WO2016017514A1 - Organic electroluminescent element, light-emitting thin film, display device, and lighting device - Google Patents

Organic electroluminescent element, light-emitting thin film, display device, and lighting device Download PDF

Info

Publication number
WO2016017514A1
WO2016017514A1 PCT/JP2015/070917 JP2015070917W WO2016017514A1 WO 2016017514 A1 WO2016017514 A1 WO 2016017514A1 JP 2015070917 W JP2015070917 W JP 2015070917W WO 2016017514 A1 WO2016017514 A1 WO 2016017514A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
organic
electron
Prior art date
Application number
PCT/JP2015/070917
Other languages
French (fr)
Japanese (ja)
Inventor
周穂 谷本
池水 大
鈴木 隆嗣
康生 宮田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016538300A priority Critical patent/JPWO2016017514A1/en
Publication of WO2016017514A1 publication Critical patent/WO2016017514A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to an organic electroluminescence element, a light-emitting thin film, and a display device and an illumination device including the organic electroluminescence element. More specifically, the present invention relates to an organic electroluminescence element with improved luminous efficiency.
  • organic electroluminescence element (hereinafter, also referred to as “organic EL element” or “organic electroluminescence element”) using organic electroluminescence (Electro Luminescence: hereinafter abbreviated as “EL”) emits planar light.
  • EL Organic electroluminescence
  • This technology has already been put into practical use as a new light-emitting system that enables this.
  • Organic EL elements are applied not only to electronic displays but also recently as lighting devices, and their development is expected.
  • TTA triplet-triplet annihilation
  • TTF triplet-triplet fusion
  • thermally activated delayed fluorescence (reverse intersystem crossing: hereinafter, abbreviated as “RISC” where appropriate) is a phenomenon that uses a characteristic that causes triplet excitons to singlet excitons.
  • RISC reverse intersystem crossing
  • TADF Thermally Activated Delayed Fluorescence
  • a light emitting layer composed of a host compound and a light emitting compound contains a compound exhibiting TADF properties as a third component (hereinafter also referred to as an assist dopant) in the light emitting layer, it is effective for high luminous efficiency.
  • an assist dopant a compound exhibiting TADF properties as a third component
  • It is known see, for example, Non-Patent Document 3.
  • the triplet excitons generate singlet excitons with reverse intersystem crossing (RISC). be able to.
  • RISC reverse intersystem crossing
  • the TADF mechanism is a compound in which the difference ( ⁇ Est) between the singlet excitation energy level and the triplet excitation energy level ( ⁇ Est (TADF in FIG. 1A) is smaller than that of an ordinary fluorescent compound material. ) Is smaller than ⁇ Est (F).) Is a light emission mechanism that utilizes the phenomenon that reverse intersystem crossing from triplet excitons to singlet excitons occurs.
  • the present inventor has an organic layer group including at least one light emitting layer between the anode and the cathode, and at least one layer of the organic layer group.
  • an organic electroluminescence device containing a ⁇ -conjugated compound which is an aromatic hydrocarbon compound having an electron-donating group and an electron-withdrawing group in the same molecule represented by the general formula (1). It was found that an organic electroluminescence element that can be driven at a high speed and that can obtain high luminous efficiency can be realized.
  • An organic electroluminescence device having an organic layer group including at least one light emitting layer between an anode and a cathode, At least one layer of the organic layer group contains a ⁇ -conjugated compound having a structure represented by the following general formula (1).
  • A represents an electron-withdrawing group
  • D represents an electron-donating group.
  • m and n are each independently an integer of 1 or 2.
  • X represents an aromatic hydrocarbon group selected from structures represented by the following general formulas (1a) to (1k).
  • R 1 , R 2 , Ra, Rb, Rc and Rd each independently represents a hydrogen atom or a substituent.
  • p, q, r and s each independently represent an integer of 0 to 4. These substituents may be the same or different, and each substituent may be bonded to form a ring.
  • the attractive group represents an aromatic heterocyclic group, a sulfonyl group (—SO 2 R 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms.
  • a sulfenyl group (—SOR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms), a cyano group (—CN), halogeno A group, a carbonyl group (—COR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms), a pentafluorophenyl group (—C 6 F 5) a trifluoromethyl group (-CF 3), trifluoromethyl Eniru group (-C 6 H 4 CF 3) , and boryl group (-BR 1 2; R 1 represents an aromatic heterocyclic group of aromatic hydrocarbon group having 6 to 30 carbon atoms, or 3 to 20 carbon atoms
  • R 1 , R 2 , Ra, Rb, Rc and Rd in the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k) is an electron donating group
  • the donating group is an aromatic heterocyclic group having 3 to 20 carbon atoms, an amino group (—NH 2 ), an arylamino group (—NHR 1 or —NR 1 2 ;
  • R 1 is an aromatic carbon group having 6 to 30 carbon atoms;
  • R 1 is a linear or cyclic hydrocarbon group having 1 to 10 carbon atoms), and an aryloxy group ( —OR 2 ;
  • R 2 represents a linear or cyclic hydrocarbon group, an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms.
  • R 1 , R 2 , Ra, Rb, Rc and Rd in the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k) is an electron-withdrawing group
  • the attractive group represents an aromatic heterocyclic group, a sulfonyl group (—SO 2 R 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms.
  • a sulfenyl group (—SOR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms), a cyano group (—CN), halogeno A group, a carbonyl group (—COR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms), a pentafluorophenyl group (—C 6 F 5) a trifluoromethyl group (-CF 3), trifluoromethyl Eniru group (-C 6 H 4 CF 3) , and boryl group (-BR 1 2; R 1 represents an aromatic heterocyclic group of aromatic hydrocarbon group having 6 to 30 carbon atoms, or 3 to 20 carbon atoms And at least one of R 1 , R 2 , Ra, Rb, Rc and Rd in the general formulas (1a) to (1k) is an electron donating group.
  • the electron donating group is an aromatic heterocyclic group having 3 to 20 carbon atoms, an amino group (—NH 2 ), an arylamino group (—NHR 1 or —NR 1 2 ; R 1 has 6 to 30 carbon atoms)
  • X in the ⁇ -conjugated compound having the structure represented by the general formula (1) is the general formula (1a), (1b), (1d), (1e), (1g), (1h), (1i
  • X in the ⁇ -conjugated compound having the structure represented by the general formula (1) is the general formula (1a), (1b), (1d), (1e), (1g), (1h), (1i ) Or (1j), wherein at least one of R 1 , R 2 , Ra, Rb, Rc and Rd is an electron-withdrawing group, and at least one is an electron donor 6.
  • the group according to item 5, wherein all of R 1 , R 2 , Ra, Rb, Rc and Rd which are non-corresponding to the electron-withdrawing group and the electron-donating group are hydrogen atoms.
  • the absolute value ( ⁇ Est) of the energy difference between the lowest excited singlet level and the lowest excited triplet level of the ⁇ -conjugated compound having the structure represented by the general formula (1) is 0.5 eV or less.
  • the light emitting layer contains a ⁇ -conjugated compound having a structure represented by the general formula (1) and at least one of a fluorescent compound and a phosphorescent compound.
  • the organic electroluminescent element according to any one of items 1 to 7.
  • a luminescent thin film comprising a ⁇ -conjugated compound having a structure represented by the following general formula (1).
  • A represents an electron-withdrawing group
  • D represents an electron-donating group.
  • m and n are each independently an integer of 1 or 2.
  • X represents an aromatic hydrocarbon group selected from structures represented by the following general formulas (1a) to (1k).
  • R 1 , R 2 , Ra, Rb, Rc and Rd each independently represents a hydrogen atom or a substituent.
  • p, q, r and s each independently represent an integer of 0 to 4. These substituents may be the same or different, and each substituent may be bonded to form a ring.
  • the absolute value ( ⁇ Est) of the difference between the lowest excited singlet energy level and the lowest excited triplet energy level of the ⁇ -conjugated compound having the structure represented by the general formula (1) is 0.5 eV or less.
  • a display device comprising the organic electroluminescence element according to any one of items 1 to 9.
  • An organic electroluminescence device according to any one of items 1 to 9 is provided.
  • the above-described means of the present invention can provide an organic electroluminescence device that achieves high luminous efficiency with a reduced driving voltage.
  • a light-emitting thin film containing the conjugated compound according to the present invention, and a display device and a lighting device including the organic electroluminescence element can be provided.
  • the voltage required for light emission varies greatly depending on the physical properties of the charge transfer thin film existing between the electrodes and the configuration of these materials. Since the organic electroluminescence element that can be driven at a low voltage has a small load when energized, it can be expected that the power consumption can be kept low and the life of the element can be improved. In addition, an improvement in luminous efficiency with respect to electric power is expected.
  • the material for an organic thin film used for an organic EL element As a material for an organic thin film used for an organic EL element, a material having a characteristic capable of transporting carriers such as electrons and holes is required.
  • the material used for the light-emitting layer is required to have a property of efficiently transporting both electrons and holes because the charges are recombined. Therefore, the compound preferably has bipolar properties.
  • the compound having an electron donating group and an electron withdrawing group in the same molecule is bipolar, which is advantageous for charge transfer in the thin film, which is preferable from the viewpoint of lowering the driving voltage.
  • bipolar compounds tend to separate HOMO and LUMO, and the electronic transition between HOMO and LUMO necessary for light emission tends to be forbidden, resulting in low oscillator strength and light emission. There is a tendency to become difficult.
  • an aromatic hydrocarbon compound is suitable as a field for generating HOMO-LUMO overlap, and is incorporated into a compound having an electron-donating group and an electron-withdrawing group, so that high luminous efficiency and high charge transport are achieved. It is possible to achieve both performance.
  • the aromatic hydrocarbon compound having an electron donating group and an electron withdrawing group preferably has a size of a ⁇ -conjugated surface of about 4 rings.
  • Schematic diagram showing energy diagrams of normal fluorescent compounds and TADF compounds Schematic showing energy diagram in the presence of assist dopant
  • Schematic diagram showing an example of a display device composed of organic EL elements Schematic diagram showing an example of the structure of a display device using an active matrix method
  • Schematic showing the pixel circuit Schematic diagram showing an example of the structure of a display device using a passive matrix method
  • the organic electroluminescence device of the present invention is an organic electroluminescence device having an organic layer group including at least one light emitting layer between an anode and a cathode, wherein at least one layer of the organic layer group is represented by the general formula (1). And a ⁇ -conjugated compound having a structure having an electron-donating group and an electron-withdrawing group in the same molecule.
  • At least one of R 1 , R 2 , Ra, Rb, Rc and Rd in the aromatic hydrocarbon group having a structure represented by the general formulas (1a) to (1k) is preferable.
  • the electron-withdrawing group is an aromatic heterocyclic group, a sulfonyl group (—SO 2 R 1 ; R 1 is an aromatic hydrocarbon group having 6 to 30 carbon atoms, or 3 carbon atoms.
  • a cyano group (—CN), a halogeno group, a carbonyl group (—COR 1 ;
  • R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms.
  • Pentafluorophenyl group (—C 6 F 5 ), trifluoro A romethyl group (—CF 3 ), a trifluoromethylphenyl group (—C 6 H 4 CF 3 ), and a boryl group (—BR 1 2 ; R 1 is an aromatic hydrocarbon group having 6 to 30 carbon atoms, or a carbon number; 3 to 20 aromatic heterocyclic groups)
  • the localization of LUMO on the electron-withdrawing group is promoted, and the bipolar property of the whole compound is improved.
  • the drive voltage can be further lowered and higher luminous efficiency can be obtained.
  • R 1 , R 2 , Ra, Rb, Rc and Rd in the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k) is an electron donating group
  • the electron-donating group is an aromatic heterocyclic group having 3 to 20 carbon atoms, an amino group (—NH 2 ), an arylamino group (—NHR 1 or —NR 1 2 ; R 1 is an aromatic group having 6 to 30 carbon atoms.
  • X in the ⁇ -conjugated compound having the structure represented by the general formula (1) is the general formula (1a), (1b), (1d), (1e), (1g), (1h), Since the aromatic hydrocarbon group represented by (1i) or (1j) has a small number of condensed rings or a zigzag conjugated structure, it has a structure in which a large number of rings are condensed in series. This is advantageous in that the excitation energy level is higher than that of the compound having the same.
  • X in the ⁇ -conjugated compound having the structure represented by the general formula (1) is represented by the general formula (1a), ( It is an aromatic hydrocarbon group represented by 1b), (1d), (1e), (1g), (1h), (1i) or (1j) from the viewpoint of obtaining high luminous efficiency. preferable.
  • the absolute value ( ⁇ Est) of the energy difference between the lowest excited singlet level and the lowest excited triplet level of the ⁇ -conjugated compound having the structure represented by the general formula (1) is 0.5 eV or less.
  • ⁇ Est thermally activated delayed fluorescence
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • Organic EL light emission methods a) “phosphorescence emission” that emits light when returning from the triplet excited state to the ground state, and b) “fluorescence emission that emits light when returning from the singlet excited state to the ground state. There are two ways.
  • a rare metal such as iridium, palladium, or platinum, which is a rare metal.
  • a white metal such as iridium, palladium, or platinum, which is a rare metal.
  • the price of the metal itself is a big problem for the industry.
  • a general fluorescent compound is not necessarily a heavy metal complex like a phosphorescent compound, and is a so-called organic compound composed of a combination of general elements such as carbon, oxygen, nitrogen and hydrogen.
  • other non-metallic elements such as phosphorus, sulfur and silicon can be used, and complexes of typical metals such as aluminum and zinc can be used.
  • TTA Excited triplet-triplet annihilation
  • a light emission method using delayed fluorescence has been introduced.
  • the TTA method that originates from collisions between triplet excitons can be described by the following formula (I). That is, there is a merit that a part of triplet excitons, in which the energy of excitons has been converted only to heat due to non-radiation deactivation, can cross back to singlet excitons that can contribute to light emission. Even in an actual organic EL device, it is possible to obtain an external extraction quantum efficiency approximately twice that of a conventional fluorescent light emitting device.
  • T * represents a triplet exciton
  • S * represents a singlet exciton
  • S represents a ground state molecule
  • Thermal activated delayed fluorescence (TADF) compound is a method that can solve the above-mentioned problems of TTA.
  • Fluorescent compounds have the advantage of being able to design an infinite number of molecules as described above. That is, among the molecularly designed compounds, there is a compound in which the absolute value ( ⁇ Est) of the energy level difference between the triplet excited state and the singlet excited state is extremely close (see FIG. 1A).
  • HOMO is distributed in electron donating sites and LUMO is distributed in electron withdrawing sites in the electron orbit of the molecule.
  • LUMO is distributed in electron withdrawing sites in the electron orbit of the molecule.
  • Non-Patent Documents 1 to 3 described above by introducing an electron-withdrawing skeleton such as a cyano group, a sulfonyl group, or a triazine and an electron-donating skeleton such as a carbazole or a diphenylamino group, LUMO and HOMO is localized.
  • an electron-withdrawing skeleton such as a cyano group, a sulfonyl group, or a triazine
  • an electron-donating skeleton such as a carbazole or a diphenylamino group
  • Rigidity described here means that there are few sites that can move freely in the molecule, for example, by suppressing free rotation in the bond between rings in the molecule and introducing a condensed ring with a large ⁇ conjugate plane. To do.
  • TADF compounds have various problems in terms of their light emission mechanism and molecular structure.
  • the electronic state of the molecule is a donor / acceptor type molecule in which the HOMO site and the LUMO site are separated. It becomes a state close to the inner CT (intramolecular charge transfer state).
  • Such a stabilization state is not limited to the formation between two molecules, but can also be formed between a plurality of molecules such as between three molecules, between five molecules, etc.
  • various stabilization states having a wide distribution Therefore, the shape of the absorption spectrum and emission spectrum is broad.
  • various existence states can be taken depending on the direction and angle of interaction between the two molecules.
  • the shape of the emission spectrum becomes broad.
  • the broad emission spectrum causes the following two major problems.
  • fluorescence zero-zero band the rising wavelength on the short wavelength side of the emission spectrum (hereinafter referred to as “fluorescence zero-zero band”) is shortened, that is, the S 1 is increased (the lowest excitation singlet energy is increased). It is to do.
  • the fluorescence zero-zero band is shortened, the phosphorescence zero-zero band derived from T 1 having lower energy than S 1 is also shortened (higher T 1 ). Therefore, the compound used in the host compound in order not to cause reverse energy transfer from the dopant, arises the need to 1 reduction and high T 1 of high S.
  • a host compound consisting essentially of an organic compound takes a plurality of active and unstable chemical species such as a cation radical state, an anion radical state, and an excited state in an organic EL device.
  • active and unstable chemical species such as a cation radical state, an anion radical state, and an excited state in an organic EL device.
  • a transition that is deactivated from a triplet excited state to a ground state is a forbidden transition, and therefore the existence time (exciton lifetime) in the triplet excited state is from several hundred microseconds to millisecond. It is very long with second order. Therefore, even if the T 1 energy of the host compound is higher than that of the fluorescent compound, the reverse energy from the triplet excited state of the fluorescent compound to the host compound is determined from the length of the existence time. The probability of causing movement increases.
  • the present invention includes a ⁇ -conjugated compound (including a fluorescent compound) that suppresses the structural change of the excited state as described above and a ⁇ -conjugated compound having a short triplet excited state as design philosophy. .
  • HOMO and LUMO are substantially separated in the molecule from the viewpoint of reducing ⁇ Est.
  • the distribution states of these HOMO and LUMO can be obtained from the electron density distribution when the structure is optimized by molecular orbital calculation.
  • structure optimization and calculation of electron density distribution by molecular orbital calculation of ⁇ -conjugated compounds in the present invention are performed using molecular orbital calculation software using B3LYP as a functional and 6-31G (d) as a basis function as a calculation method.
  • B3LYP molecular orbital calculation software
  • 6-31G (d) 6-31G
  • Gaussian 09 (Revision C.01, MJ Frisch, et al, Gaussian, Inc., 2010.) manufactured by Gaussian, USA was used as molecular orbital calculation software.
  • HOMO and LUMO are substantially separated means that the HOMO orbital distribution calculated by the above molecular calculation and the central part of the LUMO orbital distribution are separated, more preferably the HOMO orbital distribution and the LUMO orbital. This means that the distributions of do not overlap.
  • ⁇ Est E (S 1 ) ⁇ E (T 1 ) It is.
  • ⁇ Est calculated using the same calculation method as described above is preferably 0.5 eV or less, more preferably 0.2 eV or less, and further preferably 0.1 eV or less.
  • the lowest excited singlet energy S 1 of the ⁇ -conjugated compound in the present invention is defined in the present invention as calculated in the same manner as in a normal method. That is, a sample to be measured is deposited on a quartz substrate to prepare a sample, and the absorption spectrum (vertical axis: absorbance, horizontal axis: wavelength) of this sample is measured at room temperature (300 K). A tangent line is drawn with respect to the rising edge of the absorption spectrum on the long wavelength side, and is calculated from a predetermined conversion formula based on the wavelength value at the intersection of the tangent line and the horizontal axis.
  • a solvent that does not affect the aggregation state of the fluorescent compound that is, a solvent having a small influence of the solvent effect, for example, a nonpolar solvent such as cyclohexane or toluene can be used.
  • the lowest excited triplet energy (T 1 ) of the ⁇ -conjugated compound used in the present invention was calculated from the photoluminescence (PL) characteristics of the solution or thin film. For example, as a calculation method in a thin film, after making a dispersion of a dilute ⁇ -conjugated compound into a thin film, using a streak camera, the transient PL characteristics are measured to separate the fluorescent component and the phosphorescent component, The lowest excited triplet energy can be obtained from the lowest excited singlet energy with the energy difference as ⁇ Est.
  • the light emitting layer used in the present invention is composed of a single layer or a plurality of layers, and when there are a plurality of light emitting layers, a non-light emitting intermediate layer may be provided between the light emitting layers.
  • a hole blocking layer also referred to as a hole blocking layer
  • an electron injection layer also referred to as a cathode buffer layer
  • An electron blocking layer also referred to as an electron barrier layer
  • a hole injection layer also referred to as an anode buffer layer
  • the electron transport layer used in the present invention is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. Moreover, you may be comprised by multiple layers.
  • the hole transport layer used in the present invention is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. Moreover, you may be comprised by multiple layers.
  • the constituent layers excluding the anode and the cathode are also referred to as “organic layer group”.
  • the organic EL element of the present invention may be a so-called tandem element in which a plurality of light emitting units including at least one light emitting layer are stacked.
  • first light emitting unit is all the same, May be different.
  • Two light emitting units may be the same, and the remaining one may be different.
  • the plurality of light emitting units constituting the tandem structure may be directly stacked or may be stacked via the intermediate layer as described above.
  • the intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer. It has electrons in the adjacent layer on the anode side and holes in the adjacent layer on the cathode side. Any layer having a function of supplying can be formed using a known material.
  • Examples of materials used for forming the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, Conductive inorganic compound layers such as CuAlO 2 , CuGaO 2 , SrCu 2 O 2 , LaB 6 , RuO 2 and Al, two-layer films such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Multi-layer film such as Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 , fullerenes such as C 60 , conductivity such as oligothiophene Examples include organic layers, conductive organic compound layers such as metal phthalocyanines, metal-free phthalocyanines, metal porphyrins
  • Preferred examples of the configuration within the light emitting unit include, for example, the configurations of (1) to (7) exemplified as the typical element configurations described above except that the anode and the cathode are excluded. It is not limited.
  • tandem organic EL element examples include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734. Specification, U.S. Pat. No. 6,337,492, International Publication No.
  • the light-emitting layer used in the present invention is a layer that provides a field in which electrons and holes injected from an electrode or an adjacent layer are recombined to emit light via excitons, and the light-emitting portion is the light-emitting layer. Even in the layer, it may be the interface between the light emitting layer and the adjacent layer. If the light emitting layer used for this invention satisfy
  • the total thickness of the light emitting layer is not particularly limited, but it prevents the homogeneity of the film to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color against the drive current. In view of the above, it is preferable to adjust within the range of 2 nm to 5 ⁇ m, more preferably within the range of 2 to 500 nm, and even more preferably within the range of 5 to 200 nm.
  • each light emitting layer used in the present invention is preferably adjusted in the range of 2 nm to 1 ⁇ m, more preferably adjusted in the range of 2 to 200 nm, and further preferably 3 to 150 nm. Adjusted within range.
  • the light-emitting layer used in the present invention contains a light-emitting dopant (a light-emitting compound, a light-emitting dopant compound, a dopant compound, also simply referred to as a dopant), and further, the above-described host compound (matrix material, light-emitting host compound, simply host). It is also preferable to contain.
  • a light-emitting dopant a light-emitting compound, a light-emitting dopant compound, a dopant compound, also simply referred to as a dopant
  • the above-described host compound matrix material, light-emitting host compound, simply host. It is also preferable to contain.
  • Luminescent dopant As the luminescent dopant, a fluorescent luminescent dopant (also referred to as a fluorescent luminescent compound, a fluorescent dopant, or a fluorescent compound) and a phosphorescent dopant (phosphorescent compound, phosphorescent dopant, phosphorescence). It is also referred to as a functional compound).
  • a fluorescent luminescent dopant also referred to as a fluorescent luminescent compound, a fluorescent dopant, or a fluorescent compound
  • phosphorescent dopant phosphorescent compound, phosphorescent dopant, phosphorescence
  • It also referred to as a functional compound.
  • at least one light emitting layer contains a fluorescent compound described later and a ⁇ -conjugated compound functioning as a light emission auxiliary agent (assist dopant).
  • the light emitting layer preferably contains a fluorescent compound within the range of 5 to 40% by mass, particularly within the range of 10 to 30% by mass.
  • the concentration of the fluorescent compound in the light emitting layer can be arbitrarily determined based on the fluorescent compound having a specific structure to be used and the requirements of the device, and is uniform in the thickness direction of the light emitting layer. It may be contained in a concentration, or may have a concentration distribution in an arbitrary pattern.
  • luminescent dopants using delayed fluorescence have been developed, and these may be used.
  • Specific examples of the luminescent dopant using delayed fluorescence include, for example, compounds described in International Publication No. 2011/156793, Japanese Patent Application Laid-Open No. 2011-213643, Japanese Patent Application Laid-Open No. 2010-93181, and the like. Is not limited to these.
  • the fluorescent compounds used in the present invention may be used in combination of two or more types, and combinations of fluorescent compounds having different structures or combinations of fluorescent compounds and phosphorescent compounds. Also good. Thereby, arbitrary luminescent colors can be obtained.
  • the ⁇ -conjugated compound according to the present invention can be used for assisting light emission of different fluorescent compounds or phosphorescent compounds.
  • the light emitting layer contains a host having a mass ratio of 100% or more with respect to the ⁇ -conjugated compound according to the present invention, and 0.1 to 0.1 mass ratio with respect to the ⁇ -conjugated compound according to the present invention. It is preferable that different fluorescent substances or phosphorescent compounds exist within a range of 50%.
  • the substance contained in the light-emitting layer includes three or more components including the host compound. It is preferable.
  • a ⁇ -conjugated compound preferably a ⁇ -conjugated compound having an absolute value ( ⁇ Est) of a difference between the lowest excited singlet energy level and the lowest excited triplet energy level of 0.5 eV or less. It is also suitable from a viewpoint of high luminous efficiency expression to contain a system compound and at least 1 sort (s) of a fluorescent compound and a phosphorescent compound. More preferably, the light emitting layer further contains a host compound.
  • the number of each component contained in the light-emitting layer of the ⁇ -conjugated compound, the luminescent compound, and the host compound is not limited, but it is more preferable that at least one of the three components is contained.
  • the light emitting layer has a difference in absolute value between the lowest excited singlet energy level and the lowest excited triplet energy level ( ⁇ Est) of 0.5 eV or less, the ⁇ -conjugated compound according to the present invention, a luminescent compound,
  • the ⁇ -conjugated compound according to the present invention acts as an assist dopant.
  • the light emitting layer contains the ⁇ -conjugated compound and the luminescent compound according to the present invention and does not contain the host compound, the ⁇ -conjugated compound according to the present invention acts as a host compound.
  • the energy levels of S 1 and T 1 of the ⁇ -conjugated compound are S of the host compound. 1 and T 1 of the lower than the energy level, it is preferably higher than the energy level of the S 1 and T 1 of the light-emitting compound.
  • light emitting layer the energy level of the S 1 and T 1 of the case containing the two components of the light emitting compound and [pi conjugated compound according to the present invention, [pi-conjugated compounds, S 1 luminescent compound higher than the energy level of T 1 and is preferable.
  • FIG. 1B and FIG. 1C are schematic views when the ⁇ -conjugated compound of the present invention acts as an assist dopant and a host compound, respectively.
  • 1B and 1C are examples, and the generation process of the triplet exciton generated on the ⁇ -conjugated compound according to the present invention is not limited to the electric field excitation, and energy from the light emitting layer or the peripheral layer interface. Movement, electronic movement, etc. are also included.
  • a fluorescent compound is used as a light-emitting material, but the present invention is not limited thereto, and a phosphorescent compound may be used, or a fluorescent compound and a phosphorescent compound are used. Both of these may be used.
  • the light-emitting layer contains 100% or more of the host compound by mass ratio with respect to the ⁇ -conjugated compound, and the fluorescent compound or phosphorescent compound is It is preferably contained within a range of 0.1 to 50% by mass ratio with respect to the ⁇ -conjugated compound.
  • the light-emitting layer has a mass ratio of 0.1 to 50% with respect to the ⁇ -conjugated compound. It is preferable to contain within.
  • the emission spectrum of the ⁇ -conjugated compound according to the present invention and the absorption spectrum of the luminescent compound preferably overlap.
  • the light emission color of the organic EL device of the present invention and the compound used in the present invention is shown in FIG. 3.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a luminance meter CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • the light emitting layer of one layer or plural layers contains a plurality of light emitting dopants having different light emission colors and exhibits white light emission.
  • At least one layer of the organic layer group contains a ⁇ -conjugated compound having a structure represented by the following general formula (1).
  • the absolute value ( ⁇ Est) of the difference between the lowest excited singlet energy level and the lowest excited triplet energy level of the ⁇ -conjugated compound is preferably 0.5 eV or less.
  • the ⁇ -conjugated compound having the structure represented by the general formula (1) according to the present invention converts a triplet exciton generated on the ⁇ -conjugated compound into a singlet exciton by reverse intersystem crossing (RISC).
  • RISC reverse intersystem crossing
  • it is a compound that has the function of increasing the luminous efficiency as an assist dopant for improving the luminous efficiency by not deactivating, and the function of improving the luminous efficiency as a fluorescent compound having a TADF property. Useful as a material.
  • the luminous efficiency can be improved by including a ⁇ -conjugated compound as an assist dopant or a host compound together with a light-emitting compound in the light-emitting layer of the organic EL element.
  • A represents an electron withdrawing group
  • D represents an electron donating group
  • m and n are each independently an integer of 1 or 2.
  • X represents an aromatic hydrocarbon group selected from structures represented by the following general formulas (1a) to (1k).
  • R 1 , R 2 , Ra, Rb, Rc and Rd each independently represent a hydrogen atom or a substituent.
  • p, q, r and s each independently represent an integer of 0 to 4. These substituents may be the same or different, and each substituent may be bonded to form a ring.
  • R 1 , R 2 , Ra, Rb, Rc and Rd in the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k) is an electron withdrawing group
  • the electron-withdrawing group is an aromatic heterocyclic group, a sulfonyl group (—SO 2 R 1 ;
  • R 1 is an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms.
  • a sulfenyl group (—SOR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms or an aromatic heterocyclic group having 3 to 20 carbon atoms), a cyano group (—CN)
  • a halogeno group, a carbonyl group (—COR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms), a pentafluorophenyl group (—C 6 F 5), trifluoromethyl group (-CF 3), trifluoroacetic Butylphenyl group (-C 6 H 4 CF 3)
  • boryl group (-BR 1 2; R 1 represents an aromatic heterocyclic group of aromatic hydrocarbon group having 6 to 30 carbon atoms, or 3 to 20 carbon atoms It is a preferred embodiment that it is at least one kind selected from.
  • R 1 , R 2 , Ra, Rb, Rc and Rd in the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k) is an electron donating group
  • the electron-donating group is an aromatic heterocyclic group having 3 to 20 carbon atoms, an amino group (—NH 2 ), an arylamino group (—NHR 1 or —NR 1 2 ; R 1 is an aromatic group having 6 to 30 carbon atoms.
  • R 1 is a linear or cyclic hydrocarbon group having 1 to 10 carbon atoms
  • aryloxy At least selected from a group (—OR 2 ; R 2 represents a linear or cyclic hydrocarbon group, an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms).
  • R 2 represents a linear or cyclic hydrocarbon group, an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms.
  • One type is a
  • R 1 , R 2 , Ra, Rb, Rc and Rd in the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k) is an electron-withdrawing group
  • the electron-withdrawing group is an aromatic heterocyclic group, a sulfonyl group (—SO 2 R 1 ; R 1 is an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms.
  • a sulfenyl group (—SOR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms), a cyano group (—CN ), A halogeno group, a carbonyl group (—COR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms), a pentafluorophenyl group (— C 6 F 5), trifluoromethyl group (-CF 3), trifluoperazine Methylphenyl group (-C 6 H 4 CF 3) , and boryl group (-BR 1 2; R 1 is an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms It is at least one kind selected from.
  • R 1 , R 2 , Ra, Rb, Rc and Rd in the general formulas (1a) to (1k) is an electron donating group
  • the electron donating group has 3 to 3 carbon atoms.
  • R 1 is an aromatic hydrocarbon group having 6 to 30 carbon atoms, or 3 to 20 carbon atoms Represents an aromatic heterocyclic group), an alkoxy group (—OR 1 ;
  • R 1 is a straight or cyclic hydrocarbon group having 1 to 10 carbon atoms), and an aryloxy group (—OR 2 ;
  • R 2 is a straight chain
  • a cyclic hydrocarbon group, an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms is there.
  • X in the ⁇ -conjugated compound having the structure represented by the general formula (1) is the general formula (1a), (1b), (1d), (1e), (1g), (1h), A preferred embodiment is an aromatic hydrocarbon group represented by (1i) or (1j).
  • X in the ⁇ -conjugated compound having the structure represented by the general formula (1) is the general formula (1a), (1b), (1d), (1e), (1g), (1h) , (1i) or (1j), wherein at least one of R 1 , R 2 , Ra, Rb, Rc and Rd is an electron-withdrawing group, and at least 1 One is an electron donating group, and it is a preferred embodiment that all of R 1 , R 2 , Ra, Rb, Rc and Rd not corresponding to the electron withdrawing group and the electron donating group are hydrogen atoms.
  • R 1 , R 2 , R a , R b , R c , and R d represent a substituent
  • substituents include alkyl groups (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.
  • a cycloalkyl group eg, cyclopentyl group, cyclohexyl group, etc.
  • an alkenyl group eg, vinyl group, allyl group, etc.
  • an alkynyl group eg, ethynyl group, propargyl group, etc.
  • an aromatic hydrocarbon group aromatic Also referred to as hydrocarbon ring group, aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xyl group Group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group, etc.), aromatic heterocyclic group (for example, pyridyl group, pyrimidinyl group, furyl group
  • Cycloalkylthio group eg, cyclopentylthio group, cyclohexylthio group, etc.
  • arylthio group eg, phenylthio group, naphthylthio group, etc.
  • alkoxycarbonyl group eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group
  • Octyloxycarbonyl group dodecyloxycarbonyl group, etc.
  • aryloxycarbonyl group eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.
  • sulfamoyl group eg, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group
  • indole ring indazole ring, benzothiazole ring, benzoxazole ring, benzimidazole ring, quinoline ring, isoquinoline ring, quinazoline ring, quinoxaline ring, isoindole ring, naphthyridine ring, phthalazine ring, carbazole ring, carboline ring, diaza
  • carbazole ring in which one of carbon atoms constituting carboline ring is replaced by nitrogen atom
  • acridine ring in which one of carbon atoms constituting carboline ring is replaced by nitrogen atom
  • acridine ring in which one of carbon atoms constituting carboline ring is replaced by nitrogen atom
  • acridine ring in which one of carbon atoms constituting carboline ring is replaced by nitrogen atom
  • acridine ring in which one of carbon atoms constituting carboline ring is replaced by nitrogen atom
  • substituents may be further substituted with the above substituents. Further, these substituents may be bonded together to form a ring.
  • the absolute value ( ⁇ Est) of the energy difference between the lowest excited singlet level and the lowest excited triplet level of the ⁇ -conjugated compound having the structure represented by the general formula (1) according to the present invention is , 0.5 eV or less is preferable.
  • the phosphorescent dopant used in the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield. Is defined as a compound of 0.01 or more at 25 ° C., but a preferable phosphorescence quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant used in the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. Just do it.
  • the phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL element. Specific examples of known phosphorescent dopants that can be used in the present invention include compounds described in the following documents.
  • preferable phosphorescent dopants include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond, and metal-sulfur bond is preferable.
  • the fluorescent compound that can be used in combination with the ⁇ -conjugated compound according to the present invention is not particularly limited.
  • a fluorescent compound having a ⁇ Est of greater than 0.5 eV can be suitably used.
  • the light emitting layer preferably contains a ⁇ -conjugated compound according to the present invention, at least one of a fluorescent compound and a phosphorescent compound, and a host compound.
  • the host compound used in the present invention is a compound mainly responsible for charge injection and transport in the light emitting layer, and its own light emission is not substantially observed in the organic EL device.
  • the host compound preferably has a mass ratio in the layer of 20% or more among the compounds contained in the light emitting layer.
  • the host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
  • the host compound used with the fluorescent compound used in the present invention is not particularly limited, but has an excitation energy larger than the excitation singlet energy of the fluorescent compound according to the present invention from the viewpoint of reverse energy transfer. Further preferred are those having an excitation triplet energy greater than the excitation triplet energy of the fluorescent compound according to the present invention.
  • US Patent Application Publication No. 2005/0112407 US Patent Application Publication No. 2009/0017330, US Patent Application Publication No. 2009/0030202, US Patent Application Publication No. 2005/0238919 , International Publication No. 2001/039234, International Publication No. 2009/021126, International Publication No. 2008/056746, International Publication No.
  • the host compound is responsible for carrier transport and exciton generation in the light emitting layer. Therefore, it can exist stably in all active species states such as cation radical state, anion radical state, and excited state, and does not cause chemical changes such as decomposition and addition reaction. It is preferable not to move at the angstrom level.
  • the light-emitting dopant used in combination exhibits TADF light emission
  • the T 1 energy of the host compound itself is high, and the host compounds are associated with each other.
  • the host compound is a molecular structure such as not to lower T 1 of Appropriate design is required.
  • the host compound itself must have high electron hopping mobility, high hole hopping movement, and small structural change when it is in a triplet excited state. It is.
  • Representative examples of host compounds satisfying such requirements include a carbazole skeleton, an azacarbazole skeleton, a dibenzofuran skeleton, a dibenzothiophene skeleton, or an azadibenzofuran skeleton, which have high T 1 energy and an extended ⁇ conjugate of a 14 ⁇ electron system. Those having a skeleton as a partial structure are preferred.
  • the light-emitting layer contains a carbazole derivative
  • aryl includes not only an aromatic hydrocarbon ring but also an aromatic heterocyclic ring.
  • the carbazole derivative having at least one is preferred.
  • the carbazole derivative is preferably a compound having two or more conjugated structures having 14 ⁇ electrons or more in order to further enhance the effects of the present invention.
  • the compound represented by the following general formula (I) is also preferable. This is because the compound represented by the following general formula (I) has a condensed ring structure, and therefore a ⁇ electron cloud spreads, the carrier transportability is high, and the glass transition temperature (Tg) is high. Further, generally, the condensed aromatic ring tends to have a small triplet energy (T 1 ), but the compound represented by the general formula (I) has a high T 1 and has a short emission wavelength (that is, T 1). and larger S 1) it can be suitably used also for the light emitting material.
  • X 101 represents NR 101 , an oxygen atom, a sulfur atom, CR 102 R 103 or SiR 102 R 103 .
  • y 1 to y 8 each represents CR 104 or a nitrogen atom.
  • R 101 to R 104 each represent a hydrogen atom or a substituent, and may be bonded to each other to form a ring.
  • Ar 101 and Ar 102 each represent an aromatic ring and may be the same or different.
  • n101 and n102 represents an each an integer of 0 to 4, when R 101 is a hydrogen atom, n101 represents an integer of 1-4.
  • R 101 to R 104 in the general formula (I) represent hydrogen or a substituent, and the substituent referred to here refers to what may be contained within a range not inhibiting the function of the host compound used in the present invention, for example, In the case where a substituent is introduced in the synthetic scheme, the compound having the effect of the present invention is defined as being included in the present invention.
  • Examples of the substituent represented by each of R 101 to R 104 include linear or branched alkyl groups (for example, methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, pentyl group, hexyl group, octyl group).
  • alkenyl group eg, vinyl group, allyl group, etc.
  • alkynyl group eg, ethynyl group, propargyl group, etc.
  • aromatic hydrocarbon ring group aromatic Also referred to as carbocyclic group, aryl group, etc.
  • benzene ring biphenyl, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m- Terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, indene ring, fluorene ring A group derived from a fluoranthrene ring, a naphthacene ring, a pentacene ring, a perylene ring, a pentaphen ring, a picene ring, a pyrene ring, a pyrantolen ring, an anthraanthrene ring, tetralin, etc.), an aromatic heterocyclic group (for example, a furan
  • azacarbazole ring non-aromatic hydrocarbon ring group (eg, cyclopentyl group, cyclohexyl group, etc.), non-aromatic heterocyclic group (eg, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl) Group), alkoxy group (for example, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (for example, cyclopentyloxy group, cyclohexyloxy group) Etc.), aryloxy group (for example, phenoxy group, naphthyloxy group) Etc.), alkylthio groups (eg, methylthio group, e
  • substituents may be further substituted with the above substituents.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • y 1 to y 8 in the general formula (I) preferably at least three of y 1 to y 4 or at least three of y 5 to y 8 are represented by CR 102 , more preferably y 1 to y 8 are all CR 102 .
  • Such a skeleton is excellent in hole transport property or electron transport property, and can efficiently recombine and emit holes / electrons injected from the anode / cathode in the light emitting layer.
  • a compound in which X 101 is NR 101 , an oxygen atom, or a sulfur atom in general formula (I) is preferable as a structure having a shallow LUMO energy level and excellent electron transport properties. More preferably, the condensed ring formed with X 101 and y 1 to y 8 is a carbazole ring, an azacarbazole ring, a dibenzofuran ring or an azadibenzofuran ring.
  • R 101 is an aromatic hydrocarbon ring which is a ⁇ -conjugated skeleton among the substituents mentioned above. It is preferably a group or an aromatic heterocyclic group. Further, these R 101 may be further substituted with the substituents represented by R 101 to R 104 described above.
  • examples of the aromatic ring represented by Ar 101 and Ar 102 include an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • the aromatic ring may be a single ring or a condensed ring, and may be unsubstituted or may have a substituent similar to the substituents represented by R 101 to R 104 described above.
  • examples of the aromatic hydrocarbon ring represented by Ar 101 and Ar 102 include the aromatic hydrocarbon rings exemplified as the substituents represented by R 101 to R 104 described above. Examples include the same ring as the group.
  • examples of the aromatic heterocycle represented by Ar 101 and Ar 102 include the substituents represented by R 101 to R 104 described above. The same ring as an aromatic heterocyclic group is mentioned.
  • the aromatic ring itself represented by Ar 101 and Ar 102 has a high T 1 , for example, Benzene ring (including polyphenylene skeletons with multiple benzene rings linked (biphenyl, terphenyl, quarterphenyl, etc.)), fluorene ring, triphenylene ring, carbazole ring, azacarbazole ring, dibenzofuran ring, azadibenzofuran ring, dibenzothiophene ring, dibenzo A thiophene ring, pyridine ring, pyrazine ring, indoloindole ring, indole ring, benzofuran ring, benzothiophene ring, imidazole ring or triazine ring is preferred. More preferred are a benzene ring, a carbazole ring, an
  • Ar 101 and Ar 102 are a carbazole ring or an azacarbazole ring, it is more preferable that they are bonded at the N-position (or 9-position) or the 3-position.
  • Ar 101 and Ar 102 are dibenzofuran rings, they are more preferably bonded at the 2-position or 4-position.
  • each of the aromatic rings represented by Ar 101 and Ar 102 is preferably a condensed ring having three or more rings. .
  • aromatic heterocycle condensed with three or more rings include an acridine ring, an acridan ring, a benzoquinoline ring, a carbazole ring, a carboline ring, a phenazine ring, a phenanthridine ring, a phenanthroline ring, a carboline ring, Cyclazine ring, quindrine ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, diazacarbazole ring (any one of the carbon atoms constituting the carboline ring) Phenanthroline ring, dibenzofuran ring, dibenzothiophene ring, naphthofuran ring, naphthothiophene ring, benzodifuran ring, benzo
  • n101 and n102 are each preferably an integer of 0 to 2, and more preferably n101 + n102 is an integer of 1 to 3. Furthermore, since the R 101 is the n101 and n102 when the hydrogen atom is 0 at the same time, the molecular weight of the host compound represented by the general formula (I) is small, low Tg only be achieved, if R 101 is a hydrogen atom N101 represents an integer of 1 to 4.
  • the carbazole derivative is preferably a compound having a structure represented by the general formula (II). This is because such a compound tends to have particularly excellent carrier transportability.
  • X 101, Ar 101, Ar 102, n102 have the same meanings as X 101, Ar 101, Ar 102 , n102 in each of the general formula (I).
  • N102 is preferably an integer of 0 to 2, more preferably 0 or 1.
  • the condensed ring formed containing X 101 may further have a substituent other than Ar 101 and Ar 102 as long as the function of the host compound used in the present invention is not inhibited. .
  • the compound represented by the general formula (II) is preferably represented by the following general formula (III-1), (III-2) or (III-3).
  • the condensed ring, carbazole ring and benzene ring formed containing X 101 are further substituted within the range not inhibiting the function of the host compound used in the present invention. You may have.
  • examples of host compounds that can be used in the present invention include compounds represented by general formulas (I), (II), (III-1) to (III-3), and other compounds composed of other structures. However, it is not limited to these.
  • the preferred host compound used in the present invention may be a low molecular compound having a molecular weight capable of sublimation purification or a polymer having a repeating unit.
  • the molecular weight is not particularly limited as long as sublimation purification is possible, but the preferred molecular weight is 3000 or less, more preferably 2000 or less.
  • the polymer used as the host compound used in the present invention is not particularly limited as long as the desired device performance can be achieved, but preferably the general formulas (I), (II), (III-1) to (III- What has the structure of 3) in a principal chain or a side chain is preferable.
  • the general formulas (I), (II), (III-1) to (III- What has the structure of 3) in a principal chain or a side chain is preferable.
  • limiting in particular as molecular weight Molecular weight 5000 or more is preferable or a thing with 10 or more repeating units is preferable.
  • the host compound has a hole transporting ability or an electron transporting ability, prevents the emission of light from being long-wavelength, and is stable with respect to heat generated when the organic EL element is driven at a high temperature or during the element driving. From the viewpoint of operation, it is preferable to have a high glass transition temperature (Tg). Tg is preferably 90 ° C. or higher, more preferably 120 ° C. or higher.
  • the glass transition point (Tg) is a value determined by a method based on JIS K 7121-2012 using DSC (Differential Scanning Colorimetry).
  • the electron transport layer in the present invention is made of a material having a function of transporting electrons, and may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • the total thickness of the electron transport layer according to the present invention is not particularly limited, but is usually in the range of 2 nm to 5 ⁇ m, more preferably in the range of 2 to 500 nm, and still more preferably in the range of 5 to 200 nm. Is within.
  • the organic EL element when the light generated in the light emitting layer is extracted from the electrode, the light extracted directly from the light emitting layer interferes with the light extracted after being reflected by the electrode from which the light is extracted and the electrode located at the counter electrode. It is known to wake up. When light is reflected by the cathode, this interference effect can be efficiently utilized by appropriately adjusting the total thickness of the electron transport layer between several nanometers and several micrometers.
  • the electron mobility of the electron transport layer is preferably 10 ⁇ 5 cm 2 / Vs or more.
  • the material used for the electron transport layer may be any of electron injecting or transporting properties and hole blocking properties, and can be selected from conventionally known compounds. Can be selected and used.
  • nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, pyridazine derivatives, Triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, azatriphenylene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, etc.), dibenzofuran derivatives, Dibenzothiophene derivatives, silole derivatives, aromatic hydrocarbon ring derivatives (naphthalene derivatives, anthracene derivatives, triphenylene derivatives, etc.) It is.
  • a metal complex having a quinolinol skeleton or a dibenzoquinolinol skeleton as a ligand such as tris (8-quinolinol) aluminum (abbreviation: Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,5) 7-dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), and the like
  • Alq 8-quinolinol aluminum
  • Znq 8-quinolinol aluminum
  • a metal complex in which the central metal of the metal complex is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials as a polymer main chain can be used.
  • the electron transport layer may be doped with a doping material as a guest material to form an electron transport layer having a high n property (electron rich).
  • the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides.
  • Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004) and the like.
  • More preferable electron transport materials in the present invention include aromatic heterocyclic compounds containing at least one nitrogen atom.
  • aromatic heterocyclic compounds containing at least one nitrogen atom For example, pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, azadibenzofurans. Derivatives, azadibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, benzimidazole derivatives, and the like.
  • the electron transport material may be used alone or in combination of two or more.
  • the hole blocking layer is a layer having a function of an electron transport layer in a broad sense, and preferably made of a material having a function of transporting electrons and a small ability to transport holes, while transporting electrons. By blocking holes, the recombination probability of electrons and holes can be improved.
  • the structure of the electron transport layer described above can be used as a hole blocking layer according to the present invention, if necessary.
  • the hole blocking layer is preferably provided adjacent to the cathode side of the light emitting layer.
  • the layer thickness of the hole blocking layer according to the present invention is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
  • the same materials as those used for the electron transport layer are preferably used, and the materials used as the host compound are also preferably used for the hole blocking layer.
  • the electron injection layer (hereinafter also referred to as “cathode buffer layer”) according to the present invention is a layer provided between a cathode and a light emitting layer for lowering driving voltage and improving light emission luminance. It is described in detail in the second chapter, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Elements and the Forefront of Industrialization (issued by NTT Corporation on November 30, 1998)”.
  • the electron injection layer may be provided as necessary and may exist between the cathode and the light emitting layer or between the cathode and the electron transport layer as described above.
  • the electron injection layer is preferably a very thin film, and although depending on the material, the layer thickness is preferably in the range of 0.1 to 5 nm. Moreover, the nonuniform layer (film
  • JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like Specific examples of materials preferably used for the electron injection layer are as follows. , Metals typified by strontium and aluminum, alkali metal compounds typified by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkaline earth metal compounds typified by magnesium fluoride, calcium fluoride, etc., oxidation Metal oxides typified by aluminum, metal complexes typified by lithium 8-hydroxyquinolinate (abbreviation: Liq), and the like can be given. Further, the above-described electron transport material can also be used.
  • the materials used for the electron injection layer may be used alone or in combination of two or more.
  • the hole transport layer is made of a material having a function of transporting holes and may have a function of transmitting holes injected from the anode to the light emitting layer.
  • the total thickness of the hole transport layer according to the present invention is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, more preferably in the range of 2 to 500 nm, and still more preferably in the range of 5 to 200 nm. Within range.
  • a material used for the hole transport layer (hereinafter referred to as a hole transport material), any material that has either a hole injection property or a transport property or an electron barrier property may be used. Any one can be selected and used.
  • porphyrin derivatives for example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives , Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, and polyvinyl carbazole, polymer materials or oligomers with aromatic amines introduced into the main chain or side chain, polysilane, conductive Polymer or oligomer (for example, PEDOT / PSS, aniline copolymer, polyaniline, polythiophene, etc.)
  • triarylamine derivatives examples include benzidine type typified by ⁇ -NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), starburst type typified by MTDATA, Examples include compounds having fluorene or anthracene in the triarylamine-linked core.
  • hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
  • a hole transport layer having a high p property doped with impurities can also be used.
  • examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • JP-A-11-251067, J. Org. Huang et. al. It is also possible to use so-called p-type hole transport materials and inorganic compounds such as p-type-Si and p-type-SiC, as described in the literature (Applied Physics Letters 80 (2002), p. 139). Further, ortho-metalated organometallic complexes having Ir or Pt as the central metal as typified by Ir (ppy) 3 are also preferably used.
  • the above-mentioned materials can be used as the hole transport material, a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organometallic complex, or an aromatic amine is introduced into the main chain or side chain.
  • the polymer materials or oligomers used are preferably used.
  • the hole transport material may be used alone or in combination of two or more.
  • the electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons, while transporting holes. By blocking electrons, the probability of recombination of electrons and holes can be improved.
  • the above-described configuration of the hole transport layer can be used as an electron blocking layer according to the present invention, if necessary.
  • the electron blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the anode side of the light emitting layer.
  • the layer thickness of the electron blocking layer according to the present invention is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
  • the material used for the electron blocking layer As the material used for the electron blocking layer, the material used for the above-described hole transport layer is preferably used, and the above-mentioned host compound is also preferably used for the electron blocking layer.
  • the hole injection layer (also referred to as “anode buffer layer”) according to the present invention is a layer provided between the anode and the light emitting layer for the purpose of lowering the driving voltage and improving the light emission luminance. It is described in detail in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “The Forefront of Industrialization (issued by NTT Corporation on November 30, 1998)”.
  • the hole injection layer may be provided as necessary, and may be present between the anode and the light emitting layer or between the anode and the hole transport layer as described above.
  • the details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc.
  • Examples of materials used for the hole injection layer include: And the same compounds as those used for the hole transport layer described above.
  • phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives, metal oxides typified by vanadium oxide, amorphous carbon as described in JP-T-2003-519432, JP-A-2006-135145, etc.
  • the materials used for the hole injection layer described above may be used alone or in combination of two or more.
  • Organic layer group in the present invention described above may further contain other additives.
  • additives include halogen elements and halogenated compounds such as bromine, iodine and chlorine, alkali metals and alkaline earth metals such as Pd, Ca, and Na, transition metal compounds, complexes, and salts.
  • the content of the additive can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, and further preferably 50 ppm or less with respect to the total mass% of the contained layer. .
  • ⁇ Method for forming organic layer group> A method for forming the organic layer group (hole injection layer, hole transport layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer, etc.) according to the present invention will be described.
  • the formation method of the organic layer group according to the present invention is not particularly limited, and a conventionally known formation method such as a vacuum deposition method or a wet method (also referred to as a wet process) can be used.
  • wet method examples include spin coating method, casting method, ink jet method, printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, and LB method (Langmuir-Blodgett method). From the viewpoint of obtaining a homogeneous thin film easily and high productivity, a method with high roll-to-roll method suitability such as a die coating method, a roll coating method, an ink jet method and a spray coating method is preferable.
  • liquid medium for dissolving or dispersing the organic EL material used in the present invention examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, Aromatic hydrocarbons such as mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF (N, N-dimethylformamide) and DMSO (dimethylsulfoxide) can be used.
  • ketones such as methyl ethyl ketone and cyclohexanone
  • fatty acid esters such as ethyl acetate
  • halogenated hydrocarbons such as dichlorobenzene, toluene, xylene
  • Aromatic hydrocarbons such as mes
  • the dispersion can be performed by a method such as ultrasonic dispersion, high shearing force dispersion or media dispersion.
  • the vapor deposition conditions vary depending on the type of compound used, etc., but generally the boat heating temperature is in the range of 50 to 450 ° C., and the degree of vacuum is in the range of 10 ⁇ 6 to 10 ⁇ 2 Pa. It is formed by appropriately selecting a deposition rate within a range of 0.01 to 50 nm / second, a substrate temperature within a range of ⁇ 50 to 300 ° C., and a layer (film) thickness within a range of 0.1 nm to 5 ⁇ m, preferably 5 to 200 nm. It is desirable to do.
  • the formation of the organic layer group according to the present invention is preferably a method of consistently forming from the hole injection layer to the cathode by a single evacuation, but a different film formation method may be applied by taking it out halfway. At that time, the operation is preferably performed in a dry inert gas atmosphere.
  • anode As the anode in the organic EL element, a material having a work function (4 eV or more, preferably 4.5 eV or more) of a metal, an alloy, an electrically conductive compound, or a mixture thereof is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 ⁇ m or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • a wet film forming method such as a printing method or a coating method can also be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode is usually selected within the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm, although it depends on the applied material.
  • cathode As the cathode, a material having a work function (4 eV or less) metal (hereinafter referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film from these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • either one of the anode or the cathode of the organic EL element is transparent or translucent because the emission luminance is improved.
  • a transparent or translucent cathode can be produced by producing a conductive transparent material mentioned in the description of the anode on the cathode after producing the above metal with a thickness of 1 to 20 nm.
  • the support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. Or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (abbreviation: TAC), cellulose acetate butyrate, Cellulose acetates such as cellulose acetate propionate (abbreviation: CAP), cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, poly Methylpentene, polyetherketone, polyimide, polyethersulfone (abbreviation: PES), polypheny Sulfide, polysulfones, polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyary
  • the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992. , Relative humidity (90 ⁇ 2)% RH) is preferably 0.01 g / m 2 ⁇ 24 h or less, and further, oxygen permeability measured by a method according to JIS K 7126-1987.
  • it is preferably a high-barrier film having 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm or less and a water vapor permeability of 1 ⁇ 10 ⁇ 5 g / m 2 ⁇ 24 h or less.
  • the material for forming the barrier film may be any material that has a function of suppressing the entry of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, and the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization A plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the external extraction quantum efficiency of the organic EL device of the present invention at room temperature (25 ° C.) is preferably 1% or more, and more preferably 5% or more.
  • External extraction quantum efficiency (%) number of photons emitted to the outside of the organic EL element / number of electrons sent to the organic EL element ⁇ 100
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • sealing means used for sealing the organic EL element of the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive.
  • a sealing member it should just be arrange
  • transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film or a metal film can be preferably used from the viewpoint of reducing the thickness of the organic EL element.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm or less, and measured by a method according to JIS K 7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2%) is preferably 1 ⁇ 10 ⁇ 3 g / m 2 ⁇ 24 h or less.
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • the electrode and the organic layer group on the outer side of the electrode facing the support substrate with the organic layer group interposed therebetween, and form an inorganic or organic layer in contact with the support substrate to form a sealing film.
  • the material for forming the sealing film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • inorganic films such as silicon oxide, silicon dioxide, silicon nitride, etc. Can be used.
  • the sealing film it is preferable to have a laminated structure of these inorganic films and films made of organic materials.
  • the method of forming these films There are no particular limitations on the method of forming these films. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • a vacuum can also be used.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic layer group interposed therebetween.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • An organic EL element emits light inside a layer having a refractive index higher than that of air (within a refractive index of about 1.6 to 2.1), and is about 15% to 20% of light generated in the light emitting layer. It is generally said that it can only be taken out. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the side surface of the device.
  • a method for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (see, for example, US Pat. No. 4,774,435), A method for improving the efficiency by giving the substrate a light condensing property (for example, see JP-A-63-314795), a method for forming a reflective surface on the side surface of the element (for example, JP-A-1-220394) (See Japanese Laid-Open Patent Publication No. 62-172691), a method of introducing a flat layer having an intermediate refractive index between the substrate and the light emitter to form an antireflection film (see, for example, Japanese Patent Application Laid-Open No.
  • a method of introducing a flat layer having a lower refractive index than the substrate see, for example, Japanese Patent Application Laid-Open No. 2001-202827), any of the substrate, the transparent electrode layer, and the light emitting layer (including the substrate and the outside world). Times) How to form a grating (e.g., see JP Hei 11-283751.) And the like.
  • these methods can be used in combination with the organic EL device of the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Furthermore, it is preferable that it is 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface that causes total reflection or in any medium has a feature that the effect of improving the light extraction efficiency is high.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction.
  • the light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating into any layer or medium (in the transparent substrate or transparent electrode). , Trying to extract light out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much.
  • the refractive index distribution a two-dimensional distribution
  • the light extraction efficiency increases by diffracting the light traveling in all directions.
  • the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the light emitting layer where light is generated.
  • the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL element of the present invention is processed to provide, for example, a microlens array-like structure on the light extraction side of the support substrate (substrate), or in combination with a so-called condensing sheet, for example, a specific direction, Condensing light from the front direction with respect to the element light emitting surface can increase luminance in a specific direction.
  • a quadrangular pyramid having a side of 30 ⁇ m and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably within a range of 10 to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • BEF brightness enhancement film
  • the shape of the prism sheet for example, the base material may be formed by forming a ⁇ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL element of the present invention can be used as an electronic device such as a display device, a display, and various light emitting devices.
  • a light emitting device for example, a lighting device (for example, household lighting, interior lighting, etc.), a backlight for a clock or a liquid crystal, a billboard advertisement, a traffic light, a light source of an optical storage medium, a light source of an electrophotographic copying machine, an optical communication processor
  • the present invention is not limited to this, but it can be effectively used particularly as a backlight of a liquid crystal display device and a light source for illumination.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned.
  • a conventionally known method is used. Can do.
  • the display device including the organic EL element of the present invention may be single color or multicolor, but here, the multicolor display device will be described.
  • a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet or printing.
  • the method is not limited, but a vapor deposition method, an ink jet method, a spin coating method, and a printing method are preferable.
  • the configuration of the organic EL element included in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
  • the manufacturing method of an organic EL element is as having shown in the one aspect
  • a DC voltage When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state.
  • the alternating current waveform to be applied may be arbitrary.
  • the multicolor display device can be used as a display device, a display, or various light emission sources.
  • a display device or display full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
  • Examples of the display device or display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in a car.
  • the display device or display may be used as a display device for reproducing still images and moving images
  • the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
  • Light-emitting devices include household lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, optical storage media light sources, electrophotographic copying machine light sources, optical communication processor light sources, optical sensor light sources, etc.
  • the present invention is not limited to these.
  • FIG. 2 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, a wiring unit C that electrically connects the display unit A and the control unit B, and the like. .
  • the control unit B is electrically connected to the display unit A via the wiring unit C, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside. Sequentially emit light according to the image data signal, scan the image, and display the image information on the display unit A.
  • FIG. 3 is a schematic diagram of a display device using an active matrix method.
  • the display unit A includes a wiring unit C including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 on the substrate.
  • FIG. 3 shows a case where the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated Not)
  • the pixel 3 When the scanning signal is applied from the scanning line 5, the pixel 3 receives the image data signal from the data line 6 and emits light according to the received image data.
  • a full color display can be achieved by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 4 is a schematic diagram showing a pixel circuit.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • a full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6.
  • a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10.
  • the power supply line 7 connects the organic EL element 10 to the potential of the image data signal applied to the gate. Current is supplied.
  • the driving of the switching transistor 11 When the scanning signal moves to the next scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off. However, since the capacitor 13 holds the charged potential of the image data signal even when the driving of the switching transistor 11 is turned off, the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues.
  • the driving transistor 12 When the scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the organic EL element 10 emits light by providing the switching transistor 11 and the driving transistor 12 which are active elements with respect to the organic EL element 10 of each of the plurality of pixels, and the light emission of the organic EL element 10 of each of the plurality of pixels 3. It is carried out.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good.
  • the potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • the present invention not only the active matrix method described above, but also a passive matrix light emission drive in which an organic EL element emits light according to a data signal only when a scanning signal is scanned.
  • FIG. 5 is a schematic view of a passive matrix display device.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
  • the organic EL element of the present invention can be applied to a lighting device.
  • the organic EL element of the present invention may be used as an organic EL element having a resonator structure.
  • Examples of the purpose of use of the organic EL element having such a resonator structure include a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processing machine, and a light source of an optical sensor. It is not limited. Moreover, you may use for the said use by making a laser oscillation.
  • the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a type for directly viewing a still image or a moving image. It may be used as a display device (display).
  • the drive method when used as a display device for moving image reproduction may be either a passive matrix method or an active matrix method.
  • the ⁇ -conjugated compound used in the present invention can be applied to a lighting device including an organic EL element that emits substantially white light.
  • white light emission can be obtained by simultaneously emitting a plurality of light emission colors and mixing the colors.
  • the combination of a plurality of emission colors may include three emission maximum wavelengths of three primary colors of red, green, and blue, or two of the complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
  • the organic EL device forming method of the present invention may be simply arranged by providing a mask only when forming a light emitting layer, a hole transporting layer, an electron transporting layer, etc. Since the other layers are common, patterning of a mask or the like is unnecessary, and for example, an electrode film can be formed on one surface by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is improved.
  • One aspect of the lighting device of the present invention One aspect of the lighting device of the present invention that includes the organic EL element of the present invention will be described.
  • the non-light-emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 ⁇ m thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (for example, Toagosei Co., Ltd.) is used as a sealing material around Manufactured by LUX TRACK LC0629B), which is stacked on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, and sealed, as shown in FIGS.
  • a lighting device as shown can be formed.
  • FIG. 6 is a schematic view of the lighting device, and the organic EL element of the present invention (organic EL element 101 in the lighting device) is covered with a glass cover 102.
  • the sealing operation with the glass cover is performed in a glove box in a nitrogen atmosphere without bringing the organic EL element 101 in the lighting device into contact with the atmosphere, specifically in an atmosphere of high purity nitrogen gas with a purity of 99.999% or more. went.
  • FIG. 7 is a cross-sectional view of the lighting device, 105 is a cathode, 106 is an organic layer group, and 107 is a glass substrate with a transparent electrode (anode).
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • an illumination device having excellent luminous efficiency can be obtained.
  • the light-emitting thin film of the present invention contains a ⁇ -conjugated compound having a structure represented by the general formula (1) according to the present invention, and can be produced in the same manner as the method for forming the organic layer group. it can.
  • the method for forming the light-emitting thin film of the present invention is not particularly limited, and a conventionally known thin film forming method such as a vacuum deposition method or a wet method (also referred to as a wet process) can be used.
  • a conventionally known thin film forming method such as a vacuum deposition method or a wet method (also referred to as a wet process) can be used.
  • wet method examples include spin coating method, casting method, ink jet method, printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, and LB method (Langmuir-Blodgett method). From the viewpoint of obtaining a homogeneous thin film easily and high productivity, a method with high roll-to-roll method suitability such as a die coating method, a roll coating method, an ink jet method and a spray coating method is preferable.
  • liquid medium for dissolving or dispersing the light emitting material used in the present invention examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene.
  • Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used.
  • the dispersion can be performed by a method such as ultrasonic dispersion, high shearing force dispersion or media dispersion.
  • the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is in the range of 50 to 450 ° C., and the degree of vacuum is in the range of 10 ⁇ 6 to 10 ⁇ 2 Pa.
  • the deposition rate is within the range of 0.01 to 50 nm / second
  • the substrate temperature is within the range of ⁇ 50 to 300 ° C.
  • the layer thickness is within the range of 0.1 to 5 ⁇ m, and preferably within the range of 5 to 200 nm. desirable.
  • the spin coat method when adopted for film formation, it is preferable to perform the spin coater within a range of 100 to 1000 rpm and within a range of 10 to 120 seconds in a dry inert gas atmosphere.
  • the luminescent thin film of the present invention can also be used for display devices and lighting devices.
  • Example 1 Production of organic EL element >> [Production of Organic EL Element 1-1]
  • ITO Indium Tin Oxide
  • Each of the deposition crucibles in the vacuum deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication.
  • the evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
  • the pressure was reduced to 1 ⁇ 10 ⁇ 4 Pa as the degree of vacuum, and then the energization crucible containing HAT-CN (1, 4, 5, 8, 9, 12-hexaazatriphenylenehexacarbonitrile) was energized and heated. It vapor-deposited on the ITO transparent electrode with the vapor deposition rate of 0.1 nm / sec, and formed the 10-nm-thick hole injection layer.
  • HAT-CN 1, 4, 5, 8, 9, 12-hexaazatriphenylenehexacarbonitrile
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • the hole transport layer was formed.
  • mCBP 3,3-di (9H-carbazol-9-yl) biphenyl
  • the following comparative compound 1 as the light-emitting compound were deposited at a deposition rate of 0 to 90% and 10% by volume, respectively.
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • lithium fluoride with a film thickness of 0.5 nm
  • 100 nm of aluminum was vapor-deposited to form a cathode.
  • the non-light-emitting surface side of the above element was covered with a can-shaped glass case in an atmosphere of high purity nitrogen gas having a purity of 99.999% or more, and an electrode lead-out wiring was installed to prepare an organic EL element 1-1.
  • organic EL elements 1-2 to 1-31 were produced in the same manner except that the luminescent compound was changed from the comparative compound 1 to each luminescent compound shown in Table 1. did.
  • the light emission luminance of each organic EL element is measured, and the light emission efficiency at a light emission luminance of 3000 cd / m 2 is obtained.
  • the light emission efficiency (relative value) was determined according to the following formula using the light emission efficiency of the element 1-1 as a reference.
  • Luminous efficiency (relative value) (Luminous efficiency of sample at a luminance of 3000 cd / m 2 / Luminous efficiency of organic EL device 1-1 at a luminance of 3000 cd / m 2 ) ⁇ 100
  • Table 1 shows that the larger the relative value of the light emission efficiency is, the lower the power the element is driven.
  • the drive voltage (relative value) was obtained according to the following equation.
  • Driving voltage (relative value) (initial drive voltage of the light emitting luminance 1000 cd / m 2 initial drive voltage / organic EL element 1-1 in the light emitting luminance 1000 cd / m 2 samples) ⁇ 100
  • Table 1 shows that the smaller the relative value of the voltage value, the better the conductivity of the element, and that the element is driven at a low voltage. Table 1 shows the results obtained as described above.
  • Example 2 Production of organic EL element >> [Production of Organic EL Element 2-1]
  • a transparent support substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) in which ITO (indium tin oxide) was formed as a positive electrode on a 100 mm ⁇ 100 mm glass substrate having a thickness of 1.1 mm was subjected to patterning treatment. Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (abbreviation: PEDOT / PSS, Bayer, Baytron PAl 4083) to 70% with pure water was used.
  • PEDOT / PSS polystyrene sulfonate
  • a thin film was formed by spin coating under the conditions of 3000 rpm and 30 seconds, and then dried at 200 ° C. for 1 hour to form a hole injection layer having a layer thickness of 20 nm.
  • This transparent support substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus, and each of the vapor deposition crucibles in the vacuum vapor deposition apparatus was filled with a constituent material of each layer in an amount optimal for device fabrication.
  • the evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • H-46 which is an exemplary compound
  • comparative compound 2 were co-deposited at a deposition rate of 0.1 nm / second under the conditions of 94% and 6% by volume, respectively, and a light emitting layer having a layer thickness of 30 nm Formed.
  • TPBi 1,3,5-tris (N-phenylbenzimidazol-2-yl) benzene) was deposited at a deposition rate of 0.1 nm / second to form an electron transport layer having a layer thickness of 30 nm.
  • the non-light emitting surface side of the organic EL element is covered with a can-shaped glass case in an atmosphere of high-purity nitrogen gas with a purity of 99.999% or more, and an electrode lead-out wiring is installed to produce an organic EL element 2-1. did.
  • Table 2 shows the results obtained as described above.
  • the organic EL elements 2-4 to 2-11 of the present invention have higher luminous efficiency than the organic EL elements 2-1 to 2-3 of Comparative Examples. Obviously. This is considered to be the effect that the compound according to the present invention assists the emission of other fluorescent compounds. That is, when the fluorescent compound according to the present invention having a higher energy level than the luminescent material is excited in the light emitting device, the luminescent material efficiently receives the energy, whereby the compound according to the present invention emits light. It is thought that luminous efficiency comparable to that can be obtained.
  • Example 3 When a toluene solution of Exemplified Compound D15 according to the present invention was prepared and irradiated with light at 280 nm at 300 K while bubbling nitrogen, green light emission was observed.
  • this exemplary compound D15 components having a long emission lifetime were observed in addition to ns order fluorescence.
  • the time-resolved spectrum was measured with a fluorescence lifetime measuring device Quantaurus-tau manufactured by Hamamatsu Photonics Co., Ltd., and the component having a short emission lifetime was determined to be fluorescence. The long component was judged as delayed fluorescence.
  • Example 4 Production of organic EL element >> (Preparation of organic EL element 4-1) An ITO (indium tin oxide) film having a thickness of 150 nm was formed on a 50 mm ⁇ 50 mm ⁇ 0.7 mm thick glass substrate, followed by patterning to form an ITO transparent electrode as an anode.
  • the transparent substrate provided with the ITO transparent electrode was subjected to ultrasonic cleaning with isopropyl alcohol and dried with dry nitrogen gas, followed by UV ozone cleaning for 5 minutes.
  • the obtained transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • Each of the resistance heating boats for vapor deposition in the vacuum apparatus was filled with an optimum amount of the constituent material of each layer for manufacturing each element.
  • the resistance heating boat was made of molybdenum or tungsten.
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • a resistance heating boat containing comparative compound 4 as a host compound and GD-1 as a luminescent compound is energized and heated, and the hole transport is performed at a deposition rate of 0.1 nm / second and 0.010 nm / second, respectively.
  • a light-emitting layer having a thickness of 40 nm was formed by co-evaporation on the layer.
  • Exemplary Compound H-42 was deposited at a deposition rate of 0.1 nm / second to form a first electron transport layer having a thickness of 5 nm.
  • ET-1 was deposited thereon at a deposition rate of 0.1 nm / second to form a second electron transport layer having a thickness of 45 nm.
  • sodium fluoride was vapor-deposited so as to have a thickness of 0.5 nm, and then aluminum was vapor-deposited with a thickness of 100 nm to form a cathode, thereby producing an organic EL element 4-1.
  • Organic EL devices 4-2 to 4-11 were fabricated in the same manner as the organic EL device 4-1, except that the host compound used for forming the light emitting layer was changed to each compound shown in Table 3.
  • the organic EL elements 4-2 to 4-11 have a lower driving voltage and excellent luminous efficiency than the organic EL element 4-1 as a comparative example. I understand.
  • the compound according to the present invention is also effective as a host material. That is, it is presumed that the compound according to the present invention is excellent in carrier transportability and can assist in light emission of the dopant.
  • the organic electroluminescence device of the present invention can achieve a high luminous efficiency with a reduced driving voltage, and can be suitably used for a light-emitting thin film, a display device, and a lighting device containing a conjugated compound according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyrrole Compounds (AREA)
  • Nitrogen- Or Sulfur-Containing Heterocyclic Ring Compounds With Rings Of Six Or More Members (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Pyridine Compounds (AREA)

Abstract

The present invention addresses the problem of providing an organic electroluminescent element which has low drive voltage and with which high light emission efficiency can be realized. Further provided are: a light-emitting thin film that contains a conjugated compound according to the present invention; and a display device and lighting device that are provided with the organic electroluminescent element. This organic electroluminescent element is characterized by having, between an anode and cathode, an organic layer group that includes at least one light-emitting layer, wherein at least one layer of said organic layer group contains a π-conjugated compound having a structure represented by general formula (1). [In the formula, A represents an electron-withdrawing group, and D represents an electron-donating group. m and n each independently represent integers of 1 or 2. X represents an aromatic hydrocarbon group selected from a structure represented by a specific structure.]

Description

有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHT-EMITTING THIN FILM, DISPLAY DEVICE AND LIGHTING DEVICE
 本発明は、有機エレクトロルミネッセンス素子、発光性薄膜、及び当該有機エレクトロルミネッセンス素子を具備した表示装置及び照明装置に関する。より詳しくは、発光効率が改良された有機エレクトロルミネッセンス素子等に関する。 The present invention relates to an organic electroluminescence element, a light-emitting thin film, and a display device and an illumination device including the organic electroluminescence element. More specifically, the present invention relates to an organic electroluminescence element with improved luminous efficiency.
 有機材料のエレクトロルミネッセンス(Electro Luminescence:以下、「EL」と略記する。)を利用した有機エレクトロルミネッセンス素子(以下、「有機EL素子」又は「有機電界発光素子」ともいう。)は、平面発光を可能とする新しい発光システムとして既に実用化されている技術である。有機EL素子は、電子ディスプレイはもとより、最近では照明装置としても適用され、その発展が期待されている。 An organic electroluminescence element (hereinafter, also referred to as “organic EL element” or “organic electroluminescence element”) using organic electroluminescence (Electro Luminescence: hereinafter abbreviated as “EL”) emits planar light. This technology has already been put into practical use as a new light-emitting system that enables this. Organic EL elements are applied not only to electronic displays but also recently as lighting devices, and their development is expected.
 有機EL素子の発光方式としては、三重項励起状態から基底状態に戻る際に光を発する「リン光発光」と、一重項励起状態から基底状態に戻る際に光を発する「蛍光発光」の二通りがある。 There are two types of emission methods for organic EL elements: phosphorescence emission, which emits light when returning from the triplet excited state to the ground state, and fluorescence emission, which emits light when returning from the singlet excited state to the ground state. There is a street.
 有機EL素子に電界をかけると、陽極と陰極からそれぞれ正孔と電子が注入され、発光層、又はその界面領域において再結合し、励起子を生じる。このとき、一重項励起子と三重項励起子とが25%:75%の割合で生成するため、三重項励起子を利用するリン光発光の方が、蛍光発光に比べ、理論的に高い内部量子効率が得られることが知られている。 When an electric field is applied to the organic EL element, holes and electrons are injected from the anode and the cathode, respectively, and recombined in the light emitting layer or its interface region to generate excitons. At this time, since singlet excitons and triplet excitons are generated at a ratio of 25%: 75%, phosphorescence emission using triplet excitons is theoretically higher than fluorescence emission. It is known that quantum efficiency can be obtained.
 しかしながら、リン光発光方式において実際に高い量子効率を得るためには、中心金属にイリジウムや白金などの希少金属を用いた錯体を用いる必要があり、将来的に希少金属の埋蔵量や金属自体の価格が、産業上大きな問題となることが懸念される。 However, in order to actually obtain high quantum efficiency in the phosphorescence emission method, it is necessary to use a complex using a rare metal such as iridium or platinum as a central metal. There is concern that the price will be a major industrial issue.
 一方で、蛍光発光方式においても発光効率を向上させるために様々な開発がなされており、近年新しい動きが出てきた。 On the other hand, various developments have been made to improve the light emission efficiency in the fluorescent light emission method, and a new movement has recently been made.
 例えば、二つの三重項励起子の衝突により一重項励起子が生成する現象(以下、Triplet-Triplet Annihilation:適宜「TTA」と略記する。また、Triplet-Triplet Fusion:「TTF」ともいう。)に着目し、TTAを効率的に起こして蛍光素子の高効率化を図る技術が開示されている(例えば、特許文献1参照。)。この技術により、蛍光発光材料(以下、蛍光発光性材料、蛍光材料ともいう。)の電力効率は、従来の蛍光発光材料の2~3倍まで向上しているが、TTAにおける理論的な一重項励起子生成効率は40%程度にとどまるため、依然としてリン光発光に比べ高発光効率化の課題を有している。 For example, a phenomenon in which singlet excitons are generated by collision of two triplet excitons (hereinafter referred to as “triplet-triplet annihilation: abbreviated as“ TTA ”where appropriate. Also referred to as triplet-triplet fusion:“ TTF ””). Attention has been paid to a technique for efficiently increasing the efficiency of a fluorescent element by efficiently causing TTA (see, for example, Patent Document 1). With this technology, the power efficiency of fluorescent materials (hereinafter also referred to as fluorescent materials) is improved to 2 to 3 times that of conventional fluorescent materials, but the theoretical singlet in TTA. Since the exciton generation efficiency is limited to about 40%, there is still a problem of higher emission efficiency than phosphorescence emission.
 さらに近年では、三重項励起子から一重項励起子への逆項間交差(Reverse Intersystem Crossing:以下、適宜「RISC」と略記する。)が生じる特性を利用した現象である熱活性型遅延蛍光(以下、「熱励起型遅延蛍光」ともいう:Thermally Activated Delayed Fluorescence:適宜「TADF」と略記する。)を適用した蛍光発光材料と、その有機EL素子への利用の可能性が報告されている(例えば、特許文献2、非特許文献1、及び非特許文献2参照。)。このTADF機構による遅延蛍光を利用すると、電界励起による蛍光発光においても、理論的にはリン光発光と同等の100%の内部量子効率が可能となる。 In recent years, thermally activated delayed fluorescence (reverse intersystem crossing: hereinafter, abbreviated as “RISC” where appropriate) is a phenomenon that uses a characteristic that causes triplet excitons to singlet excitons. Hereinafter, a fluorescent light-emitting material to which “also referred to as“ thermally-excited delayed fluorescence ”: Thermally Activated Delayed Fluorescence: abbreviated as“ TADF ”as appropriate” and its possibility of use in organic EL devices has been reported ( For example, refer to Patent Document 2, Non-Patent Document 1, and Non-Patent Document 2.) Utilizing delayed fluorescence by this TADF mechanism enables 100% internal quantum efficiency that is theoretically equivalent to phosphorescence emission even in fluorescence emission by electric field excitation.
 TADF現象発現のためには、室温又は発光素子中の発光層温度で電界励起により生じた75%の三重項励起子から一重項励起子への逆項間交差を生じさせる必要がある。さらに、逆項間交差により生じた一重項励起子が、直接励起により生じた25%の一重項励起子と同様に蛍光発光することにより、100%の内部量子効率が理論上可能となる。この逆項間交差が起こるためには、最低励起一重項エネルギー準位(S)と最低励起三重項エネルギー準位(T)の差の絶対値(以下、ΔEstと称す。)が極めて小さいことが必須である。 In order to develop the TADF phenomenon, it is necessary to generate a reverse intersystem crossing from 75% of triplet excitons to singlet excitons generated by electric field excitation at room temperature or the temperature of the light emitting layer in the light emitting element. Furthermore, a singlet exciton generated by crossing between inverses emits fluorescence similarly to a 25% singlet exciton generated by direct excitation, so that an internal quantum efficiency of 100% is theoretically possible. In order for this reverse intersystem crossing to occur, the absolute value (hereinafter referred to as ΔEst) of the difference between the lowest excited singlet energy level (S 1 ) and the lowest excited triplet energy level (T 1 ) is extremely small. It is essential.
 さらに、ホスト化合物と発光性化合物より構成される発光層に、TADF性を示す化合物を第三成分(以下、アシストドーパントともいう。)として発光層に含有させると、高発光効率発現に有効であることが知られている(例えば、非特許文献3参照。)。アシストドーパント上に25%の一重項励起子と75%の三重項励起子を電界励起により発生させることによって、三重項励起子は逆項間交差(RISC)を伴って一重項励起子を生成することができる。一重項励起子のエネルギーは、発光性化合物へエネルギー移動し、当該発光性化合物が発光することが可能となる。従って、理論上100%の励起子エネルギーを利用して、発光性化合物を発光させることが可能となり、高発光効率が発現する。 Further, when a light emitting layer composed of a host compound and a light emitting compound contains a compound exhibiting TADF properties as a third component (hereinafter also referred to as an assist dopant) in the light emitting layer, it is effective for high luminous efficiency. It is known (see, for example, Non-Patent Document 3). By generating 25% singlet excitons and 75% triplet excitons on the assist dopant by electric field excitation, the triplet excitons generate singlet excitons with reverse intersystem crossing (RISC). be able to. The energy of the singlet exciton is transferred to the light emitting compound, and the light emitting compound can emit light. Therefore, theoretically, it becomes possible to cause the luminescent compound to emit light using 100% exciton energy, and high luminous efficiency is exhibited.
 TADF機構は、図1Aに示すように、通常の蛍光発光性化合物材料に比べ、一重項励起エネルギー準位と三重項励起エネルギー準位の差(ΔEst)が小さい化合物(図1Aでは、ΔEst(TADF)がΔEst(F)よりも小さい。)を用いた場合に、三重項励起子から一重項励起子への逆項間交差が生じる現象を利用した発光機構である。すなわち、ΔEstが小さいことによって、電界励起により75%の確率で発生する三重項励起子が、本来なら発光に寄与できないところ、有機EL素子駆動時の熱エネルギーなどで一重項励起状態に遷移し、その状態から基底状態へ輻射失活(「輻射遷移」又は「放射失活」ともいう。)し蛍光発光を起こすものである。このTADF機構による遅延蛍光を利用すると、蛍光発光においても、理論的には100%の内部量子効率が可能となると考えられている。 As shown in FIG. 1A, the TADF mechanism is a compound in which the difference (ΔEst) between the singlet excitation energy level and the triplet excitation energy level (ΔEst (TADF in FIG. 1A) is smaller than that of an ordinary fluorescent compound material. ) Is smaller than ΔEst (F).) Is a light emission mechanism that utilizes the phenomenon that reverse intersystem crossing from triplet excitons to singlet excitons occurs. That is, since ΔEst is small, triplet excitons generated with a probability of 75% due to electric field excitation cannot contribute to light emission originally, but transition to a singlet excited state by thermal energy at the time of driving an organic EL element, From this state to the ground state, radiation is deactivated (also referred to as “radiation transition” or “radiation deactivation”) to cause fluorescence emission. If delayed fluorescence due to the TADF mechanism is used, it is considered that 100% internal quantum efficiency is theoretically possible even in fluorescence emission.
 このように高い発光効率を実現するための様々な開発研究が行われているが、得られる性能は、未だ実用化に対しては十分ではない。 Although various development studies have been conducted to achieve such high luminous efficiency, the performance obtained is still not sufficient for practical use.
 また、カルバゾール構造、ジベンゾチオフェン構造、ジベンゾフラン構造等を有する芳香族炭化水素材料が高い電荷輸送性を有するため、当該材料を使用することにより有機エレクトロルミネッセンス素子の性能が向上することが開示されている(例えば、特許文献3参照。)。しかし、その技術思想は、カルバゾールの電荷輸送性に着目したものであり、本明細書で開示されるような化合物の両極性(バイポーラー性)を重視する思想については一切記述されていない。 In addition, since aromatic hydrocarbon materials having a carbazole structure, a dibenzothiophene structure, a dibenzofuran structure, and the like have high charge transport properties, it is disclosed that the performance of an organic electroluminescence device is improved by using the material. (For example, refer to Patent Document 3). However, the technical idea focuses on the charge transport property of carbazole, and does not describe any idea that emphasizes the bipolarity (bipolarity) of the compound as disclosed in this specification.
国際公開第2010/134350号International Publication No. 2010/134350 特開2013-116975号公報JP 2013-116975 A 特開2012-107005号公報JP 2012-107005 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、低電圧で駆動が可能で、高い発光効率を実現できる有機エレクトロルミネッセンス素子を提供することである。また、本発明に係る共役系化合物を含有する発光性薄膜、当該有機エレクトロルミネッセンス素子が具備された表示装置及び照明装置を提供することである。 The present invention has been made in view of the above-described problems and situations, and a problem to be solved is to provide an organic electroluminescence element that can be driven at a low voltage and can realize high luminous efficiency. Another object of the present invention is to provide a light-emitting thin film containing the conjugated compound according to the present invention, a display device and an illumination device provided with the organic electroluminescence element.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、陽極と陰極の間に、少なくとも一層の発光層を含む有機層群を有し、当該有機層群の少なくとも一層に、前記一般式(1)で表される同一分子内に電子供与性基と電子吸引性基を有する芳香族炭化水素化合物であるπ共役系化合物を含有する有機エレクトロルミネッセンス素子により、低い駆動電圧で駆動でき、高い発光効率を得ることができる有機エレクトロルミネッセンス素子を実現することができることを見出し本発明に至った。 As a result of studying the cause of the above problem and the like in order to solve the above problems, the present inventor has an organic layer group including at least one light emitting layer between the anode and the cathode, and at least one layer of the organic layer group. And an organic electroluminescence device containing a π-conjugated compound which is an aromatic hydrocarbon compound having an electron-donating group and an electron-withdrawing group in the same molecule represented by the general formula (1). It was found that an organic electroluminescence element that can be driven at a high speed and that can obtain high luminous efficiency can be realized.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.陽極と陰極の間に、少なくとも一層の発光層を含む有機層群を有する有機エレクトロルミネッセンス素子であって、
 当該有機層群の少なくとも一層が、下記一般式(1)で表される構造を有するπ共役系化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
1. An organic electroluminescence device having an organic layer group including at least one light emitting layer between an anode and a cathode,
At least one layer of the organic layer group contains a π-conjugated compound having a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
〔式中、Aは電子吸引性基を表し、Dは電子供与性基を表す。m及びnはそれぞれ独立に1又は2の整数である。Xは、下記一般式(1a)~(1k)で表される構造から選ばれる芳香族炭化水素基を表す。〕
Figure JPOXMLDOC01-appb-C000006
〔上記一般式(1a)~(1k)で表される構造を有する芳香族炭化水素基において、R、R、Ra、Rb、Rc及びRdは、それぞれ独立に水素原子又は置換基を表す。p、q、r及びsは、それぞれ独立に0~4の整数を表す。これらの置換基は同一でも異なっていてもよく、また、各々の置換基同士が結合して環を形成していてもよい。〕
 2.前記一般式(1a)~(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子吸引性基であるとき、当該電子吸引性基が、芳香族複素環基、スルホニル基(-SO;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、スルフェニル基(-SOR;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、シアノ基(-CN)、ハロゲノ基、カルボニル基(-COR;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、ペンタフルオロフェニル基(-C)、トリフルオロメチル基(-CF)、トリフルオロメチルフェニル基(-CCF)、及びボリル基(-BR ;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)から選ばれる少なくとも1種であることを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000005
[In the formula, A represents an electron-withdrawing group, and D represents an electron-donating group. m and n are each independently an integer of 1 or 2. X represents an aromatic hydrocarbon group selected from structures represented by the following general formulas (1a) to (1k). ]
Figure JPOXMLDOC01-appb-C000006
[In the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k), R 1 , R 2 , Ra, Rb, Rc and Rd each independently represents a hydrogen atom or a substituent. . p, q, r and s each independently represent an integer of 0 to 4. These substituents may be the same or different, and each substituent may be bonded to form a ring. ]
2. When at least one of R 1 , R 2 , Ra, Rb, Rc and Rd in the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k) is an electron-withdrawing group, The attractive group represents an aromatic heterocyclic group, a sulfonyl group (—SO 2 R 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms. ), A sulfenyl group (—SOR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms), a cyano group (—CN), halogeno A group, a carbonyl group (—COR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms), a pentafluorophenyl group (—C 6 F 5) a trifluoromethyl group (-CF 3), trifluoromethyl Eniru group (-C 6 H 4 CF 3) , and boryl group (-BR 1 2; R 1 represents an aromatic heterocyclic group of aromatic hydrocarbon group having 6 to 30 carbon atoms, or 3 to 20 carbon atoms The organic electroluminescent device according to item 1, wherein the organic electroluminescent device is at least one selected from the group consisting of:
 3.前記一般式(1a)~(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子供与性基であるとき、当該電子供与性基が、炭素数3~20の芳香族複素環基、アミノ基(-NH)、アリールアミノ基(-NHR又は-NR ;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20芳香族複素環基を表す。)、アルコキシ基(-OR;Rは炭素数1~10の直鎖または環状の炭化水素基)、及びアリールオキシ基(-OR;Rは直鎖または環状の炭化水素基、炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)から選ばれる少なくとも1種であることを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。 3. When at least one of R 1 , R 2 , Ra, Rb, Rc and Rd in the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k) is an electron donating group, The donating group is an aromatic heterocyclic group having 3 to 20 carbon atoms, an amino group (—NH 2 ), an arylamino group (—NHR 1 or —NR 1 2 ; R 1 is an aromatic carbon group having 6 to 30 carbon atoms; A hydrogen group or an aromatic heterocyclic group having 3 to 20 carbon atoms), an alkoxy group (—OR 1 ; R 1 is a linear or cyclic hydrocarbon group having 1 to 10 carbon atoms), and an aryloxy group ( —OR 2 ; R 2 represents a linear or cyclic hydrocarbon group, an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms. 2. The organic electroluminescence according to item 1, characterized in that Ssensu element.
 4.前記一般式(1a)~(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子吸引性基であるとき、当該電子吸引性基が、芳香族複素環基、スルホニル基(-SO;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、スルフェニル基(-SOR;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、シアノ基(-CN)、ハロゲノ基、カルボニル基(-COR;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、ペンタフルオロフェニル基(-C)、トリフルオロメチル基(-CF)、トリフルオロメチルフェニル基(-CCF)、及びボリル基(-BR ;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)から選ばれる少なくとの1種であり、かつ前記一般式(1a)~一般式(1k)におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子供与性基であるとき、当該電子供与性基が、炭素数3~20の芳香族複素環基、アミノ基(-NH)、アリールアミノ基(-NHR又は-NR ;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20芳香族複素環基を表す。)、アルコキシ基(-OR;Rは炭素数1~10の直鎖または環状の炭化水素基)、及びアリールオキシ基(-OR;Rは直鎖または環状の炭化水素基、炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)から選ばれる少なくとも1種であることを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。 4). When at least one of R 1 , R 2 , Ra, Rb, Rc and Rd in the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k) is an electron-withdrawing group, The attractive group represents an aromatic heterocyclic group, a sulfonyl group (—SO 2 R 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms. ), A sulfenyl group (—SOR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms), a cyano group (—CN), halogeno A group, a carbonyl group (—COR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms), a pentafluorophenyl group (—C 6 F 5) a trifluoromethyl group (-CF 3), trifluoromethyl Eniru group (-C 6 H 4 CF 3) , and boryl group (-BR 1 2; R 1 represents an aromatic heterocyclic group of aromatic hydrocarbon group having 6 to 30 carbon atoms, or 3 to 20 carbon atoms And at least one of R 1 , R 2 , Ra, Rb, Rc and Rd in the general formulas (1a) to (1k) is an electron donating group. When the electron donating group is an aromatic heterocyclic group having 3 to 20 carbon atoms, an amino group (—NH 2 ), an arylamino group (—NHR 1 or —NR 1 2 ; R 1 has 6 to 30 carbon atoms) An aromatic hydrocarbon group or an aromatic heterocyclic group having 3 to 20 carbon atoms), an alkoxy group (—OR 1 ; R 1 is a linear or cyclic hydrocarbon group having 1 to 10 carbon atoms), and aryloxy groups (-OR 2; R 2 is a linear or cyclic hydrocarbon group, the carbon Aromatic hydrocarbon group having 6 to 30, or an organic electroluminescence device according to paragraph 1, wherein the at least one selected from the representative.) An aromatic heterocyclic group having 3 to 20 carbon atoms.
 5.前記一般式(1)で表される構造を有するπ共役系化合物におけるXが、前記一般式(1a)、(1b)、(1d)、(1e)、(1g)、(1h)、(1i)又は(1j)で表される芳香族炭化水素基であることを特徴とする第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 5. X in the π-conjugated compound having the structure represented by the general formula (1) is the general formula (1a), (1b), (1d), (1e), (1g), (1h), (1i The organic electroluminescence device according to any one of items 1 to 4, wherein the organic electroluminescence device is an aromatic hydrocarbon group represented by (1) or (1j).
 6.前記一般式(1)で表される構造を有するπ共役系化合物におけるXが、前記一般式(1a)、(1b)、(1d)、(1e)、(1g)、(1h)、(1i)又は(1j)で表される芳香族炭化水素基であり、R、R、Ra、Rb、Rc及びRdのうちの少なくとも1つは電子吸引性基で、かつ少なくとも1つは電子供与性基であり、前記電子吸引性基及び前記電子供与性基に該当しないR、R、Ra、Rb、Rc及びRdのすべてが水素原子であることを特徴とする第5項に記載の有機エレクトロルミネッセンス素子。 6). X in the π-conjugated compound having the structure represented by the general formula (1) is the general formula (1a), (1b), (1d), (1e), (1g), (1h), (1i ) Or (1j), wherein at least one of R 1 , R 2 , Ra, Rb, Rc and Rd is an electron-withdrawing group, and at least one is an electron donor 6. The group according to item 5, wherein all of R 1 , R 2 , Ra, Rb, Rc and Rd which are non-corresponding to the electron-withdrawing group and the electron-donating group are hydrogen atoms. Organic electroluminescence device.
 7.前記一般式(1)で表される構造を有するπ共役系化合物の最低励起一重項準位と最低励起三重項準位とのエネルギー差の絶対値(ΔEst)が、0.5eV以下であることを特徴とする第1項から第6項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 7. The absolute value (ΔEst) of the energy difference between the lowest excited singlet level and the lowest excited triplet level of the π-conjugated compound having the structure represented by the general formula (1) is 0.5 eV or less. The organic electroluminescent element according to any one of items 1 to 6, wherein:
 8.前記発光層が、前記一般式(1)で表される構造を有するπ共役系化合物と、蛍光発光性化合物及びリン光発光性化合物のうち少なくとも1種とを含有することを特徴とする第1項から第7項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 8. The light emitting layer contains a π-conjugated compound having a structure represented by the general formula (1) and at least one of a fluorescent compound and a phosphorescent compound. The organic electroluminescent element according to any one of items 1 to 7.
 9.前記発光層が、π共役系化合物と、蛍光発光性化合物及びリン光発光性化合物のうち少なくとも1種類と、ホスト化合物とを含有することを特徴とする第1項から第8項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 9. Any one of Items 1 to 8, wherein the light-emitting layer contains a π-conjugated compound, at least one of a fluorescent compound and a phosphorescent compound, and a host compound. The organic electroluminescence device according to one item.
 10.下記一般式(1)で表される構造を有するπ共役系化合物を含有することを特徴とする発光性薄膜。 10. A luminescent thin film comprising a π-conjugated compound having a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000007
〔式中、Aは電子吸引性基を表し、Dは電子供与性基を表す。m及びnはそれぞれ独立に1又は2の整数である。Xは、下記一般式(1a)~(1k)で表される構造から選ばれる芳香族炭化水素基を表す。〕
Figure JPOXMLDOC01-appb-C000008
〔上記一般式(1a)~(1k)で表される構造を有する芳香族炭化水素基において、R、R、Ra、Rb、Rc及びRdは、それぞれ独立に水素原子又は置換基を表す。p、q、r及びsは、それぞれ独立に0~4の整数を表す。これらの置換基は同一でも異なっていてもよく、また、各々の置換基同士が結合して環を形成していてもよい。〕
 11.前記一般式(1)で表される構造を有するπ共役系化合物の最低励起一重項エネルギー準位と最低励起三重項エネルギー準位の差の絶対値(ΔEst)が、0.5eV以下であることを特徴とする第10項に記載の発光性薄膜。
Figure JPOXMLDOC01-appb-C000007
[In the formula, A represents an electron-withdrawing group, and D represents an electron-donating group. m and n are each independently an integer of 1 or 2. X represents an aromatic hydrocarbon group selected from structures represented by the following general formulas (1a) to (1k). ]
Figure JPOXMLDOC01-appb-C000008
[In the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k), R 1 , R 2 , Ra, Rb, Rc and Rd each independently represents a hydrogen atom or a substituent. . p, q, r and s each independently represent an integer of 0 to 4. These substituents may be the same or different, and each substituent may be bonded to form a ring. ]
11. The absolute value (ΔEst) of the difference between the lowest excited singlet energy level and the lowest excited triplet energy level of the π-conjugated compound having the structure represented by the general formula (1) is 0.5 eV or less. The light-emitting thin film according to item 10, wherein
 12.第1項から第9項までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする表示装置。 12. A display device comprising the organic electroluminescence element according to any one of items 1 to 9.
 13.第1項から第9項までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする照明装置。 13. An organic electroluminescence device according to any one of items 1 to 9 is provided.
 本発明の上記手段により、駆動電圧が低下し、高い発光効率を達成する有機エレクトロルミネッセンス素子を提供することができる。また、本発明に係る共役系化合物を含有する発光性薄膜と、当該有機エレクトロルミネッセンス素子が具備された表示装置及び照明装置を提供することができる。 The above-described means of the present invention can provide an organic electroluminescence device that achieves high luminous efficiency with a reduced driving voltage. In addition, a light-emitting thin film containing the conjugated compound according to the present invention, and a display device and a lighting device including the organic electroluminescence element can be provided.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 従来の有機EL素子では、発光効率の改善が大きな課題となっている。有機EL素子は、電極間に存在する電荷移動性薄膜の物性やそれら材料同士の構成等によって、発光させるのに必要な電圧が大きく変化する。低電圧で駆動させることができる有機エレクトロルミネッセンス素子は、通電時の負荷が少ないことから、消費電力が低く抑えられることはもちろんのこと、素子の寿命も改善することが期待できる。また、電力に対する発光効率の向上も見込まれる。 In the conventional organic EL element, improvement of luminous efficiency has become a big issue. In the organic EL element, the voltage required for light emission varies greatly depending on the physical properties of the charge transfer thin film existing between the electrodes and the configuration of these materials. Since the organic electroluminescence element that can be driven at a low voltage has a small load when energized, it can be expected that the power consumption can be kept low and the life of the element can be improved. In addition, an improvement in luminous efficiency with respect to electric power is expected.
 有機EL素子に使用される有機薄膜の材料としては、電子や正孔といったキャリアを運搬できる特性を有するものが必要である。特に、発光層に用いられる材料は、上記電荷が再結合するために電子と正孔の両方を効率よく運搬する性質が求められる。そのため、化合物としては、バイポーラー性を有することが好ましい。 As a material for an organic thin film used for an organic EL element, a material having a characteristic capable of transporting carriers such as electrons and holes is required. In particular, the material used for the light-emitting layer is required to have a property of efficiently transporting both electrons and holes because the charges are recombined. Therefore, the compound preferably has bipolar properties.
 同一分子内に電子供与基と電子吸引性基を有することで化合物はバイポーラー性となり、薄膜内の電荷移動に対して有利であることから、駆動電圧低下の観点から好ましい。一方、バイポーラー性を有する化合物は、HOMOとLUMOが分離しやすく、発光のために必要なHOMO-LUMO間の電子遷移が禁制になりがちであることから、振動子強度が低くなり、発光しづらくなる傾向がある。これに対し、芳香族炭化水素化合物は、HOMO-LUMOの重なりを生じるための場として好適であり、電子供与性基及び電子吸引性基を有する化合物に組み込むことで、高い発光効率と高い電荷輸送性能を両立することが可能である。 The compound having an electron donating group and an electron withdrawing group in the same molecule is bipolar, which is advantageous for charge transfer in the thin film, which is preferable from the viewpoint of lowering the driving voltage. On the other hand, bipolar compounds tend to separate HOMO and LUMO, and the electronic transition between HOMO and LUMO necessary for light emission tends to be forbidden, resulting in low oscillator strength and light emission. There is a tendency to become difficult. In contrast, an aromatic hydrocarbon compound is suitable as a field for generating HOMO-LUMO overlap, and is incorporated into a compound having an electron-donating group and an electron-withdrawing group, so that high luminous efficiency and high charge transport are achieved. It is possible to achieve both performance.
 一方、π共役面が大きくなりすぎると、πスタッキングによる化合物の凝集が起こりやすくなり、発光効率を低下させる原因となる。したがって、電子供与性基と電子吸引性基を備える芳香族炭化水素化合物は、4環程度のπ共役面の大きさを有することが好ましい。 On the other hand, if the π conjugate surface becomes too large, the compounds are likely to aggregate due to π stacking, which causes a decrease in luminous efficiency. Therefore, the aromatic hydrocarbon compound having an electron donating group and an electron withdrawing group preferably has a size of a π-conjugated surface of about 4 rings.
通常の蛍光発光性化合物及びTADF化合物のエネルギーダイヤグラムを示した模式図Schematic diagram showing energy diagrams of normal fluorescent compounds and TADF compounds アシストドーパントが存在する場合のエネルギーダイヤグラムを示した模式図Schematic showing energy diagram in the presence of assist dopant π共役系化合物がホスト化合物として機能する場合のエネルギーダイヤグラムを示した模式図Schematic diagram showing the energy diagram when a π-conjugated compound functions as a host compound 有機EL素子から構成される表示装置の一例を示した模式図Schematic diagram showing an example of a display device composed of organic EL elements アクティブマトリクス方式による表示装置の構成の一例を示す模式図Schematic diagram showing an example of the structure of a display device using an active matrix method 画素の回路を示した概略図Schematic showing the pixel circuit パッシブマトリクス方式による表示装置の構成の一例を示す模式図Schematic diagram showing an example of the structure of a display device using a passive matrix method 照明装置の構成の一例を示す概略図Schematic showing an example of the configuration of the lighting device 照明装置の構成の一例を示す断面図Sectional drawing which shows an example of a structure of an illuminating device
 本発明の有機エレクトロルミネッセンス素子は、陽極と陰極の間に、少なくとも一層の発光層を含む有機層群を有する有機エレクトロルミネッセンス素子であって、当該有機層群の少なくとも一層が、前記一般式(1)で表される同一分子内に電子供与基と電子吸引性基を有する構造のπ共役系化合物を含有することを特徴とする。 The organic electroluminescence device of the present invention is an organic electroluminescence device having an organic layer group including at least one light emitting layer between an anode and a cathode, wherein at least one layer of the organic layer group is represented by the general formula (1). And a π-conjugated compound having a structure having an electron-donating group and an electron-withdrawing group in the same molecule.
 この特徴は、請求項1から請求項13までの請求項に係る発明に共通する又は対応する特徴である。 This feature is common to or corresponds to the inventions according to claims 1 to 13.
 本発明においては、更に好ましい実施形態としては、一般式(1a)~(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子吸引性基であるとき、当該電子吸引性基が、芳香族複素環基、スルホニル基(-SO;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、スルフェニル基(-SOR;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、シアノ基(-CN)、ハロゲノ基、カルボニル基(-COR;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、ペンタフルオロフェニル基(-C)、トリフルオロメチル基(-CF)、トリフルオロメチルフェニル基(-CCF)、及びボリル基(-BR ;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)から選ばれる少なくとの1種であることが、該電子吸引性基上へのLUMOの局在化が促進され、化合物全体のバイポーラー性が高まることにより、更に、駆動電圧を低くでき、より高い発光効率を得ることができる観点から好ましい。 In the present invention, as a more preferred embodiment, at least one of R 1 , R 2 , Ra, Rb, Rc and Rd in the aromatic hydrocarbon group having a structure represented by the general formulas (1a) to (1k) is preferable. When one is an electron-withdrawing group, the electron-withdrawing group is an aromatic heterocyclic group, a sulfonyl group (—SO 2 R 1 ; R 1 is an aromatic hydrocarbon group having 6 to 30 carbon atoms, or 3 carbon atoms. Represents an aromatic heterocyclic group having ˜20, sulfenyl group (—SOR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms. ), A cyano group (—CN), a halogeno group, a carbonyl group (—COR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms. ), Pentafluorophenyl group (—C 6 F 5 ), trifluoro A romethyl group (—CF 3 ), a trifluoromethylphenyl group (—C 6 H 4 CF 3 ), and a boryl group (—BR 1 2 ; R 1 is an aromatic hydrocarbon group having 6 to 30 carbon atoms, or a carbon number; 3 to 20 aromatic heterocyclic groups)), the localization of LUMO on the electron-withdrawing group is promoted, and the bipolar property of the whole compound is improved. By increasing, it is preferable from the viewpoint that the drive voltage can be further lowered and higher luminous efficiency can be obtained.
 また、前記一般式(1a)~(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子供与性基であるとき、当該電子供与性基が、炭素数3~20の芳香族複素環基、アミノ基(-NH)、アリールアミノ基(-NHR又は-NR ;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20芳香族複素環基を表す。)、アルコキシ基(-OR;Rは炭素数1~10の直鎖または環状の炭化水素基)、及びアリールオキシ基(-OR;Rは直鎖または環状の炭化水素基、炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)から選ばれる少なくとも1種であることが、該電子供与性基上へのHOMOの局在化が促進され、化合物全体のバイポーラー性が高まることにより、更に、駆動電圧を低くでき、より高い発光効率を得ることができる観点から好ましい。 When at least one of R 1 , R 2 , Ra, Rb, Rc and Rd in the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k) is an electron donating group, The electron-donating group is an aromatic heterocyclic group having 3 to 20 carbon atoms, an amino group (—NH 2 ), an arylamino group (—NHR 1 or —NR 1 2 ; R 1 is an aromatic group having 6 to 30 carbon atoms. An aromatic hydrocarbon group or an aromatic heterocyclic group having 3 to 20 carbon atoms), an alkoxy group (—OR 1 ; R 1 is a linear or cyclic hydrocarbon group having 1 to 10 carbon atoms), and aryloxy At least selected from a group (—OR 2 ; R 2 represents a linear or cyclic hydrocarbon group, an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms). It is one type to localize HOMO on the electron donating group There is promoted by bipolar character of the whole compound increases, further, a driving voltage can be lowered, from the viewpoint of capable of obtaining a higher luminous efficiency.
 また、前記一般式(1)で表される構造を有するπ共役系化合物におけるXが、前記一般式(1a)、(1b)、(1d)、(1e)、(1g)、(1h)、(1i)又は(1j)で表される芳香族炭化水素基であることが、縮環数が少ない、あるいはジグザグ型の共役構造を有するために、直列型に多数の環が縮環した構造を有する化合物よりも励起エネルギー準位を高くする点において有利である。励起状態と基底状態のエネルギー準位の近接は無輻射失活を増大させるため、前記一般式(1)で表される構造を有するπ共役系化合物におけるXが、前記一般式(1a)、(1b)、(1d)、(1e)、(1g)、(1h)、(1i)又は(1j)で表される芳香族炭化水素基であることは、高い発光効率を得ることができる観点から好ましい。 Further, X in the π-conjugated compound having the structure represented by the general formula (1) is the general formula (1a), (1b), (1d), (1e), (1g), (1h), Since the aromatic hydrocarbon group represented by (1i) or (1j) has a small number of condensed rings or a zigzag conjugated structure, it has a structure in which a large number of rings are condensed in series. This is advantageous in that the excitation energy level is higher than that of the compound having the same. Since the proximity between the energy levels of the excited state and the ground state increases non-radiative deactivation, X in the π-conjugated compound having the structure represented by the general formula (1) is represented by the general formula (1a), ( It is an aromatic hydrocarbon group represented by 1b), (1d), (1e), (1g), (1h), (1i) or (1j) from the viewpoint of obtaining high luminous efficiency. preferable.
 また、前記一般式(1)で表される構造を有するπ共役系化合物の最低励起一重項準位と最低励起三重項準位とのエネルギー差の絶対値(ΔEst)が、0.5eV以下であることにより、熱活性化型遅延蛍光を発する可能性が有り、駆動時の励起子を一般的な蛍光材料よりも多く利用できることによって電力効率が向上することができる観点から、好ましい。 The absolute value (ΔEst) of the energy difference between the lowest excited singlet level and the lowest excited triplet level of the π-conjugated compound having the structure represented by the general formula (1) is 0.5 eV or less. In some cases, there is a possibility of emitting thermally activated delayed fluorescence, which is preferable from the viewpoint that power efficiency can be improved by using more excitons during driving than a general fluorescent material.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 本論に入る前に、本発明に関する技術思想に関連する、有機EL素子の発光方式及び発光材料について説明する。 Before going into this discussion, the light emitting method and light emitting material of the organic EL element related to the technical idea related to the present invention will be described.
 《有機ELの発光方式》
 有機ELの発光方式としては、a)三重項励起状態から基底状態に戻る際に光を発する「リン光発光」と、b)一重項励起状態から基底状態に戻る際に光を発する「蛍光発光」の二通りがある。
<< Light emission method of organic EL >>
As organic EL light emission methods, a) “phosphorescence emission” that emits light when returning from the triplet excited state to the ground state, and b) “fluorescence emission that emits light when returning from the singlet excited state to the ground state. There are two ways.
 有機EL素子のような電界で励起する場合には、三重項励起子が75%の確率で、一重項励起子が25%の確率で生成するため、リン光発光の方が蛍光発光に比べ発光効率を高くすることが可能で、低消費電力化を実現するには優れた方式である。 When excited by an electric field as in an organic EL element, triplet excitons are generated with a probability of 75% and singlet excitons are generated with a probability of 25%. Therefore, phosphorescence emission emits light more than fluorescence emission. It is an excellent method for realizing high efficiency and low power consumption.
 一方、蛍光発光においても、通常では無輻射失活してしまう75%の三重項励起子を高密度で存在させることによって、2つの三重項励起子から1つの一重項励起子を発生させて発光効率を向上させるTTA機構を利用した方式が見つかっている。 On the other hand, in fluorescence emission, 75% triplet excitons, which are normally non-radiatively deactivated, are present at a high density, thereby generating one singlet exciton from two triplet excitons. A method using a TTA mechanism for improving efficiency has been found.
 さらに、近年では、安達らの発見により、一重項励起状態と三重項励起状態のエネルギーギャップを小さくすることで、発光中のジュール熱及び/又は発光素子が置かれる環境温度によりエネルギー準位の低い三重項励起状態から一重項励起状態に逆項間交差が生じ、結果としてほぼ100%に近い蛍光発光を可能とする現象(熱励起型遅延蛍光又は熱励起型遅延蛍光、「TADF」)とそれを可能にする蛍光物質が、例えば、前記非特許文献1等に記載されている。 Furthermore, in recent years, the discovery of Adachi et al. Has made the energy level lower due to the Joule heat during light emission and / or the ambient temperature where the light emitting element is placed by reducing the energy gap between the singlet excited state and the triplet excited state. Reverse intersystem crossing from the triplet excited state to the singlet excited state, and as a result, a phenomenon that enables fluorescence emission close to 100% (thermally excited delayed fluorescence or thermally excited delayed fluorescence, “TADF”) and that For example, Non-Patent Document 1 and the like describe a fluorescent substance that enables the above.
 〔リン光発光性化合物〕
 前述のとおり、リン光発光の発光効率は、蛍光発光よりも理論的には4倍有利であるが、三重項励起状態から一重項基底状態へのエネルギー失活(=リン光発光)は禁制遷移であり、また同様に一重項励起状態から三重項励起状態への項間交差も禁制遷移であるため、通常その速度定数は小さい。すなわち、遷移が起こりにくいため、励起子寿命はミリ秒から秒オーダーと長くなり、所望の発光を得ることが困難である。
[Phosphorescent compound]
As described above, the luminous efficiency of phosphorescence is theoretically 4 times more advantageous than fluorescence, but energy deactivation (= phosphorescence) from triplet excited state to singlet ground state is a forbidden transition. Similarly, since the intersystem crossing from the singlet excited state to the triplet excited state is also a forbidden transition, the rate constant is usually small. That is, since the transition is difficult to occur, the exciton lifetime is increased from millisecond to second order, and it is difficult to obtain desired light emission.
 ただし、イリジウムや白金などの重金属を用いた錯体が発光する場合には、中心金属の重原子効果によって、前記の禁制遷移の速度定数が3桁以上増大し、配位子の選択によっては、100%のリン光量子収率を得ることも可能となる。 However, when a complex using a heavy metal such as iridium or platinum emits light, the rate constant of the forbidden transition increases by 3 digits or more due to the heavy atom effect of the central metal. % Phosphorescence quantum yield can be obtained.
 しかしながら、このような理想的な発光を得るためには、希少金属であるイリジウムやパラジウム、白金などのいわゆる白金属と呼ばれる貴金属を用いる必要があり、大量に使用されることになると、その埋蔵量や金属自体の価格が産業上大きな問題となってくる。 However, in order to obtain such ideal light emission, it is necessary to use a rare metal called a white metal such as iridium, palladium, or platinum, which is a rare metal. And the price of the metal itself is a big problem for the industry.
 〔蛍光発光性化合物〕
 一般的な蛍光発光性化合物は、リン光発光性化合物のような重金属錯体である必要性は特になく、炭素、酸素、窒素及び水素などの一般的な元素の組み合わせから構成される、いわゆる有機化合物が適用でき、さらに、リンや硫黄、ケイ素などその他の非金属元素を用いることも可能で、また、アルミニウムや亜鉛などの典型金属の錯体も活用できるなど、その多様性はほぼ無限といえる。
[Fluorescent compound]
A general fluorescent compound is not necessarily a heavy metal complex like a phosphorescent compound, and is a so-called organic compound composed of a combination of general elements such as carbon, oxygen, nitrogen and hydrogen. In addition, other non-metallic elements such as phosphorus, sulfur and silicon can be used, and complexes of typical metals such as aluminum and zinc can be used.
 ただし、従来の蛍光化合物では、前記のように励起子の25%しか発光に適用できないために、リン光発光のような高効率発光は望めない。 However, with conventional fluorescent compounds, only 25% of excitons can be applied to light emission as described above, and thus high-efficiency light emission such as phosphorescence emission cannot be expected.
 〔遅延蛍光化合物〕
 (励起三重項-三重項消滅(TTA)遅延蛍光化合物)
 蛍光発光性化合物の上記問題点を解決すべく登場したのが、遅延蛍光を利用した発光方式である。三重項励起子同士の衝突を起源とするTTA方式は、下記のような式(I)で記述できる。すなわち、従来、励起子のエネルギーが、無輻射失活により、熱にしか変換されなかった三重項励起子の一部が、発光に寄与しうる一重項励起子に逆項間交差できるメリットがあり、実際の有機EL素子においても従来の蛍光発光素子の約2倍の外部取り出し量子効率を得ることができている。
[Delayed fluorescent compound]
(Excited triplet-triplet annihilation (TTA) delayed fluorescent compound)
In order to solve the above-mentioned problems of fluorescent compounds, a light emission method using delayed fluorescence has been introduced. The TTA method that originates from collisions between triplet excitons can be described by the following formula (I). That is, there is a merit that a part of triplet excitons, in which the energy of excitons has been converted only to heat due to non-radiation deactivation, can cross back to singlet excitons that can contribute to light emission. Even in an actual organic EL device, it is possible to obtain an external extraction quantum efficiency approximately twice that of a conventional fluorescent light emitting device.
 式(I)
   T+T→S+S
 上記式(I)において、Tは三重項励起子、Sは一重項励起子、Sは基底状態分子を表す。
Formula (I)
T * + T * → S * + S
In the above formula (I), T * represents a triplet exciton, S * represents a singlet exciton, and S represents a ground state molecule.
 しかしながら、上記式(I)からもわかるように、二つの三重項励起子Tからは、発光に利用できる一重項励起子Sは一つしか生成しないため、この方式で100%の内部量子効率を得ることは、原理上不可能である。 However, as can be seen from the above formula (I), only two singlet excitons S * that can be used for light emission are generated from two triplet excitons T *. Obtaining efficiency is impossible in principle.
 (熱活性型遅延蛍光(TADF)化合物)
 もう一つの高効率蛍光発光であるTADF方式は、TTAの上記問題点を解決できる方式である。
(Thermal activated delayed fluorescence (TADF) compound)
The TADF method, which is another highly efficient fluorescent emission, is a method that can solve the above-mentioned problems of TTA.
 蛍光発光性化合物は、前記のごとく無限に近い分子設計できる利点を持っている。すなわち、分子設計された化合物の中で、特異的に三重項励起状態と一重項励起状態のエネルギー準位の差の絶対値(ΔEst)が極めて近接する化合物が存在する(図1A参照)。 Fluorescent compounds have the advantage of being able to design an infinite number of molecules as described above. That is, among the molecularly designed compounds, there is a compound in which the absolute value (ΔEst) of the energy level difference between the triplet excited state and the singlet excited state is extremely close (see FIG. 1A).
 このような化合物は、分子内に重原子を持っていないにもかかわらず、ΔEstが小さいため、通常では起こりえない三重項励起状態から一重項励起状態への逆項間交差が起こる。さらに、一重項励起状態から基底状態への失活(=蛍光発光)の速度定数が極めて大きいことから、三重項励起子はそれ自体が基底状態に熱的に失活(無輻射失活)するよりも、一重項励起状態経由で蛍光を発しながら基底状態に戻る方が速度論的に有利である。そのため、TADFでは、理想的には100%の蛍光発光が可能となる。 Such a compound has a small ΔEst even though it does not have a heavy atom in the molecule. Therefore, a reverse intersystem crossing from a triplet excited state to a singlet excited state, which cannot normally occur, occurs. Furthermore, since the rate constant of deactivation from singlet excited state to ground state (= fluorescence emission) is extremely large, triplet excitons themselves are thermally deactivated to ground state (non-radiative deactivation). It is more kinetically advantageous to return to the ground state while emitting fluorescence via the singlet excited state. Therefore, TADF can ideally emit 100% of fluorescence.
 (ΔEstに関する分子設計思想)
 上記ΔEstを小さくするための分子設計について説明する。
(Molecular design concept for ΔEst)
The molecular design for reducing the ΔEst will be described.
 ΔEstを小さくするためには、原理上、分子内の最高被占軌道(Highest Occupied Molecular Orbital:HOMO)と最低空軌道(Lowest Unoccupied Molecular Orbital:LUMO)の空間的な重なりを小さくすることが最も効果的である。 In order to reduce ΔEst, in principle, it is most effective to reduce the spatial overlap between the highest occupied orbital (Highest Occupied Molecular Orbital: HOMO) and the lowest empty orbital (Lowest Unoccupied Molecular Orbital: LUMO) in the molecule. Is.
 一般に分子の電子軌道において、HOMOは電子供与性部位に、LUMOは電子吸引性部位に分布することが知られており、分子内に電子供与性と電子吸引性の骨格を導入することによって、HOMOとLUMOが存在する位置を遠ざけることが可能である。 In general, it is known that HOMO is distributed in electron donating sites and LUMO is distributed in electron withdrawing sites in the electron orbit of the molecule. By introducing an electron donating and electron withdrawing skeleton into the molecule, HOMO is distributed. It is possible to move away the position where LUMO exists.
 例えば、前述の非特許文献1~3においては、シアノ基やスルホニル基、トリアジンなどの電子吸引性の骨格と、カルバゾールやジフェニルアミノ基等の電子供与性の骨格とを導入することで、LUMOとHOMOとをそれぞれ局在化させている。 For example, in Non-Patent Documents 1 to 3 described above, by introducing an electron-withdrawing skeleton such as a cyano group, a sulfonyl group, or a triazine and an electron-donating skeleton such as a carbazole or a diphenylamino group, LUMO and HOMO is localized.
 また、化合物の基底状態と三重項励起状態との分子構造変化を小さくすることも効果的である。構造変化を小さくするための方法としては、例えば、化合物を剛直にすることなどが効果的である。ここで述べる剛直とは、例えば、分子内の環と環との結合における自由回転を抑制し、またπ共役面の大きい縮合環を導入するなど、分子内において自由に動ける部位が少ないことを意味する。特に、発光に関与する部位を剛直にすることによって、励起状態における構造変化を小さくすることが可能である。 It is also effective to reduce the molecular structure change between the ground state and triplet excited state of the compound. As a method for reducing the structural change, for example, making the compound rigid is effective. Rigidity described here means that there are few sites that can move freely in the molecule, for example, by suppressing free rotation in the bond between rings in the molecule and introducing a condensed ring with a large π conjugate plane. To do. In particular, it is possible to reduce the structural change in the excited state by making the portion involved in light emission rigid.
 (TADF化合物が抱える一般的な問題)
 TADF化合物は、その発光機構及び分子構造の面から種々の問題を抱えている。
(General problems with TADF compounds)
TADF compounds have various problems in terms of their light emission mechanism and molecular structure.
 以下に、一般的なTADF化合物が抱える問題の一部について記載する。 The following describes some of the problems with general TADF compounds.
 TADF化合物においては、ΔEstを小さくするため、HOMOとLUMOの存在する部位をできるだけ離すことが必要であるが、このため、分子の電子状態はHOMO部位とLUMO部位が分離したドナー/アクセプター型の分子内CT(分子内電荷移動状態)に近い状態となってしまう。 In the TADF compound, it is necessary to separate the sites where HOMO and LUMO exist as much as possible in order to reduce ΔEst. Therefore, the electronic state of the molecule is a donor / acceptor type molecule in which the HOMO site and the LUMO site are separated. It becomes a state close to the inner CT (intramolecular charge transfer state).
 このような分子では、複数存在すると一方の分子のドナー部分と他方の分子のアクセプター部分とを近接させると安定化が図られる。そのような安定化状態は2分子間での形成に限らず、3分子間、5分子間等、複数の分子間でも形成が可能であり、その結果、広い分布を持った種々の安定化状態が存在することになり、吸収スペクトル及び発光スペクトルの形状はブロードとなる。また、2分子を超える多分子集合体を形成しない場合であっても、二つの分子の相互作用する方向や角度などの違いによって様々な存在状態を取り得るため、基本的にはやはり吸収スペクトル及び発光スペクトルの形状はブロードになる。 In such a molecule, when there are a plurality of molecules, stabilization is achieved by bringing the donor part of one molecule and the acceptor part of the other molecule close to each other. Such a stabilization state is not limited to the formation between two molecules, but can also be formed between a plurality of molecules such as between three molecules, between five molecules, etc. As a result, various stabilization states having a wide distribution Therefore, the shape of the absorption spectrum and emission spectrum is broad. In addition, even when a multimolecular assembly exceeding two molecules is not formed, various existence states can be taken depending on the direction and angle of interaction between the two molecules. The shape of the emission spectrum becomes broad.
 発光スペクトルがブロードになることは、以下に示す二つの大きな問題を発生する。 The broad emission spectrum causes the following two major problems.
 一つは、発光色の色純度が低くなってしまう問題である。照明用途に適用する場合にはそれほど大きな問題にはならないが、電子ディスプレイ用途に用いる場合には色再現域が狭くなり、また、純色の色再現性が低下することから、実際に商品として適用するのは困難になる。 One problem is that the color purity of the emitted color is lowered. This is not a big problem when applied to lighting applications, but when used for electronic display applications, the color reproduction range is narrowed and the color reproducibility of pure colors is reduced. It becomes difficult.
 もう一つの問題は、発光スペクトルの短波長側の立ち上がり波長(以下、「蛍光ゼロ-ゼロバンド」と称す。)が短波長化、すなわち高S化(最低励起一重項エネルギーの高エネルギー化)してしまうことである。 Another problem is that the rising wavelength on the short wavelength side of the emission spectrum (hereinafter referred to as “fluorescence zero-zero band”) is shortened, that is, the S 1 is increased (the lowest excitation singlet energy is increased). It is to do.
 当然、蛍光ゼロ-ゼロバンドが短波長化すると、Sよりもエネルギーの低いTに由来するリン光ゼロ-ゼロバンドも短波長化(高T化)してしまう。そのため、ホスト化合物に用いる化合物はドーパントからの逆エネルギー移動を起こさないようにするために、高S化かつ高T化する必要が生じてくる。 Naturally, when the fluorescence zero-zero band is shortened, the phosphorescence zero-zero band derived from T 1 having lower energy than S 1 is also shortened (higher T 1 ). Therefore, the compound used in the host compound in order not to cause reverse energy transfer from the dopant, arises the need to 1 reduction and high T 1 of high S.
 これは非常に大きな問題である。基本的に有機化合物からなるホスト化合物は、有機EL素子中で、カチオンラジカル状態、アニオンラジカル状態及び励起状態という、複数の活性かつ不安定な化学種の状態を取るが、それら化学種は分子内のπ共役系を拡大することで比較的安定に存在させることができる。 This is a very big problem. A host compound consisting essentially of an organic compound takes a plurality of active and unstable chemical species such as a cation radical state, an anion radical state, and an excited state in an organic EL device. By expanding the π-conjugated system, it can exist relatively stably.
 しかしながら、高S化かつ高T化を達成するには、分子内のπ共役系を縮小するか若しくは断ち切ることが必要となり、安定性と両立させることが困難になって、結果的には発光素子の寿命を短くしてしまうことになる。 However, in order to achieve high S 1 and high T 1 , it is necessary to reduce or cut off the π-conjugated system in the molecule, which makes it difficult to achieve both stability and as a result. The life of the light emitting element is shortened.
 また、重金属を含まないTADF化合物においては、三重項励起状態から基底状態に失活する遷移は禁制遷移であるため、三重項励起状態での存在時間(励起子寿命)は数百μ秒からミリ秒オーダーと極めて長い。そのため、仮にホスト化合物のTエネルギーが蛍光発光性化合物のそれよりも高いエネルギーレベルであったとしても、その存在時間の長さから蛍光発光性化合物の三重項励起状態からホスト化合物へと逆エネルギー移動を起こす確率が増大してしまう。その結果、本来意図するTADF化合物の三重項励起状態から一重項励起状態への逆項間交差が十分に起こらずに、ホスト化合物への好ましくない逆エネルギー移動が主流となって、十分な発光効率が得られないという不具合が生じてしまう。 In addition, in a TADF compound that does not contain a heavy metal, a transition that is deactivated from a triplet excited state to a ground state is a forbidden transition, and therefore the existence time (exciton lifetime) in the triplet excited state is from several hundred microseconds to millisecond. It is very long with second order. Therefore, even if the T 1 energy of the host compound is higher than that of the fluorescent compound, the reverse energy from the triplet excited state of the fluorescent compound to the host compound is determined from the length of the existence time. The probability of causing movement increases. As a result, the reverse reverse energy transfer from the triplet excited state to the singlet excited state of the originally intended TADF compound does not occur sufficiently, and unfavorable reverse energy transfer to the host compound becomes the mainstream, resulting in sufficient luminous efficiency. Inconvenience that cannot be obtained.
 上記のような問題を解決するためには、TADF化合物の発光スペクトル形状をシャープ化し、発光極大波長と発光スペクトルの立ち上がり波長の差を小さくすることが必要となる。そのためには、基本的には一重項励起状態及び三重項励起状態の分子構造の変化を小さくすることにより達成することが可能である。 In order to solve the above problems, it is necessary to sharpen the emission spectrum shape of the TADF compound and reduce the difference between the emission maximum wavelength and the rising wavelength of the emission spectrum. This can be basically achieved by reducing the change in the molecular structure of the singlet excited state and the triplet excited state.
 また、ホスト化合物への逆エネルギー移動を抑制するためには、TADF化合物の三重項励起状態の存在時間(励起子寿命)を短くすることが効果的である。それを実現するには、基底状態と三重項励起状態との分子構造変化を小さくすること及び禁制遷移をほどくのに好適な置換基や元素を導入することなどの対策を講じることで、問題点を解決することが可能である。 In order to suppress reverse energy transfer to the host compound, it is effective to shorten the existence time (exciton lifetime) of the triplet excited state of the TADF compound. To achieve this, it is necessary to take measures such as reducing the molecular structure change between the ground state and the triplet excited state and introducing suitable substituents and elements to undo the forbidden transition. Can be solved.
 本発明は、上記のように励起状態の構造変化を抑えたπ共役系化合物(蛍光発光性化合物も含まれる。)及び三重項励起状態の存在時間が短いπ共役系化合物も設計思想として含むものである。 The present invention includes a π-conjugated compound (including a fluorescent compound) that suppresses the structural change of the excited state as described above and a π-conjugated compound having a short triplet excited state as design philosophy. .
 以下に、本発明に係るπ共役系化合物に関する種々の特性値の測定方法について記載する。 Hereinafter, various characteristic value measurement methods related to the π-conjugated compound according to the present invention will be described.
 (電子密度分布)
 本発明に係るπ共役系化合物は、ΔEstを小さくするという観点から、分子内においてHOMOとLUMOが実質的に分離していることが好ましい。これらHOMO及びLUMOの分布状態については、分子軌道計算により得られる構造最適化した際の電子密度分布から求めることができる。
(Electron density distribution)
In the π-conjugated compound according to the present invention, it is preferable that HOMO and LUMO are substantially separated in the molecule from the viewpoint of reducing ΔEst. The distribution states of these HOMO and LUMO can be obtained from the electron density distribution when the structure is optimized by molecular orbital calculation.
 本発明におけるπ共役系化合物の分子軌道計算による構造最適化及び電子密度分布の算出は、計算手法として、汎関数としてB3LYP、基底関数として6-31G(d)を用いた分子軌道計算用ソフトウェアを用いて算出することができ、ソフトウェアに特に限定はなく、いずれを用いても同様に求めることができる。 In the present invention, structure optimization and calculation of electron density distribution by molecular orbital calculation of π-conjugated compounds in the present invention are performed using molecular orbital calculation software using B3LYP as a functional and 6-31G (d) as a basis function as a calculation method. There is no particular limitation on the software, and any of them can be similarly calculated.
 本発明においては、分子軌道計算用ソフトウェアとして、米国Gaussian社製のGaussian09(Revision C.01,M.J.Frisch,et al,Gaussian,Inc.,2010.)を用いた。 In the present invention, Gaussian 09 (Revision C.01, MJ Frisch, et al, Gaussian, Inc., 2010.) manufactured by Gaussian, USA was used as molecular orbital calculation software.
 また、「HOMOとLUMOが実質的に分離している」とは、上記分子計算により算出されたHOMO軌道分布及びLUMO軌道分布の中心部位が離れており、より好ましくはHOMO軌道の分布とLUMO軌道の分布がほぼ重なっていないことを意味する。 Further, “HOMO and LUMO are substantially separated” means that the HOMO orbital distribution calculated by the above molecular calculation and the central part of the LUMO orbital distribution are separated, more preferably the HOMO orbital distribution and the LUMO orbital. This means that the distributions of do not overlap.
 また、HOMOとLUMOの分離状態については、前述の汎関数としてB3LYP、基底関数として6-31G(d)を用いた構造最適化計算から、さらに時間依存密度汎関数法(Time-Dependent DFT)による励起状態計算を実施してS、Tのエネルギー(それぞれE(S)、E(T))を求めてΔEst=E(S)-E(T)として算出することも可能である。算出されたΔEstが小さいほど、HOMOとLUMOがより分離していることを示す。本発明においては、前述と同様の計算手法を用いて算出されたΔEstが0.5eV以下であることが好ましく、より好ましくは0.2eV以下であり、さらに好ましくは0.1eV以下である。 As for the separation state of HOMO and LUMO, from the above-mentioned structure optimization calculation using B3LYP as the functional and 6-31G (d) as the basis function, the time-dependent density functional method (Time-Dependent DFT) is used. It is also possible to calculate the excited state calculation to obtain S 1 and T 1 energies (E (S 1 ) and E (T 1 ), respectively) and calculate ΔEst = E (S 1 ) −E (T 1 ) It is. As the calculated ΔEst is smaller, HOMO and LUMO are more separated. In the present invention, ΔEst calculated using the same calculation method as described above is preferably 0.5 eV or less, more preferably 0.2 eV or less, and further preferably 0.1 eV or less.
 (最低励起一重項エネルギーS
 本発明におけるπ共役系化合物の最低励起一重項エネルギーSについては、本発明においても通常の手法と同様にして算出されるもので定義される。すなわち、測定対象となる化合物を石英基板上に蒸着して試料を作製し、常温(300K)でこの試料の吸収スペクトル(縦軸:吸光度、横軸:波長とする。)を測定する。この吸収スペクトルの長波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値に基づいて、所定の換算式から算出される。
(Minimum excitation singlet energy S 1 )
The lowest excited singlet energy S 1 of the π-conjugated compound in the present invention is defined in the present invention as calculated in the same manner as in a normal method. That is, a sample to be measured is deposited on a quartz substrate to prepare a sample, and the absorption spectrum (vertical axis: absorbance, horizontal axis: wavelength) of this sample is measured at room temperature (300 K). A tangent line is drawn with respect to the rising edge of the absorption spectrum on the long wavelength side, and is calculated from a predetermined conversion formula based on the wavelength value at the intersection of the tangent line and the horizontal axis.
 ここで、使用する溶媒は、蛍光発光性化合物の凝集状態に影響を与えない、すなわち溶媒効果の影響が小さい溶媒、例えば、シクロヘキサンやトルエン等の非極性溶媒等を用いることができる。 Here, as the solvent to be used, a solvent that does not affect the aggregation state of the fluorescent compound, that is, a solvent having a small influence of the solvent effect, for example, a nonpolar solvent such as cyclohexane or toluene can be used.
 (最低励起三重項エネルギーT
 本発明で用いられるπ共役系化合物の最低励起三重項エネルギー(T)については、溶液若しくは薄膜のフォトルミネッセンス(PL)特性により算出した。例えば、薄膜における算出方法としては、希薄状態のπ共役系化合物の分散物を薄膜にした後に、ストリークカメラを用い、過渡PL特性を測定することで、蛍光成分とリン光成分の分離を行い、そのエネルギー差をΔEstとして最低励起一重項エネルギーから最低励起三重項エネルギーを求めることができる。
(Minimum excited triplet energy T 1 )
The lowest excited triplet energy (T 1 ) of the π-conjugated compound used in the present invention was calculated from the photoluminescence (PL) characteristics of the solution or thin film. For example, as a calculation method in a thin film, after making a dispersion of a dilute π-conjugated compound into a thin film, using a streak camera, the transient PL characteristics are measured to separate the fluorescent component and the phosphorescent component, The lowest excited triplet energy can be obtained from the lowest excited singlet energy with the energy difference as ΔEst.
 《有機EL素子の構成層》
 本発明の有機EL素子における代表的な素子構成としては、以下の構成を挙げることができるが、これらに限定されるものではない。
(1)陽極/発光層//陰極
(2)陽極/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(7)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/陰極
 上記の中で(7)の構成が好ましく用いられるが、これに限定されるものではない。
<< Constituent layers of organic EL elements >>
As typical element structures in the organic EL element of the present invention, the following structures can be exemplified, but the invention is not limited thereto.
(1) Anode / light emitting layer // cathode (2) Anode / light emitting layer / electron transport layer / cathode (3) Anode / hole transport layer / light emitting layer / cathode (4) Anode / hole transport layer / light emitting layer / Electron transport layer / cathode (5) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (6) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode (7) Anode / hole injection layer / hole transport layer / (electron blocking layer /) light emitting layer / (hole blocking layer /) electron transport layer / electron injection layer / cathode Among the above, the configuration of (7) is Although used preferably, it is not limited to this.
 本発明に用いられる発光層は、単層又は複数層で構成されており、発光層が複数の場合は各発光層の間に非発光性の中間層を設けてもよい。 The light emitting layer used in the present invention is composed of a single layer or a plurality of layers, and when there are a plurality of light emitting layers, a non-light emitting intermediate layer may be provided between the light emitting layers.
 必要に応じて、発光層と陰極との間に正孔阻止層(正孔障壁層ともいう)や電子注入層(陰極バッファー層ともいう)を設けてもよく、また、発光層と陽極との間に電子阻止層(電子障壁層ともいう)や正孔注入層(陽極バッファー層ともいう)を設けてもよい。 If necessary, a hole blocking layer (also referred to as a hole blocking layer) or an electron injection layer (also referred to as a cathode buffer layer) may be provided between the light emitting layer and the cathode. An electron blocking layer (also referred to as an electron barrier layer) or a hole injection layer (also referred to as an anode buffer layer) may be provided therebetween.
 本発明に用いられる電子輸送層とは、電子を輸送する機能を有する層であり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。また、複数層で構成されていてもよい。 The electron transport layer used in the present invention is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. Moreover, you may be comprised by multiple layers.
 本発明に用いられる正孔輸送層とは、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。また、複数層で構成されていてもよい。 The hole transport layer used in the present invention is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. Moreover, you may be comprised by multiple layers.
 上記の代表的な素子構成においては、陽極と陰極を除いた構成層を「有機層群」ともいう。 In the above-described typical element configuration, the constituent layers excluding the anode and the cathode are also referred to as “organic layer group”.
 (タンデム構造)
 また、本発明の有機EL素子は、少なくとも1層の発光層を含む発光ユニットを複数積層した、いわゆるタンデム構造の素子であってもよい。
(Tandem structure)
The organic EL element of the present invention may be a so-called tandem element in which a plurality of light emitting units including at least one light emitting layer are stacked.
 タンデム構造の代表的な素子構成としては、例えば以下の構成を挙げることができる。 As typical element configurations of the tandem structure, for example, the following configurations can be given.
 陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極
 ここで、上記第1発光ユニット、第2発光ユニット及び第3発光ユニットは全て同じであっても、異なっていてもよい。また二つの発光ユニットが同じであり、残る一つが異なっていてもよい。
Anode / first light emitting unit / intermediate layer / second light emitting unit / intermediate layer / third light emitting unit / cathode Here, the first light emitting unit, the second light emitting unit and the third light emitting unit are all the same, May be different. Two light emitting units may be the same, and the remaining one may be different.
 タンデム構造を構成する複数の各発光ユニットは、直接積層されていても、上記のように中間層を介して積層されていてもよい。中間層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料を用いて構成することができる。 The plurality of light emitting units constituting the tandem structure may be directly stacked or may be stacked via the intermediate layer as described above. The intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer. It has electrons in the adjacent layer on the anode side and holes in the adjacent layer on the cathode side. Any layer having a function of supplying can be formed using a known material.
 中間層の形成に用いられる材料としては、例えば、ITO(インジウム・スズ酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO、Al等の導電性無機化合物層や、Au/Bi等の2層膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、本発明はこれらに限定されない。 Examples of materials used for forming the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, Conductive inorganic compound layers such as CuAlO 2 , CuGaO 2 , SrCu 2 O 2 , LaB 6 , RuO 2 and Al, two-layer films such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Multi-layer film such as Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 , fullerenes such as C 60 , conductivity such as oligothiophene Examples include organic layers, conductive organic compound layers such as metal phthalocyanines, metal-free phthalocyanines, metal porphyrins, and metal-free porphyrins. However, the present invention is not limited to these.
 発光ユニット内の好ましい構成としては、例えば、上記の代表的な素子構成として例示した(1)~(7)の構成から、陽極と陰極を除いたもの等が挙げられるが、本発明はこれらに限定されない。 Preferred examples of the configuration within the light emitting unit include, for example, the configurations of (1) to (7) exemplified as the typical element configurations described above except that the anode and the cathode are excluded. It is not limited.
 タンデム型有機EL素子の具体例としては、例えば、米国特許第6337492号明細書、米国特許第7420203号明細書、米国特許第7473923号明細書、米国特許第6872472号明細書、米国特許第6107734号明細書、米国特許第6337492号明細書、国際公開第2005/009087号、特開2006-228712号公報、特開2006-24791号公報、特開2006-49393号公報、特開2006-49394号公報、特開2006-49396号公報、特開2011-96679号公報、特開2005-340187号公報、特許第4711424号公報、特許第3496681号公報、特許第3884564号公報、特許第4213169号公報、特開2010-192719号公報、特開2009-076929号公報、特開2008-078414号公報、特開2007-059848号公報、特開2003-272860号公報、特開2003-045676号公報、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。 Specific examples of the tandem organic EL element include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734. Specification, U.S. Pat. No. 6,337,492, International Publication No. 2005/009087, JP-A-2006-228712, JP-A-2006-24791, JP-A-2006-49393, JP-A-2006-49394 JP-A-2006-49396, JP-A-2011-96679, JP-A-2005-340187, JP-A-4711424, JP-A-3496868, JP-A-3848564, JP-A-4421169, No. 2010-192719, Special Elements described in JP2009-076929, JP2008-078414, JP2007-059848, JP2003-272860, JP2003-045676, International Publication No. 2005/094130, etc. Although a structure, a constituent material, etc. are mentioned, this invention is not limited to these.
 以下、本発明の有機EL素子の各構成層の詳細について説明する。 Hereinafter, details of each constituent layer of the organic EL element of the present invention will be described.
 《発光層》
 本発明に用いられる発光層は、電極又は隣接層から注入されてくる電子及び正孔が再結合し、励起子を経由して発光する場を提供する層であり、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。本発明に用いられる発光層は、本発明で規定する要件を満たしていれば、その構成に特に制限はない。
<Light emitting layer>
The light-emitting layer used in the present invention is a layer that provides a field in which electrons and holes injected from an electrode or an adjacent layer are recombined to emit light via excitons, and the light-emitting portion is the light-emitting layer. Even in the layer, it may be the interface between the light emitting layer and the adjacent layer. If the light emitting layer used for this invention satisfy | fills the requirements prescribed | regulated by this invention, there will be no restriction | limiting in particular in the structure.
 発光層の層厚の総和は、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧が印加されるのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲内に調整することが好ましく、より好ましくは2~500nmの範囲内であり、更に好ましくは5~200nmの範囲内である。 The total thickness of the light emitting layer is not particularly limited, but it prevents the homogeneity of the film to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color against the drive current. In view of the above, it is preferable to adjust within the range of 2 nm to 5 μm, more preferably within the range of 2 to 500 nm, and even more preferably within the range of 5 to 200 nm.
 また、本発明に用いられる個々の発光層の層厚としては、2nm~1μmの範囲内に調整することが好ましく、より好ましくは2~200nmの範囲内に調整され、更に好ましくは3~150nmの範囲内に調整される。 Further, the thickness of each light emitting layer used in the present invention is preferably adjusted in the range of 2 nm to 1 μm, more preferably adjusted in the range of 2 to 200 nm, and further preferably 3 to 150 nm. Adjusted within range.
 本発明に用いられる発光層には、発光ドーパント(発光性化合物、発光性ドーパント化合物、ドーパント化合物、単にドーパントともいう。)を含有し、さらに前述のホスト化合物(マトリックス材料、発光ホスト化合物、単にホストともいう。)を含有することが好ましい。 The light-emitting layer used in the present invention contains a light-emitting dopant (a light-emitting compound, a light-emitting dopant compound, a dopant compound, also simply referred to as a dopant), and further, the above-described host compound (matrix material, light-emitting host compound, simply host). It is also preferable to contain.
 (1)発光ドーパント
 発光ドーパントとしては、蛍光発光性ドーパント(蛍光発光性化合物、蛍光ドーパント、蛍光性化合物ともいう。)と、リン光発光性ドーパント(リン光発光性化合物、リン光ドーパント、リン光性化合物ともいう。)が好ましく用いられる。本発明においては、少なくとも1層の発光層が、後述する蛍光発光性化合物と発光補助剤(アシストドーパント)として機能するπ共役系化合物とを含有することを特徴とする。
(1) Luminescent dopant As the luminescent dopant, a fluorescent luminescent dopant (also referred to as a fluorescent luminescent compound, a fluorescent dopant, or a fluorescent compound) and a phosphorescent dopant (phosphorescent compound, phosphorescent dopant, phosphorescence). It is also referred to as a functional compound). In the present invention, at least one light emitting layer contains a fluorescent compound described later and a π-conjugated compound functioning as a light emission auxiliary agent (assist dopant).
 本発明においては、発光層が蛍光発光性化合物を5~40質量%の範囲内で、特に、10~30質量%の範囲内で含有することが好ましい。 In the present invention, the light emitting layer preferably contains a fluorescent compound within the range of 5 to 40% by mass, particularly within the range of 10 to 30% by mass.
 発光層中の蛍光発光性化合物の濃度については、使用する特定構造の蛍光発光性化合物及びデバイスの必要条件に基づいて、任意に決定することができ、発光層の層厚方向に対し、均一な濃度で含有されていてもよく、また任意のパターンで濃度分布を有していてもよい。 The concentration of the fluorescent compound in the light emitting layer can be arbitrarily determined based on the fluorescent compound having a specific structure to be used and the requirements of the device, and is uniform in the thickness direction of the light emitting layer. It may be contained in a concentration, or may have a concentration distribution in an arbitrary pattern.
 また、近年では遅延蛍光を利用した発光ドーパントも開発されており、これらを用いてもよい。遅延蛍光を利用した発光ドーパントの具体例としては、例えば、国際公開第2011/156793号、特開2011-213643号公報、特開2010-93181号公報等に記載の化合物が挙げられるが、本発明はこれらに限定されない。 In recent years, luminescent dopants using delayed fluorescence have been developed, and these may be used. Specific examples of the luminescent dopant using delayed fluorescence include, for example, compounds described in International Publication No. 2011/156793, Japanese Patent Application Laid-Open No. 2011-213643, Japanese Patent Application Laid-Open No. 2010-93181, and the like. Is not limited to these.
 また、本発明で用いられる蛍光発光性化合物は、複数種を併用して用いてもよく、構造の異なる蛍光発光性化合物同士の組み合わせや、蛍光発光性化合物とリン光発光性化合物とを組み合わせとしてもよい。これにより、任意の発光色を得ることができる。 In addition, the fluorescent compounds used in the present invention may be used in combination of two or more types, and combinations of fluorescent compounds having different structures or combinations of fluorescent compounds and phosphorescent compounds. Also good. Thereby, arbitrary luminescent colors can be obtained.
 さらに、本発明に係るπ共役系化合物は、異なる蛍光発光性化合物やリン光発光性化合物の発光を補助するために使用することができる。その場合、発光層には本発明に係るπ共役系化合物に対し、質量比で100%以上のホストが存在し、かつ、本発明に係るπ共役系化合物に対し、質量比で0.1~50%の範囲内で異なる蛍光発光性物質又はリン光発光性化合物が存在することが好ましい。 Furthermore, the π-conjugated compound according to the present invention can be used for assisting light emission of different fluorescent compounds or phosphorescent compounds. In that case, the light emitting layer contains a host having a mass ratio of 100% or more with respect to the π-conjugated compound according to the present invention, and 0.1 to 0.1 mass ratio with respect to the π-conjugated compound according to the present invention. It is preferable that different fluorescent substances or phosphorescent compounds exist within a range of 50%.
 なお、本発明に係るπ共役系化合物を異なる蛍光発光性化合物やリン光発光性化合物の発光を補助するために使用する場合、発光層に含まれる物質は、ホスト化合物も含み3成分以上であることが好ましい。 When the π-conjugated compound according to the present invention is used for assisting light emission of different fluorescent compounds or phosphorescent compounds, the substance contained in the light-emitting layer includes three or more components including the host compound. It is preferable.
 具体的には、発光層中に、π共役系化合物、好ましくは、最低励起一重項エネルギー準位と最低励起三重項エネルギー準位の差の絶対値(ΔEst)が0.5eV以下であるπ共役系化合物と、蛍光発光性化合物及びリン光発光性化合物の少なくとも1種類とを含有することも、高発光効率発現の観点から好適である。当該発光層には、さらにホスト化合物が含有されていることがより好ましい。 Specifically, in the light-emitting layer, a π-conjugated compound, preferably a π-conjugated compound having an absolute value (ΔEst) of a difference between the lowest excited singlet energy level and the lowest excited triplet energy level of 0.5 eV or less. It is also suitable from a viewpoint of high luminous efficiency expression to contain a system compound and at least 1 sort (s) of a fluorescent compound and a phosphorescent compound. More preferably, the light emitting layer further contains a host compound.
 π共役系化合物、発光性化合物及びホスト化合物は、発光層中に含有されるそれぞれの成分の数に制限はないが、3成分がそれぞれ少なくとも1種ずつ含有されていることがさらに好ましい。 The number of each component contained in the light-emitting layer of the π-conjugated compound, the luminescent compound, and the host compound is not limited, but it is more preferable that at least one of the three components is contained.
 発光層が、最低励起一重項エネルギー準位と最低励起三重項エネルギー準位の絶対値の差(ΔEst)が、0.5eV以下である本発明に係るπ共役系化合物と、発光性化合物と、ホスト化合物を含有する場合、本発明に係るπ共役系化合物はアシストドーパントとして作用する。一方、発光層が、本発明に係るπ共役系化合物と発光性化合物を含有し、ホスト化合物を含有しない場合、本発明に係るπ共役系化合物はホスト化合物として作用する。 The light emitting layer has a difference in absolute value between the lowest excited singlet energy level and the lowest excited triplet energy level (ΔEst) of 0.5 eV or less, the π-conjugated compound according to the present invention, a luminescent compound, When the host compound is contained, the π-conjugated compound according to the present invention acts as an assist dopant. On the other hand, when the light emitting layer contains the π-conjugated compound and the luminescent compound according to the present invention and does not contain the host compound, the π-conjugated compound according to the present invention acts as a host compound.
 効果が発現する機構としては、いずれの場合も同様であり、本発明に係るπ共役系化合物上に生成した三重項励起子を、逆項間交差(RISC)で一重項励起子へと変換する点にある。 The mechanism for producing the effect is the same in any case, and triplet excitons generated on the π-conjugated compound according to the present invention are converted into singlet excitons by reverse intersystem crossing (RISC). In the point.
 これにより、本発明に係るπ共役系化合物上に生成した理論上すべての励起子エネルギーを発光性化合物にエネルギー移動することができ、高発光効率の発現を可能にする。 Thereby, all the exciton energies generated theoretically on the π-conjugated compound according to the present invention can be transferred to the luminescent compound, and high luminous efficiency can be realized.
 したがって、発光層が、本発明に係るπ共役系化合物、発光性化合物及びホスト化合物の3成分を含有する場合は、π共役系化合物のSとTのエネルギー準位は、ホスト化合物のSとTのエネルギー準位よりも低く、発光性化合物のSとTのエネルギー準位よりも高い方が好ましい。 Therefore, when the light emitting layer contains the three components of the π-conjugated compound, the luminescent compound, and the host compound according to the present invention, the energy levels of S 1 and T 1 of the π-conjugated compound are S of the host compound. 1 and T 1 of the lower than the energy level, it is preferably higher than the energy level of the S 1 and T 1 of the light-emitting compound.
 同様に、発光層が、本発明に係るπ共役系化合物と発光性化合物の2成分を含有する場合は、π共役系化合物のSとTのエネルギー準位は、発光性化合物のSとTのエネルギー準位よりも高い方が好ましい。 Similarly, light emitting layer, the energy level of the S 1 and T 1 of the case containing the two components of the light emitting compound and [pi conjugated compound according to the present invention, [pi-conjugated compounds, S 1 luminescent compound higher than the energy level of T 1 and is preferable.
 図1B及び図1Cに、本発明のπ共役系化合物がそれぞれアシストドーパント及びホスト化合物として作用する場合の模式図を示す。図1B及び図1Cは一例であって、本発明に係るπ共役系化合物上に生成する三重項励起子の生成過程は、電界励起のみに限定されず、発光層内又は周辺層界面からのエネルギー移動や電子移動等も含まれる。 FIG. 1B and FIG. 1C are schematic views when the π-conjugated compound of the present invention acts as an assist dopant and a host compound, respectively. 1B and 1C are examples, and the generation process of the triplet exciton generated on the π-conjugated compound according to the present invention is not limited to the electric field excitation, and energy from the light emitting layer or the peripheral layer interface. Movement, electronic movement, etc. are also included.
 さらに、図1B及び図1Cでは、発光材料として蛍光発光性化合物を用いて示しているが、これに限定されず、燐光発光性化合物を用いてもよいし、蛍光発光性化合物と燐光発光性化合物の両者を用いてもよい。 Further, in FIGS. 1B and 1C, a fluorescent compound is used as a light-emitting material, but the present invention is not limited thereto, and a phosphorescent compound may be used, or a fluorescent compound and a phosphorescent compound are used. Both of these may be used.
 本発明に係るπ共役系化合物をアシストドーパントとして用いる場合、発光層は、π共役系化合物に対し、質量比で100%以上のホスト化合物を含有し、蛍光発光性化合物又はリン光発光性化合物がπ共役系化合物に対して、質量比で0.1~50%の範囲内で含有していることが好ましい。 When the π-conjugated compound according to the present invention is used as an assist dopant, the light-emitting layer contains 100% or more of the host compound by mass ratio with respect to the π-conjugated compound, and the fluorescent compound or phosphorescent compound is It is preferably contained within a range of 0.1 to 50% by mass ratio with respect to the π-conjugated compound.
 本発明に係るπ共役系化合物をホスト化合物として用いる場合、発光層は、蛍光発光性化合物又はリン光発光性化合物をπ共役系化合物に対して質量比0.1~50%の範囲内の範囲内で含有することが好ましい。 When the π-conjugated compound according to the present invention is used as a host compound, the light-emitting layer has a mass ratio of 0.1 to 50% with respect to the π-conjugated compound. It is preferable to contain within.
 本発明に係るπ共役系化合物をアシストドーパント又はホスト化合物として用いる場合、本発明に係るπ共役系化合物の発光スペクトルと発光性化合物の吸収スペクトルが重なることが好ましい。 When the π-conjugated compound according to the present invention is used as an assist dopant or a host compound, the emission spectrum of the π-conjugated compound according to the present invention and the absorption spectrum of the luminescent compound preferably overlap.
 本発明の有機EL素子や本発明に用いられる化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図3.16において、分光放射輝度計CS-1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。 The light emission color of the organic EL device of the present invention and the compound used in the present invention is shown in FIG. 3.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a luminance meter CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
 本発明においては、1層又は複数層の発光層が、発光色の異なる複数の発光ドーパントを含有し、白色発光を呈することも好ましい態様の一つである。 In the present invention, it is also one of preferred embodiments that the light emitting layer of one layer or plural layers contains a plurality of light emitting dopants having different light emission colors and exhibits white light emission.
 白色を示す発光ドーパントの組み合わせについては、特に限定はないが、例えば、青と橙や、青と緑と赤との組み合わせ等が挙げられる。 There are no particular limitations on the combination of light-emitting dopants that exhibit white, but examples include blue and orange, and a combination of blue, green, and red.
 本発明の有機EL素子における白色とは、2度視野角正面輝度を前述の方法により測定した際に、1000cd/mでのCIE1931表色系における色度がx=0.39±0.09、y=0.38±0.08の領域内にあることをいう。 The white color in the organic EL device of the present invention means that the chromaticity in the CIE 1931 color system at 1000 cd / m 2 is x = 0.39 ± 0.09 when the 2 ° viewing angle front luminance is measured by the method described above. , Y = 0.38 ± 0.08.
 (1.1)π共役系化合物
 本発明の有機EL素子においては、有機層群の少なくとも一層が、下記一般式(1)で表される構造を有するπ共役系化合物を含有することを特徴とし、さらには、当該π共役系化合物の最低励起一重項エネルギー準位と最低励起三重項エネルギー準位の差の絶対値(ΔEst)が0.5eV以下であることが好ましい。
(1.1) π-conjugated compound In the organic EL device of the present invention, at least one layer of the organic layer group contains a π-conjugated compound having a structure represented by the following general formula (1). Furthermore, the absolute value (ΔEst) of the difference between the lowest excited singlet energy level and the lowest excited triplet energy level of the π-conjugated compound is preferably 0.5 eV or less.
 本発明に係る一般式(1)で表される構造を有するπ共役系化合物は、π共役系化合物上に生成した三重項励起子を逆項間交差(RISC)で一重項励起子へと変換し、失活させないことで、発光効率を改善するアシストドーパントとして発光効率を上げる機能と、TADF性を備えた蛍光発光性化合物として発光効率を改善する機能を有する化合物であり、有機EL素子の構成材料として有用である。 The π-conjugated compound having the structure represented by the general formula (1) according to the present invention converts a triplet exciton generated on the π-conjugated compound into a singlet exciton by reverse intersystem crossing (RISC). In addition, it is a compound that has the function of increasing the luminous efficiency as an assist dopant for improving the luminous efficiency by not deactivating, and the function of improving the luminous efficiency as a fluorescent compound having a TADF property. Useful as a material.
 具体的には、有機EL素子の発光層に、π共役系化合物をアシストドーパント又はホスト化合物として発光性化合物とともに含有させることにより、発光効率を向上させることができる。 Specifically, the luminous efficiency can be improved by including a π-conjugated compound as an assist dopant or a host compound together with a light-emitting compound in the light-emitting layer of the organic EL element.
 以下に一般式(1)で表される構造を有するπ共役系化合物について、その詳細を説明する。 Hereinafter, the details of the π-conjugated compound having the structure represented by the general formula (1) will be described.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(1)において、Aは電子吸引性基を表し、Dは電子供与性基を表す。m及びnはそれぞれ独立に1又は2の整数である。 In the general formula (1), A represents an electron withdrawing group, and D represents an electron donating group. m and n are each independently an integer of 1 or 2.
 また、Xは、下記一般式(1a)~(1k)で表される構造から選ばれる芳香族炭化水素基を表す。 X represents an aromatic hydrocarbon group selected from structures represented by the following general formulas (1a) to (1k).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記一般式(1a)~(1k)で表される構造を有する芳香族炭化水素基において、R、R、Ra、Rb、Rc及びRdは、それぞれ独立に水素原子又は置換基を表す。p、q、r及びsは、それぞれ独立に0~4の整数を表す。これらの置換基は同一でも異なっていてもよく、また、各々の置換基同士が結合して環を形成していてもよい。 In the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k), R 1 , R 2 , Ra, Rb, Rc and Rd each independently represent a hydrogen atom or a substituent. p, q, r and s each independently represent an integer of 0 to 4. These substituents may be the same or different, and each substituent may be bonded to form a ring.
 また、上記一般式(1a)~(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子吸引性基であるとき、当該電子吸引性基が、芳香族複素環基、スルホニル基(-SO;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、スルフェニル基(-SOR;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、シアノ基(-CN)、ハロゲノ基、カルボニル基(-COR;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、ペンタフルオロフェニル基(-C)、トリフルオロメチル基(-CF)、トリフルオロメチルフェニル基(-CCF)、及びボリル基(-BR ;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)から選ばれる少なくとの1種であることが好ましい態様である。 When at least one of R 1 , R 2 , Ra, Rb, Rc and Rd in the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k) is an electron withdrawing group, The electron-withdrawing group is an aromatic heterocyclic group, a sulfonyl group (—SO 2 R 1 ; R 1 is an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms. ), A sulfenyl group (—SOR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms or an aromatic heterocyclic group having 3 to 20 carbon atoms), a cyano group (—CN) A halogeno group, a carbonyl group (—COR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms), a pentafluorophenyl group (—C 6 F 5), trifluoromethyl group (-CF 3), trifluoroacetic Butylphenyl group (-C 6 H 4 CF 3) , and boryl group (-BR 1 2; R 1 represents an aromatic heterocyclic group of aromatic hydrocarbon group having 6 to 30 carbon atoms, or 3 to 20 carbon atoms It is a preferred embodiment that it is at least one kind selected from.
 また、前記一般式(1a)~(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子供与性基であるとき、当該電子供与性基が、炭素数3~20の芳香族複素環基、アミノ基(-NH)、アリールアミノ基(-NHR又は-NR ;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20芳香族複素環基を表す。)、アルコキシ基(-OR;Rは炭素数1~10の直鎖または環状の炭化水素基)、及びアリールオキシ基(-OR;Rは直鎖または環状の炭化水素基、炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)から選ばれる少なくとも1種であることが好ましい態様である。 When at least one of R 1 , R 2 , Ra, Rb, Rc and Rd in the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k) is an electron donating group, The electron-donating group is an aromatic heterocyclic group having 3 to 20 carbon atoms, an amino group (—NH 2 ), an arylamino group (—NHR 1 or —NR 1 2 ; R 1 is an aromatic group having 6 to 30 carbon atoms. An aromatic hydrocarbon group or an aromatic heterocyclic group having 3 to 20 carbon atoms), an alkoxy group (—OR 1 ; R 1 is a linear or cyclic hydrocarbon group having 1 to 10 carbon atoms), and aryloxy At least selected from a group (—OR 2 ; R 2 represents a linear or cyclic hydrocarbon group, an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms). One type is a preferred embodiment.
 更には、前記一般式(1a)~(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子吸引性基であるとき、当該電子吸引性基が、芳香族複素環基、スルホニル基(-SO;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、スルフェニル基(-SOR;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、シアノ基(-CN)、ハロゲノ基、カルボニル基(-COR;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、ペンタフルオロフェニル基(-C)、トリフルオロメチル基(-CF)、トリフルオロメチルフェニル基(-CCF)、及びボリル基(-BR ;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)から選ばれる少なくとの1種であり。かつ前記一般式(1a)~一般式(1k)におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子供与性基であるとき、当該電子供与性基が、炭素数3~20の芳香族複素環基、アミノ基(-NH)、アリールアミノ基(-NHR又は-NR ;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20芳香族複素環基を表す。)、アルコキシ基(-OR;Rは炭素数1~10の直鎖または環状の炭化水素基)、及びアリールオキシ基(-OR;Rは直鎖または環状の炭化水素基、炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)から選ばれる少なくとの1種であることが好ましい態様である。 Furthermore, when at least one of R 1 , R 2 , Ra, Rb, Rc and Rd in the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k) is an electron-withdrawing group The electron-withdrawing group is an aromatic heterocyclic group, a sulfonyl group (—SO 2 R 1 ; R 1 is an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms. ), A sulfenyl group (—SOR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms), a cyano group (—CN ), A halogeno group, a carbonyl group (—COR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms), a pentafluorophenyl group (— C 6 F 5), trifluoromethyl group (-CF 3), trifluoperazine Methylphenyl group (-C 6 H 4 CF 3) , and boryl group (-BR 1 2; R 1 is an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms It is at least one kind selected from. When at least one of R 1 , R 2 , Ra, Rb, Rc and Rd in the general formulas (1a) to (1k) is an electron donating group, the electron donating group has 3 to 3 carbon atoms. 20 aromatic heterocyclic group, amino group (—NH 2 ), arylamino group (—NHR 1 or —NR 1 2 ; R 1 is an aromatic hydrocarbon group having 6 to 30 carbon atoms, or 3 to 20 carbon atoms Represents an aromatic heterocyclic group), an alkoxy group (—OR 1 ; R 1 is a straight or cyclic hydrocarbon group having 1 to 10 carbon atoms), and an aryloxy group (—OR 2 ; R 2 is a straight chain) Or a cyclic hydrocarbon group, an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms). is there.
 また、前記一般式(1)で表される構造を有するπ共役系化合物におけるXが、前記一般式(1a)、(1b)、(1d)、(1e)、(1g)、(1h)、(1i)又は(1j)で表される芳香族炭化水素基であることが好ましい態様である。 Further, X in the π-conjugated compound having the structure represented by the general formula (1) is the general formula (1a), (1b), (1d), (1e), (1g), (1h), A preferred embodiment is an aromatic hydrocarbon group represented by (1i) or (1j).
 更には、前記一般式(1)で表される構造を有するπ共役系化合物におけるXが、前記一般式(1a)、(1b)、(1d)、(1e)、(1g)、(1h)、(1i)又は(1j)で表される芳香族炭化水素基であり、R、R、Ra、Rb、Rc及びRdのうちの少なくとも1つは電子吸引性基であり、かつ少なくとも1つは電子供与性基であり、前記電子吸引性基及び前記電子供与性基に該当しないR、R、Ra、Rb、Rc及びRdのすべてが水素原子であることが好ましい態様である。 Furthermore, X in the π-conjugated compound having the structure represented by the general formula (1) is the general formula (1a), (1b), (1d), (1e), (1g), (1h) , (1i) or (1j), wherein at least one of R 1 , R 2 , Ra, Rb, Rc and Rd is an electron-withdrawing group, and at least 1 One is an electron donating group, and it is a preferred embodiment that all of R 1 , R 2 , Ra, Rb, Rc and Rd not corresponding to the electron withdrawing group and the electron donating group are hydrogen atoms.
 上記一般式(1a)~(1k)で表される構造を有する芳香族炭化水素基において、R、R、R、R、R、及びRが置換基を表す場合、その置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ジフェニルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。好ましくは、アルキル基、芳香族炭化水素基、芳香族複素環基、アルコキシ基、アミノ基、シアノ基が挙げられる。 In the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k), when R 1 , R 2 , R a , R b , R c , and R d represent a substituent, Examples of the substituent include alkyl groups (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc. ), A cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), an alkenyl group (eg, vinyl group, allyl group, etc.), an alkynyl group (eg, ethynyl group, propargyl group, etc.), an aromatic hydrocarbon group (aromatic Also referred to as hydrocarbon ring group, aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xyl group Group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group, etc.), aromatic heterocyclic group (for example, pyridyl group, pyrimidinyl group, furyl group, pyrrolyl) Group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazol-1-yl group, 1,2,3-triazol-1-yl group, etc.), oxazolyl group, Benzoxazolyl, thiazolyl, isoxazolyl, isothiazolyl, furazanyl, thienyl, quinolyl, benzofuryl, dibenzofuryl, benzothienyl, dibenzothienyl, indolyl, carbazolyl, carbolinyl, diaza Carbazolyl group (Carborini 1), a quinoxalinyl group, a pyridazinyl group, a triazinyl group, a quinazolinyl group, a phthalazinyl group, etc.), a heterocyclic group (for example, a pyrrolidyl group, an imidazolidyl group) Group, morpholyl group, oxazolidyl group, etc.), alkoxy group (eg, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (eg, cyclopentyl) Oxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.), alkylthio group (eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc. , Cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (eg, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group) Octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (eg, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group) Butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylamino Sulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, Dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy) Group), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbo group) Nylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group) Dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2- Pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexyl) Raid group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexyl) Sulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl group (for example, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group) , Dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (for example, phenylsulfonyl group, naphthylsulfonyl group, 2- Lysylsulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, diphenylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group) , 2-pyridylamino group, etc.), halogen atom (eg, fluorine atom, chlorine atom, bromine atom, etc.), fluorinated hydrocarbon group (eg, fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group) Etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.), phosphono group and the like. Preferably, an alkyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, an alkoxy group, an amino group, and a cyano group are exemplified.
 更に、インドール環、インダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾイミダゾール環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、イソインドール環、ナフチリジン環、フタラジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、アクリジン環、アクリダン環、フェナントリジン環、フェナントロリン環、フェナジン環、アザジベンゾフラン環、アザジベンゾチオフェン環等の置換基も好適に用いることができる。これらの置換基は、電子吸引性基としても好適に用いることができる。 Furthermore, indole ring, indazole ring, benzothiazole ring, benzoxazole ring, benzimidazole ring, quinoline ring, isoquinoline ring, quinazoline ring, quinoxaline ring, isoindole ring, naphthyridine ring, phthalazine ring, carbazole ring, carboline ring, diaza Such as carbazole ring (in which one of carbon atoms constituting carboline ring is replaced by nitrogen atom), acridine ring, acridan ring, phenanthridine ring, phenanthroline ring, phenazine ring, azadibenzofuran ring, azadibenzothiophene ring, etc. Substituents can also be suitably used. These substituents can also be suitably used as electron withdrawing groups.
 また、これらの置換基は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は、複数が互いに結合して環を形成していてもよい。 Further, these substituents may be further substituted with the above substituents. Further, these substituents may be bonded together to form a ring.
 本発明においては、本発明に係る一般式(1)で表される構造を有するπ共役系化合物の最低励起一重項準位と最低励起三重項準位とのエネルギー差の絶対値(ΔEst)が、0.5eV以下であることが好ましい。 In the present invention, the absolute value (ΔEst) of the energy difference between the lowest excited singlet level and the lowest excited triplet level of the π-conjugated compound having the structure represented by the general formula (1) according to the present invention is , 0.5 eV or less is preferable.
 以下に本発明で好ましく用いられる一般式(1)で表される構造を有するπ共役系化合物の具体的化合物を例示するが、本発明はこれに限定されない。 Hereinafter, specific examples of the π-conjugated compound having a structure represented by the general formula (1) preferably used in the present invention are exemplified, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 本発明に係る一般式(1)で表される構造を有するπ共役系化合物は、例えば、特開2004-103576号公報、米国特許第8685543号明細書、国際公開第2013/133359号等に記載の方法、又はこれらの特許文献に記載されている参照文献に記載されている方法を参照することにより合成することができる。 Examples of the π-conjugated compound having the structure represented by the general formula (1) according to the present invention are described in JP-A No. 2004-103576, US Pat. No. 8,865,543, International Publication No. 2013/133359, and the like. Or a method described in a reference document described in these patent documents.
 (1.2)リン光発光性ドーパント
 本発明に用いられるリン光発光性ドーパントについて説明する。
(1.2) Phosphorescent dopant The phosphorescent dopant used in the present invention will be described.
 本発明に用いられるリン光発光性ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。 The phosphorescent dopant used in the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield. Is defined as a compound of 0.01 or more at 25 ° C., but a preferable phosphorescence quantum yield is 0.1 or more.
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に用いられるリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant used in the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. Just do it.
 リン光ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。本発明に使用できる公知のリン光ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。 The phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL element. Specific examples of known phosphorescent dopants that can be used in the present invention include compounds described in the following documents.
 Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許出願公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許出願公開第2009/0108737号明細書、米国特許出願公開第2009/0039776号明細書、米国特許第6921915号明細書、米国特許第6687266号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2009/0165846号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7250226号、米国特許第7396598号明細書、米国特許出願公開第2006/0263635号明細書、米国特許出願公開第2003/0138657号明細書、米国特許出願公開第2003/0152802号明細書、米国特許第7090928号明細書、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許出願公開第2006/0251923号明細書、米国特許出願公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許出願公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/098120号明細書、米国特許出願公開第2006/103874号明細書、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、米国特許出願公開第2012/228583号明細書、米国特許出願公開第2012/212126号明細書、特開2012-069737号公報、特開2012-195554号公報、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報等である。 Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Application Publication No. 2006/835469, US Patent Application Publication No. 2006 /. No. 0202194, U.S. Patent Application Publication No. 2007/0087321, U.S. Patent Application Publication No. 2005/0244673, Inorg. Chem. 40, 1704 (2001), Chem. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chem. Lett. 34, 592 (2005), Chem. Commun. 2906 (2005), Inorg. Chem. 42, 1248 (2003), International Publication No. 2009/050290, International Publication No. 2002/015645, International Publication No. 2009/000673, US Patent Application Publication No. 2002/0034656, and US Pat. No. 7,332,232. US Patent Application Publication No. 2009/0108737, US Patent Application Publication No. 2009/0039776, US Patent No. 6921915, US Patent No. 6,687,266, US Patent Application Publication No. 2007/0190359. US Patent Application Publication No. 2006/0008670, US Patent Application Publication No. 2009/0165846, US Patent Application Publication No. 2008/0015355, US Pat. No. 7,250,226, US Pat. No. 7,396,598 Statement, rice Patent Application Publication No. 2006/0263635, U.S. Patent Application Publication No. 2003/0138657, U.S. Patent Application Publication No. 2003/0152802, U.S. Pat. No. 7090928, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics 23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), International Publication No. 2002/002714, International Publication No. 2006/009024, International Publication No. 2006/056418, International Publication No. 2005/019373, International Publication No. 2005/123873, International Publication No. 2005/123873, International Publication No. 2007/004380, International Publication No. 2006/082742, US Patent Application Publication No. 2006/0251923, US Patent Application Publication No. 2005/0260441, US Pat. No. 7,393,599. Specification, US Pat. No. 7,534,505, US Pat. No. 7,445,855, US Patent Application Publication No. 2007/0190359, US Patent Application Publication No. 2008/0297033, US Pat. No. 7,338,722, US Patent application No. 2002/0134984, U.S. Pat. No. 7,279,704, U.S. Patent Application Publication No. 2006/098120, U.S. Patent Application Publication No. 2006/103874, International Publication No. 2005/076380, International Public Publication No. 2010/032663, International Publication No. 2008140115, International Publication No. 2007/052431, International Publication No. 2011/134013, International Publication No. 2011/157339, International Publication No. 2010/086089, International Publication No. 2009 / No. 113646, International Publication No. 2012/020327, International Publication No. 2011/051404, International Publication No. 2011/004639, International Publication No. 2011/073149, US Patent Application Publication No. 2012/228583, US Patent Application JP 2012/212126, JP 2012-069737, JP 2012-195554, JP 2009-114086, JP 2003-81988, JP 2002-302671, No. 2002-363552.
 中でも、好ましいリン光ドーパントとしては、Irを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含む錯体が好ましい。 Among these, preferable phosphorescent dopants include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond, and metal-sulfur bond is preferable.
 (1.3)蛍光発光性化合物
 本発明に係るπ共役系化合物と併用することのできる蛍光発光性化合物について説明する。
(1.3) Fluorescent compound The fluorescent compound that can be used in combination with the π-conjugated compound according to the present invention will be described.
 本発明に係るπ共役系化合物と併用可能な蛍光発光性化合物としては、特に制限はなく、例えば、ΔEstが0.5eVより大きい蛍光発光性化合物も好適に用いることができ、その他、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等や、レーザー色素に代表される蛍光量子収率が高い化合物が挙げられる。 The fluorescent compound that can be used in combination with the π-conjugated compound according to the present invention is not particularly limited. For example, a fluorescent compound having a ΔEst of greater than 0.5 eV can be suitably used. In addition, an anthracene derivative, Pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes, coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, Squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, rare earth complex phosphors, and laser dyes A compound with a high fluorescence quantum yield is mentioned.
 (2)ホスト化合物
 発光層においては、本発明に係るπ共役系化合物と、蛍光発光性化合物及びリン光発光性化合物のうち少なくとも1種類と、ホスト化合物とを含有することが好ましい。
(2) Host compound The light emitting layer preferably contains a π-conjugated compound according to the present invention, at least one of a fluorescent compound and a phosphorescent compound, and a host compound.
 本発明に用いられるホスト化合物は、発光層において主に電荷の注入及び輸送を担う化合物であり、有機EL素子においてそれ自体の発光は実質的に観測されない。 The host compound used in the present invention is a compound mainly responsible for charge injection and transport in the light emitting layer, and its own light emission is not substantially observed in the organic EL device.
 ホスト化合物は、発光層に含有される化合物の内で、その層中での質量比が20%以上であることが好ましい。 The host compound preferably has a mass ratio in the layer of 20% or more among the compounds contained in the light emitting layer.
 ホスト化合物は、単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。 The host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
 以下に、本発明において好ましく用いられるホスト化合物について述べる。 Hereinafter, host compounds preferably used in the present invention will be described.
 本発明で用いられる蛍光発光性化合物とともに用いられるホスト化合物としては、特に制限はないが、逆エネルギー移動の観点から、本発明に係る蛍光発光性化合物の励起一重項エネルギーより大きな励起エネルギーをもつものが好ましく、さらに本発明に係る蛍光発光性化合物の励起三重項エネルギーより大きな励起三重項エネルギーをもつものがより好ましい。 The host compound used with the fluorescent compound used in the present invention is not particularly limited, but has an excitation energy larger than the excitation singlet energy of the fluorescent compound according to the present invention from the viewpoint of reverse energy transfer. Further preferred are those having an excitation triplet energy greater than the excitation triplet energy of the fluorescent compound according to the present invention.
 本発明の有機EL素子に公知のホスト化合物を用いる場合、その具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。 When a known host compound is used for the organic EL device of the present invention, specific examples thereof include compounds described in the following documents, but the present invention is not limited thereto.
 例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報、米国特許出願公開第2003/0175553号明細書、米国特許出願公開第2006/0280965号明細書、米国特許出願公開第2005/0112407号明細書、米国特許出願公開第2009/0017330号明細書、米国特許出願公開第2009/0030202号明細書、米国特許出願公開第2005/0238919号明細書、国際公開第2001/039234号、国際公開第2009/021126号、国際公開第2008/056746号、国際公開第2004/093207号、国際公開第2005/089025号、国際公開第2007/063796号、国際公開第2007/063754号、国際公開第2004/107822号、国際公開第2005/030900号、国際公開第2006/114966号、国際公開第2009/086028号、国際公開第2009/003898号、国際公開第2012/023947号、特開2008-074939号公報、特開2007-254297号公報、欧州特許第2034538号明細書、国際公開第2011/055933号、国際公開第2012/035853号等である。 For example, Japanese Patent Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860 Gazette, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579 No. 2002-105445, No. 2002-343568, No. 2002-141173, No. 2002-352957, No. 2002-203683, No. 2002-363227, No. 2002-231453. Gazette, 2003-3165 gazette, 2002-234888 gazette, 2003-27048 gazette, 2002-255934 gazette, 2002-260861 gazette, 2002-280183 gazette, 2002-299060 gazette. No. 2002-302516, No. 2002-305083, No. 2002-305084, No. 2002-308837, No. 2003/0175553, No. 2006/0280965. US Patent Application Publication No. 2005/0112407, US Patent Application Publication No. 2009/0017330, US Patent Application Publication No. 2009/0030202, US Patent Application Publication No. 2005/0238919 , International Publication No. 2001/039234, International Publication No. 2009/021126, International Publication No. 2008/056746, International Publication No. 2004/093207, International Publication No. 2005/089025, International Publication No. 2007/063796, International Publication No. 2007/063754, International Publication No. 2004/107822, International Publication No. 2005/030900, International Publication No. 2006/114966, International Publication No. 2009/086028, International Publication No. 2009/003898, International Publication No. 2012 No. 02/03947, JP 2008-074939 A, JP 2007-254297 A, European Patent No. 2034538, International Publication No. 2011/055933, International Publication No. 2012/035853, and the like.
 ホスト化合物は、発光層内においてキャリアの輸送及び励起子の生成を担う。そのため、カチオンラジカル状態、アニオンラジカル状態、及び励起状態の全ての活性種の状態において安定に存在でき、分解や付加反応などの化学変化を起こさないこと、さらに、層中において通電経時でホスト分子がオングストロームレベルで移動しないことが好ましい。 The host compound is responsible for carrier transport and exciton generation in the light emitting layer. Therefore, it can exist stably in all active species states such as cation radical state, anion radical state, and excited state, and does not cause chemical changes such as decomposition and addition reaction. It is preferable not to move at the angstrom level.
 また、特に併用する発光ドーパントがTADF発光を示す場合には、TADF化合物の三重項励起状態の存在時間が長いことから、ホスト化合物自体のTエネルギーが高いこと、さらにホスト化合物同士が会合した状態で低T状態を作らないこと、TADF化合物とホスト化合物とがエキサイプレックスを形成しないこと、ホスト化合物が電界によりエレクトロマーを形成しないことなど、ホスト化合物が低T化しないような分子構造の適切な設計が必要となる。 In particular, when the light-emitting dopant used in combination exhibits TADF light emission, since the existence time of the triplet excited state of the TADF compound is long, the T 1 energy of the host compound itself is high, and the host compounds are associated with each other. in prevention of generation of a low T 1 state, that the TADF compound and the host compound does not form a exciplex, such that the host compound does not form a electro-mer by the electric field, the host compound is a molecular structure such as not to lower T 1 of Appropriate design is required.
 このような要件を満たすためには、ホスト化合物自体が電子のホッピング移動性が高いこと、かつ、正孔のホッピング移動が高いこと、三重項励起状態となったときの構造変化が小さいことが必要である。このような要件を満たすホスト化合物の代表格としては、カルバゾール骨格、アザカルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格又はアザジベンゾフラン骨格などの、高Tエネルギーを有し、かつ14π電子系の拡張π共役骨格を部分構造として有するものが好ましく挙げられる。特に、発光層が、カルバゾール誘導体を含有することにより、発光層内における適度なキャリアホッピングや発光材料の分散を促すことができ、素子の発光性能や薄膜の安定性を向上させる効果が得られることから、好ましい。 In order to satisfy these requirements, the host compound itself must have high electron hopping mobility, high hole hopping movement, and small structural change when it is in a triplet excited state. It is. Representative examples of host compounds satisfying such requirements include a carbazole skeleton, an azacarbazole skeleton, a dibenzofuran skeleton, a dibenzothiophene skeleton, or an azadibenzofuran skeleton, which have high T 1 energy and an extended π conjugate of a 14π electron system. Those having a skeleton as a partial structure are preferred. In particular, when the light-emitting layer contains a carbazole derivative, it is possible to promote appropriate carrier hopping and dispersion of the light-emitting material in the light-emitting layer, and the effect of improving the light-emitting performance of the device and the stability of the thin film can be obtained. Therefore, it is preferable.
 さらに、これらの環がビアリール構造又はマルチアリール構造を取った化合物などが代表例として挙げられる。ここでいう「アリール」とは、芳香族炭化水素環だけでなく芳香族複素環も含む。 Further, representative examples include compounds in which these rings have a biaryl structure or a multiaryl structure. As used herein, “aryl” includes not only an aromatic hydrocarbon ring but also an aromatic heterocyclic ring.
 より好ましくは、カルバゾール骨格と、カルバゾール骨格とは異なる分子構造を持つ14π電子系の芳香族複素環化合物とが直接結合した化合物であり、さらに14π電子系の芳香族複素環化合物を分子内に二つ以上持つカルバゾール誘導体が好ましい。特に、前記カルバゾール誘導体が、14π電子以上の共役系構造部分を二つ以上有する化合物であることが、本発明の効果を一層高めるために好ましい。 More preferably, it is a compound in which a carbazole skeleton and a 14π-electron aromatic heterocyclic compound having a molecular structure different from that of the carbazole skeleton are directly bonded, and further a 14π-electron aromatic heterocyclic compound is incorporated in the molecule. A carbazole derivative having at least one is preferred. In particular, the carbazole derivative is preferably a compound having two or more conjugated structures having 14π electrons or more in order to further enhance the effects of the present invention.
 また、本発明に用いられるホスト化合物としては、下記一般式(I)で表される化合物も好ましい。これは、下記一般式(I)で表される化合物は、縮環構造を有するためにπ電子雲が広がっておりキャリア輸送性が高く、高いガラス転移温度(Tg)を有するためである。さらに、一般に縮合芳香族環は三重項エネルギー(T)が小さい傾向があるが、一般式(I)で表される化合物は高いTを有しており、発光波長の短い(すなわちT及びSの大きい)発光材料に対しても好適に用いることができる。 Moreover, as a host compound used for this invention, the compound represented by the following general formula (I) is also preferable. This is because the compound represented by the following general formula (I) has a condensed ring structure, and therefore a π electron cloud spreads, the carrier transportability is high, and the glass transition temperature (Tg) is high. Further, generally, the condensed aromatic ring tends to have a small triplet energy (T 1 ), but the compound represented by the general formula (I) has a high T 1 and has a short emission wavelength (that is, T 1). and larger S 1) it can be suitably used also for the light emitting material.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 上記一般式(I)において、X101は、NR101、酸素原子、硫黄原子、CR102103又はSiR102103を表す。y~yは、各々CR104又は窒素原子を表す。 In the general formula (I), X 101 represents NR 101 , an oxygen atom, a sulfur atom, CR 102 R 103 or SiR 102 R 103 . y 1 to y 8 each represents CR 104 or a nitrogen atom.
 R101~R104は、各々水素原子又は置換基を表し、また互いに結合して環を形成してもよい。 R 101 to R 104 each represent a hydrogen atom or a substituent, and may be bonded to each other to form a ring.
 Ar101及びAr102は、各々芳香族環を表し、それぞれ同一でも異なっていてもよい。 Ar 101 and Ar 102 each represent an aromatic ring and may be the same or different.
 n101及びn102は各々0~4の整数を表すが、R101が水素原子の場合は、n101は1~4の整数を表す。 n101 and n102 represents an each an integer of 0 to 4, when R 101 is a hydrogen atom, n101 represents an integer of 1-4.
 一般式(I)におけるR101~R104は水素又は置換基を表し、ここにいう置換基は本発明に用いられるホスト化合物の機能を阻害しない範囲で有してもよいものを指し、例えば、合成スキーム上置換基が導入されてしまう場合で、本発明の効果を奏する化合物は本発明に包含される旨を規定するものである。 R 101 to R 104 in the general formula (I) represent hydrogen or a substituent, and the substituent referred to here refers to what may be contained within a range not inhibiting the function of the host compound used in the present invention, for example, In the case where a substituent is introduced in the synthetic scheme, the compound having the effect of the present invention is defined as being included in the present invention.
 R101~R104で各々表される置換基としては、例えば、直鎖又は分岐アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭素環基、アリール基等ともいう。例えば、ベンゼン環、ビフェニル、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-ターフェニル環、m-ターフェニル環、p-ターフェニル環、アセナフテン環、コロネン環、インデン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環、テトラリン等から導出される基)、芳香族複素環基(例えば、フラン環、ジベンゾフラン環、チオフェン環、ジベンゾチオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置換されている環等から導出される基。また、カルボリン環とジアザカルバゾール環を合わせて「アザカルバゾール環」と呼ぶ場合もある。)、非芳香族炭化水素環基(例えば、シクロペンチル基、シクロヘキシル基等)、非芳香族複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、チオール基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、重水素原子等が挙げられる。 Examples of the substituent represented by each of R 101 to R 104 include linear or branched alkyl groups (for example, methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, pentyl group, hexyl group, octyl group). Group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), alkenyl group (eg, vinyl group, allyl group, etc.), alkynyl group (eg, ethynyl group, propargyl group, etc.), aromatic hydrocarbon ring group (aromatic Also referred to as carbocyclic group, aryl group, etc. For example, benzene ring, biphenyl, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m- Terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, indene ring, fluorene ring A group derived from a fluoranthrene ring, a naphthacene ring, a pentacene ring, a perylene ring, a pentaphen ring, a picene ring, a pyrene ring, a pyrantolen ring, an anthraanthrene ring, tetralin, etc.), an aromatic heterocyclic group (for example, a furan ring) , Dibenzofuran ring, thiophene ring, dibenzothiophene ring, oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, Thiazole ring, indole ring, indazole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring, carbazole ring, Borin ring, diazacarbazole ring (group derived from a ring in which one of the carbon atoms of the hydrocarbon ring constituting the carboline ring is further substituted with a nitrogen atom, etc. In addition, combining the carboline ring and the diazacarbazole ring Sometimes referred to as “azacarbazole ring”), non-aromatic hydrocarbon ring group (eg, cyclopentyl group, cyclohexyl group, etc.), non-aromatic heterocyclic group (eg, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl) Group), alkoxy group (for example, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (for example, cyclopentyloxy group, cyclohexyloxy group) Etc.), aryloxy group (for example, phenoxy group, naphthyloxy group) Etc.), alkylthio groups (eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio groups (eg, cyclopentylthio group, cyclohexylthio group, etc.), arylthio groups ( For example, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, Phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group) Group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, acetyl group, ethylcarbonyl group) Group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, acetyloxy group) Ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), Mido group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group) Group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylamino) Carbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl Sulfonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylamino group) Ureido group, etc.), sulfinyl group (eg, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.) ), Alkylsulfonyl groups (for example, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group) , Dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (eg, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (eg, amino group, ethylamino group, dimethylamino group, Butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, etc.), halogen atom (eg fluorine atom, chlorine atom, bromine atom etc.), fluoride Hydrocarbon group (eg, fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group, etc.), cyano group, nitro group, hydroxy group, thiol group, silyl group (eg, trimethylsilyl group, triisopropylsilyl group) Group, trifeni Silyl group, a phenyl diethyl silyl group and the like), or the like deuterium atom.
 これらの置換基は、上記の置換基によって更に置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。 These substituents may be further substituted with the above substituents. In addition, a plurality of these substituents may be bonded to each other to form a ring.
 一般式(I)におけるy~yとしては、好ましくは、y~yの内の少なくとも三つ、又はy~yの内の少なくとも三つがCR102で表され、より好ましくはy~yが全てCR102である。このような骨格は、正孔輸送性又は電子輸送性に優れ、陽極・陰極から注入された正孔・電子を効率よく発光層内で再結合・発光させることができる。 As y 1 to y 8 in the general formula (I), preferably at least three of y 1 to y 4 or at least three of y 5 to y 8 are represented by CR 102 , more preferably y 1 to y 8 are all CR 102 . Such a skeleton is excellent in hole transport property or electron transport property, and can efficiently recombine and emit holes / electrons injected from the anode / cathode in the light emitting layer.
 中でも、LUMOのエネルギー準位が浅く、電子輸送性に優れる構造として、一般式(I)中でX101が、NR101、酸素原子又は硫黄原子である化合物が好ましい。より好ましくは、X101及びy~yとともに形成される縮合環が、カルバゾール環、アザカルバゾール環、ジベンゾフラン環又はアザジベンゾフラン環である。 Among them, a compound in which X 101 is NR 101 , an oxygen atom, or a sulfur atom in general formula (I) is preferable as a structure having a shallow LUMO energy level and excellent electron transport properties. More preferably, the condensed ring formed with X 101 and y 1 to y 8 is a carbazole ring, an azacarbazole ring, a dibenzofuran ring or an azadibenzofuran ring.
 さらに、ホスト化合物は剛直構造にすることが好ましいという目的から、X101がNR101の場合においては、R101は前述で挙げられた置換基の内、π共役系骨格である芳香族炭化水素環基又は芳香族複素環基であることが好ましい。また、これらのR101は更に前述のR101~R104で表される置換基で置換されていてもよい。 Furthermore, for the purpose that the host compound preferably has a rigid structure, when X 101 is NR 101 , R 101 is an aromatic hydrocarbon ring which is a π-conjugated skeleton among the substituents mentioned above. It is preferably a group or an aromatic heterocyclic group. Further, these R 101 may be further substituted with the substituents represented by R 101 to R 104 described above.
 一般式(I)において、Ar101及びAr102により表される芳香族環としては、芳香族炭化水素環又は芳香族複素環が挙げられる。該芳香族環は単環でも縮合環でもよく、更に未置換でも、前述のR101~R104で表される置換基と同様の置換基を有してもよい。 In the general formula (I), examples of the aromatic ring represented by Ar 101 and Ar 102 include an aromatic hydrocarbon ring and an aromatic heterocyclic ring. The aromatic ring may be a single ring or a condensed ring, and may be unsubstituted or may have a substituent similar to the substituents represented by R 101 to R 104 described above.
 一般式(I)において、Ar101及びAr102により表される芳香族炭化水素環としては、例えば、前述のR101~R104で表される置換基の例として挙げられた芳香族炭化水素環基と同様の環が挙げられる。 In the general formula (I), examples of the aromatic hydrocarbon ring represented by Ar 101 and Ar 102 include the aromatic hydrocarbon rings exemplified as the substituents represented by R 101 to R 104 described above. Examples include the same ring as the group.
 一般式(I)で表される部分構造において、Ar101及びAr102により表される芳香族複素環としては、例えば、前述のR101~R104で表される置換基の例として挙げられた芳香族複素環基と同様の環が挙げられる。 In the partial structure represented by the general formula (I), examples of the aromatic heterocycle represented by Ar 101 and Ar 102 include the substituents represented by R 101 to R 104 described above. The same ring as an aromatic heterocyclic group is mentioned.
 一般式(I)で表されるホスト化合物が大きなTを有するという目的を考えた場合には、Ar101及びAr102で表される芳香族環自身のTが高いことが好ましく、例えば、ベンゼン環(ベンゼン環が複数連結したポリフェニレン骨格(ビフェニル、テルフェニル、クォーターフェニル等)も含む)、フルオレン環、トリフェニレン環、カルバゾール環、アザカルバゾール環、ジベンゾフラン環、アザジベンゾフラン環、ジベンゾチオフェン環、ジベンゾチオフェン環、ピリジン環、ピラジン環、インドロインドール環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イミダゾール環又はトリアジン環等が好ましい。より好ましくは、ベンゼン環、カルバゾール環、アザカルバゾール環、ジベンゾフラン環である。 Considering the purpose that the host compound represented by the general formula (I) has a large T 1 , it is preferable that the aromatic ring itself represented by Ar 101 and Ar 102 has a high T 1 , for example, Benzene ring (including polyphenylene skeletons with multiple benzene rings linked (biphenyl, terphenyl, quarterphenyl, etc.)), fluorene ring, triphenylene ring, carbazole ring, azacarbazole ring, dibenzofuran ring, azadibenzofuran ring, dibenzothiophene ring, dibenzo A thiophene ring, pyridine ring, pyrazine ring, indoloindole ring, indole ring, benzofuran ring, benzothiophene ring, imidazole ring or triazine ring is preferred. More preferred are a benzene ring, a carbazole ring, an azacarbazole ring, and a dibenzofuran ring.
 Ar101及びAr102がカルバゾール環又はアザカルバゾール環の場合は、N位(又は9位ともいう)又は3位で結合していることがより好ましい。 When Ar 101 and Ar 102 are a carbazole ring or an azacarbazole ring, it is more preferable that they are bonded at the N-position (or 9-position) or the 3-position.
 Ar101及びAr102がジベンゾフラン環の場合は、2位又は4位で結合していることがより好ましい。 When Ar 101 and Ar 102 are dibenzofuran rings, they are more preferably bonded at the 2-position or 4-position.
 また、上記の目的とは別に、有機EL素子を車内に積載して使用する用途などを考えた場合においては、車内の環境温度が高くなることが想定されるため、ホスト化合物のTgが高いことも好ましい。そこで、一般式(I)で表されるホスト化合物を高Tg化するという目的から、Ar101及びAr102により表される芳香族環としては、各々3環以上の縮合環が好ましい一態様である。 In addition to the above purpose, when considering the use of an organic EL element mounted in a vehicle, the environment temperature in the vehicle is assumed to be high, so the Tg of the host compound is high. Is also preferable. Therefore, for the purpose of increasing the Tg of the host compound represented by the general formula (I), each of the aromatic rings represented by Ar 101 and Ar 102 is preferably a condensed ring having three or more rings. .
 3環以上が縮合した芳香族炭化水素縮合環としては、具体的には、ナフタセン環、アントラセン環、テトラセン環、ペンタセン環、ヘキサセン環、フェナントレン環、ピレン環、ベンゾピレン環、ベンゾアズレン環、クリセン環、ベンゾクリセン環、アセナフテン環、アセナフチレン環、トリフェニレン環、コロネン環、ベンゾコロネン環、ヘキサベンゾコロネン環、フルオレン環、ベンゾフルオレン環、フルオランテン環、ペリレン環、ナフトペリレン環、ペンタベンゾペリレン環、ベンゾペリレン環、ペンタフェン環、ピセン環、ピラントレン環、コロネン環、ナフトコロネン環、オバレン環、アンスラアントレン環等が挙げられる。なお、これらの環は、更に上記の置換基を有していてもよい。 Specific examples of the aromatic hydrocarbon condensed ring in which three or more rings are condensed include naphthacene ring, anthracene ring, tetracene ring, pentacene ring, hexacene ring, phenanthrene ring, pyrene ring, benzopyrene ring, benzoazulene ring, chrysene ring , Benzochrysene ring, acenaphthene ring, acenaphthylene ring, triphenylene ring, coronene ring, benzocoronene ring, hexabenzocoronene ring, fluorene ring, benzofluorene ring, fluoranthene ring, perylene ring, naphthoperylene ring, pentabenzoperylene ring, benzoperylene ring, pentaphen A ring, a picene ring, a pyranthrene ring, a coronene ring, a naphtho- coronene ring, an ovalen ring, an anthraanthrene ring and the like. In addition, these rings may further have the above substituent.
 また、3環以上が縮合した芳香族複素環としては、具体的には、アクリジン環、アクリダン環、ベンゾキノリン環、カルバゾール環、カルボリン環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の任意の一つが窒素原子で置き換わったものを表す)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等が挙げられる。なお、これらの環は更に置換基を有していてもよい。 Specific examples of the aromatic heterocycle condensed with three or more rings include an acridine ring, an acridan ring, a benzoquinoline ring, a carbazole ring, a carboline ring, a phenazine ring, a phenanthridine ring, a phenanthroline ring, a carboline ring, Cyclazine ring, quindrine ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, diazacarbazole ring (any one of the carbon atoms constituting the carboline ring) Phenanthroline ring, dibenzofuran ring, dibenzothiophene ring, naphthofuran ring, naphthothiophene ring, benzodifuran ring, benzodithiophene ring, naphthodifuran ring, naphthodithiophene ring, anthrafuran ring, ant Difuran ring, anthracite thiophene ring, anthradithiophene ring, thianthrene ring, phenoxathiin ring, such as thio fan train ring (naphthothiophene ring). In addition, these rings may further have a substituent.
 一般式(I)において、n101及びn102は各々0~2の整数であることが好ましく、より好ましくはn101+n102が1~3の整数である。また、R101が水素原子の場合にn101及びn102が同時に0であると、一般式(I)で表されるホスト化合物の分子量が小さく、低いTgしか達成できないため、R101が水素原子の場合にはn101は1~4の整数を表す。 In general formula (I), n101 and n102 are each preferably an integer of 0 to 2, and more preferably n101 + n102 is an integer of 1 to 3. Furthermore, since the R 101 is the n101 and n102 when the hydrogen atom is 0 at the same time, the molecular weight of the host compound represented by the general formula (I) is small, low Tg only be achieved, if R 101 is a hydrogen atom N101 represents an integer of 1 to 4.
 本発明で用いられるホスト化合物として、カルバゾール誘導体が、一般式(II)で表される構造を有する化合物であることが好ましい。このような化合物は、特にキャリア輸送性に優れる傾向があるためである。 As the host compound used in the present invention, the carbazole derivative is preferably a compound having a structure represented by the general formula (II). This is because such a compound tends to have particularly excellent carrier transportability.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 一般式(II)において、X101、Ar101、Ar102、n102は、それぞれ前記一般式(I)におけるX101、Ar101、Ar102、n102と同義である。 In formula (II), X 101, Ar 101, Ar 102, n102 have the same meanings as X 101, Ar 101, Ar 102 , n102 in each of the general formula (I).
 n102は好ましくは0~2の整数であり、より好ましくは0又は1である。 N102 is preferably an integer of 0 to 2, more preferably 0 or 1.
 一般式(II)において、X101を含んで形成される縮合環は、Ar101及びAr102以外にも本発明に用いられるホスト化合物の機能を阻害しない範囲でさらに置換基を有してもよい。 In the general formula (II), the condensed ring formed containing X 101 may further have a substituent other than Ar 101 and Ar 102 as long as the function of the host compound used in the present invention is not inhibited. .
 さらに、一般式(II)で表される化合物が、下記一般式(III-1)、(III-2)又は(III-3)で表されることが好ましい。 Furthermore, the compound represented by the general formula (II) is preferably represented by the following general formula (III-1), (III-2) or (III-3).
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 一般式(III-1)~(III-3)において、X101、Ar102、n102は、それぞれ前記一般式(II)におけるX101、Ar102、n102と同義である。また、一般式(III-2)において、R104は、前記一般式(I)におけるR104と同義である。 In the general formula (III-1) ~ (III -3), X 101, Ar 102, n102 is the same meaning as X 101, Ar 102, n102 in the general formula (II). In the general formula (III-2), R 104 has the same meaning as R 104 in formula (I).
 一般式(III-1)~(III-3)において、X101を含んで形成される縮合環、カルバゾール環及びベンゼン環は、本発明に用いられるホスト化合物の機能を阻害しない範囲でさらに置換基を有してもよい。 In the general formulas (III-1) to (III-3), the condensed ring, carbazole ring and benzene ring formed containing X 101 are further substituted within the range not inhibiting the function of the host compound used in the present invention. You may have.
 以下に、本発明に用いることができるホスト化合物として、一般式(I)、(II)、(III-1)~(III-3)で表される化合物及びその他の構造からなる化合物例を示すが、これらに限定されるものではない。 In the following, examples of host compounds that can be used in the present invention include compounds represented by general formulas (I), (II), (III-1) to (III-3), and other compounds composed of other structures. However, it is not limited to these.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
 本発明に用いられる好ましいホスト化合物は、昇華精製が可能な程度の分子量をもった低分子化合物であっても、繰り返し単位を有するポリマーであってもよい。 The preferred host compound used in the present invention may be a low molecular compound having a molecular weight capable of sublimation purification or a polymer having a repeating unit.
 低分子化合物の場合、昇華精製が可能であるため精製が容易で、高純度の材料を得やすいという利点がある。分子量としては、昇華精製が可能な程度であれば特に制限はないが、好ましい分子量としては3000以下、より好ましくは2000以下である。 In the case of a low-molecular compound, sublimation purification is possible, so that there is an advantage that purification is easy and it is easy to obtain a high purity material. The molecular weight is not particularly limited as long as sublimation purification is possible, but the preferred molecular weight is 3000 or less, more preferably 2000 or less.
 繰り返し単位を有するポリマー又はオリゴマーの場合は、ウェットプロセスで成膜しやすいという利点があり、また一般にポリマーはTgが高いため耐熱性の点でも好ましい。 In the case of a polymer or oligomer having a repeating unit, there is an advantage that it is easy to form a film by a wet process, and since a polymer generally has a high Tg, it is preferable from the viewpoint of heat resistance.
 本発明に用いられるホスト化合物として用いられるポリマーは、所望の素子性能が達成可能であれば特に制限はないが、好ましくは一般式(I)、(II)、(III-1)~(III-3)の構造を主鎖若しくは側鎖に有するものが好ましい。分子量としては特に制限はないが、分子量5000以上が好ましく、若しくは繰り返し単位数が10以上のものが好ましい。 The polymer used as the host compound used in the present invention is not particularly limited as long as the desired device performance can be achieved, but preferably the general formulas (I), (II), (III-1) to (III- What has the structure of 3) in a principal chain or a side chain is preferable. Although there is no restriction | limiting in particular as molecular weight, Molecular weight 5000 or more is preferable or a thing with 10 or more repeating units is preferable.
 また、ホスト化合物は、正孔輸送能又は電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、さらに、有機EL素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点から、高いガラス転移温度(Tg)を有することが好ましい。好ましくはTgが90℃以上であり、より好ましくは120℃以上である。 In addition, the host compound has a hole transporting ability or an electron transporting ability, prevents the emission of light from being long-wavelength, and is stable with respect to heat generated when the organic EL element is driven at a high temperature or during the element driving. From the viewpoint of operation, it is preferable to have a high glass transition temperature (Tg). Tg is preferably 90 ° C. or higher, more preferably 120 ° C. or higher.
 ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012に準拠した方法により求められる値である。 Here, the glass transition point (Tg) is a value determined by a method based on JIS K 7121-2012 using DSC (Differential Scanning Colorimetry).
 《電子輸送層》
 本発明における電子輸送層とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有していればよい。
《Electron transport layer》
The electron transport layer in the present invention is made of a material having a function of transporting electrons, and may have a function of transmitting electrons injected from the cathode to the light emitting layer.
 本発明に係る電子輸送層の総層厚については特に制限はないが、通常は2nm~5μmの範囲内であり、より好ましくは2~500nmの範囲内であり、さらに好ましくは5~200nmの範囲内である。 The total thickness of the electron transport layer according to the present invention is not particularly limited, but is usually in the range of 2 nm to 5 μm, more preferably in the range of 2 to 500 nm, and still more preferably in the range of 5 to 200 nm. Is within.
 また、有機EL素子においては発光層で生じた光を電極から取り出す際、発光層から直接取り出される光と、光を取り出す電極と対極に位置する電極によって反射されてから取り出される光とが干渉を起こすことが知られている。光が陰極で反射される場合は、電子輸送層の総層厚を数nm~数μmの間で適宜調整することにより、この干渉効果を効率的に利用することが可能である。 Further, in the organic EL element, when the light generated in the light emitting layer is extracted from the electrode, the light extracted directly from the light emitting layer interferes with the light extracted after being reflected by the electrode from which the light is extracted and the electrode located at the counter electrode. It is known to wake up. When light is reflected by the cathode, this interference effect can be efficiently utilized by appropriately adjusting the total thickness of the electron transport layer between several nanometers and several micrometers.
 一方で、電子輸送層の層厚を厚くすると電圧が上昇しやすくなるため、特に層厚が厚い場合においては、電子輸送層の電子移動度は10-5cm/Vs以上であることが好ましい。 On the other hand, when the layer thickness of the electron transport layer is increased, the voltage is likely to increase. Therefore, particularly when the layer thickness is large, the electron mobility of the electron transport layer is preferably 10 −5 cm 2 / Vs or more. .
 電子輸送層に用いられる材料(以下、電子輸送材料という)としては、電子の注入性又は輸送性、正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。 The material used for the electron transport layer (hereinafter referred to as an electron transport material) may be any of electron injecting or transporting properties and hole blocking properties, and can be selected from conventionally known compounds. Can be selected and used.
 例えば、含窒素芳香族複素環誘導体(カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の一つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体等)、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体、トリフェニレン誘導体等)等が挙げられる。 For example, nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, pyridazine derivatives, Triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, azatriphenylene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, etc.), dibenzofuran derivatives, Dibenzothiophene derivatives, silole derivatives, aromatic hydrocarbon ring derivatives (naphthalene derivatives, anthracene derivatives, triphenylene derivatives, etc.) It is.
 また、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8-キノリノール)アルミニウム(略称:Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(略称:Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。 In addition, a metal complex having a quinolinol skeleton or a dibenzoquinolinol skeleton as a ligand, such as tris (8-quinolinol) aluminum (abbreviation: Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,5) 7-dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), and the like A metal complex in which the central metal of the metal complex is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。 In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. In addition, the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
 また、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 Also, a polymer material in which these materials are introduced into a polymer chain or these materials as a polymer main chain can be used.
 本発明に係る電子輸送層においては、電子輸送層にドープ材をゲスト材料としてドープして、n性の高い(電子リッチ)電子輸送層を形成してもよい。ドープ材としては、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、例えば、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等の文献に記載されたものが挙げられる。 In the electron transport layer according to the present invention, the electron transport layer may be doped with a doping material as a guest material to form an electron transport layer having a high n property (electron rich). Examples of the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides. Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004) and the like.
 本発明の有機EL素子に用いられる、公知の好ましい電子輸送材料の具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。 Specific examples of known preferable electron transport materials used in the organic EL device of the present invention include compounds described in the following documents, but the present invention is not limited thereto.
 米国特許第6528187号明細書、米国特許第7230107号明細書、米国特許出願公開第2005/0025993号明細書、米国特許出願公開第2004/0036077号明細書、米国特許出願公開第2009/0115316号明細書、米国特許出願公開第2009/0101870号明細書、米国特許出願公開第2009/0179554号明細書、国際公開第2003/060956号、国際公開第2008/132085号、Appl.Phys.Lett.75,4(1999)、Appl.Phys.Lett.79,449(2001)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.79,156(2001)、米国特許第7964293号明細書、米国特許出願公開第2009/030202号明細書、国際公開第2004/080975号、国際公開第2004/063159号、国際公開第2005/085387号、国際公開第2006/067931号、国際公開第2007/086552号、国際公開第2008/114690号、国際公開第2009/069442号、国際公開第2009/066779号、国際公開第2009/054253号、国際公開第2011/086935号、国際公開第2010/150593号、国際公開第2010/047707号、EP2311826号、特開2010-251675号公報、特開2009-209133号公報、特開2009-124114号公報、特開2008-277810号公報、特開2006-156445号公報、特開2005-340122号公報、特開2003-45662号公報、特開2003-31367号公報、特開2003-282270号公報、国際公開第2012/115034号等である。 US Pat. No. 6,528,187, US Pat. No. 7,230,107, US Patent Application Publication No. 2005/0025993, US Patent Application Publication No. 2004/0036077, US Patent Application Publication No. 2009/0115316 U.S. Patent Application Publication No. 2009/0101870, U.S. Patent Application Publication No. 2009/0179554, International Publication No. 2003/060956, International Publication No. 2008/120855, Appl. Phys. Lett. 75, 4 (1999), Appl. Phys. Lett. 79, 449 (2001), Appl. Phys. Lett. 81, 162 (2002), Appl. Phys. Lett. 81, 162 (2002), Appl. Phys. Lett. 79,156 (2001), U.S. Patent No. 7964293, U.S. Patent Application Publication No. 2009/030202, International Publication No. 2004/080975, International Publication No. 2004/063159, International Publication No. 2005/085387. , International Publication No. 2006/067931, International Publication No. 2007/085652, International Publication No. 2008/114690, International Publication No. 2009/066942, International Publication No. 2009/066779, International Publication No. 2009/054253, International Publication No. JP 2011/086935, WO 2010/150593, WO 2010/047707, EP 2311826, JP 2010-251675, JP 2009-209133, JP 2009-124114, JP-A-2008-277810, JP-A-2006-156445, JP-A-2005-340122, JP-A-2003-45662, JP-A-2003-31367, JP-A-2003-282270, International Publication No. 2012/115034 or the like.
 本発明におけるより好ましい電子輸送材料としては、少なくとも一つの窒素原子を含む芳香族複素環化合物が挙げられ、例えば、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、アザジベンゾフラン誘導体、アザジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体などが挙げられる。 More preferable electron transport materials in the present invention include aromatic heterocyclic compounds containing at least one nitrogen atom. For example, pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, azadibenzofurans. Derivatives, azadibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, benzimidazole derivatives, and the like.
 電子輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。 The electron transport material may be used alone or in combination of two or more.
 《正孔阻止層》
 正孔阻止層とは、広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ、正孔を輸送する能力が小さい材料からなり、電子を輸送しつつ、正孔を阻止することで、電子と正孔の再結合確率を向上させることができる。
《Hole blocking layer》
The hole blocking layer is a layer having a function of an electron transport layer in a broad sense, and preferably made of a material having a function of transporting electrons and a small ability to transport holes, while transporting electrons. By blocking holes, the recombination probability of electrons and holes can be improved.
 また、前述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。 Moreover, the structure of the electron transport layer described above can be used as a hole blocking layer according to the present invention, if necessary.
 本発明の有機EL素子において、正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。 In the organic EL device of the present invention, the hole blocking layer is preferably provided adjacent to the cathode side of the light emitting layer.
 本発明に係る正孔阻止層の層厚としては、好ましくは3~100nmの範囲内であり、更に好ましくは5~30nmの範囲内である。 The layer thickness of the hole blocking layer according to the present invention is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
 正孔阻止層に用いられる材料としては、前述の電子輸送層に用いられる材料と同様のものが好ましく用いられ、また、前述のホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。 As the material used for the hole blocking layer, the same materials as those used for the electron transport layer are preferably used, and the materials used as the host compound are also preferably used for the hole blocking layer.
 《電子注入層》
 本発明に係る電子注入層(以下、「陰極バッファー層」ともいう。)とは、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
《Electron injection layer》
The electron injection layer (hereinafter also referred to as “cathode buffer layer”) according to the present invention is a layer provided between a cathode and a light emitting layer for lowering driving voltage and improving light emission luminance. It is described in detail in the second chapter, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Elements and the Forefront of Industrialization (issued by NTT Corporation on November 30, 1998)”.
 本発明において、電子注入層は必要に応じて設け、上記のごとく陰極と発光層との間、又は陰極と電子輸送層との間に存在させてもよい。 In the present invention, the electron injection layer may be provided as necessary and may exist between the cathode and the light emitting layer or between the cathode and the electron transport layer as described above.
 電子注入層はごく薄い膜であることが好ましく、素材にもよるがその層厚は0.1~5nmの範囲内が好ましい。また構成材料が断続的に存在する不均一な層(膜)であってもよい。 The electron injection layer is preferably a very thin film, and although depending on the material, the layer thickness is preferably in the range of 0.1 to 5 nm. Moreover, the nonuniform layer (film | membrane) in which a constituent material exists intermittently may be sufficient.
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、8-ヒドロキシキノリネートリチウム(略称:Liq)等に代表される金属錯体等が挙げられる。また、前述の電子輸送材料を用いることも可能である。 Details of the electron injection layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specific examples of materials preferably used for the electron injection layer are as follows. , Metals typified by strontium and aluminum, alkali metal compounds typified by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkaline earth metal compounds typified by magnesium fluoride, calcium fluoride, etc., oxidation Metal oxides typified by aluminum, metal complexes typified by lithium 8-hydroxyquinolinate (abbreviation: Liq), and the like can be given. Further, the above-described electron transport material can also be used.
 また、上記の電子注入層に用いられる材料は単独で用いてもよく、複数種を併用して用いてもよい。 Moreover, the materials used for the electron injection layer may be used alone or in combination of two or more.
 《正孔輸送層》
 本発明において正孔輸送層とは、正孔を輸送する機能を有する材料からなり、陽極より注入された正孔を発光層に伝達する機能を有していればよい。
《Hole transport layer》
In the present invention, the hole transport layer is made of a material having a function of transporting holes and may have a function of transmitting holes injected from the anode to the light emitting layer.
 本発明に係る正孔輸送層の総層厚については特に制限はないが、通常は5nm~5μmの範囲内であり、より好ましくは2~500nmの範囲内であり、さらに好ましくは5~200nmの範囲内である。 The total thickness of the hole transport layer according to the present invention is not particularly limited, but is usually in the range of 5 nm to 5 μm, more preferably in the range of 2 to 500 nm, and still more preferably in the range of 5 to 200 nm. Within range.
 正孔輸送層に用いられる材料(以下、正孔輸送材料という。)としては、正孔の注入性又は輸送性、電子の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。 As a material used for the hole transport layer (hereinafter referred to as a hole transport material), any material that has either a hole injection property or a transport property or an electron barrier property may be used. Any one can be selected and used.
 例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えば、PEDOT/PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。 For example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives , Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, and polyvinyl carbazole, polymer materials or oligomers with aromatic amines introduced into the main chain or side chain, polysilane, conductive Polymer or oligomer (for example, PEDOT / PSS, aniline copolymer, polyaniline, polythiophene, etc.)
 トリアリールアミン誘導体としては、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)に代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。 Examples of triarylamine derivatives include benzidine type typified by α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), starburst type typified by MTDATA, Examples include compounds having fluorene or anthracene in the triarylamine-linked core.
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。 In addition, hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
 さらに不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 Further, a hole transport layer having a high p property doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料やp型-Si、p型-SiC等の無機化合物を用いることもできる。さらにIr(ppy)に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。 JP-A-11-251067, J. Org. Huang et. al. It is also possible to use so-called p-type hole transport materials and inorganic compounds such as p-type-Si and p-type-SiC, as described in the literature (Applied Physics Letters 80 (2002), p. 139). Further, ortho-metalated organometallic complexes having Ir or Pt as the central metal as typified by Ir (ppy) 3 are also preferably used.
 正孔輸送材料としては、上記のものを使用することができるが、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー等が好ましく用いられる。 Although the above-mentioned materials can be used as the hole transport material, a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organometallic complex, or an aromatic amine is introduced into the main chain or side chain. The polymer materials or oligomers used are preferably used.
 本発明の有機EL素子に用いられる、公知の好ましい正孔輸送材料の具体例としては、上記で挙げた文献の他、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。 Specific examples of known preferred hole transport materials used in the organic EL device of the present invention include the compounds described in the following documents in addition to the documents listed above, but the present invention is not limited thereto. Not.
 例えば、Appl.Phys.Lett.69,2160(1996)、J.Lumin.72-74,985(1997)、Appl.Phys.Lett.78,673(2001)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.51,913(1987)、Synth.Met.87,171(1997)、Synth.Met.91,209(1997)、Synth.Met.111,421(2000)、SID Symposium Digest,37,923(2006)、J.Mater.Chem.3,319(1993)、Adv.Mater.6,677(1994)、Chem.Mater.15,3148(2003)、米国特許出願公開第2003/0162053号明細書、米国特許出願公開第2002/0158242号明細書、米国特許出願公開第2006/0240279号明細書、米国特許出願公開第2008/0220265号明細書、米国特許第5061569号明細書、国際公開第2007/002683号、国際公開第2009/018009号、欧州特許第650955号明細書、米国特許出願公開第2008/0124572号明細書、米国特許出願公開第2007/0278938号明細書、米国特許出願公開第2008/0106190号明細書、米国特許出願公開第2008/0018221号明細書、国際公開第2012/115034号、特表2003-519432号公報、特開2006-135145号公報、米国特許出願番号第13/585981号明細書等である。 For example, Appl. Phys. Lett. 69, 2160 (1996), J. MoI. Lumin. 72-74,985 (1997), Appl. Phys. Lett. 78, 673 (2001), Appl. Phys. Lett. 90, 183503 (2007), Appl. Phys. Lett. 90, 183503 (2007), Appl. Phys. Lett. 51, 913 (1987), Synth. Met. 87, 171 (1997), Synth. Met. 91, 209 (1997), Synth. Met. 111, 421 (2000), SID Symposium Digest, 37, 923 (2006), J. Am. Mater. Chem. 3,319 (1993), Adv. Mater. 6, 677 (1994), Chem. Mater. 15, 3148 (2003), U.S. Patent Application Publication No. 2003/0162053, U.S. Patent Application Publication No. 2002/0158242, U.S. Patent Application Publication No. 2006/0240279, U.S. Patent Application Publication No. 2008/2008. No. 0220265, US Pat. No. 5,061,569, WO 2007/002683, WO 2009/018009, EP 650955, US Patent Application Publication No. 2008/0124572, US Japanese Patent Application Publication No. 2007/0278938, US Patent Application Publication No. 2008/0106190, US Patent Application Publication No. 2008/0018221, International Publication No. 2012/115034, and Japanese Translation of PCT International Publication No. 2003-519432. , JP 2006- 35145 JP is US Patent Application No. 13/585981 Pat like.
 正孔輸送材料は、単独で用いてもよく、また複数種を併用して用いてもよい。 The hole transport material may be used alone or in combination of two or more.
 《電子阻止層》
 電子阻止層とは、広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
《Electron blocking layer》
The electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons, while transporting holes. By blocking electrons, the probability of recombination of electrons and holes can be improved.
 また、前述する正孔輸送層の構成を必要に応じて、本発明に係る電子阻止層として用いることができる。 Moreover, the above-described configuration of the hole transport layer can be used as an electron blocking layer according to the present invention, if necessary.
 本発明の有機EL素子に設ける電子阻止層は、発光層の陽極側に隣接して設けられることが好ましい。 The electron blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the anode side of the light emitting layer.
 本発明に係る電子阻止層の層厚としては、好ましくは3~100nmの範囲内であり、更に好ましくは5~30nmの範囲内である。 The layer thickness of the electron blocking layer according to the present invention is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
 電子阻止層に用いられる材料としては、前述の正孔輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物も電子阻止層に好ましく用いられる。 As the material used for the electron blocking layer, the material used for the above-described hole transport layer is preferably used, and the above-mentioned host compound is also preferably used for the electron blocking layer.
 《正孔注入層》
 本発明に係る正孔注入層(「陽極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
《Hole injection layer》
The hole injection layer (also referred to as “anode buffer layer”) according to the present invention is a layer provided between the anode and the light emitting layer for the purpose of lowering the driving voltage and improving the light emission luminance. It is described in detail in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “The Forefront of Industrialization (issued by NTT Corporation on November 30, 1998)”.
 本発明において、正孔注入層は必要に応じて設け、上記のごとく陽極と発光層又は陽極と正孔輸送層との間に存在させてもよい。 In the present invention, the hole injection layer may be provided as necessary, and may be present between the anode and the light emitting layer or between the anode and the hole transport layer as described above.
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば、前述の正孔輸送層に用いられる材料と同様の化合物等が挙げられる。 The details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc. Examples of materials used for the hole injection layer include: And the same compounds as those used for the hole transport layer described above.
 中でも銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。 Among them, phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives, metal oxides typified by vanadium oxide, amorphous carbon as described in JP-T-2003-519432, JP-A-2006-135145, etc. Preferred are conductive polymers such as polyaniline (emeraldine) and polythiophene, orthometalated complexes represented by tris (2-phenylpyridine) iridium complex, and triarylamine derivatives.
 前述の正孔注入層に用いられる材料は単独で用いてもよく、また複数種を併用して用いてもよい。 The materials used for the hole injection layer described above may be used alone or in combination of two or more.
 《添加物》
 前述した本発明における有機層群は、更に他の添加物が含まれていてもよい。
"Additive"
The organic layer group in the present invention described above may further contain other additives.
 添加物としては、例えば臭素、ヨウ素及び塩素等のハロゲン元素やハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。 Examples of additives include halogen elements and halogenated compounds such as bromine, iodine and chlorine, alkali metals and alkaline earth metals such as Pd, Ca, and Na, transition metal compounds, complexes, and salts.
 添加物の含有量は、任意に決定することができるが、含有される層の全質量%に対して1000ppm以下であることが好ましく、より好ましくは500ppm以下であり、さらに好ましくは50ppm以下である。 The content of the additive can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, and further preferably 50 ppm or less with respect to the total mass% of the contained layer. .
 ただし、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的などによってはこの範囲内ではない。 However, it is not within this range depending on the purpose of improving the transportability of electrons and holes and the purpose of favoring the exciton energy transfer.
 《有機層群の形成方法》
 本発明に係る有機層群(正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法について説明する。
<Method for forming organic layer group>
A method for forming the organic layer group (hole injection layer, hole transport layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer, etc.) according to the present invention will be described.
 本発明に係る有機層群の形成方法は、特に制限はなく、従来公知の例えば真空蒸着法、湿式法(ウェットプロセスともいう)等による形成方法を用いることができる。 The formation method of the organic layer group according to the present invention is not particularly limited, and a conventionally known formation method such as a vacuum deposition method or a wet method (also referred to as a wet process) can be used.
 湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)等があるが、均質な薄膜が得られやすく、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロール・ツー・ロール方式適性の高い方法が好ましい。 Examples of the wet method include spin coating method, casting method, ink jet method, printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, and LB method (Langmuir-Blodgett method). From the viewpoint of obtaining a homogeneous thin film easily and high productivity, a method with high roll-to-roll method suitability such as a die coating method, a roll coating method, an ink jet method and a spray coating method is preferable.
 本発明に用いられる有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF(N,N-ジメチルホルムアミド)、DMSO(ジメチルスルホキシド)等の有機溶媒を用いることができる。 Examples of the liquid medium for dissolving or dispersing the organic EL material used in the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, Aromatic hydrocarbons such as mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF (N, N-dimethylformamide) and DMSO (dimethylsulfoxide) can be used.
 また、分散方法としては、超音波分散、高剪断力分散やメディア分散等の方法により分散することができる。 Further, as a dispersion method, the dispersion can be performed by a method such as ultrasonic dispersion, high shearing force dispersion or media dispersion.
 更に層ごとに異なる成膜法を適用してもよい。成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度を50~450℃の範囲、真空度を10-6~10-2Paの範囲、蒸着速度を0.01~50nm/秒の範囲、基板温度を-50~300℃の範囲、層(膜)厚を0.1nm~5μm、好ましくは5~200nmの範囲内で適宜選択して形成することが望ましい。 Further, different film forming methods may be applied for each layer. When a vapor deposition method is employed for film formation, the vapor deposition conditions vary depending on the type of compound used, etc., but generally the boat heating temperature is in the range of 50 to 450 ° C., and the degree of vacuum is in the range of 10 −6 to 10 −2 Pa. It is formed by appropriately selecting a deposition rate within a range of 0.01 to 50 nm / second, a substrate temperature within a range of −50 to 300 ° C., and a layer (film) thickness within a range of 0.1 nm to 5 μm, preferably 5 to 200 nm. It is desirable to do.
 本発明に係る有機層群の形成は、一回の真空引きで一貫して正孔注入層から陰極まで形成する方法が好ましいが、途中で取り出して異なる成膜法を適用してもよい。その際、作業は乾燥不活性ガス雰囲気下で行うことが好ましい。 The formation of the organic layer group according to the present invention is preferably a method of consistently forming from the hole injection layer to the cathode by a single evacuation, but a different film formation method may be applied by taking it out halfway. At that time, the operation is preferably performed in a dry inert gas atmosphere.
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
"anode"
As the anode in the organic EL element, a material having a work function (4 eV or more, preferably 4.5 eV or more) of a metal, an alloy, an electrically conductive compound, or a mixture thereof is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
 陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度を余り必要としない場合(100μm以上程度)は、上記電極物質の蒸着時やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。 For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 μm or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
 あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等の湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。 Alternatively, when a material that can be applied, such as an organic conductive compound, is used, a wet film forming method such as a printing method or a coating method can also be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less.
 陽極の膜厚は、適用する材料にもよるが、通常10nm~1μm、好ましくは10~200nmの範囲内で選ばれる。 The film thickness of the anode is usually selected within the range of 10 nm to 1 μm, preferably 10 to 200 nm, although it depends on the applied material.
 《陰極》
 陰極としては、仕事関数の小さい(4eV以下)金属(以下、電子注入性金属と称す。)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
"cathode"
As the cathode, a material having a work function (4 eV or less) metal (hereinafter referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
 陰極は、これらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させることで作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。 The cathode can be produced by forming a thin film from these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm.
 なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であることが、発光輝度が向上し好都合である。 In order to transmit the emitted light, it is convenient that either one of the anode or the cathode of the organic EL element is transparent or translucent because the emission luminance is improved.
 また、陰極に上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 In addition, a transparent or translucent cathode can be produced by producing a conductive transparent material mentioned in the description of the anode on the cathode after producing the above metal with a thickness of 1 to 20 nm. By applying the above, it is possible to manufacture a device in which both the anode and the cathode are transparent.
 《支持基板》
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
《Support substrate》
The support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. Or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(略称:TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(略称:CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(略称:PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (abbreviation: TAC), cellulose acetate butyrate, Cellulose acetates such as cellulose acetate propionate (abbreviation: CAP), cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, poly Methylpentene, polyetherketone, polyimide, polyethersulfone (abbreviation: PES), polypheny Sulfide, polysulfones, polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, arton (trade name, manufactured by JSR) or appel (trade name, manufactured by Mitsui Chemicals) And the like.
 樹脂フィルムの表面には、無機物又は有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/m・24h以下のバリア性フィルムであることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m・24h・atm以下、水蒸気透過度が、1×10-5g/m・24h以下の高バリア性フィルムであることが好ましい。 An inorganic or organic film or a hybrid film of both may be formed on the surface of the resin film. The water vapor permeability (25 ± 0.5 ° C.) measured by a method according to JIS K 7129-1992. , Relative humidity (90 ± 2)% RH) is preferably 0.01 g / m 2 · 24 h or less, and further, oxygen permeability measured by a method according to JIS K 7126-1987. However, it is preferably a high-barrier film having 1 × 10 −3 ml / m 2 · 24 h · atm or less and a water vapor permeability of 1 × 10 −5 g / m 2 · 24 h or less.
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層群の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 The material for forming the barrier film may be any material that has a function of suppressing the entry of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, and the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer group, It is preferable to laminate | stack both alternately several times.
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。 The method for forming the barrier film is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization A plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。 Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
 本発明の有機EL素子の発光の室温(25℃)における外部取り出し量子効率は、1%以上であることが好ましく、5%以上であるがより好ましい。 The external extraction quantum efficiency of the organic EL device of the present invention at room temperature (25 ° C.) is preferably 1% or more, and more preferably 5% or more.
 ここで、外部取り出し量子効率(%)は、下式により求める。 Here, the external extraction quantum efficiency (%) is obtained by the following equation.
   外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を、蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。
External extraction quantum efficiency (%) = number of photons emitted to the outside of the organic EL element / number of electrons sent to the organic EL element × 100
In addition, a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
 《封止》
 本発明の有機EL素子の封止に用いられる封止手段としては、例えば、封止部材と、電極、支持基板とを接着剤で接着する方法を挙げることができる。封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。
<Sealing>
Examples of the sealing means used for sealing the organic EL element of the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive. As a sealing member, it should just be arrange | positioned so that the display area | region of an organic EL element may be covered, and it may be concave plate shape or flat plate shape. Moreover, transparency and electrical insulation are not particularly limited.
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。 Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
 本発明においては、有機EL素子を薄膜化できる観点から、ポリマーフィルム、金属フィルムを好ましく使用することができる。さらには、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/m・24h・atm以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%)が、1×10-3g/m・24h以下のものであることが好ましい。 In the present invention, a polymer film or a metal film can be preferably used from the viewpoint of reducing the thickness of the organic EL element. Further, the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 ml / m 2 · 24 h · atm or less, and measured by a method according to JIS K 7129-1992. The water vapor permeability (25 ± 0.5 ° C., relative humidity 90 ± 2%) is preferably 1 × 10 −3 g / m 2 · 24 h or less.
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。 For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 Specific examples of the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。 In addition, since an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable. A desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
 また、有機層群を挟み支持基板と対向する側の電極の外側に該電極と有機層群を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、封止膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等の無機膜を用いることができる。 It is also preferable to coat the electrode and the organic layer group on the outer side of the electrode facing the support substrate with the organic layer group interposed therebetween, and form an inorganic or organic layer in contact with the support substrate to form a sealing film. Can be. In this case, the material for forming the sealing film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, inorganic films such as silicon oxide, silicon dioxide, silicon nitride, etc. Can be used.
 さらに封止膜の脆弱性を改良するために、これら無機膜と有機材料からなる膜の積層構造を持たせることが好ましい。これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 In order to further improve the brittleness of the sealing film, it is preferable to have a laminated structure of these inorganic films and films made of organic materials. There are no particular limitations on the method of forming these films. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。 In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase. preferable. A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside.
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
 《保護膜、保護板》
 有機層群を挟み支持基板と対向する側の前記封止膜あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために、保護膜あるいは保護板を設けてもよい。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
《Protective film, protective plate》
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic layer group interposed therebetween. In particular, when sealing is performed by the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
 《光取り出し向上技術》
 有機EL素子は、空気よりも屈折率の高い(屈折率1.6~2.1程度の範囲内)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として、光が素子側面方向に逃げるためである。
《Light extraction enhancement technology》
An organic EL element emits light inside a layer having a refractive index higher than that of air (within a refractive index of about 1.6 to 2.1), and is about 15% to 20% of light generated in the light emitting layer. It is generally said that it can only be taken out. This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the side surface of the device.
 この光の取り出しの効率を向上させる方法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4774435号明細書参照。)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63-314795号公報参照。)、素子の側面等に反射面を形成する方法(例えば、特開平1-220394号公報参照。)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62-172691号公報参照。)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(例えば、特開2001-202827号公報参照。)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(例えば、特開平11-283751号公報参照。)などが挙げられる。 As a method for improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (see, for example, US Pat. No. 4,774,435), A method for improving the efficiency by giving the substrate a light condensing property (for example, see JP-A-63-314795), a method for forming a reflective surface on the side surface of the element (for example, JP-A-1-220394) (See Japanese Laid-Open Patent Publication No. 62-172691), a method of introducing a flat layer having an intermediate refractive index between the substrate and the light emitter to form an antireflection film (see, for example, Japanese Patent Application Laid-Open No. 62-172691), the substrate and the light emitter. A method of introducing a flat layer having a lower refractive index than the substrate (see, for example, Japanese Patent Application Laid-Open No. 2001-202827), any of the substrate, the transparent electrode layer, and the light emitting layer (including the substrate and the outside world). Times) How to form a grating (e.g., see JP Hei 11-283751.) And the like.
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。 In the present invention, these methods can be used in combination with the organic EL device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
 本発明は、これらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。 In the present invention, by combining these means, it is possible to obtain an element having higher luminance or durability.
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が高くなる。 When a low refractive index medium is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower. Become.
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマーなどが挙げられる。透明基板の屈折率は、一般に1.5~1.7程度の範囲内であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましい。さらには、1.35以下であることが好ましい。 Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Furthermore, it is preferable that it is 1.35 or less.
 また、低屈折率媒質の厚さは、媒質中の波長の2倍以上となるのが望ましい。これは、低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。 Also, the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
 全反射を起こす界面又は、いずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が1次の回折や、2次の回折といった、いわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間若しくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。 The method of introducing a diffraction grating into an interface that causes total reflection or in any medium has a feature that the effect of improving the light extraction efficiency is high. This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction. The light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating into any layer or medium (in the transparent substrate or transparent electrode). , Trying to extract light out.
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な一次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。 It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much.
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光を回折することにより、光の取り出し効率が上がる。 However, by making the refractive index distribution a two-dimensional distribution, the light extraction efficiency increases by diffracting the light traveling in all directions.
 回折格子を導入する位置としては、いずれかの層間、又は媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である発光層の近傍が好ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2~3倍程度の範囲内が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状など、二次元的に配列が繰り返されることが好ましい。 The position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the light emitting layer where light is generated. At this time, the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium. The arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
 《集光シート》
 本発明の有機EL素子は、支持基板(基板)の光取出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工する、あるいは、いわゆる集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向より集光することで、特定方向上の輝度を高めることができる。
<Condenser sheet>
The organic EL element of the present invention is processed to provide, for example, a microlens array-like structure on the light extraction side of the support substrate (substrate), or in combination with a so-called condensing sheet, for example, a specific direction, Condensing light from the front direction with respect to the element light emitting surface can increase luminance in a specific direction.
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10~100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚さが厚くなり好ましくない。 As an example of the microlens array, a quadrangular pyramid having a side of 30 μm and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate. One side is preferably within a range of 10 to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして例えば、住友スリーエム社製輝度上昇フィルム(BEF)などを用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。 As the condensing sheet, it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used. As the shape of the prism sheet, for example, the base material may be formed by forming a △ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 μm, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
 また、有機EL素子からの光放射角を制御するために光拡散板・フィルムを、集光シートと併用してもよい。例えば、(株)きもと製の拡散フィルム(ライトアップ)などを用いることができる。 Further, in order to control the light emission angle from the organic EL element, a light diffusion plate / film may be used in combination with the light collecting sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
 《用途》
 本発明の有機EL素子は、電子機器、例えば、表示装置、ディスプレイ、各種発光装置として用いることができる。
<Application>
The organic EL element of the present invention can be used as an electronic device such as a display device, a display, and various light emitting devices.
 発光装置として、例えば、照明装置(例えば、家庭用照明、車内照明等。)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。 As a light emitting device, for example, a lighting device (for example, household lighting, interior lighting, etc.), a backlight for a clock or a liquid crystal, a billboard advertisement, a traffic light, a light source of an optical storage medium, a light source of an electrophotographic copying machine, an optical communication processor However, the present invention is not limited to this, but it can be effectively used particularly as a backlight of a liquid crystal display device and a light source for illumination.
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。 In the organic EL device of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.
 〔表示装置〕
 本発明の有機EL素子を具備する表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。
[Display device]
The display device including the organic EL element of the present invention may be single color or multicolor, but here, the multicolor display device will be described.
 多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法又は印刷法等で膜を形成できる。 In the case of a multicolor display device, a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet or printing.
 発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法及び印刷法である。 In the case of patterning only the light emitting layer, the method is not limited, but a vapor deposition method, an ink jet method, a spin coating method, and a printing method are preferable.
 表示装置に具備される有機EL素子の構成は、必要に応じて上記の有機EL素子の構成例の中から選択される。 The configuration of the organic EL element included in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
 また、有機EL素子の製造方法は、上記の本発明の有機EL素子の製造の一態様に示したとおりである。 Moreover, the manufacturing method of an organic EL element is as having shown in the one aspect | mode of manufacture of the organic EL element of said this invention.
 このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2~40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。 When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The alternating current waveform to be applied may be arbitrary.
 多色表示装置は、表示デバイス、ディスプレイ又は各種発光光源として用いることができる。表示デバイス又はディスプレイにおいて、青、赤及び緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。 The multicolor display device can be used as a display device, a display, or various light emission sources. In a display device or display, full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
 表示デバイス又はディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示及び自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。 Examples of the display device or display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in a car. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
 発光装置としては、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。 Light-emitting devices include household lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, optical storage media light sources, electrophotographic copying machine light sources, optical communication processor light sources, optical sensor light sources, etc. However, the present invention is not limited to these.
 以下、本発明の有機EL素子を具備する表示装置の一例を図面に従って説明する。 Hereinafter, an example of a display device including the organic EL element of the present invention will be described with reference to the drawings.
 図2は、有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。 FIG. 2 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
 ディスプレイ1は、複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B、表示部Aと制御部Bとを電気的に接続する配線部C等を有する。 The display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, a wiring unit C that electrically connects the display unit A and the control unit B, and the like. .
 制御部Bは表示部Aと配線部Cを介して電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線ごとの画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。 The control unit B is electrically connected to the display unit A via the wiring unit C, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside. Sequentially emit light according to the image data signal, scan the image, and display the image information on the display unit A.
 図3は、アクティブマトリクス方式による表示装置の模式図である。 FIG. 3 is a schematic diagram of a display device using an active matrix method.
 表示部Aは、基板上に複数の走査線5及びデータ線6を含む配線部Cと複数の画素3等とを有する。 The display unit A includes a wiring unit C including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 on the substrate.
 図3においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。 FIG. 3 shows a case where the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
 配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。 The scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated Not)
 画素3は、走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。 When the scanning signal is applied from the scanning line 5, the pixel 3 receives the image data signal from the data line 6 and emits light according to the received image data.
 発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。 A full color display can be achieved by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
 次に、画素の発光プロセスを説明する。図4は、画素の回路を示した概略図である。 Next, the light emission process of the pixel will be described. FIG. 4 is a schematic diagram showing a pixel circuit.
 画素は、有機EL素子10、スイッチングトランジスター11、駆動トランジスター12、コンデンサー13等を備えている。複数の画素に有機EL素子10として、赤色、緑色及び青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。 The pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like. A full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
 図4において、制御部Bからデータ線6を介してスイッチングトランジスター11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスター11のゲートに走査信号が印加されると、スイッチングトランジスター11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサー13と駆動トランジスター12のゲートに伝達される。 4, an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6. When a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5, the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
 画像データ信号の伝達により、コンデンサー13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスター12の駆動がオンする。駆動トランジスター12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。 By transmitting the image data signal, the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on. The drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10. The power supply line 7 connects the organic EL element 10 to the potential of the image data signal applied to the gate. Current is supplied.
 制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスター11の駆動がオフする。しかし、スイッチングトランジスター11の駆動がオフしてもコンデンサー13は充電された画像データ信号の電位を保持するので、駆動トランジスター12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスター12が駆動して有機EL素子10が発光する。 When the scanning signal moves to the next scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off. However, since the capacitor 13 holds the charged potential of the image data signal even when the driving of the switching transistor 11 is turned off, the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues. When the scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
 すなわち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスター11と駆動トランジスター12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。 That is, the organic EL element 10 emits light by providing the switching transistor 11 and the driving transistor 12 which are active elements with respect to the organic EL element 10 of each of the plurality of pixels, and the light emission of the organic EL element 10 of each of the plurality of pixels 3. It is carried out. Such a light emitting method is called an active matrix method.
 ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサー13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。 Here, the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good. The potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。 In the present invention, not only the active matrix method described above, but also a passive matrix light emission drive in which an organic EL element emits light according to a data signal only when a scanning signal is scanned.
 図5は、パッシブマトリクス方式による表示装置の模式図である。図5において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。 FIG. 5 is a schematic view of a passive matrix display device. In FIG. 5, a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
 順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。 When the scanning signal of the scanning line 5 is applied by sequential scanning, the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
 パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。 In the passive matrix method, there is no active element in the pixel 3, and the manufacturing cost can be reduced.
 本発明の有機EL素子を用いることにより、発光効率が向上した表示装置を得ることができる。 By using the organic EL element of the present invention, a display device with improved luminous efficiency can be obtained.
 〔照明装置〕
 本発明の有機EL素子は、照明装置に適用することができる。
[Lighting device]
The organic EL element of the present invention can be applied to a lighting device.
 本発明の有機EL素子は、共振器構造を持たせた有機EL素子として用いてもよい。このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。 The organic EL element of the present invention may be used as an organic EL element having a resonator structure. Examples of the purpose of use of the organic EL element having such a resonator structure include a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processing machine, and a light source of an optical sensor. It is not limited. Moreover, you may use for the said use by making a laser oscillation.
 また、本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。 Further, the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a type for directly viewing a still image or a moving image. It may be used as a display device (display).
 動画再生用の表示装置として使用する場合の駆動方式は、パッシブマトリクス方式でもアクティブマトリクス方式でもどちらでもよい。又は、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。 The drive method when used as a display device for moving image reproduction may be either a passive matrix method or an active matrix method. Alternatively, it is possible to produce a full-color display device by using two or more organic EL elements of the present invention having different emission colors.
 また、本発明に用いられるπ共役系化合物は、実質的に白色の発光を生じる有機EL素子を具備する照明装置に適用できる。例えば、複数の発光材料を用いる場合、複数の発光色を同時に発光させて、混色することで白色発光を得ることができる。複数の発光色の組み合わせとしては、赤色、緑色及び青色の3原色の三つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した二つの発光極大波長を含有したものでもよい。 Further, the π-conjugated compound used in the present invention can be applied to a lighting device including an organic EL element that emits substantially white light. For example, when a plurality of light emitting materials are used, white light emission can be obtained by simultaneously emitting a plurality of light emission colors and mixing the colors. The combination of a plurality of emission colors may include three emission maximum wavelengths of three primary colors of red, green, and blue, or two of the complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
 また、本発明の有機EL素子の形成方法は、発光層、正孔輸送層あるいは電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよい。他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法及び印刷法等で、例えば、電極膜を形成でき、生産性も向上する。 In addition, the organic EL device forming method of the present invention may be simply arranged by providing a mask only when forming a light emitting layer, a hole transporting layer, an electron transporting layer, etc. Since the other layers are common, patterning of a mask or the like is unnecessary, and for example, an electrode film can be formed on one surface by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is improved.
 この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が白色発光である。 According to this method, unlike a white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves emit white light.
 (本発明の照明装置の一態様)
 本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
(One aspect of the lighting device of the present invention)
One aspect of the lighting device of the present invention that includes the organic EL element of the present invention will be described.
 本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(例えば、東亞合成社製、ラックストラックLC0629B。)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図6及び図7に示すような照明装置を形成することができる。 The non-light-emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 μm thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (for example, Toagosei Co., Ltd.) is used as a sealing material around Manufactured by LUX TRACK LC0629B), which is stacked on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, and sealed, as shown in FIGS. A lighting device as shown can be formed.
 図6は、照明装置の概略図を示し、本発明の有機EL素子(照明装置内の有機EL素子101)はガラスカバー102で覆われている。なお、ガラスカバーでの封止作業は、照明装置内の有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス、詳しくは純度99.999%以上の高純度窒素ガスの雰囲気下で行った。 FIG. 6 is a schematic view of the lighting device, and the organic EL element of the present invention (organic EL element 101 in the lighting device) is covered with a glass cover 102. In addition, the sealing operation with the glass cover is performed in a glove box in a nitrogen atmosphere without bringing the organic EL element 101 in the lighting device into contact with the atmosphere, specifically in an atmosphere of high purity nitrogen gas with a purity of 99.999% or more. went.
 図7は、照明装置の断面図を示し、105は陰極、106は有機層群、107は透明電極(陽極)付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。 FIG. 7 is a cross-sectional view of the lighting device, 105 is a cathode, 106 is an organic layer group, and 107 is a glass substrate with a transparent electrode (anode). The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
 本発明の有機EL素子を用いることにより、発光効率に優れた照明装置が得られる。 By using the organic EL element of the present invention, an illumination device having excellent luminous efficiency can be obtained.
 〔発光性薄膜〕
 本発明の発光性薄膜は、本発明に係る一般式(1)で表される構造を有するπ共役系化合物を含有することを特徴とし、前記有機層群の形成方法と同様に作製することができる。
[Luminescent thin film]
The light-emitting thin film of the present invention contains a π-conjugated compound having a structure represented by the general formula (1) according to the present invention, and can be produced in the same manner as the method for forming the organic layer group. it can.
 本発明の発光性薄膜の形成方法は、特に制限はなく、従来公知の薄膜形成方法、例えば、真空蒸着法、湿式法(ウェットプロセスともいう)等による形成方法を用いることができる。 The method for forming the light-emitting thin film of the present invention is not particularly limited, and a conventionally known thin film forming method such as a vacuum deposition method or a wet method (also referred to as a wet process) can be used.
 湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)等があるが、均質な薄膜が得られやすく、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロール・ツー・ロール方式適性の高い方法が好ましい。 Examples of the wet method include spin coating method, casting method, ink jet method, printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, and LB method (Langmuir-Blodgett method). From the viewpoint of obtaining a homogeneous thin film easily and high productivity, a method with high roll-to-roll method suitability such as a die coating method, a roll coating method, an ink jet method and a spray coating method is preferable.
 本発明に用いられる発光材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。 Examples of the liquid medium for dissolving or dispersing the light emitting material used in the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene. Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used.
 また、分散方法としては、超音波分散、高剪断力分散やメディア分散等の方法により分散することができる。 Further, as a dispersion method, the dispersion can be performed by a method such as ultrasonic dispersion, high shearing force dispersion or media dispersion.
 更に層毎に異なる成膜法を適用してもよい。成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度を50~450℃の範囲内、真空度を10-6~10-2Paの範囲内、蒸着速度0.01~50nm/秒の範囲内、基板温度-50~300℃の範囲内、層厚0.1nm~5μmの範囲内、好ましくは5~200nmの範囲内で適宜選ぶことが望ましい。 Further, different film forming methods may be applied for each layer. When a vapor deposition method is employed for film formation, the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is in the range of 50 to 450 ° C., and the degree of vacuum is in the range of 10 −6 to 10 −2 Pa. Of these, the deposition rate is within the range of 0.01 to 50 nm / second, the substrate temperature is within the range of −50 to 300 ° C., the layer thickness is within the range of 0.1 to 5 μm, and preferably within the range of 5 to 200 nm. desirable.
 また、成膜にスピンコート法を採用する場合、スピンコーターを100~1000rpmの範囲内、10~120秒の範囲内で、乾燥不活性ガス雰囲気下で行うことが好ましい。 Further, when the spin coat method is adopted for film formation, it is preferable to perform the spin coater within a range of 100 to 1000 rpm and within a range of 10 to 120 seconds in a dry inert gas atmosphere.
 また、本発明の発光性薄膜を表示装置及び照明装置に用いることもできる。 Further, the luminescent thin film of the present invention can also be used for display devices and lighting devices.
 これにより、発光効率が改善された表示装置及び照明装置が得られる。 Thereby, a display device and a lighting device with improved luminous efficiency can be obtained.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 実施例1
 《有機EL素子の作製》
 〔有機EL素子1-1の作製〕
 50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで成膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
Example 1
<< Production of organic EL element >>
[Production of Organic EL Element 1-1]
A transparent substrate with an ITO (Indium Tin Oxide) film having a thickness of 150 nm formed on a glass substrate of 50 mm × 50 mm and a thickness of 0.7 mm, patterned, and this ITO transparent electrode was attached After ultrasonic cleaning with isopropyl alcohol, drying with dry nitrogen gas and UV ozone cleaning for 5 minutes, this transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
 真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼは、モリブデン製またはタングステン製の抵抗加熱用材料で作製されたものを用いた。 Each of the deposition crucibles in the vacuum deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication. The evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
 真空度として1×10-4Paまで減圧した後、HAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚10nmの正孔注入層を形成した。 The pressure was reduced to 1 × 10 −4 Pa as the degree of vacuum, and then the energization crucible containing HAT-CN (1, 4, 5, 8, 9, 12-hexaazatriphenylenehexacarbonitrile) was energized and heated. It vapor-deposited on the ITO transparent electrode with the vapor deposition rate of 0.1 nm / sec, and formed the 10-nm-thick hole injection layer.
 次いで、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)を蒸着速度0.1nm/秒で前記正孔注入層上に蒸着し、層厚40nmの正孔輸送層を形成した。次いで、ホスト化合物としてmCBP(3,3-ジ(9H-カルバゾール-9-イル)ビフェニル)、発光性化合物として下記比較化合物1を、それぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚が30nmの発光層を形成した。 Next, α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl) was deposited on the hole injection layer at a deposition rate of 0.1 nm / second, and the layer thickness was 40 nm. The hole transport layer was formed. Next, mCBP (3,3-di (9H-carbazol-9-yl) biphenyl) as the host compound and the following comparative compound 1 as the light-emitting compound were deposited at a deposition rate of 0 to 90% and 10% by volume, respectively. Co-evaporated at a rate of 1 nm / second to form a light emitting layer having a layer thickness of 30 nm.
 その後、BCP(2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン)を蒸着速度0.1nm/秒で蒸着し、層厚30nmの電子輸送層を形成した。 Thereafter, BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) was deposited at a deposition rate of 0.1 nm / second to form an electron transport layer having a layer thickness of 30 nm.
 さらに、フッ化リチウムを膜厚0.5nmで形成した後に、アルミニウム100nmを蒸着して陰極を形成した。 Further, after forming lithium fluoride with a film thickness of 0.5 nm, 100 nm of aluminum was vapor-deposited to form a cathode.
 上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子1-1を作製した。 The non-light-emitting surface side of the above element was covered with a can-shaped glass case in an atmosphere of high purity nitrogen gas having a purity of 99.999% or more, and an electrode lead-out wiring was installed to prepare an organic EL element 1-1.
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
 〔有機EL素子1-2~1-31の作製〕
 上記有機EL素子1-1の作製において、発光性化合物を、比較化合物1から表1に記載の各発光性化合物に変更した以外は同様にして、有機EL素子1-2~1-31を作製した。
[Production of Organic EL Elements 1-2 to 1-31]
In the production of the organic EL element 1-1, organic EL elements 1-2 to 1-31 were produced in the same manner except that the luminescent compound was changed from the comparative compound 1 to each luminescent compound shown in Table 1. did.
 〔発光性化合物の最低励起一重項エネルギーと最低励起三重項エネルギーの差(ΔEst)の測定〕
 最低励起一重項エネルギーと最低励起三重項エネルギーの差ΔEstはGaussian09により、汎関数B3LYP、基底関数6-31G(d)を用いた密度汎関数法による計算を行って算出し、得られた結果を、表1に示す。
[Measurement of difference (ΔEst) between lowest excited singlet energy and lowest excited triplet energy of luminescent compound]
The difference ΔEst between the lowest excited singlet energy and the lowest excited triplet energy is calculated by the density functional method using the functional B3LYP and the basis function 6-31G (d) by Gaussian09, and the obtained result is Table 1 shows.
 《有機EL素子の特性値の測定》
 (発光効率の測定)
 各有機EL素子の駆動時の発光効率を、下記に示す方法に従って測定した。
<< Measurement of characteristic values of organic EL elements >>
(Measurement of luminous efficiency)
Luminous efficiency at the time of driving each organic EL element was measured according to the method shown below.
 室温(約25℃)で、分光放射輝度計CS-2000(コニカミノルタ社製)を用いて、各有機EL素子の発光輝度を測定し、発光輝度3000cd/mにおける発光効率を求め、有機EL素子1-1の発光効率を基準とし、下式に従って発光効率(相対値)を求めた。 Using a spectral radiance meter CS-2000 (manufactured by Konica Minolta Co., Ltd.) at room temperature (about 25 ° C.), the light emission luminance of each organic EL element is measured, and the light emission efficiency at a light emission luminance of 3000 cd / m 2 is obtained. The light emission efficiency (relative value) was determined according to the following formula using the light emission efficiency of the element 1-1 as a reference.
 発光効率(相対値)=(サンプルの発光輝度3000cd/mにおける発光効率/有機EL素子1-1の発光輝度3000cd/mにおける発光効率)×100
 なお、表1では、発光効率の相対値は大きいほど低電力で素子が駆動することを示している。
Luminous efficiency (relative value) = (Luminous efficiency of sample at a luminance of 3000 cd / m 2 / Luminous efficiency of organic EL device 1-1 at a luminance of 3000 cd / m 2 ) × 100
Table 1 shows that the larger the relative value of the light emission efficiency is, the lower the power the element is driven.
 (駆動電圧の測定)
 各有機EL素子の駆動時の駆動電圧を、下記測定により測定した。
(Measurement of drive voltage)
The driving voltage at the time of driving each organic EL element was measured by the following measurement.
 室温(約25℃)で、分光放射輝度計CS-2000(コニカミノルタ社製)を用いて、各有機EL素子の発光輝度を測定し、発光輝度1000cd/mにおける初期駆動電圧を求め、有機EL素子1-1の駆動電圧を基準とし、下式に従って駆動電圧(相対値)を求めた。 Using a spectral radiance meter CS-2000 (manufactured by Konica Minolta Co., Ltd.) at room temperature (about 25 ° C.), the light emission luminance of each organic EL element is measured, and the initial drive voltage at the light emission luminance of 1000 cd / m 2 is obtained. Based on the drive voltage of the EL element 1-1, the drive voltage (relative value) was obtained according to the following equation.
 駆動電圧(相対値)=(サンプルの発光輝度1000cd/mにおける初期駆動電圧/有機EL素子1-1の発光輝度1000cd/mにおける初期駆動電圧)×100
 なお、表1では、電圧値の相対値は小さいほど素子の導電性が良く、低電圧で素子が駆動することを示している
 以上により得られた結果を、表1に示す。
Driving voltage (relative value) = (initial drive voltage of the light emitting luminance 1000 cd / m 2 initial drive voltage / organic EL element 1-1 in the light emitting luminance 1000 cd / m 2 samples) × 100
Table 1 shows that the smaller the relative value of the voltage value, the better the conductivity of the element, and that the element is driven at a low voltage. Table 1 shows the results obtained as described above.
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000100
 表1に記載の結果より明らかなように、本発明で規定する化合物を用いて作製した本発明の有機EL素子は、良好な導電特性を獲得し、駆動電圧が低下することが明らかである。さらに、駆動電圧が低下したことにより、消費電力が低下し、発光効率も向上した。特に、ΔEstの小さいものほど、上記効果がより顕著に発現した。 As is clear from the results shown in Table 1, it is clear that the organic EL device of the present invention produced using the compound specified in the present invention acquires good conductive properties and the driving voltage decreases. Furthermore, since the drive voltage was reduced, the power consumption was reduced and the light emission efficiency was also improved. In particular, the smaller the ΔEst, the more prominently the effect described above.
 実施例2
 《有機EL素子の作製》
 〔有機EL素子2-1の作製〕
 100mm×100mmで、厚さ1.1mmのガラス基板上に、陽極としてITO(インジウムチンオキシド)を厚さ100nmで成膜した透明支持基板(NHテクノグラス社製NA45)に、パターニング処理を施した後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 2
<< Production of organic EL element >>
[Production of Organic EL Element 2-1]
A transparent support substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) in which ITO (indium tin oxide) was formed as a positive electrode on a 100 mm × 100 mm glass substrate having a thickness of 1.1 mm was subjected to patterning treatment. Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(略称:PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用いて、3000rpm、30秒の条件で、スピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、層厚が20nmの正孔注入層を形成した。この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼは、モリブデン製またはタングステン製の抵抗加熱用材料で作製されたものを用いた。 On this transparent support substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (abbreviation: PEDOT / PSS, Bayer, Baytron PAl 4083) to 70% with pure water was used. A thin film was formed by spin coating under the conditions of 3000 rpm and 30 seconds, and then dried at 200 ° C. for 1 hour to form a hole injection layer having a layer thickness of 20 nm. This transparent support substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus, and each of the vapor deposition crucibles in the vacuum vapor deposition apparatus was filled with a constituent material of each layer in an amount optimal for device fabrication. The evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
 真空度として1×10-4Paまで減圧した後、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)を蒸着速度0.1nm/秒で、上記形成した正孔注入層上に蒸着し、層厚が40nmの正孔輸送層を形成した。次いで、例示化合物であるホスト化合物H-46、下記比較化合物2が、それぞれ94%、6%の体積%になる条件で蒸着速度0.1nm/秒で共蒸着し、層厚が30nmの発光層を形成した。 After reducing the vacuum to 1 × 10 −4 Pa, α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl) was deposited at a deposition rate of 0.1 nm / second. It vapor-deposited on the formed said positive hole injection layer, and the positive hole transport layer whose layer thickness is 40 nm was formed. Next, the host compound H-46, which is an exemplary compound, and the following comparative compound 2 were co-deposited at a deposition rate of 0.1 nm / second under the conditions of 94% and 6% by volume, respectively, and a light emitting layer having a layer thickness of 30 nm Formed.
 その後、TPBi(1,3,5-トリス(N-フェニルベンゾイミダゾール-2-イル)ベンゼン)を蒸着速度0.1nm/秒で蒸着し、層厚が30nmの電子輸送層を形成した。 Thereafter, TPBi (1,3,5-tris (N-phenylbenzimidazol-2-yl) benzene) was deposited at a deposition rate of 0.1 nm / second to form an electron transport layer having a layer thickness of 30 nm.
 さらに、フッ化ナトリウムを膜厚1nmで形成した後に、アルミニウムを厚さ100nmで蒸着して陰極を形成した。 Further, after forming sodium fluoride with a film thickness of 1 nm, aluminum was deposited with a thickness of 100 nm to form a cathode.
 上記有機EL素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子2-1を作製した。 The non-light emitting surface side of the organic EL element is covered with a can-shaped glass case in an atmosphere of high-purity nitrogen gas with a purity of 99.999% or more, and an electrode lead-out wiring is installed to produce an organic EL element 2-1. did.
 〔有機EL素子2-2の作製〕
 上記有機EL素子2-1の作製において、ホスト化合物として、例示化合物H-46、発光化合物として比較化合物2、併用化合物として比較化合物1を用い、それぞれの比率が75%、10%、15%の体積%となるように発光層を形成した以外は同様にして、有機EL素子2-2を作製した。
[Production of Organic EL Element 2-2]
In the production of the organic EL device 2-1, the exemplified compound H-46 is used as the host compound, the comparative compound 2 is used as the light emitting compound, and the comparative compound 1 is used as the combined compound, and the ratios are 75%, 10%, and 15%, respectively. An organic EL device 2-2 was produced in the same manner except that the light emitting layer was formed so as to have a volume%.
 〔有機EL素子2-3~2-11の作製〕
 上記有機EL素子2-2の作製において、発光層のホスト化合物、発光化合物、併用化合物とその比率を表2に記載の組み合わせに変更した以外は同様にして、有機EL素子2-3~2-11を作製した。
[Production of organic EL elements 2-3 to 2-11]
In the production of the organic EL device 2-2, the organic EL devices 2-3 to 2--2 were prepared in the same manner except that the host compound, the light emitting compound, the combination compound and the ratio thereof in the light emitting layer were changed to the combinations shown in Table 2. 11 was produced.
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
 〔併用化合物(C)の第一励起一重項エネルギーと第一励起三重項エネルギーの差(ΔEst)の測定〕
 第一励起一重項エネルギーと第一励起三重項エネルギーの差ΔEstは、Gaussian09により、汎関数B3LYP、基底関数6-31G(d)を用いた密度汎関数法による計算を行って算出し、得られた結果を表2に示す。
[Measurement of difference (ΔEst) between first excited singlet energy and first excited triplet energy of combined compound (C)]
The difference ΔEst between the first excited singlet energy and the first excited triplet energy is obtained by calculating by density functional method using the functional B3LYP and the basis function 6-31G (d) by Gaussian09. The results are shown in Table 2.
 《有機EL素子の特性値の測定》
 上記作製した有機EL素子2-1~2-11について、実施例1に記載の方法と同様にして発光効率及び駆動電圧の測定を行った。なお、各測定における基準とする試料は、有機EL素子2-1とした。
<< Measurement of characteristic values of organic EL elements >>
The organic EL elements 2-1 to 2-11 produced above were measured for luminous efficiency and driving voltage in the same manner as described in Example 1. The reference sample for each measurement was the organic EL element 2-1.
 以上により得られた結果を、表2に示す。 Table 2 shows the results obtained as described above.
Figure JPOXMLDOC01-appb-T000102
Figure JPOXMLDOC01-appb-T000102
 表2に記載の結果より明らかなように、本発明の有機EL素子2-4~2-11は、比較例である有機EL素子2-1~2-3に対して、高い発光効率を有していることが明らかである。これは、本発明に係る化合物が、他の蛍光化合物の発光を補助している効果と考えられる。すなわち、発光物質よりエネルギー準位の高い本発明に係る蛍光発光性化合物が発光素子中で励起された時、そのエネルギーを発光物質が効率よく受け取ることにより、本発明に係る化合物自体が発光するのと遜色ない発光効率が得られるものと考えられる。 As is clear from the results shown in Table 2, the organic EL elements 2-4 to 2-11 of the present invention have higher luminous efficiency than the organic EL elements 2-1 to 2-3 of Comparative Examples. Obviously. This is considered to be the effect that the compound according to the present invention assists the emission of other fluorescent compounds. That is, when the fluorescent compound according to the present invention having a higher energy level than the luminescent material is excited in the light emitting device, the luminescent material efficiently receives the energy, whereby the compound according to the present invention emits light. It is thought that luminous efficiency comparable to that can be obtained.
 実施例3
 本発明に係る例示化合物D15のトルエン溶液を調製して、窒素をバブリングしながら300Kで280nmの光を照射したところ、緑色の発光を観測した。なお、この例示化合物D15には、nsオーダーの蛍光の他に、発光寿命の長い成分が観測された。時間分解スペクトルは、浜松ホトニクス(株)製の蛍光寿命測定装置 Quantaurus-tauにて測定し、発光寿命の短い成分を蛍光と判断し、また、常温での測定であったことから、発光寿命が長い成分を遅延蛍光と判断した。
Example 3
When a toluene solution of Exemplified Compound D15 according to the present invention was prepared and irradiated with light at 280 nm at 300 K while bubbling nitrogen, green light emission was observed. In this exemplary compound D15, components having a long emission lifetime were observed in addition to ns order fluorescence. The time-resolved spectrum was measured with a fluorescence lifetime measuring device Quantaurus-tau manufactured by Hamamatsu Photonics Co., Ltd., and the component having a short emission lifetime was determined to be fluorescence. The long component was judged as delayed fluorescence.
 実施例4
 《有機EL素子の作製》
 (有機EL素子4-1の作製)
 50mm×50mm×厚さ0.7mmのガラス基板上に、ITO(インジウム・スズ酸化物)を150nmの厚さで成膜した後、パターニングを行い、陽極であるITO透明電極を形成した。このITO透明電極が設けられた透明基板を、イソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥した後、UVオゾン洗浄を5分間行った。得られた透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
Example 4
<< Production of organic EL element >>
(Preparation of organic EL element 4-1)
An ITO (indium tin oxide) film having a thickness of 150 nm was formed on a 50 mm × 50 mm × 0.7 mm thick glass substrate, followed by patterning to form an ITO transparent electrode as an anode. The transparent substrate provided with the ITO transparent electrode was subjected to ultrasonic cleaning with isopropyl alcohol and dried with dry nitrogen gas, followed by UV ozone cleaning for 5 minutes. The obtained transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
 真空装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を各々の素子作製に最適の量を充填した。前記抵抗加熱ボートはモリブデン製又はタングステン製を用いた。 Each of the resistance heating boats for vapor deposition in the vacuum apparatus was filled with an optimum amount of the constituent material of each layer for manufacturing each element. The resistance heating boat was made of molybdenum or tungsten.
 真空蒸着装置内を真空度1×10-4Paまで減圧した後、HAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、厚さ15nmの正孔注入層を形成した。 After reducing the vacuum inside the vacuum evaporation system to a vacuum of 1 × 10 −4 Pa, energize a resistance heating boat containing HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile). And heated and deposited on the ITO transparent electrode at a deposition rate of 0.1 nm / second to form a 15 nm thick hole injection layer.
 次いで、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)を蒸着速度0.1nm/秒で、上記形成した正孔注入層上に蒸着し、厚さ30nmの正孔輸送層を形成した。 Next, α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl) was deposited on the hole injection layer formed above at a deposition rate of 0.1 nm / second, A hole transport layer having a thickness of 30 nm was formed.
 次いで、ホスト化合物として比較化合物4と、発光性化合物としてGD-1とが入った抵抗加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で、正孔輸送層上に共蒸着し、厚さ40nmの発光層を形成した。 Next, a resistance heating boat containing comparative compound 4 as a host compound and GD-1 as a luminescent compound is energized and heated, and the hole transport is performed at a deposition rate of 0.1 nm / second and 0.010 nm / second, respectively. A light-emitting layer having a thickness of 40 nm was formed by co-evaporation on the layer.
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
 次いで、例示化合物H-42を蒸着速度0.1nm/秒で蒸着し、厚さ5nmの第一電子輸送層を形成した。 Next, Exemplary Compound H-42 was deposited at a deposition rate of 0.1 nm / second to form a first electron transport layer having a thickness of 5 nm.
 更に、その上に、ET-1を蒸着速度0.1nm/秒で蒸着し、厚さ45nmの第二電子輸送層を形成した。 Further, ET-1 was deposited thereon at a deposition rate of 0.1 nm / second to form a second electron transport layer having a thickness of 45 nm.
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
 その後、フッ化ナトリウムを厚さ0.5nmになるように蒸着した後、アルミニウムを厚さ100nmで蒸着して陰極を形成し、有機EL素子4-1を作製した。 Thereafter, sodium fluoride was vapor-deposited so as to have a thickness of 0.5 nm, and then aluminum was vapor-deposited with a thickness of 100 nm to form a cathode, thereby producing an organic EL element 4-1.
 (有機EL素子4-2~4-11の作製)
 発光層の形成に用いるホスト化合物を、表3に記載した各化合物に変更した以外は、有機EL素子4-1と同様にして、有機EL素子4-2~4-11を作製した。
(Production of organic EL elements 4-2 to 4-11)
Organic EL devices 4-2 to 4-11 were fabricated in the same manner as the organic EL device 4-1, except that the host compound used for forming the light emitting layer was changed to each compound shown in Table 3.
 《有機EL素子の評価》
 実施例1に記載の方法と同様にして、有機EL素子4-1の駆動電圧及び発光効率をそれぞれ測定し、各有機EL素子の有機EL素子4-1のそれぞれの測定値を100とした相対値を求め、得られた結果を、表3に示す。
<< Evaluation of organic EL elements >>
In the same manner as in the method described in Example 1, the driving voltage and the luminous efficiency of the organic EL element 4-1 were measured, and the measured values of the organic EL elements 4-1 of each organic EL element were set to 100. Values were obtained and the results obtained are shown in Table 3.
Figure JPOXMLDOC01-appb-T000105
Figure JPOXMLDOC01-appb-T000105
 表3に記載の結果より明らかなように、有機EL素子4-2~4-11は、比較例である有機EL素子4-1に比べ、駆動電圧が低く、かつ発光効率に優れていることが分かる。 As is apparent from the results shown in Table 3, the organic EL elements 4-2 to 4-11 have a lower driving voltage and excellent luminous efficiency than the organic EL element 4-1 as a comparative example. I understand.
 これは、本発明に係る化合物が、ホスト材料としても効用があることを実証することができた。すなわち、本発明に係る化合物はキャリア輸送性に優れ、ドーパントの発光を補助することができることに起因していると推測される。 This proved that the compound according to the present invention is also effective as a host material. That is, it is presumed that the compound according to the present invention is excellent in carrier transportability and can assist in light emission of the dopant.
 本発明の有機エレクトロルミネッセンス素子は、駆動電圧が低下し、高い発光効率を達成することができ、本発明に係る共役系化合物を含有する発光性薄膜、表示装置、照明装置に好適に利用できる。 The organic electroluminescence device of the present invention can achieve a high luminous efficiency with a reduced driving voltage, and can be suitably used for a light-emitting thin film, a display device, and a lighting device containing a conjugated compound according to the present invention.
 1 ディスプレイ
 3 画素
 5 走査線
 6 データ線
 7 電源ライン
 10 有機EL素子
 11 スイッチングトランジスター
 12 駆動トランジスター
 13 コンデンサー
 101 照明装置内の有機EL素子
 102 ガラスカバー
 105 陰極
 106 有機層群
 107 透明電極付きガラス基板
 108 窒素ガス
 109 捕水剤
 A 表示部
 B 制御部
 C 配線部
DESCRIPTION OF SYMBOLS 1 Display 3 Pixel 5 Scan line 6 Data line 7 Power supply line 10 Organic EL element 11 Switching transistor 12 Drive transistor 13 Capacitor 101 Organic EL element in a lighting device 102 Glass cover 105 Cathode 106 Organic layer group 107 Glass substrate 108 with a transparent electrode 108 Nitrogen Gas 109 Water capturing agent A Display unit B Control unit C Wiring unit

Claims (13)

  1.  陽極と陰極の間に、少なくとも一層の発光層を含む有機層群を有する有機エレクトロルミネッセンス素子であって、
     当該有機層群の少なくとも一層が、下記一般式(1)で表される構造を有するπ共役系化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、Aは電子吸引性基を表し、Dは電子供与性基を表す。m及びnはそれぞれ独立に1又は2の整数である。Xは、下記一般式(1a)~(1k)で表される構造から選ばれる芳香族炭化水素基を表す。〕
    Figure JPOXMLDOC01-appb-C000002
    〔上記一般式(1a)~(1k)で表される構造を有する芳香族炭化水素基において、R、R、Ra、Rb、Rc及びRdは、それぞれ独立に水素原子又は置換基を表す。p、q、r及びsは、それぞれ独立に0~4の整数を表す。これらの置換基は同一でも異なっていてもよく、また、各々の置換基同士が結合して環を形成していてもよい。〕
    An organic electroluminescence device having an organic layer group including at least one light emitting layer between an anode and a cathode,
    At least one layer of the organic layer group contains a π-conjugated compound having a structure represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In the formula, A represents an electron-withdrawing group, and D represents an electron-donating group. m and n are each independently an integer of 1 or 2. X represents an aromatic hydrocarbon group selected from structures represented by the following general formulas (1a) to (1k). ]
    Figure JPOXMLDOC01-appb-C000002
    [In the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k), R 1 , R 2 , Ra, Rb, Rc and Rd each independently represents a hydrogen atom or a substituent. . p, q, r and s each independently represent an integer of 0 to 4. These substituents may be the same or different, and each substituent may be bonded to form a ring. ]
  2.  前記一般式(1a)~(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子吸引性基であるとき、当該電子吸引性基が、芳香族複素環基、スルホニル基(-SO;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、スルフェニル基(-SOR;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、シアノ基(-CN)、ハロゲノ基、カルボニル基(-COR;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、ペンタフルオロフェニル基(-C)、トリフルオロメチル基(-CF)、トリフルオロメチルフェニル基(-CCF)、及びボリル基(-BR ;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)から選ばれる少なくとも1種であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。 When at least one of R 1 , R 2 , Ra, Rb, Rc and Rd in the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k) is an electron-withdrawing group, The attractive group represents an aromatic heterocyclic group, a sulfonyl group (—SO 2 R 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms. ), A sulfenyl group (—SOR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms), a cyano group (—CN), halogeno A group, a carbonyl group (—COR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms), a pentafluorophenyl group (—C 6 F 5) a trifluoromethyl group (-CF 3), trifluoromethyl Eniru group (-C 6 H 4 CF 3) , and boryl group (-BR 1 2; R 1 represents an aromatic heterocyclic group of aromatic hydrocarbon group having 6 to 30 carbon atoms, or 3 to 20 carbon atoms The organic electroluminescence device according to claim 1, wherein the organic electroluminescence device is at least one selected from the group consisting of.
  3.  前記一般式(1a)~(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子供与性基であるとき、当該電子供与性基が、炭素数3~20の芳香族複素環基、アミノ基(-NH)、アリールアミノ基(-NHR又は-NR ;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20芳香族複素環基を表す。)、アルコキシ基(-OR;Rは炭素数1~10の直鎖または環状の炭化水素基)、及びアリールオキシ基(-OR;Rは直鎖または環状の炭化水素基、炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)から選ばれる少なくとも1種であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。 When at least one of R 1 , R 2 , Ra, Rb, Rc and Rd in the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k) is an electron donating group, The donating group is an aromatic heterocyclic group having 3 to 20 carbon atoms, an amino group (—NH 2 ), an arylamino group (—NHR 1 or —NR 1 2 ; R 1 is an aromatic carbon group having 6 to 30 carbon atoms; A hydrogen group or an aromatic heterocyclic group having 3 to 20 carbon atoms), an alkoxy group (—OR 1 ; R 1 is a linear or cyclic hydrocarbon group having 1 to 10 carbon atoms), and an aryloxy group ( —OR 2 ; R 2 represents a linear or cyclic hydrocarbon group, an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms. The organic electron according to claim 1, wherein Nessensu element.
  4.  前記一般式(1a)~(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子吸引性基であるとき、当該電子吸引性基が、芳香族複素環基、スルホニル基(-SO;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、スルフェニル基(-SOR;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、シアノ基(-CN)、ハロゲノ基、カルボニル基(-COR;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)、ペンタフルオロフェニル基(-C)、トリフルオロメチル基(-CF)、トリフルオロメチルフェニル基(-CCF)、及びボリル基(-BR ;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)から選ばれる少なくとの1種であり、かつ前記一般式(1a)~一般式(1k)におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子供与性基であるとき、当該電子供与性基が、炭素数3~20の芳香族複素環基、アミノ基(-NH)、アリールアミノ基(-NHR又は-NR ;Rは炭素数6~30の芳香族炭化水素基、又は炭素数3~20芳香族複素環基を表す。)、アルコキシ基(-OR;Rは炭素数1~10の直鎖または環状の炭化水素基)、及びアリールオキシ基(-OR;Rは直鎖または環状の炭化水素基、炭素数6~30の芳香族炭化水素基、又は炭素数3~20の芳香族複素環基を表す。)から選ばれる少なくとも1種であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。 When at least one of R 1 , R 2 , Ra, Rb, Rc and Rd in the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k) is an electron-withdrawing group, The attractive group represents an aromatic heterocyclic group, a sulfonyl group (—SO 2 R 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms. ), A sulfenyl group (—SOR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms), a cyano group (—CN), halogeno A group, a carbonyl group (—COR 1 ; R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, or an aromatic heterocyclic group having 3 to 20 carbon atoms), a pentafluorophenyl group (—C 6 F 5) a trifluoromethyl group (-CF 3), trifluoromethyl Eniru group (-C 6 H 4 CF 3) , and boryl group (-BR 1 2; R 1 represents an aromatic heterocyclic group of aromatic hydrocarbon group having 6 to 30 carbon atoms, or 3 to 20 carbon atoms And at least one of R 1 , R 2 , Ra, Rb, Rc and Rd in the general formulas (1a) to (1k) is an electron donating group. When the electron donating group is an aromatic heterocyclic group having 3 to 20 carbon atoms, an amino group (—NH 2 ), an arylamino group (—NHR 1 or —NR 1 2 ; R 1 has 6 to 30 carbon atoms) An aromatic hydrocarbon group or an aromatic heterocyclic group having 3 to 20 carbon atoms), an alkoxy group (—OR 1 ; R 1 is a linear or cyclic hydrocarbon group having 1 to 10 carbon atoms), and aryloxy groups (-OR 2; R 2 is a linear or cyclic hydrocarbon group, the carbon Aromatic hydrocarbon group having 6 to 30, or an organic electroluminescent device according to claim 1, characterized in that at least one selected from the representative.) An aromatic heterocyclic group having 3 to 20 carbon atoms.
  5.  前記一般式(1)で表される構造を有するπ共役系化合物におけるXが、前記一般式(1a)、(1b)、(1d)、(1e)、(1g)、(1h)、(1i)又は(1j)で表される芳香族炭化水素基であることを特徴とする請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 X in the π-conjugated compound having the structure represented by the general formula (1) is the general formula (1a), (1b), (1d), (1e), (1g), (1h), (1i The organic electroluminescence device according to any one of claims 1 to 4, wherein the organic electroluminescence device is an aromatic hydrocarbon group represented by (1) or (1j).
  6.  前記一般式(1)で表される構造を有するπ共役系化合物におけるXが、前記一般式(1a)、(1b)、(1d)、(1e)、(1g)、(1h)、(1i)又は(1j)で表される芳香族炭化水素基であり、R、R、Ra、Rb、Rc及びRdのうちの少なくとも1つは電子吸引性基であり、かつ少なくとも1つは電子供与性基であり、前記電子吸引性基及び前記電子供与性基に該当しないR、R、Ra、Rb、Rc及びRdのすべてが水素原子であることを特徴とする請求項5に記載の有機エレクトロルミネッセンス素子。 X in the π-conjugated compound having the structure represented by the general formula (1) is the general formula (1a), (1b), (1d), (1e), (1g), (1h), (1i ) Or (1j), at least one of R 1 , R 2 , Ra, Rb, Rc and Rd is an electron withdrawing group, and at least one is an electron 6. All of R 1 , R 2 , Ra, Rb, Rc and Rd which are donating groups and do not correspond to the electron withdrawing group and the electron donating group are hydrogen atoms. Organic electroluminescence element.
  7.  前記一般式(1)で表される構造を有するπ共役系化合物の最低励起一重項準位と最低励起三重項準位とのエネルギー差の絶対値(ΔEst)が、0.5eV以下であることを特徴とする請求項1から請求項6までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The absolute value (ΔEst) of the energy difference between the lowest excited singlet level and the lowest excited triplet level of the π-conjugated compound having the structure represented by the general formula (1) is 0.5 eV or less. The organic electroluminescence element according to claim 1, wherein the organic electroluminescence element is characterized in that:
  8.  前記発光層が、前記一般式(1)で表される構造を有するπ共役系化合物と、蛍光発光性化合物及びリン光発光性化合物のうち少なくとも1種とを含有することを特徴とする請求項1から請求項7までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The luminescent layer contains a π-conjugated compound having a structure represented by the general formula (1) and at least one of a fluorescent luminescent compound and a phosphorescent luminescent compound. The organic electroluminescent element according to any one of claims 1 to 7.
  9.  前記発光層が、π共役系化合物と、蛍光発光性化合物及びリン光発光性化合物のうち少なくとも1種類と、ホスト化合物とを含有することを特徴とする請求項1から請求項8までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 9. The light emitting layer according to any one of claims 1 to 8, wherein the light emitting layer contains a π-conjugated compound, at least one of a fluorescent compound and a phosphorescent compound, and a host compound. The organic electroluminescence device according to one item.
  10.  下記一般式(1)で表される構造を有するπ共役系化合物を含有することを特徴とする発光性薄膜。
    Figure JPOXMLDOC01-appb-C000003
    〔式中、Aは電子吸引性基を表し、Dは電子供与性基を表す。m及びnはそれぞれ独立に1又は2の整数である。Xは、下記一般式(1a)~(1k)で表される構造から選ばれる芳香族炭化水素基を表す。〕
    Figure JPOXMLDOC01-appb-C000004
    〔上記一般式(1a)~(1k)で表される構造を有する芳香族炭化水素基において、R、R、Ra、Rb、Rc及びRdは、それぞれ独立に水素原子又は置換基を表す。p、q、r及びsは、それぞれ独立に0~4の整数を表す。これらの置換基は同一でも異なっていてもよく、また、各々の置換基同士が結合して環を形成していてもよい。〕
    A luminescent thin film comprising a π-conjugated compound having a structure represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000003
    [In the formula, A represents an electron-withdrawing group, and D represents an electron-donating group. m and n are each independently an integer of 1 or 2. X represents an aromatic hydrocarbon group selected from structures represented by the following general formulas (1a) to (1k). ]
    Figure JPOXMLDOC01-appb-C000004
    [In the aromatic hydrocarbon group having the structure represented by the general formulas (1a) to (1k), R 1 , R 2 , Ra, Rb, Rc and Rd each independently represents a hydrogen atom or a substituent. . p, q, r and s each independently represent an integer of 0 to 4. These substituents may be the same or different, and each substituent may be bonded to form a ring. ]
  11.  前記一般式(1)で表される構造を有するπ共役系化合物の最低励起一重項エネルギー準位と最低励起三重項エネルギー準位の差の絶対値(ΔEst)が、0.5eV以下であることを特徴とする請求項10に記載の発光性薄膜。 The absolute value (ΔEst) of the difference between the lowest excited singlet energy level and the lowest excited triplet energy level of the π-conjugated compound having the structure represented by the general formula (1) is 0.5 eV or less. The luminescent thin film according to claim 10.
  12.  請求項1から請求項9までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする表示装置。 A display device comprising the organic electroluminescence element according to any one of claims 1 to 9.
  13.  請求項1から請求項9までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする照明装置。 An illuminating device comprising the organic electroluminescence element according to any one of claims 1 to 9.
PCT/JP2015/070917 2014-07-31 2015-07-23 Organic electroluminescent element, light-emitting thin film, display device, and lighting device WO2016017514A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016538300A JPWO2016017514A1 (en) 2014-07-31 2015-07-23 ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHT-EMITTING THIN FILM, DISPLAY DEVICE AND LIGHTING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014156174 2014-07-31
JP2014-156174 2014-07-31

Publications (1)

Publication Number Publication Date
WO2016017514A1 true WO2016017514A1 (en) 2016-02-04

Family

ID=55217415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070917 WO2016017514A1 (en) 2014-07-31 2015-07-23 Organic electroluminescent element, light-emitting thin film, display device, and lighting device

Country Status (2)

Country Link
JP (1) JPWO2016017514A1 (en)
WO (1) WO2016017514A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105777809A (en) * 2016-04-15 2016-07-20 京东方科技集团股份有限公司 Organic electroluminescence material and organic electroluminescence device
WO2016204150A1 (en) * 2015-06-16 2016-12-22 出光興産株式会社 Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
US9902687B2 (en) 2014-09-19 2018-02-27 Idemitsu Kosan Co., Ltd. Compound
CN108203420A (en) * 2016-12-20 2018-06-26 武汉尚赛光电科技有限公司 Derivative of naphthalene benzofuran and anthracene and preparation method thereof, application and device
KR20180099436A (en) * 2017-02-28 2018-09-05 삼성에스디아이 주식회사 Composition for organic optoelectric device and organic optoelectric device and display device
CN108586188A (en) * 2018-06-01 2018-09-28 石家庄诚志永华显示材料有限公司 * derivative, material and organic electroluminescence device comprising the * derivatives
WO2018179482A1 (en) * 2017-03-28 2018-10-04 Tdk株式会社 Compound for organic electroluminescence element and organic electroluminescence element
WO2018186462A1 (en) * 2017-04-07 2018-10-11 コニカミノルタ株式会社 Fluorescent compound, organic material composition, light emitting film, organic electroluminescent element material, and organic electroluminescent element
US10125310B2 (en) 2015-02-06 2018-11-13 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and electronic device
JP2019509977A (en) * 2015-12-29 2019-04-11 ユニヴァーシティー コート オブ ザ ユニヴァーシティー オブ セント アンドリューズ Luminescent compound
JP2019073489A (en) * 2017-10-19 2019-05-16 Dic株式会社 Organic electroluminescence element and material
US10547009B2 (en) 2015-03-27 2020-01-28 Idemitsu Kosan Co., Ltd. Organic electroluminescent element, electronic device and compound
CN113874366A (en) * 2019-09-11 2021-12-31 株式会社Lg化学 Heterocyclic compound and organic light emitting device including the same
WO2023042814A1 (en) * 2021-09-16 2023-03-23 株式会社Kyulux Compound, light-emitting material and light-emitting element
CN116003340A (en) * 2022-12-27 2023-04-25 广东工业大学 Phenanthrene nitrile organic light-emitting compound and preparation method and application thereof
US11957043B2 (en) 2020-05-06 2024-04-09 Samsung Display Co., Ltd. Light-emitting device and electronic apparatus comprising same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294373A (en) * 1999-04-05 2000-10-20 Toyo Ink Mfg Co Ltd Material for organic electroluminescence element and organic electroluminescence element using the material
JP4055363B2 (en) * 1999-01-08 2008-03-05 チッソ株式会社 Borane derivatives and organic electroluminescent devices
JP2009266927A (en) * 2008-04-23 2009-11-12 Konica Minolta Holdings Inc Organic electroluminescent element, display device, illumination device and organic electroluminescent element material
JP2010195708A (en) * 2009-02-25 2010-09-09 Toyo Ink Mfg Co Ltd Compound having carbazolyl group and use thereof
JP2011012190A (en) * 2009-07-03 2011-01-20 Toyo Ink Mfg Co Ltd Material for low molecular weight application type organic electroluminescent element, ink composition for organic electroluminescent element and organic electroluminescent element
JP2011174025A (en) * 2010-02-26 2011-09-08 Toyo Ink Sc Holdings Co Ltd Material for organic electroluminescent element and application thereof
KR20110115891A (en) * 2010-04-16 2011-10-24 에스에프씨 주식회사 Amine-based compound and organic electroluminescent devices comprising the same
WO2012048266A1 (en) * 2010-10-08 2012-04-12 Universal Display Corporation Novel 3, 9-linked oligocarbazole-based hosts, containing dbt and dbr fragments, separated by aromatic spacers
JP2013035839A (en) * 2011-08-05 2013-02-21 Samsung Display Co Ltd Carbazole compound and organic light emitting device
WO2013032278A1 (en) * 2011-09-01 2013-03-07 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
CN103896973A (en) * 2014-04-11 2014-07-02 中国科学院理化技术研究所 Bi(trimethylphenyl) boron derivatives and application thereof in white organic light-emitting diode
JP2015118958A (en) * 2013-12-16 2015-06-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Material for organic electroluminescence element and organic electroluminescence element using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4055363B2 (en) * 1999-01-08 2008-03-05 チッソ株式会社 Borane derivatives and organic electroluminescent devices
JP2000294373A (en) * 1999-04-05 2000-10-20 Toyo Ink Mfg Co Ltd Material for organic electroluminescence element and organic electroluminescence element using the material
JP2009266927A (en) * 2008-04-23 2009-11-12 Konica Minolta Holdings Inc Organic electroluminescent element, display device, illumination device and organic electroluminescent element material
JP2010195708A (en) * 2009-02-25 2010-09-09 Toyo Ink Mfg Co Ltd Compound having carbazolyl group and use thereof
JP2011012190A (en) * 2009-07-03 2011-01-20 Toyo Ink Mfg Co Ltd Material for low molecular weight application type organic electroluminescent element, ink composition for organic electroluminescent element and organic electroluminescent element
JP2011174025A (en) * 2010-02-26 2011-09-08 Toyo Ink Sc Holdings Co Ltd Material for organic electroluminescent element and application thereof
KR20110115891A (en) * 2010-04-16 2011-10-24 에스에프씨 주식회사 Amine-based compound and organic electroluminescent devices comprising the same
WO2012048266A1 (en) * 2010-10-08 2012-04-12 Universal Display Corporation Novel 3, 9-linked oligocarbazole-based hosts, containing dbt and dbr fragments, separated by aromatic spacers
JP2013035839A (en) * 2011-08-05 2013-02-21 Samsung Display Co Ltd Carbazole compound and organic light emitting device
WO2013032278A1 (en) * 2011-09-01 2013-03-07 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
JP2015118958A (en) * 2013-12-16 2015-06-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Material for organic electroluminescence element and organic electroluminescence element using the same
CN103896973A (en) * 2014-04-11 2014-07-02 中国科学院理化技术研究所 Bi(trimethylphenyl) boron derivatives and application thereof in white organic light-emitting diode

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10118889B2 (en) 2014-09-19 2018-11-06 Idemitsu Kosan Co., Ltd. Compound
US10435350B2 (en) 2014-09-19 2019-10-08 Idemitsu Kosan Co., Ltd. Organic electroluminecence device
US9902687B2 (en) 2014-09-19 2018-02-27 Idemitsu Kosan Co., Ltd. Compound
US10351765B2 (en) 2015-02-06 2019-07-16 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and electronic device
US10125310B2 (en) 2015-02-06 2018-11-13 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and electronic device
US10547009B2 (en) 2015-03-27 2020-01-28 Idemitsu Kosan Co., Ltd. Organic electroluminescent element, electronic device and compound
WO2016204150A1 (en) * 2015-06-16 2016-12-22 出光興産株式会社 Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
US10790449B2 (en) 2015-06-16 2020-09-29 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
JPWO2016204150A1 (en) * 2015-06-16 2018-04-05 出光興産株式会社 COMPOUND, MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT AND ELECTRONIC DEVICE
JP2019509977A (en) * 2015-12-29 2019-04-11 ユニヴァーシティー コート オブ ザ ユニヴァーシティー オブ セント アンドリューズ Luminescent compound
US10886475B2 (en) 2016-04-15 2021-01-05 Boe Technology Group Co., Ltd. Organic electroluminescent materials and organic electroluminescent devices
CN105777809A (en) * 2016-04-15 2016-07-20 京东方科技集团股份有限公司 Organic electroluminescence material and organic electroluminescence device
CN108203420B (en) * 2016-12-20 2020-06-09 武汉尚赛光电科技有限公司 Derivative of naphthalene benzofuran and anthracene, preparation method, application and device thereof
CN108203420A (en) * 2016-12-20 2018-06-26 武汉尚赛光电科技有限公司 Derivative of naphthalene benzofuran and anthracene and preparation method thereof, application and device
KR20180099436A (en) * 2017-02-28 2018-09-05 삼성에스디아이 주식회사 Composition for organic optoelectric device and organic optoelectric device and display device
KR102275343B1 (en) 2017-02-28 2021-07-09 삼성에스디아이 주식회사 Composition for organic optoelectric device and organic optoelectric device and display device
US11417844B2 (en) 2017-02-28 2022-08-16 Samsung Sdi Co., Ltd. Composition for organic optoelectronic device, organic optoelectronic device, and display device
WO2018179482A1 (en) * 2017-03-28 2018-10-04 Tdk株式会社 Compound for organic electroluminescence element and organic electroluminescence element
JPWO2018186462A1 (en) * 2017-04-07 2020-02-27 コニカミノルタ株式会社 Fluorescent compound, organic material composition, luminescent film, organic electroluminescent device material, and organic electroluminescent device
WO2018186462A1 (en) * 2017-04-07 2018-10-11 コニカミノルタ株式会社 Fluorescent compound, organic material composition, light emitting film, organic electroluminescent element material, and organic electroluminescent element
JP2019073489A (en) * 2017-10-19 2019-05-16 Dic株式会社 Organic electroluminescence element and material
CN108586188A (en) * 2018-06-01 2018-09-28 石家庄诚志永华显示材料有限公司 * derivative, material and organic electroluminescence device comprising the * derivatives
CN113874366A (en) * 2019-09-11 2021-12-31 株式会社Lg化学 Heterocyclic compound and organic light emitting device including the same
CN113874366B (en) * 2019-09-11 2024-04-26 株式会社Lg化学 Heterocyclic compound and organic light-emitting device comprising same
US11957043B2 (en) 2020-05-06 2024-04-09 Samsung Display Co., Ltd. Light-emitting device and electronic apparatus comprising same
WO2023042814A1 (en) * 2021-09-16 2023-03-23 株式会社Kyulux Compound, light-emitting material and light-emitting element
CN116003340A (en) * 2022-12-27 2023-04-25 广东工业大学 Phenanthrene nitrile organic light-emitting compound and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2016017514A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6975639B2 (en) π-conjugated compound, organic electroluminescence element material, light emitting material, luminescent thin film, organic electroluminescence element, display device and lighting device
JP6761662B2 (en) Organic electroluminescence elements, display devices and lighting devices
JP6705148B2 (en) π-conjugated compound, organic electroluminescent element material, light emitting material, light emitting thin film, organic electroluminescent element, display device and lighting device
JP6761463B2 (en) Luminescent thin film and organic electroluminescence device
WO2016017514A1 (en) Organic electroluminescent element, light-emitting thin film, display device, and lighting device
JP6128119B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
WO2018186462A1 (en) Fluorescent compound, organic material composition, light emitting film, organic electroluminescent element material, and organic electroluminescent element
WO2017115608A1 (en) π-CONJUGATED COMPOUND, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, LIGHT EMITTING MATERIAL, CHARGE TRANSPORT MATERIAL, LUMINESCENT THIN FILM, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
WO2016017741A1 (en) Organic electroluminescence element, display device, illumination device, fluorescent light-emitting compound, and light-emitting thin film
JP6673203B2 (en) Organic electroluminescence device
WO2018008721A1 (en) Organic electroluminescent element, display device, and illumination device
WO2017126370A1 (en) Organic electroluminescence element, display device, and lighting device
JP6264001B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHT-EMITTING THIN FILM, DISPLAY DEVICE AND LIGHTING DEVICE
JP6942127B2 (en) Organic electroluminescence elements, display devices, lighting devices
JP7081898B2 (en) Organic electroluminescence elements, display devices and lighting devices
JP6686748B2 (en) Organic electroluminescence device, display device, lighting device, π-conjugated compound
JP2017123460A (en) Organic electroluminescent element, method of manufacturing organic electroluminescent element, display device and lighting device
JP2016092320A (en) Organic electroluminescent element and lighting device
JP5636630B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
WO2019163355A1 (en) Organic electroluminescent element, luminescent thin film, display device, and luminescent device
JP2017028025A (en) ORGANIC ELECTROLUMINESCENT ELEMENT, ILLUMINATING DEVICE, AND π CONJUGATED COMPOUND
WO2016194865A1 (en) Organic electroluminescent element
JP5867189B2 (en) Organic electroluminescence element, display device and lighting device
JP6701649B2 (en) Organic electroluminescence element, display device, lighting device, π-conjugated compound, and light-emitting thin film
JP6606986B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND Aromatic Heterocyclic Derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538300

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827420

Country of ref document: EP

Kind code of ref document: A1