WO2018179440A1 - Coil for dynamo-electric machines, method for producing coil for dynamo-electric machines, mica tape, cured product of mica tape and insulated material - Google Patents

Coil for dynamo-electric machines, method for producing coil for dynamo-electric machines, mica tape, cured product of mica tape and insulated material Download PDF

Info

Publication number
WO2018179440A1
WO2018179440A1 PCT/JP2017/013848 JP2017013848W WO2018179440A1 WO 2018179440 A1 WO2018179440 A1 WO 2018179440A1 JP 2017013848 W JP2017013848 W JP 2017013848W WO 2018179440 A1 WO2018179440 A1 WO 2018179440A1
Authority
WO
WIPO (PCT)
Prior art keywords
mica
mica tape
mass
layer
coil
Prior art date
Application number
PCT/JP2017/013848
Other languages
French (fr)
Japanese (ja)
Inventor
敬二 福島
士輝 宋
みゆき 室町
竹澤 由高
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2017/013848 priority Critical patent/WO2018179440A1/en
Publication of WO2018179440A1 publication Critical patent/WO2018179440A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/60Composite insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material

Definitions

  • the present invention relates to a coil for a rotating electrical machine, a method for manufacturing a coil for a rotating electrical machine, mica tape, a cured product of an mica tape, and an insulator.
  • a coil (hereinafter also simply referred to as a coil) used in a rotating electrical machine such as a generator or an electric motor generally has a coil conductor and an insulating layer disposed on the outer periphery of the coil conductor to insulate the coil conductor from the external environment. is doing.
  • a material for forming the insulating layer an insulating material using mica called a mica tape is known.
  • a mica tape generally has a backing layer containing a backing material and a mica layer containing mica, and an insulating layer is formed by curing a resin impregnated in the mica tape.
  • the insulating layer provided on the outside of the coil be highly thermally conductive.
  • a technique for increasing the thermal conductivity of the insulating layer a technique in which an inorganic filler having a high thermal conductivity is contained in the mica tape can be mentioned.
  • Patent Document 1 discloses a mica tape in which alumina having a high thermal conductivity is filled as an inorganic filler in a mica layer. By using this mica tape, 0.32 W / (m ⁇ K) is disclosed. An insulating layer having a thermal conductivity of ⁇ 0.36 W / (m ⁇ K) is obtained.
  • Patent Document 2 discloses a sheet-like laminate in which a thermal conductive layer containing an inorganic filler having a high thermal conductivity is further disposed on one surface of a normal mica tape, and 0.35 W / It is said that an insulating layer having a thermal conductivity of (m ⁇ K) to 0.48 W / (m ⁇ K) can be obtained.
  • Patent Document 3 discloses a method in which HTC (high thermal conductivity) particles are infiltrated into a backing layer of a mica tape, and the composite tape is impregnated into the composite tape through the backing layer.
  • the inorganic filler in the mica tape is effective as a method for improving the thermal conductivity of the insulating layer.
  • the mica tape containing the inorganic filler may drop off from the mica tape due to some factors such as the storage state and usage method.
  • a mica tape containing an inorganic filler is impregnated with a resin varnish, there may be a problem that the inorganic filler dropped from the mica tape is mixed into the resin varnish to deteriorate the quality of the resin varnish. For this reason, development of the technique which suppresses the fall of the inorganic filler from the mica tape is awaited.
  • an object of the present invention is to provide a coil for a rotating electrical machine having an insulating layer formed using a mica tape in which an inorganic filler is prevented from falling off, and a method for manufacturing the same.
  • Another object of the present invention is to provide a mica tape in which the falling off of the inorganic filler is suppressed, a cured product of the mica tape, and an insulator using the mica tape.
  • a coil conductor and an insulating layer disposed on an outer periphery of the coil conductor wherein the insulating layer includes a mica tape, and the mica tape includes a mica layer including mica, a backing material, and an inorganic filler.
  • a coil for a rotating electrical machine wherein the maximum height roughness obtained by measuring the surface roughness of the surface of the backing layer is 10 ⁇ m or less.
  • the inorganic filler has a volume average particle diameter of 1 ⁇ m to 40 ⁇ m.
  • ⁇ 3> The rotation according to ⁇ 1> or ⁇ 2>, wherein the content of the inorganic filler in the mica tape is 20% by volume to 50% by volume of the total non-volatile content excluding the mica and the backing material. Electric coil.
  • the content of non-volatile components excluding the mica and the backing material in the mica tape is 5% by mass to 45% by mass of the total mass of the mica layer and the backing layer.
  • ⁇ 1> to ⁇ 3> The coil for rotating electrical machines according to any one of the above.
  • the mica tape includes a resin component, and the content of the resin component is 35% by mass to 70% by mass of the total mass of nonvolatile components excluding the mica and the backing material, ⁇ 1> to ⁇ 4 >
  • ⁇ 7> Any one of ⁇ 1> to ⁇ 6>, including a step of winding the mica tape around an outer periphery of the coil conductor, and a step of forming an insulating layer from the mica tape wound around the outer periphery of the coil conductor A method for manufacturing a coil for a rotating electrical machine according to claim 1.
  • a mica layer containing mica and a backing layer containing a backing material and an inorganic filler, and a maximum height roughness obtained by measuring the surface roughness of the surface of the backing layer is 10 ⁇ m or less.
  • ⁇ 11> Any one of ⁇ 8> to ⁇ 10>, wherein a non-volatile content excluding the mica and the backing material is 5 mass% to 45 mass% of a total mass of the mica layer and the backing layer.
  • ⁇ 12> The mica tape according to any one of ⁇ 8> to ⁇ 11>, which is used as a dry mica tape.
  • Any one of ⁇ 8> to ⁇ 12>, including a ⁇ 13> resin component, wherein the content of the resin component is 35% by mass to 70% by mass of a total mass of nonvolatile components excluding the mica and the backing material The mica tape according to item 1.
  • ⁇ 14> The mica according to any one of ⁇ 8> to ⁇ 13>, including a resin component, wherein the content of the resin component is 40% by mass or less of a total mass of the mica layer and the backing layer. tape.
  • ⁇ 15> A cured product of the mica tape according to ⁇ 13> or ⁇ 14>, obtained by curing the resin component.
  • a coil for a rotating electrical machine having an insulating layer formed using a mica tape in which an inorganic filler is prevented from falling off, and a method for manufacturing the same.
  • cured material of a mica tape, and an insulator using the same are provided.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
  • numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content rate or content of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, the plurality of kinds present in the composition unless otherwise specified. It means the total content or content of substances.
  • the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
  • the term “layer” refers to the case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. Is also included.
  • the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
  • the coil for a rotating electrical machine of the present embodiment includes a coil conductor and an insulating layer disposed on an outer periphery of the coil conductor, the insulating layer includes a mica tape, and the mica tape includes a mica layer including mica. And a backing layer containing a backing material and an inorganic filler (note that mica is not included in the inorganic filler), and a maximum height roughness obtained by measuring the surface roughness of the surface of the backing layer. Is 10 ⁇ m or less.
  • the mica tape used for forming the insulating layer of the coil of the present embodiment are the same as those of the mica tape of the present embodiment described later. Further, the material, shape, size, and the like of the coil conductor used in the coil of the present embodiment are not particularly limited, and can be selected according to the use of the coil.
  • the manufacturing method of the coil for rotary electric machines of this embodiment has the process of winding a mica tape around the outer periphery of a coil conductor, and the process of forming an insulating layer from the said mica tape wound around the outer periphery of the said coil conductor.
  • the method of winding the mica tape around the outer periphery of the coil conductor is not particularly limited, and a commonly performed method can be adopted.
  • the method for forming the insulating layer from the mica tape wound around the outer periphery of the coil conductor is not particularly limited.
  • the mica tape is heated while being pressed (heat press), and the resin component contained in the mica tape is caused to flow out of the mica tape in advance to fill the space between the overlapping mica tapes.
  • the resin component is then formed by a method of curing this to form an insulating layer (in the case of prepreg mica tape), and after winding the mica tape around the coil conductor, a vacuum pressure impregnation method (Vacuum Pressure Impression, VPI).
  • VPI vacuum pressure impregnation method
  • Examples include a method of impregnating mica tape and curing it to form an insulating layer (in the case of dry mica tape).
  • the mica tape of this embodiment has a mica layer containing mica and a backing layer containing a backing material and an inorganic filler, and has a maximum height roughness obtained by measuring the surface roughness of the surface of the backing layer. Is 10 ⁇ m or less.
  • the mica tape of the present embodiment is less likely to lose inorganic filler than a mica tape having a maximum height roughness exceeding 10 ⁇ m obtained by measuring the surface roughness of the surface of the backing layer. I found out that The reason is not clear, but it is assumed that the inorganic filler is taken into the backing layer and the protrusion of the inorganic filler from the backing layer is suppressed. Furthermore, it is estimated that the inorganic filler is sufficiently contained in the cured product of the mica tape, and an insulating layer having excellent thermal conductivity can be formed.
  • the maximum height roughness obtained by measuring the surface roughness of the backing layer is 10 ⁇ m or less, preferably 9 ⁇ m or less, more preferably 6 ⁇ m or less.
  • FIG. 1 is a schematic cross-sectional view showing an example of the structure of the mica tape of this embodiment.
  • the mica tape may have a mica layer 3 containing mica 2 and a backing layer 6 containing a backing material 1 and an inorganic filler 5.
  • the mica layer 3 and the backing layer 6 may each contain a resin component 4.
  • the resin component 4 may be included in both the mica layer 3 and the backing layer 6 or only in one.
  • the resin component 4 may be included in the entire mica layer 3 (or the backing layer 6) or may be partially included.
  • the mica tape of this embodiment is a mica tape (prepreg mica tape) used in a method for forming an insulating layer by curing a resin component contained in a mica tape in advance after the mica tape is wound around an object to be insulated.
  • it may be a mica tape (dry mica tape) used in a method of forming an insulating layer by curing a resin component impregnated after being wound around an insulator.
  • the mica tape of the present embodiment is particularly suitable for use as a dry mica tape because dropping of the inorganic filler is suppressed in the resin component impregnation step.
  • the surface roughness of the surface of the backing layer is a value measured at a portion passing through the center of the opening portion of the backing material or in the vicinity thereof. Specifically, as shown in FIG. 2, when the mica tape is viewed from the backing layer side, it is measured at a portion (indicated by arrow A) passing through the center of the region surrounded by the fibers 10 constituting the backing material. Value.
  • the surface roughness of the backing layer is a value measured according to JIS B 0632: 2001 or ISO 11562: 1996, and the maximum height roughness (Rz) is measured according to ISO 4287: 1997.
  • a contour curve filter has a cutoff value ( ⁇ c) of 250 ⁇ m and a waviness curve. It is a value measured without the influence of.
  • the method for adjusting the value of the maximum height roughness is not particularly limited, and the particle size of the inorganic filler used in the production of the mica tape, the amount of the inorganic filler, the varnish preparation conditions (stirring time, stirring speed, etc.), and coating conditions (Coating speed, drying temperature, drying time, etc.) can be adjusted.
  • the kind of mica is not particularly limited. Examples include unfired hard mica, fired hard mica, unfired soft mica, fired soft mica, synthetic mica, and flake mica. Among these, unfired hard mica that does not go through the firing step is preferable from the viewpoint of price and availability.
  • the particle size of mica is not particularly limited.
  • the proportion of mica pieces having a particle diameter of 2.8 mm or more is preferably less than 45% by mass of the whole mica pieces, It is more preferably 30% by mass or less, and further preferably 20% by mass or less, based on the entire mica piece.
  • the proportion of mica pieces having a particle diameter of 0.5 mm or more when sieved using a JIS standard sieve is 40% by mass or more of the entire mica pieces. Is preferable, and it is more preferable that it is 60 mass% or more.
  • JIS standard sieve conforms to JIS-Z-8801-1: 2006 and conforms to ISO3310-1: 2000.
  • ISO 3310-1: 2000 it is preferable to apply a sieve having a square shape as in JIS-Z-8801-1: 2006.
  • the ratio of mica pieces having a particle diameter of 2.8 mm or more when sieving using a JIS standard sieve in mica contained in the mica tape, and the ratio of mica pieces having a particle diameter of 0.5 mm or more are, for example, It can be confirmed as follows.
  • methyl ethyl ketone is added to the remaining solid after removing the supernatant, and the mixture is shaken for 10 minutes and then centrifuged at 8000 rpm for 5 minutes. The supernatant is removed, 100 g of methyl ethyl ketone is added to 1 g of the remaining solid, and the mixture is dispersed for 30 minutes with a mix rotor and shaken for another 10 minutes. Then, while shaking the container, JIS standard sieves (JIS-Z-8801-1: 2006, ISO3310-1: 2000, Tokyo Screen Co., Ltd., test sieve) ).
  • the sieving method is not particularly limited.
  • the mica is shaken while vibrating a JIS standard sieve having a predetermined opening provided in an electromagnetic sieve vibrator at a frequency of 3000 times / minute, an amplitude of 1 mm, and 10 minutes. This can be done by passing through a sieve.
  • a mica piece that has not passed through a sieve having an opening of 2.8 mm (or 0.5 mm) is defined as a “mica piece having a particle diameter of 2.8 mm (or 0.5 mm) or more”.
  • the ratio (mass%) of “mica pieces with a particle diameter of 2.8 mm (or 0.5 mm) or more” in the total amount of mica pieces before being divided is “particle diameter when sieving using a JIS standard sieve. Is the ratio of mica pieces with 2.8 mm (or 0.5 mm) or more.
  • Mica may be used alone or in combination of two or more.
  • two or more mica are used in combination, for example, when two or more mica having the same component and different particle sizes are used, when two or more mica having the same particle size and different components are used, and the average particle size and component The case where 2 or more types of mica having different types is used is mentioned.
  • the amount of mica in the mica layer is not particularly limited. For example, a range of 80 g / m 2 to 230 g / m 2 is preferable, and a range of 100 g / m 2 to 200 g / m 2 is more preferable. If the amount of mica in the mica layer is 80 g / m 2 or more, a decrease in insulation tends to be suppressed. If the amount of mica in the mica layer is 230 g / m 2 or less, the thickness of the mica tape can be reduced, and the decrease in thermal conductivity tends to be suppressed.
  • the type of the backing material is not particularly limited.
  • a glass cloth is mentioned.
  • the inorganic filler is taken in between the fibers constituting the glass cloth, and the falling of the inorganic filler tends to be suppressed.
  • the resin component penetrated between the fibers tends to be well integrated with the adjacent mica layer, and the thermal conductivity tends to be improved.
  • a part of the fiber may be an organic material.
  • the fiber comprised in particular with an organic material is not restrict
  • a part of the glass cloth is a fiber composed of an organic material
  • the warp, the weft, or both may be a fiber composed of an organic material.
  • the average thickness of the backing material is not particularly limited.
  • the thickness is preferably 10 ⁇ m to 100 ⁇ m, more preferably 20 ⁇ m to 70 ⁇ m. If the average thickness of the backing material is 10 ⁇ m or more, it is suppressed that the backing layer is too thin following the thickness of the backing material when the mica tape is pressed, and a decrease in thermal conductivity is suppressed. There is a tendency. If the thickness of the backing material is 100 ⁇ m or less, the mica tape can be prevented from being thickened, and the occurrence of breakage, cracks and the like of the mica tape during the process of winding the mica tape around the insulator is likely to be suppressed.
  • the average thickness of the backing material is the arithmetic average value of the measured values obtained by measuring the thickness of the backing material at a total of 10 locations using a micrometer (MDC-SB, Mitutoyo Corporation). .
  • the average thickness of the backing material (backing layer) in the mica tape is a value measured by the method described later.
  • the backing material may be surface-treated if necessary.
  • Examples of the surface treatment method for the backing material include treatment with a silane coupling agent.
  • inorganic filler The kind of inorganic filler is not particularly limited. Examples include silica, boron nitride, and alumina. From the viewpoint of thermal conductivity, boron nitride is preferable. Boron nitride exhibits higher thermal conductivity than other inorganic fillers (eg, alumina). Therefore, when the backing layer contains boron nitride, the thermal conductivity of the insulating layer formed from the mica tape tends to be improved. Boron nitride has a Mohs hardness of 2 and is a soft filler as compared with alumina (Mohs hardness 9), so that flexibility can be imparted to the tape.
  • Mohs hardness 9 a soft filler as compared with alumina
  • the type of boron nitride is not particularly limited, and examples include hexagonal boron nitride (h-BN), cubic boron nitride (c-BN), and wurtzite boron nitride. Among these, hexagonal boron nitride (h-BN) is preferable.
  • the boron nitride may be primary particles of boron nitride formed in a scale shape or secondary particles formed by agglomeration of primary particles.
  • the average particle diameter of the inorganic filler is not particularly limited. For example, it is preferably 1 ⁇ m to 40 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m, and even more preferably 5 ⁇ m to 10 ⁇ m.
  • the average particle size of the inorganic filler is 1 ⁇ m or more, the thermal conductivity and the dielectric strength voltage tend to be further improved.
  • the outflow of fine inorganic filler particles in the resin impregnation step of impregnating the mica tape with the resin component Tend to be suppressed.
  • the average particle size of the inorganic filler is 40 ⁇ m or less, the anisotropy of the thermal conductivity due to the anisotropy of the particle shape tends to be suppressed, and the protrusion of the inorganic filler particles from the tape surface is suppressed. In the resin impregnation step, the outflow of the inorganic filler tends to be suppressed.
  • the average particle diameter of the inorganic filler can be measured by using, for example, a laser diffraction / scattering particle size distribution measuring apparatus (Microtrac MT3000II, Nikkiso Co., Ltd.). Specifically, an inorganic filler is introduced into pure water and then dispersed with an ultrasonic disperser. By measuring the particle size distribution of the dispersion, the particle size distribution of the inorganic filler is measured. Based on this particle size distribution, the particle size (D50) corresponding to 50% volume accumulation from the small diameter side is determined as the average particle size.
  • a laser diffraction / scattering particle size distribution measuring apparatus Microtrac MT3000II, Nikkiso Co., Ltd.
  • the inorganic filler when a plurality of particle size distribution peaks of the inorganic filler are confirmed, protrusion of the inorganic filler particles from the tape surface is suppressed, and the outflow of the inorganic filler tends to be suppressed in the resin impregnation step.
  • these particle size distribution peaks are each preferably in the range of 1 ⁇ m to 20 ⁇ m, and more preferably in the range of 2 ⁇ m to 10 ⁇ m.
  • the inorganic filler may be used alone or in combination of two or more.
  • two or more inorganic fillers are used in combination, for example, when two or more inorganic fillers having the same component and different average particle sizes are used, two or more inorganic fillers having the same average particle size and different components are used, and A case where two or more inorganic fillers having different average particle diameters and types are used.
  • the inorganic filler may be surface-treated by a coupling agent, heat treatment or light treatment.
  • a coupling agent for example, in the case of heat treatment, impurities on the surface of the inorganic filler are removed by heating the inorganic filler at an appropriate high temperature (for example, 250 ° C. to 800 ° C.) for 1 hour to 3 hours. Therefore, the affinity when the inorganic filler is mixed with the resin component is improved, and the viscosity of the composition containing the inorganic filler and the resin component is lowered and tends to be easily applied. Further, the coated surface of the composition has few smears and irregularities and tends to improve smoothness.
  • the mica tape may contain a resin component.
  • the kind of resin used as the resin component is not particularly limited. From the viewpoint of curing the mica tape to form the insulating layer, a curable resin is preferable, and a thermosetting resin is more preferable.
  • the curable resin include an epoxy resin, a phenol resin, an unsaturated polyester resin, and a silicone resin. From the viewpoint of adhesion between the mica layer and the backing layer and electrical insulation, an epoxy resin is preferable.
  • Epoxy resins in the case of using an epoxy resin as a resin component include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolak type epoxy resin, naphthalene type epoxy resin, cycloaliphatic epoxy resin, etc. Is mentioned. Among these, from the viewpoint of heat resistance, phenol novolac type epoxy resins, bisphenol A type epoxy resins and bisphenol F type epoxy resins are preferable.
  • the epoxy equivalent of the epoxy resin is not particularly limited. For example, it is preferably 130 g / eq to 500 g / eq, more preferably 135 g / eq to 400 g / eq, and even more preferably 140 g / eq to 300 g / eq.
  • the epoxy equivalent is measured by dissolving a precisely weighed epoxy resin in a solvent such as methyl ethyl ketone, adding acetic acid and a tetraethylammonium bromide acetic acid solution, and then performing potentiometric titration with a perchloric acid acetic acid standard solution. An indicator may be used for potentiometric titration.
  • the number average molecular weight of the resin used as the resin component is not particularly limited. For example, from the viewpoint of fluidity, it is preferably 100 to 100,000, more preferably 200 to 50,000, and still more preferably 300 to 10,000.
  • the number average molecular weight is a value measured by gel permeation chromatography (GPC).
  • the number average molecular weight of the resin is a value measured under the following conditions using a gel permeation chromatography method (GPC) according to a conventional method.
  • a curing agent may be included as a resin component.
  • the curing agent is not particularly limited and can be appropriately selected depending on the type of the curable resin.
  • curing agent may be used individually by 1 type, or may use 2 or more types together.
  • the curing agent can be appropriately selected from curing agents usually used as a curing agent for epoxy resins. Specific examples include amine curing agents such as dicyandiamide and aromatic diamine; phenol resin curing agents such as phenol novolac and cresol novolac; acid anhydride curing agents such as alicyclic acid anhydrides and the like.
  • the ratio of the curing agent to the epoxy resin should be 0.8 to 1.2 in terms of equivalent ratio (curing agent / epoxy resin) from the viewpoint of curability and electrical characteristics of the cured product To preferred.
  • a curing catalyst may be included for the purpose of accelerating the curing reaction of the curable resin.
  • the curing catalyst is not particularly limited, and can be selected according to the type of the curable resin and the curing agent used as necessary.
  • Specific examples of the curing catalyst include tertiary amine compounds such as trimethylamine, imidazole compounds such as 2-methylimidazole and 2-methyl-4-ethylimidazole, organometallic salts such as tin, zinc and cobalt, boron trifluoride.
  • examples include amine complexes of Lewis acids such as monoethylamine, and organic phosphorus compounds such as organic phosphine compounds.
  • a hardening accelerator may be used individually by 1 type, or may use 2 or more types together.
  • the content is not particularly limited.
  • the content of the curing catalyst is generally in the range of 0.01% by mass to 5% by mass with respect to the total amount of the epoxy resin and the curing agent included as necessary. is there.
  • the mica tape may contain other components other than the components described above as necessary.
  • examples of other components include coupling agents, antioxidants, anti-aging agents, stabilizers, flame retardants, and thickeners.
  • the content is not particularly limited.
  • the mica tape of this embodiment has a mica layer containing mica and a backing layer containing a backing material and an inorganic filler, and may have other layers as necessary.
  • the other layer include a protective layer (protective film) provided on the outermost surface of the mica tape.
  • the average thickness of the mica tape (the total thickness of the mica layer and the backing layer) is not particularly limited.
  • the average thickness of the mica tape may be 400 ⁇ m or less, preferably 350 ⁇ m or less, and more preferably 300 ⁇ m or less.
  • the average thickness of the mica tape is preferably 300 ⁇ m or less and more preferably 290 ⁇ m or less from the viewpoint of easy winding of the mica tape. From the viewpoint of electrical insulation, the average thickness of the mica tape is preferably 120 ⁇ m or more, more preferably 150 ⁇ m or more, and further preferably 160 ⁇ m or more.
  • the average thickness of the mica tape is preferably 220 ⁇ m or less and more preferably 190 ⁇ m or less from the viewpoint of ease of winding the mica tape. From the viewpoint of electrical insulation, the average thickness of the mica tape is preferably 120 ⁇ m or more, more preferably 140 ⁇ m or more, and further preferably 160 ⁇ m or more.
  • the average thickness of the mica layer is not particularly limited. From the viewpoint of ease of winding the mica tape, the average thickness of the mica layer is preferably 180 ⁇ m or less, and more preferably 170 ⁇ m or less. From the viewpoint of electrical insulation, the average thickness of the mica layer is preferably 80 ⁇ m or more, and more preferably 90 ⁇ m or more.
  • the average thickness of the backing layer is not particularly limited. From the viewpoint of ease of winding the mica tape, the average thickness of the backing layer is preferably 100 ⁇ m or less, and more preferably 70 ⁇ m or less. From the viewpoint of the strength of the mica tape, the average thickness of the backing layer is preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • the average thickness of the mica tape (the total thickness of the mica layer and the backing layer) was measured at a total of 10 locations using a micrometer (MDC-SB, Mitutoyo Corporation). The arithmetic average value of the measured values obtained is used.
  • the thickness of the mica layer and the backing layer in the mica tape is determined by measuring the thickness of the mica layer and the backing layer in the cross section of the mica tape with a micrometer of a stereomicroscope (for example, Olympus Corporation “BX51”). Observe 3 points and use the arithmetic average.
  • a stereomicroscope for example, Olympus Corporation “BX51”.
  • the content of the inorganic filler in the nonvolatile content excluding mica and the backing material of the mica tape is not particularly limited. For example, it is preferably 20% by volume to 50% by volume and more preferably 25% by volume to 35% by volume of the total volume of the non-volatile content excluding mica and the backing material.
  • the content of the inorganic filler is 20% by volume or more of the total volume of nonvolatile components excluding mica and the backing material, the thermal conductivity of the insulating layer formed from the mica tape tends to be further improved.
  • the content of the inorganic filler is 50% by volume or less of the total volume of non-volatile components excluding mica and the backing material, filling of the inorganic filler into the resin component tends to be facilitated.
  • the content of non-volatile components excluding mica and the backing material in the total mass of the mica layer and the backing layer of the mica tape is not particularly limited. For example, it is preferably 5% by mass to 45% by mass of the total mass of the mica layer and the backing layer, more preferably 10% by mass to 30% by mass, and further preferably 15% by mass to 20% by mass. preferable.
  • the content of nonvolatile components excluding mica and the backing material is 5% by mass or more of the total mass of the mica layer and the backing layer, the thermal conductivity tends to be more effectively improved.
  • the non-volatile content excluding mica and the backing material is 45% by mass or less of the total mass of the mica layer and the backing layer, an increase in the thickness of the mica tape tends to be suppressed. Further, varnish impregnation tends to proceed during the production of mica tape.
  • the content of the resin component in the nonvolatile content excluding mica and the backing material of the mica tape is not particularly limited. For example, it is preferably 35% by mass to 70% by mass, more preferably 50% by mass to 65% by mass, and more preferably 55% by mass to 60% by mass with respect to the total mass of the nonvolatile content excluding mica and the backing material. More preferably.
  • the content of the resin component is 35% by mass or more of the total mass of nonvolatile components excluding mica and the backing material, the adhesion between the backing layer and the mica layer tends to be improved.
  • the content of the resin component is 70% by mass or less of the total nonvolatile content excluding mica and the backing material, the thermal conductivity tends to be improved.
  • the content of the resin component in the mica tape is not particularly limited and can be selected according to the use of the mica tape.
  • the content of the resin component may be 40% by mass or less of the total mass of the mica layer and the backing layer, and is preferably 5% by mass to 33% by mass.
  • the content of the resin component is preferably 25% by mass to 33% by mass of the total mass of the mica layer and the backing layer, for example, 25% by mass to 30% by mass. It is more preferable that When the content of the resin component is 25% by mass or more of the total mass of the mica layer and the backing layer, the mica from the mica tape and, if necessary, the falling off (powder off) of the inorganic filler are suppressed, and the insulator As a result of the occurrence of cracks, cuts, wrinkles, and the like of the mica tape when the mica tape is wound around, the insulation reliability and the thermal conductivity tend to be suppressed.
  • the content of the resin component is 33% by mass or less of the total mass of the mica layer and the backing layer, an increase in the thickness of the mica tape is suppressed and good winding properties tend to be maintained. Furthermore, the resin component tends to be prevented from flowing out beyond the volume necessary to fill the gap between the overlapping mica tapes with the mica tape wound around the insulator. As a result, generation of voids is reduced, and a decrease in insulation reliability tends to be suppressed.
  • the content of the resin component in the mica tape is preferably 5% by mass to 15% by mass of the total mass of the mica layer and the backing layer, for example, 5% by mass. More preferably, it is ⁇ 12% by mass, and further preferably 8% by mass to 10% by mass.
  • the content of the resin component is 5% by mass or more of the total mass of the mica layer and the backing layer, the adhesion between the backing layer and the mica layer tends to be sufficiently secured.
  • the content of the resin component is 15% by mass or less of the total mass of the mica layer and the backing layer, high thermal conductivity tends to be achieved.
  • the content rate of the resin component in the mica tape is calculated by the following method, for example.
  • the mica tape cut to a size of 30 mm in width and 50 mm in length is heated in an electric furnace at 600 ° C. for 2 hours, and the mass reduction rate (%) before and after heating is obtained by the following formula.
  • the above process is performed three times, and an arithmetic average value of the obtained values is obtained.
  • Content of resin component ⁇ (mass before heating ⁇ mass after heating) / mass before heating ⁇ ⁇ 100
  • the content of the resin component in the mica layer is preferably 15% by mass or less of the total mass of the mica layer, and more preferably 10% by mass or less. More preferably, it is 5 mass% or less, and it is especially preferable that it is 0 mass%.
  • the mica layer contains substantially no inorganic filler other than mica.
  • the content of the inorganic filler other than mica in the mica layer is preferably 3% by mass or less, more preferably 2% by mass or less, and more preferably 1% by mass or less of the total mass of the mica layer. More preferably, it is particularly preferably 0% by mass.
  • the mica layer does not substantially contain fibrites.
  • the content of fibrils in the mica layer is preferably 1% by mass or less of the total mass of the mica layer, more preferably 0.5% by mass or less, and 0.1% by mass. The following is more preferable, and 0% by mass is particularly preferable.
  • the fibrit is a fibrous substance mixed so that the mica layer can stand on its own, and examples thereof include organic fibers such as polyamide and polyimide, and inorganic fibers such as glass fibers.
  • the mica tape of this embodiment can be used for forming an insulating layer of an insulator such as a coil.
  • the mica tape of this embodiment may be manufactured through any process, and conventionally known manufacturing methods can be applied.
  • the details and preferred embodiments of the mica, backing material, inorganic filler and resin component used in the above method, and the produced mica tape are as described above.
  • the mica paper is a sheet-like object formed by collecting mica pieces.
  • the composition may contain a solvent.
  • the solvent By including the solvent, the viscosity of the composition is lowered, and the inorganic filler tends to be easily mixed.
  • the type of the solvent is not particularly limited, and can be selected from commonly used organic solvents. Specific examples include methyl ethyl ketone, toluene, methanol, cyclohexanone and the like.
  • a solvent may use only 1 type or may use 2 or more types together.
  • the content of the inorganic filler in the composition is not particularly limited.
  • the content is preferably 20% by volume to 50% by volume, and more preferably 25% by volume to 35% by volume, based on the entire nonvolatile content (components excluding the solvent) of the composition.
  • the content of the inorganic filler is 20% by volume or more of the entire nonvolatile content of the composition, the thermal conductivity of the insulating layer formed using mica tape tends to be further improved.
  • the content of the inorganic filler is 50% by volume or less of the entire nonvolatile content of the composition, the mixing property of the inorganic filler and the resin component tends to be improved.
  • composition is preferably carried out so that the composition applied to the backing material oozes out to the other side of the backing material and penetrates all or part of the mica paper.
  • the mica paper can easily become independent and is not easily collapsed.
  • the cured product of the mica tape of this embodiment is obtained by curing the mica tape described above. More specifically, it is obtained by curing a resin component contained in a mica tape.
  • the curing method is not particularly limited, and can be selected from ordinary methods.
  • the resin component may be contained in advance in the mica tape before being wound around the insulator, or may be impregnated after the mica tape is wound around the insulator.
  • the insulator of this embodiment includes an insulator and an insulating layer that is a cured product of the mica tape of this embodiment that is disposed on at least a part of the surface of the insulator.
  • the method for forming the insulating layer using the mica tape of the present embodiment is not particularly limited, and conventionally known production methods can be applied. For example, after winding mica tape around an insulator, heat it while applying pressure to the mica tape (heat press), and let the resin component contained in the mica tape flow out of the mica tape in advance and overlap between the overlapping mica tapes.
  • the resin component is formed by filling and curing this to form an insulating layer (in the case of prepreg mica tape), after winding mica tape around the insulator, and by vacuum pressure impregnation (Vacuum Pressure Impression, VPI).
  • VPI vacuum pressure impregnation
  • a method of impregnating a mica tape and curing the same to form an insulating layer in the case of dry mica tape).
  • the resin component impregnated into the mica tape is not particularly limited.
  • epoxy resins such as a bisphenol A type epoxy resin
  • curing agents such as an alicyclic acid anhydride
  • the impregnation method of the resin component in the vacuum pressure impregnation method the curing conditions after the impregnation, the ratio of the epoxy resin and the curing agent, etc., conventionally known methods, known conditions and the like can be referred to.
  • the insulator to be applied to the insulator according to the present embodiment is not particularly limited, and examples thereof include a coil, a bar-shaped copper, and a plate-shaped copper.
  • an insulating layer exhibiting high thermal conductivity can be formed. Therefore, when the insulator of this embodiment is a coil, when cooling the coil, a hydrogen cooling method or an air cooling method should be adopted even for a coil of a scale that conventionally employs a direct water cooling method. As a result, the coil structure can be simplified.
  • Example 1 Production of mica paper Unfired hard mica was dispersed in water to form mica particles, and the mica was made with a paper machine to produce mica paper having a mica amount of 140 g / m 2 .
  • the ratio (mass%) of mica pieces having a particle diameter of 2.8 mm or more when sieved using a JIS standard sieve is 5%, and the particle diameter is 0.
  • the ratio (mass%) of mica pieces having a diameter of 5 mm or more was 80%.
  • boron nitride (Electrochemical Industry Co., Ltd.) with particle size distribution peaks in the range of 2 ⁇ m to 3 ⁇ m and 9 ⁇ m to 10 ⁇ m was added, and a table stirrer (Primics Co., Ltd., “Homodisper 2.5”) was used for 2 minutes at 3000 (rotation / minute) rpm to prepare a boron nitride-containing varnish containing boron nitride as an inorganic filler.
  • a table stirrer (Primics Co., Ltd., “Homodisper 2.5”) was used for 2 minutes at 3000 (rotation / minute) rpm to prepare a boron nitride-containing varnish containing boron nitride as an inorganic filler.
  • the particle size distribution of boron nitride was measured by a laser diffraction method using Nikkiso Co., Ltd. “Microtrack MT3000II”. Specifically, 10 mg of boron nitride was added to 50 ml of pure water and dispersed by shaking for 10 minutes. 20 ml was injected into the cell and measured at 25 ° C. The refractive index of water was 1.333, and the refractive index of boron nitride was 2.17.
  • the ratio by mass of the epoxy resin and the curing catalyst in the boron nitride-containing varnish was 97: 3.
  • the boron nitride content in the total nonvolatile content (components other than the solvent) of the boron nitride-containing varnish was 25% by volume.
  • the content of the resin component was 62% by mass of the total nonvolatile content of the boron nitride-containing varnish.
  • thermal conductivity of the prepared laminate for evaluation was measured using a thermal conductivity measuring device (Hideki Seiki Co., Ltd., “HC-110”). The result was 0.40 W / (m ⁇ K).
  • the amount of boron nitride in the produced laminate was calculated by the following method. Three 100 cm 2 test pieces were cut out from the mica paper constituting the mica tape used for the production of the laminate and weighed, and the mass per 1 m 2 was obtained from each mass, and the arithmetic average value was calculated per 1 m 2 of mica. It was set as mass (g / m ⁇ 2 >). Similarly, three test pieces of 100 cm 2 ) from the backing material (glass cloth) constituting the mica tape used for the production of the laminate were cut out and weighed, and the mass per 1 m 2 was determined from the respective masses.
  • the average value was defined as mass (g / m 2 ) per 1 m 2 of the backing material.
  • Three 30 mm square test pieces were cut out from the produced laminate and heated in an electric furnace at 600 ° C. for 2 hours to remove components other than inorganic substances (mica, glass cloth, boron nitride).
  • the mass of the inorganic substance per single layer of each test piece was determined, and the arithmetic average value was calculated as the mass of the inorganic substance per 1 m 2 of the monolayer of the laminate ( g / m 2 ).
  • Example 2 A mica tape and a laminate for evaluation were prepared and evaluated in the same manner as in Example 1 except that the stirring for preparing the boron nitride-containing varnish was performed at 3000 rpm for 3 minutes. The results are shown in Table 1. When the presence or absence of outflow of boron nitride into the impregnating varnish was visually confirmed, no visible outflow occurred.
  • Example 3 A mica tape and a laminate for evaluation were prepared and evaluated in the same manner as in Example 1 except that stirring at the time of preparing the boron nitride-containing varnish was performed at 6000 rpm for 10 minutes. The results are shown in Table 1. When the presence or absence of outflow of boron nitride into the impregnating varnish was visually confirmed, no visible outflow occurred.
  • Example 4 A mica tape and a laminate for evaluation were produced and evaluated in the same manner as in Example 1 except that stirring for preparing the boron nitride-containing varnish was performed at 6000 rpm for 12 minutes. The results are shown in Table 1. When the presence or absence of outflow of boron nitride into the impregnating varnish was visually confirmed, no visible outflow occurred.
  • Example 1 A mica tape and a laminate for evaluation were produced in the same manner as in Example 1 except that boron nitride (Electrochemical Industry Co., Ltd.) was used with a particle size distribution peak of 6 ⁇ m as boron nitride used for the preparation of the boron nitride-containing varnish. And evaluated. The results are shown in Table 1.
  • the boron nitride content in the total nonvolatile content of the boron nitride-containing varnish was 32% by volume.
  • the content of the resin component was 56% by mass of the total nonvolatile content of the varnish.
  • the mica tapes of Examples 1 to 4 in which the maximum height roughness of the backing layer is 10 ⁇ m or less are the mica tapes of Comparative Example 1 in which the maximum height roughness of the backing layer exceeds 10 ⁇ m.
  • heat conductivity was high.
  • the outflow of the inorganic filler was suppressed when the laminate was immersed in the impregnated resin varnish.
  • the outflow of the inorganic filler to the impregnating resin varnish can be suppressed, it is considered that deterioration of the quality of the impregnating resin varnish can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulating Bodies (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

A coil for dynamo-electric machines, which comprises a coil conductor and an insulating layer that is arranged on the outer circumference of the coil conductor, and wherein: the insulating layer contains a mica tape; the mica tape comprises a mica layer that contains mica and a backing layer that contains a backing material and an inorganic filler; and the maximum height of roughness as determined by measuring the surface roughness of the surface of the backing layer is 10 μm or less.

Description

回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物Coil for rotating electrical machine, method for manufacturing coil for rotating electrical machine, mica tape, cured product and insulator of mica tape
 本発明は、回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物に関する。 The present invention relates to a coil for a rotating electrical machine, a method for manufacturing a coil for a rotating electrical machine, mica tape, a cured product of an mica tape, and an insulator.
 発電機、電動機等の回転電機に用いられるコイル(以下、単にコイルとも称する)は、一般にコイル導体と、コイル導体を外部環境から絶縁するためにコイル導体の外周に配置される絶縁層とを有している。絶縁層を形成する材料としてマイカテープと呼ばれるマイカを用いた絶縁材が知られている。マイカテープは、一般に、裏打ち材を含む裏打ち層と、マイカを含むマイカ層を有し、マイカテープに含浸している樹脂を硬化することで絶縁層が形成される。 A coil (hereinafter also simply referred to as a coil) used in a rotating electrical machine such as a generator or an electric motor generally has a coil conductor and an insulating layer disposed on the outer periphery of the coil conductor to insulate the coil conductor from the external environment. is doing. As a material for forming the insulating layer, an insulating material using mica called a mica tape is known. A mica tape generally has a backing layer containing a backing material and a mica layer containing mica, and an insulating layer is formed by curing a resin impregnated in the mica tape.
 一方、コイルの外側に水素ガス又は空気を通して冷却する間接冷却の方式を採用する発電機等の分野では、コイルの外側に設けられた絶縁層の高熱伝導化が望まれている。絶縁層の熱伝導率を高める手法としては、マイカテープに熱伝導率の高い無機フィラーを含有させる手法が挙げられる。 On the other hand, in the field of generators and the like that employ an indirect cooling method in which hydrogen gas or air is cooled outside the coil, it is desired that the insulating layer provided on the outside of the coil be highly thermally conductive. As a technique for increasing the thermal conductivity of the insulating layer, a technique in which an inorganic filler having a high thermal conductivity is contained in the mica tape can be mentioned.
 例えば、特許文献1には、マイカ層の中に無機フィラーとして熱伝導率の高いアルミナが充填されたマイカテープが開示されており、このマイカテープを用いることで0.32W/(m・K)~0.36W/(m・K)の熱伝導率を有する絶縁層が得られるとされている。 For example, Patent Document 1 discloses a mica tape in which alumina having a high thermal conductivity is filled as an inorganic filler in a mica layer. By using this mica tape, 0.32 W / (m · K) is disclosed. An insulating layer having a thermal conductivity of ˜0.36 W / (m · K) is obtained.
 特許文献2には、通常のマイカテープの一方の面上に、さらに、熱伝導率の高い無機フィラーを含有する熱伝導層が配置されたシート状積層体が開示されており、0.35W/(m・K)~0.48W/(m・K)の熱伝導率を有する絶縁層が得られるとされている。 Patent Document 2 discloses a sheet-like laminate in which a thermal conductive layer containing an inorganic filler having a high thermal conductivity is further disposed on one surface of a normal mica tape, and 0.35 W / It is said that an insulating layer having a thermal conductivity of (m · K) to 0.48 W / (m · K) can be obtained.
 特許文献3には、マイカテープの裏打ち層にHTC(高熱伝導性)粒子を浸透させ、裏打ち層を通して複合体テープの中に含浸樹脂を含浸させる方法が開示されている。 Patent Document 3 discloses a method in which HTC (high thermal conductivity) particles are infiltrated into a backing layer of a mica tape, and the composite tape is impregnated into the composite tape through the backing layer.
特開2005-199562号公報Japanese Patent Laid-Open No. 2005-199562 特開2002-93257号公報JP 2002-93257 A 特表2009-532242号公報Special table 2009-532242
 マイカテープに無機フィラーを含有させることは、絶縁層の熱伝導性を向上させる手法として有効である。しかしながら、無機フィラーを含むマイカテープは、保存状態、使用方法等の何らかの要因により、無機フィラーがマイカテープから脱落する可能性がある。特に、無機フィラーを含むマイカテープを樹脂ワニスで含浸する場合、マイカテープから脱落した無機フィラーが樹脂ワニスに混入して樹脂ワニスの品質が低下するという問題が生じるおそれがある。このため、無機フィラーのマイカテープからの脱落を抑制する技術の開発が待たれている。 Include the inorganic filler in the mica tape is effective as a method for improving the thermal conductivity of the insulating layer. However, the mica tape containing the inorganic filler may drop off from the mica tape due to some factors such as the storage state and usage method. In particular, when a mica tape containing an inorganic filler is impregnated with a resin varnish, there may be a problem that the inorganic filler dropped from the mica tape is mixed into the resin varnish to deteriorate the quality of the resin varnish. For this reason, development of the technique which suppresses the fall of the inorganic filler from the mica tape is awaited.
 本発明は上記事情に鑑み、無機フィラーの脱落が抑制されたマイカテープを用いて形成された絶縁層を有する回転電機用コイル及びその製造方法を提供することを課題とする。本発明はまた、無機フィラーの脱落が抑制されたマイカテープ、マイカテープの硬化物及びそれを用いた絶縁物を提供することを課題とする。 In view of the above circumstances, an object of the present invention is to provide a coil for a rotating electrical machine having an insulating layer formed using a mica tape in which an inorganic filler is prevented from falling off, and a method for manufacturing the same. Another object of the present invention is to provide a mica tape in which the falling off of the inorganic filler is suppressed, a cured product of the mica tape, and an insulator using the mica tape.
 前記課題を達成するための具体的手段は以下の通りである。
<1>コイル導体と、前記コイル導体の外周に配置された絶縁層と、を有し、前記絶縁層はマイカテープを含み、前記マイカテープは、マイカを含むマイカ層と、裏打ち材及び無機フィラーを含む裏打ち層と、を有し、前記裏打ち層の表面の表面粗さを測定して得られる最大高さ粗さが10μm以下である、回転電機用コイル。
<2>前記無機フィラーの体積平均粒子径が1μm~40μmである、<1>に記載の回転電機用コイル。
<3>前記マイカテープにおける前記無機フィラーの含有率が、前記マイカと前記裏打ち材を除く不揮発分の総体積の20体積%~50体積%である、<1>又は<2>に記載の回転電機用コイル。
<4>前記マイカテープにおける前記マイカと前記裏打ち材を除く不揮発分の含有率が、前記マイカ層と前記裏打ち層の合計質量の5質量%~45質量%である、<1>~<3>のいずれか1項に記載の回転電機用コイル。
<5>前記マイカテープが樹脂成分を含み、前記樹脂成分の含有率が、前記マイカと前記裏打ち材を除く不揮発分の総質量の35質量%~70質量%である、<1>~<4>のいずれか1項に記載の回転電機用コイル。
<6>前記マイカテープが樹脂成分を含み、前記樹脂成分の含有率が、前記マイカ層と前記裏打ち層の合計質量の40質量%以下である、<1>~<5>のいずれか1項に記載の回転電機用コイル。
<7>前記コイル導体の外周に前記マイカテープを巻き付ける工程と、前記コイル導体の外周に巻き付けられた前記マイカテープから絶縁層を形成する工程と、を有する、<1>~<6>のいずれか1項に記載の回転電機用コイルの製造方法。
Specific means for achieving the above object are as follows.
<1> a coil conductor and an insulating layer disposed on an outer periphery of the coil conductor, wherein the insulating layer includes a mica tape, and the mica tape includes a mica layer including mica, a backing material, and an inorganic filler. A coil for a rotating electrical machine, wherein the maximum height roughness obtained by measuring the surface roughness of the surface of the backing layer is 10 μm or less.
<2> The coil for a rotating electrical machine according to <1>, wherein the inorganic filler has a volume average particle diameter of 1 μm to 40 μm.
<3> The rotation according to <1> or <2>, wherein the content of the inorganic filler in the mica tape is 20% by volume to 50% by volume of the total non-volatile content excluding the mica and the backing material. Electric coil.
<4> The content of non-volatile components excluding the mica and the backing material in the mica tape is 5% by mass to 45% by mass of the total mass of the mica layer and the backing layer. <1> to <3> The coil for rotating electrical machines according to any one of the above.
<5> The mica tape includes a resin component, and the content of the resin component is 35% by mass to 70% by mass of the total mass of nonvolatile components excluding the mica and the backing material, <1> to <4 > The coil for rotary electric machines of any one of>.
<6> Any one of <1> to <5>, wherein the mica tape includes a resin component, and a content ratio of the resin component is 40% by mass or less of a total mass of the mica layer and the backing layer. The coil for rotating electrical machines described in 1.
<7> Any one of <1> to <6>, including a step of winding the mica tape around an outer periphery of the coil conductor, and a step of forming an insulating layer from the mica tape wound around the outer periphery of the coil conductor A method for manufacturing a coil for a rotating electrical machine according to claim 1.
<8>マイカを含むマイカ層と、裏打ち材及び無機フィラーを含む裏打ち層と、を有し、前記裏打ち層の表面の表面粗さを測定して得られる最大高さ粗さが10μm以下である、マイカテープ。
<9>前記無機フィラーの体積平均粒子径が1μm~40μmである、<8>に記載のマイカテープ。
<10>前記無機フィラーの含有率が、前記マイカと前記裏打ち材を除く不揮発分の総体積の20体積%~50体積%である、<8>又は<9>に記載のマイカテープ。
<11>前記マイカと前記裏打ち材を除く不揮発分の含有率が、前記マイカ層と前記裏打ち層の合計質量の5質量%~45質量%である、<8>~<10>のいずれか1項に記載のマイカテープ。
<12>ドライマイカテープとして使用される、<8>~<11>のいずれか1項に記載のマイカテープ。
<13>樹脂成分を含み、前記樹脂成分の含有率が、前記マイカと前記裏打ち材を除く不揮発分の総質量の35質量%~70質量%である、<8>~<12>のいずれか1項に記載のマイカテープ。
<14>樹脂成分を含み、前記樹脂成分の含有率が、前記マイカ層と前記裏打ち層の合計質量の40質量%以下である、<8>~<13>のいずれか1項に記載のマイカテープ。
<15>前記樹脂成分を硬化して得られる、<13>又は<14>に記載のマイカテープの硬化物。
<16>被絶縁体と、前記被絶縁体の表面の少なくとも一部に配置される<15>に記載のマイカテープの硬化物である絶縁層と、を有する絶縁物。
<8> A mica layer containing mica and a backing layer containing a backing material and an inorganic filler, and a maximum height roughness obtained by measuring the surface roughness of the surface of the backing layer is 10 μm or less. , Mica tape.
<9> The mica tape according to <8>, wherein the inorganic filler has a volume average particle diameter of 1 μm to 40 μm.
<10> The mica tape according to <8> or <9>, wherein the content of the inorganic filler is 20% by volume to 50% by volume of the total volume of nonvolatile components excluding the mica and the backing material.
<11> Any one of <8> to <10>, wherein a non-volatile content excluding the mica and the backing material is 5 mass% to 45 mass% of a total mass of the mica layer and the backing layer. Mica tape according to item.
<12> The mica tape according to any one of <8> to <11>, which is used as a dry mica tape.
Any one of <8> to <12>, including a <13> resin component, wherein the content of the resin component is 35% by mass to 70% by mass of a total mass of nonvolatile components excluding the mica and the backing material The mica tape according to item 1.
<14> The mica according to any one of <8> to <13>, including a resin component, wherein the content of the resin component is 40% by mass or less of a total mass of the mica layer and the backing layer. tape.
<15> A cured product of the mica tape according to <13> or <14>, obtained by curing the resin component.
<16> An insulator having an insulator and an insulating layer that is a cured product of the mica tape according to <15>, which is disposed on at least a part of the surface of the insulator.
 本発明によれば、無機フィラーの脱落が抑制されたマイカテープを用いて形成された絶縁層を有する回転電機用コイル及びその製造方法が提供される。また本発明によれば、無機フィラーの脱落が抑制されたマイカテープ、マイカテープの硬化物及びそれを用いた絶縁物が提供される。 According to the present invention, there is provided a coil for a rotating electrical machine having an insulating layer formed using a mica tape in which an inorganic filler is prevented from falling off, and a method for manufacturing the same. Moreover, according to this invention, the mica tape by which the drop-off | omission of the inorganic filler was suppressed, the hardened | cured material of a mica tape, and an insulator using the same are provided.
本実施形態のマイカテープの構成の一例を表す概略断面図である。It is a schematic sectional drawing showing an example of the composition of the mica tape of this embodiment. 表面粗さを測定する場所を表す概略平面図である。It is a schematic plan view showing the place which measures surface roughness.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and the present invention is not limited thereto.
 本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本明細書において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本明細書において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
In this specification, the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
In the present specification, numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the numerical ranges described stepwise in this specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
In the present specification, the content rate or content of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, the plurality of kinds present in the composition unless otherwise specified. It means the total content or content of substances.
In the present specification, the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
In this specification, the term “layer” refers to the case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. Is also included.
In this specification, the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
<回転電機用コイル>
 本実施形態の回転電機用コイルは、コイル導体と、前記コイル導体の外周に配置された絶縁層と、を有し、前記絶縁層はマイカテープを含み、前記マイカテープは、マイカを含むマイカ層と、裏打ち材及び無機フィラー(ただし、マイカは無機フィラーに含まないものとする)を含む裏打ち層と、を有し、前記裏打ち層の表面の表面粗さを測定して得られる最大高さ粗さが10μm以下である。
<Coils for rotating electrical machines>
The coil for a rotating electrical machine of the present embodiment includes a coil conductor and an insulating layer disposed on an outer periphery of the coil conductor, the insulating layer includes a mica tape, and the mica tape includes a mica layer including mica. And a backing layer containing a backing material and an inorganic filler (note that mica is not included in the inorganic filler), and a maximum height roughness obtained by measuring the surface roughness of the surface of the backing layer. Is 10 μm or less.
 本実施形態のコイルの絶縁層の形成に用いられるマイカテープの詳細及び好ましい態様は、後述する本実施形態のマイカテープと同様である。また、本実施形態のコイルに用いられるコイル導体の材質、形状、大きさ等は特に制限されず、コイルの用途等に応じて選択できる。 Details and preferred aspects of the mica tape used for forming the insulating layer of the coil of the present embodiment are the same as those of the mica tape of the present embodiment described later. Further, the material, shape, size, and the like of the coil conductor used in the coil of the present embodiment are not particularly limited, and can be selected according to the use of the coil.
<回転電機用コイルの製造方法>
 本実施形態の回転電機用コイルの製造方法は、コイル導体の外周にマイカテープを巻き付ける工程と、前記コイル導体の外周に巻き付けられた前記マイカテープから絶縁層を形成する工程と、を有する。
<Manufacturing method of coil for rotating electrical machine>
The manufacturing method of the coil for rotary electric machines of this embodiment has the process of winding a mica tape around the outer periphery of a coil conductor, and the process of forming an insulating layer from the said mica tape wound around the outer periphery of the said coil conductor.
 コイル導体の外周にマイカテープを巻き付ける方法は特に制限されず、通常行われる方法を採用することができる。 The method of winding the mica tape around the outer periphery of the coil conductor is not particularly limited, and a commonly performed method can be adopted.
 コイル導体の外周に巻き付けられた前記マイカテープから絶縁層を形成する方法は、特に制限されない。例えば、コイル導体にマイカテープを巻き付けた後にマイカテープを加圧しながら加熱(ヒートプレス)して、あらかじめマイカテープに含まれている樹脂成分をマイカテープの外に流出させて重なり合うマイカテープ間を埋めるようにし、これを硬化させて絶縁層を形成する方法(プリプレグマイカテープの場合)、及びコイル導体にマイカテープを巻きつけた後に真空加圧含浸法(Vacuum Pressure Impregnation、VPI)にて樹脂成分をマイカテープに含浸し、これを硬化させて絶縁層を形成する方法(ドライマイカテープの場合)が挙げられる。 The method for forming the insulating layer from the mica tape wound around the outer periphery of the coil conductor is not particularly limited. For example, after a mica tape is wound around a coil conductor, the mica tape is heated while being pressed (heat press), and the resin component contained in the mica tape is caused to flow out of the mica tape in advance to fill the space between the overlapping mica tapes. The resin component is then formed by a method of curing this to form an insulating layer (in the case of prepreg mica tape), and after winding the mica tape around the coil conductor, a vacuum pressure impregnation method (Vacuum Pressure Impression, VPI). Examples include a method of impregnating mica tape and curing it to form an insulating layer (in the case of dry mica tape).
<マイカテープ>
 本実施形態のマイカテープは、マイカを含むマイカ層と、裏打ち材及び無機フィラーを含む裏打ち層と、を有し、前記裏打ち層の表面の表面粗さを測定して得られる最大高さ粗さが10μm以下である。
<Mica tape>
The mica tape of this embodiment has a mica layer containing mica and a backing layer containing a backing material and an inorganic filler, and has a maximum height roughness obtained by measuring the surface roughness of the surface of the backing layer. Is 10 μm or less.
 本発明者らの検討により、本実施形態のマイカテープは、裏打ち層の表面の表面粗さを測定して得られる最大高さ粗さが10μmを超えるマイカテープに比べ、無機フィラーの脱落が抑制されることがわかった。その理由は明らかではないが、無機フィラーが裏打ち層内に取り込まれ、裏打ち層からの無機フィラーの突出が抑制されているためと推測される。さらに、マイカテープの硬化物中に無機フィラーが充分に含まれ、熱伝導性に優れる絶縁層を形成することができると推測される。 As a result of studies by the present inventors, the mica tape of the present embodiment is less likely to lose inorganic filler than a mica tape having a maximum height roughness exceeding 10 μm obtained by measuring the surface roughness of the surface of the backing layer. I found out that The reason is not clear, but it is assumed that the inorganic filler is taken into the backing layer and the protrusion of the inorganic filler from the backing layer is suppressed. Furthermore, it is estimated that the inorganic filler is sufficiently contained in the cured product of the mica tape, and an insulating layer having excellent thermal conductivity can be formed.
 本実施形態のマイカテープにおいて、裏打ち層の表面の表面粗さを測定して得られる最大高さ粗さは10μm以下であり、9μm以下であることが好ましく、6μm以下であることがより好ましい。 In the mica tape of this embodiment, the maximum height roughness obtained by measuring the surface roughness of the backing layer is 10 μm or less, preferably 9 μm or less, more preferably 6 μm or less.
 図1は、本実施形態のマイカテープの構造の一例を表す概略断面図である。図1に示すように、マイカテープはマイカ2を含むマイカ層3と、裏打ち材1及び無機フィラー5を含む裏打ち層6と、を有していてもよい。また、マイカ層3と裏打ち層6はそれぞれ樹脂成分4を含んでいてもよい。樹脂成分4は、マイカ層3と裏打ち層6の両方に含まれても一方のみに含まれてもよい。マイカ層3(又は裏打ち層6)が樹脂成分4を含む場合、樹脂成分4は、マイカ層3(又は裏打ち層6)の全体に含まれていても、部分的に含まれていてもよい。 FIG. 1 is a schematic cross-sectional view showing an example of the structure of the mica tape of this embodiment. As shown in FIG. 1, the mica tape may have a mica layer 3 containing mica 2 and a backing layer 6 containing a backing material 1 and an inorganic filler 5. Further, the mica layer 3 and the backing layer 6 may each contain a resin component 4. The resin component 4 may be included in both the mica layer 3 and the backing layer 6 or only in one. When the mica layer 3 (or the backing layer 6) includes the resin component 4, the resin component 4 may be included in the entire mica layer 3 (or the backing layer 6) or may be partially included.
 本実施形態のマイカテープは、被絶縁体にマイカテープを巻き付けた後にあらかじめマイカテープに含まれている樹脂成分を硬化させて絶縁層を形成する方法に用いられるマイカテープ(プリプレグマイカテープ)であっても、被絶縁体に巻きつけた後に含浸する樹脂成分を硬化させて絶縁層を形成する方法に用いられるマイカテープ(ドライマイカテープ)であってもよい。本実施形態のマイカテープは、樹脂成分の含浸工程において無機フィラーの脱落が抑制されるために、ドライマイカテープとしての使用に特に適している。 The mica tape of this embodiment is a mica tape (prepreg mica tape) used in a method for forming an insulating layer by curing a resin component contained in a mica tape in advance after the mica tape is wound around an object to be insulated. Alternatively, it may be a mica tape (dry mica tape) used in a method of forming an insulating layer by curing a resin component impregnated after being wound around an insulator. The mica tape of the present embodiment is particularly suitable for use as a dry mica tape because dropping of the inorganic filler is suppressed in the resin component impregnation step.
 本明細書において裏打ち層の表面の表面粗さは、裏打ち材の目開き部分の中央又はその近傍を通る部分で測定される値とする。具体的には、図2に示すように、マイカテープを裏打ち層側から見たときに、裏打ち材を構成する繊維10で囲まれた領域の中心を通る部分(矢印Aで示す)で測定される値とする。 In this specification, the surface roughness of the surface of the backing layer is a value measured at a portion passing through the center of the opening portion of the backing material or in the vicinity thereof. Specifically, as shown in FIG. 2, when the mica tape is viewed from the backing layer side, it is measured at a portion (indicated by arrow A) passing through the center of the region surrounded by the fibers 10 constituting the backing material. Value.
 本明細書において裏打ち層の表面粗さは、JIS B 0632:2001又はISO11562:1996に準拠して測定される値であり、最大高さ粗さ(Rz)はISO4287:1997に準拠して測定される。具体的には、共焦点レーザー顕微鏡(例えば、株式会社島津製作所、「SFT-4500」)を用いて得られた表面粗さ曲線から、輪郭曲線フィルタのカットオフ値(λc)を250μmとしてうねり曲線の影響を排除して測定される値である。 In this specification, the surface roughness of the backing layer is a value measured according to JIS B 0632: 2001 or ISO 11562: 1996, and the maximum height roughness (Rz) is measured according to ISO 4287: 1997. The Specifically, from a surface roughness curve obtained using a confocal laser microscope (for example, Shimadzu Corporation, “SFT-4500”), a contour curve filter has a cutoff value (λc) of 250 μm and a waviness curve. It is a value measured without the influence of.
 最大高さ粗さの値を調節する方法は特に制限されず、マイカテープの作製に用いる無機フィラーの粒子径、無機フィラーの量、ワニスの調製条件(撹拌時間、撹拌速度等)、塗工条件(塗工速度、乾燥温度、乾燥時間等)などにより調節することができる。 The method for adjusting the value of the maximum height roughness is not particularly limited, and the particle size of the inorganic filler used in the production of the mica tape, the amount of the inorganic filler, the varnish preparation conditions (stirring time, stirring speed, etc.), and coating conditions (Coating speed, drying temperature, drying time, etc.) can be adjusted.
(マイカ)
 マイカの種類は、特に制限されない。例えば、未焼成硬質マイカ、焼成硬質マイカ、未焼成軟質マイカ、焼成軟質マイカ、合成マイカ及びフレークマイカが挙げられる。これらの中でも、価格及び入手しやすさの観点からは、焼成工程を経ない未焼成硬質マイカが好ましい。
(Mica)
The kind of mica is not particularly limited. Examples include unfired hard mica, fired hard mica, unfired soft mica, fired soft mica, synthetic mica, and flake mica. Among these, unfired hard mica that does not go through the firing step is preferable from the viewpoint of price and availability.
 マイカの粒子径は、特に制限されない。例えば、絶縁性の観点からは、JIS標準篩を用いて篩い分けしたときに、粒子径が2.8mm以上であるマイカ片の割合が、マイカ片全体の45質量%未満であることが好ましく、マイカ片全体の30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。 The particle size of mica is not particularly limited. For example, from the viewpoint of insulation, when sieving using a JIS standard sieve, the proportion of mica pieces having a particle diameter of 2.8 mm or more is preferably less than 45% by mass of the whole mica pieces, It is more preferably 30% by mass or less, and further preferably 20% by mass or less, based on the entire mica piece.
 充分な絶縁破壊電界強度を確保する観点からは、JIS標準篩を用いて篩い分けしたときの粒子径が0.5mm以上であるマイカ片の割合が、マイカ片全体の40質量%以上であることが好ましく、60質量%以上であることがより好ましい。 From the viewpoint of securing sufficient dielectric breakdown electric field strength, the proportion of mica pieces having a particle diameter of 0.5 mm or more when sieved using a JIS standard sieve is 40% by mass or more of the entire mica pieces. Is preferable, and it is more preferable that it is 60 mass% or more.
 前記JIS標準篩はJIS-Z-8801-1:2006に準拠し、ISO3310-1:2000に対応する。尚、ISO3310-1:2000を用いる場合には、JIS-Z-8801-1:2006と同様に篩い目の形状が正方形であるものを適用することが好ましい。 The JIS standard sieve conforms to JIS-Z-8801-1: 2006 and conforms to ISO3310-1: 2000. When ISO 3310-1: 2000 is used, it is preferable to apply a sieve having a square shape as in JIS-Z-8801-1: 2006.
 マイカテープに含まれるマイカにおけるJIS標準篩を用いて篩い分けしたときの粒子径が2.8mm以上であるマイカ片の割合、及び粒子径が0.5mm以上であるマイカ片の割合は、例えば、以下のようにして確認することができる。 The ratio of mica pieces having a particle diameter of 2.8 mm or more when sieving using a JIS standard sieve in mica contained in the mica tape, and the ratio of mica pieces having a particle diameter of 0.5 mm or more are, for example, It can be confirmed as follows.
 マイカテープの裏打ち層とマイカ層の界面に剃刀を差し込み、裏打ち層からマイカ層を剥離する。剥離したマイカ層1gをメチルエチルケトン100gに分散させ、10分間振とう後、8000回転/分(rpm)で5分間遠心分離する。上澄み液を除去して残った固形分に対して、メチルエチルケトン100gを加え、10分間振とう後、8000回転/分(rpm)で5分間遠心分離する。さらにもう一度、上澄み液を除去して残った固形分に対して、メチルエチルケトン100gを加え、10分間振とうした後、8000回転/分(rpm)で5分間遠心分離する。上澄み液を除去して残った固形分1gにメチルエチルケトン100gを加え、ミックスローターにて30分間分散させ、さらに10分間振とうする。その後、容器を振とうさせながら、目開き2.8mmから目開き0.5mmの順にJIS標準篩(JIS-Z-8801-1:2006、ISO3310-1:2000、東京スクリーン株式会社、試験用ふるい)で篩い分けする。 Insert a razor into the interface between the backing layer and the mica layer of the mica tape, and peel off the mica layer from the backing layer. 1 g of the peeled mica layer is dispersed in 100 g of methyl ethyl ketone, shaken for 10 minutes, and then centrifuged at 8000 rotations / minute (rpm) for 5 minutes. 100 g of methyl ethyl ketone is added to the solid content remaining after removing the supernatant, shaken for 10 minutes, and then centrifuged at 8000 rpm for 5 minutes. Further, 100 g of methyl ethyl ketone is added to the remaining solid after removing the supernatant, and the mixture is shaken for 10 minutes and then centrifuged at 8000 rpm for 5 minutes. The supernatant is removed, 100 g of methyl ethyl ketone is added to 1 g of the remaining solid, and the mixture is dispersed for 30 minutes with a mix rotor and shaken for another 10 minutes. Then, while shaking the container, JIS standard sieves (JIS-Z-8801-1: 2006, ISO3310-1: 2000, Tokyo Screen Co., Ltd., test sieve) ).
 篩い分けの方法は特に制限されないが、例えば、電磁式篩振動機に備え付けた所定の目開きを有するJIS標準篩を振動数3000回/分、振幅1mm、10分間の条件で振動させながらマイカを篩に通すことで行うことができる。 The sieving method is not particularly limited. For example, the mica is shaken while vibrating a JIS standard sieve having a predetermined opening provided in an electromagnetic sieve vibrator at a frequency of 3000 times / minute, an amplitude of 1 mm, and 10 minutes. This can be done by passing through a sieve.
 篩い分けの結果、目開き2.8mm(又は0.5mm)の篩いの目を通過しなかったマイカ片を「粒子径が2.8mm(又は0.5mm)以上であるマイカ片」とし、篩い分けする前のマイカ片の全量中の「粒子径が2.8mm(又は0.5mm)以上であるマイカ片」の割合(質量%)を「JIS標準篩を用いて篩い分けしたときの粒子径が2.8mm(又は0.5mm)以上であるマイカ片の割合」とする。 As a result of sieving, a mica piece that has not passed through a sieve having an opening of 2.8 mm (or 0.5 mm) is defined as a “mica piece having a particle diameter of 2.8 mm (or 0.5 mm) or more”. The ratio (mass%) of “mica pieces with a particle diameter of 2.8 mm (or 0.5 mm) or more” in the total amount of mica pieces before being divided is “particle diameter when sieving using a JIS standard sieve. Is the ratio of mica pieces with 2.8 mm (or 0.5 mm) or more.
 マイカは1種を単独で使用してもよく、2種以上を併用してもよい。マイカを2種以上併用する場合としては、例えば、同じ成分で粒子径が異なるマイカを2種以上用いる場合、粒子径が同じで成分の異なるマイカを2種以上用いる場合、並びに平均粒子径及び成分の異なるマイカを2種以上用いる場合が挙げられる。 Mica may be used alone or in combination of two or more. When two or more mica are used in combination, for example, when two or more mica having the same component and different particle sizes are used, when two or more mica having the same particle size and different components are used, and the average particle size and component The case where 2 or more types of mica having different types is used is mentioned.
 マイカ層中のマイカの量は、特に制限されない。例えば、80g/m~230g/mの範囲が好ましく、100g/m~200g/mの範囲がより好ましい。マイカ層中のマイカの量が80g/m以上であれば、絶縁性の低下が抑制される傾向にある。マイカ層中のマイカの量が230g/m以下であれば、マイカテープの厚さを薄くでき、熱伝導率の低下が抑制される傾向にある。 The amount of mica in the mica layer is not particularly limited. For example, a range of 80 g / m 2 to 230 g / m 2 is preferable, and a range of 100 g / m 2 to 200 g / m 2 is more preferable. If the amount of mica in the mica layer is 80 g / m 2 or more, a decrease in insulation tends to be suppressed. If the amount of mica in the mica layer is 230 g / m 2 or less, the thickness of the mica tape can be reduced, and the decrease in thermal conductivity tends to be suppressed.
(裏打ち材)
 裏打ち材の種類は、特に制限されない。例えば、ガラスクロスが挙げられる。裏打ち材としてガラスクロスを用いることで、ガラスクロスを構成する繊維の間に無機フィラーが取り込まれ、無機フィラーの脱落が抑制される傾向にある。また、繊維の間に浸透した樹脂成分によって隣接するマイカ層と良好に一体化し、熱伝導性が向上する傾向にある。
(Lining material)
The type of the backing material is not particularly limited. For example, a glass cloth is mentioned. By using glass cloth as the backing material, the inorganic filler is taken in between the fibers constituting the glass cloth, and the falling of the inorganic filler tends to be suppressed. Further, the resin component penetrated between the fibers tends to be well integrated with the adjacent mica layer, and the thermal conductivity tends to be improved.
 裏打ち材としてガラスクロスを用いる場合、その一部が有機材料で構成される繊維であってもよい。有機材料で構成される繊維は特に制限されず、アラミド、ポリアミド、ポリイミド、ポリエステル等の繊維が挙げられる。ガラスクロスの一部が有機材料で構成される繊維である場合には、縦糸、横糸又はその両方が有機材料で構成される繊維であってもよい。 When a glass cloth is used as the backing material, a part of the fiber may be an organic material. The fiber comprised in particular with an organic material is not restrict | limited, Fibers, such as an aramid, polyamide, a polyimide, polyester, are mentioned. When a part of the glass cloth is a fiber composed of an organic material, the warp, the weft, or both may be a fiber composed of an organic material.
 裏打ち材の平均厚さは特に限定されない。例えば、10μm~100μmであることが好ましく、20μm~70μmであることがより好ましい。裏打ち材の平均厚さが10μm以上であれば、マイカテープを加圧した際に裏打ち層が裏打ち材の厚さに追従して薄くなりすぎるのが抑制され、熱伝導率の低下が抑制される傾向にある。裏打ち材の厚さが100μm以下であれば、マイカテープが厚くなるのを抑制でき、マイカテープを被絶縁体に巻き付ける工程中のマイカテープの切れ、ひび等の発生が抑制される傾向にある。 The average thickness of the backing material is not particularly limited. For example, the thickness is preferably 10 μm to 100 μm, more preferably 20 μm to 70 μm. If the average thickness of the backing material is 10 μm or more, it is suppressed that the backing layer is too thin following the thickness of the backing material when the mica tape is pressed, and a decrease in thermal conductivity is suppressed. There is a tendency. If the thickness of the backing material is 100 μm or less, the mica tape can be prevented from being thickened, and the occurrence of breakage, cracks and the like of the mica tape during the process of winding the mica tape around the insulator is likely to be suppressed.
 本実施形態において裏打ち材の平均厚さは、マイクロメーター(MDC-SB、株式会社ミツトヨ)を用いて裏打ち材の厚さを計10箇所で測定し、得られた測定値の算術平均値とする。マイカテープ中の裏打ち材(裏打ち層)の平均厚さは、後述する方法により測定される値とする。 In this embodiment, the average thickness of the backing material is the arithmetic average value of the measured values obtained by measuring the thickness of the backing material at a total of 10 locations using a micrometer (MDC-SB, Mitutoyo Corporation). . The average thickness of the backing material (backing layer) in the mica tape is a value measured by the method described later.
 裏打ち材は、必要に応じて表面処理されたものでもよい。裏打ち材の表面処理の方法としては、例えば、シランカップリング剤による処理が挙げられる。 The backing material may be surface-treated if necessary. Examples of the surface treatment method for the backing material include treatment with a silane coupling agent.
(無機フィラー)
 無機フィラーの種類は、特に制限されない。例えば、シリカ、窒化ホウ素及びアルミナが挙げられる。熱伝導性の観点からは、窒化ホウ素が好ましい。窒化ホウ素は、他の無機フィラー(例えば、アルミナ)よりも高い熱伝導性を示す。そのため、裏打ち層が窒化ホウ素を含むことで、マイカテープから形成される絶縁層の熱伝導性が向上する傾向にある。また、窒化ホウ素はモース硬度が2であり、アルミナ(モース硬度9)と比較すると、柔らかいフィラーであるため、テープに柔軟性を付与することができる。
(Inorganic filler)
The kind of inorganic filler is not particularly limited. Examples include silica, boron nitride, and alumina. From the viewpoint of thermal conductivity, boron nitride is preferable. Boron nitride exhibits higher thermal conductivity than other inorganic fillers (eg, alumina). Therefore, when the backing layer contains boron nitride, the thermal conductivity of the insulating layer formed from the mica tape tends to be improved. Boron nitride has a Mohs hardness of 2 and is a soft filler as compared with alumina (Mohs hardness 9), so that flexibility can be imparted to the tape.
 窒化ホウ素の種類は特に限定されず、六方晶窒化ホウ素(h-BN)、立方晶窒化ホウ素(c-BN)、ウルツ鉱型窒化ホウ素等が挙げられる。これらの中でも、六方晶窒化ホウ素(h-BN)が好ましい。窒化ホウ素は、鱗片状に形成されている窒化ホウ素の一次粒子であっても、一次粒子が凝集して形成された二次粒子であってもよい。 The type of boron nitride is not particularly limited, and examples include hexagonal boron nitride (h-BN), cubic boron nitride (c-BN), and wurtzite boron nitride. Among these, hexagonal boron nitride (h-BN) is preferable. The boron nitride may be primary particles of boron nitride formed in a scale shape or secondary particles formed by agglomeration of primary particles.
 無機フィラーの平均粒子径は、特に限定されない。例えば、1μm~40μmであることが好ましく、5μm~20μmであることがより好ましく、5μm~10μmであることがさらに好ましい。
 無機フィラーの平均粒子径が1μm以上であると、熱伝導率及び絶縁耐電圧がより向上する傾向にあり、また、マイカテープを樹脂成分で含浸する樹脂含浸工程において微小な無機フィラーの粒子の流出が抑制される傾向にある。無機フィラーの平均粒子径が40μm以下であると、粒子形状の異方性による熱伝導率の異方性が抑制される傾向にあり、また、無機フィラーの粒子のテープ表面からの突出が抑制され、樹脂含浸工程において無機フィラーの流出が抑制される傾向にある。
The average particle diameter of the inorganic filler is not particularly limited. For example, it is preferably 1 μm to 40 μm, more preferably 5 μm to 20 μm, and even more preferably 5 μm to 10 μm.
When the average particle size of the inorganic filler is 1 μm or more, the thermal conductivity and the dielectric strength voltage tend to be further improved. In addition, the outflow of fine inorganic filler particles in the resin impregnation step of impregnating the mica tape with the resin component. Tend to be suppressed. When the average particle size of the inorganic filler is 40 μm or less, the anisotropy of the thermal conductivity due to the anisotropy of the particle shape tends to be suppressed, and the protrusion of the inorganic filler particles from the tape surface is suppressed. In the resin impregnation step, the outflow of the inorganic filler tends to be suppressed.
 無機フィラーの平均粒子径は、例えば、レーザー回折散乱方式粒度分布測定装置(マイクロトラック MT3000II、日機装株式会社)を用いることで測定可能である。具体的には、純水中に無機フィラーを投入した後に、超音波分散機で分散する。この分散液の粒子径分布を測定することで、無機フィラーの粒子径分布が測定される。この粒子径分布に基づいて、小径側からの体積累積50%に対応する粒子径(D50)を平均粒子径として求める。 The average particle diameter of the inorganic filler can be measured by using, for example, a laser diffraction / scattering particle size distribution measuring apparatus (Microtrac MT3000II, Nikkiso Co., Ltd.). Specifically, an inorganic filler is introduced into pure water and then dispersed with an ultrasonic disperser. By measuring the particle size distribution of the dispersion, the particle size distribution of the inorganic filler is measured. Based on this particle size distribution, the particle size (D50) corresponding to 50% volume accumulation from the small diameter side is determined as the average particle size.
 また、無機フィラーの粒度分布ピークの本数が複数本確認される場合、無機フィラーの粒子のテープ表面からの突出が抑制され、樹脂含浸工程において無機フィラーの流出が抑制される傾向にある。中でも、5μm以下の範囲に存在する第一の粒度分布ピークと、6μm以上の範囲に存在する第二の粒度分布ピークと、を有する窒化ホウ素を含むことが好ましい。また、これらの粒度分布ピークはそれぞれ1μm~20μmの範囲に存在することがより好ましく、それぞれ2μm~10μmの範囲に存在することが更に好ましい。 Moreover, when a plurality of particle size distribution peaks of the inorganic filler are confirmed, protrusion of the inorganic filler particles from the tape surface is suppressed, and the outflow of the inorganic filler tends to be suppressed in the resin impregnation step. Among them, it is preferable to include boron nitride having a first particle size distribution peak existing in the range of 5 μm or less and a second particle size distribution peak existing in the range of 6 μm or more. In addition, these particle size distribution peaks are each preferably in the range of 1 μm to 20 μm, and more preferably in the range of 2 μm to 10 μm.
 無機フィラーは1種を単独で使用しても、2種以上を併用してもよい。無機フィラーを2種以上併用する場合としては、例えば、同じ成分で平均粒子径が異なる無機フィラーを2種以上用いる場合、平均粒子径が同じで成分の異なる無機フィラーを2種以上用いる場合、並びに平均粒子径及び種類の異なる無機フィラーを2種以上用いる場合が挙げられる。 The inorganic filler may be used alone or in combination of two or more. As a case where two or more inorganic fillers are used in combination, for example, when two or more inorganic fillers having the same component and different average particle sizes are used, two or more inorganic fillers having the same average particle size and different components are used, and A case where two or more inorganic fillers having different average particle diameters and types are used.
 必要に応じ、無機フィラーはカップリング剤、熱処理又は光処理により表面処理されたものであってもよい。
 例えば、熱処理の場合、無機フィラーを適切な高温(例えば、250℃~800℃)で1時間~3時間加熱することにより、無機フィラー表面の不純物が除去される。そのため、無機フィラーを樹脂成分と混合したときの親和性が向上し、無機フィラーと樹脂成分を含む組成物の粘度が下がり、塗布しやすくなる傾向にある。また、組成物の塗布面は塗り斑や凹凸が少なく平滑性が向上する傾向にある。
If necessary, the inorganic filler may be surface-treated by a coupling agent, heat treatment or light treatment.
For example, in the case of heat treatment, impurities on the surface of the inorganic filler are removed by heating the inorganic filler at an appropriate high temperature (for example, 250 ° C. to 800 ° C.) for 1 hour to 3 hours. Therefore, the affinity when the inorganic filler is mixed with the resin component is improved, and the viscosity of the composition containing the inorganic filler and the resin component is lowered and tends to be easily applied. Further, the coated surface of the composition has few smears and irregularities and tends to improve smoothness.
(樹脂成分)
 マイカテープは、樹脂成分を含んでもよい。樹脂成分として用いる樹脂の種類は特に制限されない。マイカテープを硬化させて絶縁層を形成する観点からは、硬化性樹脂であることが好ましく、熱硬化性樹脂であることがより好ましい。硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂及びシリコーン樹脂が挙げられる。マイカ層と裏打ち層との接着性及び電気絶縁性の観点からは、エポキシ樹脂が好ましい。
(Resin component)
The mica tape may contain a resin component. The kind of resin used as the resin component is not particularly limited. From the viewpoint of curing the mica tape to form the insulating layer, a curable resin is preferable, and a thermosetting resin is more preferable. Examples of the curable resin include an epoxy resin, a phenol resin, an unsaturated polyester resin, and a silicone resin. From the viewpoint of adhesion between the mica layer and the backing layer and electrical insulation, an epoxy resin is preferable.
 樹脂成分としてエポキシ樹脂を用いる場合のエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、環式脂肪族エポキシ樹脂等が挙げられる。中でも、耐熱性の観点からは、フェノールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂及びビスフェノールF型エポキシ樹脂が好ましい。 Epoxy resins in the case of using an epoxy resin as a resin component include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolak type epoxy resin, naphthalene type epoxy resin, cycloaliphatic epoxy resin, etc. Is mentioned. Among these, from the viewpoint of heat resistance, phenol novolac type epoxy resins, bisphenol A type epoxy resins and bisphenol F type epoxy resins are preferable.
 エポキシ樹脂のエポキシ当量は、特に制限されない。例えば、130g/eq~500g/eqであることが好ましく、135g/eq~400g/eqであることがより好ましく、140g/eq~300g/eqであることがさらに好ましい。なお、エポキシ当量は、精秤したエポキシ樹脂をメチルエチルケトン等の溶媒に溶解させ、酢酸と臭化テトラエチルアンモニウム酢酸溶液を加えた後、過塩素酸酢酸標準液によって電位差滴定することにより測定される。電位差滴定には、指示薬を用いてもよい。 The epoxy equivalent of the epoxy resin is not particularly limited. For example, it is preferably 130 g / eq to 500 g / eq, more preferably 135 g / eq to 400 g / eq, and even more preferably 140 g / eq to 300 g / eq. The epoxy equivalent is measured by dissolving a precisely weighed epoxy resin in a solvent such as methyl ethyl ketone, adding acetic acid and a tetraethylammonium bromide acetic acid solution, and then performing potentiometric titration with a perchloric acid acetic acid standard solution. An indicator may be used for potentiometric titration.
 樹脂成分として用いる樹脂の数平均分子量は、特に制限されない。例えば、流動性の観点からは100~100000であることが好ましく、200~50000であることがより好ましく、300~10000であることがさらに好ましい。なお、数平均分子量はゲルパーミエーションクロマトグラフィー(GPC)により測定した値である。樹脂の数平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)を用いて、定法に従い下記の条件で測定した値である。 The number average molecular weight of the resin used as the resin component is not particularly limited. For example, from the viewpoint of fluidity, it is preferably 100 to 100,000, more preferably 200 to 50,000, and still more preferably 300 to 10,000. The number average molecular weight is a value measured by gel permeation chromatography (GPC). The number average molecular weight of the resin is a value measured under the following conditions using a gel permeation chromatography method (GPC) according to a conventional method.
〔測定条件〕
 ポンプ:L-6000(株式会社日立製作所)
 カラム:TSKgel(登録商標)G4000HHR+G3000HHR+G2000HXL(東ソー株式会社)
 カラム温度:40℃
 溶出溶媒:テトラヒドロフラン(クロマトグラフィー用安定剤不含、和光純薬工業株式会社)
 試料濃度:5g/L(テトラヒドロフラン可溶分)
 注入量:100μL
 流速:1.0mL/分
 検出器:示差屈折率計(RI-8020、東ソー株式会社)
 分子量較正標準物質:標準ポリスチレン
 データ処理装置:GPC-8020(東ソー株式会社)
〔Measurement condition〕
Pump: L-6000 (Hitachi, Ltd.)
Column: TSKgel (registered trademark) G4000HHR + G3000HHR + G2000HXL (Tosoh Corporation)
Column temperature: 40 ° C
Elution solvent: Tetrahydrofuran (without chromatography stabilizer, Wako Pure Chemical Industries, Ltd.)
Sample concentration: 5 g / L (tetrahydrofuran soluble component)
Injection volume: 100 μL
Flow rate: 1.0 mL / min Detector: Differential refractometer (RI-8020, Tosoh Corporation)
Molecular weight calibration reference material: Standard polystyrene Data processor: GPC-8020 (Tosoh Corporation)
 マイカテープが樹脂成分として硬化性樹脂を含む場合、硬化剤を樹脂成分として含んでもよい。硬化剤は特に制限されず、硬化性樹脂の種類に応じて適宜選択できる。硬化剤は1種を単独で用いても、2種以上を併用してもよい。
 硬化性樹脂がエポキシ樹脂である場合、硬化剤としてはエポキシ樹脂用硬化剤として通常用いられる硬化剤から適宜選択して用いることができる。具体的には、ジシアンジアミド、芳香族ジアミン等のアミン硬化剤;フェノールノボラック、クレゾールノボラック等のフェノール樹脂硬化剤;脂環式酸無水物等の酸無水物硬化剤などを挙げることができる。硬化性樹脂がエポキシ樹脂である場合、硬化剤とエポキシ樹脂の割合は、当量比(硬化剤/エポキシ樹脂)で0.8~1.2とすることが硬化性及び硬化物の電気特性の観点から好ましい。
When the mica tape contains a curable resin as a resin component, a curing agent may be included as a resin component. The curing agent is not particularly limited and can be appropriately selected depending on the type of the curable resin. A hardening | curing agent may be used individually by 1 type, or may use 2 or more types together.
When the curable resin is an epoxy resin, the curing agent can be appropriately selected from curing agents usually used as a curing agent for epoxy resins. Specific examples include amine curing agents such as dicyandiamide and aromatic diamine; phenol resin curing agents such as phenol novolac and cresol novolac; acid anhydride curing agents such as alicyclic acid anhydrides and the like. When the curable resin is an epoxy resin, the ratio of the curing agent to the epoxy resin should be 0.8 to 1.2 in terms of equivalent ratio (curing agent / epoxy resin) from the viewpoint of curability and electrical characteristics of the cured product To preferred.
(硬化触媒)
 マイカテープが樹脂成分として硬化性樹脂を含む場合、硬化性樹脂の硬化反応を加速させる等の目的で硬化触媒を含んでもよい。硬化触媒は特に制限されず、硬化性樹脂及び必要に応じて用いられる硬化剤の種類等に応じて選択できる。硬化触媒として具体的には、トリメチルアミン等の第3級アミン化合物、2-メチルイミダゾール、2-メチル-4-エチルイミダゾール等のイミダゾール化合物、錫、亜鉛、コバルト等の有機金属塩、三フッ化ホウ素モノエチルアミン等のルイス酸のアミン錯体、有機ホスフィン化合物等の有機リン化合物などを挙げることができる。硬化促進剤は1種を単独で用いても、2種以上を併用してもよい。
 マイカテープが硬化触媒を含む場合、その含有率は特に制限されない。例えば、樹脂成分としてエポキシ樹脂を用いる場合の硬化触媒の含有率は、エポキシ樹脂及び必要に応じて含まれる硬化剤の合計量に対して0.01質量%~5質量%の範囲が一般的である。
(Curing catalyst)
When the mica tape includes a curable resin as a resin component, a curing catalyst may be included for the purpose of accelerating the curing reaction of the curable resin. The curing catalyst is not particularly limited, and can be selected according to the type of the curable resin and the curing agent used as necessary. Specific examples of the curing catalyst include tertiary amine compounds such as trimethylamine, imidazole compounds such as 2-methylimidazole and 2-methyl-4-ethylimidazole, organometallic salts such as tin, zinc and cobalt, boron trifluoride. Examples include amine complexes of Lewis acids such as monoethylamine, and organic phosphorus compounds such as organic phosphine compounds. A hardening accelerator may be used individually by 1 type, or may use 2 or more types together.
When the mica tape contains a curing catalyst, the content is not particularly limited. For example, when an epoxy resin is used as the resin component, the content of the curing catalyst is generally in the range of 0.01% by mass to 5% by mass with respect to the total amount of the epoxy resin and the curing agent included as necessary. is there.
(その他の成分)
 マイカテープは、必要に応じて上述した成分以外のその他の成分を含んでもよい。その他の成分としては、カップリング剤、酸化防止剤、老化防止剤、安定剤、難燃剤、増粘剤等が挙げられる。マイカテープがこれらの成分を含む場合、その含有量は特に制限されない。
(Other ingredients)
The mica tape may contain other components other than the components described above as necessary. Examples of other components include coupling agents, antioxidants, anti-aging agents, stabilizers, flame retardants, and thickeners. When a mica tape contains these components, the content is not particularly limited.
<マイカテープの全体構成>
 本実施形態のマイカテープは、マイカを含むマイカ層と、裏打ち材及び無機フィラーを含む裏打ち層と、を有し、必要に応じてその他の層を有していてもよい。その他の層としては、マイカテープの最表面に設けられる保護層(保護フィルム)等が挙げられる。
<Overall configuration of mica tape>
The mica tape of this embodiment has a mica layer containing mica and a backing layer containing a backing material and an inorganic filler, and may have other layers as necessary. Examples of the other layer include a protective layer (protective film) provided on the outermost surface of the mica tape.
 マイカテープの平均厚さ(マイカ層と裏打ち層の厚さの合計)は特に制限されない。例えば、マイカテープの平均厚さは400μm以下であってよく、350μm以下であることが好ましく、300μm以下であることがより好ましい。 The average thickness of the mica tape (the total thickness of the mica layer and the backing layer) is not particularly limited. For example, the average thickness of the mica tape may be 400 μm or less, preferably 350 μm or less, and more preferably 300 μm or less.
 マイカテープがプリプレグマイカテープとして使用される場合、マイカテープの巻きつけやすさの観点からは、マイカテープの平均厚さは300μm以下であることが好ましく、290μm以下であることがより好ましい。電気絶縁性の観点からは、マイカテープの平均厚さは120μm以上であることが好ましく、150μm以上であることがより好ましく、160μm以上であることがさらに好ましい。 When the mica tape is used as a prepreg mica tape, the average thickness of the mica tape is preferably 300 μm or less and more preferably 290 μm or less from the viewpoint of easy winding of the mica tape. From the viewpoint of electrical insulation, the average thickness of the mica tape is preferably 120 μm or more, more preferably 150 μm or more, and further preferably 160 μm or more.
 マイカテープがドライマイカテープとして使用される場合、マイカテープの巻きつけやすさの観点からは、マイカテープの平均厚さは220μm以下であることが好ましく、190μm以下であることがより好ましい。電気絶縁性の観点からは、マイカテープの平均厚さは120μm以上であることが好ましく、140μm以上であることがより好ましく、160μm以上であることがさらに好ましい。 When the mica tape is used as a dry mica tape, the average thickness of the mica tape is preferably 220 μm or less and more preferably 190 μm or less from the viewpoint of ease of winding the mica tape. From the viewpoint of electrical insulation, the average thickness of the mica tape is preferably 120 μm or more, more preferably 140 μm or more, and further preferably 160 μm or more.
 マイカ層の平均厚さは、特に制限されない。マイカテープの巻き付けやすさの観点からは、マイカ層の平均厚さは180μm以下であることが好ましく、170μm以下であることがより好ましい。電気絶縁性の観点からは、マイカ層の平均厚さは80μm以上であることが好ましく、90μm以上であることがより好ましい。 The average thickness of the mica layer is not particularly limited. From the viewpoint of ease of winding the mica tape, the average thickness of the mica layer is preferably 180 μm or less, and more preferably 170 μm or less. From the viewpoint of electrical insulation, the average thickness of the mica layer is preferably 80 μm or more, and more preferably 90 μm or more.
 裏打ち層の平均厚さは、特に制限されない。マイカテープの巻き付けやすさの観点からは、裏打ち層の平均厚さは100μm以下であることが好ましく、70μm以下であることがより好ましい。マイカテープの強度の観点からは、裏打ち層の平均厚さは10μm以上であることが好ましく、20μm以上であることがより好ましい。 The average thickness of the backing layer is not particularly limited. From the viewpoint of ease of winding the mica tape, the average thickness of the backing layer is preferably 100 μm or less, and more preferably 70 μm or less. From the viewpoint of the strength of the mica tape, the average thickness of the backing layer is preferably 10 μm or more, and more preferably 20 μm or more.
 本実施形態においてマイカテープの平均厚さ(マイカ層と裏打ち層の厚さの合計)は、マイクロメーター(MDC-SB、株式会社ミツトヨ)を用いてマイカテープの厚さを計10箇所で測定し、得られた測定値の算術平均値とする。 In this embodiment, the average thickness of the mica tape (the total thickness of the mica layer and the backing layer) was measured at a total of 10 locations using a micrometer (MDC-SB, Mitutoyo Corporation). The arithmetic average value of the measured values obtained is used.
 本実施形態においてマイカテープ中のマイカ層及び裏打ち層の厚さは、マイカテープの断面におけるマイカ層及び裏打ち層の厚さを実体顕微鏡(例えば、オリンパス株式会社、「BX51」)のミクロメーターにて3箇所観察し、その算術平均値とする。 In the present embodiment, the thickness of the mica layer and the backing layer in the mica tape is determined by measuring the thickness of the mica layer and the backing layer in the cross section of the mica tape with a micrometer of a stereomicroscope (for example, Olympus Corporation “BX51”). Observe 3 points and use the arithmetic average.
 マイカテープのマイカと裏打ち材を除く不揮発分における無機フィラーの含有率は、特に制限されない。例えば、マイカと裏打ち材を除く不揮発分の総体積の20体積%~50体積%であることが好ましく、25体積%~35体積%であることがより好ましい。無機フィラーの含有率が、マイカと裏打ち材を除く不揮発分の総体積の20体積%以上であると、マイカテープから形成される絶縁層の熱伝導率がより向上する傾向にある。無機フィラーの含有率が、マイカと裏打ち材を除く不揮発分の総体積の50体積%以下であると、無機フィラーの樹脂成分への充填が容易となる傾向にある。 The content of the inorganic filler in the nonvolatile content excluding mica and the backing material of the mica tape is not particularly limited. For example, it is preferably 20% by volume to 50% by volume and more preferably 25% by volume to 35% by volume of the total volume of the non-volatile content excluding mica and the backing material. When the content of the inorganic filler is 20% by volume or more of the total volume of nonvolatile components excluding mica and the backing material, the thermal conductivity of the insulating layer formed from the mica tape tends to be further improved. When the content of the inorganic filler is 50% by volume or less of the total volume of non-volatile components excluding mica and the backing material, filling of the inorganic filler into the resin component tends to be facilitated.
 マイカテープのマイカ層と裏打ち層の合計質量におけるマイカと裏打ち材を除く不揮発分の含有率は、特に制限されない。例えば、マイカ層と裏打ち層の合計質量の5質量%~45質量%であることが好ましく、10質量%~30質量%であることがより好ましく、15質量%~20質量%であることがさらに好ましい。マイカと裏打ち材を除く不揮発分の含有率が、マイカ層と裏打ち層の合計質量の5質量%以上であると、熱伝導率がより効果的に向上する傾向にある。マイカと裏打ち材を除く不揮発分の含有率が、マイカ層と裏打ち層の合計質量の45質量%以下であると、マイカテープの厚さの増大が抑えられる傾向にある。また、マイカテープの作製の際にワニスの含浸が進みやすい傾向にある。 The content of non-volatile components excluding mica and the backing material in the total mass of the mica layer and the backing layer of the mica tape is not particularly limited. For example, it is preferably 5% by mass to 45% by mass of the total mass of the mica layer and the backing layer, more preferably 10% by mass to 30% by mass, and further preferably 15% by mass to 20% by mass. preferable. When the content of nonvolatile components excluding mica and the backing material is 5% by mass or more of the total mass of the mica layer and the backing layer, the thermal conductivity tends to be more effectively improved. When the non-volatile content excluding mica and the backing material is 45% by mass or less of the total mass of the mica layer and the backing layer, an increase in the thickness of the mica tape tends to be suppressed. Further, varnish impregnation tends to proceed during the production of mica tape.
 マイカテープのマイカと裏打ち材を除く不揮発分における樹脂成分の含有率は、特に制限されない。例えば、マイカと裏打ち材を除く不揮発分の総質量の35質量%~70質量%であることが好ましく、50質量%~65質量%であることがより好ましく、55質量%~60質量%であることがさらに好ましい。樹脂成分の含有率が、マイカと裏打ち材を除く不揮発分の総質量の35質量%以上であると、裏打ち層とマイカ層との接着性が向上する傾向にある。樹脂成分の含有率が、マイカと裏打ち材を除く不揮発分の総質量の70質量%以下であると、熱伝導性が向上する傾向にある。 The content of the resin component in the nonvolatile content excluding mica and the backing material of the mica tape is not particularly limited. For example, it is preferably 35% by mass to 70% by mass, more preferably 50% by mass to 65% by mass, and more preferably 55% by mass to 60% by mass with respect to the total mass of the nonvolatile content excluding mica and the backing material. More preferably. When the content of the resin component is 35% by mass or more of the total mass of nonvolatile components excluding mica and the backing material, the adhesion between the backing layer and the mica layer tends to be improved. When the content of the resin component is 70% by mass or less of the total nonvolatile content excluding mica and the backing material, the thermal conductivity tends to be improved.
 マイカテープ中の樹脂成分の含有率は特に制限されず、マイカテープの用途等に応じて選択できる。例えば、樹脂成分の含有率は、マイカ層と裏打ち層の合計質量の40質量%以下であってよく、5質量%~33質量%であることが好ましい。 The content of the resin component in the mica tape is not particularly limited and can be selected according to the use of the mica tape. For example, the content of the resin component may be 40% by mass or less of the total mass of the mica layer and the backing layer, and is preferably 5% by mass to 33% by mass.
 マイカテープがプリプレグマイカテープとして使用される場合、樹脂成分の含有率は、例えば、マイカ層と裏打ち層の合計質量の25質量%~33質量%であることが好ましく、25質量%~30質量%であることがより好ましい。樹脂成分の含有率がマイカ層と裏打ち層の合計質量の25質量%以上であると、マイカテープからのマイカ及び必要に応じて含まれる無機フィラーの脱落(粉落ち)が抑制され、被絶縁体にマイカテープを巻き付ける際のマイカテープのひび割れ、切れ、皺等の発生が抑制される結果、絶縁信頼性の低下及び熱伝導率の低下が抑制される傾向にある。一方、樹脂成分の含有率がマイカ層と裏打ち層の合計質量の33質量%以下であると、マイカテープの厚さの増大が抑制されて良好な巻き付け性が維持される傾向にある。さらに、被絶縁体にマイカテープを巻き付けた状態で重なり合ったマイカテープ間の空隙を埋めるために必要な体積以上に樹脂成分が流出することが抑制される傾向にある。その結果、ボイドの発生が低減し、絶縁信頼性の低下が抑制される傾向にある。 When the mica tape is used as a prepreg mica tape, the content of the resin component is preferably 25% by mass to 33% by mass of the total mass of the mica layer and the backing layer, for example, 25% by mass to 30% by mass. It is more preferable that When the content of the resin component is 25% by mass or more of the total mass of the mica layer and the backing layer, the mica from the mica tape and, if necessary, the falling off (powder off) of the inorganic filler are suppressed, and the insulator As a result of the occurrence of cracks, cuts, wrinkles, and the like of the mica tape when the mica tape is wound around, the insulation reliability and the thermal conductivity tend to be suppressed. On the other hand, when the content of the resin component is 33% by mass or less of the total mass of the mica layer and the backing layer, an increase in the thickness of the mica tape is suppressed and good winding properties tend to be maintained. Furthermore, the resin component tends to be prevented from flowing out beyond the volume necessary to fill the gap between the overlapping mica tapes with the mica tape wound around the insulator. As a result, generation of voids is reduced, and a decrease in insulation reliability tends to be suppressed.
 マイカテープがドライマイカテープとして使用される場合、マイカテープ中の樹脂成分の含有率は、例えば、マイカ層と裏打ち層の合計質量の5質量%~15質量%であることが好ましく、5質量%~12質量%であることがより好ましく、8質量%~10質量%であることがさらに好ましい。樹脂成分の含有率がマイカ層と裏打ち層の合計質量の5質量%以上であると、裏打ち層とマイカ層との接着性が充分に確保される傾向にある。一方、樹脂成分の含有率がマイカ層と裏打ち層の合計質量の15質量%以下であると、高い熱伝導率が達成される傾向にある。 When the mica tape is used as a dry mica tape, the content of the resin component in the mica tape is preferably 5% by mass to 15% by mass of the total mass of the mica layer and the backing layer, for example, 5% by mass. More preferably, it is ˜12% by mass, and further preferably 8% by mass to 10% by mass. When the content of the resin component is 5% by mass or more of the total mass of the mica layer and the backing layer, the adhesion between the backing layer and the mica layer tends to be sufficiently secured. On the other hand, when the content of the resin component is 15% by mass or less of the total mass of the mica layer and the backing layer, high thermal conductivity tends to be achieved.
 本実施形態において、マイカテープ中の樹脂成分の含有率は、例えば、下記方法によって算出される。
 幅30mm及び長さ50mmの大きさに切断したマイカテープを電気炉にて600℃及び2時間の条件で加熱し、加熱前後の質量減少率(%)を下記式により求める。以上の工程を3回行い、得られた値の算術平均値として求める。
 樹脂成分の含有率={(加熱前の質量-加熱後の質量)/加熱前の質量}×100
In this embodiment, the content rate of the resin component in the mica tape is calculated by the following method, for example.
The mica tape cut to a size of 30 mm in width and 50 mm in length is heated in an electric furnace at 600 ° C. for 2 hours, and the mass reduction rate (%) before and after heating is obtained by the following formula. The above process is performed three times, and an arithmetic average value of the obtained values is obtained.
Content of resin component = {(mass before heating−mass after heating) / mass before heating} × 100
 マイカテープがドライマイカテープとして使用される場合、マイカ層中の樹脂成分の含有率は、マイカ層の総質量の15質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることがさらに好ましく、0質量%であることが特に好ましい。 When the mica tape is used as a dry mica tape, the content of the resin component in the mica layer is preferably 15% by mass or less of the total mass of the mica layer, and more preferably 10% by mass or less. More preferably, it is 5 mass% or less, and it is especially preferable that it is 0 mass%.
 電気絶縁性の観点からは、マイカ層は、マイカ以外の無機フィラーを実質的に含まないことが好ましい。具体的には、マイカ層中のマイカ以外の無機フィラーの含有率は、マイカ層の総質量の3質量%以下であることが好ましく、2質量%以下であることがより好ましく、1質量%以下であることがさらに好ましく、0質量%であることが特に好ましい。 From the viewpoint of electrical insulation, it is preferable that the mica layer contains substantially no inorganic filler other than mica. Specifically, the content of the inorganic filler other than mica in the mica layer is preferably 3% by mass or less, more preferably 2% by mass or less, and more preferably 1% by mass or less of the total mass of the mica layer. More preferably, it is particularly preferably 0% by mass.
 熱伝導率の低下を抑制する観点からは、マイカ層は、フィブリットを実質的に含まないことが好ましい。具体的には、マイカ層中のフィブリットの含有率は、マイカ層の総質量の1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましく、0質量%であることが特に好ましい。本明細書においてフィブリットとは、マイカ層が自立可能になるように混合される繊維状の物質であり、ポリアミド、ポリイミド等の有機繊維、ガラスファイバー等の無機繊維などが挙げられる。 From the viewpoint of suppressing a decrease in thermal conductivity, it is preferable that the mica layer does not substantially contain fibrites. Specifically, the content of fibrils in the mica layer is preferably 1% by mass or less of the total mass of the mica layer, more preferably 0.5% by mass or less, and 0.1% by mass. The following is more preferable, and 0% by mass is particularly preferable. In this specification, the fibrit is a fibrous substance mixed so that the mica layer can stand on its own, and examples thereof include organic fibers such as polyamide and polyimide, and inorganic fibers such as glass fibers.
 本実施形態のマイカテープは、コイル等の被絶縁物の絶縁層の形成に用いることができる。 The mica tape of this embodiment can be used for forming an insulating layer of an insulator such as a coil.
<マイカテープの製造方法>
 本実施形態のマイカテープは、いかなる工程を経て製造されたものであってもよく、従来から公知の製造方法を適用することができる。
<Mica tape manufacturing method>
The mica tape of this embodiment may be manufactured through any process, and conventionally known manufacturing methods can be applied.
 マイカテープの製造方法の一例としては、裏打ち材をマイカペーパの上に配置して積層体を準備する工程と、無機フィラーと、樹脂成分と、を含む組成物(ワニス)を、前記積層体の前記裏打ち材側に付与する工程と、を含む方法が挙げられる。 As an example of a method for producing a mica tape, a step of preparing a laminate by placing a backing material on mica paper, a composition (varnish) containing an inorganic filler and a resin component, the composition of the laminate And a step of applying to the backing material side.
 上記方法に用いられるマイカ、裏打ち材、無機フィラー及び樹脂成分、並びに製造されるマイカテープの詳細及び好ましい態様は、上述したとおりである。マイカペーパは、マイカ片が集合して形成されたシート状の物体である。 The details and preferred embodiments of the mica, backing material, inorganic filler and resin component used in the above method, and the produced mica tape are as described above. The mica paper is a sheet-like object formed by collecting mica pieces.
 必要に応じ、組成物は溶剤を含んでもよい。溶剤を含むことで組成物の粘度が低下し、無機フィラーの混合が容易になる傾向にある。溶剤の種類は特に制限されず、通常用いられる有機溶剤から選択できる。具体的には、メチルエチルケトン、トルエン、メタノール、シクロヘキサノン等が挙げられる。溶剤は1種のみを用いても、2種以上を併用してもよい。 If necessary, the composition may contain a solvent. By including the solvent, the viscosity of the composition is lowered, and the inorganic filler tends to be easily mixed. The type of the solvent is not particularly limited, and can be selected from commonly used organic solvents. Specific examples include methyl ethyl ketone, toluene, methanol, cyclohexanone and the like. A solvent may use only 1 type or may use 2 or more types together.
 組成物中の無機フィラーの含有率は、特に限定されない。例えば、組成物の不揮発分(溶剤を除く成分)全体の20体積%~50体積%であることが好ましく、25体積%~35体積%であることがより好ましい。無機フィラーの含有率が組成物の不揮発分全体の20体積%以上であると、マイカテープを用いて形成される絶縁層の熱伝導率がより向上する傾向にある。無機フィラーの含有率が組成物の不揮発分全体の50体積%以下であると、無機フィラーと樹脂成分の混合性が向上する傾向にある。 The content of the inorganic filler in the composition is not particularly limited. For example, the content is preferably 20% by volume to 50% by volume, and more preferably 25% by volume to 35% by volume, based on the entire nonvolatile content (components excluding the solvent) of the composition. When the content of the inorganic filler is 20% by volume or more of the entire nonvolatile content of the composition, the thermal conductivity of the insulating layer formed using mica tape tends to be further improved. When the content of the inorganic filler is 50% by volume or less of the entire nonvolatile content of the composition, the mixing property of the inorganic filler and the resin component tends to be improved.
 組成物の塗布は、裏打ち材に塗布した組成物が裏打ち材の他方の面側ににじみ出てマイカペーパの全体又は一部に浸透するように行うことが好ましい。この場合、フィブリット混抄のマイカペーパでなくても、マイカペーパが自立可能となりやすく、崩れにくい。フィブリットを含まないマイカペーパを用いることで、電気絶縁性と熱伝導率が向上する傾向にある。 Application of the composition is preferably carried out so that the composition applied to the backing material oozes out to the other side of the backing material and penetrates all or part of the mica paper. In this case, even if it is not a fibrotic mixed paper, the mica paper can easily become independent and is not easily collapsed. By using mica paper that does not contain fibrites, electrical insulation and thermal conductivity tend to be improved.
<マイカテープの硬化物>
 本実施形態のマイカテープの硬化物は、上述したマイカテープを硬化して得られる。より具体的には、マイカテープに含まれる樹脂成分を硬化して得られる。硬化の方法は特に制限されず、通常の方法から選択できる。樹脂成分は、被絶縁体に巻き付ける前のマイカテープにあらかじめ含まれているものであっても、被絶縁体にマイカテープを巻きつけた後に含浸されるものであってもよい。
<Hardened mica tape>
The cured product of the mica tape of this embodiment is obtained by curing the mica tape described above. More specifically, it is obtained by curing a resin component contained in a mica tape. The curing method is not particularly limited, and can be selected from ordinary methods. The resin component may be contained in advance in the mica tape before being wound around the insulator, or may be impregnated after the mica tape is wound around the insulator.
<絶縁物>
 本実施形態の絶縁物は、被絶縁体と、前記被絶縁体の表面の少なくとも一部に配置される本実施形態のマイカテープの硬化物である絶縁層と、を有する。本実施形態のマイカテープを用いて絶縁層を形成する方法は特に制限されず、従来から公知の製造方法を適用することができる。例えば、被絶縁体にマイカテープを巻き付けた後にマイカテープを加圧しながら加熱(ヒートプレス)して、あらかじめマイカテープに含まれている樹脂成分をマイカテープの外に流出させて重なり合うマイカテープ間を埋めるようにし、これを硬化させて絶縁層を形成する方法(プリプレグマイカテープの場合)、被絶縁体にマイカテープを巻きつけた後に真空加圧含浸法(Vacuum Pressure Impregnation、VPI)にて樹脂成分をマイカテープに含浸し、これを硬化させて絶縁層を形成する方法(ドライマイカテープの場合)などが挙げられる。
<Insulator>
The insulator of this embodiment includes an insulator and an insulating layer that is a cured product of the mica tape of this embodiment that is disposed on at least a part of the surface of the insulator. The method for forming the insulating layer using the mica tape of the present embodiment is not particularly limited, and conventionally known production methods can be applied. For example, after winding mica tape around an insulator, heat it while applying pressure to the mica tape (heat press), and let the resin component contained in the mica tape flow out of the mica tape in advance and overlap between the overlapping mica tapes. The resin component is formed by filling and curing this to form an insulating layer (in the case of prepreg mica tape), after winding mica tape around the insulator, and by vacuum pressure impregnation (Vacuum Pressure Impression, VPI). A method of impregnating a mica tape and curing the same to form an insulating layer (in the case of dry mica tape).
 絶縁層の形成を真空加圧含浸法により行う場合、マイカテープに含浸させる樹脂成分は特に制限されない。例えば、ビスフェノールA型エポキシ樹脂等のエポキシ樹脂と、脂環式酸無水物等の硬化剤を含むものが挙げられる。真空加圧含浸法における樹脂成分の含浸方法、含浸後の硬化条件、エポキシ樹脂と硬化剤との比率等は、従来から公知の方法、公知の条件等を参照できる。 When the insulating layer is formed by the vacuum pressure impregnation method, the resin component impregnated into the mica tape is not particularly limited. For example, what contains epoxy resins, such as a bisphenol A type epoxy resin, and hardening | curing agents, such as an alicyclic acid anhydride, is mentioned. For the impregnation method of the resin component in the vacuum pressure impregnation method, the curing conditions after the impregnation, the ratio of the epoxy resin and the curing agent, etc., conventionally known methods, known conditions and the like can be referred to.
 本実施形態の絶縁物に適用されうる被絶縁体としては、特に限定されるものではなく、コイル、棒状の銅、板状の銅等が挙げられる。 The insulator to be applied to the insulator according to the present embodiment is not particularly limited, and examples thereof include a coil, a bar-shaped copper, and a plate-shaped copper.
 本実施形態のマイカテープを用いることで、高熱伝導性を示す絶縁層を形成することができる。従って、本実施形態の絶縁物がコイルである場合、当該コイルを冷却する際、従来では水直接冷却方式を採用されていた規模のコイルに対しても、水素冷却方式又は空冷方式を採用することができるようになり、コイルの構造を簡素化することが可能となる。 By using the mica tape of this embodiment, an insulating layer exhibiting high thermal conductivity can be formed. Therefore, when the insulator of this embodiment is a coil, when cooling the coil, a hydrogen cooling method or an air cooling method should be adopted even for a coil of a scale that conventionally employs a direct water cooling method. As a result, the coil structure can be simplified.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
<実施例1>
(1)マイカペーパの作製
 未焼成硬質マイカを水中に分散してマイカ粒子とし、抄紙機にて抄造して、マイカ量が140g/mのマイカペーパを作製した。
 尚、マイカペーパの作製に用いたマイカ片において、JIS標準篩を用いて篩い分けしたときの粒子径が2.8mm以上であるマイカ片の割合(質量%)は5%であり、粒子径が0.5mm以上であるマイカ片の割合(質量%)は80%であった。
<Example 1>
(1) Production of mica paper Unfired hard mica was dispersed in water to form mica particles, and the mica was made with a paper machine to produce mica paper having a mica amount of 140 g / m 2 .
In the mica pieces used for the preparation of mica paper, the ratio (mass%) of mica pieces having a particle diameter of 2.8 mm or more when sieved using a JIS standard sieve is 5%, and the particle diameter is 0. The ratio (mass%) of mica pieces having a diameter of 5 mm or more was 80%.
(2)窒化ホウ素含有ワニスの調製
 樹脂成分としてビスフェノールA型エポキシ樹脂(三菱化学株式会社、「エピコート828」)と、硬化触媒として亜鉛(II)アセチルアセトナート(純正化学株式会社)と、溶剤としてメチルエチルケトン(和光純薬工業株式会社)とを混合した。その後、粒度分布ピークが2μm~3μmの範囲と9μm~10μmの範囲にそれぞれ存在する窒化ホウ素(電気化学工業株式会社)を加え、卓上撹拌機(プライミクス株式会社、「ホモディスパー2.5型」)を用いて3000(回転/分)rpmで2分間の撹拌を行って、無機フィラーとして窒化ホウ素を含む窒化ホウ素含有ワニスを調製した。
(2) Preparation of boron nitride-containing varnish Bisphenol A type epoxy resin (Mitsubishi Chemical Corporation, “Epicoat 828”) as a resin component, zinc (II) acetylacetonate (Pure Chemical Co., Ltd.) as a curing catalyst, and solvent Methyl ethyl ketone (Wako Pure Chemical Industries, Ltd.) was mixed. Then, boron nitride (Electrochemical Industry Co., Ltd.) with particle size distribution peaks in the range of 2 μm to 3 μm and 9 μm to 10 μm was added, and a table stirrer (Primics Co., Ltd., “Homodisper 2.5”) Was used for 2 minutes at 3000 (rotation / minute) rpm to prepare a boron nitride-containing varnish containing boron nitride as an inorganic filler.
 尚、窒化ホウ素の粒度分布は、日機装株式会社「マイクロトラック MT3000II」)を用いて、レーザー回折法で測定した。具体的には、50mlの純水に、窒化ホウ素を10mg添加し、10分間振とうさせ分散した。20mlをセルに注入して25℃で測定した。尚、水の屈折率を1.333、窒化ホウ素の屈折率を2.17とした。 The particle size distribution of boron nitride was measured by a laser diffraction method using Nikkiso Co., Ltd. “Microtrack MT3000II”. Specifically, 10 mg of boron nitride was added to 50 ml of pure water and dispersed by shaking for 10 minutes. 20 ml was injected into the cell and measured at 25 ° C. The refractive index of water was 1.333, and the refractive index of boron nitride was 2.17.
 窒化ホウ素含有ワニスにおけるエポキシ樹脂と硬化触媒との質量基準の比率(エポキシ樹脂:硬化触媒)は、97:3であった。
 窒化ホウ素含有ワニスの全不揮発分(溶剤以外の成分)における窒化ホウ素の含有率は、25体積%であった。樹脂成分の含有率は、窒化ホウ素含有ワニスの全不揮発分の62質量%であった。
The ratio by mass of the epoxy resin and the curing catalyst in the boron nitride-containing varnish (epoxy resin: curing catalyst) was 97: 3.
The boron nitride content in the total nonvolatile content (components other than the solvent) of the boron nitride-containing varnish was 25% by volume. The content of the resin component was 62% by mass of the total nonvolatile content of the boron nitride-containing varnish.
(3)マイカテープの作製
 マイカペーパの上にガラスクロス(株式会社双洋、「WEA 03G 103」)を重ね、ガラスクロスの上に調製した窒化ホウ素含有ワニスをロールコーターを用いて塗布した。塗布は、ガラスクロスの下のマイカペーパにも樹脂成分が浸透するように実施した。乾燥後、マイカペーパとガラスクロスの積層体を幅が30mmとなるように切断して、マイカ層と裏打ち層とを有するマイカテープを作製した。得られたマイカテープの平均厚さを表1に示す。なお、マイカテープの平均厚さは、マイクロメーター(株式会社ミツトヨ、「MDC-SB」)を用いて10点の厚さを測定し、その算術平均値として求めた。
(3) Production of mica tape A glass cloth (Soyo Corporation, “WEA 03G 103”) was laminated on mica paper, and the boron nitride-containing varnish prepared on the glass cloth was applied using a roll coater. The application was performed so that the resin component penetrated into the mica paper under the glass cloth. After drying, the laminate of mica paper and glass cloth was cut to a width of 30 mm to produce a mica tape having a mica layer and a backing layer. Table 1 shows the average thickness of the obtained mica tape. The average thickness of the mica tape was determined by measuring the thickness at 10 points using a micrometer (Mitutoyo Corporation, “MDC-SB”) and calculating the arithmetic average value.
(4)表面粗さの測定
 作製したマイカテープの裏打ち材層側の表面粗さを、共焦点レーザー顕微鏡(島津製作所製SFT-4500)を用いて測定した。得られた表面粗さ曲線から、輪郭曲線フィルタのカットオフ値(λc)を用いてうねり曲線の影響を排除し表面粗さを測定した(JIS B 0632:2001/ISO11562:1996)。ここで、カットオフ値(λc)を250μmとした。得られた最大高さ粗さ(Rz)(ISO4287:1997)を表1に示す。
(4) Measurement of surface roughness The surface roughness of the produced mica tape on the backing material layer side was measured using a confocal laser microscope (SFT-4500, manufactured by Shimadzu Corporation). From the obtained surface roughness curve, the influence of the waviness curve was eliminated using the cut-off value (λc) of the contour curve filter, and the surface roughness was measured (JIS B 0632: 2001 / ISO11562: 1996). Here, the cut-off value (λc) was 250 μm. The obtained maximum height roughness (Rz) (ISO 4287: 1997) is shown in Table 1.
(5)評価用積層体の作製
 作製したマイカテープを25層に重ね、含浸ワニス中に浸漬して、真空含浸法により含浸ワニスをマイカテープに注入した。このとき、含浸ワニス中への窒化ホウ素の流出の有無を目視で確認したところ、視認可能な流出は生じなかった。含浸後、130℃で2時間、次いで190℃で2時間のヒートプレスを行って含浸ワニスを硬化させ、評価用積層体を作製した。含浸ワニスとしては、ビスフェノールA型エポキシ樹脂(三菱化学株式会社、「エピコート828」)と、硬化剤(日立化成株式会社、「HN-5500」、メチルヘキサヒドロ無水フタル酸)とを質量基準で1:1となるように混合したものを用いた。
(5) Production of laminate for evaluation The prepared mica tape was layered on 25 layers, immersed in an impregnating varnish, and the impregnating varnish was injected into the mica tape by a vacuum impregnation method. At this time, when the presence or absence of boron nitride outflow into the impregnating varnish was visually confirmed, no visible outflow occurred. After impregnation, heat impregnation was performed at 130 ° C. for 2 hours and then at 190 ° C. for 2 hours to cure the impregnated varnish, and an evaluation laminate was produced. As the impregnating varnish, bisphenol A type epoxy resin (Mitsubishi Chemical Corporation, “Epicoat 828”) and a curing agent (Hitachi Chemical Co., Ltd., “HN-5500”, methylhexahydrophthalic anhydride) are 1 on a mass basis. A mixture of 1 was used.
(6) 熱伝導率の測定
 作製した評価用積層体の熱伝導率を、熱伝導率測定装置(英弘精機株式会社、「HC-110」)を用いて測定した。結果は0.40W/(m・K)であった。
(6) Measurement of thermal conductivity The thermal conductivity of the prepared laminate for evaluation was measured using a thermal conductivity measuring device (Hideki Seiki Co., Ltd., “HC-110”). The result was 0.40 W / (m · K).
(7)窒化ホウ素量の測定
 作製した積層体中の窒化ホウ素量は、下記方法によって算出した。
 積層体の作製に用いたマイカテープを構成するマイカペーパーから100cmの試験片を3枚切り出して秤量し、それぞれの質量から1m当たりの質量を求め、その算術平均値をマイカの1mあたり質量(g/m)とした。同様に、積層体の作製に用いたマイカテープを構成する裏打ち材(ガラスクロス)から100cm)の試験片を3枚切り出して秤量し、それぞれの質量から1m当たりの質量を求め、その算術平均値を裏打ち材の1mあたり質量(g/m)とした。作製した積層体から30mm角の試験片を3個切り出し、電気炉にて600℃及び2時間の条件で加熱して、無機物(マイカ、ガラスクロス、窒化ホウ素)以外の成分を除去した。加熱後の質量をマイカテープの積層数で除することにより、それぞれの試験片の単層あたりの無機物の質量を求め、その算術平均値を積層体の単層の1mあたりの無機物の質量(g/m)とした。得られた積層体の単層の1mあたりの無機物の質量(g/m)から、マイカの1mあたり質量(g/m)と、裏打ち材の1mあたり質量(g/m)とを差し引いて得られた値を、窒化ホウ素の1mあたり質量(g/m)とした。結果を表1に示す。
(7) Measurement of amount of boron nitride The amount of boron nitride in the produced laminate was calculated by the following method.
Three 100 cm 2 test pieces were cut out from the mica paper constituting the mica tape used for the production of the laminate and weighed, and the mass per 1 m 2 was obtained from each mass, and the arithmetic average value was calculated per 1 m 2 of mica. It was set as mass (g / m < 2 >). Similarly, three test pieces of 100 cm 2 ) from the backing material (glass cloth) constituting the mica tape used for the production of the laminate were cut out and weighed, and the mass per 1 m 2 was determined from the respective masses. The average value was defined as mass (g / m 2 ) per 1 m 2 of the backing material. Three 30 mm square test pieces were cut out from the produced laminate and heated in an electric furnace at 600 ° C. for 2 hours to remove components other than inorganic substances (mica, glass cloth, boron nitride). By dividing the mass after heating by the number of laminated mica tapes, the mass of the inorganic substance per single layer of each test piece was determined, and the arithmetic average value was calculated as the mass of the inorganic substance per 1 m 2 of the monolayer of the laminate ( g / m 2 ). From the resulting inorganic material mass per 1 m 2 of a single layer of the laminate (g / m 2), and mica 1 m 2 per mass (g / m 2), the mass per 1 m 2 of the backing material (g / m 2 The value obtained by subtracting) was defined as the mass (g / m 2 ) per 1 m 2 of boron nitride. The results are shown in Table 1.
<実施例2>
 窒化ホウ素含有ワニスを調製する際の撹拌を3000回転/分(rpm)で3分間実施したこと以外は実施例1と同様にして、マイカテープ及び評価用積層体を作製し、評価を行った。結果を表1に示す。
 含浸ワニス中への窒化ホウ素の流出の有無を目視で確認したところ、視認可能な流出は生じなかった。
<Example 2>
A mica tape and a laminate for evaluation were prepared and evaluated in the same manner as in Example 1 except that the stirring for preparing the boron nitride-containing varnish was performed at 3000 rpm for 3 minutes. The results are shown in Table 1.
When the presence or absence of outflow of boron nitride into the impregnating varnish was visually confirmed, no visible outflow occurred.
<実施例3>
 窒化ホウ素含有ワニスを調製する際の撹拌を6000回転/分(rpm)で10分間実施したこと以外は実施例1と同様にして、マイカテープ及び評価用積層体を作製し、評価を行った。結果を表1に示す。
 含浸ワニス中への窒化ホウ素の流出の有無を目視で確認したところ、視認可能な流出は生じなかった。
<Example 3>
A mica tape and a laminate for evaluation were prepared and evaluated in the same manner as in Example 1 except that stirring at the time of preparing the boron nitride-containing varnish was performed at 6000 rpm for 10 minutes. The results are shown in Table 1.
When the presence or absence of outflow of boron nitride into the impregnating varnish was visually confirmed, no visible outflow occurred.
<実施例4>
 窒化ホウ素含有ワニスを調製する際の撹拌を6000回転/分(rpm)で12分間実施したこと以外は実施例1と同様にして、マイカテープ及び評価用積層体を作製し、評価を行った。結果を表1に示す。
 含浸ワニス中への窒化ホウ素の流出の有無を目視で確認したところ、視認可能な流出は生じなかった。
<Example 4>
A mica tape and a laminate for evaluation were produced and evaluated in the same manner as in Example 1 except that stirring for preparing the boron nitride-containing varnish was performed at 6000 rpm for 12 minutes. The results are shown in Table 1.
When the presence or absence of outflow of boron nitride into the impregnating varnish was visually confirmed, no visible outflow occurred.
<比較例1>
 窒化ホウ素含有ワニスの調製に用いた窒化ホウ素として粒度分布ピークが6μmに窒化ホウ素(電気化学工業株式会社)を用いたこと以外は実施例1と同様にして、マイカテープ及び評価用積層体を作製し、評価を行った。結果を表1に示す。
 窒化ホウ素含有ワニスの全不揮発分における窒化ホウ素の含有率は、32体積%であった。樹脂成分の含有率は、ワニスの全不揮発分の56質量%であった。
 含浸ワニス中への窒化ホウ素の流出の有無を目視で確認したところ、含浸ワニスが白濁し、窒化ホウ素の流出が生じていた。また、積層体中の窒化ホウ素量が実施例1より少ないことからも、含浸ワニスへの窒化ホウ素の流出量が実施例1より多いと考えられる。
<Comparative Example 1>
A mica tape and a laminate for evaluation were produced in the same manner as in Example 1 except that boron nitride (Electrochemical Industry Co., Ltd.) was used with a particle size distribution peak of 6 μm as boron nitride used for the preparation of the boron nitride-containing varnish. And evaluated. The results are shown in Table 1.
The boron nitride content in the total nonvolatile content of the boron nitride-containing varnish was 32% by volume. The content of the resin component was 56% by mass of the total nonvolatile content of the varnish.
When the presence or absence of outflow of boron nitride into the impregnated varnish was visually confirmed, the impregnated varnish became cloudy and outflow of boron nitride occurred. Further, since the amount of boron nitride in the laminate is smaller than that in Example 1, it is considered that the amount of boron nitride flowing into the impregnated varnish is larger than that in Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、裏打ち層の最大高さ粗さが10μm以下である実施例1~実施例4のマイカテープは、裏打ち層の最大高さ粗さが10μmを超える比較例1のマイカテープに比べ、熱伝導性が高かった。この理由としては、実施例1~実施例4では、積層体を含浸樹脂ワニス中に浸漬した際に無機フィラーの流出が抑えられていたためであると考えられる。また、含浸樹脂ワニスへの無機フィラーの流出を抑制することができるため、含浸樹脂ワニスの品質の低下を防止することができると考えられる。 As shown in Table 1, the mica tapes of Examples 1 to 4 in which the maximum height roughness of the backing layer is 10 μm or less are the mica tapes of Comparative Example 1 in which the maximum height roughness of the backing layer exceeds 10 μm. Compared with, heat conductivity was high. The reason for this is thought to be that in Examples 1 to 4, the outflow of the inorganic filler was suppressed when the laminate was immersed in the impregnated resin varnish. Moreover, since the outflow of the inorganic filler to the impregnating resin varnish can be suppressed, it is considered that deterioration of the quality of the impregnating resin varnish can be prevented.
1 裏打ち材
2 マイカ
3 マイカ層
4 樹脂成分
5 無機フィラー
6 裏打ち層
10 繊維
DESCRIPTION OF SYMBOLS 1 Backing material 2 Mica 3 Mica layer 4 Resin component 5 Inorganic filler 6 Backing layer 10 Fiber

Claims (16)

  1.  コイル導体と、前記コイル導体の外周に配置された絶縁層と、を有し、前記絶縁層はマイカテープを含み、前記マイカテープは、マイカを含むマイカ層と、裏打ち材及び無機フィラーを含む裏打ち層と、を有し、前記裏打ち層の表面の表面粗さを測定して得られる最大高さ粗さが10μm以下である、回転電機用コイル。 A coil conductor; and an insulating layer disposed on an outer periphery of the coil conductor, wherein the insulating layer includes a mica tape, and the mica tape includes a mica layer including mica, and a backing including a backing material and an inorganic filler. A coil for rotating electrical machines having a maximum height roughness of 10 μm or less obtained by measuring the surface roughness of the surface of the backing layer.
  2.  前記無機フィラーの体積平均粒子径が1μm~40μmである、請求項1に記載の回転電機用コイル。 2. The coil for a rotating electrical machine according to claim 1, wherein the inorganic filler has a volume average particle diameter of 1 μm to 40 μm.
  3.  前記マイカテープにおける前記無機フィラーの含有率が、前記マイカと前記裏打ち材を除く不揮発分の総体積の20体積%~50体積%である、請求項1又は請求項2に記載の回転電機用コイル。 The coil for a rotating electrical machine according to claim 1 or 2, wherein a content of the inorganic filler in the mica tape is 20% by volume to 50% by volume of a total volume of nonvolatile components excluding the mica and the backing material. .
  4.  前記マイカテープにおける前記マイカと前記裏打ち材を除く不揮発分の含有率が、前記マイカ層と前記裏打ち層の合計質量の5質量%~45質量%である、請求項1~請求項3のいずれか1項に記載の回転電機用コイル。 The content of non-volatile components excluding the mica and the backing material in the mica tape is 5% by mass to 45% by mass of the total mass of the mica layer and the backing layer. The coil for rotating electrical machines according to item 1.
  5.  前記マイカテープが樹脂成分を含み、前記樹脂成分の含有率が、前記マイカと前記裏打ち材を除く不揮発分の総質量の35質量%~70質量%である、請求項1~請求項4のいずれか1項に記載の回転電機用コイル。 5. The method according to claim 1, wherein the mica tape includes a resin component, and the content of the resin component is 35% by mass to 70% by mass with respect to a total mass of nonvolatile components excluding the mica and the backing material. The coil for rotating electrical machines according to claim 1.
  6.  前記マイカテープが樹脂成分を含み、前記樹脂成分の含有率が、前記マイカ層と前記裏打ち層の合計質量の40質量%以下である、請求項1~請求項5のいずれか1項に記載の回転電機用コイル。 The mica tape includes a resin component, and the content of the resin component is 40% by mass or less of the total mass of the mica layer and the backing layer. Coil for rotating electrical machines.
  7.  前記コイル導体の外周に前記マイカテープを巻き付ける工程と、
     前記コイル導体の外周に巻き付けられた前記マイカテープから絶縁層を形成する工程と、を有する、請求項1~請求項6のいずれか1項に記載の回転電機用コイルの製造方法。
    Winding the mica tape around the outer circumference of the coil conductor;
    The method for manufacturing a coil for a rotating electrical machine according to any one of claims 1 to 6, further comprising: forming an insulating layer from the mica tape wound around the outer periphery of the coil conductor.
  8.  マイカを含むマイカ層と、裏打ち材及び無機フィラーを含む裏打ち層と、を有し、前記裏打ち層の表面の表面粗さを測定して得られる最大高さ粗さが10μm以下である、マイカテープ。 A mica tape having a mica layer containing mica and a backing layer containing a backing material and an inorganic filler, and having a maximum height roughness of 10 μm or less obtained by measuring the surface roughness of the surface of the backing layer .
  9.  前記無機フィラーの体積平均粒子径が1μm~40μmである、請求項8に記載のマイカテープ。 The mica tape according to claim 8, wherein the inorganic filler has a volume average particle diameter of 1 μm to 40 μm.
  10.  前記無機フィラーの含有率が、前記マイカと前記裏打ち材を除く不揮発分の総体積の20体積%~50体積%である、請求項8又は請求項9に記載のマイカテープ。 10. The mica tape according to claim 8 or 9, wherein the content of the inorganic filler is 20% by volume to 50% by volume of the total volume of non-volatile components excluding the mica and the backing material.
  11.  前記マイカと前記裏打ち材を除く不揮発分の含有率が、前記マイカ層と前記裏打ち層の合計質量の5質量%~45質量%である、請求項8~請求項10のいずれか1項に記載のマイカテープ。 The content rate of non-volatile components excluding the mica and the backing material is 5 mass% to 45 mass% of the total mass of the mica layer and the backing layer, according to any one of claims 8 to 10. Mica tape.
  12.  ドライマイカテープとして使用される、請求項8~請求項11のいずれか1項に記載のマイカテープ。 The mica tape according to any one of claims 8 to 11, which is used as a dry mica tape.
  13.  樹脂成分を含み、前記樹脂成分の含有率が、前記マイカと前記裏打ち材を除く不揮発分の総質量の35質量%~70質量%である、請求項8~請求項12のいずれか1項に記載のマイカテープ。 The resin component is contained, and the content of the resin component is 35% by mass to 70% by mass of the total mass of nonvolatile components excluding the mica and the backing material. The listed mica tape.
  14.  樹脂成分を含み、前記樹脂成分の含有率が、前記マイカ層と前記裏打ち層の合計質量の40質量%以下である、請求項8~請求項13のいずれか1項に記載のマイカテープ。 The mica tape according to any one of claims 8 to 13, comprising a resin component, wherein a content ratio of the resin component is 40% by mass or less of a total mass of the mica layer and the backing layer.
  15.  前記樹脂成分を硬化して得られる、請求項13又は請求項14に記載のマイカテープの硬化物。 The cured product of mica tape according to claim 13 or 14, which is obtained by curing the resin component.
  16.  被絶縁体と、前記被絶縁体の表面の少なくとも一部に配置される請求項15に記載のマイカテープの硬化物である絶縁層と、を有する絶縁物。 An insulator having an insulator and an insulating layer that is a cured product of the mica tape according to claim 15 disposed on at least a part of a surface of the insulator.
PCT/JP2017/013848 2017-03-31 2017-03-31 Coil for dynamo-electric machines, method for producing coil for dynamo-electric machines, mica tape, cured product of mica tape and insulated material WO2018179440A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013848 WO2018179440A1 (en) 2017-03-31 2017-03-31 Coil for dynamo-electric machines, method for producing coil for dynamo-electric machines, mica tape, cured product of mica tape and insulated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013848 WO2018179440A1 (en) 2017-03-31 2017-03-31 Coil for dynamo-electric machines, method for producing coil for dynamo-electric machines, mica tape, cured product of mica tape and insulated material

Publications (1)

Publication Number Publication Date
WO2018179440A1 true WO2018179440A1 (en) 2018-10-04

Family

ID=63674903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013848 WO2018179440A1 (en) 2017-03-31 2017-03-31 Coil for dynamo-electric machines, method for producing coil for dynamo-electric machines, mica tape, cured product of mica tape and insulated material

Country Status (1)

Country Link
WO (1) WO2018179440A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244861A (en) * 2011-05-24 2012-12-10 Mitsubishi Electric Corp Insulation coil
WO2015053374A1 (en) * 2013-10-09 2015-04-16 日立化成株式会社 Prepreg mica tape and coil using same
JP2016165808A (en) * 2015-03-09 2016-09-15 日立化成株式会社 Prepreg mica tape

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244861A (en) * 2011-05-24 2012-12-10 Mitsubishi Electric Corp Insulation coil
WO2015053374A1 (en) * 2013-10-09 2015-04-16 日立化成株式会社 Prepreg mica tape and coil using same
JP2016165808A (en) * 2015-03-09 2016-09-15 日立化成株式会社 Prepreg mica tape

Similar Documents

Publication Publication Date Title
JP6520966B2 (en) Prepreg mica tape and coil using the same
JP6889153B2 (en) Coil for rotary electric machine, manufacturing method of coil for rotary electric machine, mica tape, cured product of mica tape and insulator
US9925744B2 (en) Insulating tape, method for producing same, and stator coil
WO2017014202A1 (en) Coil for rotary electric machine, method for manufacturing coil for rotary electric machine, and mica tape
WO2016104141A1 (en) Insulating tape and method for manufacturing same, stator coil and method for manufacturing same, and generator
WO2018003950A1 (en) Coil for rotary electric machine, method for producing coil for rotary electric machine, mica tape, method for producing mica tape, cured product of mica tape, and insulating article
JP2010158113A (en) Electrical insulating member, stator coil for rotating electrical machine, and rotating electrical machine
JP2019122099A (en) Coil for rotary electric machine, method for manufacturing coil for rotary electric machine, mica tape, hardened material and insulator of mica tape
JP3879054B2 (en) Mica base sheet and insulation coil
JP2012244861A (en) Insulation coil
US20140178693A1 (en) High thermal conductivity composite for electric insulation, and articles thereof
JP6891887B2 (en) Coil for rotary electric machine, manufacturing method of coil for rotary electric machine, mica tape, cured product of mica tape and insulator
WO2018179440A1 (en) Coil for dynamo-electric machines, method for producing coil for dynamo-electric machines, mica tape, cured product of mica tape and insulated material
WO2018179439A1 (en) Coil for rotary electric device, method for producing coil for rotary electric device, mica tape, cured product of mica tape, and insulating article
JP5253832B2 (en) Insulation sheet, stator coil and rotating electric machine
JP2010166809A (en) Rotating electrical machine
JP2019217668A (en) Dry mica tape, insulator, coil for rotary electric machine, and method of manufacturing coil for rotary electric machine
JP2018170252A (en) Coil for rotary electric machines, prepreg mica tape, method for producing prepreg mica tape, cured product of prepreg mica tape, article with insulating layer, and method for producing coil for rotary electric machines
WO2018179437A1 (en) Coil for rotary electric device, method for producing coil for rotary electric device, dry mica tape, and insulating article
JP2018026282A (en) Mica tape, method for producing mica tape, insulator, flow resistance calculation method, flow resistance calculation device, and flow resistance calculation program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP