiment include the following formulas (I-1) to (I-36), (II-1) to (II- 31).
  • FIG. 1 is a schematic cross-sectional view showing an example of an organic electroluminescent element according to this embodiment.
  • the organic electroluminescent element 1 shown in FIG. 1 includes a hole injection layer 4, a hole transport layer 5, a light emitting layer 6, and two electrodes (first electrode 3 and second electrode 9) arranged to face each other.
  • the electron transport layer 7 and the electron injection layer 8 are sandwiched.
  • the hole injection layer 4, the hole transport layer 5, the light emitting layer 6, the electron transport layer 7, and the electron injection layer 8 are all organic layers, and are stacked in this order from the first electrode 3 side.
  • the electron injection layer 8 may be an inorganic layer (metal layer, metal compound layer, etc.).
  • the first electrode 3 is formed on the substrate 2, but the stacking order from the substrate 2 side may be reversed. That is, even if the second electrode 9, the electron injection layer 8, the electron transport layer 7, the light emitting layer 6, the hole transport layer 5, the hole injection layer 4, and the first electrode 3 are stacked in this order from the substrate 2 side. Good.
  • organic electroluminescent element compound used in the present embodiment may be contained in any of the layers described above, but is preferably contained in the light emitting layer 6.
  • the first electrode 3 and the second electrode 9 function as a hole injecting electrode (anode) and an electron injecting electrode (cathode), respectively.
  • anode anode
  • cathode an electron injecting electrode
  • the preferred thicknesses of the hole injection layer 4, the hole transport layer 5, the light emitting layer 6, the electron transport layer 7 and the electron injection layer 8 are all 1 to 200 nm.
  • the substrate 2 can be used without particular limitation as long as it is provided in a conventional organic electroluminescence device, and is an amorphous substrate such as glass or quartz, Si, GaAs, ZnSe, ZnS, GaP.
  • a crystal substrate such as InP or a metal substrate such as Mo, Al, Pt, Ir, Au, Pd, or SUS can be used.
  • a thin film made of a crystalline or amorphous ceramic, metal, organic substance or the like formed on a predetermined substrate may be used.
  • the substrate 2 side is the light extraction side
  • a transparent substrate such as glass or quartz
  • an inexpensive glass transparent substrate may be provided with a color filter film, a color conversion film containing a fluorescent material, a dielectric reflection film, or the like for adjusting the emission color.
  • the first electrode 3 functions as a hole injection electrode (anode). Therefore, the material of the first electrode 3 can be used without particular limitation as long as it is provided in the conventional organic electroluminescent element, but it can be used efficiently and uniformly for the first electrode 3. A material capable of applying an electric field to is preferable.
  • the transmittance at a wavelength of 400 nm to 700 nm, which is the emission wavelength region of the organic electroluminescence element, in particular, the transmittance of the first electrode 3 at the wavelength of each RGB color is 50%. Preferably, it is 80% or more, more preferably 90% or more.
  • the transmittance of the first electrode 3 is less than 50%, the light emission from the light emitting layer 6 is attenuated, and the luminance necessary for image display cannot be obtained.
  • the 1st electrode 3 with high light transmittance can be comprised using the transparent conductive film comprised with various oxides.
  • a material indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), zinc oxide (ZnO), tin-doped indium oxide (ITO), zinc-doped indium oxide (IZO), and the like are preferable. It is particularly preferable in that a thin film having a uniform in-plane specific resistance can be easily obtained.
  • the film thickness of the first electrode 3 is preferably determined in consideration of the light transmittance described above.
  • the film thickness is preferably 10 to 500 nm, more preferably 30 to 300 nm.
  • the film thickness of the first electrode 3 exceeds 500 nm, the light transmittance becomes insufficient and the first electrode 3 may be peeled off from the substrate 2 in some cases.
  • the light transmittance is improved as the film thickness is decreased.
  • the film thickness is less than 10 nm, the resistance increases and the driving voltage of the organic electroluminescent element tends to increase.
  • the second electrode 9 functions as an electron injection electrode (cathode).
  • the material of the second electrode 9 can be used without particular limitation as long as it is provided in a conventional organic electroluminescent device, and examples thereof include metal materials, organometallic complexes, and metal compounds. In order to efficiently and reliably inject electrons into the light emitting layer 6, it is preferable to use a material having a relatively low work function, and it may be transparent.
  • the metal material constituting the second electrode 9 include alkali metals such as Li, Na, K or Cs, alkaline earth metals such as Mg, Ca, Sr or Ba, or Al (aluminum). .
  • alkali metals such as Li, Na, K or Cs
  • alkaline earth metals such as Mg, Ca, Sr or Ba
  • Al (aluminum) a metal having properties similar to those of an alkali metal or alkaline earth metal such as La, Ce, Sn, Zn, or Zr
  • oxides or halides of the above metal materials can also be used. Further, it may be a mixture or alloy containing the above materials, and a plurality of these may be laminated.
  • the film thickness of the second electrode 9 only needs to be such that electrons can be uniformly injected, and may be 0.1 nm or more.
  • An auxiliary electrode may be provided on the second electrode 9.
  • the electron injection efficiency to the light emitting layer 6 can be improved, and the penetration
  • a material for the auxiliary electrode a general metal can be used because there is no restriction on work function and charge injection capability. However, it is preferable to use a metal having high conductivity and easy handling.
  • the second electrode 9 includes an organic material, it is preferable to select appropriately according to the type and adhesion of the organic material.
  • auxiliary electrode examples include Al, Ag, In, Ti, Cu, Au, Mo, W, Pt, Pd, and Ni.
  • a low-resistance metal such as Al and Ag. Electron injection efficiency can be further increased.
  • a metal compound such as TiN, higher sealing performance can be realized. These materials may be used alone or in combination of two or more. Moreover, when using 2 or more types of metals, you may use as an alloy.
  • Such an auxiliary electrode can be formed by, for example, a vacuum deposition method or the like.
  • the hole injection layer 4 is a layer containing a compound having a function of facilitating hole injection from the first electrode 3. Specifically, it can be formed using at least one kind of hydrocarbon-based material such as triarylamine derivative, carbazole derivative, anthracene derivative, azatriphenylene derivative, phthalocyanine derivative, polyaniline / organic acid, polythiophene / polymer acid, and the like. it can.
  • hydrocarbon-based material such as triarylamine derivative, carbazole derivative, anthracene derivative, azatriphenylene derivative, phthalocyanine derivative, polyaniline / organic acid, polythiophene / polymer acid, and the like. it can.
  • the hole transport layer 5 is a layer containing a compound having a function of transporting injected holes to the light emitting layer 6 and a function of preventing electrons in the light emitting layer 6 from being injected into the hole transport layer 5.
  • the hole transport layer 5 uses at least one kind of hydrocarbon compound such as triarylamine derivative, triarylmethane derivative, stilbene derivative, polysilane derivative, polyphenylene vinylene and derivative thereof, polythiophene and derivative thereof, carbazole derivative, or anthracene derivative. Can be formed.
  • the hole injection layer 4 and the hole transport layer 5 can be further functionally separated into a plurality of layers.
  • hole injection layer 4 or the hole transport layer 5 When a material having a high work function such as a carbazole derivative or a hydrocarbon-based material is used for the hole injection layer 4 or the hole transport layer 5, hole injection from the anode 3 to the hole injection layer 4 or from the hole injection layer 4 to the hole transport layer 5 is performed. Although the barrier is increased, holes can be forcibly generated by containing an inorganic compound or an organic material functioning as an electron acceptor in a part of the hole injection layer 4 or the hole transport layer 5. The injection barrier can be lowered.
  • a material having a high work function such as a carbazole derivative or a hydrocarbon-based material
  • an inorganic compound antimony chloride, vanadium oxide, ruthenium oxide, tungsten oxide, zinc oxide, tin oxide, iron oxide, molybdenum oxide and the like can be used, and molybdenum oxide is particularly preferable.
  • an organic material hexacyanoazatriphenylene or a derivative thereof can be used.
  • the light emitting layer 6 is a layer containing a compound having a function of transporting injected holes and electrons and a function of generating excitons by recombination of holes and electrons.
  • the compound represented by the general formula (1) according to the present embodiment is preferably included in the light emitting layer 6, and more preferably included in the light emitting dopant.
  • An organic electroluminescent element provided with the light emitting layer 6 containing such a material exhibits blue light emission with a long lifetime and high color purity as compared with a conventional organic electroluminescent element.
  • the content with respect to the host material is preferably 0.01 to 20 wt%, and more preferably 0.1 to 15 wt%.
  • Examples of the host material that forms the light emitting layer 6 together with the light emitting dopant containing the compound of the general formula (1) include organic metal complexes such as tris (8-quinolinolato) aluminum, carbonization such as naphthalene, anthracene, naphthacene, pyrene, and perylene.
  • organic metal complexes such as tris (8-quinolinolato) aluminum, carbonization such as naphthalene, anthracene, naphthacene, pyrene, and perylene.
  • heterocyclic derivatives such as carbazole, thiophene, and furan, and triarylamine derivatives can be used.
  • anthracene derivative and the pyrene derivative used as the light emitting layer host material include compounds represented by the following formulas (III-1) to (III-32).
  • the light emitting layer 6 may contain other compounds such as a host material and a dopant. By mixing other compounds, carrier transport can be adjusted, and by mixing fluorescent dyes, the emission color can be converted and used.
  • the compound that regulates carrier transport include metal complex compounds having 8-quinolinol or a derivative thereof such as tris (8-quinolinolato) aluminum as a ligand, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, imidazopyridine derivatives, Electron transporting compounds such as imidazopyrimidine derivatives and phenanthroline derivatives, hole transporting compounds such as triarylamine derivatives, and the like can be preferably used.
  • the electron transport layer 7 has a function of transporting injected electrons and a function of preventing holes from being injected into the electron transport layer 7 from the light emitting layer 6.
  • the electron transport layer 7 includes, for example, organometallic complexes having an 8-quinolinol or a derivative thereof such as tris (8-quinolinolato) aluminum as a ligand, oxadiazole derivatives, triazole derivatives, triazine derivatives, perylene derivatives, quinoline derivatives, Quinoxaline derivatives, diphenylquinone derivatives, nitro-substituted fluorenone derivatives, thiopyrandioxide derivatives, pyridine derivatives, pyrimidine derivatives, imidazopyridine derivatives, imidazopyrimidine derivatives, heterocyclic compounds such as phenanthroline derivatives, anthracene, pyrene, naphthacene, fluoranthene, acenaphtho It can
  • the electron injection layer 8 has a function of facilitating injection of electrons from the second electrode 9 and a function of improving adhesion with the second electrode 9.
  • the electron injection layer 8 is composed of a metal complex, an oxadiazole derivative, a triazole derivative, a triazine derivative, a quinoline derivative, a quinoxaline derivative, a pyridine derivative having an 8-quinolinol or its derivative such as tris (8-quinolinolato) aluminum as a ligand.
  • Pyrimidine derivatives, imidazole derivatives, imidazopyrimidine derivatives, phenanthroline derivatives and the like can be used.
  • the organic electroluminescence device according to this embodiment can be produced by a known method except that the compound for organic electroluminescence device according to this embodiment is contained.
  • a method for forming each organic layer a vacuum vapor deposition method, an ionization vapor deposition method, a coating method, or the like can be appropriately selected and employed depending on the material constituting the organic layer.
  • the coating method include a spin coating method, various printing methods such as gravure printing, and an ink jet method.
  • the solvent used in this coating method include hydrocarbon solvents such as toluene and xylene, and halogen solvents such as dichloroethane.
  • the compound represented by the general formula (1) according to the present embodiment has high solubility and can be sufficiently formed by a coating process.
  • spin coating a thin film with a thickness of about 50 nm to 200 nm can be formed by using a solution having a concentration of about 1 to 3%.
  • Example 1 An ITO transparent electrode having a thickness of 100 nm was formed on a glass substrate by RF sputtering and patterned. This glass substrate with an ITO transparent electrode was subjected to ultrasonic cleaning using a neutral detergent, acetone and ethanol, and then pulled up from boiling ethanol and dried. The surface of the transparent electrode was washed with UV / O 3 and then fixed to a substrate holder of a vacuum evaporation apparatus, and the inside of the layer was decompressed to 1 ⁇ 10 ⁇ 4 Pa or less.
  • dipyrazino [2,3-f: 2 ′, 3′-h] quinoxaline-2,3,6,7,10,11-hexacarbonitrile (21) having the following structure was obtained.
  • Vapor deposition was performed at a deposition rate of 0.1 nm / sec to a thickness of 5 nm to form a hole injection layer.
  • N, N, N ′, N′-tetrakis (3-biphenylyl) -1,1′-biphenyl-4,4′-diamine (22) having the following structure was deposited at a deposition rate.
  • Vapor deposition was performed at a thickness of 80 nm at 0.1 nm / sec to form a hole transport layer.
  • the compound (III-2) of the present embodiment as a host material and the compound (11) of the present embodiment as a dopant at a mass ratio of 95: 5 and an overall deposition rate of 0.
  • a light emitting layer was formed by vapor deposition to a thickness of 40 nm at 1 nm / sec.
  • the compound (III-2) of the present embodiment was deposited to a thickness of 20 nm at a deposition rate of 0.1 nm / sec to form an electron transport layer.
  • 9,10-bis [4- (imidazo [1,2-a] pyridin-2-yl) phenyl] anthracene (23) having the following structure was deposited at a deposition rate of 0.1 nm / The film was successively deposited to a thickness of 10 nm in sec to form an electron injection layer.
  • LiF was deposited at a deposition rate of 0.1 nm / sec to a thickness of 1.2 nm, used as an electron injection electrode, Al as a protective electrode was deposited to a thickness of 100 nm, and finally sealed with glass to produce organic electroluminescence. An element was obtained.
  • Examples 2 to 15 and Comparative Examples 1 to 6 An organic electroluminescent device was produced in the same manner as in Example 1 except that the compounds listed in Table 2 were used in place of the compounds (III-2) and (11). Table 2 shows the half-life, chromaticity (CIEx, CIEy), and luminous efficiency at an initial luminance of 1000 cd / m 2 when these elements are driven at a current density of 10 mA / cm 2 .
  • the compound used for a comparative example has the structure shown below.
  • the organic electroluminescent device using the compound used in the present embodiment as a dopant was compared with the device using Comparative compounds (31) to (35) as the dopant. It was shown that the half life was long and the blue color purity was high.
  • the dopant used in the present embodiment showed higher luminous efficiency when the light emitting layer was formed using an anthracene or pyrene compound having a dibenzo [a, c] fluorene structure as a host material.
  • Example 16 An ITO transparent electrode having a thickness of 100 nm was formed on a glass substrate by RF sputtering and patterned. This glass substrate with an ITO transparent electrode was subjected to ultrasonic cleaning using a neutral detergent, acetone and ethanol, and then pulled up from boiling ethanol and dried. The surface of the transparent electrode was washed with UV / O 3 and then fixed to a substrate holder of a vacuum evaporation apparatus, and the inside of the layer was decompressed to 1 ⁇ 10 ⁇ 4 Pa or less.
  • the compound (III-2) of the present embodiment and molybdenum oxide as an electron acceptor were formed in a volume ratio of 95: 5 and the film thickness was 50 nm at an overall deposition rate of 0.1 nm / sec. Evaporation was performed to form a hole injection layer.
  • the compound (III-2) of the present embodiment was deposited to a thickness of 50 nm at a deposition rate of 0.1 nm / sec to form a hole transport layer.
  • the compound (III-2) of the present embodiment as a host material and the compound (11) of the present embodiment as a dopant at a volume ratio of 95: 5 and an overall deposition rate of 0.1 nm /
  • the film was deposited in a thickness of 40 nm in sec to obtain a light emitting layer.
  • the compound (III-2) of the present embodiment was deposited to a thickness of 20 nm at a deposition rate of 0.1 nm / sec to form an electron transport layer.
  • the compound (23) was successively deposited to a thickness of 10 nm at a deposition rate of 0.1 nm / sec to obtain an electron injection layer.
  • LiF was deposited at a deposition rate of 0.1 nm / sec to a thickness of 1.2 nm, used as an electron injection electrode, Al as a protective electrode was deposited to a thickness of 100 nm, and finally sealed with glass to produce organic electroluminescence. An element was obtained.
  • Example 17 to 27 An organic electroluminescent device was produced in the same manner as in Example 16 except that the compounds listed in Table 3 were used instead of the compounds (III-2) and (11). Table 3 shows the half-life, chromaticity (CIEx, CIEy), and luminous efficiency at an initial luminance of 1000 cd / m 2 when these elements are driven at a current density of 10 mA / cm 2 .
  • the organic electroluminescent devices using the compounds used in Examples 16 to 27 as dopants were compared with the devices using Comparative compounds (31) to (35) as dopants. It was shown that the luminance half-life was long and the blue color purity was high.
  • the dopant used in the present embodiment showed higher luminous efficiency when the light emitting layer was formed using an anthracene or pyrene compound having a dibenzo [a, c] fluorene structure as a host material.
  • the organic electroluminescent device containing the organic electroluminescent device compound of the present invention in the organic thin film layer can realize long-life blue light emission with high color purity.
  • SYMBOLS 1 Organic electroluminescent element concerning this embodiment, 2 ... Substrate, 3 ... 1st electrode, 4 ... Hole injection layer, 5 ... Hole transport layer, 6 ... Light emitting layer, 7 ... Electron transport layer, 8 ... Electron injection Layer, 9 ... second electrode, P ... power source.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The purpose of the present invention is to provide an organic electroluminescence element which has a long life and emits blue light having high color purity. A dibenzo[c, g]fluorene compound including a specific substitution group of the present invention is contained in an organic electroluminescence element, whereby it becomes possible to provide an organic electroluminescence element which has a long life and emits blue light having high color purity.

Description

有機電界発光素子用化合物および有機電界発光素子Compound for organic electroluminescence device and organic electroluminescence device
 本発明は、有機電界発光素子用化合物および有機電界発光素子に関する。 The present invention relates to a compound for organic electroluminescence device and an organic electroluminescence device.
 有機電界発光素子は、陽極と陰極に発光性有機化合物を含む薄膜が挟持されている電子素子である。各電極からホールおよび電子が注入されることにより、発光性有機化合物の励起子が生成し、この励起子が基底状態に戻る際に、有機電界発光素子が光を放出する。 An organic electroluminescent element is an electronic element in which a thin film containing a luminescent organic compound is sandwiched between an anode and a cathode. By injecting holes and electrons from each electrode, excitons of the light-emitting organic compound are generated, and the organic electroluminescent element emits light when the excitons return to the ground state.
 有機電界発光素子の素子構造としては、ホール輸送層、電子輸送発光層の2層型、またはホール輸送層、発光層、電子輸送層の3層型等が検討されてきた。現在では、注入された正孔と電子の再結合効率を更に高めるために、ホール注入層、電子注入層を、それぞれ陽極とホール輸送層、陰極と電子輸送層との間に挿入した構造が主流となっている。 As an element structure of an organic electroluminescent element, a two-layer type of a hole transport layer and an electron transport light-emitting layer, or a three-layer type of a hole transport layer, a light-emitting layer, and an electron transport layer has been studied. At present, in order to further enhance the recombination efficiency of injected holes and electrons, a structure in which a hole injection layer and an electron injection layer are inserted between an anode and a hole transport layer and a cathode and an electron transport layer, respectively, is the mainstream. It has become.
 有機電界発光素子は、コントラスト、応答性、視野角に優れた、低消費電力、薄型・軽量な発光デバイスを実現する技術として期待され、活発に研究が行われているが、有機電界発光素子のディスプレイ等への実用化を促進するためには、現状の素子の発光効率と連続駆動寿命は実用上十分ではなく、更なる高効率発光および長寿命化が求められている。また、フルカラーディスプレイ等への応用を考えた場合には、色純度の良い青、緑、赤の発光が必要となるが、これらの問題に関しても未だ十分解決されておらず、特に青色発光素子用材料に関しては特性改善が強く求められている。 Organic electroluminescent elements are expected to be a technology for realizing light-emitting devices that are excellent in contrast, responsiveness, and viewing angle, low power consumption, thin and light, and are actively researched. In order to promote practical application to displays and the like, the light emitting efficiency and continuous drive life of the current elements are not sufficient in practical use, and further high-efficiency light emission and longer life are required. In addition, when considering application to full-color displays, it is necessary to emit blue, green, and red light with good color purity. However, these problems have not been sufficiently solved, especially for blue light emitting devices. There is a strong demand for improved properties of materials.
 有機電界発光素子の構成材料となる有機化合物は多種多様であり、上記の問題を解決するために、種々の有機材料が提案されている。青色発光素子用材料としては、例えば、特許文献1には、ジアリールアミノ基を有するベンゾフルオレンおよびジベンゾフルオレン誘導体を発光層ドーパントとして用いた例が報告されている。特許文献2および3には、アリール基を有するジベンゾ[c,g]フルオレン誘導体を発光層ホスト材料として用いた例が報告されている。特許文献4では、ジアリールアミノ基または電子輸送性物質により置換されたジベンゾ[c,g]フルオレン誘導体が報告されている。 There are a wide variety of organic compounds as constituent materials for organic electroluminescent elements, and various organic materials have been proposed in order to solve the above problems. As a blue light emitting element material, for example, Patent Document 1 reports an example in which a benzofluorene having a diarylamino group and a dibenzofluorene derivative are used as a light emitting layer dopant. Patent Documents 2 and 3 report examples in which a dibenzo [c, g] fluorene derivative having an aryl group is used as a light emitting layer host material. Patent Document 4 reports a dibenzo [c, g] fluorene derivative substituted with a diarylamino group or an electron transporting substance.
特開2015-10077号公報Japanese Patent Laid-Open No. 2015-10077 特開2009-274989号公報JP 2009-274899 A 特開2010-132651号公報JP 2010-132651 A 国際公開第2003/051092号公報International Publication No. 2003/051092
 本発明は、上記事情に鑑みてなされたものであって、有機電界発光素子の構成材料として用いた場合に、長寿命且つ色純度の高い青色発光を示す有機電界発光素子用化合物および有機電界発光素子を提供することを目的とする。 The present invention has been made in view of the above circumstances, and when used as a constituent material of an organic electroluminescence device, the compound for organic electroluminescence device and organic electroluminescence exhibiting long-life and high-purity blue light emission. An object is to provide an element.
 上記目的を達成するため、本発明は、下記一般式(1)で表されることを特徴とする有機電界発光素子用化合物および前記有機電界発光素子用化合物を単独もしくは混合物の成分として含有することを特徴とする有機電界発光素子を提供する。 In order to achieve the above object, the present invention contains a compound for an organic electroluminescence device represented by the following general formula (1) and the compound for an organic electroluminescence device alone or as a component of a mixture. An organic electroluminescent device is provided.
Figure JPOXMLDOC01-appb-C000005
(一般式(1)において、
 YおよびYは、それぞれ独立に、直鎖もしくは分岐状の炭素数1~10のアルキル基、または置換もしくは無置換の炭素数6~12のアリール基である。
 XおよびXは、それぞれ独立に、置換もしくは無置換の炭素数6~20のアリール基、または下記一般式(2)、(3)、(4)の何れかで表される置換基であり、XおよびXのうち、少なくとも一つは、下記一般式(2)、(3)、(4)の何れかで表される置換基である。)
Figure JPOXMLDOC01-appb-C000005
(In general formula (1),
Y 1 and Y 2 are each independently a linear or branched alkyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms.
X 1 and X 2 are each independently a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or a substituent represented by any one of the following general formulas (2), (3), and (4). Yes, at least one of X 1 and X 2 is a substituent represented by any one of the following general formulas (2), (3), and (4). )
Figure JPOXMLDOC01-appb-C000006
(一般式(2)において、
 Arは、置換もしくは無置換の炭素数6~16のアリール基である。
 mは、1~2の整数である。)
Figure JPOXMLDOC01-appb-C000006
(In general formula (2),
Ar 1 is a substituted or unsubstituted aryl group having 6 to 16 carbon atoms.
m is an integer of 1 to 2. )
Figure JPOXMLDOC01-appb-C000007
(一般式(3)において、
 Arは、置換もしくは無置換の炭素数6~16のアリール基である。
 nは、1~5の整数である。)
Figure JPOXMLDOC01-appb-C000007
(In general formula (3),
Ar 2 is a substituted or unsubstituted aryl group having 6 to 16 carbon atoms.
n is an integer of 1 to 5. )
Figure JPOXMLDOC01-appb-C000008
(一般式(4)において、
 Arは、置換もしくは無置換の炭素数6~16のアリール基である。
 pは、1~2の整数である。)
Figure JPOXMLDOC01-appb-C000008
(In general formula (4),
Ar 3 is a substituted or unsubstituted aryl group having 6 to 16 carbon atoms.
p is an integer of 1 to 2. )
 かかる有機電界発光素子用化合物によれば、有機電界発光素子の構成材料として用いた場合に、長寿命且つ色純度の高い青色発光を実現することが可能となる。本発明の有機電界発光素子用化合物によりこのような効果が得られる理由は必ずしも明らかでないが、本発明者らは次のように考えている。 According to such a compound for an organic electroluminescent element, when used as a constituent material of the organic electroluminescent element, it is possible to realize blue light emission having a long lifetime and high color purity. The reason why such an effect can be obtained by the compound for organic electroluminescence device of the present invention is not necessarily clear, but the present inventors consider as follows.
 これまでに、蛍光発光ドーパントとして、様々な構造を有するトリアリールアミン誘導体が開発、報告されている。トリアリールアミノ基を有するドーパントは、一般的に、強い蛍光強度を示し、且つ最高被占軌道(HOMO)が高く、ドーパント上でのホールトラップと電荷再結合が効率良く生ずるために、高効率な有機電界発光素子を実現することが可能である。このような有機電界発光素子中では、一般的に、ホール輸送層近傍の発光層において集中的な電荷の再結合と引き続くドーパントの励起、発光が生ずると考えられる。 So far, triarylamine derivatives having various structures have been developed and reported as fluorescent emission dopants. A dopant having a triarylamino group generally exhibits high fluorescence intensity, has a high highest occupied orbital (HOMO), and efficiently generates hole traps and charge recombination on the dopant. An organic electroluminescent element can be realized. In such an organic electroluminescence device, it is generally considered that intensive charge recombination and subsequent dopant excitation and emission occur in the light emitting layer in the vicinity of the hole transport layer.
 一方、Journal of Applied Physics,107,024507,(2010)では、電荷再結合領域である発光層とホール輸送層界面近傍にて生ずるホール輸送層材料の結合開裂に起因する化学反応が、有機電界発光素子の駆動に伴う輝度低下の一因となり得ることが考察されている。 On the other hand, in Journal of Applied Physics, 107, 024507, (2010), the chemical reaction resulting from bond cleavage of the hole transport layer material that occurs near the interface between the light-emitting layer that is the charge recombination region and the hole transport layer is organic electroluminescence. It has been considered that it can contribute to a decrease in luminance associated with element driving.
 すなわち、トリアリールアミン誘導体をドーパントとして用いた有機電界発光素子では、電荷再結合領域が発光層とホール輸送層界面近傍に集中しやすいために、有機電界発光素子の駆動に伴う輝度低下すなわち駆動寿命の低下が生じている可能性があると考えられる。 That is, in an organic electroluminescent device using a triarylamine derivative as a dopant, the charge recombination region is likely to be concentrated near the interface between the light emitting layer and the hole transport layer. It is considered that there is a possibility that the decrease in
 そこで、本発明者らは、最低空軌道(LUMO)が低く、電子受容性の発光ドーパントを用いた有機電界発光素子では、発光層と電子輸送層界面近傍において電荷再結合する可能性が高く、発光層とホール輸送層界面近傍での電荷再結合が抑制できるために、駆動寿命の改善が見込めると考えた。 Therefore, the present inventors have a low minimum orbital (LUMO), and in an organic electroluminescent device using an electron-accepting light-emitting dopant, there is a high possibility of charge recombination in the vicinity of the interface between the light-emitting layer and the electron transport layer, We thought that the drive life could be improved because charge recombination near the interface between the light emitting layer and the hole transport layer could be suppressed.
 本発明にかかる一般式(1)で表される有機電界発光素子用化合物は、少なくとも一つの、シアノ基もしくはフルオロ基もしくはトリフルオロメチル基を有するアリール基が、ジベンゾ[c,g]フルオレンの5位および9位に置換した構造を有する。本発明の有機電界発光素子用化合物を発光層ドーパントとして用いる場合、有機電界発光素子の長寿命化が可能である。本発明のジベンゾ[c,g]フルオレン誘導体は、発光層ホスト材料として一般的に用いられる多環芳香族化合物と比較して、LUMOが低く、電子をトラップしやすい性質を有するために、発光層とホール輸送層界面近傍での電荷再結合が抑制でき、素子の駆動に伴う輝度低下が抑制できると考えられる。 In the compound for organic electroluminescence device represented by the general formula (1) according to the present invention, at least one aryl group having a cyano group, a fluoro group, or a trifluoromethyl group is dibenzo [c, g] fluorene. It has a structure substituted at the 9th and 9th positions. When the compound for organic electroluminescent elements of the present invention is used as a light emitting layer dopant, the lifetime of the organic electroluminescent element can be extended. The dibenzo [c, g] fluorene derivative of the present invention has a low LUMO and a property of easily trapping electrons as compared with a polycyclic aromatic compound generally used as a light emitting layer host material. It can be considered that charge recombination in the vicinity of the interface between the hole transport layer and the hole transport layer can be suppressed, and a decrease in luminance accompanying driving of the element can be suppressed.
 一方、発光ドーパントの電子受容性が非常に高い場合には、LUMOの低下に伴う発光スペクトルの長波長化すなわち青色発光の色純度低下や、素子中の周辺材料との相互作用に起因する駆動寿命や色純度の低下が起こるために、有機電界発光素子の長寿命化や色純度向上が実現できない。シアノ基もしくはフルオロ基もしくはトリフルオロメチル基を有するアリール基は、本発明のジベンゾ[c,g]フルオレンに適度な電子受容性を付与し、430nm~470nm付近の色純度の高い青色発光と有機電界発光素子の長寿命化を可能にする。 On the other hand, when the electron acceptability of the luminescent dopant is very high, the driving lifetime is caused by the longer wavelength of the emission spectrum, that is, the color purity of blue light emission accompanying the decrease in LUMO, and the interaction with peripheral materials in the device. In other words, the organic electroluminescence element cannot be extended in life and color purity can be improved. The aryl group having a cyano group, a fluoro group, or a trifluoromethyl group imparts an appropriate electron accepting property to the dibenzo [c, g] fluorene of the present invention, and emits blue light having a high color purity around 430 nm to 470 nm and an organic electric field. The lifetime of the light emitting element can be extended.
 また、本発明にかかる有機電界発光素子用化合物は、XおよびXが、それぞれ独立に、一般式(2)、(3)、(4)の何れかで表される置換基であることが好ましい。 In the organic electroluminescent element compound according to the present invention, X 1 and X 2 are each independently a substituent represented by any one of the general formulas (2), (3), and (4). Is preferred.
 かかる構造の化合物有機電界発光素子用化合物は、青色発光ドーパントとして高い色純度と長い駆動寿命の両立を可能にする好適な発光波長と電子受容性を有する。 A compound for an organic electroluminescence device having such a structure has a suitable emission wavelength and electron acceptability that enable both high color purity and a long driving life as a blue light emitting dopant.
 また、本発明にかかる有機電界発光素子用化合物は、Ar、Ar、Arが、置換もしくは無置換の、フェニル基、ナフチル基、またはビフェニル基であることが好ましい。 In the compound for an organic electroluminescent device according to the present invention, Ar 1 , Ar 2 , and Ar 3 are preferably a substituted or unsubstituted phenyl group, naphthyl group, or biphenyl group.
 Ar、Ar、Arが上記置換基である場合には、より色純度の高い青色発光を実現することが可能である。また、合成が容易なことから、不純物の少ない有機電界発光素子用化合物の作製が可能であるために、駆動寿命の長い有機電界発光素子を得ることが可能となる。 When Ar 1 , Ar 2 , and Ar 3 are the above substituents, it is possible to realize blue light emission with higher color purity. In addition, since the compound is easy to synthesize, it is possible to produce a compound for an organic electroluminescence device with few impurities, and thus it is possible to obtain an organic electroluminescence device with a long driving life.
 また、本発明にかかる有機電界発光素子は、有機層が発光層を有し、前記発光層が前記化合物を含むことが好ましい。 In the organic electroluminescent element according to the present invention, it is preferable that the organic layer has a light emitting layer, and the light emitting layer contains the compound.
 また、本発明にかかる有機電界発光素子は、前記発光層がホスト材料とドーパントとを有し、前記ドーパントが前記化合物を含むことが好ましい。 In the organic electroluminescent device according to the present invention, it is preferable that the light emitting layer has a host material and a dopant, and the dopant contains the compound.
 かかる有機電界発光素子によれば、ドーパントが適度な電子受容性を有するために、発光層とホール輸送層界面への電荷再結合の集中や周辺材料との相互作用が抑制でき、長い駆動寿命を実現することが可能である。また、このような有機電界発光素子は色純度の高い青色発光を示す。 According to such an organic electroluminescent device, since the dopant has an appropriate electron accepting property, the concentration of charge recombination at the interface between the light emitting layer and the hole transport layer and the interaction with the surrounding materials can be suppressed, and a long driving life can be achieved. It is possible to realize. Moreover, such an organic electroluminescent element emits blue light with high color purity.
 また、本発明にかかる有機電界発光素子は、前記有機層がホール注入層またはホール輸送層の少なくとも一方を有し、前記ホール注入層またはホール輸送層の少なくとも一部分が電子アクセプターとして機能する無機化合物、あるいは有機化合物を含むことが好ましい。 Further, in the organic electroluminescent device according to the present invention, the organic layer has at least one of a hole injection layer or a hole transport layer, and at least a part of the hole injection layer or the hole transport layer functions as an electron acceptor, Or it is preferable that an organic compound is included.
 有機電界発光素子の高効率化のためには、ドーパントにおけるホールと電子の両キャリアの再結合が効率良く起こることが必要であり、このためには、ドーパントが十分にキャリアを捕捉し、対キャリアが発光層中のドーパントに十分に供給されることが重要である。また、両キャリアが速やかに再結合しない場合には、余剰のキャリアに相当するラジカル状態の化合物が素子中に存在し、これが発光を阻害し、短寿命の要因となる。 In order to increase the efficiency of the organic electroluminescent device, it is necessary that the recombination of both the hole and electron carriers in the dopant occurs efficiently. For this purpose, the dopant sufficiently captures the carrier and counters the carrier. Is sufficiently supplied to the dopant in the light emitting layer. In addition, when both carriers do not recombine quickly, a compound in a radical state corresponding to excess carriers exists in the device, which inhibits light emission and causes a short life.
 電子アクセプターとして機能する化合物は、隣接する有機物から電子を引き抜くことでホールを発生させることができるために、ホール注入層またはホール輸送層の少なくとも一部分が電子アクセプターを含有する有機電界発光素子では、陽極から発光層にホールを注入するまでの注入障壁を著しく低下することができる。この結果、本発明の有機電界発光素子に用いられる電子受容性のドーパントに十分にホールを供給することができるために、高効率且つ長寿命な発光が可能となる。 Since a compound that functions as an electron acceptor can generate holes by extracting electrons from an adjacent organic substance, in an organic electroluminescent device in which at least a part of a hole injection layer or a hole transport layer contains an electron acceptor, an anode The injection barrier from the injection of holes to the light emitting layer can be significantly reduced. As a result, since holes can be sufficiently supplied to the electron-accepting dopant used in the organic electroluminescence device of the present invention, light emission with high efficiency and long life is possible.
 本発明によれば、長寿命且つ色純度の高い青色発光を示す有機電界発光素子を得ることが可能となる。 According to the present invention, it is possible to obtain an organic electroluminescent element that emits blue light with a long lifetime and high color purity.
本実施形態にかかる有機電界発光素子の一例を示す模式断面図である。It is a schematic cross section which shows an example of the organic electroluminescent element concerning this embodiment. 合成例1の本発明の化合物(11)のHNMRスペクトルを示す図である。1 is a diagram showing a 1 HNMR spectrum of a compound (11) of the present invention of Synthesis Example 1. FIG. 合成例1の本発明の化合物(11)の13CNMRスペクトルを示す図であるIt is a figure which shows the 13 CNMR spectrum of the compound (11) of this invention of the synthesis example 1. 合成例2の本発明の化合物(12)のHNMRスペクトルを示す図である。 1 is a diagram showing a 1 HNMR spectrum of a compound (12) of the present invention in Synthesis Example 2. FIG. 合成例2の本発明の化合物(12)の13CNMRスペクトルを示す図である。It is a figure which shows the 13 CNMR spectrum of the compound (12) of this invention of the synthesis example 2. 合成例3の本発明の化合物(13)のHNMRスペクトルを示す図である。4 is a diagram showing a 1 HNMR spectrum of a compound (13) of the present invention in Synthesis Example 3. FIG. 合成例3の本発明の化合物(13)の13CNMRスペクトルを示す図である。It is a figure which shows the 13 CNMR spectrum of the compound (13) of this invention of the synthesis example 3. 合成例4の本発明の化合物(14)のHNMRスペクトルを示す図である。It shows The 1 HNMR spectrum of the compound of the present invention Synthesis Example 4 (14). 合成例4の本発明の化合物(14)の13CNMRスペクトルを示す図である。It is a figure which shows the 13 CNMR spectrum of the compound (14) of this invention of the synthesis example 4. 合成例5の本発明の化合物(15)のHNMRスペクトルを示す図である。6 is a diagram showing a 1 HNMR spectrum of a compound (15) of the present invention in Synthesis Example 5. FIG. 合成例5の本発明の化合物(15)の13CNMRスペクトルを示す図である。It is a figure which shows the 13 CNMR spectrum of the compound (15) of this invention of the synthesis example 5. 合成例6の本発明の化合物(16)のHNMRスペクトルを示す図である。2 is a diagram showing a 1 HNMR spectrum of a compound (16) of the present invention in Synthesis Example 6. FIG. 合成例6の本発明の化合物(16)の13CNMRスペクトルを示す図である。It is a figure which shows the 13 CNMR spectrum of the compound (16) of this invention of the synthesis example 6. 合成例7の本発明の化合物(17)のHNMRスペクトルを示す図である。It shows The 1 HNMR spectrum of the compound of the present invention synthesized in Synthesis Example 7 (17). 合成例7の本発明の化合物(17)の13CNMRスペクトルを示す図である。It is a figure which shows the 13 CNMR spectrum of the compound (17) of this invention of the synthesis example 7. 合成例8の本発明の化合物(18)のHNMRスペクトルを示す図である。 1 is a diagram showing a 1 HNMR spectrum of a compound (18) of the present invention in Synthesis Example 8. FIG. 合成例8の本発明の化合物(18)の13CNMRスペクトルを示す図である。It is a figure which shows the 13 CNMR spectrum of the compound (18) of this invention of the synthesis example 8.
 以下、必要に応じて図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、図面中、同一要素には同一の符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.
(有機電界発光素子用化合物)
 本発明の好適な実施形態にかかる有機電界発光素子用化合物は、下記一般式(1)で表される特定の構造を有するジベンゾ[c,g]フルオレン化合物である。
(Compound for organic electroluminescence device)
The compound for organic electroluminescent elements according to a preferred embodiment of the present invention is a dibenzo [c, g] fluorene compound having a specific structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000009
(一般式(1)において、
 YおよびYは、それぞれ独立に、直鎖もしくは分岐状の炭素数1~10のアルキル基、または置換もしくは無置換の炭素数6~12のアリール基である。
 XおよびXは、それぞれ独立に、置換もしくは無置換の炭素数6~20のアリール基、または下記一般式(2)、(3)、(4)の何れかで表される置換基であり、XおよびXのうち、少なくとも一つは、下記一般式(2)、(3)、(4)の何れかで表される置換基である。)
Figure JPOXMLDOC01-appb-C000009
(In general formula (1),
Y 1 and Y 2 are each independently a linear or branched alkyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms.
X 1 and X 2 are each independently a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or a substituent represented by any one of the following general formulas (2), (3), and (4). Yes, at least one of X 1 and X 2 is a substituent represented by any one of the following general formulas (2), (3), and (4). )
Figure JPOXMLDOC01-appb-C000010
(一般式(2)において、
 Arは、置換もしくは無置換の炭素数6~16のアリール基である。
 mは、1~2の整数である。)
Figure JPOXMLDOC01-appb-C000010
(In general formula (2),
Ar 1 is a substituted or unsubstituted aryl group having 6 to 16 carbon atoms.
m is an integer of 1 to 2. )
Figure JPOXMLDOC01-appb-C000011
(一般式(3)において、
 Arは、置換もしくは無置換の炭素数6~16のアリール基である。
 nは、1~5の整数である。)
Figure JPOXMLDOC01-appb-C000011
(In general formula (3),
Ar 2 is a substituted or unsubstituted aryl group having 6 to 16 carbon atoms.
n is an integer of 1 to 5. )
Figure JPOXMLDOC01-appb-C000012
(一般式(4)において、
 Arは、置換もしくは無置換の炭素数6~16のアリール基である。
 pは、1~2の整数である。)
Figure JPOXMLDOC01-appb-C000012
(In general formula (4),
Ar 3 is a substituted or unsubstituted aryl group having 6 to 16 carbon atoms.
p is an integer of 1 to 2. )
 一般式(1)において、YおよびYは、それぞれ独立に、直鎖もしくは分岐状の炭素数1~10のアルキル基であり、具体的には、メチル基、エチル基、直鎖もしくは分岐状のプロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基が挙げられる。 In the general formula (1), Y 1 and Y 2 are each independently a linear or branched alkyl group having 1 to 10 carbon atoms, specifically, a methyl group, an ethyl group, a linear or branched group. Propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group and decyl group.
 一般式(1)において、YおよびYは、それぞれ独立に、置換もしくは無置換の炭素数6~12のアリール基であり、具体的には、フェニル基、ナフチル基、ビフェニル基等が挙げられる。 In the general formula (1), Y 1 and Y 2 are each independently a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, and specific examples thereof include a phenyl group, a naphthyl group, and a biphenyl group. It is done.
 YおよびYとしては、化合物および有機電界発光素子の安定性と合成の容易さの点から、メチル基、エチル基、プロピル基、ブチル基、フェニル基、ナフチル基、ビフェニリル基が好ましく、メチル基、フェニル基、ビフェニリル基がより好ましい。また、YおよびYが、それぞれ独立に、フェニル基またはナフチル基である場合には、YとYが結合して環状構造を形成していてもよい。 Y 1 and Y 2 are preferably a methyl group, an ethyl group, a propyl group, a butyl group, a phenyl group, a naphthyl group, or a biphenylyl group from the viewpoint of the stability of the compound and the organic electroluminescent device and the ease of synthesis. Group, phenyl group, and biphenylyl group are more preferable. When Y 1 and Y 2 are each independently a phenyl group or a naphthyl group, Y 1 and Y 2 may be bonded to form a cyclic structure.
 YおよびYは同じであっても異なっていてもよい。 Y 1 and Y 2 may be the same or different.
 また、前記アリール基は、更に置換基で置換されていてもよく、このような置換基としては、アリール基、アルキル基、アルコキシ基、アリールオキシ基、ハロゲノ基、シリル基等が挙げられる。 The aryl group may be further substituted with a substituent. Examples of such a substituent include an aryl group, an alkyl group, an alkoxy group, an aryloxy group, a halogeno group, and a silyl group.
 これらの置換基の中でも、有機電界発光素子の安定性の点から、アリール基およびアルキル基が好ましく、フェニル基、ナフチル基、ビフェニリル基、メチル基、エチル基、プロピル基、ブチル基がより好ましい。 Among these substituents, an aryl group and an alkyl group are preferable from the viewpoint of the stability of the organic electroluminescent device, and a phenyl group, a naphthyl group, a biphenylyl group, a methyl group, an ethyl group, a propyl group, and a butyl group are more preferable.
 一般式(1)において、XおよびXのうち、一般式(2)、(3)、(4)の何れかで表される置換基でないものは、置換もしくは無置換の炭素数6~20のアリール基であり、具体的にはフェニル基、ナフチル基、ビフェニリル基、フルオレニル基、ベンゾフルオニル基、フェナントリル基、アントラセニル基、ピレニル基、クリセニル基、ターフェニリル基、テトラセニル基等が挙げられる。 In the general formula (1), X 1 and X 2 which are not a substituent represented by any one of the general formulas (2), (3) and (4) are substituted or unsubstituted 6 to 6 carbon atoms. 20 aryl groups, and specifically include phenyl, naphthyl, biphenylyl, fluorenyl, benzofluoryl, phenanthryl, anthracenyl, pyrenyl, chrysenyl, terphenylyl, tetracenyl and the like.
 XおよびXのアリール基としては、色純度の高い青色発光が得られる点から、フェニル基、ナフチル基、ビフェニリル基、フルオレニル基、ベンゾフルオニル基、フェナントリル基が好ましく、フェニル基、ナフチル基、ビフェニリル基がより好ましい。 As the aryl group of X 1 and X 2 , a phenyl group, a naphthyl group, a biphenylyl group, a fluorenyl group, a benzofluoryl group, and a phenanthryl group are preferable, and a phenyl group, a naphthyl group, and a biphenylyl group are preferable because blue light emission with high color purity can be obtained. Groups are more preferred.
 また、前記アリール基は、更に置換基で置換されていてもよく、このような置換基としては、アリール基、アルキル基、アルコキシ基、アリールオキシ基、ハロゲノ基、シリル基等が挙げられる。 The aryl group may be further substituted with a substituent. Examples of such a substituent include an aryl group, an alkyl group, an alkoxy group, an aryloxy group, a halogeno group, and a silyl group.
 これらの置換基の中でも、有機電界発光素子の安定性および色純度の高い青色発光が得られる点から、アリール基およびアルキル基が好ましく、フェニル基、ナフチル基、ビフェニリル基、メチル基、エチル基、プロピル基、ブチル基がより好ましい。 Among these substituents, an aryl group and an alkyl group are preferred from the viewpoint of obtaining blue light emission with high stability and stability of the organic electroluminescent device, and phenyl group, naphthyl group, biphenylyl group, methyl group, ethyl group, A propyl group and a butyl group are more preferable.
 一般式(1)において、XおよびXのうち、少なくとも一つは、一般式(2)、(3)、(4)の何れかで表される。 In the general formula (1), at least one of X 1 and X 2 is represented by any one of the general formulas (2), (3), and (4).
 一般式(1)において、XおよびXが、それぞれ独立に、一般式(2)、(3)、(4)の何れかで表される置換基であることが好ましい。かかる構造の有機電界発光素子用化合物は、青色発光ドーパントとして高い色純度と長い駆動寿命の両立を可能にする好適な発光波長と電子受容性を有する。 In the general formula (1), X 1 and X 2 are preferably each independently a substituent represented by any of the general formulas (2), (3), and (4). The compound for an organic electroluminescence device having such a structure has a suitable emission wavelength and electron acceptability that enable both high color purity and a long drive life as a blue light emitting dopant.
 一般式(1)において、XおよびXのうち、少なくとも一つは、一般式(2)で表される置換基であることが好ましい。かかる構造の有機電界発光素子用化合物は、青色発光ドーパントとして高い色純度と長い駆動寿命に加え、高い発光効率を示す。 In the general formula (1), at least one of X 1 and X 2 is preferably a substituent represented by the general formula (2). The compound for an organic electroluminescence device having such a structure exhibits high luminous efficiency in addition to high color purity and a long driving life as a blue light emitting dopant.
 XおよびXは同じであっても異なっていてもよい。 X 1 and X 2 may be the same or different.
 一般式(2)、(3)、(4)において、Ar、Ar、Arは、それぞれ独立に、置換もしくは無置換の炭素数6~16のアリール基であり、具体的には、フェニル基、ナフチル基、ビフェニリル基、フルオレニル基、フェナントリル基、アントラセニル基、ピレニル基等が挙げられる。 In the general formulas (2), (3), and (4), Ar 1 , Ar 2 , and Ar 3 are each independently a substituted or unsubstituted aryl group having 6 to 16 carbon atoms, specifically, Examples thereof include a phenyl group, a naphthyl group, a biphenylyl group, a fluorenyl group, a phenanthryl group, an anthracenyl group, and a pyrenyl group.
 これらの置換基の中でも、色純度の高い青色発光が得られる点から、フェニル基、ナフチル基、ビフェニリル基、フルオレニル基が好ましく、フェニル基、ナフチル基、ビフェニリル基がより好ましい。このような構造は、合成が容易なことから、不純物の少ない有機電界発光素子用化合物の作製が可能であるために、駆動寿命の長い有機電界発光素子を得ることが可能となる。 Among these substituents, a phenyl group, a naphthyl group, a biphenylyl group, and a fluorenyl group are preferable, and a phenyl group, a naphthyl group, and a biphenylyl group are more preferable because blue light emission with high color purity can be obtained. Since such a structure is easy to synthesize, it is possible to produce a compound for an organic electroluminescence device with few impurities, and thus an organic electroluminescence device with a long driving life can be obtained.
 また、前記アリール基は、更に置換基で置換されていてもよく、このような置換基としては、アリール基、アルキル基、アルコキシ基、アリールオキシ基、ハロゲノ基、シリル基等が挙げられる。 The aryl group may be further substituted with a substituent. Examples of such a substituent include an aryl group, an alkyl group, an alkoxy group, an aryloxy group, a halogeno group, and a silyl group.
 これらの置換基の中でも、化合物および有機電界発光素子の安定性と色純度の高い青色発光が得られる点から、アリール基およびアルキル基が好ましく、フェニル基、ナフチル基、ビフェニリル基、メチル基、エチル基、プロピル基、ブチル基がより好ましい。 Among these substituents, an aryl group and an alkyl group are preferable from the viewpoint that the compound and the organic electroluminescence device can be stable and blue light emission with high color purity is obtained, and a phenyl group, a naphthyl group, a biphenylyl group, a methyl group, an ethyl group are preferable. A group, a propyl group, and a butyl group are more preferable.
 一般式(2)において、mは、1~2の整数であり、一般式(3)において、nは、1~5の整数であり、一般式(4)において、pは、1~2の整数である。このような構造によれば、色純度の高い青色発光が可能である。 In the general formula (2), m is an integer of 1 to 2, in the general formula (3), n is an integer of 1 to 5, and in the general formula (4), p is 1 to 2. It is an integer. According to such a structure, blue light emission with high color purity is possible.
 本実施形態にかかる化合物の分子量については特に限定は無いが、素子作成プロセスを考慮すると、分子量が1300以下であることが好ましい。分子量が1300以上の化合物は、溶解性が低下することで合成が困難になる他、塗布プロセスによる有機電界発光素子の作成が困難になるためである。また、蒸着プロセスによって有機電界発光素子を作製する場合においても、蒸着温度が高温になり、材料の分解を生じる可能性があるためである。 The molecular weight of the compound according to the present embodiment is not particularly limited, but it is preferable that the molecular weight is 1300 or less in consideration of the element production process. This is because a compound having a molecular weight of 1300 or more is difficult to synthesize due to a decrease in solubility, and it is difficult to produce an organic electroluminescent device by a coating process. Further, even when an organic electroluminescent element is produced by a vapor deposition process, the vapor deposition temperature becomes high, which may cause decomposition of the material.
(有機電界発光素子用化合物の具体例)
 本実施形態にかかる一般式(1)で表される有機電界発光素子用化合物の好適な例としては、下記式(I-1)~(I-36)、(II-1)~(II-31)で表される化合物が挙げられる。
(Specific examples of compounds for organic electroluminescence devices)
Preferable examples of the compound for organic electroluminescence device represented by the general formula (1) according to this embodiment include the following formulas (I-1) to (I-36), (II-1) to (II- 31).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(有機電界発光素子)
 図1は、本実施形態にかかる有機電界発光素子の一例を示す模式断面図である。図1に示す有機電界発光素子1は互いに対向して配置されている2つの電極(第1の電極3および第2の電極9)により、ホール注入層4、ホール輸送層5、発光層6、電子輸送層7、電子注入層8が挟持された構造を有している。ホール注入層4、ホール輸送層5、発光層6、電子輸送層7、電子注入層8は、いずれも有機層であり、第1の電極3側からこの順に積層されている。なお、電子注入層8は無機層(金属層、金属化合物層等)とすることもできる。
(Organic electroluminescence device)
FIG. 1 is a schematic cross-sectional view showing an example of an organic electroluminescent element according to this embodiment. The organic electroluminescent element 1 shown in FIG. 1 includes a hole injection layer 4, a hole transport layer 5, a light emitting layer 6, and two electrodes (first electrode 3 and second electrode 9) arranged to face each other. The electron transport layer 7 and the electron injection layer 8 are sandwiched. The hole injection layer 4, the hole transport layer 5, the light emitting layer 6, the electron transport layer 7, and the electron injection layer 8 are all organic layers, and are stacked in this order from the first electrode 3 side. The electron injection layer 8 may be an inorganic layer (metal layer, metal compound layer, etc.).
 なお、本実施形態において、第1の電極3は基板2上に形成されているが、基板2側からの積層の順番を逆にしてもよい。つまり、基板2側から、第2の電極9、電子注入層8、電子輸送層7、発光層6、ホール輸送層5、ホール注入層4、第1の電極3の順で積層されていてもよい。 In the present embodiment, the first electrode 3 is formed on the substrate 2, but the stacking order from the substrate 2 side may be reversed. That is, even if the second electrode 9, the electron injection layer 8, the electron transport layer 7, the light emitting layer 6, the hole transport layer 5, the hole injection layer 4, and the first electrode 3 are stacked in this order from the substrate 2 side. Good.
 また、本実施形態で用いられる有機電界発光素子用化合物は、上述したどの層に含まれていてもよいが、発光層6に含まれていることが好ましい。 Moreover, the organic electroluminescent element compound used in the present embodiment may be contained in any of the layers described above, but is preferably contained in the light emitting layer 6.
 本実施形態においては、第1の電極3および第2の電極9が、それぞれホール注入電極(陽極)および電子注入電極(陰極)として機能し、電源Pによる電界の印加により、第1の電極3からホールが注入されるとともに、第2の電極9から電子が注入され、これらの再結合により発光層中の有機電界発光素子用化合物が発光する。 In the present embodiment, the first electrode 3 and the second electrode 9 function as a hole injecting electrode (anode) and an electron injecting electrode (cathode), respectively. As well as holes are injected from the second electrode 9, electrons are injected from the second electrode 9, and these recombination causes the organic electroluminescent element compound in the light emitting layer to emit light.
 また、ホール注入層4、ホール輸送層5、発光層6、電子輸送層7、電子注入層8の好適な厚さは、いずれも1~200nmである。 The preferred thicknesses of the hole injection layer 4, the hole transport layer 5, the light emitting layer 6, the electron transport layer 7 and the electron injection layer 8 are all 1 to 200 nm.
(基板)
 基板2としては、従来の有機電界発光素子が備えているものであれば、特に限定されることなく用いることができ、ガラス、石英等の非晶質基板、Si、GaAs、ZnSe、ZnS、GaP、InP等の結晶基板、Mo、Al、Pt、Ir、Au、Pd、SUS等の金属基板等を用いることができる。また、結晶質又は非晶質のセラミック、金属、有機物等の薄膜を所定基板上に形成したものを用いてもよい。
(substrate)
The substrate 2 can be used without particular limitation as long as it is provided in a conventional organic electroluminescence device, and is an amorphous substrate such as glass or quartz, Si, GaAs, ZnSe, ZnS, GaP. A crystal substrate such as InP or a metal substrate such as Mo, Al, Pt, Ir, Au, Pd, or SUS can be used. Further, a thin film made of a crystalline or amorphous ceramic, metal, organic substance or the like formed on a predetermined substrate may be used.
 基板2の側を光取り出し側とする場合には、基板2としてガラスや石英等の透明基板を用いることが好ましく、特に、安価なガラスの透明基板を用いることが好ましい。透明基板には、発光色の調整のために、色フィルター膜や蛍光物質を含む色変換膜、あるいは誘電体反射膜等を設けてもよい。 When the substrate 2 side is the light extraction side, it is preferable to use a transparent substrate such as glass or quartz as the substrate 2, and it is particularly preferable to use an inexpensive glass transparent substrate. The transparent substrate may be provided with a color filter film, a color conversion film containing a fluorescent material, a dielectric reflection film, or the like for adjusting the emission color.
(第1の電極)
 第1の電極3はホール注入電極(陽極)として機能する。そのため、第1の電極3の材料としては、従来の有機電界発光素子が備えているものであれば、特に限定されることなく用いることができるが、その第1の電極3に効率よく且つ均一に電界を印加できる材料が好ましい。
(First electrode)
The first electrode 3 functions as a hole injection electrode (anode). Therefore, the material of the first electrode 3 can be used without particular limitation as long as it is provided in the conventional organic electroluminescent element, but it can be used efficiently and uniformly for the first electrode 3. A material capable of applying an electric field to is preferable.
 また、基板2の側を光取り出し側とする場合、有機電界発光素子の発光波長領域である波長400nm~700nmにおける透過率、特にRGB各色の波長における第1の電極3の透過率は、50%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。第1の電極3の透過率が50%未満であると、発光層6からの発光が減衰されて、画像表示に必要な輝度が得られなくなる。 Further, when the substrate 2 side is the light extraction side, the transmittance at a wavelength of 400 nm to 700 nm, which is the emission wavelength region of the organic electroluminescence element, in particular, the transmittance of the first electrode 3 at the wavelength of each RGB color is 50%. Preferably, it is 80% or more, more preferably 90% or more. When the transmittance of the first electrode 3 is less than 50%, the light emission from the light emitting layer 6 is attenuated, and the luminance necessary for image display cannot be obtained.
 光透過率の高い第1の電極3は、各種酸化物で構成される透明導電膜を用いて構成することができる。かかる材料としては、酸化インジウム(In)、酸化スズ(SnO)、酸化亜鉛(ZnO)、錫ドープ酸化インジウム(ITO)、亜鉛ドープ酸化インジウム(IZO)等が好ましく、中でも、ITOは、面内の比抵抗が均一な薄膜を容易に得ることができる点で特に好ましい。 The 1st electrode 3 with high light transmittance can be comprised using the transparent conductive film comprised with various oxides. As such a material, indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), zinc oxide (ZnO), tin-doped indium oxide (ITO), zinc-doped indium oxide (IZO), and the like are preferable. It is particularly preferable in that a thin film having a uniform in-plane specific resistance can be easily obtained.
 第1の電極3の膜厚は、上述の光透過率を考慮して決定することが好ましい。例えば、酸化物透明電極を用いる場合、その膜厚は、好ましくは10~500nm、より好ましくは30~300nmである。第1の電極3の膜厚が500nmを超えると、光透過率が不十分になるとともに、基板2からの第1の電極3の剥離が発生する場合がある。また、膜厚の減少に伴い光透過率は向上するが、膜厚が10nm未満の場合、抵抗が大きくなり、有機電界発光素子の駆動電圧を上昇させる傾向がある。 The film thickness of the first electrode 3 is preferably determined in consideration of the light transmittance described above. For example, when an oxide transparent electrode is used, the film thickness is preferably 10 to 500 nm, more preferably 30 to 300 nm. When the film thickness of the first electrode 3 exceeds 500 nm, the light transmittance becomes insufficient and the first electrode 3 may be peeled off from the substrate 2 in some cases. In addition, the light transmittance is improved as the film thickness is decreased. However, when the film thickness is less than 10 nm, the resistance increases and the driving voltage of the organic electroluminescent element tends to increase.
(第2の電極)
 第2の電極9は電子注入電極(陰極)として機能する。第2の電極9の材料としては、従来の有機電界発光素子が備えているものであれば、特に限定されることなく用いることができるが、金属材料、有機金属錯体もしくは金属化合物等が挙げられ、発光層6に効率的且つ確実に電子を注入できるように、仕事関数が比較的低い材料を用いると好ましく、また透明であってもよい。
(Second electrode)
The second electrode 9 functions as an electron injection electrode (cathode). The material of the second electrode 9 can be used without particular limitation as long as it is provided in a conventional organic electroluminescent device, and examples thereof include metal materials, organometallic complexes, and metal compounds. In order to efficiently and reliably inject electrons into the light emitting layer 6, it is preferable to use a material having a relatively low work function, and it may be transparent.
 第2の電極9を構成する金属材料の具体例としては、Li、Na、KもしくはCs等のアルカリ金属、Mg、Ca、SrもしくはBa等のアルカリ土類金属、あるいはAl(アルミニウム)が挙げられる。また、La、Ce、Sn、ZnもしくはZr等のアルカリ金属又はアルカリ土類金属と特性が近い金属を用いることもできる。更には、上記金属材料の酸化物もしくはハロゲン化物を用いることもできる。更に、上記材料を含む混合物もしくは合金であってもよく、これらを複数積層してもよい。 Specific examples of the metal material constituting the second electrode 9 include alkali metals such as Li, Na, K or Cs, alkaline earth metals such as Mg, Ca, Sr or Ba, or Al (aluminum). . Alternatively, a metal having properties similar to those of an alkali metal or alkaline earth metal such as La, Ce, Sn, Zn, or Zr can be used. Furthermore, oxides or halides of the above metal materials can also be used. Further, it may be a mixture or alloy containing the above materials, and a plurality of these may be laminated.
 第2の電極9の膜厚は、電子を均一に注入できる程度であればよく、0.1nm以上とすればよい。 The film thickness of the second electrode 9 only needs to be such that electrons can be uniformly injected, and may be 0.1 nm or more.
 なお、第2の電極9上には補助電極を設けてもよい。これにより、発光層6への電子注入効率を向上させることができ、また、電子注入層8や電子輸送層7、発光層6への水分または有機溶媒の浸入を防止することができる。補助電極の材料としては、仕事関数および電荷注入能力に関する制限がないため、一般的な金属を用いることができるが、導電率が高く、取り扱いが容易な金属を用いることが好ましい。また、特に第2の電極9が有機材料を含む場合には、有機材料の種類や密着性に応じて、適宜選択することが好ましい。 An auxiliary electrode may be provided on the second electrode 9. Thereby, the electron injection efficiency to the light emitting layer 6 can be improved, and the penetration | invasion of the water | moisture content or the organic solvent to the electron injection layer 8, the electron carrying layer 7, and the light emitting layer 6 can be prevented. As a material for the auxiliary electrode, a general metal can be used because there is no restriction on work function and charge injection capability. However, it is preferable to use a metal having high conductivity and easy handling. In particular, when the second electrode 9 includes an organic material, it is preferable to select appropriately according to the type and adhesion of the organic material.
 補助電極に用いられる材料としては、Al、Ag、In、Ti、Cu、Au、Mo、W、Pt、Pd、Ni等が挙げられるが、中でもAlおよびAg等の低抵抗の金属を用いることにより電子注入効率を更に高めることができる。また、TiN等の金属化合物を用いることにより、一層高い封止性を実現することができる。これらの材料は、1種を単独で用いてもよく、2種以上を組み合わせてもよい。また、2種以上の金属を用いる場合は合金として用いてもよい。このような補助電極は、例えば、真空蒸着法等によって形成可能である。 Examples of the material used for the auxiliary electrode include Al, Ag, In, Ti, Cu, Au, Mo, W, Pt, Pd, and Ni. Among them, by using a low-resistance metal such as Al and Ag. Electron injection efficiency can be further increased. Further, by using a metal compound such as TiN, higher sealing performance can be realized. These materials may be used alone or in combination of two or more. Moreover, when using 2 or more types of metals, you may use as an alloy. Such an auxiliary electrode can be formed by, for example, a vacuum deposition method or the like.
(ホール注入層)
 ホール注入層4は、第1の電極3からのホールの注入を容易にする機能を有する化合物を含有する層である。具体的には、トリアリールアミン誘導体、カルバゾール誘導体、アントラセン誘導体などの炭化水素系の材料、アザトリフェニレン誘導体、フタロシアニン誘導体、ポリアニリン/有機酸、ポリチオフェン/ポリマー酸等を少なくとも1種用いて形成することができる。
(Hole injection layer)
The hole injection layer 4 is a layer containing a compound having a function of facilitating hole injection from the first electrode 3. Specifically, it can be formed using at least one kind of hydrocarbon-based material such as triarylamine derivative, carbazole derivative, anthracene derivative, azatriphenylene derivative, phthalocyanine derivative, polyaniline / organic acid, polythiophene / polymer acid, and the like. it can.
(ホール輸送層)
 ホール輸送層5は、注入されたホールを発光層6に輸送する機能、および発光層6中の電子がホール輸送層5に注入されるのを妨げる機能を有する化合物を含有する層である。ホール輸送層5は、トリアリールアミン誘導体、トリアリールメタン誘導体、スチルベン誘導体、ポリシラン誘導体、ポリフェニレンビニレンおよびその誘導体、ポリチオフェンおよびその誘導体、カルバゾール誘導体、もしくはアントラセン誘導体等の炭化水素化合物などを少なくとも1種用いて形成することができる。
(Hall transport layer)
The hole transport layer 5 is a layer containing a compound having a function of transporting injected holes to the light emitting layer 6 and a function of preventing electrons in the light emitting layer 6 from being injected into the hole transport layer 5. The hole transport layer 5 uses at least one kind of hydrocarbon compound such as triarylamine derivative, triarylmethane derivative, stilbene derivative, polysilane derivative, polyphenylene vinylene and derivative thereof, polythiophene and derivative thereof, carbazole derivative, or anthracene derivative. Can be formed.
 なお、ホール注入層4とホール輸送層5の機能を併せ持つ材料であれば、ホール注入輸送層として、単層で二層分の機能を果たす事が可能である。一方で、ホール注入層4やホール輸送層5を、更に複数の層に機能分離して使用することも可能である。 In addition, if it is a material which has the function of the hole injection layer 4 and the hole transport layer 5 as a hole injection transport layer, it is possible to fulfill the function of two layers by a single layer. On the other hand, the hole injection layer 4 and the hole transport layer 5 can be further functionally separated into a plurality of layers.
 カルバゾール誘導体や炭化水素系の材料など高い仕事関数をもつ材料をホール注入層4もしくはホール輸送層5に用いると、陽極3からホール注入層4もしくはホール注入層4からホール輸送層5へのホール注入障壁が高くなるが、電子アクセプターとして機能する無機化合物、あるいは有機材料をホール注入層4もしくはホール輸送層5の一部に含有させることでホールを強制的に発生させることができ、実質的なホール注入障壁を下げる事ができる。 When a material having a high work function such as a carbazole derivative or a hydrocarbon-based material is used for the hole injection layer 4 or the hole transport layer 5, hole injection from the anode 3 to the hole injection layer 4 or from the hole injection layer 4 to the hole transport layer 5 is performed. Although the barrier is increased, holes can be forcibly generated by containing an inorganic compound or an organic material functioning as an electron acceptor in a part of the hole injection layer 4 or the hole transport layer 5. The injection barrier can be lowered.
 このような無機化合物としては、塩化アンチモン、酸化バナジウム、酸化ルテニウム、酸化タングステン、酸化亜鉛、酸化錫、酸化鉄、酸化モリブデン等を用いることができるが、酸化モリブデンが特に好ましい。また、このような有機材料としてはヘキサシアノアザトリフェニレンやその誘導体を用いることができる。 As such an inorganic compound, antimony chloride, vanadium oxide, ruthenium oxide, tungsten oxide, zinc oxide, tin oxide, iron oxide, molybdenum oxide and the like can be used, and molybdenum oxide is particularly preferable. As such an organic material, hexacyanoazatriphenylene or a derivative thereof can be used.
(発光層)
 発光層6は、注入されたホールおよび電子の輸送機能とホールと電子の再結合により励起子を生成させる機能を有する化合物を含有する層である。本実施形態にかかる一般式(1)で表される化合物は発光層6に含まれることが好ましく、発光ドーパントに含まれることがより好ましい。このような材料を含有する発光層6を備える有機電界発光素子は、従来の有機電界発光素子と比較して、長寿命且つ色純度の高い青色発光を示す。
(Light emitting layer)
The light emitting layer 6 is a layer containing a compound having a function of transporting injected holes and electrons and a function of generating excitons by recombination of holes and electrons. The compound represented by the general formula (1) according to the present embodiment is preferably included in the light emitting layer 6, and more preferably included in the light emitting dopant. An organic electroluminescent element provided with the light emitting layer 6 containing such a material exhibits blue light emission with a long lifetime and high color purity as compared with a conventional organic electroluminescent element.
 一般式(1)の化合物が発光ドーパントに含有する場合、ホスト材料に対する含有量は0.01~20wt%であることが好ましく、0.1~15wt%であることがより好ましい。 When the compound of the general formula (1) is contained in the luminescent dopant, the content with respect to the host material is preferably 0.01 to 20 wt%, and more preferably 0.1 to 15 wt%.
 一般式(1)の化合物を含む発光ドーパントとともに発光層6を形成するホスト材料としては、例えば、トリス(8-キノリノラト)アルミニウム等の有機金属錯体、ナフタレン、アントラセン、ナフタセン、ピレン、ペリレン等の炭化水素化合物誘導体の他、カルバゾールやチオフェン、フラン等の複素環誘導体やトリアリールアミン誘導体等が挙げられるが、本実施形態においては、アントラセン誘導体およびピレン誘導体をホスト材料として用いることが好ましい。 Examples of the host material that forms the light emitting layer 6 together with the light emitting dopant containing the compound of the general formula (1) include organic metal complexes such as tris (8-quinolinolato) aluminum, carbonization such as naphthalene, anthracene, naphthacene, pyrene, and perylene. In addition to hydrogen compound derivatives, heterocyclic derivatives such as carbazole, thiophene, and furan, and triarylamine derivatives can be used. In this embodiment, it is preferable to use anthracene derivatives and pyrene derivatives as host materials.
 本実施形態において、発光層ホスト材料として用いられるアントラセン誘導体およびピレン誘導体の好適な例としては、下記式(III-1)~(III-32)で表される化合物が挙げられる。 In the present embodiment, preferable examples of the anthracene derivative and the pyrene derivative used as the light emitting layer host material include compounds represented by the following formulas (III-1) to (III-32).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
発光層6には、ホスト材料、ドーパントの他の化合物を含有させても良い。他の化合物を混合することによりキャリアの輸送を調整することができ、蛍光色素を混合することにより発光色を変換させて使用することができる。キャリアの輸送を調整する化合物としては、例えば、トリス(8-キノリノラト)アルミニウム等の8-キノリノール乃至その誘導体を配位子とする金属錯体化合物、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、イミダゾピリジン誘導体、イミダゾピリミジン誘導体、フェナントロリン誘導体等の電子輸送性化合物、またはトリアリールアミン誘導体等のホール輸送性化合物等を好ましく用いることができる。 The light emitting layer 6 may contain other compounds such as a host material and a dopant. By mixing other compounds, carrier transport can be adjusted, and by mixing fluorescent dyes, the emission color can be converted and used. Examples of the compound that regulates carrier transport include metal complex compounds having 8-quinolinol or a derivative thereof such as tris (8-quinolinolato) aluminum as a ligand, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, imidazopyridine derivatives, Electron transporting compounds such as imidazopyrimidine derivatives and phenanthroline derivatives, hole transporting compounds such as triarylamine derivatives, and the like can be preferably used.
(電子輸送層)
 電子輸送層7は、注入された電子を輸送する機能および発光層6から電子輸送層7中にホールが注入されるのを妨げる機能を有するものである。電子輸送層7は、例えば、トリス(8-キノリノラト)アルミニウム等の8-キノリノール乃至その誘導体を配位子とする有機金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、トリアジン誘導体、ペリレン誘導体、キノリン誘導体、キノキサリン誘導体、ジフェニルキノン誘導体、ニトロ置換フルオレノン誘導体、チオピランジオキサイド誘導体、ピリジン誘導体、ピリミジン誘導体、イミダゾピリジン誘導体、イミダゾピリミジン誘導体、フェナントロリン誘導体等の複素環化合物、アントラセン、ピレン、ナフタセン、フルオランテン、アセナフトフルオランテン等の炭化水素誘導体等を少なくとも1種用いて形成することができる。
(Electron transport layer)
The electron transport layer 7 has a function of transporting injected electrons and a function of preventing holes from being injected into the electron transport layer 7 from the light emitting layer 6. The electron transport layer 7 includes, for example, organometallic complexes having an 8-quinolinol or a derivative thereof such as tris (8-quinolinolato) aluminum as a ligand, oxadiazole derivatives, triazole derivatives, triazine derivatives, perylene derivatives, quinoline derivatives, Quinoxaline derivatives, diphenylquinone derivatives, nitro-substituted fluorenone derivatives, thiopyrandioxide derivatives, pyridine derivatives, pyrimidine derivatives, imidazopyridine derivatives, imidazopyrimidine derivatives, heterocyclic compounds such as phenanthroline derivatives, anthracene, pyrene, naphthacene, fluoranthene, acenaphtho It can be formed using at least one hydrocarbon derivative such as fluoranthene.
(電子注入層)
 電子注入層8は、第2の電極9からの電子の注入を容易にする機能の他、第2の電極9との密着性を高める機能を有するものである。電子注入層8は、トリス(8-キノリノラト)アルミニウム等の8-キノリノールなしいその誘導体を配位子とする金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、イミダゾール誘導体、イミダゾピリミジン誘導体、フェナントロリン誘導体等を少なくとも1種用いて形成することができる。
(Electron injection layer)
The electron injection layer 8 has a function of facilitating injection of electrons from the second electrode 9 and a function of improving adhesion with the second electrode 9. The electron injection layer 8 is composed of a metal complex, an oxadiazole derivative, a triazole derivative, a triazine derivative, a quinoline derivative, a quinoxaline derivative, a pyridine derivative having an 8-quinolinol or its derivative such as tris (8-quinolinolato) aluminum as a ligand. , Pyrimidine derivatives, imidazole derivatives, imidazopyrimidine derivatives, phenanthroline derivatives and the like can be used.
 本実施形態にかかる有機電界発光素子は、本実施形態にかかる有機電界発光素子用化合物を含有させること以外は、公知の方法で製造できる。各有機層を形成する方法としては、真空蒸着法、イオン化蒸着法、塗布法等を、有機層を構成する材料に応じて、適宜選択して採用することができる。 The organic electroluminescence device according to this embodiment can be produced by a known method except that the compound for organic electroluminescence device according to this embodiment is contained. As a method for forming each organic layer, a vacuum vapor deposition method, an ionization vapor deposition method, a coating method, or the like can be appropriately selected and employed depending on the material constituting the organic layer.
 塗布法の具体例としては、スピンコート法や、グラビア印刷等の各種印刷方法、インクジェット法等が挙げられる。この塗布法に用いられる溶媒としては、例えば、トルエン、キシレンなどの炭化水素系の溶媒や、ジクロロエタン等のハロゲン系の溶媒が挙げられる。本実施形態にかかる一般式(1)で表される化合物は、溶解性が高く、塗布プロセスによっても十分に成膜が可能である。スピンコート法であれば、通常は1~3%程度の濃度の溶液とすることで、50nmから200nm程度の薄膜が形成可能である。 Specific examples of the coating method include a spin coating method, various printing methods such as gravure printing, and an ink jet method. Examples of the solvent used in this coating method include hydrocarbon solvents such as toluene and xylene, and halogen solvents such as dichloroethane. The compound represented by the general formula (1) according to the present embodiment has high solubility and can be sufficiently formed by a coating process. In the case of spin coating, a thin film with a thickness of about 50 nm to 200 nm can be formed by using a solution having a concentration of about 1 to 3%.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.
 以下、実施例および比較例を挙げて本発明の内容をより具体的に説明する。なお、本発明は下記実施例に限定されるものではない。
<合成例1>
 下記化合物(11)を以下の方法で合成した。その反応式を以下に示す。
Hereinafter, the contents of the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to the following Example.
<Synthesis Example 1>
The following compound (11) was synthesized by the following method. The reaction formula is shown below.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 ([1,1’-ビナフタレン]-2-カルボン酸メチル(1-1)の合成)
 アルゴン気流下、1-ブロモ-(2-ナフタレンカルボン酸メチル)13.26g(50.0mmol)、1-ナフタレンボロン酸10.32g(60.0mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)0.229g(0.25mmol)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル0.205g(0.50mmol)、リン酸カリウム三塩基酸31.84g(150.0mmol)をトルエン200ml溶解させ、加熱還流下で65時間攪拌した。室温まで冷却後、反応溶液に水を加え、トルエンで抽出した。有機層を硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製し、目的の[1,1’-ビナフタレン]-2-カルボン酸メチル(1-1)の白色固体(収量14.92g、収率96%)を得た。
(Synthesis of [1,1′-Binaphthalene] -2-carboxylate methyl (1-1))
Under an argon stream, 13.26 g (50.0 mmol) of 1-bromo- (2-naphthalenecarboxylate), 10.32 g (60.0 mmol) of 1-naphthaleneboronic acid, tris (dibenzylideneacetone) dipalladium (0) Dissolve 0.229 g (0.25 mmol), 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl 0.205 g (0.50 mmol), and potassium phosphate tribasic acid 31.84 g (150.0 mmol) in 200 ml of toluene. And stirred for 65 hours under reflux. After cooling to room temperature, water was added to the reaction solution and extracted with toluene. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The resulting crude product was purified by column chromatography to obtain the desired [1,1′-binaphthalene] -2-carboxylate methyl ester (1-1) as a white solid (yield 14.92 g, yield 96%). Obtained.
 (α,α-ジメチル-([1,1’-ビナフタレン]-2-メタノール)(1-2)の合成)
 アルゴン気流下、メチルヨウ化マグネシウム143.4mmolを含む脱水ジエチルエーテル溶液1400mlに、上記の反応により合成した[1,1’-ビナフタレン]-2-カルボン酸メチル(1-1)14.92g(47.8mmol)を含む脱水テトラヒドロフラン溶液150mlを30分かけて滴下し、室温で15時間攪拌した。反応溶液に飽和塩化アンモニウム水溶液を加え、ジエチルエーテルで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製し、目的のα,α-ジメチル-([1,1’-ビナフタレン]-2-メタノール)(1-2)の白色固体(収量13.08g、収率88%)を得た。
(Synthesis of α, α-dimethyl-([1,1′-binaphthalene] -2-methanol) (1-2))
Under a stream of argon, 14.92 g of methyl [1,1′-binaphthalene] -2-carboxylate (1-1) synthesized by the above reaction was added to 1400 ml of dehydrated diethyl ether solution containing 143.4 mmol of methyl magnesium iodide. 8 ml) was added dropwise over 30 minutes, and the mixture was stirred at room temperature for 15 hours. A saturated aqueous ammonium chloride solution was added to the reaction solution, and the mixture was extracted with diethyl ether. The organic layer was washed with saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure. The obtained crude product was purified by column chromatography, and the desired α, α-dimethyl-([1,1′-binaphthalene] -2-methanol) (1-2) white solid (yield 13.08 g, Yield 88%).
 (7,7-ジメチル-(7H-ジベンゾ[c,g]フルオレン)(1-3)の合成)
 アルゴン気流下、上記の反応により合成したα,α-ジメチル-([1,1’-ビナフタレン]-2-メタノール)(1-2)13.08g(41.9mmol)を脱水ジクロロメタン150mlに溶解し、氷浴にて冷却した。三フッ化ホウ素ジエチルエーテル錯体7.8ml(62.9mmol)を10分かけて滴下し、その後室温で21時間攪拌した。反応溶液に水を加え、ジクロロメタンで抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製し、目的の7,7-ジメチル-(7H-ジベンゾ[c,g]フルオレン)(1-3)の白色固体(収量11.92g、収率97%)を得た。
(Synthesis of 7,7-dimethyl- (7H-dibenzo [c, g] fluorene) (1-3))
In an argon stream, 13.08 g (41.9 mmol) of α, α-dimethyl-([1,1′-binaphthalene] -2-methanol) (1-2) synthesized by the above reaction was dissolved in 150 ml of dehydrated dichloromethane. Cooled in an ice bath. 7.8 ml (62.9 mmol) of boron trifluoride diethyl ether complex was added dropwise over 10 minutes, and then stirred at room temperature for 21 hours. Water was added to the reaction solution and extracted with dichloromethane. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained crude product was purified by column chromatography, and the desired 7,7-dimethyl- (7H-dibenzo [c, g] fluorene) (1-3) white solid (yield 11.92 g, yield 97). %).
 (5,9-ジブロモ-7,7-ジメチル-(7H-ジベンゾ[c,g]フルオレン)(1-4)の合成)
 アルゴン気流下、上記の反応により合成した7,7-ジメチル-(7H-ジベンゾ[c,g]フルオレン)(1-3)11.92g(40.5mmol)を脱水ジクロロメタン120mlに溶解し、氷浴にて冷却した。N-ブロモスクシンイミド15.86g(89.1mmol)をゆっくり加え、その後室温で18時間攪拌した。反応溶液に水を加え、ジクロロメタンで抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製し、目的の5,9-ジブロモ-7,7-ジメチル-(7H-ジベンゾ[c,g]フルオレン)(1-4)の白色固体(収量16.35g、収率89%)を得た。
(Synthesis of 5,9-dibromo-7,7-dimethyl- (7H-dibenzo [c, g] fluorene) (1-4))
In an argon stream, 11.92 g (40.5 mmol) of 7,7-dimethyl- (7H-dibenzo [c, g] fluorene) (1-3) synthesized by the above reaction was dissolved in 120 ml of dehydrated dichloromethane, It was cooled with. N-bromosuccinimide (15.86 g, 89.1 mmol) was slowly added, and then the mixture was stirred at room temperature for 18 hours. Water was added to the reaction solution and extracted with dichloromethane. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained crude product was purified by column chromatography to obtain the desired 5,9-dibromo-7,7-dimethyl- (7H-dibenzo [c, g] fluorene) (1-4) white solid (yield 16 .35 g, 89% yield).
 (5-ブロモ-7,7-ジメチル-9-(4-シアノフェニル)-(7H-ジベンゾ[c,g]フルオレン)(1-5)の合成)
 アルゴン気流下、上記の反応により合成した5,9-ジブロモ-7,7-ジメチル-(7H-ジベンゾ[c,g]フルオレン)(1-4)2.76g(6.10mmol)、4-シアノフェニルボロン酸0.598g(4.07mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)0.277g(0.24mmol)をトルエン25mlとエタノール3mlに溶解させた。次いで、炭酸ナトリウム12.2mmolを含む水溶液6.1mlを加え、加熱還流下で40時間攪拌した。室温まで冷却後、反応溶液に水を加え、トルエンで抽出した。有機層を硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製後、ヘキサンで再結晶し、目的の5-ブロモ-7,7-ジメチル-9-(4-シアノフェニル)-(7H-ジベンゾ[c,g]フルオレン)(1-5)の白色固体(収量0.970g、収率50%)を得た。
(Synthesis of 5-bromo-7,7-dimethyl-9- (4-cyanophenyl)-(7H-dibenzo [c, g] fluorene) (1-5))
5,9-dibromo-7,7-dimethyl- (7H-dibenzo [c, g] fluorene) (1-4) (76) synthesized by the above reaction under an argon stream, 4-cyano 0.598 g (4.07 mmol) of phenylboronic acid and 0.277 g (0.24 mmol) of tetrakis (triphenylphosphine) palladium (0) were dissolved in 25 ml of toluene and 3 ml of ethanol. Next, 6.1 ml of an aqueous solution containing 12.2 mmol of sodium carbonate was added, and the mixture was stirred for 40 hours under reflux with heating. After cooling to room temperature, water was added to the reaction solution and extracted with toluene. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained crude product was purified by column chromatography and recrystallized from hexane to obtain the desired 5-bromo-7,7-dimethyl-9- (4-cyanophenyl)-(7H-dibenzo [c, g]. A white solid (fluorine) (1-5) (yield 0.970 g, yield 50%) was obtained.
 (5-(3,4-ジシアノフェニル)-7,7-ジメチル-9-(4-シアノフェニル)-(7H-ジベンゾ[c,g]フルオレン)(11)の合成)
 アルゴン気流下、上記の反応により合成した5-ブロモ-7,7-ジメチル-9-(4-シアノフェニル)-(7H-ジベンゾ[c,g]フルオレン)(1-5)0.854g(1.80mmol)、4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-1,2-ベンゼンジカルボニトリル0.522g(2.05mmol)、酢酸パラジウム(0)0.012g(0.054mmol)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル0.044g(0.108mmol)、リン酸カリウム三塩基酸0.764g(3.60mmol)をトルエン10mlと水0.5mlに溶解させ、加熱還流下で17時間攪拌した。室温まで冷却後、減圧下で濃縮し、水を加えた後、トルエンで抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製後、ジクロロメタン-メタノールで再結晶し、目的の5-(3,4-ジシアノフェニル)-7,7-ジメチル-9-(4-シアノフェニル)-(7H-ジベンゾ[c,g]フルオレン)(11)の白色粉末(収量0.734g、収率78%)を得た。更に、昇華精製を行い、純度99.8%品(高速液体クロマトグラフィー(HPLC)により純度確認)を得た。
(Synthesis of 5- (3,4-dicyanophenyl) -7,7-dimethyl-9- (4-cyanophenyl)-(7H-dibenzo [c, g] fluorene) (11))
0.854 g (1) of 5-bromo-7,7-dimethyl-9- (4-cyanophenyl)-(7H-dibenzo [c, g] fluorene) (1-5) synthesized by the above reaction under an argon stream .80 mmol), 4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -1,2-benzenedicarbonitrile 0.522 g (2.05 mmol), palladium acetate (0) 0.012 g (0.054 mmol), 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl 0.044 g (0.108 mmol), potassium phosphate tribasic acid 0.764 g (3.60 mmol) The resultant was dissolved in 10 ml of toluene and 0.5 ml of water, and stirred for 17 hours under heating and reflux. After cooling to room temperature, the mixture was concentrated under reduced pressure, water was added, and the mixture was extracted with toluene. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained crude product was purified by column chromatography and recrystallized from dichloromethane-methanol to obtain the desired 5- (3,4-dicyanophenyl) -7,7-dimethyl-9- (4-cyanophenyl)- A white powder (yield 0.734 g, yield 78%) of (7H-dibenzo [c, g] fluorene) (11) was obtained. Furthermore, sublimation purification was performed to obtain a product having a purity of 99.8% (confirmed by high performance liquid chromatography (HPLC)).
 なお、得られた化合物の質量分析を行ったところ、m/z=521(M)にピークが確認された。また、この化合物をH‐核磁気共鳴(H‐NMR)法を用いて分析したところ、図2に示すH‐NMRスペクトルが得られ、13C‐核磁気共鳴(13C‐NMR)法を用いて分析したところ、図3に示す13C‐NMRスペクトルが得られた。これらにより、合成例1で得られた化合物が化合物(11)であることが確認された。 As a result of mass spectrometry of the obtained compound, a peak was confirmed at m / z = 521 (M ). Furthermore, it was analyzed using the compound 1 H- nuclear magnetic resonance (1 H-NMR) method, 1 H-NMR spectrum shown in Figure 2 is obtained, 13 C-nuclear magnetic resonance (13 C-NMR) When analyzed by the method, the 13 C-NMR spectrum shown in FIG. 3 was obtained. Thus, it was confirmed that the compound obtained in Synthesis Example 1 was the compound (11).
<合成例2>
 下記化合物(12)を以下の方法で合成した。その反応式を以下に示す。
<Synthesis Example 2>
The following compound (12) was synthesized by the following method. The reaction formula is shown below.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 (5-(3,5-ジシアノフェニル)-7,7-ジメチル-9-(4-シアノフェニル)-(7H-ジベンゾ[c,g]フルオレン)(12)の合成)
 アルゴン気流下、上記の反応により合成した5-ブロモ-7,7-ジメチル-9-(4-シアノフェニル)-(7H-ジベンゾ[c,g]フルオレン)(1-5)0.970g(2.04mmol)、4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-1,3-ベンゼンジカルボニトリル0.623g(2.45mmol)、酢酸パラジウム(0)0.023g(0.10mmol)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル0.082g(0.20mmol)、リン酸カリウム三塩基酸1.299g(6.12mmol)をトルエン10mlと水0.5mlに溶解させ、加熱還流下で23時間攪拌した。室温まで冷却後、減圧下で濃縮し、水を加えた後、トルエンで抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製後、ジクロロメタン-メタノールで再結晶し、目的の5-(3,5-ジシアノフェニル)-7,7-ジメチル-9-(4-シアノフェニル)-(7H-ジベンゾ[c,g]フルオレン)(12)の白色粉末(収量0.751g、収率71%)を得た。更に、昇華精製を行い、純度99.1%品(高速液体クロマトグラフィー(HPLC)により純度確認)を得た。
(Synthesis of 5- (3,5-dicyanophenyl) -7,7-dimethyl-9- (4-cyanophenyl)-(7H-dibenzo [c, g] fluorene) (12))
0.970 g (2) of 5-bromo-7,7-dimethyl-9- (4-cyanophenyl)-(7H-dibenzo [c, g] fluorene) (1-5) synthesized by the above reaction under an argon stream .04 mmol), 4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -1,3-benzenedicarbonitrile 0.623 g (2.45 mmol), palladium acetate (0) 0.023 g (0.10 mmol), 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl 0.082 g (0.20 mmol), potassium phosphate tribasic acid 1.299 g (6.12 mmol) The product was dissolved in 10 ml of toluene and 0.5 ml of water, and stirred for 23 hours under heating and reflux. After cooling to room temperature, the mixture was concentrated under reduced pressure, water was added, and the mixture was extracted with toluene. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained crude product was purified by column chromatography and recrystallized from dichloromethane-methanol to obtain the desired 5- (3,5-dicyanophenyl) -7,7-dimethyl-9- (4-cyanophenyl)- A white powder (yield 0.751 g, yield 71%) of (7H-dibenzo [c, g] fluorene) (12) was obtained. Furthermore, sublimation purification was performed to obtain a product having a purity of 99.1% (confirmed by high performance liquid chromatography (HPLC)).
 なお、得られた化合物の質量分析を行ったところ、m/z=521(M)にピークが確認された。また、この化合物をH‐核磁気共鳴(H‐NMR)法を用いて分析したところ、図4に示すH‐NMRスペクトルが得られ、13C‐核磁気共鳴(13C‐NMR)法を用いて分析したところ、図5に示す13C‐NMRスペクトルが得られた。これらにより、合成例2で得られた化合物が化合物(12)であることが確認された。
(12)であることが確認された。
As a result of mass spectrometry of the obtained compound, a peak was confirmed at m / z = 521 (M ). Furthermore, it was analyzed using the compound 1 H- nuclear magnetic resonance (1 H-NMR) method, 1 H-NMR spectrum shown in Figure 4 is obtained, 13 C-nuclear magnetic resonance (13 C-NMR) When analyzed by the method, the 13 C-NMR spectrum shown in FIG. 5 was obtained. Thus, it was confirmed that the compound obtained in Synthesis Example 2 was the compound (12).
(12) was confirmed.
<合成例3>
 下記化合物(13)を以下の方法で合成した。その反応式を以下に示す。
<Synthesis Example 3>
The following compound (13) was synthesized by the following method. The reaction formula is shown below.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 (5-ブロモ-7,7-ジメチル-9-(3-シアノフェニル)-(7H-ジベンゾ[c,g]フルオレン)(1-6)の合成)
 アルゴン気流下、上記の反応により合成した5,9-ジブロモ-7,7-ジメチル-(7H-ジベンゾ[c,g]フルオレン)(1-4)4.527g(10.0mmol)、3-シアノフェニルボロン酸1.029g(7.00mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)0.485g(0.42mmol)をトルエン40mlとエタノール5mlに溶解させた。次いで、炭酸ナトリウム21.0mmolを含む水溶液10.5mlを加え、加熱還流下で18時間攪拌した。室温まで冷却後、反応溶液に水を加え、トルエンで抽出した。有機層を硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製し、目的の5-ブロモ-7,7-ジメチル-9-(3-シアノフェニル)-(7H-ジベンゾ[c,g]フルオレン)(1-6)の白色固体(収量2.111g、収率45%)を得た。
(Synthesis of 5-bromo-7,7-dimethyl-9- (3-cyanophenyl)-(7H-dibenzo [c, g] fluorene) (1-6))
5,9-Dibromo-7,7-dimethyl- (7H-dibenzo [c, g] fluorene) (1-4) 4.527 g (10.0 mmol), 3-cyano synthesized by the above reaction under an argon stream 1.029 g (7.00 mmol) of phenylboronic acid and 0.485 g (0.42 mmol) of tetrakis (triphenylphosphine) palladium (0) were dissolved in 40 ml of toluene and 5 ml of ethanol. Next, 10.5 ml of an aqueous solution containing 21.0 mmol of sodium carbonate was added, and the mixture was stirred for 18 hours under reflux with heating. After cooling to room temperature, water was added to the reaction solution and extracted with toluene. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained crude product was purified by column chromatography to obtain the desired 5-bromo-7,7-dimethyl-9- (3-cyanophenyl)-(7H-dibenzo [c, g] fluorene) (1-6 ) White solid (yield 2.111 g, yield 45%).
 (5-(3,4-ジシアノフェニル)-7,7-ジメチル-9-(3-シアノフェニル)-(7H-ジベンゾ[c,g]フルオレン)(13)の合成)
 アルゴン気流下、上記の反応により合成した5-ブロモ-7,7-ジメチル-9-(3-シアノフェニル)-(7H-ジベンゾ[c,g]フルオレン)(1-6)1.423g(3.00mmol)、4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-1,2-ベンゼンジカルボニトリル0.915g(3.60mmol)、酢酸パラジウム(0)0.034g(0.15mmol)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル0.123g(0.30mmol)、リン酸カリウム三塩基酸1.274g(6.00mmol)をトルエン15mlと水0.6mlに溶解させ、加熱還流下で18時間攪拌した。室温まで冷却後、減圧下で濃縮し、水を加えた後、トルエンで抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製後、ジクロロメタン-メタノールで再結晶し、目的の5-(3,4-ジシアノフェニル)-7,7-ジメチル-9-(3-シアノフェニル)-(7H-ジベンゾ[c,g]フルオレン)(13)の白色粉末(収量1.156g、収率74%)を得た。更に、昇華精製を行い、純度99.9%品(高速液体クロマトグラフィー(HPLC)により純度確認)を得た。
(Synthesis of 5- (3,4-dicyanophenyl) -7,7-dimethyl-9- (3-cyanophenyl)-(7H-dibenzo [c, g] fluorene) (13))
1.423 g (3) of 5-bromo-7,7-dimethyl-9- (3-cyanophenyl)-(7H-dibenzo [c, g] fluorene) (1-6) synthesized by the above reaction under an argon stream .00 mmol), 4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -1,2-benzenedicarbonitrile 0.915 g (3.60 mmol), palladium acetate (0) 0.034 g (0.15 mmol), 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl 0.123 g (0.30 mmol), potassium phosphate tribasic acid 1.274 g (6.00 mmol) The resultant was dissolved in 15 ml of toluene and 0.6 ml of water, and stirred for 18 hours while heating under reflux. After cooling to room temperature, the mixture was concentrated under reduced pressure, water was added, and the mixture was extracted with toluene. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The resulting crude product was purified by column chromatography and recrystallized from dichloromethane-methanol to obtain the desired 5- (3,4-dicyanophenyl) -7,7-dimethyl-9- (3-cyanophenyl)- A white powder (yield 1.156 g, yield 74%) of (7H-dibenzo [c, g] fluorene) (13) was obtained. Furthermore, sublimation purification was performed to obtain a product having a purity of 99.9% (purity confirmed by high performance liquid chromatography (HPLC)).
 なお、得られた化合物の質量分析を行ったところ、m/z=521(M)にピークが確認された。また、この化合物をH‐核磁気共鳴(H‐NMR)法を用いて分析したところ、図6に示すH‐NMRスペクトルが得られ、13C‐核磁気共鳴(13C‐NMR)法を用いて分析したところ、図7に示す13C‐NMRスペクトルが得られた。これらにより、合成例3で得られた化合物が化合物(13)であることが確認された。 As a result of mass spectrometry of the obtained compound, a peak was confirmed at m / z = 521 (M ). Furthermore, it was analyzed using the compound 1 H- nuclear magnetic resonance (1 H-NMR) method, 1 H-NMR spectrum shown in Figure 6 is obtained, 13 C-nuclear magnetic resonance (13 C-NMR) When analyzed using the method, the 13 C-NMR spectrum shown in FIG. 7 was obtained. Thus, it was confirmed that the compound obtained in Synthesis Example 3 was the compound (13).
<合成例4>
 下記化合物(14)を以下の方法で合成した。その反応式を以下に示す。
<Synthesis Example 4>
The following compound (14) was synthesized by the following method. The reaction formula is shown below.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 (5-ブロモ-7,7-ジメチル-9-[4-(トリフルオロメチル)フェニル]-(7H-ジベンゾ[c,g]フルオレン)(1-7)の合成)
 アルゴン気流下、上記の反応により合成した5,9-ジブロモ-7,7-ジメチル-(7H-ジベンゾ[c,g]フルオレン)(1-4)2.939g(6.50mmol)、4-(トリフルオロメチル)フェニルボロン酸0.950g(5.00mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)0.289g(0.25mmol)をトルエン30mlとエタノール4mlに溶解させた。次いで、炭酸ナトリウム15.0mmolを含む水溶液7.50mlを加え、加熱還流下で23時間攪拌した。室温まで冷却後、反応溶液に水を加え、トルエンで抽出した。有機層を硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製し、目的の5-ブロモ-7,7-ジメチル-9-[4-(トリフルオロメチル)フェニル]-(7H-ジベンゾ[c,g]フルオレン)(1-7)の白色固体(収量1.670g、収率65%)を得た。
(Synthesis of 5-bromo-7,7-dimethyl-9- [4- (trifluoromethyl) phenyl]-(7H-dibenzo [c, g] fluorene) (1-7))
5,9-Dibromo-7,7-dimethyl- (7H-dibenzo [c, g] fluorene) (1-4) synthesized by the above reaction under an argon stream, 4-939 g (6.50 mmol), 4- ( 0.950 g (5.00 mmol) of trifluoromethyl) phenylboronic acid and 0.289 g (0.25 mmol) of tetrakis (triphenylphosphine) palladium (0) were dissolved in 30 ml of toluene and 4 ml of ethanol. Next, 7.50 ml of an aqueous solution containing 15.0 mmol of sodium carbonate was added, and the mixture was stirred for 23 hours while heating under reflux. After cooling to room temperature, water was added to the reaction solution and extracted with toluene. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained crude product was purified by column chromatography to obtain the desired 5-bromo-7,7-dimethyl-9- [4- (trifluoromethyl) phenyl]-(7H-dibenzo [c, g] fluorene). A white solid of (1-7) (yield 1.670 g, yield 65%) was obtained.
 (5-[3,5-ビス(トリフルオロメチル)フェニル]-7,7-ジメチル-9-([4-(トリフルオロメチル)フェニル]-(7H-ジベンゾ[c,g]フルオレン)(14)の合成)
 アルゴン気流下、上記の反応により合成した5-ブロモ-7,7-ジメチル-9-[4-(トリフルオロメチル)フェニル]-(7H-ジベンゾ[c,g]フルオレン)(1-7)1.670g(3.23mmol)、3,5-ビス(トリフルオロメチル)フェニルボロン酸0.998g(3.87mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)0.147g(0.16mmol)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル0.131g(0.32mmol)、リン酸カリウム三塩基酸2.064g(9.69mmol)をトルエン30mlに溶解させ、加熱還流下で21時間攪拌した。室温まで冷却後、減圧下で濃縮し、水を加えた後、トルエンで抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製後、ジクロロメタン-メタノールで再結晶し、目的の5-[3,5-ビス(トリフルオロメチル)フェニル]-7,7-ジメチル-9-([4-(トリフルオロメチル)フェニル]-(7H-ジベンゾ[c,g]フルオレン)(14)の白色粉末(収量1.622g、収率77%)を得た。更に、昇華精製を行い、純度99.9%品(高速液体クロマトグラフィー(HPLC)により純度確認)を得た。
(5- [3,5-bis (trifluoromethyl) phenyl] -7,7-dimethyl-9-([4- (trifluoromethyl) phenyl]-(7H-dibenzo [c, g] fluorene) (14 )
5-Bromo-7,7-dimethyl-9- [4- (trifluoromethyl) phenyl]-(7H-dibenzo [c, g] fluorene) (1-7) 1 synthesized by the above reaction under an argon stream 670 g (3.23 mmol), 3,5-bis (trifluoromethyl) phenylboronic acid 0.998 g (3.87 mmol), tris (dibenzylideneacetone) dipalladium (0) 0.147 g (0.16 mmol), 2-Dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl (0.131 g, 0.32 mmol) and potassium phosphate tribasic acid (2.064 g, 9.69 mmol) were dissolved in toluene (30 ml) and heated under reflux for 21 hours. Stir. After cooling to room temperature, the mixture was concentrated under reduced pressure, water was added, and the mixture was extracted with toluene. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained crude product was purified by column chromatography and recrystallized from dichloromethane-methanol to obtain the desired 5- [3,5-bis (trifluoromethyl) phenyl] -7,7-dimethyl-9-([[ A white powder (yield 1.622 g, yield 77%) of 4- (trifluoromethyl) phenyl]-(7H-dibenzo [c, g] fluorene) (14) was obtained. A 99.9% product (purity confirmed by high performance liquid chromatography (HPLC)) was obtained.
 なお、得られた化合物の質量分析を行ったところ、m/z=650(M)にピークが確認された。また、この化合物をH‐核磁気共鳴(H‐NMR)法を用いて分析したところ、図8に示すH‐NMRスペクトルが得られ、13C‐核磁気共鳴(13C‐NMR)法を用いて分析したところ、図9に示す13C‐NMRスペクトルが得られた。これらにより、合成例4で得られた化合物が化合物(14)であることが確認された。 As a result of mass spectrometry of the obtained compound, a peak was confirmed at m / z = 650 (M ). Furthermore, it was analyzed using the compound 1 H- nuclear magnetic resonance (1 H-NMR) method, 1 H-NMR spectrum shown in Figure 8 is obtained, 13 C-nuclear magnetic resonance (13 C-NMR) When analyzed using the method, the 13 C-NMR spectrum shown in FIG. 9 was obtained. Thus, it was confirmed that the compound obtained in Synthesis Example 4 was the compound (14).
<合成例5>
 下記化合物(15)を以下の方法で合成した。その反応式を以下に示す。
<Synthesis Example 5>
The following compound (15) was synthesized by the following method. The reaction formula is shown below.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 (5-(3,4-ジシアノフェニル)-7,7-ジメチル-9-[4-(トリフルオロメチル)フェニル]-(7H-ジベンゾ[c,g]フルオレン)(15)の合成)
 アルゴン気流下、上記の反応により合成した5-ブロモ-7,7-ジメチル-9-[4-(トリフルオロメチル)フェニル]-(7H-ジベンゾ[c,g]フルオレン)(1-7)1.142g(2.21mmol)、4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-1,2-ベンゼンジカルボニトリル0.618g(2.43mmol)、酢酸パラジウム(0)0.025g(0.11mmol)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル0.090g(0.22mmol)、リン酸カリウム三塩基酸0.938g(4.42mmol)をトルエン15mlと水0.4mlに溶解させ、加熱還流下で18時間攪拌した。室温まで冷却後、減圧下で濃縮し、水を加えた後、トルエンで抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製後、ジクロロメタン-メタノールで再結晶し、目的の5-(3,4-ジシアノフェニル)-7,7-ジメチル-9-[4-(トリフルオロメチル)フェニル]-(7H-ジベンゾ[c,g]フルオレン)(15)の白色粉末(収量1.031g、収率83%)を得た。更に、昇華精製を行い、純度99.9%品(高速液体クロマトグラフィー(HPLC)により純度確認)を得た。
(Synthesis of 5- (3,4-dicyanophenyl) -7,7-dimethyl-9- [4- (trifluoromethyl) phenyl]-(7H-dibenzo [c, g] fluorene) (15))
5-Bromo-7,7-dimethyl-9- [4- (trifluoromethyl) phenyl]-(7H-dibenzo [c, g] fluorene) (1-7) 1 synthesized by the above reaction under an argon stream 142 g (2.21 mmol), 4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -1,2-benzenedicarbonitrile 0.618 g (2.43 mmol) ), Palladium acetate (0) 0.025 g (0.11 mmol), 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl 0.090 g (0.22 mmol), potassium phosphate tribasic acid 0.938 g (4 .42 mmol) was dissolved in 15 ml of toluene and 0.4 ml of water, and the mixture was stirred for 18 hours with heating under reflux. After cooling to room temperature, the mixture was concentrated under reduced pressure, water was added, and the mixture was extracted with toluene. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained crude product was purified by column chromatography and recrystallized from dichloromethane-methanol to obtain the desired 5- (3,4-dicyanophenyl) -7,7-dimethyl-9- [4- (trifluoromethyl). ) Phenyl]-(7H-dibenzo [c, g] fluorene) (15) was obtained as a white powder (1.031 g, 83% yield). Furthermore, sublimation purification was performed to obtain a product having a purity of 99.9% (purity confirmed by high performance liquid chromatography (HPLC)).
 なお、得られた化合物の質量分析を行ったところ、m/z=564(M)にピークが確認された。また、この化合物をH‐核磁気共鳴(H‐NMR)法を用いて分析したところ、図10に示すH‐NMRスペクトルが得られ、13C‐核磁気共鳴(13C‐NMR)法を用いて分析したところ、図11に示す13C‐NMRスペクトルが得られた。これらにより、合成例5で得られた化合物が化合物(15)であることが確認された。 As a result of mass spectrometry of the obtained compound, a peak was confirmed at m / z = 564 (M ). Also, Analysis of this compound 1 H- using nuclear magnetic resonance (1 H-NMR) method, 1 H-NMR spectrum shown in Figure 10 is obtained, 13 C-nuclear magnetic resonance (13 C-NMR) When analyzed by the method, the 13 C-NMR spectrum shown in FIG. 11 was obtained. Thus, it was confirmed that the compound obtained in Synthesis Example 5 was the compound (15).
<合成例6>
 下記化合物(16)を以下の方法で合成した。その反応式を以下に示す。
<Synthesis Example 6>
The following compound (16) was synthesized by the following method. The reaction formula is shown below.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 (5,9-ビス[4-(トリフルオロメチル)フェニル]-7,7-ジメチル-(7H-ジベンゾ[c,g]フルオレン)(16)の合成)
 アルゴン気流下、上記の反応により合成した5,9-ジブロモ-7,7-ジメチル-(7H-ジベンゾ[c,g]フルオレン)(1-4)1.000g(2.21mmol)、4-(トリフルオロメチル)フェニルボロン酸0.925g(4.87mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)0.119g(0.13mmol)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル0.107g(0.26mmol)、リン酸カリウム三塩基酸2.825g(13.3mmol)をトルエン30mlに溶解させ、加熱還流下で18時間攪拌した。室温まで冷却後、減圧下で濃縮し、水を加えた後、トルエンで抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製後、ジクロロメタン-メタノールで再結晶し、目的の5,9-ビス[4-(トリフルオロメチル)フェニル]-7,7-ジメチル-(7H-ジベンゾ[c,g]フルオレン)(16)の白色粉末(収量1.030g、収率80%)を得た。更に、昇華精製を行い、純度99.9%品(高速液体クロマトグラフィー(HPLC)により純度確認)を得た。
(Synthesis of 5,9-bis [4- (trifluoromethyl) phenyl] -7,7-dimethyl- (7H-dibenzo [c, g] fluorene) (16))
5,9-Dibromo-7,7-dimethyl- (7H-dibenzo [c, g] fluorene) (1-4) 1.000 g (2.21 mmol), 4- ( (Trifluoromethyl) phenylboronic acid 0.925 g (4.87 mmol), tris (dibenzylideneacetone) dipalladium (0) 0.119 g (0.13 mmol), 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl 0.107 g (0.26 mmol) and 2.825 g (13.3 mmol) of potassium phosphate tribasic acid were dissolved in 30 ml of toluene, and the mixture was stirred for 18 hours with heating under reflux. After cooling to room temperature, the mixture was concentrated under reduced pressure, water was added, and the mixture was extracted with toluene. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained crude product was purified by column chromatography and recrystallized from dichloromethane-methanol to obtain the desired 5,9-bis [4- (trifluoromethyl) phenyl] -7,7-dimethyl- (7H-dibenzo A white powder (yield: 1.030 g, yield: 80%) of [c, g] fluorene) (16) was obtained. Furthermore, sublimation purification was performed to obtain a product having a purity of 99.9% (purity confirmed by high performance liquid chromatography (HPLC)).
 なお、得られた化合物の質量分析を行ったところ、m/z=582(M)にピークが確認された。また、この化合物をH‐核磁気共鳴(H‐NMR)法を用いて分析したところ、図12に示すH‐NMRスペクトルが得られ、13C‐核磁気共鳴(13C‐NMR)法を用いて分析したところ、図13に示す13C‐NMRスペクトルが得られた。これらにより、合成例6で得られた化合物が化合物(16)であることが確認された。 As a result of mass spectrometry of the obtained compound, a peak was confirmed at m / z = 582 (M ). Also, Analysis of this compound 1 H- using nuclear magnetic resonance (1 H-NMR) method, 1 H-NMR spectrum shown in Figure 12 is obtained, 13 C-nuclear magnetic resonance (13 C-NMR) When analyzed by the method, the 13 C-NMR spectrum shown in FIG. 13 was obtained. Thus, it was confirmed that the compound obtained in Synthesis Example 6 was the compound (16).
<合成例7>
 下記化合物(17)を以下の方法で合成した。その反応式を以下に示す。
<Synthesis Example 7>
The following compound (17) was synthesized by the following method. The reaction formula is shown below.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 (5,9-ビス(3,5-ジフルオロフェニル)-7,7-ジメチル-(7H-ジベンゾ[c,g]フルオレン)(17)の合成)
 アルゴン気流下、上記の反応により合成した5,9-ジブロモ-7,7-ジメチル-(7H-ジベンゾ[c,g]フルオレン)(1-4)1.000g(2.21mmol)、3,5-ジフルオロフェニルボロン酸0.768g(4.87mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)0.119g(0.13mmol)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル0.107g(0.26mmol)、リン酸カリウム三塩基酸2.825g(13.3mmol)をトルエン30mlに溶解させ、加熱還流下で18時間攪拌した。室温まで冷却後、減圧下で濃縮し、水を加えた後、トルエンで抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製後、ジクロロメタン-メタノールで再結晶し、目的の5,9-ビス(3,5-ジフルオロフェニル)-7,7-ジメチル-(7H-ジベンゾ[c,g]フルオレン)(17)の白色粉末(収量0.623g、収率54%)を得た。更に、昇華精製を行い、純度99.6%品(高速液体クロマトグラフィー(HPLC)により純度確認)を得た。
(Synthesis of 5,9-bis (3,5-difluorophenyl) -7,7-dimethyl- (7H-dibenzo [c, g] fluorene) (17))
5,9-Dibromo-7,7-dimethyl- (7H-dibenzo [c, g] fluorene) (1-4) 1.000 g (2.21 mmol), 3,5 synthesized by the above reaction under an argon stream -0.768 g (4.87 mmol) of difluorophenylboronic acid, 0.119 g (0.13 mmol) of tris (dibenzylideneacetone) dipalladium (0), 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl 107 g (0.26 mmol) and 2.825 g (13.3 mmol) of potassium phosphate tribasic acid were dissolved in 30 ml of toluene, and the mixture was stirred for 18 hours with heating under reflux. After cooling to room temperature, the mixture was concentrated under reduced pressure, water was added, and the mixture was extracted with toluene. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The resulting crude product was purified by column chromatography and recrystallized from dichloromethane-methanol to obtain the desired 5,9-bis (3,5-difluorophenyl) -7,7-dimethyl- (7H-dibenzo [c , G] fluorene) (17) was obtained as a white powder (yield 0.623 g, yield 54%). Furthermore, sublimation purification was performed to obtain a 99.6% pure product (purity confirmed by high performance liquid chromatography (HPLC)).
 なお、得られた化合物の質量分析を行ったところ、m/z=518(M)にピークが確認された。また、この化合物をH‐核磁気共鳴(H‐NMR)法を用いて分析したところ、図14に示すH‐NMRスペクトルが得られ、13C‐核磁気共鳴(13C‐NMR)法を用いて分析したところ、図15に示す13C‐NMRスペクトルが得られた。これらにより、合成例7で得られた化合物が化合物(17)であることが確認された。 As a result of mass spectrometry of the obtained compound, a peak was confirmed at m / z = 518 (M ). Furthermore, it was analyzed using the compound 1 H- nuclear magnetic resonance (1 H-NMR) method, 1 H-NMR spectrum shown in Figure 14 is obtained, 13 C-nuclear magnetic resonance (13 C-NMR) When analyzed by the method, the 13 C-NMR spectrum shown in FIG. 15 was obtained. Thus, it was confirmed that the compound obtained in Synthesis Example 7 was the compound (17).
<合成例8>
 下記化合物(18)を以下の方法で合成した。その反応式を以下に示す。
<Synthesis Example 8>
The following compound (18) was synthesized by the following method. The reaction formula is shown below.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 (5,9-ビス(6-シアノナフタレン-2-イル)-7,7-ジメチル-(7H-ジベンゾ[c,g]フルオレン)(18)の合成)
 アルゴン気流下、上記の反応により合成した5,9-ジブロモ-7,7-ジメチル-(7H-ジベンゾ[c,g]フルオレン)(1-4)1.000g(2.21mmol)、6-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-2-ナフタレンカルボニトリル1.358g(4.87mmol)、酢酸パラジウム(0)0.040g(0.18mmol)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル0.148g(0.36mmol)、リン酸カリウム三塩基酸2.815g(13.3mmol)をトルエン30mlと水1mlに溶解させ、加熱還流下で20時間攪拌した。室温まで冷却後、減圧下で濃縮し、水を加えた後、トルエンで抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製後、ジクロロメタン-メタノールで再結晶し、目的の5,9-ビス(6-シアノナフタレン-2-イル)-7,7-ジメチル-(7H-ジベンゾ[c,g]フルオレン)(18)の白色粉末(収量1.292g、収率98%)を得た。更に、昇華精製を行い、純度99.9%品(高速液体クロマトグラフィー(HPLC)により純度確認)を得た。
(Synthesis of 5,9-bis (6-cyanonaphthalen-2-yl) -7,7-dimethyl- (7H-dibenzo [c, g] fluorene) (18))
5,9-Dibromo-7,7-dimethyl- (7H-dibenzo [c, g] fluorene) (1-4) 1.000 g (2.21 mmol), 6- (synthesized by the above reaction under an argon stream 4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -2-naphthalenecarbonitrile 1.358 g (4.87 mmol), palladium acetate (0) 0.040 g (0.18 mmol) ), 0.148 g (0.36 mmol) of 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl and 2.815 g (13.3 mmol) of potassium phosphate tribasic acid were dissolved in 30 ml of toluene and 1 ml of water and heated. Stir for 20 hours under reflux. After cooling to room temperature, the mixture was concentrated under reduced pressure, water was added, and the mixture was extracted with toluene. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained crude product was purified by column chromatography and recrystallized from dichloromethane-methanol to obtain the desired 5,9-bis (6-cyanonaphthalen-2-yl) -7,7-dimethyl- (7H-dibenzo A white powder of [c, g] fluorene) (18) was obtained (yield 1.292 g, yield 98%). Furthermore, sublimation purification was performed to obtain a product having a purity of 99.9% (purity confirmed by high performance liquid chromatography (HPLC)).
 なお、得られた化合物の質量分析を行ったところ、m/z=596(M)にピークが確認された。また、この化合物をH‐核磁気共鳴(H‐NMR)法を用いて分析したところ、図16に示すH‐NMRスペクトルが得られ、13C‐核磁気共鳴(13C‐NMR)法を用いて分析したところ、図17に示す13C‐NMRスペクトルが得られた。これらにより、合成例8で得られた化合物が化合物(18)であることが確認された。 As a result of mass spectrometry of the obtained compound, a peak was confirmed at m / z = 596 (M ). Furthermore, it was analyzed using the compound 1 H- nuclear magnetic resonance (1 H-NMR) method, 1 H-NMR spectrum shown in Figure 16 is obtained, 13 C-nuclear magnetic resonance (13 C-NMR) When analyzed by the method, the 13 C-NMR spectrum shown in FIG. 17 was obtained. Thus, it was confirmed that the compound obtained in Synthesis Example 8 was the compound (18).
 合成例1~8で得られた化合物(11)~(18)の蛍光スペクトル測定を行った。トルエン溶液での最大発光波長を表1に示す。何れの化合物も430nm~470nm付近に最大蛍光波長を有し、色純度の高い青色発光ドーパントとして好適である。 The fluorescence spectra of the compounds (11) to (18) obtained in Synthesis Examples 1 to 8 were measured. Table 1 shows the maximum emission wavelength in the toluene solution. Any compound has a maximum fluorescence wavelength in the vicinity of 430 nm to 470 nm and is suitable as a blue light-emitting dopant with high color purity.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 <実施例1>
 ガラス基板上にRFスパッタ法で、ITO透明電極を100nmの厚さに成膜し、パターニングした。このITO透明電極付きガラス基板を、中性洗剤、アセトン、エタノールを用いて超音波洗浄し、煮沸エタノール中から引き上げて乾燥した。透明電極表面をUV/O洗浄した後、真空蒸着装置の基板ホルダーに固定して、層内を1×10-4Pa以下まで減圧した。
<Example 1>
An ITO transparent electrode having a thickness of 100 nm was formed on a glass substrate by RF sputtering and patterned. This glass substrate with an ITO transparent electrode was subjected to ultrasonic cleaning using a neutral detergent, acetone and ethanol, and then pulled up from boiling ethanol and dried. The surface of the transparent electrode was washed with UV / O 3 and then fixed to a substrate holder of a vacuum evaporation apparatus, and the inside of the layer was decompressed to 1 × 10 −4 Pa or less.
 次いで減圧状態を保ったまま、下記の構造を有するジピラジノ[2,3-f:2’,3’-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル(21)を蒸着速度0.1nm/secで5nmの厚さに蒸着し、ホール注入層とした。 Next, while maintaining the reduced pressure state, dipyrazino [2,3-f: 2 ′, 3′-h] quinoxaline-2,3,6,7,10,11-hexacarbonitrile (21) having the following structure was obtained. Vapor deposition was performed at a deposition rate of 0.1 nm / sec to a thickness of 5 nm to form a hole injection layer.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 次いで、減圧状態を保ったまま、下記の構造を有するN,N,N’,N’-テトラキス(3-ビフェニリル)-1,1’-ビフェニル-4,4’-ジアミン(22)を蒸着速度0.1nm/secで80nmの厚さに蒸着し、ホール輸送層とした。 Next, while maintaining the reduced pressure state, N, N, N ′, N′-tetrakis (3-biphenylyl) -1,1′-biphenyl-4,4′-diamine (22) having the following structure was deposited at a deposition rate. Vapor deposition was performed at a thickness of 80 nm at 0.1 nm / sec to form a hole transport layer.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 更に、減圧状態を保ったまま、ホスト材料として本実施形態の化合物(III-2)と、ドーパントとして本実施形態の化合物(11)とを、質量比95:5で、全体の蒸着速度0.1nm/secとして40nmの厚さに蒸着し発光層とした。 Further, while maintaining the reduced pressure state, the compound (III-2) of the present embodiment as a host material and the compound (11) of the present embodiment as a dopant at a mass ratio of 95: 5 and an overall deposition rate of 0. A light emitting layer was formed by vapor deposition to a thickness of 40 nm at 1 nm / sec.
 更に、減圧状態を保ったまま、本実施形態の化合物(III-2)を蒸着速度0.1nm/secで20nmの厚さに蒸着し、電子輸送層とした。 Further, while maintaining the reduced pressure state, the compound (III-2) of the present embodiment was deposited to a thickness of 20 nm at a deposition rate of 0.1 nm / sec to form an electron transport layer.
 更に、減圧状態を保ったまま、下記の構造を有する9,10-ビス[4-(イミダゾ[1,2-a]ピリジン-2-イル)フェニル]アントラセン(23)を蒸着速度0.1nm/secで10nmの厚さに相次いで蒸着し、電子注入層とした。 Further, while maintaining the reduced pressure state, 9,10-bis [4- (imidazo [1,2-a] pyridin-2-yl) phenyl] anthracene (23) having the following structure was deposited at a deposition rate of 0.1 nm / The film was successively deposited to a thickness of 10 nm in sec to form an electron injection layer.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 次いで、LiFを蒸着速度0.1nm/secで1.2nmの厚さに蒸着し、電子注入電極とし、保護電極としてAlを100nmの厚さに蒸着し、最後にガラス封止して有機電界発光素子を得た。 Next, LiF was deposited at a deposition rate of 0.1 nm / sec to a thickness of 1.2 nm, used as an electron injection electrode, Al as a protective electrode was deposited to a thickness of 100 nm, and finally sealed with glass to produce organic electroluminescence. An element was obtained.
 作成した有機電界発光素子について、電流密度10mA/cmにおける駆動時の、初期輝度1000cd/mでの半減寿命、色度(CIEx,CIEy)、および発光効率を測定した。結果を表2に示す。 The organic electroluminescent device fabricated, during driving at a current density of 10 mA / cm 2, half life at an initial luminance of 1000 cd / m 2, the chromaticity (CIEx, CIE y), and the luminous efficiency was measured. The results are shown in Table 2.
<実施例2~15、比較例1~6>
 化合物(III-2)および化合物(11)の代わりに表2に記載した化合物を用いた以外は、実施例1と同様に有機電界発光素子を作製した。これらの素子の電流密度10mA/cmにおける駆動時の、初期輝度1000cd/mでの半減寿命、色度(CIEx,CIEy)、および発光効率を表2に示す。なお、比較例に用いる化合物は下記に示す構造である。
<Examples 2 to 15 and Comparative Examples 1 to 6>
An organic electroluminescent device was produced in the same manner as in Example 1 except that the compounds listed in Table 2 were used in place of the compounds (III-2) and (11). Table 2 shows the half-life, chromaticity (CIEx, CIEy), and luminous efficiency at an initial luminance of 1000 cd / m 2 when these elements are driven at a current density of 10 mA / cm 2 . In addition, the compound used for a comparative example has the structure shown below.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 実施例1~15および比較例1~6により、本実施形態で用いた化合物をドーパントとした有機電界発光素子は、比較化合物(31)~(35)をドーパントとした素子と比較して、輝度半減寿命が長く、青色の色純度が高いことが示された。また、本実施形態で用いたドーパントは、ジベンゾ[a,c]フルオレン構造を有するアントラセンもしくはピレン化合物をホスト材料として発光層を構成した際により高い発光効率を示した。 According to Examples 1 to 15 and Comparative Examples 1 to 6, the organic electroluminescent device using the compound used in the present embodiment as a dopant was compared with the device using Comparative compounds (31) to (35) as the dopant. It was shown that the half life was long and the blue color purity was high. In addition, the dopant used in the present embodiment showed higher luminous efficiency when the light emitting layer was formed using an anthracene or pyrene compound having a dibenzo [a, c] fluorene structure as a host material.
<実施例16>
 ガラス基板上にRFスパッタ法で、ITO透明電極を100nmの厚さに成膜し、パターニングした。このITO透明電極付きガラス基板を、中性洗剤、アセトン、エタノールを用いて超音波洗浄し、煮沸エタノール中から引き上げて乾燥した。透明電極表面をUV/O洗浄した後、真空蒸着装置の基板ホルダーに固定して、層内を1×10-4Pa以下まで減圧した。
<Example 16>
An ITO transparent electrode having a thickness of 100 nm was formed on a glass substrate by RF sputtering and patterned. This glass substrate with an ITO transparent electrode was subjected to ultrasonic cleaning using a neutral detergent, acetone and ethanol, and then pulled up from boiling ethanol and dried. The surface of the transparent electrode was washed with UV / O 3 and then fixed to a substrate holder of a vacuum evaporation apparatus, and the inside of the layer was decompressed to 1 × 10 −4 Pa or less.
 次いで、減圧状態を保ったまま、本実施形態の化合物(III-2)と、電子アクセプターとしての酸化モリブデンを体積比95:5で、全体の蒸着速度0.1nm/secで50nmの膜厚に蒸着し、ホール注入層とした。 Next, while maintaining the reduced pressure state, the compound (III-2) of the present embodiment and molybdenum oxide as an electron acceptor were formed in a volume ratio of 95: 5 and the film thickness was 50 nm at an overall deposition rate of 0.1 nm / sec. Evaporation was performed to form a hole injection layer.
 次いで減圧状態を保ったまま、本実施形態の化合物(III-2)を蒸着速度0.1nm/secで50nmの厚さに蒸着し、ホール輸送層とした。 Next, while maintaining the reduced pressure state, the compound (III-2) of the present embodiment was deposited to a thickness of 50 nm at a deposition rate of 0.1 nm / sec to form a hole transport layer.
 更に、減圧状態を保ったまま、ホスト材料として本実施形態の化合物(III-2)と、ドーパントとして本実施形態の化合物(11)を体積比95:5で、全体の蒸着速度0.1nm/secで40nmの厚さに蒸着し、発光層とした。 Further, while maintaining the reduced pressure state, the compound (III-2) of the present embodiment as a host material and the compound (11) of the present embodiment as a dopant at a volume ratio of 95: 5 and an overall deposition rate of 0.1 nm / The film was deposited in a thickness of 40 nm in sec to obtain a light emitting layer.
 更に、減圧状態を保ったまま、本実施形態の化合物(III-2)を蒸着速度0.1nm/secで20nmの厚さに蒸着し、電子輸送層とした。 Further, while maintaining the reduced pressure state, the compound (III-2) of the present embodiment was deposited to a thickness of 20 nm at a deposition rate of 0.1 nm / sec to form an electron transport layer.
 更に、減圧状態を保ったまま、前記化合物(23)を蒸着速度0.1nm/secで10nmの厚さに相次いで蒸着し、電子注入層とした。 Further, while maintaining the reduced pressure state, the compound (23) was successively deposited to a thickness of 10 nm at a deposition rate of 0.1 nm / sec to obtain an electron injection layer.
 次いで、LiFを蒸着速度0.1nm/secで1.2nmの厚さに蒸着し、電子注入電極とし、保護電極としてAlを100nmの厚さに蒸着し、最後にガラス封止して有機電界発光素子を得た。 Next, LiF was deposited at a deposition rate of 0.1 nm / sec to a thickness of 1.2 nm, used as an electron injection electrode, Al as a protective electrode was deposited to a thickness of 100 nm, and finally sealed with glass to produce organic electroluminescence. An element was obtained.
 作成した有機電界発光素子について、電流密度10mA/cmにおける駆動時の、初期輝度1000cd/mでの半減寿命、色度(CIEx,CIEy)、および発光効率を測定した。結果を表3に示す。 The organic electroluminescent device fabricated, during driving at a current density of 10 mA / cm 2, half life at an initial luminance of 1000 cd / m 2, the chromaticity (CIEx, CIE y), and the luminous efficiency was measured. The results are shown in Table 3.
<実施例17~27、比較例7~12>
 化合物(III-2)および化合物(11)の代わりに表3に記載した化合物を用いた以外は、実施例16と同様に有機電界発光素子を作製した。これらの素子の電流密度10mA/cmにおける駆動時の、初期輝度1000cd/mでの半減寿命、色度(CIEx,CIEy)、および発光効率を表3に示す。
<Examples 17 to 27, Comparative Examples 7 to 12>
An organic electroluminescent device was produced in the same manner as in Example 16 except that the compounds listed in Table 3 were used instead of the compounds (III-2) and (11). Table 3 shows the half-life, chromaticity (CIEx, CIEy), and luminous efficiency at an initial luminance of 1000 cd / m 2 when these elements are driven at a current density of 10 mA / cm 2 .
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 実施例16~27および比較例7~12により、実施例16~27で用いた化合物をドーパントとした有機電界発光素子は、比較化合物(31)~(35)をドーパントとした素子と比較して、輝度半減寿命が長く、青色の色純度が高いことが示された。また、本実施形態で用いたドーパントは、ジベンゾ[a,c]フルオレン構造を有するアントラセンもしくはピレン化合物をホスト材料として発光層を構成した際により高い発光効率を示した。 According to Examples 16 to 27 and Comparative Examples 7 to 12, the organic electroluminescent devices using the compounds used in Examples 16 to 27 as dopants were compared with the devices using Comparative compounds (31) to (35) as dopants. It was shown that the luminance half-life was long and the blue color purity was high. In addition, the dopant used in the present embodiment showed higher luminous efficiency when the light emitting layer was formed using an anthracene or pyrene compound having a dibenzo [a, c] fluorene structure as a host material.
 以上詳細に説明したように、本発明の有機電界発光素子用化合物を有機薄膜層に含有させた有機電界発光素子は、長寿命且つ色純度の高い青色発光を実現することができる。 As described in detail above, the organic electroluminescent device containing the organic electroluminescent device compound of the present invention in the organic thin film layer can realize long-life blue light emission with high color purity.
 1…本実施形態にかかる有機電界発光素子、2…基板、3…第1の電極、4…ホール注入層、5…ホール輸送層、6…発光層、7…電子輸送層、8…電子注入層、9…第2の電極、P…電源。 DESCRIPTION OF SYMBOLS 1 ... Organic electroluminescent element concerning this embodiment, 2 ... Substrate, 3 ... 1st electrode, 4 ... Hole injection layer, 5 ... Hole transport layer, 6 ... Light emitting layer, 7 ... Electron transport layer, 8 ... Electron injection Layer, 9 ... second electrode, P ... power source.

Claims (7)

  1.  下記一般式(1)で表されることを特徴とする有機電界発光素子用化合物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)において、
     YおよびYは、それぞれ独立に、直鎖もしくは分岐状の炭素数1~10のアルキル基、または置換もしくは無置換の炭素数6~12のアリール基である。
     XおよびXは、それぞれ独立に、置換もしくは無置換の炭素数6~20のアリール基、または下記一般式(2)、(3)、(4)の何れかで表される置換基であり、XおよびXのうち、少なくとも一つは、下記一般式(2)、(3)、(4)の何れかで表される置換基である。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)において、
     Arは、置換もしくは無置換の炭素数6~16のアリール基である。
     mは、1~2の整数である。)
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)において、
     Arは、置換もしくは無置換の炭素数6~16のアリール基である。
     nは、1~5の整数である。)
    Figure JPOXMLDOC01-appb-C000004
    (一般式(4)において、
     Arは、置換もしくは無置換の炭素数6~16のアリール基である。
     pは、1~2の整数である。)
    The compound for organic electroluminescent elements characterized by being represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In general formula (1),
    Y 1 and Y 2 are each independently a linear or branched alkyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms.
    X 1 and X 2 are each independently a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or a substituent represented by any one of the following general formulas (2), (3), and (4). Yes, at least one of X 1 and X 2 is a substituent represented by any one of the following general formulas (2), (3), and (4). )
    Figure JPOXMLDOC01-appb-C000002
    (In general formula (2),
    Ar 1 is a substituted or unsubstituted aryl group having 6 to 16 carbon atoms.
    m is an integer of 1 to 2. )
    Figure JPOXMLDOC01-appb-C000003
    (In general formula (3),
    Ar 2 is a substituted or unsubstituted aryl group having 6 to 16 carbon atoms.
    n is an integer of 1 to 5. )
    Figure JPOXMLDOC01-appb-C000004
    (In general formula (4),
    Ar 3 is a substituted or unsubstituted aryl group having 6 to 16 carbon atoms.
    p is an integer of 1 to 2. )
  2.  XおよびXは、それぞれ独立に、一般式(2)、(3)、(4)の何れかで表される置換基である請求項1に記載の有機電界発光素子用化合物。 The compound for organic electroluminescent elements according to claim 1, wherein X 1 and X 2 are each independently a substituent represented by any one of General Formulas (2), (3), and (4).
  3.  Ar、Ar、Arは、置換もしくは無置換の、フェニレン基、ナフチレン基、またはビフェニレン基である請求項1または2に記載の有機電界発光素子用化合物。 Ar 1 , Ar 2 , Ar 3 is a substituted or unsubstituted phenylene group, naphthylene group, or biphenylene group, The compound for organic electroluminescent elements according to claim 1 or 2.
  4. 陽極と陰極からなる一対の電極の間に、1層以上の有機層が挟持された有機電界発光素子において、前記有機層の少なくとも1層が、請求項1から3の何れか一項に記載の有機電界発光素子用化合物を単独もしくは混合物の成分として含有することを特徴とする有機電界発光素子。 4. The organic electroluminescence device in which one or more organic layers are sandwiched between a pair of electrodes composed of an anode and a cathode, wherein at least one of the organic layers is according to claim 1. An organic electroluminescent device comprising a compound for an organic electroluminescent device alone or as a component of a mixture.
  5. 前記有機層が発光層を有し、前記発光層が前記化合物を含むことを特徴とする請求項4に記載の有機電界発光素子。 The organic electroluminescent element according to claim 4, wherein the organic layer has a light emitting layer, and the light emitting layer contains the compound.
  6. 前記発光層がホスト材料とドーパントとを有し、前記ドーパントが前記化合物を含むことを特徴とする請求項5に記載の有機電界発光素子。 6. The organic electroluminescent device according to claim 5, wherein the light emitting layer has a host material and a dopant, and the dopant contains the compound.
  7. 前記有機層がホール注入層またはホール輸送層の少なくとも一方を有し、前記ホール注入層またはホール輸送層の少なくとも一部分が、電子アクセプターとして機能する無機化合物、あるいは有機化合物を含むことを特徴とする請求項4から6の何れか一項に記載の有機電界発光素子。 The organic layer has at least one of a hole injection layer and a hole transport layer, and at least a part of the hole injection layer or the hole transport layer contains an inorganic compound or an organic compound that functions as an electron acceptor. Item 7. The organic electroluminescence device according to any one of Items 4 to 6.
PCT/JP2017/030908 2017-03-28 2017-08-29 Compound for organic electroluminescence element and organic electroluminescence element WO2018179482A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017062175 2017-03-28
JP2017-062175 2017-03-28
JP2017-062176 2017-03-28
JP2017062176 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018179482A1 true WO2018179482A1 (en) 2018-10-04

Family

ID=63674549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030908 WO2018179482A1 (en) 2017-03-28 2017-08-29 Compound for organic electroluminescence element and organic electroluminescence element

Country Status (1)

Country Link
WO (1) WO2018179482A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111100072A (en) * 2019-11-28 2020-05-05 吉林奥来德光电材料股份有限公司 Organic photoelectric compound, synthetic method thereof and organic electroluminescent device
CN112608253A (en) * 2019-10-03 2021-04-06 佳能株式会社 Organic compound, organic light-emitting element, display apparatus, image pickup apparatus, illumination apparatus, and moving object
JP2021059523A (en) * 2019-10-03 2021-04-15 キヤノン株式会社 Organic compound, organic light-emitting element, display apparatus, image pickup apparatus, lighting apparatus, and moving object
US11964930B2 (en) 2019-11-07 2024-04-23 Canon Kabushiki Kaisha Organic compound and organic light-emitting element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120031684A (en) * 2010-09-27 2012-04-04 롬엔드하스전자재료코리아유한회사 Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2016017514A1 (en) * 2014-07-31 2016-02-04 コニカミノルタ株式会社 Organic electroluminescent element, light-emitting thin film, display device, and lighting device
JP2017036267A (en) * 2015-08-07 2017-02-16 株式会社半導体エネルギー研究所 Organic compound, light emitting element, light emitting device, electronic device and illumination device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120031684A (en) * 2010-09-27 2012-04-04 롬엔드하스전자재료코리아유한회사 Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2016017514A1 (en) * 2014-07-31 2016-02-04 コニカミノルタ株式会社 Organic electroluminescent element, light-emitting thin film, display device, and lighting device
JP2017036267A (en) * 2015-08-07 2017-02-16 株式会社半導体エネルギー研究所 Organic compound, light emitting element, light emitting device, electronic device and illumination device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608253A (en) * 2019-10-03 2021-04-06 佳能株式会社 Organic compound, organic light-emitting element, display apparatus, image pickup apparatus, illumination apparatus, and moving object
JP2021059523A (en) * 2019-10-03 2021-04-15 キヤノン株式会社 Organic compound, organic light-emitting element, display apparatus, image pickup apparatus, lighting apparatus, and moving object
JP7218322B2 (en) 2019-10-03 2023-02-06 キヤノン株式会社 organic compounds, organic light-emitting devices, display devices, imaging devices, lighting devices, mobile objects
US11807593B2 (en) 2019-10-03 2023-11-07 Canon Kabushiki Kaisha Organic compound, organic light-emitting element, display apparatus, image pickup apparatus, lighting apparatus, and moving object
CN112608253B (en) * 2019-10-03 2024-04-09 佳能株式会社 Organic compound, organic light-emitting element, display device, image pickup device, illumination device, and moving object
US11964930B2 (en) 2019-11-07 2024-04-23 Canon Kabushiki Kaisha Organic compound and organic light-emitting element
CN111100072A (en) * 2019-11-28 2020-05-05 吉林奥来德光电材料股份有限公司 Organic photoelectric compound, synthetic method thereof and organic electroluminescent device

Similar Documents

Publication Publication Date Title
TWI438260B (en) Light-emitting element material and light-emitting element
WO2015087961A1 (en) Iridium complex compound, method for producing said compound, composition containing said compound, organic electroluminescent element, display device, and lighting device
JP5479009B2 (en) Organic light emitting device
WO2012035962A1 (en) New condensed polycyclic compound and organic light-emitting element using the same
TW201348228A (en) Material for organic electroluminescent element, and element using same
WO2018179482A1 (en) Compound for organic electroluminescence element and organic electroluminescence element
WO2016009823A1 (en) Monoamine derivative, luminescent element material comprising same, and luminescent element
JP2003264086A (en) Organic electroluminescence element
JP5669539B2 (en) Quinolino [3,2,1-kl] phenoxazine compound and organic light emitting device using the same
JP4880450B2 (en) Organometallic complex, luminescent solid, organic EL device and organic EL display
JP2015216245A (en) Compound for organic electroluminescent element and organic electroluminescent element using the same
JP5441348B2 (en) Benzo [a] fluoranthene compound and organic light-emitting device using the same
WO2017104767A1 (en) Compound for organic electroluminescent element and organic electroluminescent element using same
US8941099B2 (en) Organic light emitting device and materials for use in same
JP2011204843A (en) Light-emitting element
CN113130771A (en) Organic electroluminescent device based on iridium-containing organic complex as luminescent material
WO2014024750A1 (en) Light emitting element material and light emitting element
JP6370030B2 (en) Compound for organic electroluminescence device and organic electroluminescence device using the same
JP2016181556A (en) Compound for organic electroluminescent element and organic electroluminescent element using the same
JP2016150920A (en) Compound for organic electroluminescent element and organic electroluminescent element using the same
Jou et al. Efficient fluorescent white organic light-emitting diodes with blue-green host of di (4-fluorophenyl) amino-di (styryl) biphenyl
US20130306960A1 (en) Organic light emitting device and materials for use in same
EP3498700A1 (en) Nitrogen-containing heterocyclic derivative, organic electroluminescence element material using the same, and organic electroluminescence element and electronic device using the same
JP2009173873A (en) Organic electroluminescence material and element using the same
KR100798860B1 (en) Blue luminescent organic compound and organic light-emitting diode including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP