WO2016104141A1 - Insulating tape and method for manufacturing same, stator coil and method for manufacturing same, and generator - Google Patents

Insulating tape and method for manufacturing same, stator coil and method for manufacturing same, and generator Download PDF

Info

Publication number
WO2016104141A1
WO2016104141A1 PCT/JP2015/084470 JP2015084470W WO2016104141A1 WO 2016104141 A1 WO2016104141 A1 WO 2016104141A1 JP 2015084470 W JP2015084470 W JP 2015084470W WO 2016104141 A1 WO2016104141 A1 WO 2016104141A1
Authority
WO
WIPO (PCT)
Prior art keywords
mica
insulating tape
nanofiller
layer
coil
Prior art date
Application number
PCT/JP2015/084470
Other languages
French (fr)
Japanese (ja)
Inventor
馬渕 貴裕
あずさ 大澤
茂之 山本
久保 一樹
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016530032A priority Critical patent/JPWO2016104141A1/en
Publication of WO2016104141A1 publication Critical patent/WO2016104141A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/48Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances fibrous materials
    • H01B3/52Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances fibrous materials wood; paper; press board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/60Composite insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material

Definitions

  • the present invention relates to an insulating tape used for a stator of a rotating electrical machine, a manufacturing method thereof, a stator coil using the insulating tape, a manufacturing method thereof, and a generator using the insulating tape.
  • the stator of a rotating electrical machine has a stator coil housed in a plurality of slots formed on the inner peripheral side of the stator core.
  • the stator coil includes a coil conductor made of a good conductor metal such as copper, and a stator coil insulator covering the coil conductor.
  • the stator coil in a large rotating electrical machine is made of a low-viscosity liquid thermosetting resin composition (insulating varnish) that is wound around a coil conductor with an insulating tape in which a fiber reinforcing material such as a glass cloth is bonded to a mica sheet. After impregnation under reduced pressure, it is manufactured by heating while being press-molded so as to have a predetermined cross-sectional shape.
  • the stator coil is housed in a multi-stage shape such as two upper and lower stages in the slot, and a spacer is inserted between the stator coils and a wedge is fixed to the opening end of the slot.
  • the electromagnetic vibration generated from the stator coil during operation of the rotating electrical machine is suppressed by inserting.
  • the insulator of the stator coil is always placed in an environment exposed to high electrical stress. Further, such a rotating electric machine is used for a long period of 20 years or more, and it is important to improve the reliability of the product by improving the withstand voltage of the insulator.
  • a flexible insulating tape comprising a flexible base material and a mica base material structure bonded to the base material, wherein the mica base material structure includes the base material mica, an insulating resin, and nanoclay.
  • the mica base material structure includes the base material mica, an insulating resin, and nanoclay.
  • an adhesive is used to support the nanofiller on the insulating tape.
  • the adhesive for carrying the filler and the insulating varnish used for impregnation are required to have good compatibility and to be integrated with the adhesive and the insulating varnish during heat curing.
  • the nanofiller carried on the insulating tape by the adhesive is mixed with the varnish after the adhesive is dissolved in the varnish. Then, the insulating tape has a fluid state.
  • the nanofiller flows along with the flow of the adhesive, the aggregation of the nanofillers easily proceeds, so that aggregated secondary particles are formed and the particle size increases. Therefore, the specific surface area of the nanofiller becomes small, and there is a problem that it is difficult to obtain the voltage resistance improvement effect peculiar to the nanofiller.
  • the present invention solves the above problems, and as described later, the nanofiller is unevenly distributed on one side of the mica particle surface, and when impregnated with the varnish, the nanofiller is insoluble in the varnish. Since it is covered with molecules, the state in which the nanofiller is supported on the insulating tape is maintained. Thereby, aggregation of the nano filler does not proceed, and a large specific surface area specific to the nano filler can be maintained even in the state after impregnation with the varnish. This effect makes it possible to increase the reliability of the product by improving the voltage resistance of the insulating tape.
  • the present invention comprises a mica layer comprising scaly mica particles, a water-soluble polymer, a nanofiller supported by the water-soluble polymer and unevenly distributed on one surface of the mica particles, and laminated on the mica layer.
  • An insulating tape comprising a reinforcing layer including a fiber reinforcing material.
  • the present invention also includes a step of forming a mica layer by making a dispersion containing mica particles, and a nanofiller and a water-soluble polymer after the reinforcing layer containing a fiber reinforcing material is bonded to the mica layer. And a step of applying the mixed liquid to the mica layer.
  • the present invention includes a stator having a coil conductor and an insulating layer formed by winding an insulating tape around the coil conductor and impregnating the insulating tape with a liquid thermosetting resin composition and heating and press-molding it. It is a coil.
  • the present invention includes a step of winding the insulating tape around a coil conductor, and a step of impregnating the insulating tape with a liquid thermosetting resin composition and heat-press molding to manufacture a stator coil, Is the method.
  • the present invention is a generator comprising an iron core having a plurality of slots and a coil inserted into the plurality of slots, the coil having an insulating tape wound around the outer periphery of the coil conductor, A generator having a mica layer containing flat mica particles and a nanofiller supported by a water-soluble polymer and unevenly distributed on one surface of the mica particles, and a reinforcing layer laminated on the mica layer.
  • the nanofiller is unevenly distributed on one side of the mica particle surface, and the nanofiller is covered with the water-soluble polymer insoluble in the varnish, so the nanofiller is supported on the insulating tape. Maintained. Thereby, the aggregation of the nano filler does not proceed, the large specific surface area specific to the nano filler can be maintained even after the varnish impregnation, and the insulating tape capable of improving the withstand voltage of the insulator and its production A method can be provided.
  • FIG. 1 It is a schematic cross section of the insulating tape by Embodiment 1 of this invention. It is a model expanded sectional view of the mica layer of the insulating tape by Embodiment 1 of this invention. It is a partial expansion perspective view of the stator of a rotary electric machine. It is a flowchart which shows the manufacturing process of the insulating tape by Embodiment 1 of this invention. It is the graph which showed relatively the dielectric breakdown voltage of the coil of the Example which concerns on Embodiment 2 of this invention, and a comparative example. It is sectional drawing of the rotary electric machine by Embodiment 3 of this invention. It is a fragmentary sectional view which shows the stator coil in the slot of the rotary electric machine by Embodiment 3 of this invention. It is a figure which shows the shape of the coil conductor used for the stator coil of a rotary electric machine.
  • FIG. 1 is a schematic cross-sectional view of an insulating tape according to the first embodiment.
  • an insulating tape 1 includes a mica particle 3 that is a flat thin piece, a mica layer 5 including a nanofiller 2 that is unevenly distributed on one surface of the mica particle 3, and a water-soluble polymer 4, and a mica layer.
  • a reinforcing layer 7 including a fiber reinforcing material 6 laminated on the substrate 5.
  • the insulating tape 1 of the present invention comprises two layers, a mica layer 5 and a reinforcing layer 7 as a support material for the mica layer 5. Each layer is made of a material having the structure described later.
  • the reinforcing layer 7 of the present invention is provided to withstand the winding tension applied to the insulating tape when the stator coil of the insulating tape is wound. Further, it is provided to maintain the strength of the composite of the insulating tape and resin after impregnating the varnish. Any fiber or film can be used as long as it meets these purposes.
  • the fiber reinforcing material 6 examples include woven fabrics such as glass fibers, alumina fibers, and polyamide fibers. Moreover, you may use the film which expresses not only a fiber but the same function. Examples of the film include a polyimide film, a polyamide film, and a polyester film. Note that the present invention is not limited to these as long as it meets the above purpose. Among these, the insulating tape using glass fiber is excellent in terms of good characteristics and low cost.
  • the mica layer 5 of the present invention is characterized in that it contains mica particles 3, nanofillers (nano-sized insulating inorganic particles) 2, and a water-soluble polymer 4 as an adhesive.
  • the mica particles 3 hard mica (mascobite), soft mica (phlogopite), etc., which are known as a kind of layered silicate mineral, can be used.
  • the shape of the mica particles 2 include block mica, peeled mica, and laminated mica. These may be used alone or in combination of two or more. Among these, it is preferable to use laminated mica for the mica layer 5 in that the thickness is uniform and the cost is low.
  • the content of mica particles 3 is preferably 100 g to 200 g per 1 m 2 of insulating tape.
  • the content of the mica particles 3 is less than 100 g / m 2 , desired voltage resistance may not be obtained, and the dielectric breakdown time at the time of power degradation may be shortened.
  • the content of the mica particles 3 exceeds 200 g / m 2 , although the electric insulation is good, the insulating tape 1 may be thick and difficult to wind.
  • These mica particles 3 have a scaly shape and are stacked in the thickness direction of the insulating tape. Between these particles, the particles to be stacked overlap each other, the shape of the particles and the position of the particles are different in the stacking direction, and the particles are arranged in a shifted manner.
  • a nano filler 2 described later may be interposed between particles to be laminated.
  • mica particles 3 are obtained by refining mica raw ore by water pulverization, shear pulverization, etc., and the average particle size of mica particles 3 was monodispersed with a laser diffraction particle size distribution meter.
  • the average particle size in the state is 50 to 800 ⁇ m, it is desirable that the insulating tape is easily wound when the stator coil is wound.
  • the thickness of the mica particles 3 is desirably 30 ⁇ m or less, and in particular, the average thickness is desirably 1 to 15 ⁇ m.
  • varnish has low voltage resistance and is eroded by partial discharge
  • scaly mica particles have high voltage resistance and are partially It is known that erosion due to electric discharge hardly occurs. Therefore, in general, the insulator of the coil is installed so that the direction of the laminated surface of the mica particles is aligned perpendicular to the electric field direction of the coil.
  • the dielectric breakdown erodes the resin.
  • the breakdown path changes to the direction along the mica particle stacking surface, erodes to the end of the mica particles, and the varnish dielectric breakdown proceeds again in the direction of the electric field. Is considered to progress.
  • the aspect ratio of the mica particles is determined by the ratio between the average particle diameter and the average thickness. However, the aspect ratio of the mica particles is large as estimated from the dielectric breakdown mechanism between the insulating tape and the resin composite described above, or the average particles A large diameter is considered to be advantageous for withstand voltage.
  • the nanofiller 2 is not particularly limited as long as it is an insulating inorganic particle, and examples thereof include silica, alumina, magnesium oxide, zinc oxide, magnesium carbonate, graphite boron nitride, titanium boride, silicon carbide, and silicon nitride. And smectites such as aluminum nitride, montmorillonite, beidellite and hectorite. Among these, silica is particularly preferable as a material for the nanofiller 2 because of its low dielectric constant and good partial discharge characteristics in the insulator.
  • the shape of the nanofiller may be any of spherical, elliptical, needle-shaped, flake shaped, etc., but depending on the shape of the filler particles, there is variation in electrical insulation due to anisotropic thermal conductivity.
  • the particle shape is preferably spherical from the viewpoint of preventing the variation.
  • the nanofiller 2 is preferably a laser diffraction particle size distribution meter and has an average particle size of 5 to 500 nm in a monodispersed state.
  • the thickness is 500 nm or more, a large gap is generated between the mica particles 3 when arranged between the stacked mica particles 3, and the interaction due to the intermolecular force between the mica particles 3 is reduced. If the intermolecular force between the mica particles 3 is lost, the insulating tape itself becomes brittle, and there is a case in which it cannot be wound around the stator coil.
  • FIG. 2 is a schematic enlarged sectional view of the mica layer 5 of the insulating tape 1.
  • the nanofiller 2 is substantially contained in the water-soluble polymer 4 and supported on the mica particles 3, and when viewed in detail, there are voids between the mica particles 3 and the water-soluble polymer 4. (This gap is not shown in FIG. 1). After the insulating tape 1 is wound around the conductor, the gap is impregnated with an insulating varnish and filled.
  • the nanofiller 2 is unevenly distributed in one direction of the thickness direction of the insulating tape 1 on one side of the mica particles 3.
  • the nanofiller 2 is unevenly distributed in one direction of the thickness direction of the insulating tape 1 on one side of the mica particles 3.
  • the gap thickness shown in FIG. 2 is L
  • the filler 2 is characterized by being 1.5 times or more of the amount of the nanofiller 2 in the range of L / 2 or more.
  • the electrical weak point in the mica layer 5 of the insulating tape 1 is a resin such as varnish that exists in the gap between the mica particles 3 and the mica particles 3, and the nanofiller 2 reinforces these electrical weak points. .
  • Such uneven distribution of the nanofiller 2 is only required to be present at a location having a gap between the mica particles 3 and the mica particles 3, and the nanofillers 2 do not have to be unevenly distributed on the surfaces of all the mica particles 3. . This is because the part where the mica particles 3 are in close contact with each other is unlikely to become an electrical weak point. The dielectric breakdown path is caused by passing through this electrical weak point with a certain probability, and the nanofiller 2 is unevenly distributed in all parts having gaps between the mica particles 3 and the mica particles 3 constituting the mica layer 5. do not have to. However, in order to stably develop high voltage resistance, the proportion of the nanofiller 2 that is unevenly distributed as described above is 10 per 100 gaps formed by the overlap of mica particles in the cross section of the mica tape 1. It is desirable that there are more than one place.
  • the gap thickness L in FIG. 2, four tabular mica particles substantially parallel to each other are shown. From the upper side of FIG. 2, when the symbols of mica particles are A, B, C, and D, respectively, the “gap between adjacent mica particles and mica particles” in the stacking direction of mica particles includes (1) between AB and ( 2) There are 6 types between AC, (3) between AD, (4) between BC, (5) between BD, and (6) between CD. Of these, (1) is excluded from the scope of this definition because the particles are in close contact. In addition, (3) is excluded from the scope of this definition because mica particles B are interposed.
  • L is a gap composed of mica particles-mica particles, excluding the case where the gap cannot be confirmed by the adhesion of mica particles and the case where other mica particles exist in the gap.
  • the reason why it is desirable that there are 10 or more unevenly distributed locations per 100 locations formed by the overlap of the mica particles is that the gap between the mica particles 3 and the mica particles 3 which are electrical weak points.
  • the process of dielectric breakdown progressing to the ground electrode when the resin present in the dielectric is used as a breakdown path if the density is higher than the above ratio, the progress of the breakdown is suppressed to a significant level by the effect of the nanofiller, It is because an effect can be expressed.
  • the nanofiller 2 is characterized by being supported on the mica particles 3 with a water-soluble polymer 4.
  • the insulating varnish contains 50% or more of a water-insoluble component and contains a thermosetting resin.
  • the thermosetting resin include an epoxy resin, an acrylic resin, a polyester resin, and a cyanate resin.
  • the organic solvent-free type is often used. Therefore, in order to adjust the varnish viscosity, it is common to add a reactive dilution component such as styrene monomer or acrylic monomer. Since these are water-insoluble, the water-soluble polymer carrying the nanofiller does not dissolve in the varnish.
  • Water-soluble polymers used for these include gum arabic, guar gum, pectin, starch, gelatin, sodium chondroitin sulfate, or cellulose derivatives such as ethyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, sodium alginate, sodium acrylate, carboxy Examples thereof include vinyl polymer, polyacrylic acid amide, polyvinyl pyrrolidone, polyvinyl alcohol, and polyethylene glycol. Among these, those selected from cellulose derivatives having excellent filler adhesiveness are preferable.
  • the nanofiller 2 carried on the insulating tape 1 by the water-soluble polymer 4 when impregnated with the varnish does not dissolve the water-soluble polymer 4 in the insulating varnish. 1 has no fluidity.
  • the addition amount of the water-soluble polymer 4 is desirably 10 g or less per 1 m 2 of the insulating tape.
  • the lower limit of the addition amount of the water-soluble polymer 4 is 0.5 g per 1 m 2 of the insulating tape.
  • the first effect is an aggregation suppressing effect of the nanofiller 2.
  • the nanofiller 2 carried on the insulating tape 1 by the water-soluble polymer 4 does not dissolve in the varnish, so that the aggregation does not proceed after the varnish impregnation. Therefore, a large specific surface area specific to the nanofiller 2 can be maintained, and an effect of improving the voltage resistance can be obtained.
  • the second effect is improvement of the upper limit of the concentration of the nanofiller 2.
  • the nanofiller 2 has a large specific surface area, it is known that the solvent viscosity increases remarkably when added in a small amount.
  • the nanofiller 3 supported on the insulating tape 1 can be used when the varnish is impregnated. Do not mix with. Therefore, the impregnating process can maintain the viscosity capable of impregnation without affecting the viscosity of the varnish. Thereby, a nano filler can be added to high concentration and the withstand voltage improvement effect is acquired.
  • the third effect is an improvement in voltage resistance due to uneven distribution of the nanofiller 2.
  • the dielectric breakdown takes a route near the surface of the mica. In the insulating material of the stator coil, an electric field in the vertical direction (vertical direction in FIG.
  • the dielectric breakdown proceeds while eroding the resin, and when the dielectric breakdown tip reaches the surface of the mica particles, The breakdown path is bent by about 90 ° and changes to the plane direction of the mica particles. After eroding to the end of the mica particles, the dielectric breakdown of the varnish proceeds again in the electric field direction, and the erosion is considered to proceed. Therefore, by making the nanofiller unevenly distributed on one surface of the mica, the filler concentration can be locally increased, and an effect can be exhibited in suppressing the progress of the dielectric breakdown path.
  • the nanofiller concentration can be locally formed in a state where the nanofiller is dispersed without being aggregated, the progress of dielectric breakdown on the surface of the mica particles can be suppressed.
  • the nanofiller 2 is supported by the water-soluble polymer 4 and the nanofiller 2 is unevenly distributed on one surface of the mica particle 3 to thereby improve the voltage resistance. Can do.
  • the tape when the tape is wound around the coil, if the entire mica particles are filled with nanoparticles, the adhesion between the mica particles is lowered and the tensile strength as the tape is lowered. Therefore, a technique for improving the adhesion by mixing mica and nanoparticles in a water-soluble polymer is conceivable, but the problem is that the impregnating property of the varnish is deteriorated. Furthermore, since the nanoparticles are randomly arranged, it is necessary to add a large amount of nanoparticles in order to improve the voltage resistance.
  • the nanoparticles are unevenly distributed in the vicinity of the plane of the mica particles, since the nanoparticles are contained in a high concentration near the surface of the mica particles serving as the dielectric breakdown path, the progress of the dielectric breakdown can be achieved with high probability. Inhibits and can withstand voltage. Furthermore, adhesive components such as insulating varnish are sufficiently contained between the mica particles, and the adhesive force between the tapes can be maintained.
  • FIG. 4 is a flowchart showing the manufacturing process of the insulating tape of the present invention.
  • the manufacturing method of the insulating tape of the first embodiment includes a step of forming a mica layer by making a dispersion containing mica particles, a step of bonding a reinforcing layer containing a fiber reinforcing material to the mica layer, and bonding And a step of applying a mixed liquid containing nanofiller and water-soluble polymer to the mica layer.
  • the insulating tape manufacturing method according to the present embodiment is manufactured by the following procedure.
  • a dispersion containing mica particles 3 is mixed (S1) and stirred (S2) to prepare a dispersion containing mica particles 3.
  • the mica layer 5 is formed by paper making using the obtained dispersion (S3).
  • Mixing (S1) and stirring (S2) may be performed simultaneously.
  • the method for preparing the dispersion liquid containing the mica particles 3 is not particularly limited, and methods known in the technical field can be used.
  • a dispersion can be prepared by dispersing mica particles 3 in water.
  • the content of the mica particles 3 in the dispersion is not particularly limited, and may be appropriately adjusted according to the type of the mica particles 3 and the like.
  • the method for producing the dispersion liquid is not particularly limited, and methods known in the technical field can be used.
  • a mica sheet to be the mica layer 3 can be obtained by making a dispersion using a commercially available paper machine.
  • the mica sheet may be bonded to various films formed of PET or polyimide, which is a different type of support material from the reinforcing layer containing the fiber reinforcing material.
  • the resin composition may be applied to the mica sheet using a known method such as a roll coater method or a spray method, and then bonded to the support material.
  • the resin composition used for bonding the mica sheet and the support material generally contains a thermosetting resin, a curing agent, and a solvent.
  • a thermosetting resin a well-known thing can be used in the said technical field.
  • Specific examples of the thermosetting resin include an epoxy resin, an unsaturated polyester resin, a phenol resin, a melamine resin, a silicone resin, and a polyimide resin.
  • epoxy resins are preferable because they are excellent in characteristics such as heat resistance and adhesiveness.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, orthocresol novolak type epoxy resin, phenol novolac type epoxy resin, alicyclic aliphatic epoxy resin, glycidyl-aminophenol type epoxy resin, and the like. . These resins may be used alone or in combination of two or more.
  • the curing agent is not particularly limited, and those known in the technical field can be used.
  • Specific examples of the curing agent include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • Specific examples of the organometallic complex include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
  • Organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate.
  • organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate.
  • cobalt (II) acetylacetonate cobalt (III) acetylacetonate, zinc (II) acetylacetonate, zinc naphthenate, iron (III) acetylacetonate are Cobalt (II) acetylacetonate and zinc naphthenate are more preferable. These may be used alone or in combination of two or more.
  • the amount of the curing agent needs to be appropriately set according to the type of the thermosetting resin and the curing agent to be used, but is generally 0.1 parts by mass with respect to 100 parts by mass of the thermosetting resin. ⁇ 200 parts by mass.
  • solvent used for the said resin composition
  • a well-known thing can be used in the said technical field.
  • the solvent include organic solvents such as toluene and methyl ethyl ketone. These may be used alone or in combination of two or more.
  • the blending amount of the solvent may be appropriately adjusted according to the desired viscosity of the resin composition, and is not particularly limited.
  • the reinforcing layer 7 including the fiber reinforcing material 6 is bonded to the mica layer 5 (S4). Thereafter, a mixed solution containing the nanofiller 2 and the water-soluble polymer 4 is applied to the mica layer 4.
  • the method for bonding the fiber reinforcing material 6 to the mica sheet is not particularly limited, and methods known in the technical field can be used.
  • the mica sheet and the fiber reinforcing material 6 may be bonded together using a resin composition.
  • the resin composition is applied to the fiber reinforcing material 6 using a known method such as a roll coater method or a spray method, and the solvent in the resin composition is volatilized, and then a mica sheet is stacked thereon.
  • the laminate may be pressure-bonded by heating with a hot roll or the like under heating at 60 ° C. to 70 ° C.
  • the film as said support material can be bonded together similarly.
  • a mixed solution containing the nanofiller 2 and the water-soluble polymer 4 is prepared (S5).
  • the composition of the mixed solution is not particularly limited, and for example, a resin composition in which nanofiller 2 and water-soluble polymer 4 are blended can be used.
  • the resin composition used for this mixed solution the same resin composition used for bonding the mica sheet and the support material can be used.
  • the compounding amount of the nanofiller 2 needs to be appropriately set according to the type of the thermosetting resin and the curing agent to be used, but generally 20 parts by mass to 100 parts by mass of the thermosetting resin. 200 parts by mass.
  • the mixed liquid containing the nanofiller 2 and the water-soluble polymer 4 is not particularly limited, and for example, a solution obtained by dissolving the nanofiller 2 and the water-soluble polymer 4 with a solvent can be used. It does not specifically limit as a solvent, A well-known thing can be used in the said technical field. Specific examples of the solvent include water, ethanol, ethylene glycol and the like. These may be used alone or in combination of two or more. The blending amount of the solvent may be appropriately adjusted according to the coating property of the mixed solution, and is not particularly limited.
  • a mixed solution containing the nanofiller 2 and the water-soluble polymer 4 is applied to the mica layer 5 with the reinforcing layer 7 (S6).
  • the method for applying the mixed liquid containing the nanofiller 2 and the water-soluble polymer 4 is not particularly limited, and a method known in the technical field can be used. Examples of the coating method include a spray method and a roll coater method. After the mixture liquid containing the nanofiller 2 and the water-soluble polymer 4 is applied to the mica layer 5, the solvent is volatilized by heating to a predetermined temperature (S7). The insulating tape 1 in which 2 is unevenly distributed and these are supported by the water-soluble polymer 4 can be formed.
  • the nanosilica settles on one side of the mica particles due to its own weight and becomes unevenly distributed. Since the nanofiller coating liquid contains a water-soluble polymer and a volatile solvent, it is easy to obtain an unevenly distributed state. Finally, the completed insulating tape 1 is wound up and the series of steps is completed.
  • Embodiment 2 In the stator coil according to the second embodiment of the present invention, the coil conductor and the insulating tape 1 according to the first embodiment wound around the outer periphery of the coil conductor are impregnated with the liquid thermosetting resin composition and heated. And an insulating layer integrated with the coil conductor by being cured by pressurization.
  • the stator coil of the present embodiment is characterized by the insulating tape to be used, and a conventionally known configuration (for example, the configuration shown in FIG. 3) can be adopted as the other configuration. As shown in FIG.
  • stator coil 10 having the coil conductor 8 and the insulating layer 9 is vertically moved in a plurality of slots 12 formed on the inner peripheral side of the stator core 11.
  • a spacer 13 is inserted between the stator coils 10, and a wedge 14 for fixing the stator coil 10 is inserted into the opening end of the slot 12.
  • the stator coil 10 having such a structure is manufactured as follows. First, a plurality of insulating tapes 1 (for example, a half of the width of the insulating tape 1) overlap each other on the outer periphery of the coil conductor 8 formed by bundling a plurality of insulated wire conductors. Wind around.
  • the wire constituting the coil conductor 8 is not particularly limited as long as it is conductive, and a wire made of copper, aluminum, silver or the like can be used.
  • the liquid thermosetting resin composition is impregnated into the insulating tape 1 wound around the coil conductor 8.
  • the liquid thermosetting resin composition used for impregnation is not particularly limited, but generally includes a thermosetting resin and a curing agent. It does not specifically limit as a thermosetting resin, The same thing as what was illustrated in Embodiment 1 can be used.
  • the curing agent is not particularly limited, and those known in the technical field can be used.
  • curing agents include: cycloaliphatic acid anhydrides such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hymic anhydride; aliphatic acid anhydrides such as dodecenyl succinic anhydride; phthalic anhydride, trihydric anhydride Aromatic acid anhydrides such as merit acid; organic dihydrazides such as dicyandiamide and adipic acid dihydrazide; tris (dimethylaminomethyl) phenol; dimethylbenzylamine; 1,8-diazabicyclo (5,4,0) undecene and derivatives thereof; And imidazoles such as -methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, and the like.
  • curing agents may be used alone or in combination of two or more.
  • the amount of the curing agent needs to be appropriately set according to the type of the thermosetting resin and the curing agent to be used, but is generally 0.1 parts by mass with respect to 100 parts by mass of the thermosetting resin. ⁇ 200 parts by mass.
  • the method for impregnating the liquid thermosetting resin composition is not particularly limited, and methods known in the technical field can be used.
  • Examples of the impregnation method include vacuum impregnation, vacuum pressure impregnation, and normal pressure impregnation.
  • the conditions for the impregnation are not particularly limited, and may be appropriately adjusted according to the type of the liquid thermosetting resin composition to be used.
  • the coil conductor 8 is clamped from the outside of the insulating tape 1 to apply pressure to the insulating tape 1.
  • the liquid thermosetting resin composition impregnated in the insulating tape 1 is cured to obtain the insulating layer 9. Thereby, the stator coil 10 is obtained.
  • the stator coil 10 of the present embodiment manufactured as described above uses the insulating tape 1 of the first embodiment, the aggregation of the nanofiller 2 during varnish impregnation can be suppressed.
  • the nanofiller 2 is carried on the insulating tape 1 by the water-soluble polymer 4 insoluble in the varnish, and does not mix with the varnish when impregnated with the varnish. Therefore, the nano filler 2 can be added at a high concentration without affecting the varnish viscosity. By these, the withstand voltage improvement effect is obtained. Further, since the nano filler 2 is unevenly distributed, a space having a high particle concentration can be formed in a state in which the nano filler 2 is dispersed in the vicinity of the surface of the mica particle 3. Can be suppressed.
  • Example 1 The insulating tape is manufactured by the above-described method, and hydrophilic nano silica is applied at a tape weight of 10 g / m 2 , and hydroxyethyl cellulose (weight of 1 g / m 2 ) is used as the water-soluble polymer.
  • coil insulation is obtained by winding each insulation tape around a conductor 15 times in half-lap, vacuum impregnating a resin mixture made of bisphenol A type epoxy resin and acid anhydride, and heating and curing at 150 ° C. for 12 hours to obtain a coil. It was.
  • Example 1 A coil insulator was formed around the coil conductor using an insulating tape containing no nanofiller. The other tape material and coil material configurations were the same as in Example 1.
  • FIG. 5 is a graph relatively showing the dielectric breakdown voltages of the coils of the above-described examples and comparative examples according to the second embodiment. Error bars in the figure indicate data variation ranges in a plurality of measurements.
  • the insulating layer of Example 1 was confirmed to have an effect of improving characteristics by about 30% as compared with Comparative Example 1.
  • the comparative example 2 and the comparative example 3 use the insulating tape which added the nano filler, the breakdown voltage improvement effect of Example 1 was not expressed. It is estimated that this is because the filler flows together with the resin for impregnation and the amount contained in the insulator system is reduced, or the aggregation of the nanofiller has progressed.
  • FIG. 6A is a cross-sectional view orthogonal to the rotation axis J of the rotating electrical machine of the present invention
  • FIG. 6B is a cross-sectional view showing a cross section along the rotation axis J of the rotating electrical machine of the present invention.
  • FIG. 6A corresponds to a cut surface taken along line 1a-1a in FIG. 6B.
  • FIG. 6B corresponds to a cut surface taken along line 1a-1a in FIG. 6B.
  • the stator of the rotating electrical machine 100 includes a cylindrical stator core 101 that houses a rotor K (not shown), an iron core fastening member 102, a holding ring 103, a frame 104, an intermediate frame member 105, and an elastic support member. 106 and the like.
  • the iron core fastening members 102 are provided on the outer peripheral portion of the stator iron core 101 at predetermined intervals in the circumferential direction, and are used to fasten the stator iron core 101 in the axial direction. In this example, eight iron core fastening members 102 are used.
  • the retaining ring 103 is provided on the outer peripheral portion of the stator core 101 at a predetermined interval in the axial direction, and is a flat ring in the axial direction that holds the stator core so as to be tightened from the top of the core tightening member 102 toward the central portion. In this example, it is used at four locations.
  • the frame 104 is a cylindrical container that surrounds the stator core 101 around the stator core 101 and is spaced from the stator core 101.
  • the middle frame member 105 is a ring-shaped member that protrudes from the inner surface of the frame 104 in the axial direction at a predetermined interval in the axial direction, and is used at five locations in this example.
  • the elastic support member 106 is a spring plate fixed to the holding ring 103 at an adjacent middle frame member 105 and an axially central portion. In this example, the elastic support member 106 includes four elastic support members 106.
  • the stator shown in FIG. 6 constitutes, for example, an armature of a turbine generator, and a predetermined number of slots formed in the axial direction are provided in the inner peripheral portion of the stator core 101 in the circumferential direction. A stator coil is disposed in the slot.
  • FIG. 7 is a partial sectional view showing the stator coil inside the slot of the rotating electrical machine according to the third embodiment.
  • the slot 112 is a groove into which the stator coil 120 is inserted in a shape extending in the stacking direction of the iron core 111, that is, in the direction of the rotation axis J.
  • the iron core 111 is a stator iron core in which silicon steel plates are laminated.
  • the stator coil 120 is a coil conductor 108 and a ground insulating layer 109 that can be impregnated made of the above-described insulating material according to the present invention. 108 is wound around the outside.
  • a semiconductive surface corona prevention layer 115 is formed on the outer periphery of the ground insulating layer 109.
  • the coil near the insertion port side to the slot 112 is the upper opening coil 116
  • the coil far from the slot insertion port side is the lower opening coil 117.
  • a wedge 114 is provided at the insertion opening.
  • an insulating spacer 123 whose surface has been subjected to a mold release process is provided on the inner surface of the slot 112, and the inner surface of the insulating spacer 123 is separated.
  • the stator coil 120 is disposed on the mold surface 122.
  • a stator coil 120 as shown in FIG. 7 is annularly installed to form a cylindrical shape, and the rotor K is disposed at the center.
  • the longitudinal direction of the cylindrical shape coincides with the stacking direction of the stator core 111 and the extending direction of the rotation axis J, and the upper coil 116 and the lower coil 117 are inserted into each of a plurality of slots 112 provided in an annular shape. ing. And the upper opening coil 116 and the lower opening coil 117 inserted in this slot 112 and the coil inserted in each of the other slots must be electrically connected.
  • Rotating electrical machines such as turbine generators are required to have higher output and smaller size. In order to achieve high output and miniaturization, it is essential to improve the insulation performance of the coil insulator.
  • FIG. 8 is a diagram showing an example of the shape of the coil conductor 108 used for the stator coil of the rotating electrical machine.
  • the normal coil conductor 108 has coil end portions 118 that are not inserted into the slots at both ends of a rectangular columnar straight portion that is inserted into the slot 112 and has a rectangular cross section, and the coil end portion 118 has a curved shape. have.
  • the insulating tape 1 of the present invention When the insulating tape 1 of the present invention is used, the insulating tape 1 is wound by the buffering action of the water-soluble polymer 4 and is deformed following the coil end portion 118. It becomes low. In fact, after the rotating electrical machine such as a generator was completed, the insulation performance was confirmed by measuring the coil insulation characteristics, and by using the insulation tape 1 of the present invention, the insulation performance of the product was stabilized for each production. I was able to confirm that.
  • stator coil 11 stator core, 12 Slot, 13 spacer, 14 wedge, 100 rotating electrical machine, 101 stator iron core, 102 iron core fastening member, 103 retaining ring, 104 frame, 105 middle frame member, 106 elastic support member, 108 coil conductor, 109 ground insulation layer, 111 Iron core, 112 slots, 114 wedges, 115 surface corona prevention layer, 116 upper opening coil, 117 lower opening coil, 120 stator coil, 122 release surface, 123 spacer

Abstract

An insulating tape 1 used for coil insulation of a rotary electrical machine, the insulating tape 1 being characterized in having: a mica layer 5 containing mica particles 3, a water-soluble polymer 4, and a nanofiller 2 distributed disproportionately on the surface on one side of the mica particles 3; and a reinforcing layer 7 laminated on the mica layer 5, the reinforcing layer 7 containing a fiber reinforcement 6. In addition, a method for manufacturing an insulated tape 1 characterized in including a step for forming a dispersion liquid containing the mica particles 3 into a sheet and forming a mica layer 5, and a step for affixing the mica layer 5 to a reinforcing layer 7 containing a fiber reinforcement 6 and then applying a liquid mixture containing a nanofiller 2 and a water-soluble polymer 4 onto the mica layer 5.

Description

絶縁テープ及びその製造方法、並びに固定子コイル及びその製造方法、並びに発電機Insulating tape and manufacturing method thereof, stator coil and manufacturing method thereof, and generator
 本発明は、回転電機の固定子に用いられる絶縁テープ及びその製造方法、並びにその絶縁テープを用いた固定子コイル及びその製造方法、並びにその絶縁テープを用いた発電機に関するものである。 The present invention relates to an insulating tape used for a stator of a rotating electrical machine, a manufacturing method thereof, a stator coil using the insulating tape, a manufacturing method thereof, and a generator using the insulating tape.
 回転電機の固定子は、固定子鉄心の内周側に形成された複数のスロット内に収納された固定子コイルを有する。固定子コイルは、銅などの良導体の金属からなるコイル導体、及びそれを被覆する固定子コイル絶縁物から構成される。大型の回転電機における固定子コイルは、マイカシートにガラスクロスなどの繊維補強材を貼り合わせた絶縁テープをコイル導体に数回巻きつけ、低粘度の液状熱硬化性樹脂組成物(絶縁ワニス)を減圧下で含浸させた後、所定の断面形状となるようにプレス成形しながら加熱することにより製造される。また、固定子コイルは、スロット内で上下2段など多段状に収納されており、これらの固定子コイル間にスペーサーを挿入すると共に、スロットの開口端部に固定子コイルを固定するためのウェッジを挿入することにより、回転電機の運転時に固定子コイルから発生する電磁振動を抑制している。 The stator of a rotating electrical machine has a stator coil housed in a plurality of slots formed on the inner peripheral side of the stator core. The stator coil includes a coil conductor made of a good conductor metal such as copper, and a stator coil insulator covering the coil conductor. The stator coil in a large rotating electrical machine is made of a low-viscosity liquid thermosetting resin composition (insulating varnish) that is wound around a coil conductor with an insulating tape in which a fiber reinforcing material such as a glass cloth is bonded to a mica sheet. After impregnation under reduced pressure, it is manufactured by heating while being press-molded so as to have a predetermined cross-sectional shape. The stator coil is housed in a multi-stage shape such as two upper and lower stages in the slot, and a spacer is inserted between the stator coils and a wedge is fixed to the opening end of the slot. The electromagnetic vibration generated from the stator coil during operation of the rotating electrical machine is suppressed by inserting.
 通常、このような回転電機の運転時には、固定子コイルの絶縁物は、常に高い電気的ストレスにさらされた環境に置かれる。また、このような回転電機は、20年以上の長期間に渡って使用されるものであり、絶縁物の耐電圧性の向上による製品の高信頼化が重要になっている。 Normally, when operating such a rotating electric machine, the insulator of the stator coil is always placed in an environment exposed to high electrical stress. Further, such a rotating electric machine is used for a long period of 20 years or more, and it is important to improve the reliability of the product by improving the withstand voltage of the insulator.
 そこで、柔軟性のある基材と、基材に接合されたマイカ母材構造とより成る柔軟な絶縁テープであって、マイカ母材構造は、母材であるマイカと、絶縁性樹脂と、ナノクレイ小板(ナノフィラー)と、Cr、Sn、Zn及びそれらの混合物より成る群から選択されナノクレイ小板内に添加された金属イオンとを含み、絶縁性樹脂及びナノクレイ小板はマイカの周囲または内部に存在する絶縁テープが提案されている(特許文献1を参照)。 Therefore, a flexible insulating tape comprising a flexible base material and a mica base material structure bonded to the base material, wherein the mica base material structure includes the base material mica, an insulating resin, and nanoclay. Comprising a platelet (nanofiller) and metal ions selected from the group consisting of Cr, Sn, Zn and mixtures thereof and added into the nanoclay platelet, the insulating resin and the nanoclay platelet surrounding or inside the mica Has been proposed (see Patent Document 1).
特許第4073209号公報Japanese Patent No. 4073209
 一般に、絶縁テープにナノフィラーを担持させるためには、接着剤が用いられている。一方で、固定子コイルの製造において、絶縁テープは、コイル導体に巻き付けられた後、絶縁ワニスを含浸させて加熱硬化することによってコイル導体と一体化される。このため、フィラーを担持させるための接着剤と、含浸に用いられる絶縁ワニスとは、相溶性が良好であり、且つ加熱硬化時に接着剤と絶縁ワニスとが一体化することが求められる。 Generally, an adhesive is used to support the nanofiller on the insulating tape. On the other hand, in the manufacture of the stator coil, after the insulating tape is wound around the coil conductor, it is integrated with the coil conductor by impregnating the insulating varnish and heat curing. For this reason, the adhesive for carrying the filler and the insulating varnish used for impregnation are required to have good compatibility and to be integrated with the adhesive and the insulating varnish during heat curing.
 しかしながら、従来の絶縁テープを用いて固定子コイルを製造する場合、ワニス含浸時においては、接着剤によって絶縁テープに担時されたナノフィラーは、接着剤がワニスに溶解した後、ワニスと混合し、絶縁テープ内において流動性を有する状態となる。接着剤の流動に伴ってナノフィラーが流動すると、ナノフィラー同士の凝集が進行しやすくなるため、凝集した二次粒子が形成されて粒子サイズが大きくなる。そのため、ナノフィラーの比表面積は小さくなり、ナノフィラー特有の耐電圧性向上効果を得られにくいという問題があった。 However, when a stator coil is manufactured using a conventional insulating tape, when impregnating the varnish, the nanofiller carried on the insulating tape by the adhesive is mixed with the varnish after the adhesive is dissolved in the varnish. Then, the insulating tape has a fluid state. When the nanofiller flows along with the flow of the adhesive, the aggregation of the nanofillers easily proceeds, so that aggregated secondary particles are formed and the particle size increases. Therefore, the specific surface area of the nanofiller becomes small, and there is a problem that it is difficult to obtain the voltage resistance improvement effect peculiar to the nanofiller.
 本発明は上記の課題を解決するものであって、後述するように、ナノフィラーがマイカ粒子表面の片方面に偏在しており、また、ワニス含浸時、ナノフィラーはワニスに不溶な水溶性高分子に覆われているため、ナノフィラーが絶縁テープに担持された状態が維持される。これによって、ナノフィラーの凝集が進行せず、ナノフィラー特有の大きな比表面積をワニス含浸後の状態においても維持することができる。この効果によって、絶縁テープの耐電圧性の向上による製品の高信頼化が可能になる。 The present invention solves the above problems, and as described later, the nanofiller is unevenly distributed on one side of the mica particle surface, and when impregnated with the varnish, the nanofiller is insoluble in the varnish. Since it is covered with molecules, the state in which the nanofiller is supported on the insulating tape is maintained. Thereby, aggregation of the nano filler does not proceed, and a large specific surface area specific to the nano filler can be maintained even in the state after impregnation with the varnish. This effect makes it possible to increase the reliability of the product by improving the voltage resistance of the insulating tape.
 本発明は、リン片状のマイカ粒子と、水溶性高分子と、水溶性高分子により担持されてマイカ粒子の一方の面に偏在するナノフィラーとを含むマイカ層と、マイカ層上に積層され繊維補強材を含む補強層とを有することを特徴とする絶縁テープである。 The present invention comprises a mica layer comprising scaly mica particles, a water-soluble polymer, a nanofiller supported by the water-soluble polymer and unevenly distributed on one surface of the mica particles, and laminated on the mica layer. An insulating tape comprising a reinforcing layer including a fiber reinforcing material.
 また、本発明は、マイカ粒子を含む分散液を抄造してマイカ層を形成する工程と、マイカ層に繊維補強材を含む補強層を貼り合わせた後、ナノフィラーと水溶性高分子とを含む混合液をマイカ層に塗布する工程とを含む絶縁テープの製造方法である。 The present invention also includes a step of forming a mica layer by making a dispersion containing mica particles, and a nanofiller and a water-soluble polymer after the reinforcing layer containing a fiber reinforcing material is bonded to the mica layer. And a step of applying the mixed liquid to the mica layer.
 また、本発明は、コイル導体と、コイル導体に絶縁テープを巻き付け、絶縁テープに液状熱硬化性樹脂組成物を含浸して加熱加圧成形させた絶縁層とを有することを特徴とする固定子コイルである。 In addition, the present invention includes a stator having a coil conductor and an insulating layer formed by winding an insulating tape around the coil conductor and impregnating the insulating tape with a liquid thermosetting resin composition and heating and press-molding it. It is a coil.
 また、本発明は、コイル導体に前記絶縁テープを巻き付ける工程と、絶縁テープに液状熱硬化性樹脂組成物を含浸して加熱加圧成形する工程とを含むことを特徴とする固定子コイルの製造方法である。 Further, the present invention includes a step of winding the insulating tape around a coil conductor, and a step of impregnating the insulating tape with a liquid thermosetting resin composition and heat-press molding to manufacture a stator coil, Is the method.
 また、本発明は、複数のスロットを備える鉄心と、複数のスロット内に挿入されたコイルとを備える発電機であって、コイルはコイル導体の外周に絶縁テープが巻かれており、絶縁テープは、扁平なマイカ粒子と水溶性高分子により担持されて前記マイカ粒子の一方の面に偏在するナノフィラーとを含むマイカ層と、マイカ層上に積層された補強層とを有する発電機である。 Further, the present invention is a generator comprising an iron core having a plurality of slots and a coil inserted into the plurality of slots, the coil having an insulating tape wound around the outer periphery of the coil conductor, A generator having a mica layer containing flat mica particles and a nanofiller supported by a water-soluble polymer and unevenly distributed on one surface of the mica particles, and a reinforcing layer laminated on the mica layer.
 本発明によれば、ナノフィラーがマイカ粒子表面の片側の面に偏在しており、また、ナノフィラーはワニスに不溶な水溶性高分子に覆われているため、ナノフィラーが絶縁テープに担持された状態が維持される。これによって、ナノフィラーの凝集が進行せず、ナノフィラー特有の大きな比表面積をワニス含浸後の状態においても維持することができ、絶縁物の耐電圧性を向上させることができる絶縁テープ及びその製造方法を提供することができる。 According to the present invention, the nanofiller is unevenly distributed on one side of the mica particle surface, and the nanofiller is covered with the water-soluble polymer insoluble in the varnish, so the nanofiller is supported on the insulating tape. Maintained. Thereby, the aggregation of the nano filler does not proceed, the large specific surface area specific to the nano filler can be maintained even after the varnish impregnation, and the insulating tape capable of improving the withstand voltage of the insulator and its production A method can be provided.
本発明の実施の形態1による絶縁テープの模式断面図である。It is a schematic cross section of the insulating tape by Embodiment 1 of this invention. 本発明の実施の形態1による絶縁テープのマイカ層の模式拡大断面図である。It is a model expanded sectional view of the mica layer of the insulating tape by Embodiment 1 of this invention. 回転電機の固定子の部分拡大斜視図である。It is a partial expansion perspective view of the stator of a rotary electric machine. 本発明の実施の形態1による絶縁テープの製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the insulating tape by Embodiment 1 of this invention. 本発明の実施の形態2に係る実施例および比較例のコイルの絶縁破壊電圧を相対的に示したグラフである。It is the graph which showed relatively the dielectric breakdown voltage of the coil of the Example which concerns on Embodiment 2 of this invention, and a comparative example. 本発明の実施の形態3による回転電機の断面図である。It is sectional drawing of the rotary electric machine by Embodiment 3 of this invention. 本発明の実施の形態3による回転電機のスロット内部における固定子コイルを示す部分断面図である。It is a fragmentary sectional view which shows the stator coil in the slot of the rotary electric machine by Embodiment 3 of this invention. 回転電機の固定子コイルに用いられるコイル導体の形状を示す図である。It is a figure which shows the shape of the coil conductor used for the stator coil of a rotary electric machine.
 実施の形態1.
 図1は、実施の形態1による絶縁テープの模式断面図である。図1において、絶縁テープ1は、扁平な薄片であるマイカ粒子3と前記マイカ粒子3の一方の面に偏在して存在するナノフィラー2と水溶性高分子4を含むマイカ層5と、マイカ層5上に積層され繊維補強材6を含む補強層7とを有するものである。本発明の絶縁テープ1は、マイカ層5と、マイカ層5の支持材としての補強層7の2層からなる。各層には後述の構成からなる材料で構成される。この2層は耐電圧性を発現させるための、必要最小限の構成であって、絶縁テープの性能を改質するために、さらに層を追加してもよい。例えば、補強層7の上に高熱伝導性を付与するための、無機フィラーを積層した層や、さらに高耐電圧性を付与するために補強層7の上にマイカ層を設け、3層構造とすることが可能である。本発明の補強層7は、絶縁テープの固定子コイル巻回時に絶縁テープにかかる巻回張力に耐えるために設けるものである。また、ワニス含浸後の絶縁テープと樹脂との複合体における強度保持のために設けるものである。これらの目的に合致するものであれば、繊維、フィルムの形態を問わず用いることができる。繊維補強材6の例としては、ガラス繊維、アルミナ繊維、ポリアミド繊維等の織布が挙げられる。また繊維に限らず、同様の機能を発現するフィルムを用いてもよい。フィルムの例としては、ポリイミドフィルム、ポリアミドフィルム、ポリエステルフィルム等が挙げられる。なお上記の目的に合致するものであれば、これらに限定されるものではない。これらのなかでも、ガラス繊維を用いた絶縁テープは特性が良好であり、低コストであるという点から優れている。
Embodiment 1 FIG.
FIG. 1 is a schematic cross-sectional view of an insulating tape according to the first embodiment. In FIG. 1, an insulating tape 1 includes a mica particle 3 that is a flat thin piece, a mica layer 5 including a nanofiller 2 that is unevenly distributed on one surface of the mica particle 3, and a water-soluble polymer 4, and a mica layer. And a reinforcing layer 7 including a fiber reinforcing material 6 laminated on the substrate 5. The insulating tape 1 of the present invention comprises two layers, a mica layer 5 and a reinforcing layer 7 as a support material for the mica layer 5. Each layer is made of a material having the structure described later. These two layers are the minimum necessary structure for developing voltage resistance, and additional layers may be added to improve the performance of the insulating tape. For example, a layer in which an inorganic filler is laminated on the reinforcing layer 7 to provide high thermal conductivity, or a mica layer is provided on the reinforcing layer 7 to further provide high voltage resistance. Is possible. The reinforcing layer 7 of the present invention is provided to withstand the winding tension applied to the insulating tape when the stator coil of the insulating tape is wound. Further, it is provided to maintain the strength of the composite of the insulating tape and resin after impregnating the varnish. Any fiber or film can be used as long as it meets these purposes. Examples of the fiber reinforcing material 6 include woven fabrics such as glass fibers, alumina fibers, and polyamide fibers. Moreover, you may use the film which expresses not only a fiber but the same function. Examples of the film include a polyimide film, a polyamide film, and a polyester film. Note that the present invention is not limited to these as long as it meets the above purpose. Among these, the insulating tape using glass fiber is excellent in terms of good characteristics and low cost.
 次にマイカ層5について説明する。本発明のマイカ層5は、マイカ粒子3とナノフィラー(ナノサイズの絶縁性無機粒子)2と、接着剤として水溶性高分子4を含むことを特徴としている。マイカ粒子3としては、層状ケイ酸塩鉱物の一種として知られる硬質マイカ(マスコバイト)、軟質マイカ(フロゴパイト)等を用いることができる。マイカ粒子2の形状としては、ブロックマイカ、剥がしマイカ、集成マイカ等が挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの中でも、厚さが均一であり、且つ低コストであるという点で、マイカ層5に集成マイカを用いることが好ましい。 Next, the mica layer 5 will be described. The mica layer 5 of the present invention is characterized in that it contains mica particles 3, nanofillers (nano-sized insulating inorganic particles) 2, and a water-soluble polymer 4 as an adhesive. As the mica particles 3, hard mica (mascobite), soft mica (phlogopite), etc., which are known as a kind of layered silicate mineral, can be used. Examples of the shape of the mica particles 2 include block mica, peeled mica, and laminated mica. These may be used alone or in combination of two or more. Among these, it is preferable to use laminated mica for the mica layer 5 in that the thickness is uniform and the cost is low.
 固定子コイルの耐電圧性の観点から、マイカ粒子3の含有量は、1mの絶縁テープ1当たり100g~200gであることが好ましい。マイカ粒子3の含有量が100g/m未満であると、所望の耐電圧性が得られず、課電劣化時の絶縁破壊時間が短くなる場合がある。一方、マイカ粒子3の含有量が200g/mを超えると、電気絶縁性は良好であるものの、絶縁テープ1が厚くなって巻き付け難くなる場合がある。 From the viewpoint of voltage resistance of the stator coil, the content of mica particles 3 is preferably 100 g to 200 g per 1 m 2 of insulating tape. When the content of the mica particles 3 is less than 100 g / m 2 , desired voltage resistance may not be obtained, and the dielectric breakdown time at the time of power degradation may be shortened. On the other hand, when the content of the mica particles 3 exceeds 200 g / m 2 , although the electric insulation is good, the insulating tape 1 may be thick and difficult to wind.
 これらのマイカ粒子3はリン片状の形状であり、絶縁テープの厚み方向に積層している。これらの粒子間は、積層する粒子同士が重なり合った部分や、積層方向に粒子の形状、粒子の位置が違って、粒子同士がずれて配置して存在している。積層する粒子間に後述のナノフィラー2が介在している場合もある。 These mica particles 3 have a scaly shape and are stacked in the thickness direction of the insulating tape. Between these particles, the particles to be stacked overlap each other, the shape of the particles and the position of the particles are different in the stacking direction, and the particles are arranged in a shifted manner. A nano filler 2 described later may be interposed between particles to be laminated.
 これらのマイカ粒子3は、水粉砕、せん断粉砕等によって、マイカの原鉱を微細化して得られるものであって、マイカ粒子3の平均粒径は、レーザー回折式粒度分布計で、単分散した状態での平均粒径が50~800μmであると、絶縁テープの固定子コイル巻回時に巻き付けやすく望ましい。またマイカ粒子3の厚みは、同様の理由により、30μm以下であることが望ましく、特に平均厚みが1~15μmであることが望ましい。 These mica particles 3 are obtained by refining mica raw ore by water pulverization, shear pulverization, etc., and the average particle size of mica particles 3 was monodispersed with a laser diffraction particle size distribution meter. When the average particle size in the state is 50 to 800 μm, it is desirable that the insulating tape is easily wound when the stator coil is wound. Further, for the same reason, the thickness of the mica particles 3 is desirably 30 μm or less, and in particular, the average thickness is desirably 1 to 15 μm.
 一般的に絶縁テープと樹脂との複合体においては、ワニスは耐電圧性が低く、部分放電によって侵食されていくのに対し、リン片状のマイカ粒子は、高耐電圧性を有し、部分放電による侵食は起こりにくいことが知られている。そのため、一般的に、コイルの絶縁物においては、マイカ粒子の積層面の方向がコイルの電界方向と垂直に並ぶように設置される。 Generally, in a composite of insulating tape and resin, varnish has low voltage resistance and is eroded by partial discharge, whereas scaly mica particles have high voltage resistance and are partially It is known that erosion due to electric discharge hardly occurs. Therefore, in general, the insulator of the coil is installed so that the direction of the laminated surface of the mica particles is aligned perpendicular to the electric field direction of the coil.
 マイカ粒子が上記のように配置された固定子コイルの絶縁材料においては、マイカ粒子の積層方向に対して垂直方向(リン片状粒子の厚み方向)の電界がかかり、絶縁破壊は樹脂を侵食しながら進行し、マイカ粒子に絶縁破壊先端が到達した時には、破壊進路はマイカ粒子の積層面に沿う方向に変わり、マイカ粒子の末端部まで侵食し再びワニスの絶縁破壊が電界方向に進行し、侵食が進むと考えられる。平均粒径と、平均厚みとの比により、マイカ粒子のアスペクト比が決定されるが、上記に記載した絶縁テープと樹脂複合体との絶縁破壊メカニズムから推測するとアスペクト比が大きいもの、または平均粒径が大きいものが耐電圧性に有利と考えられる。 In the insulating material of the stator coil in which the mica particles are arranged as described above, an electric field perpendicular to the stacking direction of the mica particles (thickness direction of the scaly particles) is applied, and the dielectric breakdown erodes the resin. When the dielectric breakdown tip reaches the mica particles, the breakdown path changes to the direction along the mica particle stacking surface, erodes to the end of the mica particles, and the varnish dielectric breakdown proceeds again in the direction of the electric field. Is considered to progress. The aspect ratio of the mica particles is determined by the ratio between the average particle diameter and the average thickness. However, the aspect ratio of the mica particles is large as estimated from the dielectric breakdown mechanism between the insulating tape and the resin composite described above, or the average particles A large diameter is considered to be advantageous for withstand voltage.
 次にマイカ層5に含有するナノフィラー(ナノサイズの絶縁性無機粒子)2について説明する。ナノフィラー2は、絶縁性無機粒子であれば、特に種類を限定するものではなく、例えば、シリカ、アルミナ、酸化マグネシウム、酸化亜鉛、炭酸マグネシウム、グラファイト窒化ホウ素、ホウ化チタン、炭化珪素、窒化珪素、窒化アルミニウム、モンモリロナイト、バイデライト、ヘクトライトなどのスメクタイトなどがあげられる。これらの中でも、誘電率が低く、絶縁物内の部分放電特性に良好な、シリカがナノフィラー2の材料として特に好ましい。ナノフィラーの形状としては、球形、楕円形、針形、リン片形等のいずれであってもよいが、フィラー粒子の形状によっては異方的な熱伝導性のために電気絶縁性にばらつきが出る場合があるため、そのばらつきを防止する観点から、粒子形状は球状であることが望ましい。 Next, the nano filler (nano-sized insulating inorganic particles) 2 contained in the mica layer 5 will be described. The nanofiller 2 is not particularly limited as long as it is an insulating inorganic particle, and examples thereof include silica, alumina, magnesium oxide, zinc oxide, magnesium carbonate, graphite boron nitride, titanium boride, silicon carbide, and silicon nitride. And smectites such as aluminum nitride, montmorillonite, beidellite and hectorite. Among these, silica is particularly preferable as a material for the nanofiller 2 because of its low dielectric constant and good partial discharge characteristics in the insulator. The shape of the nanofiller may be any of spherical, elliptical, needle-shaped, flake shaped, etc., but depending on the shape of the filler particles, there is variation in electrical insulation due to anisotropic thermal conductivity. In some cases, the particle shape is preferably spherical from the viewpoint of preventing the variation.
 ナノフィラー2は、レーザー回折式粒度分布計で、単分散した状態での平均粒径が、5~500nmであることが望ましい。500nm以上になると、積層したマイカ粒子3間に介在して配置された場合、マイカ粒子3間に大きな隙間が発生し、マイカ粒子3間の分子間力による相互作用が低下する。マイカ粒子3間の分子間力を失うと、絶縁テープそのものがもろくなり、固定子コイルへの巻回ができなくなるといった不具合がある場合がある。 The nanofiller 2 is preferably a laser diffraction particle size distribution meter and has an average particle size of 5 to 500 nm in a monodispersed state. When the thickness is 500 nm or more, a large gap is generated between the mica particles 3 when arranged between the stacked mica particles 3, and the interaction due to the intermolecular force between the mica particles 3 is reduced. If the intermolecular force between the mica particles 3 is lost, the insulating tape itself becomes brittle, and there is a case in which it cannot be wound around the stator coil.
 ナノフィラー2は、リン片状のマイカ粒子3の一方の平面上に偏在して存在する。図2は、絶縁テープ1のマイカ層5の模式的な拡大断面図である。図2において、ナノフィラー2は実質的に水溶性高分子4内に包含されてマイカ粒子3に担持されており、詳細に見るとマイカ粒子3と水溶性高分子4の間の空隙が存在している(この空隙は図1には図示されていない)。絶縁テープ1を導体に巻き付けた後、この空隙に絶縁ワニスが含浸されて充填される。 The nanofiller 2 is unevenly distributed on one plane of the scaly mica particles 3. FIG. 2 is a schematic enlarged sectional view of the mica layer 5 of the insulating tape 1. In FIG. 2, the nanofiller 2 is substantially contained in the water-soluble polymer 4 and supported on the mica particles 3, and when viewed in detail, there are voids between the mica particles 3 and the water-soluble polymer 4. (This gap is not shown in FIG. 1). After the insulating tape 1 is wound around the conductor, the gap is impregnated with an insulating varnish and filled.
 ここで、図2に示すように、ナノフィラー2は、マイカ粒子3の一方の面、すなわち絶縁テープ1の厚み方向のうち片側の方向に偏在して存在する。具体的には、隣り合うマイカ粒子3とマイカ粒子3との間隙(図2示す隙間厚みをLとする)において、偏在しているマイカ粒子3の面から見てL/2以下の範囲におけるナノフィラー2が、L/2以上の範囲におけるナノフィラー2の量の1.5倍以上であることを特徴とする。絶縁テープ1のマイカ層5における電気的弱点は、マイカ粒子3とマイカ粒子3との間隙に存在するワニス等の樹脂であって、ナノフィラー2は、これらの電気的弱点を補強するものである。このようなナノフィラー2の偏在は、マイカ粒子3とマイカ粒子3との間に間隙を有する箇所に存在していればよく、全てのマイカ粒子3の表面にナノフィラー2が偏在する必要はない。これは、マイカ粒子3同士が密に接触した部位は、電気的な弱点となりにくいからである。絶縁破壊経路はこの電気的弱点を、ある確率で通過することにより生じるものであり、マイカ層5を構成するマイカ粒子3とマイカ粒子3との間隙を有する全ての部位において、ナノフィラー2が偏在する必要はない。ただし、高い耐電圧性を安定して発現するため、ナノフィラー2が上記のように偏在して存在する割合は、マイカテープ1の断面においてマイカ粒子の重なりによって形成される間隙100箇所あたり、10箇所以上存在することが望ましい。 Here, as shown in FIG. 2, the nanofiller 2 is unevenly distributed in one direction of the thickness direction of the insulating tape 1 on one side of the mica particles 3. Specifically, in the gap between adjacent mica particles 3 and the mica particles 3 (gap thickness shown in FIG. 2 is L), nano particles in a range of L / 2 or less when viewed from the surface of the unevenly distributed mica particles 3. The filler 2 is characterized by being 1.5 times or more of the amount of the nanofiller 2 in the range of L / 2 or more. The electrical weak point in the mica layer 5 of the insulating tape 1 is a resin such as varnish that exists in the gap between the mica particles 3 and the mica particles 3, and the nanofiller 2 reinforces these electrical weak points. . Such uneven distribution of the nanofiller 2 is only required to be present at a location having a gap between the mica particles 3 and the mica particles 3, and the nanofillers 2 do not have to be unevenly distributed on the surfaces of all the mica particles 3. . This is because the part where the mica particles 3 are in close contact with each other is unlikely to become an electrical weak point. The dielectric breakdown path is caused by passing through this electrical weak point with a certain probability, and the nanofiller 2 is unevenly distributed in all parts having gaps between the mica particles 3 and the mica particles 3 constituting the mica layer 5. do not have to. However, in order to stably develop high voltage resistance, the proportion of the nanofiller 2 that is unevenly distributed as described above is 10 per 100 gaps formed by the overlap of mica particles in the cross section of the mica tape 1. It is desirable that there are more than one place.
 以下に、上述の隙間厚みLについてのより詳しい定義を述べる。図2においては、互いにほぼ平行な4枚の平板状のマイカ粒子が記載されている。図2の上側から、マイカ粒子の記号をそれぞれA,B,C,Dとした時、マイカ粒子の積層方向の「隣り合うマイカ粒子とマイカ粒子の間隙」には、(1)A-B間、(2)A-C間、(3)A-D間、(4)B-C間、(5)B-D間、(6)C-D間の6種類がある。このうち、(1)は粒子同士が密着しているので、本定義の対象外とする。また、(3)については、マイカ粒子Bが間に介在しているので、本定義の対象外とする。すなわち、Lはマイカ粒子-マイカ粒子からなる間隙であって、その間隙がマイカ粒子の密着によって確認できない場合と、間隙に他のマイカ粒子が存在する場合とを除いたものであり、図2においては前述の(2),(4),(5),(6)の場合が相当する。 Hereinafter, a more detailed definition of the gap thickness L will be described. In FIG. 2, four tabular mica particles substantially parallel to each other are shown. From the upper side of FIG. 2, when the symbols of mica particles are A, B, C, and D, respectively, the “gap between adjacent mica particles and mica particles” in the stacking direction of mica particles includes (1) between AB and ( 2) There are 6 types between AC, (3) between AD, (4) between BC, (5) between BD, and (6) between CD. Of these, (1) is excluded from the scope of this definition because the particles are in close contact. In addition, (3) is excluded from the scope of this definition because mica particles B are interposed. That is, L is a gap composed of mica particles-mica particles, excluding the case where the gap cannot be confirmed by the adhesion of mica particles and the case where other mica particles exist in the gap. Corresponds to the cases (2), (4), (5), and (6) described above.
 マイカテープ1の断面において、マイカ粒子の重なりによって形成される間隙100箇所あたり、10箇所以上の偏在箇所が存在することが望ましい理由は、電気的弱点であるマイカ粒子3とマイカ粒子3との間隙に存在する樹脂を絶縁破壊経路とした時、対地電極まで絶縁破壊が進む過程において、上記の割合以上の密度であれば、ナノフィラーの効果により、破壊の進展を有意な程度まで抑制し、その効果を発現できるためである。 In the cross section of the mica tape 1, the reason why it is desirable that there are 10 or more unevenly distributed locations per 100 locations formed by the overlap of the mica particles is that the gap between the mica particles 3 and the mica particles 3 which are electrical weak points. In the process of dielectric breakdown progressing to the ground electrode when the resin present in the dielectric is used as a breakdown path, if the density is higher than the above ratio, the progress of the breakdown is suppressed to a significant level by the effect of the nanofiller, It is because an effect can be expressed.
 本発明において、ナノフィラー2は、水溶性高分子4でマイカ粒子3に担持されていることを特徴とする。絶縁ワニスとしては、非水溶性成分を50%以上含み、また熱硬化性樹脂を含むものである。熱硬化性樹脂の種類としては、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、シアネート樹脂等が挙げられる。また、近年の環境問題を受け、有機溶剤未添加型であることが多い。そのため、ワニス粘度を調整するため、スチレンモノマやアクリルモノマといった、反応性の希釈成分を添加することが一般的である。これらは非水溶性であるため、ナノフィラーを担持する水溶性高分子はワニスに溶解しない。これらに用いる水溶性高分子としては、アラビアガム、グアガム、ペクチン、デンプン、ゼラチン、コンドロイチン硫酸ナトリウム、またはエチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのセルロース誘導体、アルギン酸ナトリウム、アクリル酸ナトリウム、カルボキシビニルポリマ、ポリアクリル酸アミド、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコールがあげられる。このなかでも、フィラーの接着性に優れたセルロース誘導体から選ばれるものが好ましい。これらの水溶性高分子4を用いることで、ワニス含浸時に、水溶性高分子4によって絶縁テープ1に担時されたナノフィラー2は、水溶性高分子4が絶縁ワニスに溶解しないため、絶縁テープ1内において流動性を有さない。 In the present invention, the nanofiller 2 is characterized by being supported on the mica particles 3 with a water-soluble polymer 4. The insulating varnish contains 50% or more of a water-insoluble component and contains a thermosetting resin. Examples of the thermosetting resin include an epoxy resin, an acrylic resin, a polyester resin, and a cyanate resin. In addition, due to recent environmental problems, the organic solvent-free type is often used. Therefore, in order to adjust the varnish viscosity, it is common to add a reactive dilution component such as styrene monomer or acrylic monomer. Since these are water-insoluble, the water-soluble polymer carrying the nanofiller does not dissolve in the varnish. Water-soluble polymers used for these include gum arabic, guar gum, pectin, starch, gelatin, sodium chondroitin sulfate, or cellulose derivatives such as ethyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, sodium alginate, sodium acrylate, carboxy Examples thereof include vinyl polymer, polyacrylic acid amide, polyvinyl pyrrolidone, polyvinyl alcohol, and polyethylene glycol. Among these, those selected from cellulose derivatives having excellent filler adhesiveness are preferable. By using these water-soluble polymers 4, the nanofiller 2 carried on the insulating tape 1 by the water-soluble polymer 4 when impregnated with the varnish does not dissolve the water-soluble polymer 4 in the insulating varnish. 1 has no fluidity.
 また、水溶性高分子4は絶縁ワニスと溶解しないため、ナノフィラー2の担持のために、大量に添加すると、ワニスの絶縁テープ1への含浸性を低下させる場合がある。そのため、水溶性高分子4の添加量は、絶縁テープ1m当たり10g以下であることが望ましい。水溶性高分子4の添加量の下限値は、絶縁テープ1m当たり0.5gである。 Further, since the water-soluble polymer 4 does not dissolve in the insulating varnish, if it is added in a large amount for supporting the nano filler 2, the impregnation property of the varnish into the insulating tape 1 may be lowered. Therefore, the addition amount of the water-soluble polymer 4 is desirably 10 g or less per 1 m 2 of the insulating tape. The lower limit of the addition amount of the water-soluble polymer 4 is 0.5 g per 1 m 2 of the insulating tape.
 以上の構成の通り、ナノフィラー2を水溶性高分子4で担持し、且つナノフィラー2をマイカ粒子3の一方の面に偏在させることで以下の効果が得られる。
1点目の効果は、ナノフィラー2の凝集抑制効果である。ワニス含浸時においては、水溶性高分子4によって絶縁テープ1に担時されたナノフィラー2は、接着剤がワニスに溶解しないため、ワニス含浸後において凝集化は進行しない。そのため、ナノフィラー2特有の大きな比表面積を維持することができ、耐電圧性向上効果が得られる。
2点目の効果は、ナノフィラー2の濃度上限の向上である。一般的に、ナノフィラー2は比表面積が大きいために、少量の添加で、溶媒粘度が著しく増加することが知られているが、絶縁テープ1に担持したナノフィラー3は、ワニス含浸時、ワニスと混合しない。そのため、含浸工程においてワニスの粘度に影響を及ぼすことがなく、含浸可能な粘度を維持できる。これにより、高濃度にナノフィラーを添加でき、耐電圧性向上効果が得られる。
3点目の効果はナノフィラー2の偏在による耐電圧性向上効果である。絶縁破壊は、上記に記載の通りマイカの表面近傍を経路とする。固定子コイルの絶縁材料においては、マイカ粒子に垂直方向(図2の上下方向)の電界がかかり、絶縁破壊は樹脂を侵食しながら進行し、絶縁破壊先端がマイカ粒子の表面に到達した時には、破壊進路は約90°曲がってマイカ粒子の面方向に変わり、マイカ粒子の末端部まで侵食した後、再び電界方向にワニスの絶縁破壊が進行し、侵食が進むと考えられる。したがって、ナノフィラーをマイカの一方の面に偏在させることで、フィラー濃度を局所的に高めることができ、絶縁破壊経路の進展抑制に効果を発現させることができる。
As described above, by supporting the nanofiller 2 with the water-soluble polymer 4 and making the nanofiller 2 unevenly distributed on one surface of the mica particles 3, the following effects can be obtained.
The first effect is an aggregation suppressing effect of the nanofiller 2. At the time of varnish impregnation, the nanofiller 2 carried on the insulating tape 1 by the water-soluble polymer 4 does not dissolve in the varnish, so that the aggregation does not proceed after the varnish impregnation. Therefore, a large specific surface area specific to the nanofiller 2 can be maintained, and an effect of improving the voltage resistance can be obtained.
The second effect is improvement of the upper limit of the concentration of the nanofiller 2. In general, since the nanofiller 2 has a large specific surface area, it is known that the solvent viscosity increases remarkably when added in a small amount. However, the nanofiller 3 supported on the insulating tape 1 can be used when the varnish is impregnated. Do not mix with. Therefore, the impregnating process can maintain the viscosity capable of impregnation without affecting the viscosity of the varnish. Thereby, a nano filler can be added to high concentration and the withstand voltage improvement effect is acquired.
The third effect is an improvement in voltage resistance due to uneven distribution of the nanofiller 2. As described above, the dielectric breakdown takes a route near the surface of the mica. In the insulating material of the stator coil, an electric field in the vertical direction (vertical direction in FIG. 2) is applied to the mica particles, the dielectric breakdown proceeds while eroding the resin, and when the dielectric breakdown tip reaches the surface of the mica particles, The breakdown path is bent by about 90 ° and changes to the plane direction of the mica particles. After eroding to the end of the mica particles, the dielectric breakdown of the varnish proceeds again in the electric field direction, and the erosion is considered to proceed. Therefore, by making the nanofiller unevenly distributed on one surface of the mica, the filler concentration can be locally increased, and an effect can be exhibited in suppressing the progress of the dielectric breakdown path.
 そのため、この領域において、ナノフィラーが凝集せずに分散した状態でナノフィラー濃度が局所的に高い空間を形成することができれば、マイカ粒子の表面における絶縁破壊の進行を抑制することができる。本発明は、以上の構成の通り、ナノフィラー2を水溶性高分子4で担持し、且つナノフィラー2をマイカ粒子3の一方の面に偏在させることで、耐電圧性の向上を実現することができる。 Therefore, in this region, if the nanofiller concentration can be locally formed in a state where the nanofiller is dispersed without being aggregated, the progress of dielectric breakdown on the surface of the mica particles can be suppressed. According to the present invention, as described above, the nanofiller 2 is supported by the water-soluble polymer 4 and the nanofiller 2 is unevenly distributed on one surface of the mica particle 3 to thereby improve the voltage resistance. Can do.
 また一方で、耐電圧性向上のため、テープ製造時や含浸工程で用いるレジンにナノフィラーを添加し、絶縁物中にナノ粒子を導入するといったことが考えられる。しかしながら、マイカ粒子間にナノフィラーを高密度充填すると、耐電圧性は向上するものの、マイカ粒子間の接着成分(ワニス)成分が少なくなるため、テープ間の接着力が低下する。そのため、長期間にわたり、発電機運転時の振動、ヒートサイクルによるストレスを受け続けると、テープ間の剥離が発生しやすく、絶縁破壊が進行する原因となる。 On the other hand, in order to improve the voltage resistance, it is conceivable to add nanofillers to the resin used in the tape production or in the impregnation step and introduce nanoparticles into the insulator. However, when the nanofiller is densely filled between the mica particles, the voltage resistance is improved, but the adhesive component (varnish) component between the mica particles is reduced, so that the adhesive force between the tapes is reduced. For this reason, if the vibration due to generator operation and the stress due to the heat cycle are continued for a long period of time, peeling between the tapes is likely to occur, which causes a dielectric breakdown to proceed.
 また、テープをコイルに巻回する際、マイカ粒子間全体にナノ粒子を充填すると、マイカ粒子間の密着性が低下し、テープとしての引張強度が低下する。そのため、水溶性高分子にマイカとナノ粒子と混合し、密着性を向上させる手法が考えられるが、ワニスの含浸性が悪くなる点が問題となる。さらに、ナノ粒子がランダムに配置されてしまうので、耐電圧性を向上させるには多量のナノ粒子を添加する必要があった。 Also, when the tape is wound around the coil, if the entire mica particles are filled with nanoparticles, the adhesion between the mica particles is lowered and the tensile strength as the tape is lowered. Therefore, a technique for improving the adhesion by mixing mica and nanoparticles in a water-soluble polymer is conceivable, but the problem is that the impregnating property of the varnish is deteriorated. Furthermore, since the nanoparticles are randomly arranged, it is necessary to add a large amount of nanoparticles in order to improve the voltage resistance.
 本発明の、マイカ粒子の平面近傍にナノ粒子が偏在した構成によれば、絶縁破壊経路となるマイカ粒子面の近傍にナノ粒子が高濃度に含有されるため、高確率で絶縁破壊の進展を阻害し、耐電圧化を図ることができる。さらに、マイカ粒子間には、絶縁ワニスなどの接着成分が十分に含有されており、テープ間の接着力を維持することが可能である。 According to the configuration of the present invention in which the nanoparticles are unevenly distributed in the vicinity of the plane of the mica particles, since the nanoparticles are contained in a high concentration near the surface of the mica particles serving as the dielectric breakdown path, the progress of the dielectric breakdown can be achieved with high probability. Inhibits and can withstand voltage. Furthermore, adhesive components such as insulating varnish are sufficiently contained between the mica particles, and the adhesive force between the tapes can be maintained.
 次に、絶縁テープ1の製造方法について説明する。図4は、本発明の絶縁テープの製造工程を示すフロー図である。本実施の形態1の絶縁テープの製造方法は、マイカ粒子を含む分散液を抄造してマイカ層を形成する工程と、前記マイカ層に繊維補強材を含む補強層を貼り合わせる工程と、貼り合わせの後に、ナノフィラーと水溶性高分子とを含む混合液を前記マイカ層に塗布する工程とを含むことを特徴とするものである。 Next, a method for manufacturing the insulating tape 1 will be described. FIG. 4 is a flowchart showing the manufacturing process of the insulating tape of the present invention. The manufacturing method of the insulating tape of the first embodiment includes a step of forming a mica layer by making a dispersion containing mica particles, a step of bonding a reinforcing layer containing a fiber reinforcing material to the mica layer, and bonding And a step of applying a mixed liquid containing nanofiller and water-soluble polymer to the mica layer.
 具体的には、本実施の形態による絶縁テープの製造方法は、以下の手順により作製する。
まず、マイカ粒子3を含む分散液を混合し(S1)、撹拌(S2)してマイカ粒子3を含む分散液を調製する。得られた分散液を用いて抄造することによりマイカ層5を形成する(S3)。混合(S1)、撹拌(S2)は同時に行ってもよい。マイカ粒子3を含む分散液の調製方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、マイカ粒子3を水中に分散させることによって分散液を調製することができる。分散液におけるマイカ粒子3の含有量は、特に限定されず、マイカ粒子3の種類等に応じて適宜調整すればよい。
Specifically, the insulating tape manufacturing method according to the present embodiment is manufactured by the following procedure.
First, a dispersion containing mica particles 3 is mixed (S1) and stirred (S2) to prepare a dispersion containing mica particles 3. The mica layer 5 is formed by paper making using the obtained dispersion (S3). Mixing (S1) and stirring (S2) may be performed simultaneously. The method for preparing the dispersion liquid containing the mica particles 3 is not particularly limited, and methods known in the technical field can be used. For example, a dispersion can be prepared by dispersing mica particles 3 in water. The content of the mica particles 3 in the dispersion is not particularly limited, and may be appropriately adjusted according to the type of the mica particles 3 and the like.
 分散液の抄造方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、市販の抄紙機を用いて分散液を抄造することにより、マイカ層3となるマイカシートを得ることができる。 The method for producing the dispersion liquid is not particularly limited, and methods known in the technical field can be used. For example, a mica sheet to be the mica layer 3 can be obtained by making a dispersion using a commercially available paper machine.
 このとき、マイカシートは繊維補強材を含む補強層とは別の種類の支持材である、PETやポリイミドで形成された各種フィルムに貼り合わせてもよい。マイカシートを支持材に貼り合わせる場合、ロールコーター法、スプレー法等の公知の方法を用いてマイカシートに樹脂組成物を塗布した後、支持材と接着させればよい。 At this time, the mica sheet may be bonded to various films formed of PET or polyimide, which is a different type of support material from the reinforcing layer containing the fiber reinforcing material. When the mica sheet is bonded to the support material, the resin composition may be applied to the mica sheet using a known method such as a roll coater method or a spray method, and then bonded to the support material.
 マイカシートと支持材との接着に用いられる樹脂組成物としては、熱硬化性樹脂、硬化剤及び溶剤を一般に含む。熱硬化性樹脂としては、当該技術分野において公知のものを用いることができる。熱硬化性樹脂の具体例としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、ポリイミド樹脂等が挙げられる。これらの中でも、エポキシ樹脂は、耐熱性、接着性等の特性に優れているので好ましい。エポキシ樹脂の例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、脂環脂肪族エポキシ樹脂、グリシジル-アミノフェノール系エポキシ樹脂等が挙げられる。これらの樹脂は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The resin composition used for bonding the mica sheet and the support material generally contains a thermosetting resin, a curing agent, and a solvent. As a thermosetting resin, a well-known thing can be used in the said technical field. Specific examples of the thermosetting resin include an epoxy resin, an unsaturated polyester resin, a phenol resin, a melamine resin, a silicone resin, and a polyimide resin. Among these, epoxy resins are preferable because they are excellent in characteristics such as heat resistance and adhesiveness. Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, orthocresol novolak type epoxy resin, phenol novolac type epoxy resin, alicyclic aliphatic epoxy resin, glycidyl-aminophenol type epoxy resin, and the like. . These resins may be used alone or in combination of two or more.
 硬化剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。硬化剤の具体例としては、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体等が挙げられる。有機金属塩としては、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛などが挙げられる。これらの中でも、硬化性、溶剤溶解性の観点から、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート、亜鉛(II)アセチルアセトナート、ナフテン酸亜鉛、鉄(III)アセチルアセトナートが好ましく、コバルト(II)アセチルアセトナート、ナフテン酸亜鉛がより好ましい。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The curing agent is not particularly limited, and those known in the technical field can be used. Specific examples of the curing agent include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin. Specific examples of the organometallic complex include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate. Organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate. Examples of the organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate. Among these, from the viewpoint of curability and solvent solubility, cobalt (II) acetylacetonate, cobalt (III) acetylacetonate, zinc (II) acetylacetonate, zinc naphthenate, iron (III) acetylacetonate are Cobalt (II) acetylacetonate and zinc naphthenate are more preferable. These may be used alone or in combination of two or more.
 硬化剤の配合量は、使用する熱硬化性樹脂や硬化剤の種類等に応じて適宜設定する必要があるが、100質量部の熱硬化性樹脂に対して、一般的に0.1質量部~200質量部である。 The amount of the curing agent needs to be appropriately set according to the type of the thermosetting resin and the curing agent to be used, but is generally 0.1 parts by mass with respect to 100 parts by mass of the thermosetting resin. ~ 200 parts by mass.
 上記樹脂組成物に用いる溶剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。溶剤の具体例としては、トルエン、メチルエチルケトン等の有機溶剤が挙げられる。
これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
It does not specifically limit as a solvent used for the said resin composition, A well-known thing can be used in the said technical field. Specific examples of the solvent include organic solvents such as toluene and methyl ethyl ketone.
These may be used alone or in combination of two or more.
 溶剤の配合量は、樹脂組成物の所望とする粘度に応じて適宜調整すればよく、特に限定されない。 The blending amount of the solvent may be appropriately adjusted according to the desired viscosity of the resin composition, and is not particularly limited.
 次に、マイカ層5に繊維補強材6を含む補強層7を貼り合わせる(S4)。その後、ナノフィラー2と水溶性高分子4とを含む混合液をマイカ層4に塗布する。マイカシートに繊維補強材6を貼り合わせる方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、マイカシートと繊維補強材6とを樹脂組成物を用いて貼り合わせればよい。具体的には、ロールコーター法、スプレー法等の公知の方法を用いて樹脂組成物を繊維補強材6に塗布し、樹脂組成物中の溶剤を揮発させた後、その上にマイカシートを重ねる。その後、この積層物を60℃~70℃の加熱下で熱ロール等により加圧して圧着させればよい。また上記の支持材としてのフィルムを同様に貼り合わせることができる。 Next, the reinforcing layer 7 including the fiber reinforcing material 6 is bonded to the mica layer 5 (S4). Thereafter, a mixed solution containing the nanofiller 2 and the water-soluble polymer 4 is applied to the mica layer 4. The method for bonding the fiber reinforcing material 6 to the mica sheet is not particularly limited, and methods known in the technical field can be used. For example, the mica sheet and the fiber reinforcing material 6 may be bonded together using a resin composition. Specifically, the resin composition is applied to the fiber reinforcing material 6 using a known method such as a roll coater method or a spray method, and the solvent in the resin composition is volatilized, and then a mica sheet is stacked thereon. . Thereafter, the laminate may be pressure-bonded by heating with a hot roll or the like under heating at 60 ° C. to 70 ° C. Moreover, the film as said support material can be bonded together similarly.
 次に、ナノフィラー2と水溶性高分子4を含む混合液を作製する(S5)。混合液の組成は特に限定されず、例えば、樹脂組成物にナノフィラー2と水溶性高分子4を配合したものを用いることができる。この混合液に用いられる樹脂組成物としては、マイカシートと支持材との接着に用いられる樹脂組成物と同じものを用いることができる。上記の混合液に樹脂組成物を含めることによって、ナノフィラー2を保持する層に柔軟性を付与することが可能となる。ナノフィラー2の配合量は、使用する熱硬化性樹脂や硬化剤の種類等に応じて適宜設定する必要があるが、100質量部の熱硬化性樹脂に対して、一般的に20質量部~200質量部である。 Next, a mixed solution containing the nanofiller 2 and the water-soluble polymer 4 is prepared (S5). The composition of the mixed solution is not particularly limited, and for example, a resin composition in which nanofiller 2 and water-soluble polymer 4 are blended can be used. As the resin composition used for this mixed solution, the same resin composition used for bonding the mica sheet and the support material can be used. By including the resin composition in the above mixed liquid, it becomes possible to impart flexibility to the layer holding the nanofiller 2. The compounding amount of the nanofiller 2 needs to be appropriately set according to the type of the thermosetting resin and the curing agent to be used, but generally 20 parts by mass to 100 parts by mass of the thermosetting resin. 200 parts by mass.
 ナノフィラー2と水溶性高分子4を含む混合液としては、特に限定されず、例えば、上記したナノフィラー2と水溶性高分子4を溶剤で溶解させたものを用いることができる。溶剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。溶剤の具体例としては、水、エタノール、エチレングリコール等が挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。溶剤の配合量は、混合液の塗布性に応じて適宜調整すればよく、特に限定されない。 The mixed liquid containing the nanofiller 2 and the water-soluble polymer 4 is not particularly limited, and for example, a solution obtained by dissolving the nanofiller 2 and the water-soluble polymer 4 with a solvent can be used. It does not specifically limit as a solvent, A well-known thing can be used in the said technical field. Specific examples of the solvent include water, ethanol, ethylene glycol and the like. These may be used alone or in combination of two or more. The blending amount of the solvent may be appropriately adjusted according to the coating property of the mixed solution, and is not particularly limited.
 次に、ナノフィラー2と水溶性高分子4を含む混合液を補強層7付きのマイカ層5に塗布する(S6)。ナノフィラー2と水溶性高分子4とを含む混合液の塗布方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。塗布方法の例としては、スプレー法、ロールコーター法等が挙げられる。ナノフィラー2と水溶性高分子4とを含む混合液のマイカ層5への塗布後、所定の温度に加熱して溶剤を揮発させる(S7)ことにより、マイカ粒子3の一方の面にナノフィラー2が偏在し、これらが水溶性高分子4によって担持された絶縁テープ1を形成することができる。
乾燥時に、ナノシリカは自重により、マイカ粒子の一方の面に沈降して偏在する状態となる。ナノフィラーの塗布液には、水溶性高分子と揮発性の溶剤が含まれていることにより、偏在した状態を得ることが容易になる。最後に完成した絶縁テープ1を巻き取って一連の工程を終了する。
Next, a mixed solution containing the nanofiller 2 and the water-soluble polymer 4 is applied to the mica layer 5 with the reinforcing layer 7 (S6). The method for applying the mixed liquid containing the nanofiller 2 and the water-soluble polymer 4 is not particularly limited, and a method known in the technical field can be used. Examples of the coating method include a spray method and a roll coater method. After the mixture liquid containing the nanofiller 2 and the water-soluble polymer 4 is applied to the mica layer 5, the solvent is volatilized by heating to a predetermined temperature (S7). The insulating tape 1 in which 2 is unevenly distributed and these are supported by the water-soluble polymer 4 can be formed.
At the time of drying, the nanosilica settles on one side of the mica particles due to its own weight and becomes unevenly distributed. Since the nanofiller coating liquid contains a water-soluble polymer and a volatile solvent, it is easy to obtain an unevenly distributed state. Finally, the completed insulating tape 1 is wound up and the series of steps is completed.
 実施の形態2.
 本発明の実施の形態2による固定子コイルは、コイル導体と、このコイル導体の外周部に巻き付けられた実施の形態1の絶縁テープ1に液状熱硬化性樹脂組成物を含浸して加熱しながら加圧することにより硬化させてコイル導体と一体化された絶縁層とを有する。本実施の形態の固定子コイルは、使用する絶縁テープに特徴があり、その他の構成は従来公知の構成(例えば、図3に示す構成)を採用することができる。図3に示すように、回転電機の固定子において、コイル導体8と絶縁層9とを有する固定子コイル10は、固定子鉄心11の内周側に形成された複数のスロット12内で上下2段に収納され、これらの固定子コイル10間にスペーサー13が挿入されると共に、スロット12の開口端部に固定子コイル10を固定するためのウェッジ14が挿入される。
Embodiment 2. FIG.
In the stator coil according to the second embodiment of the present invention, the coil conductor and the insulating tape 1 according to the first embodiment wound around the outer periphery of the coil conductor are impregnated with the liquid thermosetting resin composition and heated. And an insulating layer integrated with the coil conductor by being cured by pressurization. The stator coil of the present embodiment is characterized by the insulating tape to be used, and a conventionally known configuration (for example, the configuration shown in FIG. 3) can be adopted as the other configuration. As shown in FIG. 3, in the stator of the rotating electrical machine, the stator coil 10 having the coil conductor 8 and the insulating layer 9 is vertically moved in a plurality of slots 12 formed on the inner peripheral side of the stator core 11. A spacer 13 is inserted between the stator coils 10, and a wedge 14 for fixing the stator coil 10 is inserted into the opening end of the slot 12.
 このような構造を有する固定子コイル10は、以下のようにして製造される。まず、絶縁被覆された複数の素線導体を束ねて構成されたコイル導体8の外周部に、絶縁テープ1を一部(例えば、絶縁テープ1の幅の半分の部分)が互いに重なるように複数回巻き付ける。ここで、コイル導体8を構成する素線としては、導電性であれば特に限定されず、銅、アルミニウム、銀等からなる素線を用いることができる。 The stator coil 10 having such a structure is manufactured as follows. First, a plurality of insulating tapes 1 (for example, a half of the width of the insulating tape 1) overlap each other on the outer periphery of the coil conductor 8 formed by bundling a plurality of insulated wire conductors. Wind around. Here, the wire constituting the coil conductor 8 is not particularly limited as long as it is conductive, and a wire made of copper, aluminum, silver or the like can be used.
 次に、コイル導体8に巻き付けた絶縁テープ1に液状熱硬化性樹脂組成物を含浸させる。ここで、含浸に用いられる液状熱硬化性樹脂組成物としては、特に限定されないが、一般に、熱硬化性樹脂及び硬化剤を含む。熱硬化性樹脂としては、特に限定されず、実施の形態1において例示したものと同じものを用いることができる。 Next, the liquid thermosetting resin composition is impregnated into the insulating tape 1 wound around the coil conductor 8. Here, the liquid thermosetting resin composition used for impregnation is not particularly limited, but generally includes a thermosetting resin and a curing agent. It does not specifically limit as a thermosetting resin, The same thing as what was illustrated in Embodiment 1 can be used.
 硬化剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。硬化剤の例としては、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水ハイミック酸等の脂環式酸無水物;ドデセニル無水コハク酸等の脂肪族酸無水物;無水フタル酸、無水トリメリット酸等の芳香族酸無水物;ジシアンジアミド、アジピン酸ジヒドラジド等の有機ジヒドラジド;トリス(ジメチルアミノメチル)フェノール;ジメチルベンジルアミン;1,8-ジアザビシクロ(5,4,0)ウンデセン及びその誘導体;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール等のイミダゾール類等が挙げられる。これらの硬化剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。硬化剤の配合量は、使用する熱硬化性樹脂や硬化剤の種類等に応じて適宜設定する必要があるが、100質量部の熱硬化性樹脂に対して、一般的に0.1質量部~200質量部である。 The curing agent is not particularly limited, and those known in the technical field can be used. Examples of curing agents include: cycloaliphatic acid anhydrides such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hymic anhydride; aliphatic acid anhydrides such as dodecenyl succinic anhydride; phthalic anhydride, trihydric anhydride Aromatic acid anhydrides such as merit acid; organic dihydrazides such as dicyandiamide and adipic acid dihydrazide; tris (dimethylaminomethyl) phenol; dimethylbenzylamine; 1,8-diazabicyclo (5,4,0) undecene and derivatives thereof; And imidazoles such as -methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, and the like. These curing agents may be used alone or in combination of two or more. The amount of the curing agent needs to be appropriately set according to the type of the thermosetting resin and the curing agent to be used, but is generally 0.1 parts by mass with respect to 100 parts by mass of the thermosetting resin. ~ 200 parts by mass.
 液状熱硬化性樹脂組成物の含浸方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。含浸方法の例としては、真空含浸、真空加圧含浸、常圧含浸等が挙げられる。含浸の際の条件は、特に限定されることはなく、使用する液状熱硬化性樹脂組成物等の種類に応じて適宜調整すればよい。 The method for impregnating the liquid thermosetting resin composition is not particularly limited, and methods known in the technical field can be used. Examples of the impregnation method include vacuum impregnation, vacuum pressure impregnation, and normal pressure impregnation. The conditions for the impregnation are not particularly limited, and may be appropriately adjusted according to the type of the liquid thermosetting resin composition to be used.
 液状熱硬化性樹脂組成物を絶縁テープ1に含浸させた後、コイル導体8を絶縁テープ1の外側から型締めすることにより、絶縁テープ1に圧力を加える。次に、絶縁テープ1を加熱等することにより、絶縁テープ1に含浸されている液状熱硬化性樹脂組成物を硬化させて絶縁層9を得る。これにより、固定子コイル10が得られる。 After impregnating the insulating tape 1 with the liquid thermosetting resin composition, the coil conductor 8 is clamped from the outside of the insulating tape 1 to apply pressure to the insulating tape 1. Next, by heating the insulating tape 1, the liquid thermosetting resin composition impregnated in the insulating tape 1 is cured to obtain the insulating layer 9. Thereby, the stator coil 10 is obtained.
 上記のようにして製造される本実施の形態の固定子コイル10は、実施の形態1の絶縁テープ1を用いているため、ワニス含浸時のナノフィラー2の凝集を抑制できる。またナノフィラー2は、ワニスに不溶な水溶性高分子4によって絶縁テープ1に担時され、ワニス含浸時にワニスと混合しない。そのため、ワニス粘度に影響を及ぼすことがなく、また高濃度にナノフィラー2を添加することが可能である。これらにより耐電圧性向上効果が得られる。また、ナノフィラー2の偏在により、マイカ粒子3の表面近傍にナノフィラー2が分散した状態で局所的に粒子濃度が高い空間を形成することができるため、マイカ粒子3の表面における絶縁破壊の進行を抑制することができる。 Since the stator coil 10 of the present embodiment manufactured as described above uses the insulating tape 1 of the first embodiment, the aggregation of the nanofiller 2 during varnish impregnation can be suppressed. The nanofiller 2 is carried on the insulating tape 1 by the water-soluble polymer 4 insoluble in the varnish, and does not mix with the varnish when impregnated with the varnish. Therefore, the nano filler 2 can be added at a high concentration without affecting the varnish viscosity. By these, the withstand voltage improvement effect is obtained. Further, since the nano filler 2 is unevenly distributed, a space having a high particle concentration can be formed in a state in which the nano filler 2 is dispersed in the vicinity of the surface of the mica particle 3. Can be suppressed.
 以下、実施例及び比較例によって本発明の詳細を説明する。なお、これらの例によって本発明が限定されるものではない。 Hereinafter, the details of the present invention will be described with reference to Examples and Comparative Examples. In addition, this invention is not limited by these examples.
 (実施例1)
 絶縁テープは上記の手法にて製造したもので、親水性のナノシリカをテープ目付量10g/m2で塗布し、水溶性高分子として、ヒドロキシエチルセルロース(目付量1g/m2)を用いている。
またコイル絶縁物は、各絶縁テープを導体に15回、半重ねで巻回し、ビスフェノールA型エポキシ樹脂と酸無水物からなる樹脂混合物に真空含浸し150℃で12時間加熱硬化してコイルを得た。
(Example 1)
The insulating tape is manufactured by the above-described method, and hydrophilic nano silica is applied at a tape weight of 10 g / m 2 , and hydroxyethyl cellulose (weight of 1 g / m 2 ) is used as the water-soluble polymer.
In addition, coil insulation is obtained by winding each insulation tape around a conductor 15 times in half-lap, vacuum impregnating a resin mixture made of bisphenol A type epoxy resin and acid anhydride, and heating and curing at 150 ° C. for 12 hours to obtain a coil. It was.
 (比較例1)
 ナノフィラーを含まない絶縁テープを用いて、コイル導体周辺にコイル絶縁物を形成した。その他のテープ材料およびコイル材料の構成は実施例1と同一とした。
(Comparative Example 1)
A coil insulator was formed around the coil conductor using an insulating tape containing no nanofiller. The other tape material and coil material configurations were the same as in Example 1.
 (比較例2)
 また、ナノフィラーの偏在の効果を確かめるため、ナノフィラーがマイカ層内に均一に分散したテープを作製した。同テープの製造においては、マイカと繊維補強材を貼り合わせる工程にて、ナノフィラーとエポキシ樹脂を溶剤に混合し、ホモジナイザを用いて、ナノフィラーを単分散化した溶液をマイカに塗布、乾燥させた。作成後の観察により、マイカ粒子の隙間にナノフィラーが均一に分散していることを確認した。これを用いてコイルを作製した。
(Comparative Example 2)
Moreover, in order to confirm the effect of uneven distribution of the nanofiller, a tape in which the nanofiller was uniformly dispersed in the mica layer was produced. In the production of the tape, in the process of bonding the mica and the fiber reinforcement, the nano filler and epoxy resin are mixed in a solvent, and the solution obtained by monodispersing the nano filler is applied to the mica using a homogenizer and dried. It was. Observation after the creation confirmed that the nanofiller was uniformly dispersed in the gaps between the mica particles. A coil was produced using this.
 (比較例3)
 水溶性高分子の効果を確かめるため、本発明の方法にてナノフィラーをテープに付与する際、水溶性高分子を用いずに含浸に用いる樹脂と同じものを使用して作製した。これを用いてコイルを作製した。
(Comparative Example 3)
In order to confirm the effect of the water-soluble polymer, when the nanofiller was applied to the tape by the method of the present invention, it was prepared using the same resin as that used for impregnation without using the water-soluble polymer. A coil was produced using this.
 図5は、実施の形態2に係る上記の実施例および比較例のコイルの絶縁破壊電圧を相対的に示したグラフである。図中のエラーバーは、複数の測定におけるデータのばらつき範囲を示す。絶縁破壊電圧測定の結果、実施例1の絶縁層は、比較例1と比較して約30%の特性向上効果が確認できた。また、比較例2と比較例3は、ナノフィラーを添加した絶縁テープを用いているが、実施例1の破壊電圧向上効果を発現できなかった。これは、フィラーが含浸用の樹脂とともに流動し、絶縁物系内に含有する量が低下したこと、または、ナノフィラーの凝集が進行したことが原因と推定される。 FIG. 5 is a graph relatively showing the dielectric breakdown voltages of the coils of the above-described examples and comparative examples according to the second embodiment. Error bars in the figure indicate data variation ranges in a plurality of measurements. As a result of measuring the breakdown voltage, the insulating layer of Example 1 was confirmed to have an effect of improving characteristics by about 30% as compared with Comparative Example 1. Moreover, although the comparative example 2 and the comparative example 3 use the insulating tape which added the nano filler, the breakdown voltage improvement effect of Example 1 was not expressed. It is estimated that this is because the filler flows together with the resin for impregnation and the amount contained in the insulator system is reduced, or the aggregation of the nanofiller has progressed.
 実施の形態3.
 ここでは、上述の絶縁テープ1を、タービン発電機などの回転電機のコイル絶縁に適用した実施の形態について説明する。図6(a)は本発明の回転電機の回転軸Jに直交する断面図、図6(b)は、本発明の回転電機の回転軸Jに沿った断面を示す断面図である。なお、図6(a)は、図6(b)の1a-1a線における切断面に相当する。図6において、回転電機100の固定子は、図示しない回転子Kを収納する円筒状の固定子鉄心101と、鉄心締付部材102、保持リング103、フレーム104、中枠部材105、弾性支持部材106などを備えている。
Embodiment 3.
Here, an embodiment in which the above-described insulating tape 1 is applied to coil insulation of a rotating electrical machine such as a turbine generator will be described. 6A is a cross-sectional view orthogonal to the rotation axis J of the rotating electrical machine of the present invention, and FIG. 6B is a cross-sectional view showing a cross section along the rotation axis J of the rotating electrical machine of the present invention. FIG. 6A corresponds to a cut surface taken along line 1a-1a in FIG. 6B. In FIG. 6, the stator of the rotating electrical machine 100 includes a cylindrical stator core 101 that houses a rotor K (not shown), an iron core fastening member 102, a holding ring 103, a frame 104, an intermediate frame member 105, and an elastic support member. 106 and the like.
 鉄心締付部材102は、固定子鉄心101の外周部に周方向に所定間隔をあけて設けられ、該固定子鉄心101を軸方向に締付けるもので、この例では8本用いられている。
保持リング103は、固定子鉄心101の外周部に軸方向に所定間隔をあけて設けられ該固定子鉄心を鉄心締付部材102の上から中心部方向に締付ける如く保持する軸方向に扁平なリングであり、この例では4箇所で用いられている。
The iron core fastening members 102 are provided on the outer peripheral portion of the stator iron core 101 at predetermined intervals in the circumferential direction, and are used to fasten the stator iron core 101 in the axial direction. In this example, eight iron core fastening members 102 are used.
The retaining ring 103 is provided on the outer peripheral portion of the stator core 101 at a predetermined interval in the axial direction, and is a flat ring in the axial direction that holds the stator core so as to be tightened from the top of the core tightening member 102 toward the central portion. In this example, it is used at four locations.
 フレーム104は、固定子鉄心101の周りにあって固定子鉄心101と間隔をあけて固定子鉄心101を包囲する円筒状の容器である。
中枠部材105は、フレーム104内面に軸方向に所定間隔をあけて軸心方向に突設されたリング状の部材であり、この例では5箇所で用いられている。
弾性支持部材106は、隣り合う中枠部材105と、軸方向中央部で保持リング103に固定されたばね板であり、この例では4本の弾性支持部材106を備えている。
図6に示された固定子は、例えばタービン発電機の電機子を構成するものであり、固定子鉄心101の内周部には軸方向に形成されたスロットが周方向に所定数設けられ、そのスロット内には固定子コイルが配設されている。
The frame 104 is a cylindrical container that surrounds the stator core 101 around the stator core 101 and is spaced from the stator core 101.
The middle frame member 105 is a ring-shaped member that protrudes from the inner surface of the frame 104 in the axial direction at a predetermined interval in the axial direction, and is used at five locations in this example.
The elastic support member 106 is a spring plate fixed to the holding ring 103 at an adjacent middle frame member 105 and an axially central portion. In this example, the elastic support member 106 includes four elastic support members 106.
The stator shown in FIG. 6 constitutes, for example, an armature of a turbine generator, and a predetermined number of slots formed in the axial direction are provided in the inner peripheral portion of the stator core 101 in the circumferential direction. A stator coil is disposed in the slot.
 図7は本実施の形態3による回転電機のスロット内部における固定子コイルを示す部分断面図である。この図では、スロット112の内部の構成が分かりやすいように、固定子コイル120の一部をスロットから引き出して示している。ここで、スロット112は鉄心111の積層方向、即ち回転軸Jの方向に伸びた形状で、固定子コイル120を挿入する溝である。鉄心111はケイ素鋼板を積層した固定子鉄心であり、固定子コイル120は、コイル導体108と、本発明に係る前述の絶縁素材からなる含浸可能な対地絶縁層109で、絶縁のためにコイル導体108の外側に巻回して構成されている。対地絶縁層109の外周には、半導電性の表面コロナ防止層115が形成されている。 FIG. 7 is a partial sectional view showing the stator coil inside the slot of the rotating electrical machine according to the third embodiment. In this figure, a part of the stator coil 120 is drawn out from the slot so that the internal configuration of the slot 112 can be easily understood. Here, the slot 112 is a groove into which the stator coil 120 is inserted in a shape extending in the stacking direction of the iron core 111, that is, in the direction of the rotation axis J. The iron core 111 is a stator iron core in which silicon steel plates are laminated. The stator coil 120 is a coil conductor 108 and a ground insulating layer 109 that can be impregnated made of the above-described insulating material according to the present invention. 108 is wound around the outside. A semiconductive surface corona prevention layer 115 is formed on the outer periphery of the ground insulating layer 109.
 また、スロット112への挿入口側に近いコイルが上口コイル116、スロットへの挿入口側から遠いコイルが下口コイル117である。上口コイル116をスロット112の溝に固定するため、挿入口にはウェッジ114が設けられている。また、スロット112内での固定子コイル120の応力緩和を図るため、スロット112の内面には、表面に離型処理を施した絶縁性スペーサー123が設けられ、絶縁性スペーサー123の内面となる離型面122に固定子コイル120が配置される。 Further, the coil near the insertion port side to the slot 112 is the upper opening coil 116, and the coil far from the slot insertion port side is the lower opening coil 117. In order to fix the upper opening coil 116 in the groove of the slot 112, a wedge 114 is provided at the insertion opening. In addition, in order to relieve stress of the stator coil 120 in the slot 112, an insulating spacer 123 whose surface has been subjected to a mold release process is provided on the inner surface of the slot 112, and the inner surface of the insulating spacer 123 is separated. The stator coil 120 is disposed on the mold surface 122.
 さらに、本発明の回転電機は、図7に示すような固定子コイル120が環状に設置されて円筒形状を成し、中央部分に回転子Kが配置される。円筒形状の長手方向が固定子鉄心111の積層方向および回転軸Jの延伸方向と一致しており、環状に設けられた複数のスロット112のそれぞれに上口コイル116と下口コイル117が挿入されている。そして、このスロット112に挿入されている上口コイル116、下口コイル117および他のスロットのそれぞれに挿入されたコイルは電気的に接続されていなければならない。 Furthermore, in the rotating electrical machine of the present invention, a stator coil 120 as shown in FIG. 7 is annularly installed to form a cylindrical shape, and the rotor K is disposed at the center. The longitudinal direction of the cylindrical shape coincides with the stacking direction of the stator core 111 and the extending direction of the rotation axis J, and the upper coil 116 and the lower coil 117 are inserted into each of a plurality of slots 112 provided in an annular shape. ing. And the upper opening coil 116 and the lower opening coil 117 inserted in this slot 112 and the coil inserted in each of the other slots must be electrically connected.
 タービン発電機などの回転電機にあっては、一層の高出力化や小型化が求められている。高出力化および小型化を実現するためにはコイル絶縁物の絶縁性能を向上させることが必須である。前述の本発明に係る絶縁テープを用いた絶縁層を回転電機の固定子コイルに適用することにより、一層の高出力化および小型化を図ることができる。 Rotating electrical machines such as turbine generators are required to have higher output and smaller size. In order to achieve high output and miniaturization, it is essential to improve the insulation performance of the coil insulator. By applying the insulating layer using the above-described insulating tape according to the present invention to a stator coil of a rotating electrical machine, it is possible to further increase the output and reduce the size.
 図8は、回転電機の固定子コイルに用いられるコイル導体108の形状の一例を示す図である。通常のコイル導体108は、スロット112に挿入される、断面が長方形となる四角柱状の直線部の両端に、スロットに挿入されないコイルエンド部118を有しており、コイルエンド部118は湾曲した形状を有している。従来は、湾曲したコイルエンド部118に絶縁テープを巻回する際に、テープがコイルの湾曲形状に沿って変形できず、テープの一部が断裂し、その結果、絶縁特性が低下することがあった。本発明の絶縁テープ1を用いると、水溶性高分子4の緩衝作用により、絶縁テープ1が巻回されるとともにコイルエンド部118に追従して変形することから、テープ断裂の発生確率は相対的に低くなる。実際、発電機などの回転電機が完成した後に、コイル絶縁特性を計測して絶縁性能を確認したところ、本発明の絶縁テープ1を用いることで、製造毎に製品の絶縁性能が安定していることを確認することができた。 FIG. 8 is a diagram showing an example of the shape of the coil conductor 108 used for the stator coil of the rotating electrical machine. The normal coil conductor 108 has coil end portions 118 that are not inserted into the slots at both ends of a rectangular columnar straight portion that is inserted into the slot 112 and has a rectangular cross section, and the coil end portion 118 has a curved shape. have. Conventionally, when an insulating tape is wound around a curved coil end portion 118, the tape cannot be deformed along the curved shape of the coil, and a part of the tape is torn, resulting in a decrease in insulation characteristics. there were. When the insulating tape 1 of the present invention is used, the insulating tape 1 is wound by the buffering action of the water-soluble polymer 4 and is deformed following the coil end portion 118. It becomes low. In fact, after the rotating electrical machine such as a generator was completed, the insulation performance was confirmed by measuring the coil insulation characteristics, and by using the insulation tape 1 of the present invention, the insulation performance of the product was stabilized for each production. I was able to confirm that.
 1 絶縁テープ、2 ナノフィラー、3 マイカ粒子、4 水溶性高分子、5 マイカ層、6 繊維補強材、7 補強層、8 コイル導体、9 絶縁層、10 固定子コイル、11 固定子鉄心、12 スロット、13 スペーサー、14 ウェッジ、100 回転電機、101 固定子鉄心、102 鉄心締付部材、103 保持リング、104 フレーム、105 中枠部材、106 弾性支持部材、108 コイル導体、109 対地絶縁層、111 鉄心、112 スロット、114 ウェッジ、115 表面コロナ防止層、116 上口コイル、117 下口コイル、120 固定子コイル、122 離型面、123スペーサー 1 insulating tape, 2 nanofiller, 3 mica particles, 4 water-soluble polymer, 5 mica layer, 6 fiber reinforcing material, 7 reinforcing layer, 8 coil conductor, 9 insulating layer, 10 stator coil, 11 stator core, 12 Slot, 13 spacer, 14 wedge, 100 rotating electrical machine, 101 stator iron core, 102 iron core fastening member, 103 retaining ring, 104 frame, 105 middle frame member, 106 elastic support member, 108 coil conductor, 109 ground insulation layer, 111 Iron core, 112 slots, 114 wedges, 115 surface corona prevention layer, 116 upper opening coil, 117 lower opening coil, 120 stator coil, 122 release surface, 123 spacer

Claims (9)

  1. 扁平なマイカ粒子と水溶性高分子により担持されて前記マイカ粒子の一方の面に偏在するナノフィラーとを含むマイカ層と、
    前記マイカ層上に積層された補強層と
    を有することを特徴とする絶縁テープ。
    A mica layer comprising flat mica particles and a nanofiller supported by a water-soluble polymer and unevenly distributed on one surface of the mica particles;
    An insulating tape comprising: a reinforcing layer laminated on the mica layer.
  2. 前記ナノフィラーは、シリカの粒子であることを特徴とする請求項1記載の絶縁テープ。 The insulating tape according to claim 1, wherein the nanofiller is silica particles.
  3. 前記水溶性高分子は、セルロース誘導体であることを特徴とする請求項1又は2記載の絶縁テープ。 The insulating tape according to claim 1 or 2, wherein the water-soluble polymer is a cellulose derivative.
  4. 前記水溶性高分子は、エチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースのいずれかであることを特徴とする請求項3に記載の絶縁テープ。 The insulating tape according to claim 3, wherein the water-soluble polymer is one of ethyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose.
  5. マイカ粒子を含む分散液を抄造してマイカ層を形成する工程と、
    前記マイカ層に繊維補強材を含む補強層を貼り合わせる工程と、
    ナノフィラーと水溶性高分子とを含む混合液を前記マイカ層に塗布する工程と
    を含むことを特徴とする絶縁テープの製造方法。
    Forming a mica layer by making a dispersion containing mica particles;
    Bonding the reinforcing layer containing a fiber reinforcing material to the mica layer;
    And a step of applying a mixed liquid containing nanofiller and water-soluble polymer to the mica layer.
  6. コイル導体と、
    前記コイル導体に請求項1~3の何れか一項に記載の絶縁テープが巻き付けられており、前記絶縁テープに液状熱硬化性樹脂組成物が含浸している絶縁層と
    を有することを特徴とする固定子コイル。
    A coil conductor;
    An insulating tape according to any one of claims 1 to 3 is wound around the coil conductor, and the insulating tape has an insulating layer impregnated with a liquid thermosetting resin composition. Stator coil to play.
  7. コイル導体に請求項1~3の何れか一項に記載の絶縁テープを巻き付ける工程と、
    前記絶縁テープに液状熱硬化性樹脂組成物を含浸して加熱加圧成形する工程と
    を含むことを特徴とする固定子コイルの製造方法。
    Winding the insulating tape according to any one of claims 1 to 3 around a coil conductor;
    A method of manufacturing a stator coil, comprising: impregnating the insulating tape with a liquid thermosetting resin composition;
  8. 複数のスロットを備える鉄心と、前記複数のスロット内に挿入されたコイルとを備える発電機であって、
    前記コイルはコイル導体の外周に絶縁テープが巻かれており、
    前記絶縁テープは、
    扁平なマイカ粒子と水溶性高分子により担持されて前記マイカ粒子の一方の面に偏在するナノフィラーとを含むマイカ層と、
    前記マイカ層上に積層された補強層とを有する
    発電機。
    A generator comprising an iron core having a plurality of slots, and a coil inserted into the plurality of slots,
    The coil has an insulating tape wound around the outer periphery of the coil conductor,
    The insulating tape is
    A mica layer comprising flat mica particles and a nanofiller supported by a water-soluble polymer and unevenly distributed on one surface of the mica particles;
    A generator having a reinforcing layer laminated on the mica layer.
  9. 前記コイルは、前記スロット外となるコイルエンド部においても前記絶縁テープが巻かれていることを特徴とする請求項8に記載の発電機。 The generator according to claim 8, wherein the insulating tape is wound around the coil end portion outside the slot.
PCT/JP2015/084470 2014-12-22 2015-12-09 Insulating tape and method for manufacturing same, stator coil and method for manufacturing same, and generator WO2016104141A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016530032A JPWO2016104141A1 (en) 2014-12-22 2015-12-09 Insulating tape and manufacturing method thereof, stator coil and manufacturing method thereof, and generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-258832 2014-12-22
JP2014258832 2014-12-22

Publications (1)

Publication Number Publication Date
WO2016104141A1 true WO2016104141A1 (en) 2016-06-30

Family

ID=56150171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084470 WO2016104141A1 (en) 2014-12-22 2015-12-09 Insulating tape and method for manufacturing same, stator coil and method for manufacturing same, and generator

Country Status (2)

Country Link
JP (1) JPWO2016104141A1 (en)
WO (1) WO2016104141A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018002972A1 (en) * 2016-07-01 2018-01-04 東芝三菱電機産業システム株式会社 Method for producing insulating structure, insulating structure, and rotating electrical machine
WO2018002973A1 (en) * 2016-07-01 2018-01-04 東芝三菱電機産業システム株式会社 Method for producing insulating structure, insulating structure, and rotating electrical machine
WO2018002974A1 (en) * 2016-07-01 2018-01-04 東芝三菱電機産業システム株式会社 Method for producing corona discharge-preventing structure, corona discharge-preventing structure, and rotating electrical machine
WO2018002971A1 (en) * 2016-07-01 2018-01-04 東芝三菱電機産業システム株式会社 Method for producing insulating structure, insulating structure, and rotating electrical machine
WO2018002970A1 (en) * 2016-07-01 2018-01-04 東芝三菱電機産業システム株式会社 Method for producing insulating structure, insulating structure, and rotating electrical machine
CN110492646A (en) * 2019-08-08 2019-11-22 中国长江动力集团有限公司 The electric generator rotor coil of turn-to-turn insulation structure and its composition
JP2019204687A (en) * 2018-05-23 2019-11-28 小林 博 Manufacturing method of insulation film of aggregate of flat powders in which flat surfaces of insulation flat powders with shape of bottom are overlapped on bottom of container
JPWO2022044420A1 (en) * 2020-08-28 2022-03-03

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11206055A (en) * 1998-01-12 1999-07-30 Hitachi Ltd Electrical insulation coil and rotating machine therewith
JP2000058314A (en) * 1998-08-03 2000-02-25 Hitachi Ltd High temperature conductive coil and insulating sheet and manufacture thereof
JP2002330562A (en) * 2001-04-27 2002-11-15 Toshiba Corp Coil for rotary electric machine, and mica tape used for insulation of the coil
JP2003530661A (en) * 2000-02-24 2003-10-14 シーメンス ウエスチングハウス パワー コーポレイション Mica tape with enhanced dielectric strength
JP2005199562A (en) * 2004-01-15 2005-07-28 Toshiba Corp Tape member or sheet member and method for producing tape member or sheet member
WO2015114907A1 (en) * 2014-01-29 2015-08-06 三菱電機株式会社 Insulating tape and manufacturing method therefor, stator coil and manufacturing method therefor, and rotating electrical machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11206055A (en) * 1998-01-12 1999-07-30 Hitachi Ltd Electrical insulation coil and rotating machine therewith
JP2000058314A (en) * 1998-08-03 2000-02-25 Hitachi Ltd High temperature conductive coil and insulating sheet and manufacture thereof
JP2003530661A (en) * 2000-02-24 2003-10-14 シーメンス ウエスチングハウス パワー コーポレイション Mica tape with enhanced dielectric strength
JP2002330562A (en) * 2001-04-27 2002-11-15 Toshiba Corp Coil for rotary electric machine, and mica tape used for insulation of the coil
JP2005199562A (en) * 2004-01-15 2005-07-28 Toshiba Corp Tape member or sheet member and method for producing tape member or sheet member
WO2015114907A1 (en) * 2014-01-29 2015-08-06 三菱電機株式会社 Insulating tape and manufacturing method therefor, stator coil and manufacturing method therefor, and rotating electrical machine

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018002972A1 (en) * 2016-07-01 2019-06-13 東芝三菱電機産業システム株式会社 Insulation structure manufacturing method, insulation structure and rotary electric machine
WO2018002974A1 (en) * 2016-07-01 2018-01-04 東芝三菱電機産業システム株式会社 Method for producing corona discharge-preventing structure, corona discharge-preventing structure, and rotating electrical machine
JPWO2018002970A1 (en) * 2016-07-01 2019-06-13 東芝三菱電機産業システム株式会社 Insulation structure manufacturing method, insulation structure and rotary electric machine
WO2018002971A1 (en) * 2016-07-01 2018-01-04 東芝三菱電機産業システム株式会社 Method for producing insulating structure, insulating structure, and rotating electrical machine
WO2018002970A1 (en) * 2016-07-01 2018-01-04 東芝三菱電機産業システム株式会社 Method for producing insulating structure, insulating structure, and rotating electrical machine
CN108886285A (en) * 2016-07-01 2018-11-23 东芝三菱电机产业系统株式会社 Insulation system manufacturing method, insulation system and rotating electric machine
CN108886284A (en) * 2016-07-01 2018-11-23 东芝三菱电机产业系统株式会社 Insulation system manufacturing method, insulation system and rotating electric machine
CN109075644A (en) * 2016-07-01 2018-12-21 东芝三菱电机产业系统株式会社 Corona discharge prevents structure making process, corona discharge from preventing structure and rotating electric machine
CN109075642A (en) * 2016-07-01 2018-12-21 东芝三菱电机产业系统株式会社 Insulation system manufacturing method, insulation system and rotating electric machine
CN109075643A (en) * 2016-07-01 2018-12-21 东芝三菱电机产业系统株式会社 Insulation system manufacturing method, insulation system and rotating electric machine
JPWO2018002974A1 (en) * 2016-07-01 2019-04-18 東芝三菱電機産業システム株式会社 Corona discharge prevention structure manufacturing method, corona discharge prevention structure and rotary electric machine
JPWO2018002973A1 (en) * 2016-07-01 2019-04-18 東芝三菱電機産業システム株式会社 Insulation structure manufacturing method, insulation structure and rotary electric machine
US20190149007A1 (en) * 2016-07-01 2019-05-16 Toshiba Mitsubishi-Electric Industrial Systems Corporation Producing method for electrical insulating structure, electrical insulating structure and rotating electrical machine
US20190149008A1 (en) * 2016-07-01 2019-05-16 Toshiba Mitsubishi-Electric Industrial Systems Corporation Electrical insulating structure producing method, electrical insulating structure and rotating electrical machine
WO2018002972A1 (en) * 2016-07-01 2018-01-04 東芝三菱電機産業システム株式会社 Method for producing insulating structure, insulating structure, and rotating electrical machine
WO2018002973A1 (en) * 2016-07-01 2018-01-04 東芝三菱電機産業システム株式会社 Method for producing insulating structure, insulating structure, and rotating electrical machine
JPWO2018002971A1 (en) * 2016-07-01 2019-06-13 東芝三菱電機産業システム株式会社 Insulation structure manufacturing method, insulation structure and rotary electric machine
US10938260B2 (en) 2016-07-01 2021-03-02 Toshiba Mitsubishi-Electric Industrial Systems Corporation Electrical insulating structure producing method, electrical insulating structure and rotating electrical machine
US10931159B2 (en) 2016-07-01 2021-02-23 Toshiba Mitsubishi-Electric Industrial Systems Corporation Electrical insulating structure producing method, electrical insulating structure and rotating electrical machine
EP3480923A4 (en) * 2016-07-01 2020-01-08 Toshiba Mitsubishi-Electric Industrial Systems Corporation Method for producing corona discharge-preventing structure, corona discharge-preventing structure, and rotating electrical machine
EP3480919A4 (en) * 2016-07-01 2020-03-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation Method for producing insulating structure, insulating structure, and rotating electrical machine
EP3480921A4 (en) * 2016-07-01 2020-03-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation Method for producing insulating structure, insulating structure, and rotating electrical machine
EP3480920A4 (en) * 2016-07-01 2020-03-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation Method for producing insulating structure, insulating structure, and rotating electrical machine
CN108886285B (en) * 2016-07-01 2020-10-02 东芝三菱电机产业系统株式会社 Insulation structure manufacturing method, insulation structure and rotating electrical machine
US10903710B2 (en) 2016-07-01 2021-01-26 Toshiba Mitsubishi-Electric Industrial Systems Corporation Producing method for electrical insulating structure, electrical insulating structure and rotating electrical machine
JP2019204687A (en) * 2018-05-23 2019-11-28 小林 博 Manufacturing method of insulation film of aggregate of flat powders in which flat surfaces of insulation flat powders with shape of bottom are overlapped on bottom of container
JP7023035B2 (en) 2018-05-23 2022-02-21 博 小林 A method for producing an insulating film having an insulating film having the shape of the bottom surface on the bottom surface of a container as an insulating film composed of a collection of the flat powders in which the flat surfaces of the insulating flat powder are overlapped with each other.
CN110492646A (en) * 2019-08-08 2019-11-22 中国长江动力集团有限公司 The electric generator rotor coil of turn-to-turn insulation structure and its composition
JPWO2022044420A1 (en) * 2020-08-28 2022-03-03
JP7123265B2 (en) 2020-08-28 2022-08-22 東芝三菱電機産業システム株式会社 Resin manufacturing method and insulating structure manufacturing method

Also Published As

Publication number Publication date
JPWO2016104141A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2016104141A1 (en) Insulating tape and method for manufacturing same, stator coil and method for manufacturing same, and generator
JP6058169B2 (en) Insulating tape and manufacturing method thereof, stator coil and manufacturing method thereof, and rotating electric machine
EP2945169B1 (en) Insulation tape, method for producing same and stator coil
JP2010158113A (en) Electrical insulating member, stator coil for rotating electrical machine, and rotating electrical machine
JP2010193673A (en) Dry mica tape, electrical insulation coil using it, stator coil, and rotary electric machine
JP2012244861A (en) Insulation coil
JP5940210B2 (en) Insulating materials for rotary machines
WO2018003950A1 (en) Coil for rotary electric machine, method for producing coil for rotary electric machine, mica tape, method for producing mica tape, cured product of mica tape, and insulating article
US20210313857A1 (en) Corona Protection Tape for Electrical High-Voltage Machine
JP6157761B1 (en) Thermosetting resin composition, stator coil using the same, and rotating electric machine
JP6403444B2 (en) Mica tape and stator coil
JPWO2019077793A1 (en) Insulating coating material for stator coil and rotating machine using the same
WO2018003951A1 (en) Coil for rotary electric machine, method for producing coil for rotary electric machine, mica tape, cured product of mica tape, and insulating article
JP5766352B2 (en) Liquid thermosetting resin composition for insulating a rotating electric machine stator coil, rotating electric machine using the same, and method for producing the same
JP2009187817A (en) Insulation sheet, stator coil and rotary electrical machine
JP7203285B1 (en) Rotating machine coil, manufacturing method thereof, and rotating machine
JP7397876B2 (en) Insulating sheet, stator and stator manufacturing method
JP7292525B2 (en) Rotating Machine Coil, Rotating Electric Machine, and Manufacturing Method of Rotating Machine Coil
EP3866307B1 (en) Stator coil, method for manufacturing same, and rotary electrical machine
WO2018179440A1 (en) Coil for dynamo-electric machines, method for producing coil for dynamo-electric machines, mica tape, cured product of mica tape and insulated material
WO2018179439A1 (en) Coil for rotary electric device, method for producing coil for rotary electric device, mica tape, cured product of mica tape, and insulating article
WO2016021036A1 (en) Rotating electric machine stator and rotating electric machine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016530032

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872710

Country of ref document: EP

Kind code of ref document: A1