WO2018179442A1 - Wireless power transfer system, wireless power transfer method, wireless power transfer program, and power transmitter and power receiver - Google Patents

Wireless power transfer system, wireless power transfer method, wireless power transfer program, and power transmitter and power receiver Download PDF

Info

Publication number
WO2018179442A1
WO2018179442A1 PCT/JP2017/013850 JP2017013850W WO2018179442A1 WO 2018179442 A1 WO2018179442 A1 WO 2018179442A1 JP 2017013850 W JP2017013850 W JP 2017013850W WO 2018179442 A1 WO2018179442 A1 WO 2018179442A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
receivers
transmitter
wireless
transmission system
Prior art date
Application number
PCT/JP2017/013850
Other languages
French (fr)
Japanese (ja)
Inventor
昭嘉 内田
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2017/013850 priority Critical patent/WO2018179442A1/en
Publication of WO2018179442A1 publication Critical patent/WO2018179442A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Definitions

  • Embodiments mentioned in this application relate to a wireless power transmission system, a wireless power transmission method, a wireless power transmission program, a power transmitter, and a power receiver.
  • wireless power transmission also referred to as wireless power transmission, wireless power transmission, wireless power feeding, etc.
  • a technique using electromagnetic induction or a technique using radio waves is generally known.
  • wireless power transmission by electromagnetic induction is used and practically used in shavers, electric toothbrushes, and the like.
  • a power transmission coil and a power reception coil are formed with substantially the same size, and these power transmission / reception coils are brought close to each other even for non-contact power feeding. Therefore, normally, only one-to-one power transmission in which one power transmitter supplies power to one power receiver is possible.
  • Wireless power feeding using such resonance (resonance), for example can achieve high power transmission efficiency even when the distance between the coils is longer than that using conventional electromagnetic induction.
  • simultaneous power feeding to two or more power receivers has become possible.
  • a wireless power transmission system has been proposed in which power from one power transmitter is simultaneously transmitted to a plurality of power receivers wirelessly using resonance of a strong coupling system.
  • a power transmitter and a plurality of power receivers communicate with each other to control transmitted power from the power transmitter.
  • wireless power transmission using magnetic field resonance will be mainly described as an example.
  • the application of this embodiment is not limited to magnetic field resonance.
  • the present invention can be widely applied to wireless power transmission using system resonance.
  • a wireless power transmission system that transmits electric power from a power transmitter to a plurality of power receivers simultaneously by radio using resonance of a strong coupling system.
  • Each of the power receivers controls the efficiency of the power received from the power transmitter based on the difference between the supply value and the desired value, and transmits the information on the power receiver to the power transmitter wirelessly
  • the power transmitter includes a power transmission control unit that controls transmission power to be output based on information from the plurality of power receivers.
  • the disclosed wireless power transmission system, wireless power transmission method, wireless power transmission program, power transmitter, and power receiver have an effect that processing in wireless power transmission can be performed in a short time with a simple configuration.
  • FIG. 1 is a block diagram schematically illustrating an example of a wireless power transmission system.
  • FIG. 2 is a diagram (part 1) for explaining an example of the operation in the wireless power transmission system.
  • FIG. 3 is a diagram (part 2) for explaining an example of the operation in the wireless power transmission system.
  • FIG. 4 is a flowchart for explaining an example of processing of a power transmitter that performs wireless power transmission simultaneously to a plurality of power receivers in an example of a wireless power transmission system.
  • FIG. 5 is a diagram for explaining a problem in an example of a wireless power transmission system.
  • FIG. 6 is a block diagram schematically showing a first embodiment of the wireless power transmission system.
  • FIG. 7 is a block diagram schematically showing a second embodiment of the wireless power transmission system.
  • FIG. 1 is a block diagram schematically illustrating an example of a wireless power transmission system.
  • FIG. 2 is a diagram (part 1) for explaining an example of the operation in the wireless power transmission system.
  • FIG. 3 is a
  • FIG. 8 is a flowchart for explaining an example of control processing of the power receiver in the wireless power transmission system according to the present embodiment.
  • FIG. 9 is a flowchart for explaining an example of processing of a power transmitter that performs wireless power transmission simultaneously to a plurality of power receivers in the wireless power transmission system according to the present embodiment.
  • FIG. 10 is a diagram for explaining an example of the operation in the wireless power transmission system according to the present embodiment.
  • FIG. 11 is a diagram for explaining another example of the operation in the wireless power transmission system according to the present embodiment.
  • FIG. 1 is a block diagram schematically showing an example of a wireless power transmission system, and an example of a wireless power transmission system (a power transmitter and a power receiver) by “AirFuel Alliance” (AirFuel), which is a standardization organization for wireless power feeding technology. It is for explanation.
  • AirFuel Alliance AirFuel
  • the wireless power transmission system includes a power transmitter 101 and a power receiver 102.
  • the power transmitter 101 includes a power transmitter resonance coil 111, a matching circuit 112, a high frequency amplifier 113, a power transmission control unit 114, and a power source 115.
  • the high frequency amplifier 113 receives power from the power source 115, generates a high frequency power signal, and supplies it to the power transmitter resonance coil 111 via the matching circuit 112.
  • the power transmission control unit 114 controls the transmission power output from the power transmitter resonance coil 111 via the high frequency amplifier 113 and the matching circuit 112, for example.
  • the power receiver 102 includes a power receiver resonance coil 121, a rectifier circuit 122, a DCDC circuit (DC / DC converter) 123, a power reception control unit 124, and a load (for example, a battery) 125.
  • the power receiver resonance coil 121 wirelessly receives power (energy) from the power transmitter 101 by resonance (for example, magnetic field resonance) of the power transmitter resonance coil 111 and a strong coupling system.
  • the rectifier circuit 122 rectifies the output of the power receiver resonance coil 121, and the DCDC circuit 123 receives the output of the rectifier circuit 122 and performs DC (direct current) / DC (direct current) conversion, and outputs a voltage suitable for the load 125. .
  • the power reception control unit 124 controls the power reception voltage output from the DCDC circuit 123 via the rectifier circuit 122 and the DCDC circuit 123, for example.
  • the output voltage of the rectifier circuit 122 is monitored as the monitoring voltage VM, and is used, for example, to control the efficiency of power received from the power transmitter 101.
  • This monitoring voltage VM corresponds to, for example, standardized received power obtained by standardizing received power.
  • the power transmission control unit 114 in the power transmission device 101 and the power reception control unit 124 in the power reception device 102 can communicate with each other by, for example, a Bluetooth (registered trademark) Bluetooth or a DSSS wireless LAN conforming to IEEE 802.11b. ing. Communication between the power transmission control unit 114 and the power reception control unit 124 is not limited to such dedicated communication (Out-band communication), and communication between the power transmitter resonance coil 111 and the power receiver resonance coil 121 is performed. (In-band communication) may also be used. Further, in FIG. 1, a wireless power transmission system including one power transmitter 101 and one power receiver 102 is schematically illustrated. However, a plurality of power receivers 102 may be provided, and the power transmitter 101 and the power receiver 102 may include: There may be other configurations for realizing various functions.
  • FIGS. 2 (a) to 2 (c) show a case where the coupling strength difference between the three power receivers 102A to 102C is minimal
  • FIG. 3 (a) to FIG. The case where the coupling strength difference between the electric devices 102A to 102C is medium is shown.
  • FIGS. 2 (a) to 2 (c) and FIGS. 3 (a) to 3 (c) show the monitoring voltage VM in each of the power receivers 102A to 102C and the upper limit of the desired voltage required by the power receiver.
  • the relationship between the value voltage (upper limit) VUL and the lower limit voltage (lower limit) VLL is shown.
  • the transmitted power from the power transmitter 101 (the output power output from the power transmitter resonance coil 111) is large, and the values of the monitoring voltages VM of the three power receivers 102A to 102C are all greater than the upper limit VUL. In this case, the transmitted power is determined to be excessive.
  • FIG. 2 (b) shows a case where the transmission power is medium and the values of the monitoring voltages VM of the three power receivers 102A to 102C are all larger than the upper limit VUL. At this time as well, the transmission power is determined to be excessive.
  • FIG. 3A shows a case where the transmitted power from the power transmitter 101 is large and the values of the monitoring voltages VM of the three power receivers 102A to 102C are all greater than the upper limit VUL. At this time, it is determined that the transmitted power is excessive. Is done.
  • FIG. 3B shows that the transmission power is medium, the value of the monitoring voltage VM of one power receiver 102A is between the upper limit VUL and the lower limit VLL, and the values of the monitoring voltages VM of the two power receivers 102B and 102C are the same. A case where the upper limit VUL is exceeded is shown, and at this time, the transmitted power is determined to be excessive.
  • FIG. 3A shows a case where the transmitted power from the power transmitter 101 is large and the values of the monitoring voltages VM of the three power receivers 102A to 102C are all greater than the upper limit VUL. At this time, it is determined that the transmitted power is excessive. Is done.
  • FIG. 3B shows that the transmission power is medium, the
  • 3C shows a case where the transmission power is small and the values of the monitoring voltages VM of the three power receivers 102A to 102C are all between the upper limit VUL and the lower limit VLL. At this time, the transmission power is determined to be appropriate. .
  • FIG. 4 is a flowchart for explaining an example of processing of a power transmitter that performs wireless power transmission simultaneously to a plurality of power receivers in an example of a wireless power transmission system
  • FIG. 5 is an example of the wireless power transmission system. It is a figure for demonstrating the subject in FIG.
  • FIG. 4 shows a case where power is simultaneously supplied from one power transmitter 101 to two power receivers 102A and 102B.
  • FIG. 3 and FIG. 5 show three power receivers 102A to 102C.
  • the processing of power receiver 102C is the same as the processing of power receivers 102A and 102B. is there.
  • 5A to 5C show a case where the coupling strength difference between the three power receivers 102A to 102C is large.
  • 5 (a) to 5 (c) are similar to FIGS. 2 (a) to 2 (c) and FIGS. 3 (a) to 3 (c), respectively.
  • the relationship between the monitoring voltage VM at 102C and the upper limit VUL and lower limit VLL of the desired voltage required by the power receiver is shown.
  • step ST1 when power transmission by the power transmitter 101 is started, received power information of each of the power receivers 102A and 102B is collected in step ST1.
  • the power receivers 102A and 102B perform the same operation.
  • step ST3a ST3b
  • the power receiver 102A (102B) determines whether the received power is insufficient, appropriate, or excessive with respect to the reference range. Detect and proceed to step ST4a (ST4b). That is, as the state of the power receiver 102A (102B) detected in step ST3a (ST3b), for example, the received power (monitoring voltage VM) and desired power (desired voltage) based on the transmitted power (output power) from the power transmitter 101, etc. It is information related to deficiency, appropriateness, and excess based on.
  • the power receiver 102A (102B) transmits the detection result to the power transmitter 101 in step ST4a (ST4b), returns to step ST3a (ST3b), and continues the same processing.
  • the detection result transmitted from each power receiver 102A (102B) to the power transmitter 101 is various information related to deficiency, appropriateness, and excess based on the monitoring voltage VM and the desired voltage described above.
  • step ST1 the power transmitter 101 collects the received power information of each of the power receivers 102A and 102B (102C), proceeds to step ST2, and performs predetermined processing in the power transmitter 101. That is, if it is determined in step ST2 that the received power is appropriate (the received power of all the receivers is appropriate (the monitoring voltage VM is between the upper limit VUL and the lower limit VLL)) based on the collected information on all the receivers. (For example, FIG. 2 (c), FIG. 3 (c)), the transmission power at that time is maintained.
  • the transmission power is reduced.
  • the power received by all the power receivers is insufficient (the monitoring voltage VM is lower than the lower limit VLL), or the power received by at least one power receiver is insufficient and the power received by other power receivers is appropriate. Then, the transmission power is increased.
  • the power receiver 102C is still excessive. Yes. Therefore, when the transmission power of the power transmitter 101 is further reduced, for example, as shown in FIG. 5C, the power receiver 102A is insufficient, the power receiver 102B is appropriate, and the power receiver 102C is excessive and insufficient. Power receivers are mixed.
  • the power receiver 102 performs processing based on communication with the power transmitter 101, and the power transmitter 101 includes a plurality of power receivers 102 ( 102A to 102C) to receive and process various information. That is, it is difficult for each power receiver 102 to perform power reception processing at high speed only by the power receiver, and it takes a long time for power reception processing. Such a problem becomes more serious as the number of power receivers that simultaneously perform wireless power transmission by one power transmitter increases.
  • FIG. 6 is a block diagram schematically showing a first embodiment of the wireless power transmission system.
  • the wireless power transmission system of the first embodiment includes a power transmitter 1 and a power receiver 2.
  • the power transmitter 1 includes a power transmitter resonance coil 11, a matching circuit 12, a high frequency amplifier 13, a power transmission control unit 14, and a power source 15.
  • the high frequency amplifier 13 receives power from the power supply 15 to generate a high frequency power signal, and supplies it to the power transmitter resonance coil 11 via the matching circuit 12.
  • the power transmission control unit 14 controls the transmitted power output from the power transmitter resonance coil 11 via the high frequency amplifier 13 and the matching circuit 12, for example.
  • the power transmitter 1 in the wireless power transmission system of the first embodiment is depicted in the same manner as the power transmitter 101 in FIG. The processing in the control unit 14 is different.
  • the power receiver 2 includes a power receiver resonance coil 21, a rectifier circuit 22, a power reception control unit 24, a load (for example, a battery) 25, and an efficiency adjustment circuit 26.
  • the power receiver resonance coil 21 wirelessly receives power from the power transmitter 1 by resonance (for example, magnetic field resonance) between the power transmitter resonance coil 11 and the strong coupling system.
  • the rectifier circuit 22 rectifies the output of the power receiver resonance coil 21 and converts it into DC (direct current), and outputs a voltage suitable for the load 25.
  • the power reception control unit 24 controls the efficiency adjustment circuit 26 based on, for example, the output voltage (monitoring voltage VM) of the rectifier circuit 22 and the desired voltage.
  • the efficiency adjustment circuit 26 adjusts the value of the capacitance (C) of the LC resonator provided in the power receiver resonance coil 21 (for example, shifts the resonance point), and monitors the voltage VM (supply value) and the desired voltage (desired). The power reception efficiency is adjusted so that the values match.
  • This monitoring voltage VM corresponds to, for example, standardized received power obtained by standardizing received power.
  • the DCDC circuit 123 in the power receiver 102 of FIG. 1 is not provided.
  • a DCDC circuit may be provided for the power receiver 2.
  • the DCDC circuit provided in the power receiver 2 of the present embodiment has a narrower input voltage range than the DCDC circuit 123 in the power receiver 102 of FIG. 1 described above, the circuit scale (size) is small, and Cost can also be reduced.
  • the monitoring voltage VM (voltage monitored by the power reception control unit 24) is the output of the rectifier circuit 22 (input of the DCDC circuit) as in the power receiver 102 of FIG. Voltage.
  • the power transmission control unit 14 in the power transmitter 1 and the power reception control unit 24 in the power receiver 2 can communicate with each other by, for example, a Bluetooth (registered trademark) Bluetooth or a DSSS wireless LAN that conforms to IEEE 802.11b. . Further, in recent years, Bluetooth (registered trademark) Low Energy (BLE) as a low power consumption version of "Bluetooth (registered trademark)" which is a short-range wireless standard is also used. Further, communication between the power transmission control unit 14 and the power reception control unit 24 is not limited to such dedicated communication, and may be communication between the power transmitter resonance coil 11 and the power receiver resonance coil 21.
  • a wireless power transmission system including one power transmitter 1 and one power receiver 2 is schematically illustrated. However, a plurality of power receivers 2 may be provided, and the power transmitter 1 and the power receiver 2 may be It may have a configuration for realizing various other functions. The same applies to the second embodiment described with reference to FIG.
  • FIG. 7 is a block diagram schematically showing a second embodiment of the wireless power transmission system.
  • the power receiver 2 in the wireless power transmission system of the second embodiment is configured such that the duty ratio is between the rectifier circuit 22 and the load 25 instead of the efficiency adjustment circuit 26.
  • a control circuit 27 is provided.
  • the duty ratio control circuit 27 can be formed by a single transistor (FET: Field effect transistor).
  • FET Field effect transistor
  • the duty ratio control circuit controls the duty ratio between a period during which the output of the rectifier circuit 22 is at a predetermined level and a period during which the output of the rectifier circuit 22 is zero. Perform operation (adjustment of efficiency reduction of received power). That is, the duty ratio control circuit 27 controls the impedance by controlling the transmission amount of the output (output voltage) of the rectifier circuit 22 to the load 25 as a result.
  • the monitoring voltage VM is an output voltage of the duty ratio control circuit 27.
  • the configuration in which the efficiency reduction operation is performed in the power receiver 2 is that the duty ratio of the output of the rectifier circuit 22 and the efficiency adjustment circuit 27 that adjusts the capacitance value of the LC resonator based on the power receiver resonance coil 21 and the capacitance. It is not limited to the duty ratio control circuit 27 to be controlled. That is, various things can be applied as long as the efficiency of the received power in the power receiver 2 can be adjusted (adjustment of efficiency reduction from the maximum received power). According to the present embodiment, the power receiver 2 can always perform the control operation alone independently, and the power reception control can be performed simply and at high speed.
  • the power transmitter 1 can simplify the control of transmitted power by simply receiving from each power receiver 2 whether or not the monitoring voltage VM and the efficiency decrease (whether or not the efficiency decreasing operation is performed). Even when the number of the power receivers 2 is increased, it can be dealt with.
  • FIG. 8 is a flowchart for explaining an example of control processing of the power receiver in the wireless power transmission system according to the present embodiment.
  • the difference ⁇ indicates a value (VM ⁇ VUL) obtained by subtracting the upper limit voltage VUL from the monitoring voltage VM
  • the difference ⁇ indicates a value (VM ⁇ VLL) obtained by subtracting the lower limit voltage VLL from the monitoring voltage VM. .
  • step ST12 it is determined whether the difference ⁇ is positive ( ⁇ > 0). If it is determined in step ST12 that the difference ⁇ is positive ( ⁇ > 0), the process proceeds to step ST13, and the efficiency is decreased by one step. Then, the process returns to step ST11. On the other hand, if it is determined in step ST12 that the difference ⁇ is not positive ( ⁇ ⁇ 0), the process proceeds to step ST14 to determine whether the difference ⁇ is positive ( ⁇ > 0).
  • step ST13 If it is determined in step ST13 that the difference ⁇ is positive ( ⁇ > 0), the process directly returns to step ST11. Conversely, if it is determined that the difference ⁇ is not positive ( ⁇ ⁇ 0), the process proceeds to step ST15. In step ST15, it is determined whether or not the efficiency decreasing operation is not performed (the state where there is no efficiency decrease: the state where all the electric power from the power receiver resonance coil 21 is used).
  • step ST15 If it is determined in step ST15 that there is no efficiency decrease, the process directly returns to step ST11. Conversely, if it is determined that there is no efficiency decrease, the process proceeds to step ST16, the efficiency is increased by one step, and then the process proceeds to step ST11. Return.
  • the control of the power receiver 2 in the present embodiment for example, repeats monitoring of the received voltage (detection of the monitoring voltage) and condition change (control) based on the detected monitoring voltage (monitoring ⁇ condition change ⁇ Monitoring ⁇ ”). is done sequentially.
  • the control of the power receiver 2 in the present embodiment can be performed inside the power receiver 2 without communication, for example. Therefore, even if the monitoring voltage VM exceeds the upper limit voltage VUL, the operating efficiency (power receiving efficiency) can be instantaneously reduced. Therefore, the monitoring voltage VM of the power receiver 2 will not be excessive, and the power receiver 2 There are substantially only two states, proper and insufficient.
  • the power receiver 2 in this embodiment can keep the monitoring voltage VM constant or within a certain range, for example, the DCDC circuit 123 in the power receiver 102 of the wireless power transmission system shown in FIG. 1 is unnecessary. It can be. Alternatively, even when a DCDC circuit is provided in the power receiver, it is sufficient that the DCDC circuit has a very narrow input range. Note that the efficiency reduction operation in each power receiver can reduce the received power to almost zero, for example, so that the received power can be prevented from becoming excessive.
  • FIG. 9 is a flowchart for explaining an example of processing of a power transmitter that performs wireless power transmission simultaneously to a plurality of power receivers in the wireless power transmission system according to the present embodiment. A case where power is simultaneously supplied to the two power receivers 2A and 2B will be described. As shown in FIG. 9, when power transmission by the power transmitter 1 is started, received power information of each of the power receivers 2A and 2B is collected in step ST21.
  • step ST23a the power receiver 2A (2B) detects the monitoring voltage (VM) and the reduced efficiency state
  • step ST24a the efficiency reduction state of the power receiver 2A (2B) detected in step ST23a (ST23b)
  • the efficiency reduction operation is performed is set to “1” and the efficiency reduction operation is not performed. Can be set to “0”.
  • the power receiver 2A (2B) transmits the detection result to the power transmitter 1 in step ST24a (ST24b), returns to step ST23a (ST23b), and continues the same processing.
  • the detection result transmitted from each power receiver 2A (2B) to the power transmitter 1 includes, for example, the monitoring voltage (VM) and information indicating whether or not the efficiency reducing operation is performed (“1”, “0”). ).
  • FIG. 9 illustrates the processing of the two power receivers 2A and 2B, but even when there are three or more power receivers 2, each power receiver 2 continuously performs the same processing.
  • step ST21 the power transmitter 1 collects the received power information of the power receivers 2A and 2B, proceeds to step ST22, and performs predetermined processing in the power transmitter 1. That is, in step ST22, if there is a power receiver whose monitoring voltage VM is insufficient based on the collected information of all power receivers 2A and 2B, the transmission power is increased, and all power receivers 2A and 2B are If the efficiency reduction operation is performed, the transmission power is reduced. Therefore, if at least one power receiver is not performing the efficiency reduction operation (however, there is no shortage of the monitoring voltage VM in all the power receivers), the transmission power is maintained.
  • each power receiver 2 can immediately perform processing based on the changed transmitted power.
  • the monitoring voltage VM information (appropriate or insufficient) and whether or not the efficiency reduction operation is performed (ON / OFF of the efficiency reduction function: “1” / Since only the information “0”) needs to be collected, the amount of communication can be reduced. Further, in the control, if at least one of the power receivers 2 is lower than the lower limit voltage VLL with respect to the monitoring voltage VM, the transmitted power is increased, and all of the power receivers 2 are higher than the upper limit voltage VUL and the power receiver 2 If all of these are performing the efficiency reduction operation, the transmission power is reduced.
  • the transmitted power at that time is maintained. That is, since the control in the wireless power transmission system of the present embodiment has a simple configuration, control processing is easy even if the number of power receivers is increased, and instructions can be given to the power receivers. Therefore, the time to complete the control can be shortened.
  • FIG. 10 is a diagram for explaining an example of the operation in the wireless power transmission system according to the present embodiment.
  • FIG. 10 (a) to FIG. 10 (c) show the monitoring voltage VM at each of the power receivers 2A to 2C when the coupling strength difference between the three power receivers 2A, 2B, and 2C is large, and its reception.
  • the relationship between the upper limit VUL and the lower limit VLL of the desired voltage required by the electric appliance is shown.
  • the power receiver 2A is configured such that the monitored voltage (supply value) VM is the lower limit of the desired voltage (desired value). VLL or less (insufficient).
  • the monitoring voltage VM is between the upper limit VUL and the lower limit VLL of the desired voltage (appropriate)
  • the monitoring voltage VM is larger (excessive) than the upper limit VUL of the desired voltage. ing. That is, the state shown in FIG. 10A corresponds to the state shown in FIG.
  • the power reception control unit 24 of the power receiver 2C controls the efficiency adjustment circuit 26 (or the duty ratio control circuit 27). Reducing power reception efficiency.
  • the monitoring voltage VM is between the upper limit VUL and the lower limit VLL of the desired voltage (proper).
  • the control in the power receiver 2C (2A, 2B) is performed sequentially, for example, by repeatedly monitoring the received voltage and changing the conditions (monitoring ⁇ condition change ⁇ monitoring ⁇ ).
  • the power transmitter 1 controls the matching circuit 12 and the high-frequency amplifier 13 by the power transmission control unit 14 to increase the transmission power (during the transmission power).
  • the monitoring voltage VM of the power receiver 2A is between the upper limit VUL and the lower limit VLL (appropriate) and converges to a stable state.
  • the power reception control unit 24 of the power receiver 2C causes the efficiency adjustment circuit 26 (or the duty ratio).
  • the control circuit 27) is controlled to reduce the power reception efficiency.
  • the monitoring voltage VM of all the power receivers 2A, 2B, 2C is between the upper limit VUL and the lower limit VLL of the desired voltage (proper).
  • the efficiency reduction process (efficiency reduction operation) of the received power in the power receiver 2C is much faster than the process of increasing the transmitted power by the power transmitter 1, the power receiver 2C Immediately, the power receiving efficiency can be lowered to an appropriate state.
  • the wireless power transmission system of the present embodiment for example, even when a receiver with excessive received power and a receiver with insufficient received power are mixed, the wireless power transmission is stopped. It is possible to continue without
  • FIG. 11 is a diagram for explaining another example of the operation in the wireless power transmission system according to the present embodiment.
  • FIG. 11 (a) to FIG. 11 (c) show the monitoring voltage VM in each of the power receivers 2A to 2C and the reception thereof when the coupling strength difference between the three power receivers 2A, 2B, and 2C is large.
  • the relationship between the upper limit VUL and the lower limit VLL of the desired voltage required by the electric appliance is shown.
  • FIG. 11A for example, when the transmission power from the power transmitter 1 is large (high transmission power), all the power receivers 2A to 2C have the monitored voltage VM higher than the upper limit VUL of the desired voltage. Indicates the state. In this state, for example, as shown in FIG. 11 (b), for example, all the power receivers 2A to 2C perform an operation for lowering the efficiency of the received power, so that proper (monitoring in all the power receivers 2A to 2C is performed). When the voltage VM is between the upper limit VUL and the lower limit VLL), the power transmitter 1 reduces the transmitted power.
  • the power transmitter 1 decreases the transmitted power
  • the power receiver 2A keeps the received power without performing the efficiency reduction operation based on the decrease in the transmitted power. use.
  • the power receivers 2B and 2C are appropriate by performing the efficiency decreasing operation. However, if at least one power receiver (2A) is not performing the efficiency decreasing operation, the power transmitter 1 decreases the transmission power. You don't have to. Thereby, the wireless power transmission system including the plurality of power receivers 2A to 2C can converge to a stable state as shown in FIG.
  • the power transmitter 1 receives the information (appropriate or insufficient) of the monitoring voltage VM from each of the power receivers 2A to 2C, and whether or not the efficiency reduction operation is being performed (efficiency Since only the information on the on / off of the lowering function needs to be collected, the amount of communication can be reduced.
  • the power transmitter 1 increases the transmission power if the monitoring voltage VM of at least one power receiver (2A) is lower than the lower limit VLL, and the monitoring voltage VM of all the power receivers (2A to 2C) is higher than the upper limit VUL. If it is the above and efficiency reduction operation
  • the power transmission control unit 14 in the power transmitter 1 and the power reception control unit 24 in the power receiver 2 correspond to the computer (microprocessor) that executes the program. To do.
  • control of wireless power transmission can be completed easily in a short time, and even for a large number of power receivers, the optimal control state is converged in a shorter time, and the efficiency is improved.
  • Wireless power transmission can be realized. Further, for example, even when power concentration occurs due to a rapid operation of the power receiver, the power receiver can be protected from damage and destruction, and wireless power transmission (power feeding) can be continued.

Abstract

Provided is a wireless power transfer system that wirelessly transfers power from a power transmitter to a plurality of power receivers at a time by using strongly coupled system resonance. Each of the power receivers has a power reception control unit that controls the efficiency of power received from the power transmitter on the basis of the difference between a supplied value and a desired value and wirelessly transmits information of each of the power receivers to the power transmitter. The power transmitter has a power transmission control unit that controls, on the basis of the information from the power receivers, a transmission power to be output.

Description

無線電力伝送システム、無線電力伝送方法および無線電力伝送プログラム、並びに、送電器および受電器Wireless power transmission system, wireless power transmission method, wireless power transmission program, power transmitter, and power receiver
 この出願で言及する実施例は、無線電力伝送システム、無線電力伝送方法および無線電力伝送プログラム、並びに、送電器および受電器に関する。 Embodiments mentioned in this application relate to a wireless power transmission system, a wireless power transmission method, a wireless power transmission program, a power transmitter, and a power receiver.
 近年、電源供給や充電を行うために、無線で電力を伝送する技術が注目されている。例えば、携帯端末やノートパソコンを始めとした様々な電子機器や家電機器、或いは、電力インフラ機器に対して、無線で電力伝送を行う無線電力伝送システムが研究・開発されている。 In recent years, attention has been paid to a technique for transmitting power wirelessly in order to supply power and charge. For example, wireless power transmission systems that wirelessly transmit power to various electronic devices such as mobile terminals and notebook computers, home appliances, and power infrastructure devices are being researched and developed.
 無線電力伝送(ワイヤレス電力伝送:Wireless Power Transfer、ワイヤレス送電,ワイヤレス給電等とも称される)としては、一般的に、電磁誘導を利用した技術や電波を利用した技術が知られている。具体的に、電磁誘導によるワイヤレス電力伝送は、シェーバーや電動歯ブラシ等で使われて実用化されている。 As a wireless power transmission (also referred to as wireless power transmission, wireless power transmission, wireless power feeding, etc.), a technique using electromagnetic induction or a technique using radio waves is generally known. Specifically, wireless power transmission by electromagnetic induction is used and practically used in shavers, electric toothbrushes, and the like.
 しかしながら、電磁誘導を利用したワイヤレス電力伝送では、非接触給電であっても、送電コイルおよび受電コイルをほぼ同じ大きさで作成し、これらの送受電コイルを近接させるようになっている。そのため、通常、1つの送電器が1つの受電器に給電を行う1対1送電のみが可能であった。 However, in wireless power transmission using electromagnetic induction, a power transmission coil and a power reception coil are formed with substantially the same size, and these power transmission / reception coils are brought close to each other even for non-contact power feeding. Therefore, normally, only one-to-one power transmission in which one power transmitter supplies power to one power receiver is possible.
 これに対して、近年、送電器と受電器の距離をある程度離しつつ、複数の受電器に対する電力伝送および受電器の三次元的な様々な姿勢に対する電力伝送が可能なものとして、強結合系の共振を用いたワイヤレス給電技術が注目されている。この強結合系の共振を用いたワイヤレス給電としては、例えば、磁界共鳴(磁界共振)や電界共鳴(電界共振)を利用したものが知られている。 On the other hand, in recent years, it is possible to transmit power to a plurality of power receivers and to transmit power in three-dimensional various positions of the power receivers while keeping the distance between the power transmitter and the power receiver to some extent. Wireless power transfer technology using resonance is drawing attention. As wireless power feeding using the resonance of the strong coupling system, for example, one using magnetic field resonance (magnetic field resonance) or electric field resonance (electric field resonance) is known.
 このような共鳴(共振)を用いたワイヤレス給電は、例えば、従来の電磁誘導を利用したものに比べてコイル間の距離が離れても高い送電効率が得られるため、例えば、送電コイルを大きくすることで、2台以上の受電器への同時給電が可能となってきている。 Wireless power feeding using such resonance (resonance), for example, can achieve high power transmission efficiency even when the distance between the coils is longer than that using conventional electromagnetic induction. Thus, simultaneous power feeding to two or more power receivers has become possible.
 ところで、従来、強結合系の共振を用いた無線電力伝送技術としては、様々な提案がなされている。 By the way, conventionally, various proposals have been made as a wireless power transmission technique using resonance of a strong coupling system.
特開2011-120361号公報JP 2011-120361 A 特開2015-111997号公報JP2015-111997 特開2015-133815号公報JP2015-133815A 国際公開第2013/035873号International Publication No. 2013/035873 国際公開第2016/046933号International Publication No. 2016/046933 国際公開第2016/071995号International Publication No. 2016/071995
 前述したように、例えば、1台の送電器からの電力を、強結合系の共振を用いて無線により同時に複数の受電器に対して伝送する無線電力伝送システムが提案されている。このような無線電力伝送システムでは、例えば、送電器と複数の受電器が互いに通信を行って送電器からの送電電力を制御している。 As described above, for example, a wireless power transmission system has been proposed in which power from one power transmitter is simultaneously transmitted to a plurality of power receivers wirelessly using resonance of a strong coupling system. In such a wireless power transmission system, for example, a power transmitter and a plurality of power receivers communicate with each other to control transmitted power from the power transmitter.
 ところで、1台の送電器が複数の受電器に対して同時に無線電力伝送を行う場合、例えば、受電電力が適正となる受電器だけでなく、受電電力が不足となる受電器および受電電力が過剰となる受電器が混在することが生じてしまう。そこで、各受電器に対して、広い入力電圧範囲を有するDCDC回路(DC/DCコンバータ)を設けることが考えられるが、このようなDCDC回路も設けると、回路規模(サイズ)やコストの増大を招くだけでなく、受電処理を高速に行うことが難しくなる。 By the way, when one power transmitter performs wireless power transmission to a plurality of power receivers at the same time, for example, not only a power receiver with proper power reception, but also a power receiver with insufficient power reception power and excessive power reception power. Will be mixed. Therefore, it is conceivable to provide a DCDC circuit (DC / DC converter) having a wide input voltage range for each power receiver. However, if such a DCDC circuit is also provided, an increase in circuit size (size) and cost is expected. In addition to incurring, it becomes difficult to perform power reception processing at high speed.
 なお、本明細書では、主として、磁界共鳴を利用した無線電力伝送を例として説明するが、本実施例の適用は、磁界共鳴に限定されず、電界共鳴を利用したものを始めとして、強結合系の共振を用いた無線電力伝送に対しても幅広く適用することが可能である。 In the present specification, wireless power transmission using magnetic field resonance will be mainly described as an example. However, the application of this embodiment is not limited to magnetic field resonance. The present invention can be widely applied to wireless power transmission using system resonance.
 一実施形態によれば、送電器からの電力を、強結合系の共振を用いて無線により同時に複数の受電器に対して伝送する無線電力伝送システムが提供される。 According to an embodiment, there is provided a wireless power transmission system that transmits electric power from a power transmitter to a plurality of power receivers simultaneously by radio using resonance of a strong coupling system.
 それぞれの前記受電器は、供給値と所望値の差分に基づいて、前記送電器から受け取る電力の効率を制御すると共に、前記送電器に対して、前記受電器の情報を無線により伝える受電制御部を有する。前記送電器は、複数の前記受電器からの情報に基づいて、出力する送電電力を制御する送電制御部を有する。 Each of the power receivers controls the efficiency of the power received from the power transmitter based on the difference between the supply value and the desired value, and transmits the information on the power receiver to the power transmitter wirelessly Have The power transmitter includes a power transmission control unit that controls transmission power to be output based on information from the plurality of power receivers.
 開示の無線電力伝送システム、無線電力伝送方法および無線電力伝送プログラム、並びに、送電器および受電器は、無線電力伝送における処理を簡単な構成で短時間に行うことができるという効果を奏する。 The disclosed wireless power transmission system, wireless power transmission method, wireless power transmission program, power transmitter, and power receiver have an effect that processing in wireless power transmission can be performed in a short time with a simple configuration.
図1は、無線電力伝送システムの一例を模式的に示すブロック図である。FIG. 1 is a block diagram schematically illustrating an example of a wireless power transmission system. 図2は、無線電力伝送システムにおける動作の一例を説明するための図(その1)である。FIG. 2 is a diagram (part 1) for explaining an example of the operation in the wireless power transmission system. 図3は、無線電力伝送システムにおける動作の一例を説明するための図(その2)である。FIG. 3 is a diagram (part 2) for explaining an example of the operation in the wireless power transmission system. 図4は、無線電力伝送システムの一例において、複数の受電器に対して同時に無線電力伝送を行う送電器の処理の一例を説明するためのフローチャートである。FIG. 4 is a flowchart for explaining an example of processing of a power transmitter that performs wireless power transmission simultaneously to a plurality of power receivers in an example of a wireless power transmission system. 図5は、無線電力伝送システムの一例における課題を説明するための図である。FIG. 5 is a diagram for explaining a problem in an example of a wireless power transmission system. 図6は、無線電力伝送システムの第1実施例を模式的に示すブロック図である。FIG. 6 is a block diagram schematically showing a first embodiment of the wireless power transmission system. 図7は、無線電力伝送システムの第2実施例を模式的に示すブロック図である。FIG. 7 is a block diagram schematically showing a second embodiment of the wireless power transmission system. 図8は、本実施形態に係る無線電力伝送システムにおける受電器の制御処理の一例を説明するためのフローチャートである。FIG. 8 is a flowchart for explaining an example of control processing of the power receiver in the wireless power transmission system according to the present embodiment. 図9は、本実施形態に係る無線電力伝送システムにおいて、複数の受電器に対して同時に無線電力伝送を行う送電器の処理の一例を説明するためのフローチャートである。FIG. 9 is a flowchart for explaining an example of processing of a power transmitter that performs wireless power transmission simultaneously to a plurality of power receivers in the wireless power transmission system according to the present embodiment. 図10は、本実施形態に係る無線電力伝送システムにおける動作の一例を説明するための図である。FIG. 10 is a diagram for explaining an example of the operation in the wireless power transmission system according to the present embodiment. 図11は、本実施形態に係る無線電力伝送システムにおける動作の他の例を説明するための図である。FIG. 11 is a diagram for explaining another example of the operation in the wireless power transmission system according to the present embodiment.
 まず、無線電力伝送システム、無線電力伝送方法および無線電力伝送プログラム、並びに、送電器および受電器の実施例を詳述する前に、無線電力伝送システムの一例、および、その課題を説明する。図1は、無線電力伝送システムの一例を模式的に示すブロック図であり、ワイヤレス給電技術の標準化団体である「AirFuel Alliance」(AirFuel)による無線電力伝送システム(送電器および受電器)の例を説明するためのものである。 First, before describing embodiments of a wireless power transmission system, a wireless power transmission method and a wireless power transmission program, and a power transmitter and a power receiver, an example of the wireless power transmission system and its problems will be described. FIG. 1 is a block diagram schematically showing an example of a wireless power transmission system, and an example of a wireless power transmission system (a power transmitter and a power receiver) by “AirFuel Alliance” (AirFuel), which is a standardization organization for wireless power feeding technology. It is for explanation.
 図1に示されるように、無線電力伝送システムは、送電器101および受電器102を含む。送電器101は、送電器共振コイル111,整合回路112,高周波アンプ113,送電制御部114および電源115を含む。高周波アンプ113は、電源115からの電力を受け取って高周波電力信号を生成し、整合回路112を介して送電器共振コイル111に供給する。送電制御部114は、例えば、高周波アンプ113および整合回路112を介して、送電器共振コイル111から出力される送電電力を制御する。 As shown in FIG. 1, the wireless power transmission system includes a power transmitter 101 and a power receiver 102. The power transmitter 101 includes a power transmitter resonance coil 111, a matching circuit 112, a high frequency amplifier 113, a power transmission control unit 114, and a power source 115. The high frequency amplifier 113 receives power from the power source 115, generates a high frequency power signal, and supplies it to the power transmitter resonance coil 111 via the matching circuit 112. The power transmission control unit 114 controls the transmission power output from the power transmitter resonance coil 111 via the high frequency amplifier 113 and the matching circuit 112, for example.
 受電器102は、受電器共振コイル121,整流回路122,DCDC回路(DC/DCコンバータ)123,受電制御部124および負荷(例えば、バッテリ)125を含む。受電器共振コイル121は、送電器共振コイル111と強結合系の共振(例えば、磁界共鳴)により、送電器101からの電力(エネルギー)を無線により受け取る。整流回路122は、受電器共振コイル121の出力を整流し、DCDC回路123は、整流回路122の出力を受け取ってDC(直流)/DC(直流)変換し、負荷125に適した電圧を出力する。ここで、受電制御部124は、例えば、整流回路122およびDCDC回路123を介して、DCDC回路123から出力される受電電圧を制御する。また、整流回路122の出力電圧は、監視電圧VMとして監視され、例えば、送電器101から受け取る電力の効率を制御するため等に利用される。この監視電圧VMは、例えば、受電電力を規格化した規格化受電電力に対応する。 The power receiver 102 includes a power receiver resonance coil 121, a rectifier circuit 122, a DCDC circuit (DC / DC converter) 123, a power reception control unit 124, and a load (for example, a battery) 125. The power receiver resonance coil 121 wirelessly receives power (energy) from the power transmitter 101 by resonance (for example, magnetic field resonance) of the power transmitter resonance coil 111 and a strong coupling system. The rectifier circuit 122 rectifies the output of the power receiver resonance coil 121, and the DCDC circuit 123 receives the output of the rectifier circuit 122 and performs DC (direct current) / DC (direct current) conversion, and outputs a voltage suitable for the load 125. . Here, the power reception control unit 124 controls the power reception voltage output from the DCDC circuit 123 via the rectifier circuit 122 and the DCDC circuit 123, for example. The output voltage of the rectifier circuit 122 is monitored as the monitoring voltage VM, and is used, for example, to control the efficiency of power received from the power transmitter 101. This monitoring voltage VM corresponds to, for example, standardized received power obtained by standardizing received power.
 なお、送電器101における送電制御部114と、受電器102における受電制御部124は、例えば、ブルートゥース(Bluetooth(登録商標))やIEEE 802.11bに準拠するDSSS方式の無線LAN等により通信可能となっている。また、送電制御部114と受電制御部124間の通信は、このような専用の通信(Out-band通信)に限定されるものではなく、送電器共振コイル111と受電器共振コイル121間による通信(In-band通信)であってもよい。さらに、図1では、1つの送電器101および1つの受電器102を含む無線電力伝送システムを模式的に示したが、受電器102は複数でもよく、また、送電器101および受電器102は、他に様々な機能を実現する構成を有することもある。 The power transmission control unit 114 in the power transmission device 101 and the power reception control unit 124 in the power reception device 102 can communicate with each other by, for example, a Bluetooth (registered trademark) Bluetooth or a DSSS wireless LAN conforming to IEEE 802.11b. ing. Communication between the power transmission control unit 114 and the power reception control unit 124 is not limited to such dedicated communication (Out-band communication), and communication between the power transmitter resonance coil 111 and the power receiver resonance coil 121 is performed. (In-band communication) may also be used. Further, in FIG. 1, a wireless power transmission system including one power transmitter 101 and one power receiver 102 is schematically illustrated. However, a plurality of power receivers 102 may be provided, and the power transmitter 101 and the power receiver 102 may include: There may be other configurations for realizing various functions.
 図2および図3は、無線電力伝送システムの一例の動作を説明するための図であり、1つの送電器(101)から3つの受電器102A,102B,102Cに対して同時に電力を伝送するときの動作を説明するものである。ここで、図2(a)~図2(c)は、3つの受電器102A~102Cの結合強度差が極小の場合を示し、図3(a)~図3(c)は、3つの受電器102A~102Cの結合強度差が中程度の場合を示す。なお、図2(a)~図2(c)および図3(a)~図3(c)は、それぞれの受電器102A~102Cにける監視電圧VMと、その受電器が求める所望電圧の上限値電圧(上限)VULおよび下限値電圧(下限)VLLの関係を示している。 2 and 3 are diagrams for explaining the operation of an example of the wireless power transmission system. When power is simultaneously transmitted from one power transmitter (101) to three power receivers 102A, 102B, and 102C. Will be described. Here, FIG. 2 (a) to FIG. 2 (c) show a case where the coupling strength difference between the three power receivers 102A to 102C is minimal, and FIG. 3 (a) to FIG. The case where the coupling strength difference between the electric devices 102A to 102C is medium is shown. FIGS. 2 (a) to 2 (c) and FIGS. 3 (a) to 3 (c) show the monitoring voltage VM in each of the power receivers 102A to 102C and the upper limit of the desired voltage required by the power receiver. The relationship between the value voltage (upper limit) VUL and the lower limit voltage (lower limit) VLL is shown.
 図2(a)は、送電器101からの送電電力(送電器共振コイル111から出力される出力電力)が大きく、3つの受電器102A~102Cの監視電圧VMの値が全て上限VULよりも大きい場合を示し、このとき、送電電力は過剰と判断される。図2(b)は、送電電力が中程度であり、3つの受電器102A~102Cの監視電圧VMの値が全て上限VULよりも大きい場合を示し、このときも、送電電力は過剰と判断される。図2(c)は、送電電力が小さく、3つの受電器102A~102Cの監視電圧VMの値が全て上限VULと下限VLLの間の場合を示し、このとき、送電電力は適正と判断される。 In FIG. 2A, the transmitted power from the power transmitter 101 (the output power output from the power transmitter resonance coil 111) is large, and the values of the monitoring voltages VM of the three power receivers 102A to 102C are all greater than the upper limit VUL. In this case, the transmitted power is determined to be excessive. FIG. 2 (b) shows a case where the transmission power is medium and the values of the monitoring voltages VM of the three power receivers 102A to 102C are all larger than the upper limit VUL. At this time as well, the transmission power is determined to be excessive. The FIG. 2 (c) shows a case where the transmission power is small and the values of the monitoring voltages VM of the three power receivers 102A to 102C are all between the upper limit VUL and the lower limit VLL. At this time, the transmission power is determined to be appropriate. .
 図3(a)は、送電器101からの送電電力が大きく、3つの受電器102A~102Cの監視電圧VMの値が全て上限VULよりも大きい場合を示し、このとき、送電電力は過剰と判断される。図3(b)は、送電電力が中程度であり、1つの受電器102Aの監視電圧VMの値が上限VULと下限VLLの間で、2つの受電器102B,102Cの監視電圧VMの値が上限VUL以上の場合を示し、このときも、送電電力は過剰と判断される。図3(c)は、送電電力が小さく、3つの受電器102A~102Cの監視電圧VMの値が全て上限VULと下限VLLの間の場合を示し、このとき、送電電力は適正と判断される。 FIG. 3A shows a case where the transmitted power from the power transmitter 101 is large and the values of the monitoring voltages VM of the three power receivers 102A to 102C are all greater than the upper limit VUL. At this time, it is determined that the transmitted power is excessive. Is done. FIG. 3B shows that the transmission power is medium, the value of the monitoring voltage VM of one power receiver 102A is between the upper limit VUL and the lower limit VLL, and the values of the monitoring voltages VM of the two power receivers 102B and 102C are the same. A case where the upper limit VUL is exceeded is shown, and at this time, the transmitted power is determined to be excessive. FIG. 3C shows a case where the transmission power is small and the values of the monitoring voltages VM of the three power receivers 102A to 102C are all between the upper limit VUL and the lower limit VLL. At this time, the transmission power is determined to be appropriate. .
 図4は、無線電力伝送システムの一例において、複数の受電器に対して同時に無線電力伝送を行う送電器の処理の一例を説明するためのフローチャートであり、図5は、無線電力伝送システムの一例における課題を説明するための図である。ここで、図4は、1台の送電器101から2台の受電器102A,102Bに対して同時に電力を供給する場合を示す。なお、前述した図2および図3、並びに、図5では、3台の受電器102A~102Cが示されているが、例えば、受電器102Cの処理は、受電器102Aおよび102Bの処理と同様である。また、図5(a)~図5(c)は、3つの受電器102A~102Cの結合強度差が大きい場合を示す。なお、図5(a)~図5(c)は、前述した図2(a)~図2(c)および図3(a)~図3(c)と同様に、それぞれの受電器102A~102Cにける監視電圧VMと、その受電器が求める所望電圧の上限VULおよび下限VLLの関係を示している。 FIG. 4 is a flowchart for explaining an example of processing of a power transmitter that performs wireless power transmission simultaneously to a plurality of power receivers in an example of a wireless power transmission system, and FIG. 5 is an example of the wireless power transmission system. It is a figure for demonstrating the subject in FIG. Here, FIG. 4 shows a case where power is simultaneously supplied from one power transmitter 101 to two power receivers 102A and 102B. 2 and FIG. 3 and FIG. 5 show three power receivers 102A to 102C. For example, the processing of power receiver 102C is the same as the processing of power receivers 102A and 102B. is there. FIGS. 5A to 5C show a case where the coupling strength difference between the three power receivers 102A to 102C is large. 5 (a) to 5 (c) are similar to FIGS. 2 (a) to 2 (c) and FIGS. 3 (a) to 3 (c), respectively. The relationship between the monitoring voltage VM at 102C and the upper limit VUL and lower limit VLL of the desired voltage required by the power receiver is shown.
 図4に示されるように、送電器101による送電が開始すると、ステップST1において、各受電器102A,102Bの受電電力情報を収集する。ここで、受電器102Aおよび102Bは同様の動作を行っており、受電器102A(102B)は、ステップST3a(ST3b)において、受電電力が基準範囲に対して、不足・適正・過剰のいずれかを検出し、ステップST4a(ST4b)に進む。すなわち、ステップST3a(ST3b)において検出する受電器102A(102B)の状態としては、例えば、送電器101からの送電電力(出力電力)による受電電力(監視電圧VM)および所望電力(所望電圧)等に基づく不足・適正・過剰に関連する情報である。 As shown in FIG. 4, when power transmission by the power transmitter 101 is started, received power information of each of the power receivers 102A and 102B is collected in step ST1. Here, the power receivers 102A and 102B perform the same operation. In step ST3a (ST3b), the power receiver 102A (102B) determines whether the received power is insufficient, appropriate, or excessive with respect to the reference range. Detect and proceed to step ST4a (ST4b). That is, as the state of the power receiver 102A (102B) detected in step ST3a (ST3b), for example, the received power (monitoring voltage VM) and desired power (desired voltage) based on the transmitted power (output power) from the power transmitter 101, etc. It is information related to deficiency, appropriateness, and excess based on.
 さらに、受電器102A(102B)は、ステップステップST4a(ST4b)において、検出結果を送電器101へ伝達し、ステップST3a(ST3b)に戻って、同様の処理を継続する。ここで、各受電器102A(102B)が送電器101に対して伝達する検出結果は、上述した監視電圧VMおよび所望電圧等に基づく不足・適正・過剰に関連する様々な情報である。 Furthermore, the power receiver 102A (102B) transmits the detection result to the power transmitter 101 in step ST4a (ST4b), returns to step ST3a (ST3b), and continues the same processing. Here, the detection result transmitted from each power receiver 102A (102B) to the power transmitter 101 is various information related to deficiency, appropriateness, and excess based on the monitoring voltage VM and the desired voltage described above.
 そして、送電器101は、ステップST1において、各受電器102A,102B(102C)の受電電力情報を収集して、ステップST2に進み、送電器101における所定の処理を行う。すなわち、ステップST2において、収集された全ての受電器の情報に基づいて、適正(全ての受電器の受電電力が適正(監視電圧VMが上限VULと下限VLLの間))であると判断すれば(例えば、図2(c),図3(c))、そのときの送電電力を維持する。 In step ST1, the power transmitter 101 collects the received power information of each of the power receivers 102A and 102B (102C), proceeds to step ST2, and performs predetermined processing in the power transmitter 101. That is, if it is determined in step ST2 that the received power is appropriate (the received power of all the receivers is appropriate (the monitoring voltage VM is between the upper limit VUL and the lower limit VLL)) based on the collected information on all the receivers. (For example, FIG. 2 (c), FIG. 3 (c)), the transmission power at that time is maintained.
 また、全ての受電器の受電電力が過剰(監視電圧VMが上限VULよりも大きい)、或いは、少なくとも1つの受電器の受電電力が過剰で他の受電器の受電電力は適正であると判断すれば(例えば、図2(a),図2(b),図3(a),図3(b))、送電電力を低下させる。逆に、全ての受電器の受電電力が不足(監視電圧VMが下限VLLよりも小さい)、或いは、少なくとも1つの受電器の受電電力が不足で他の受電器の受電電力は適正であると判断すれば、送電電力を上昇させる。 In addition, it is judged that all the power receivers have excessive power (the monitoring voltage VM is larger than the upper limit VUL), or at least one power receiver has excessive power and the other power receivers have proper power. For example (FIG. 2 (a), FIG. 2 (b), FIG. 3 (a), FIG. 3 (b)), the transmission power is reduced. Conversely, the power received by all the power receivers is insufficient (the monitoring voltage VM is lower than the lower limit VLL), or the power received by at least one power receiver is insufficient and the power received by other power receivers is appropriate. Then, the transmission power is increased.
 ところで、受電電力が過剰の受電器と、受電電力が不足の受電器が混在している場合、例えば、図5(a)~図5(c)に示されるように、3つの受電器102A~102Cの結合強度差が大きいと、図5(c)に示されるように、過剰と不足の受電器が混在する虞がある。具体的に、図5(a)に示されるように、3つの受電器102A~102Cの結合強度差が大きく、受電器102Aは適正であるが、受電器102Bおよび102Cが過剰となっている状態を考える。このとき、受電器102Bを適正にする(監視電圧VMを上限VULと下限VLLの間にする)ために、送電器101の送電電力を低下させても、受電器102Cは、依然として過剰となっている。そこで、送電器101の送電電力をさらに低下させた場合、例えば、図5(c)に示されるように、受電器102Aは不足,受電器102Bは適正,受電器102Cは過剰といった過剰と不足の受電器が混在する。 By the way, when a receiver with excessive received power and a receiver with insufficient received power are mixed, for example, as shown in FIG. 5 (a) to FIG. 5 (c), the three power receivers 102A˜ When the difference in coupling strength of 102C is large, there is a possibility that excess and insufficient power receivers are mixed as shown in FIG. Specifically, as shown in FIG. 5A, the coupling strength difference between the three power receivers 102A to 102C is large, and the power receiver 102A is appropriate, but the power receivers 102B and 102C are excessive. think of. At this time, even if the transmission power of the power transmitter 101 is reduced in order to make the power receiver 102B appropriate (the monitoring voltage VM is between the upper limit VUL and the lower limit VLL), the power receiver 102C is still excessive. Yes. Therefore, when the transmission power of the power transmitter 101 is further reduced, for example, as shown in FIG. 5C, the power receiver 102A is insufficient, the power receiver 102B is appropriate, and the power receiver 102C is excessive and insufficient. Power receivers are mixed.
 なお、過剰と不足の受電器が混在する場合には、例えば、エラーとして、送電器101からの送電電力(無線電力伝送)を停止することになる。例えば、各受電器における送電器との結合差が大きいと、過剰と不足の受電器が混在することになり、送電器による送電電力の増減だけで解決するのは困難となる。 In addition, when an excess and a shortage of power receivers are mixed, for example, transmission power (wireless power transmission) from the power transmitter 101 is stopped as an error. For example, if the coupling difference between each power receiver and the power transmitter is large, excess and insufficient power receivers are mixed, and it is difficult to solve the problem only by increasing or decreasing the power transmitted by the power transmitter.
 ここで、それぞれの受電器102における上限VULおよび下限VLLの間隔(監視電圧VMに対する電圧幅)を広くするために、例えば、DCDC回路123の入力電圧範囲を広くすることが考えられるが、これは、回路規模(サイズ)やコストの増大を招くことになる。さらに、図1~図5を参照して説明した無線電力伝送システムにおいて、受電器102は、送電器101との通信に基づいた処理を行い、また、送電器101は、複数の受電器102(102A~102C)から様々な情報を受け取って処理を行うようになっている。すなわち、それぞれの受電器102は、その受電器だけで受電処理を高速に行うことが難しく、また、受電処理に長時間を要することになる。このような問題は、例えば、1台の送電器が同時に無線電力伝送を行う受電器の数が多くなるほど深刻なものとなる。 Here, in order to increase the interval between the upper limit VUL and the lower limit VLL (voltage width with respect to the monitoring voltage VM) in each power receiver 102, for example, it is conceivable to increase the input voltage range of the DCDC circuit 123. This increases the circuit scale (size) and cost. Furthermore, in the wireless power transmission system described with reference to FIGS. 1 to 5, the power receiver 102 performs processing based on communication with the power transmitter 101, and the power transmitter 101 includes a plurality of power receivers 102 ( 102A to 102C) to receive and process various information. That is, it is difficult for each power receiver 102 to perform power reception processing at high speed only by the power receiver, and it takes a long time for power reception processing. Such a problem becomes more serious as the number of power receivers that simultaneously perform wireless power transmission by one power transmitter increases.
 以下、無線電力伝送システム、無線電力伝送方法および無線電力伝送プログラム、並びに、送電器および受電器の実施例を、添付図面を参照して詳述する。図6は、無線電力伝送システムの第1実施例を模式的に示すブロック図である。 Hereinafter, embodiments of a wireless power transmission system, a wireless power transmission method and a wireless power transmission program, and a power transmitter and a power receiver will be described in detail with reference to the accompanying drawings. FIG. 6 is a block diagram schematically showing a first embodiment of the wireless power transmission system.
 図6に示されるように、第1実施例の無線電力伝送システムは、送電器1および受電器2を含む。送電器1は、送電器共振コイル11,整合回路12,高周波アンプ13,送電制御部14および電源15を含む。高周波アンプ13は、電源15からの電力を受け取って高周波電力信号を生成し、整合回路12を介して送電器共振コイル11に供給する。送電制御部14は、例えば、高周波アンプ13および整合回路12を介して、送電器共振コイル11から出力される送電電力を制御する。ここで、図6と、前述した図1の比較から明らかなように、第1実施例の無線電力伝送システムにおける送電器1は、図1における送電器101と同様に描かれているが、送電制御部14における処理が異なっている。 As shown in FIG. 6, the wireless power transmission system of the first embodiment includes a power transmitter 1 and a power receiver 2. The power transmitter 1 includes a power transmitter resonance coil 11, a matching circuit 12, a high frequency amplifier 13, a power transmission control unit 14, and a power source 15. The high frequency amplifier 13 receives power from the power supply 15 to generate a high frequency power signal, and supplies it to the power transmitter resonance coil 11 via the matching circuit 12. The power transmission control unit 14 controls the transmitted power output from the power transmitter resonance coil 11 via the high frequency amplifier 13 and the matching circuit 12, for example. Here, as is clear from the comparison between FIG. 6 and FIG. 1 described above, the power transmitter 1 in the wireless power transmission system of the first embodiment is depicted in the same manner as the power transmitter 101 in FIG. The processing in the control unit 14 is different.
 受電器2は、受電器共振コイル21,整流回路22,受電制御部24,負荷(例えば、バッテリ)25および効率調整回路26を含む。受電器共振コイル21は、送電器共振コイル11と強結合系の共振(例えば、磁界共鳴)により、送電器1からの電力を無線により受け取る。整流回路22は、受電器共振コイル21の出力を整流してDC(直流)に変換し、負荷25に適した電圧を出力する。 The power receiver 2 includes a power receiver resonance coil 21, a rectifier circuit 22, a power reception control unit 24, a load (for example, a battery) 25, and an efficiency adjustment circuit 26. The power receiver resonance coil 21 wirelessly receives power from the power transmitter 1 by resonance (for example, magnetic field resonance) between the power transmitter resonance coil 11 and the strong coupling system. The rectifier circuit 22 rectifies the output of the power receiver resonance coil 21 and converts it into DC (direct current), and outputs a voltage suitable for the load 25.
 ここで、受電制御部24は、例えば、整流回路22の出力電圧(監視電圧VM)および所望電圧に基づいて効率調整回路26を制御する。効率調整回路26は、例えば、受電器共振コイル21に設けたLC共振器の容量(C)の値を調整し(例えば、共振点をずらし)、監視電圧VM(供給値)と所望電圧(所望値)が一致するように、受電効率を調整する。この監視電圧VMは、例えば、受電電力を規格化した規格化受電電力に対応する。 Here, the power reception control unit 24 controls the efficiency adjustment circuit 26 based on, for example, the output voltage (monitoring voltage VM) of the rectifier circuit 22 and the desired voltage. For example, the efficiency adjustment circuit 26 adjusts the value of the capacitance (C) of the LC resonator provided in the power receiver resonance coil 21 (for example, shifts the resonance point), and monitors the voltage VM (supply value) and the desired voltage (desired). The power reception efficiency is adjusted so that the values match. This monitoring voltage VM corresponds to, for example, standardized received power obtained by standardizing received power.
 また、図6では、図1の受電器102におけるDCDC回路123は設けられていないが、例えば、本実施例においても、受電器2に対してDCDC回路を設けてもよい。この場合、本実施例の受電器2に設けるDCDC回路は、前述した図1の受電器102におけるDCDC回路123より入力電圧範囲の狭いもので十分であり、回路規模(サイズ)を小さく、かつ、コストも低廉化することができる。なお、本実施例において、DCDC回路を設けた場合、監視電圧VM(受電制御部24が監視する電圧)は、図1の受電器102と同様に、整流回路22の出力(DCDC回路の入力)の電圧となる。 In FIG. 6, the DCDC circuit 123 in the power receiver 102 of FIG. 1 is not provided. However, for example, in this embodiment, a DCDC circuit may be provided for the power receiver 2. In this case, it is sufficient that the DCDC circuit provided in the power receiver 2 of the present embodiment has a narrower input voltage range than the DCDC circuit 123 in the power receiver 102 of FIG. 1 described above, the circuit scale (size) is small, and Cost can also be reduced. In this embodiment, when a DCDC circuit is provided, the monitoring voltage VM (voltage monitored by the power reception control unit 24) is the output of the rectifier circuit 22 (input of the DCDC circuit) as in the power receiver 102 of FIG. Voltage.
 送電器1における送電制御部14と、受電器2における受電制御部24は、例えば、ブルートゥース(Bluetooth(登録商標))やIEEE 802.11bに準拠するDSSS方式の無線LAN等により通信可能となっている。さらに、近年は、近距離無線規格である「Bluetooth(登録商標)」の低消費電力版としてのBluetooth(登録商標)Low Energy(BLE)等も利用されている。また、送電制御部14と受電制御部24間の通信は、このような専用の通信に限定されるものではなく、送電器共振コイル11と受電器共振コイル21間による通信であってもよい。なお、図6では、1つの送電器1および1つの受電器2を含む無線電力伝送システムを模式的に示したが、受電器2は複数でもよく、また、送電器1および受電器2は、他に様々な機能を実現する構成を有するものであってもよい。これは、次に、図7を参照して説明する第2実施例でも同様である。 The power transmission control unit 14 in the power transmitter 1 and the power reception control unit 24 in the power receiver 2 can communicate with each other by, for example, a Bluetooth (registered trademark) Bluetooth or a DSSS wireless LAN that conforms to IEEE 802.11b. . Further, in recent years, Bluetooth (registered trademark) Low Energy (BLE) as a low power consumption version of "Bluetooth (registered trademark)" which is a short-range wireless standard is also used. Further, communication between the power transmission control unit 14 and the power reception control unit 24 is not limited to such dedicated communication, and may be communication between the power transmitter resonance coil 11 and the power receiver resonance coil 21. In FIG. 6, a wireless power transmission system including one power transmitter 1 and one power receiver 2 is schematically illustrated. However, a plurality of power receivers 2 may be provided, and the power transmitter 1 and the power receiver 2 may be It may have a configuration for realizing various other functions. The same applies to the second embodiment described with reference to FIG.
 図7は、無線電力伝送システムの第2実施例を模式的に示すブロック図である。図8と、上述した図7の比較から明らかなように、第2実施例の無線電力伝送システムにおける受電器2は、効率調整回路26の代わりに、整流回路22と負荷25の間にデューティ比制御回路27が設けられている。 FIG. 7 is a block diagram schematically showing a second embodiment of the wireless power transmission system. As apparent from the comparison between FIG. 8 and FIG. 7 described above, the power receiver 2 in the wireless power transmission system of the second embodiment is configured such that the duty ratio is between the rectifier circuit 22 and the load 25 instead of the efficiency adjustment circuit 26. A control circuit 27 is provided.
 デューティ比制御回路27は、1つのトランジスタ(FET:Field effect transistor)で形成することができ、例えば、整流回路22の出力が所定レベルの期間と零の期間のデューティ比を制御して、効率低下動作(受電電力の効率低下の調整)を行う。すなわち、デューティ比制御回路27は、負荷25に対する整流回路22の出力(出力電圧)の伝達量を制御することで、結果としてインピーダンスを制御することになる。なお、本実施例において、監視電圧VMは、デューティ比制御回路27の出力の電圧となる。 The duty ratio control circuit 27 can be formed by a single transistor (FET: Field effect transistor). For example, the duty ratio control circuit controls the duty ratio between a period during which the output of the rectifier circuit 22 is at a predetermined level and a period during which the output of the rectifier circuit 22 is zero. Perform operation (adjustment of efficiency reduction of received power). That is, the duty ratio control circuit 27 controls the impedance by controlling the transmission amount of the output (output voltage) of the rectifier circuit 22 to the load 25 as a result. In this embodiment, the monitoring voltage VM is an output voltage of the duty ratio control circuit 27.
 以上のように、受電器2で効率低下動作を行う構成は、受電器共振コイル21と容量によるLC共振器の容量値を調整する効率調整回路27、並びに、整流回路22の出力のデューティ比を制御するデューティ比制御回路27に限定されるものではない。すなわち、受電器2における受電電力の効率の調整(最大受電電力からの効率低下の調整)を行うことができれば、様々なものを適用することができる。そして、本実施例によれば、受電器2は、常時単独で制御動作を行うことができ、また、受電制御は、シンプルで高速に行うことができる。さらに、以下に詳述するが、送電器1は、監視電圧VMと効率低下の有無(効率低下動作を行っているかどうかを各受電器2から受け取るだけで、送電電力の制御を簡略化することができ、受電器2の数が増加した場合でも対応することができる。 As described above, the configuration in which the efficiency reduction operation is performed in the power receiver 2 is that the duty ratio of the output of the rectifier circuit 22 and the efficiency adjustment circuit 27 that adjusts the capacitance value of the LC resonator based on the power receiver resonance coil 21 and the capacitance. It is not limited to the duty ratio control circuit 27 to be controlled. That is, various things can be applied as long as the efficiency of the received power in the power receiver 2 can be adjusted (adjustment of efficiency reduction from the maximum received power). According to the present embodiment, the power receiver 2 can always perform the control operation alone independently, and the power reception control can be performed simply and at high speed. Further, as will be described in detail below, the power transmitter 1 can simplify the control of transmitted power by simply receiving from each power receiver 2 whether or not the monitoring voltage VM and the efficiency decrease (whether or not the efficiency decreasing operation is performed). Even when the number of the power receivers 2 is increased, it can be dealt with.
 図8は、本実施形態に係る無線電力伝送システムにおける受電器の制御処理の一例を説明するためのフローチャートである。図8に示されるように、受電器の制御処理が介しすると、ステップST11において、差分αおよび差分βを評価して、ステップST12に進む。ここで、差分αは、監視電圧VMから上限値電圧VULを差し引いた値(VM-VUL)を示し、差分βは、監視電圧VMから下限値電圧VLLを差し引いた値(VM-VLL)を示す。 FIG. 8 is a flowchart for explaining an example of control processing of the power receiver in the wireless power transmission system according to the present embodiment. As shown in FIG. 8, when the control process of the power receiver is performed, in step ST11, the difference α and the difference β are evaluated, and the process proceeds to step ST12. Here, the difference α indicates a value (VM−VUL) obtained by subtracting the upper limit voltage VUL from the monitoring voltage VM, and the difference β indicates a value (VM−VLL) obtained by subtracting the lower limit voltage VLL from the monitoring voltage VM. .
 ステップST12では、差分αが正かどうか(α>0)を判定し、ステップST12において、差分αが正である(α>0)と判定すると、ステップST13に進んで、効率を1段階低下させてからステップST11に戻る。一方、ステップST12において、差分αが正ではない(α≦0)と判定すると、ステップST14に進み、差分βが正かどうか(β>0)を判定する。 In step ST12, it is determined whether the difference α is positive (α> 0). If it is determined in step ST12 that the difference α is positive (α> 0), the process proceeds to step ST13, and the efficiency is decreased by one step. Then, the process returns to step ST11. On the other hand, if it is determined in step ST12 that the difference α is not positive (α ≦ 0), the process proceeds to step ST14 to determine whether the difference β is positive (β> 0).
 ステップST13において、差分βが正である(β>0)と判定すると、そのままステップST11に戻り、逆に、差分βが正ではない(β≦0)と判定すると、ステップST15に進む。ステップST15では、効率低下動作を行っていない状態(効率低下なし状態:受電器共振コイル21からの電力を全て使用している状態)かどうかを判定する。 If it is determined in step ST13 that the difference β is positive (β> 0), the process directly returns to step ST11. Conversely, if it is determined that the difference β is not positive (β ≦ 0), the process proceeds to step ST15. In step ST15, it is determined whether or not the efficiency decreasing operation is not performed (the state where there is no efficiency decrease: the state where all the electric power from the power receiver resonance coil 21 is used).
 ステップST15において、効率低下なし状態であると判定すると、そのままステップST11に戻り、逆に、効率低下なし状態ではないと判定すると、ステップST16に進んで、効率を1段階上昇させてからステップST11に戻る。ここで、本実施形態における受電器2の制御は、例えば、受電電圧の監視(監視電圧の検知)、および、その検知された監視電圧に基づく条件変更(制御)を繰り返す(監視→条件変更→監視→…)逐次的に行うようになっている。 If it is determined in step ST15 that there is no efficiency decrease, the process directly returns to step ST11. Conversely, if it is determined that there is no efficiency decrease, the process proceeds to step ST16, the efficiency is increased by one step, and then the process proceeds to step ST11. Return. Here, the control of the power receiver 2 in the present embodiment, for example, repeats monitoring of the received voltage (detection of the monitoring voltage) and condition change (control) based on the detected monitoring voltage (monitoring → condition change → Monitoring → ...) is done sequentially.
 このように、本実施形態における受電器2の制御は、例えば、通信を介さずに、受電器2の内部において行うことができる。そのため、監視電圧VMが上限電圧VULを超えたとしても、瞬時に動作効率(受電効率)を低下させることができるため、受電器2の監視電圧VMが過剰になることはなくなり、受電器2の状態は、実質的に、適正と不足の2状態のみとなる。 As described above, the control of the power receiver 2 in the present embodiment can be performed inside the power receiver 2 without communication, for example. Therefore, even if the monitoring voltage VM exceeds the upper limit voltage VUL, the operating efficiency (power receiving efficiency) can be instantaneously reduced. Therefore, the monitoring voltage VM of the power receiver 2 will not be excessive, and the power receiver 2 There are substantially only two states, proper and insufficient.
 また、本実施形態における受電器2は、例えば、監視電圧VMを一定、或いは、一定範囲に保つことができるため、例えば、図1に示す無線電力伝送システムの受電器102におけるDCDC回路123を不要とすることができる。若しくは、受電器にDCDC回路を設ける場合でも、そのDCDC回路は、入力範囲が極めて狭いもので十分となる。なお、各受電器における効率低下動作は、例えば、受電電力をほぼ零まで低下できるため、受電電力が過剰となるのを回避することができる。 Further, since the power receiver 2 in this embodiment can keep the monitoring voltage VM constant or within a certain range, for example, the DCDC circuit 123 in the power receiver 102 of the wireless power transmission system shown in FIG. 1 is unnecessary. It can be. Alternatively, even when a DCDC circuit is provided in the power receiver, it is sufficient that the DCDC circuit has a very narrow input range. Note that the efficiency reduction operation in each power receiver can reduce the received power to almost zero, for example, so that the received power can be prevented from becoming excessive.
 図9は、本実施形態に係る無線電力伝送システムにおいて、複数の受電器に対して同時に無線電力伝送を行う送電器の処理の一例を説明するためのフローチャートであり、1台の送電器1から2台の受電器2A,2Bに対して同時に電力を供給する場合を示す。図9に示されるように、送電器1による送電が開始すると、ステップST21において、各受電器2A,2Bの受電電力情報を収集する。 FIG. 9 is a flowchart for explaining an example of processing of a power transmitter that performs wireless power transmission simultaneously to a plurality of power receivers in the wireless power transmission system according to the present embodiment. A case where power is simultaneously supplied to the two power receivers 2A and 2B will be described. As shown in FIG. 9, when power transmission by the power transmitter 1 is started, received power information of each of the power receivers 2A and 2B is collected in step ST21.
 ここで、受電器2Aおよび2Bは同様の動作を行っており、受電器2A(2B)は、ステップST23a(ST23b)において、監視電圧(VM)と効率低下状態を検知し、ステップST24a(ST24b)に進む。ここで、ステップST23a(ST23b)において検知する受電器2A(2B)の効率低下状態としては、例えば、効率低下動作を行っている場合を『1』に設定し、効率低下動作を行っていない場合を『0』に設定することができる。 Here, the power receivers 2A and 2B perform the same operation. In step ST23a (ST23b), the power receiver 2A (2B) detects the monitoring voltage (VM) and the reduced efficiency state, and step ST24a (ST24b). Proceed to Here, as the efficiency reduction state of the power receiver 2A (2B) detected in step ST23a (ST23b), for example, when the efficiency reduction operation is performed is set to “1” and the efficiency reduction operation is not performed. Can be set to “0”.
 さらに、受電器2A(2B)は、ステップステップST24a(ST24b)において、検知結果を送電器1へ伝達し、ステップST23a(ST23b)に戻って、同様の処理を継続する。ここで、各受電器2A(2B)が送電器1に対して伝達する検知結果は、例えば、監視電圧(VM)と、効率低下動作を行っているかどうかの情報(『1』,『0』)とすることができる。なお、図9では、2台の受電器2A,2Bの処理を示しているが、受電器2が3台以上の場合においても、それぞれの受電器2は、同様の処理を継続的に行う。 Further, the power receiver 2A (2B) transmits the detection result to the power transmitter 1 in step ST24a (ST24b), returns to step ST23a (ST23b), and continues the same processing. Here, the detection result transmitted from each power receiver 2A (2B) to the power transmitter 1 includes, for example, the monitoring voltage (VM) and information indicating whether or not the efficiency reducing operation is performed (“1”, “0”). ). Note that FIG. 9 illustrates the processing of the two power receivers 2A and 2B, but even when there are three or more power receivers 2, each power receiver 2 continuously performs the same processing.
 そして、送電器1は、ステップST21において、各受電器2A,2Bの受電電力情報を収集して、ステップST22に進み、送電器1における所定の処理を行う。すなわち、ステップST22において、収集された全ての受電器2A,2Bの情報に基づいて、監視電圧VMが不足している受電器があれば、送電電力を上昇させ、全ての受電器2A,2Bが効率低下動作を行っていれば、送電電力を低下させる。従って、少なくとも1つの受電器が効率低下動作を行っていなければ(ただし、全ての受電器において、監視電圧VMの不足が存在していない)、送電電力を維持する。 In step ST21, the power transmitter 1 collects the received power information of the power receivers 2A and 2B, proceeds to step ST22, and performs predetermined processing in the power transmitter 1. That is, in step ST22, if there is a power receiver whose monitoring voltage VM is insufficient based on the collected information of all power receivers 2A and 2B, the transmission power is increased, and all power receivers 2A and 2B are If the efficiency reduction operation is performed, the transmission power is reduced. Therefore, if at least one power receiver is not performing the efficiency reduction operation (however, there is no shortage of the monitoring voltage VM in all the power receivers), the transmission power is maintained.
 図9を参照して説明した送電器1の処理は、図8を参照して説明した受電器2の処理よりも相対的に長時間となるため、例えば、送電器1の送電電力を変化させた場合、各受電器2は、その変化した送電電力に基づいた処理を直ちに行うことができる。 Since the process of the power transmitter 1 described with reference to FIG. 9 is relatively longer than the process of the power receiver 2 described with reference to FIG. 8, for example, the transmission power of the power transmitter 1 is changed. In this case, each power receiver 2 can immediately perform processing based on the changed transmitted power.
 上述したように、本実施形態の無線電力伝送システムによれば、監視電圧VMの情報(適正、不足)と、効率低下動作を行っているかどうか(効率低下機能のオン/オフ:『1』/『0』)の情報のみを収集すればよいため、通信量は少なくて済む。さらに、制御においても、監視電圧VMに関して、受電器2の少なくとも1つが下限電圧VLL以下ならば、送電電力を上昇させ、また、受電器2の全てが上限電圧VUL以上で、且つ、受電器2の全てが効率低下動作を行っていれば、送電電力を低下させる。そして、受電器2の全てが下限電圧VLL以上で、受電器2の少なくとも1つが効率低下動作を行っていなければ、そのときの送電電力を維持する。すなわち、本実施形態の無線電力伝送システムにおける制御は、シンプルな構成となっているため、たとえ受電器の数が増えたとしても制御処理が容易であり、しかも受電器に対して指示することがないため、制御完了までの時間も短くて済むことになる。 As described above, according to the wireless power transmission system of this embodiment, the monitoring voltage VM information (appropriate or insufficient) and whether or not the efficiency reduction operation is performed (ON / OFF of the efficiency reduction function: “1” / Since only the information “0”) needs to be collected, the amount of communication can be reduced. Further, in the control, if at least one of the power receivers 2 is lower than the lower limit voltage VLL with respect to the monitoring voltage VM, the transmitted power is increased, and all of the power receivers 2 are higher than the upper limit voltage VUL and the power receiver 2 If all of these are performing the efficiency reduction operation, the transmission power is reduced. If all of the power receivers 2 are equal to or higher than the lower limit voltage VLL and at least one of the power receivers 2 is not performing the efficiency lowering operation, the transmitted power at that time is maintained. That is, since the control in the wireless power transmission system of the present embodiment has a simple configuration, control processing is easy even if the number of power receivers is increased, and instructions can be given to the power receivers. Therefore, the time to complete the control can be shortened.
 図10は、本実施形態に係る無線電力伝送システムにおける動作の一例を説明するための図である。ここで、図10(a)~図10(c)は、3つの受電器2A,2B,2Cの結合強度差が大きい場合における、それぞれの受電器2A~2Cにける監視電圧VMと、その受電器が求める所望電圧の上限VULおよび下限VLLの関係を示している。 FIG. 10 is a diagram for explaining an example of the operation in the wireless power transmission system according to the present embodiment. Here, FIG. 10 (a) to FIG. 10 (c) show the monitoring voltage VM at each of the power receivers 2A to 2C when the coupling strength difference between the three power receivers 2A, 2B, and 2C is large, and its reception. The relationship between the upper limit VUL and the lower limit VLL of the desired voltage required by the electric appliance is shown.
 図10(a)に示されるように、例えば、送電器1からの送電電力が小さいとき(送電電力小)、受電器2Aは、監視電圧(供給値)VMが所望電圧(所望値)の下限VLL以下(不足)となっている。また、受電器2Bは、監視電圧VMが所望電圧の上限VULと下限VLLの間(適正)となり、さらに、受電器2Cは、監視電圧VMが所望電圧の上限VULよりも大きく(過剰)となっている。すなわち、図10(a)の状態は、前述した図5(c)の状態に対応している。 As shown in FIG. 10 (a), for example, when the transmitted power from the power transmitter 1 is small (low transmitted power), the power receiver 2A is configured such that the monitored voltage (supply value) VM is the lower limit of the desired voltage (desired value). VLL or less (insufficient). In the power receiver 2B, the monitoring voltage VM is between the upper limit VUL and the lower limit VLL of the desired voltage (appropriate), and in the power receiver 2C, the monitoring voltage VM is larger (excessive) than the upper limit VUL of the desired voltage. ing. That is, the state shown in FIG. 10A corresponds to the state shown in FIG.
 このとき、本実施形態の無線電力伝送システムにおいては、図10(b)に示されるように、受電器2Cの受電制御部24が効率調整回路26(または、デューティ比制御回路27)を制御して受電効率を低下させる。これにより、受電器2Cは、監視電圧VMが所望電圧の上限VULと下限VLLの間(適正)となる。ここで、受電器2C(2A,2B)における制御は、例えば、受電電圧の監視および条件変更を繰り返す(監視→条件変更→監視→…)逐次的に行うようになっている。 At this time, in the wireless power transmission system of this embodiment, as shown in FIG. 10B, the power reception control unit 24 of the power receiver 2C controls the efficiency adjustment circuit 26 (or the duty ratio control circuit 27). Reducing power reception efficiency. Thereby, in the power receiver 2C, the monitoring voltage VM is between the upper limit VUL and the lower limit VLL of the desired voltage (proper). Here, the control in the power receiver 2C (2A, 2B) is performed sequentially, for example, by repeatedly monitoring the received voltage and changing the conditions (monitoring → condition change → monitoring →...).
 また、図10(c)に示されるように、送電器1は、送電制御部14により整合回路12および高周波アンプ13を制御して送電電力を上昇(送電電力中)させる。これにより、受電器2Aの監視電圧VMは上限VULと下限VLLの間(適正)となり、安定状態に収束する。ここで、送電器1からの送電電力が上昇することにより、受電器2Cは、再び過剰となるが、このときにも、受電器2Cの受電制御部24が効率調整回路26(または、デューティ比制御回路27)を制御して受電効率を低下させる。その結果、全ての受電器2A,2B,2Cの監視電圧VMが所望電圧の上限VULと下限VLLの間(適正)となる。なお、受電器2Cにおける受電電力の効率低下処理(効率低下動作)は、送電器1による送電電力を上昇させる処理よりも遥かに高速であるため、受電器2Cは、上昇した送電電力に対して、直ちに受電効率を低下して適正な状態とすることができる。 Further, as shown in FIG. 10C, the power transmitter 1 controls the matching circuit 12 and the high-frequency amplifier 13 by the power transmission control unit 14 to increase the transmission power (during the transmission power). As a result, the monitoring voltage VM of the power receiver 2A is between the upper limit VUL and the lower limit VLL (appropriate) and converges to a stable state. Here, when the transmitted power from the power transmitter 1 increases, the power receiver 2C becomes excessive again. At this time as well, the power reception control unit 24 of the power receiver 2C causes the efficiency adjustment circuit 26 (or the duty ratio). The control circuit 27) is controlled to reduce the power reception efficiency. As a result, the monitoring voltage VM of all the power receivers 2A, 2B, 2C is between the upper limit VUL and the lower limit VLL of the desired voltage (proper). In addition, since the efficiency reduction process (efficiency reduction operation) of the received power in the power receiver 2C is much faster than the process of increasing the transmitted power by the power transmitter 1, the power receiver 2C Immediately, the power receiving efficiency can be lowered to an appropriate state.
 このように、本実施形態の無線電力伝送システムによれば、例えば、受電電力が過剰の受電器と、受電電力が不足の受電器が混在しているような場合でも、無線電力伝送は、停止せずに継続することが可能となる。 Thus, according to the wireless power transmission system of the present embodiment, for example, even when a receiver with excessive received power and a receiver with insufficient received power are mixed, the wireless power transmission is stopped. It is possible to continue without
 図11は、本実施形態に係る無線電力伝送システムにおける動作の他の例を説明するための図である。ここで、図11(a)~図11(c)は、3つの受電器2A,2B,2Cの結合強度差が大きい場合における、それぞれの受電器2A~2Cにける監視電圧VMと、その受電器が求める所望電圧の上限VULおよび下限VLLの関係を示している。 FIG. 11 is a diagram for explaining another example of the operation in the wireless power transmission system according to the present embodiment. Here, FIG. 11 (a) to FIG. 11 (c) show the monitoring voltage VM in each of the power receivers 2A to 2C and the reception thereof when the coupling strength difference between the three power receivers 2A, 2B, and 2C is large. The relationship between the upper limit VUL and the lower limit VLL of the desired voltage required by the electric appliance is shown.
 まず、図11(a)は、例えば、送電器1からの送電電力が大きいとき(送電電力大)、全ての受電器2A~2Cは、監視電圧VMが所望電圧の上限VULよりも大きくなっている状態を示す。この状態において、例えば、図11(b)に示されるように、例えば、全ての受電器2A~2Cが受電電力の効率低下動作を行うことにより、適正(全ての受電器2A~2Cにける監視電圧VMが上限VULと下限VLLの間)のとき、送電器1は、送電電力を低下させる。 First, in FIG. 11A, for example, when the transmission power from the power transmitter 1 is large (high transmission power), all the power receivers 2A to 2C have the monitored voltage VM higher than the upper limit VUL of the desired voltage. Indicates the state. In this state, for example, as shown in FIG. 11 (b), for example, all the power receivers 2A to 2C perform an operation for lowering the efficiency of the received power, so that proper (monitoring in all the power receivers 2A to 2C is performed). When the voltage VM is between the upper limit VUL and the lower limit VLL), the power transmitter 1 reduces the transmitted power.
 すなわち、図11(c)に示されるように、送電器1は、送電電力を低下させ、この送電電力の低下に基づいて、受電器2Aは、効率低下動作を行うことなく受電電力をのまま使用する。なお、受電器2Bおよび2Cは、効率低下動作を行うことにより適正となっているが、少なくとも1つの受電器(2A)が効率低下動作を行っていなければ、送電器1は、送電電力を低下させなくてもよい。これにより、複数の受電器2A~2Cを含む無線電力伝送システムは、図11(c)のような安定状態に収束することができる。 That is, as shown in FIG. 11 (c), the power transmitter 1 decreases the transmitted power, and the power receiver 2A keeps the received power without performing the efficiency reduction operation based on the decrease in the transmitted power. use. The power receivers 2B and 2C are appropriate by performing the efficiency decreasing operation. However, if at least one power receiver (2A) is not performing the efficiency decreasing operation, the power transmitter 1 decreases the transmission power. You don't have to. Thereby, the wireless power transmission system including the plurality of power receivers 2A to 2C can converge to a stable state as shown in FIG.
 このように、本実施形態の無線電力伝送システムによれば、送電器1は、各受電器2A~2Cから監視電圧VMの情報(適正、不足)と、効率低下動作を行っているかどうか(効率低下機能のオン/オフ)の情報のみを収集すればよいため、通信量は少なくて済む。また、送電器1は、少なくとも1つの受電器(2A)の監視電圧VMが下限VLL以下ならば、送電電力を上昇させ、また、全ての受電器(2A~2C)の監視電圧VMが上限VUL以上で且つ効率低下動作を行っていれば、送電電力を低下させるように制御すればよい。すなわち、本実施形態の無線電力伝送システムにおける制御は、シンプルな構成となっているため、たとえ受電器の数が増えたとしても制御処理が容易であり、しかも受電器に対して指示することがないため、制御完了までの時間も短くて済むことになる。 As described above, according to the wireless power transmission system of the present embodiment, the power transmitter 1 receives the information (appropriate or insufficient) of the monitoring voltage VM from each of the power receivers 2A to 2C, and whether or not the efficiency reduction operation is being performed (efficiency Since only the information on the on / off of the lowering function needs to be collected, the amount of communication can be reduced. The power transmitter 1 increases the transmission power if the monitoring voltage VM of at least one power receiver (2A) is lower than the lower limit VLL, and the monitoring voltage VM of all the power receivers (2A to 2C) is higher than the upper limit VUL. If it is the above and efficiency reduction operation | movement is performed, what is necessary is just to control so that transmitted power may be reduced. That is, since the control in the wireless power transmission system of the present embodiment has a simple configuration, control processing is easy even if the number of power receivers is increased, and instructions can be given to the power receivers. Therefore, the time to complete the control can be shortened.
 以上において、本実施形態を無線電力伝送プログラムとして捉えたとき、そのプログラムを実行するコンピュータ(マイクロプロセッサ)としては、例えば、送電器1における送電制御部14および受電器2における受電制御部24が対応する。 In the above, when the present embodiment is regarded as a wireless power transmission program, for example, the power transmission control unit 14 in the power transmitter 1 and the power reception control unit 24 in the power receiver 2 correspond to the computer (microprocessor) that executes the program. To do.
 このように、本実施形態によれば、短時間で簡単に無線電力伝送の制御を完了することができ、多数の受電器に対しても、より短い時間で最適な制御状態に収束し、効率のよい無線電力伝送を実現することができる。また、例えば、受電器の急激な動作に伴う電力集中が生じた場合でも、受電器をダメージや破壊から保護すると共に、無線電力伝送(給電)を継続することができる。 Thus, according to this embodiment, control of wireless power transmission can be completed easily in a short time, and even for a large number of power receivers, the optimal control state is converged in a shorter time, and the efficiency is improved. Wireless power transmission can be realized. Further, for example, even when power concentration occurs due to a rapid operation of the power receiver, the power receiver can be protected from damage and destruction, and wireless power transmission (power feeding) can be continued.
 ここに記載されている全ての例および条件的な用語は、読者が、本発明と技術の進展のために発明者により与えられる概念とを理解する際の助けとなるように、教育的な目的を意図したものである。また、具体的に記載されている上記の例および条件、並びに、本発明の優位性および劣等性を示すことに関する本明細書における例の構成に限定されることなく、解釈されるべきものである。さらに、本発明の実施例は詳細に説明されているが、本発明の精神および範囲から外れることなく、様々な変更、置換および修正をこれに加えることが可能であると解すべきである。 All examples and conditional terms contained herein are intended for educational purposes only to assist the reader in understanding the present invention and the concepts provided by the inventor for the advancement of technology. Is intended. Further, the present invention should not be construed as being limited to the above-described examples and conditions specifically described, and the configurations of the examples in the present specification regarding the superiority and inferiority of the present invention. . Further, while embodiments of the present invention have been described in detail, it should be understood that various changes, substitutions and modifications can be made thereto without departing from the spirit and scope of the present invention.
 1,101  送電器
 2,2A~2C,102,102A~102C  受電器
 11,111  送電器共振コイル
 12,112  整合回路
 13,113  高周波アンプ
 14,114  送電制御部
 15,115  電源
 21,121  受電器共振コイル
 22,122  整流回路
 24,124  受電制御部
 25,125  負荷(バッテリ)
 26  効率調整回路
 27  デューティ比制御回路
 123  DCDC回路
DESCRIPTION OF SYMBOLS 1,101 Power transmitter 2,2A-2C, 102,102A-102C Power receiver 11,111 Power transmitter resonance coil 12,112 Matching circuit 13,113 High frequency amplifier 14,114 Power transmission control unit 15,115 Power source 21,121 Power receiver Resonant coil 22, 122 Rectifier circuit 24, 124 Power reception control unit 25, 125 Load (battery)
26 Efficiency adjustment circuit 27 Duty ratio control circuit 123 DCDC circuit

Claims (14)

  1.  送電器からの電力を、強結合系の共振を用いて無線により同時に複数の受電器に対して伝送する無線電力伝送システムであって、
      それぞれの前記受電器は、供給値と所望値の差分に基づいて、前記送電器から受け取る電力の効率を制御すると共に、前記送電器に対して、前記受電器の情報を無線により伝える受電制御部を有し、
      前記送電器は、複数の前記受電器からの情報に基づいて、出力する送電電力を制御する送電制御部を有する、
     ことを特徴とする無線電力伝送システム。
    A wireless power transmission system for transmitting power from a power transmitter to a plurality of power receivers simultaneously by wireless using resonance of a strong coupling system,
    Each of the power receivers controls the efficiency of the power received from the power transmitter based on the difference between the supply value and the desired value, and transmits the information on the power receiver to the power transmitter wirelessly Have
    The power transmitter has a power transmission control unit that controls transmission power to be output based on information from the plurality of power receivers.
    A wireless power transmission system.
  2.  前記送電器は、前記送電制御部により制御される送電器共振コイルを含む1台の送電器であり、
     複数の前記受電器は、それぞれが前記送電器共振コイルからの電力を受け取り可能な受電器共振コイルを含み、それぞれの前記受電器共振コイルは、磁界共鳴または電界共鳴を利用して前記送電器共振コイルからの電力を同時に受け取る、
     ことを特徴とする請求項1に記載の無線電力伝送システム。
    The power transmitter is one power transmitter including a power transmitter resonance coil controlled by the power transmission control unit,
    The plurality of power receivers each include a power receiver resonance coil that can receive power from the power transmitter resonance coil, and each power receiver resonance coil uses the magnetic field resonance or the electric field resonance to resonate the power transmitter resonance. Receiving power from the coil at the same time,
    The wireless power transmission system according to claim 1.
  3.  前記受電制御部は、前記供給値と前記所望値の差分が一定値以下となるように、前記送電器から受け取る電力を逐次的に制御する、
     ことを特徴とする請求項1または請求項2に記載の無線電力伝送システム。
    The power reception control unit sequentially controls the power received from the power transmitter so that the difference between the supply value and the desired value is a predetermined value or less.
    The wireless power transmission system according to claim 1, wherein the wireless power transmission system is a wireless power transmission system.
  4.  前記供給値は、前記受電器が受け取る受電電力であり、
     前記所望値は、前記受電器が求める所望電力である、
     ことを特徴とする請求項1乃至請求項3のいずれか1項に記載の無線電力伝送システム。
    The supply value is received power received by the power receiver,
    The desired value is a desired power required by the power receiver.
    The wireless power transmission system according to claim 1, wherein the wireless power transmission system is a wireless power transmission system.
  5.  前記供給値は、前記受電器が受け取る電力に基づいた監視電圧であり、
     前記所望値は、前記受電器が求める電力に基づいた所望電圧である、
     ことを特徴とする請求項1乃至請求項3のいずれか1項に記載の無線電力伝送システム。
    The supply value is a monitoring voltage based on the power received by the power receiver;
    The desired value is a desired voltage based on the power required by the power receiver.
    The wireless power transmission system according to claim 1, wherein the wireless power transmission system is a wireless power transmission system.
  6.  前記監視電圧は、
     前記受電器において、電力を取り出す受電器共振コイルの出力を整流する整流回路の出力電圧、または、前記整流回路の出力のデューティ比を制御するデューティ比制御回路の出力電圧である、
     ことを特徴とする請求項5に記載の無線電力伝送システム。
    The monitoring voltage is
    In the power receiver, the output voltage of the rectifier circuit that rectifies the output of the power receiver resonance coil that extracts power, or the output voltage of the duty ratio control circuit that controls the duty ratio of the output of the rectifier circuit,
    The wireless power transmission system according to claim 5.
  7.  前記送電制御部は、
      複数の前記受電器からの情報に基づいて、
       少なくとも1つの前記受電器における監視電圧が下限値電圧以下の場合は、前記送電電力を上昇させ、
       全ての前記受電器の監視電圧が上限値電圧以上であって、全ての前記受電器が前記送電器から受け取る電力の効率を低下させる効率低下動作を行っている場合は、前記送電電力を低下させ、
       全ての前記受電器の監視電圧が下限値電圧以上であって、少なくとも1つの前記受電器が前記効率低下動作を行っていない場合は、前記送電電力を維持させる、
     ことを特徴とする請求項5または請求項6に記載の無線電力伝送システム。
    The power transmission control unit
    Based on information from a plurality of the power receivers,
    When the monitoring voltage in at least one of the power receivers is lower than the lower limit voltage, the transmission power is increased,
    When the monitoring voltage of all the power receivers is equal to or higher than the upper limit voltage and all the power receivers are performing an efficiency reduction operation that reduces the efficiency of power received from the power transmitter, the power transmission power is reduced. ,
    When the monitoring voltage of all the power receivers is equal to or higher than the lower limit voltage and at least one power receiver is not performing the efficiency reduction operation, the transmission power is maintained.
    The wireless power transmission system according to claim 5, wherein the wireless power transmission system is a wireless power transmission system.
  8.  前記受電制御部は、
      それぞれの前記受電器における前記供給値と前記所望値の差分に基づいて、前記送電器に対して、前記送電器から受け取る電力の効率を低下させる効率低下動作を行っているかどうかの情報を無線により伝え、
     前記送電制御部は、
      複数の前記受電器からの前記効率低下動作を行っているかどうかの情報に基づいて、
       全ての前記受電器が前記効率低下動作を行っている場合は、前記送電電力を低下させる、
     ことを特徴とする請求項1乃至請求項7のいずれか1項に記載の無線電力伝送システム。
    The power reception control unit
    Based on the difference between the supplied value and the desired value in each of the power receivers, information on whether or not an efficiency reduction operation for reducing the efficiency of power received from the power transmitter is performed on the power transmitter wirelessly. Tell,
    The power transmission control unit
    Based on information on whether or not the efficiency reduction operation from a plurality of the power receivers,
    If all the power receivers are performing the efficiency reduction operation, reduce the transmission power,
    The wireless power transmission system according to claim 1, wherein the wireless power transmission system is a wireless power transmission system.
  9.  前記受電制御部による前記送電器から受け取る電力の効率の制御は、それぞれの前記受電器において、電力を取り出す受電器共振コイルにおける共振条件を調整して行う、
     ことを特徴とする請求項1乃至請求項8のいずれか1項に記載の無線電力伝送システム。
    The control of the efficiency of the power received from the power transmitter by the power reception control unit is performed by adjusting the resonance condition in the power receiver resonance coil for extracting power in each of the power receivers.
    The wireless power transmission system according to claim 1, wherein the wireless power transmission system is a wireless power transmission system.
  10.  前記受電制御部による前記送電器から受け取る電力の効率の制御は、それぞれの前記受電器において、電力を取り出す受電器共振コイルの出力を整流する整流回路の出力のデューティ比を制御して行う、
     ことを特徴とする請求項1乃至請求項9のいずれか1項に記載の無線電力伝送システム。
    The control of the efficiency of the power received from the power transmitter by the power reception control unit is performed by controlling the duty ratio of the output of the rectifier circuit that rectifies the output of the power receiver resonance coil that extracts the power in each power receiver.
    The wireless power transmission system according to claim 1, wherein the wireless power transmission system is a wireless power transmission system.
  11.  送電器からの電力を、強結合系の共振を用いて無線により受け取る受電器であって、
      前記送電器からの電力を、供給値と所望値の差分に基づく効率低下動作を行って低下させると共に、前記送電器に対して、前記効率低下動作を行っているかどうかの情報を無線により伝える受電制御部を有する、
     ことを特徴とする受電器。
    A power receiver that receives power from a power transmitter wirelessly using resonance of a strong coupling system,
    Power receiving from the power transmitter is performed by performing an efficiency reduction operation based on a difference between a supply value and a desired value, and wirelessly transmitting to the power transmitter information indicating whether the efficiency reduction operation is being performed. Having a control unit,
    A power receiver characterized by that.
  12.  複数の受電器に対して、強結合系の共振を用いて無線により電力を同時に伝送する送電器であって、
     複数の前記受電器から、それぞれが効率低下動作を行っているかどうかの情報を無線で受け取り、前記受電器の全てが前記効率低下動作を行っている場合は、出力する送電電力を低下させるように制御する送電制御部を有する、
     ことを特徴とする送電器。
    For a plurality of power receivers, a power transmitter that simultaneously transmits power wirelessly using resonance of a strong coupling system,
    Information on whether or not each of the power receivers is performing the efficiency decreasing operation is received wirelessly from the plurality of power receivers, and when all of the power receivers are performing the efficiency decreasing operation, the transmitted power to be output is decreased. Having a power transmission control unit to control,
    A power transmitter characterized by that.
  13.  送電器からの電力を、強結合系の共振を用いて無線により同時に複数の受電器に対して伝送する無線電力伝送方法であって、
      それぞれの前記受電器は、供給値と所望値の差分に基づいて、前記送電器から受け取る電力の効率を制御すると共に、前記送電器に対して、前記受電器の情報を無線により伝え、
      前記送電器は、複数の前記受電器からの情報に基づいて、出力する送電電力を制御する、
     ことを特徴とする無線電力伝送方法。
    A wireless power transmission method for transmitting electric power from a power transmitter to a plurality of power receivers simultaneously by radio using resonance of a strong coupling system,
    Each of the power receivers controls the efficiency of power received from the power transmitter based on a difference between a supply value and a desired value, and communicates information on the power receiver to the power transmitter wirelessly,
    The power transmitter controls output power to be output based on information from the plurality of power receivers.
    A wireless power transmission method.
  14.  送電器からの電力を、強結合系の共振を用いて無線により同時に複数の受電器に対して伝送する無線電力伝送プログラムであって、
     コンピュータに、
      それぞれの前記受電器は、供給値と所望値の差分に基づいて、前記送電器から受け取る電力の効率を制御すると共に、前記送電器に対して、前記受電器の情報を無線により伝える手順と、
      前記送電器は、複数の前記受電器からの情報に基づいて、出力する送電電力を制御する手順と、を実行させる、
     ことを特徴とする無線電力伝送プログラム。
    A wireless power transmission program for transmitting power from a power transmitter to a plurality of power receivers simultaneously by wireless using resonance of a strong coupling system,
    On the computer,
    Each of the power receivers controls the efficiency of power received from the power transmitter based on a difference between a supply value and a desired value, and transmits the power receiver information to the power transmitter wirelessly.
    The power transmitter, based on information from a plurality of the power receivers, a procedure for controlling transmitted power to be output is executed.
    A wireless power transmission program.
PCT/JP2017/013850 2017-03-31 2017-03-31 Wireless power transfer system, wireless power transfer method, wireless power transfer program, and power transmitter and power receiver WO2018179442A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013850 WO2018179442A1 (en) 2017-03-31 2017-03-31 Wireless power transfer system, wireless power transfer method, wireless power transfer program, and power transmitter and power receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013850 WO2018179442A1 (en) 2017-03-31 2017-03-31 Wireless power transfer system, wireless power transfer method, wireless power transfer program, and power transmitter and power receiver

Publications (1)

Publication Number Publication Date
WO2018179442A1 true WO2018179442A1 (en) 2018-10-04

Family

ID=63675028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013850 WO2018179442A1 (en) 2017-03-31 2017-03-31 Wireless power transfer system, wireless power transfer method, wireless power transfer program, and power transmitter and power receiver

Country Status (1)

Country Link
WO (1) WO2018179442A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018196236A (en) * 2017-05-17 2018-12-06 富士通株式会社 Power transmission apparatus, power reception apparatus, wireless power transmission system, and wireless power transmission method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111997A (en) * 2013-10-29 2015-06-18 パナソニック株式会社 Wireless power transmission device and wireless power transmission system
JP2017005991A (en) * 2011-10-21 2017-01-05 クアルコム,インコーポレイテッド Systems and methods for limiting voltage in wireless power receivers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017005991A (en) * 2011-10-21 2017-01-05 クアルコム,インコーポレイテッド Systems and methods for limiting voltage in wireless power receivers
JP2015111997A (en) * 2013-10-29 2015-06-18 パナソニック株式会社 Wireless power transmission device and wireless power transmission system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018196236A (en) * 2017-05-17 2018-12-06 富士通株式会社 Power transmission apparatus, power reception apparatus, wireless power transmission system, and wireless power transmission method

Similar Documents

Publication Publication Date Title
KR102042113B1 (en) Method for controlling wireless power of receiver in wireless power transmitting/receiving system and the receiver
EP2779358B1 (en) Wireless charging systems, devices, and methods
US10205353B2 (en) Apparatus and method for charging control in wireless charging system
JP6110236B2 (en) Power receiving device and non-contact power feeding system
US9935487B2 (en) Power receiving apparatus and power transmission system
US9425863B2 (en) Apparatus and method for wirelessly receiving power, and apparatus and method for wirelessly transmitting power
US9997959B2 (en) Wireless power transmission system and method for increasing coupling efficiency by adjusting resonant frequency
US9748800B2 (en) Wireless power transmission system, and method of controlling power in wireless power transmission system based on detection parameter
KR101515479B1 (en) Multi-mode wireless power receiver and wireless power receiving method thereof
WO2019100736A1 (en) Wireless charging method and device and wireless charging system
US10236941B2 (en) Single antenna-based wireless charging and near-field communication control apparatus and user terminal therefor
US20140197783A1 (en) Apparatus and method for transmitting power and transceiving data using mutual resonance, and apparatus and method for receiving power and transceiving data using mutual resonance
CN103609035A (en) Method of performing bidirectional communication between transmitter and receiver in wireless power transmission/reception system, the transmitter, and the receiver
WO2014132773A1 (en) Power receiving device, receiving power regulation method, receiving power regulation program, and semiconductor device
KR20150057783A (en) Apparatus and method for for wireless charge
KR20170065236A (en) Wireless Charging apparatus, and Method for wirelessly transmitting power, and recording media therefor
US9935468B2 (en) Power receiving apparatus and power receiving method
KR20170064380A (en) Wireless power receiver and method for controlling thereof
KR20140060186A (en) Wireless power transfer apparatus having a plurality of power transmitter
WO2016167123A1 (en) Power reception device, power reception method and power supply system
KR20140129897A (en) Apparatus and method for transmitting and receiving wireless power
WO2018179442A1 (en) Wireless power transfer system, wireless power transfer method, wireless power transfer program, and power transmitter and power receiver
JP2013176196A (en) Wireless power transmission device
US20170012476A1 (en) Power supply apparatus and power supply method
KR101681376B1 (en) Power supplying apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP