WO2018003950A1 - Coil for rotary electric machine, method for producing coil for rotary electric machine, mica tape, method for producing mica tape, cured product of mica tape, and insulating article - Google Patents

Coil for rotary electric machine, method for producing coil for rotary electric machine, mica tape, method for producing mica tape, cured product of mica tape, and insulating article Download PDF

Info

Publication number
WO2018003950A1
WO2018003950A1 PCT/JP2017/024056 JP2017024056W WO2018003950A1 WO 2018003950 A1 WO2018003950 A1 WO 2018003950A1 JP 2017024056 W JP2017024056 W JP 2017024056W WO 2018003950 A1 WO2018003950 A1 WO 2018003950A1
Authority
WO
WIPO (PCT)
Prior art keywords
mica
mica tape
particle size
size distribution
boron nitride
Prior art date
Application number
PCT/JP2017/024056
Other languages
French (fr)
Japanese (ja)
Inventor
みゆき 室町
貴耶 山本
士輝 宋
敬二 福島
竹澤 由高
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2018525280A priority Critical patent/JPWO2018003950A1/en
Publication of WO2018003950A1 publication Critical patent/WO2018003950A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/60Composite insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material

Definitions

  • the present invention relates to a coil for a rotating electrical machine, a method for manufacturing a coil for a rotating electrical machine, a mica tape, a method for manufacturing a mica tape, a cured product of an mica tape, and an insulator.
  • a coil (hereinafter also simply referred to as a coil) used in a rotating electrical machine such as a generator or an electric motor generally has a coil conductor and an insulating layer disposed on the outer periphery of the coil conductor to insulate the coil conductor from the external environment. is doing.
  • a material for forming an insulating layer for insulating a member (insulator) such as a coil from an external environment an insulating material using mica called a mica tape is known.
  • the mica tape is generally mainly composed of a backing layer containing a backing material and a mica layer containing mica, and an insulating layer is formed by curing a resin impregnated in the mica tape.
  • Patent Document 1 discloses a mica tape in which alumina having a high thermal conductivity is filled as an inorganic filler in a mica layer. By using this mica tape, 0.32 W / (m ⁇ K) is disclosed. An insulating layer having a thermal conductivity of ⁇ 0.36 W / (m ⁇ K) is obtained.
  • Patent Document 2 discloses a mica tape in which a thermal conductive layer containing an inorganic filler having a high thermal conductivity is disposed on one surface, and 0.35 W / (m ⁇ K) to 0.48 W / ( An insulating layer having a thermal conductivity of m ⁇ K) is obtained.
  • Patent Document 3 discloses a method in which HTC (high thermal conductivity) particles are infiltrated into a backing layer of a mica tape, and the composite tape is impregnated into the composite tape through the backing layer.
  • the mica tape containing the inorganic filler may drop off from the mica tape.
  • the inorganic filler may flow out of the mica tape into the resin varnish and the amount of the inorganic filler remaining in the insulating layer may be reduced. Therefore, in order to obtain a high thermal conductivity, a large amount of the inorganic filler may be blended.
  • the quality of the resin varnish changes due to the outflow of the inorganic filler from the mica tape into the resin varnish.
  • an object of the present invention is to provide a coil for rotating electricity having an insulating layer containing a mica tape that can suppress the dropping of the inorganic filler from the mica tape, and a method for manufacturing the same. It is an object of the present invention to provide a mica tape capable of suppressing the falling off of the inorganic filler from the mica tape, a method for producing the mica tape, a cured product of the mica tape, and an insulator using the mica tape.
  • a coil conductor and an insulating layer disposed on an outer periphery of the coil conductor wherein the insulating layer includes a mica tape, and the mica tape includes a mica layer including mica, a backing material, and an inorganic filler.
  • the inorganic filler comprises boron nitride having a first particle size distribution peak existing in a range of 5 ⁇ m or less and a second particle size distribution peak existing in a range of 6 ⁇ m or more.
  • the first particle size distribution peak of the boron nitride exists in a range of 2 ⁇ m to 5 ⁇ m, and the second particle size distribution peak exists in a range of 6 ⁇ m to 10 ⁇ m.
  • Coil for rotating electrical machines ⁇ 3>
  • the content of the inorganic filler in the mica tape is 20% by volume to 50% by volume of the total volume of non-volatile components excluding the mica and the backing material, according to ⁇ 1> or ⁇ 2> Coil for rotating electrical machines.
  • ⁇ 4> The step of winding the mica tape around the outer periphery of the coil conductor, and the step of forming the insulating layer including the mica tape wound around the outer periphery of the coil conductor.
  • ⁇ 7> The mica tape according to ⁇ 5> or ⁇ 6>, wherein the content of the inorganic filler is 20% by volume to 50% by volume of the total volume of nonvolatile components excluding the mica and the backing material.
  • ⁇ 8> A step of arranging a backing material on mica to prepare a laminate, a first particle size distribution peak existing in a range of 5 ⁇ m or less, and a second particle size distribution peak existing in a range of 6 ⁇ m or more And a step of applying a composition containing an inorganic filler containing boron nitride and a resin component to the backing material side of the laminate.
  • ⁇ 9> The method for producing a mica tape according to claim 8, wherein the content of the inorganic filler in the composition is 20% by volume to 50% by volume of the entire nonvolatile content of the composition.
  • ⁇ 11> The cured product of mica tape according to any one of ⁇ 5> to ⁇ 7>, comprising a resin component and obtained by curing the resin component.
  • An insulator having an insulator and an insulating layer that is a cured product of the mica tape according to ⁇ 11>, which is disposed on at least a part of the surface of the insulator.
  • a coil for rotating electricity having an insulating layer containing a mica tape that can prevent the inorganic filler from dropping off from the mica tape, and a method for manufacturing the same.
  • the mica tape which can suppress the drop-off
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
  • numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content rate or content of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, the plurality of kinds present in the composition unless otherwise specified. It means the total content or content of substances.
  • the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
  • the term “layer” refers to the case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. Is also included.
  • the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
  • the coil for a rotating electrical machine of the present embodiment has a coil conductor and an insulating layer disposed on the outer periphery of the coil conductor, and the insulating layer includes mica tape,
  • the mica tape has a mica layer containing mica, and a backing layer containing a backing material and an inorganic filler, and the inorganic filler has a first particle size distribution peak existing in a range of 5 ⁇ m or less, and 6 ⁇ m or more. Boron nitride having a second particle size distribution peak present in the range.
  • the coil for a rotating electrical machine of the present embodiment includes a first particle size distribution peak in which the mica tape forming the insulating layer exists as an inorganic filler in a range of 5 ⁇ m or less, and a second particle size distribution peak in a range of 6 ⁇ m or more.
  • the dispersibility of boron nitride in the composition (varnish) used for producing the mica tape is improved and the viscosity is lowered. It can be suppressed. Furthermore, it is considered that in the backing layer formed using a composition in which boron nitride is well dispersed, boron nitride is easily trapped by the backing material, and the inorganic filler does not easily fall off.
  • the mica tape used for forming the insulating layer of the coil of the present embodiment are the same as those of the mica tape of the present embodiment described later. Further, the material, shape, size, and the like of the coil conductor used in the coil of the present embodiment are not particularly limited, and can be selected according to the use of the coil.
  • the method for manufacturing a coil for a rotating electrical machine of the present embodiment includes a step of winding a mica tape around the outer periphery of a coil conductor, a step of forming the insulating layer including the mica tape wound around the outer periphery of the coil conductor, Have
  • the method of winding the mica tape around the outer periphery of the coil conductor is not particularly limited, and a usual method can be adopted.
  • the method for forming the insulating layer including the mica tape wound around the outer periphery of the coil conductor is not particularly limited.
  • the mica tape is heated while being pressed (heat press), and the resin component contained in the mica tape is caused to flow out of the mica tape in advance to fill the space between the overlapping mica tapes.
  • the resin component is then formed by a method of curing this to form an insulating layer (in the case of prepreg mica tape), and after winding the mica tape around the coil conductor, a vacuum pressure impregnation method (Vacuum Pressure Impression, VPI).
  • VPI vacuum pressure impregnation method
  • Examples include a method of impregnating mica tape and curing it to form an insulating layer (in the case of dry mica tape).
  • the mica tape of the present embodiment has a mica layer containing mica, a backing layer containing a backing material and an inorganic filler, and the inorganic filler has a first particle size distribution peak existing in a range of 5 ⁇ m or less, And boron nitride having a second particle size distribution peak existing in a range of 6 ⁇ m or more. Boron nitride may have a particle size distribution peak other than the first particle size distribution peak and the second particle size distribution peak. Further, two or more first particle size distribution peaks may be present, and two or more second particle size distribution peaks may be present.
  • the mica tape of the present embodiment can form an insulating layer excellent in thermal conductivity while suppressing the amount of inorganic filler.
  • the present inventors consider as follows. First, it is mentioned that boron nitride contained as an inorganic filler exhibits high thermal conductivity. Furthermore, the boron nitride has a first particle size distribution peak that exists in a range of 5 ⁇ m or less and a second particle size distribution peak that exists in a range of 6 ⁇ m or more, so that small boron nitride is present between large boron nitride particles.
  • the dispersion of boron nitride in the composition (varnish) used for the preparation of the mica tape is improved and the viscosity is lowered, so that uneven distribution of boron nitride after coating is suppressed. It is done. Further, it is considered that boron nitride is easily trapped by the backing material in a backing layer formed using a composition in which boron nitride is well dispersed, and boron nitride is not easily dropped off.
  • FIG. 2 shows the state of boron nitride when both boron nitride corresponding to the first particle size distribution peak and boron nitride corresponding to the second particle size distribution peak exist, and nitridation corresponding to the second particle size distribution peak.
  • FIG. 2A shows the state of boron nitride when only boron exists.
  • the boron nitride is a surface. Orientation in a certain direction is suppressed, and the anisotropy of thermal conductivity tends to be reduced.
  • the thermal conductivity tends to be higher than that of boron nitride of the same filling amount.
  • the boron nitride is oriented in a certain direction in the plane, and the difference in thermal conductivity between the in-plane direction and the thickness direction tends to be large and anisotropy tends to occur.
  • the thermal conductivity anisotropy is suppressed, but the thermal conductivity is compared with boron nitride of the same filling amount. The rate tends to be low.
  • the first particle size distribution peak of boron nitride exists in the range of 1 ⁇ m to 4 ⁇ m and the second particle size distribution peak exists in the range of 8 ⁇ m to 11 ⁇ m. More preferably, the first particle size distribution peak is in the range of 2 ⁇ m to 3 ⁇ m, and the second particle size distribution peak is in the range of 9 ⁇ m to 10 ⁇ m.
  • the particle size distribution peak when the particle size distribution peak is present in a certain range, the case where all of the peaks including the particle size distribution peak exist within the range, and the case where a part of the mountain exists outside the range. Both are included. Furthermore, in the volume-based particle size distribution curve, the first particle size distribution peak existing in the range of 5 ⁇ m or less is smaller than the second particle size distribution peak existing in the range of 6 ⁇ m or more (peak height is low). Is preferred.
  • the second particle size distribution peak is preferably in the range of 6 ⁇ m to 100 ⁇ m.
  • Boron nitride preferably has a frequency at the first particle size distribution peak of 0.1% to 5%, more preferably 1% to 4%.
  • the frequency at the second particle size distribution peak is preferably 1% to 6%, and more preferably 2% to 5%.
  • Boron nitride preferably has a frequency at the first particle size distribution peak / frequency value at the second particle size distribution peak of less than 1, preferably 0.9 or less, and 0.8 or less. More preferred.
  • the frequency value at the first particle size distribution peak / the frequency value at the second particle size distribution peak is preferably 0.1 or more, and more preferably 0.2 or more.
  • Boron nitride preferably has a particle diameter (D10) of 0.1 ⁇ m to 3 ⁇ m when the accumulation from the small diameter side of the volume-based particle size distribution curve is 10%, and preferably has a particle diameter (D50) of 50%. ) Is preferably 3 ⁇ m to 8 ⁇ m, and the particle diameter (D90) at 90% is preferably 8 ⁇ m to 100 ⁇ m.
  • the value of D10 / D90 is preferably 0.001 to 0.333, and the value of D90-D10 is preferably 6 ⁇ m to 99 ⁇ m.
  • the particle size distribution peak of boron nitride can be measured by a laser diffraction method.
  • boron nitride is introduced into pure water and dispersed with an ultrasonic disperser, and a laser diffraction / scattering particle size distribution measuring device (for example, Nikkiso Co., Ltd., “Microtrack MT3000II” is obtained from the obtained dispersion. )).
  • a laser diffraction / scattering particle size distribution measuring device for example, Nikkiso Co., Ltd., “Microtrack MT3000II” is obtained from the obtained dispersion.
  • the filler component is extracted from the backing layer using an organic solvent and sufficiently dispersed with an ultrasonic disperser or the like. By measuring the particle size distribution of this dispersion, the particle size distribution of the filler can be measured.
  • FIG. 1 is a schematic cross-sectional view showing an example of the structure of the mica tape of this embodiment.
  • the mica tape may have a mica layer 6 containing mica 4 and a backing layer 5 containing a backing material 2 and an inorganic filler 1. Further, the mica layer 6 and the backing layer 5 may each contain the resin component 3.
  • the resin component 3 may be included in both the mica layer 6 and the backing layer 5 or only in one.
  • the resin component 3 may be included in the entire mica layer 6 (or the backing layer 5) or may be partially included.
  • the mica tape of this embodiment is a mica tape (prepreg mica tape) used in a method for forming an insulating layer by curing a resin component contained in a mica tape in advance after the mica tape is wound around an object to be insulated.
  • it may be a mica tape (dry mica tape) used in a method of forming an insulating layer by curing a resin component impregnated after being wound around an insulator.
  • the kind of mica is not particularly limited. Examples include unfired hard mica, fired hard mica, unfired soft mica, fired soft mica, synthetic mica, and flake mica. Among these, unfired hard mica is preferable from the viewpoint of adhesion between mica and the resin component.
  • the particle size of mica is not particularly limited.
  • the proportion of mica pieces having a particle diameter of 2.8 mm or more is preferably less than 45% by mass of the whole mica pieces, It is more preferably 30% by mass or less, and further preferably 20% by mass or less, based on the entire mica piece.
  • the proportion of mica pieces having a particle diameter of 0.5 mm or more when sieved using a JIS standard sieve is 40% by mass or more of the entire mica pieces. Is preferable, and it is more preferable that it is 60 mass% or more.
  • JIS-Z-8801-1: 2006 The JIS standard sieve conforms to JIS-Z-8801-1: 2006 and corresponds to ISO3310-1: 2000.
  • ISO3310-1: 2000 it is preferable to apply the one having a square mesh shape as in JIS-Z-8801-1: 2006.
  • Mica may be used alone or in combination of two or more.
  • two or more mica are used in combination, for example, when two or more mica having the same component and different particle sizes are used, when two or more mica having the same particle size and different components are used, and the average particle size and component The case where 2 or more types of mica having different types is used is mentioned.
  • the amount of mica in the mica layer is not particularly limited. For example, a range of 80 g / m 2 to 230 g / m 2 is preferable, and a range of 100 g / m 2 to 200 g / m 2 is more preferable. If the amount of mica in the mica layer is 80 g / m 2 or more, a decrease in insulation tends to be suppressed. If the amount of mica in the mica layer is 230 g / m 2 or less, the thickness of the mica tape can be reduced, and the decrease in thermal conductivity tends to be suppressed.
  • the type of the backing material is not particularly limited.
  • a glass cloth is mentioned.
  • the inorganic filler is taken in between the fibers constituting the glass cloth, and the falling of the inorganic filler tends to be suppressed.
  • the resin component penetrated between the fibers tends to be well integrated with the adjacent mica layer, and the thermal conductivity tends to be improved. Furthermore, there is a tendency that cuts, cracks and the like are less likely to occur when wound around an insulator.
  • a part of the fiber may be an organic material.
  • the fiber comprised in particular with an organic material is not restrict
  • a part of the glass cloth is a fiber composed of an organic material
  • the warp, the weft, or both may be a fiber composed of an organic material.
  • the average thickness of the backing material is not particularly limited.
  • the thickness is preferably 30 ⁇ m to 60 ⁇ m, and more preferably 45 ⁇ m to 50 ⁇ m.
  • the average thickness of the backing material is 30 ⁇ m or more, it is suppressed that the backing layer becomes too thin following the thickness of the backing material when the mica tape is pressed, and a decrease in thermal conductivity is suppressed. There is a tendency. If the thickness of the backing material is 60 ⁇ m or less, the thickness of the mica tape can be suppressed, and the occurrence of breakage, cracks, and the like of the mica tape during the process of winding the mica tape around the insulator tends to be suppressed.
  • the average thickness of the backing material is the arithmetic average value of the measured values obtained by measuring the thickness of the backing material at a total of 10 locations using a micrometer (MDC-SB, Mitutoyo Corporation). .
  • the backing material may be surface-treated if necessary.
  • Examples of the surface treatment method for the backing material include treatment with a silane coupling agent.
  • the inorganic filler includes boron nitride having a first particle size distribution peak that exists in a range of 5 ⁇ m or less and a second particle size distribution peak that exists in a range of 6 ⁇ m or more. Since boron nitride exhibits higher thermal conductivity than other inorganic fillers (for example, alumina), the thermal conductivity of the insulating layer formed from the mica tape tends to be further improved.
  • the inorganic filler may include inorganic fillers other than boron nitride such as silica and alumina.
  • the proportion of boron nitride in the inorganic filler is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass. More preferably, it is the above.
  • the type of boron nitride is not particularly limited, and examples include hexagonal boron nitride (h-BN), cubic boron nitride (c-BN), and wurtzite boron nitride. Among these, hexagonal boron nitride (h-BN) is preferable.
  • the boron nitride may be primary particles of boron nitride formed in a scale shape or secondary particles formed by agglomeration of primary particles.
  • the average particle size of the inorganic filler is not particularly limited as long as it contains boron nitride having a first particle size distribution peak existing in the range of 5 ⁇ m or less and a second particle size distribution peak existing in the range of 6 ⁇ m or more. .
  • it is preferably in the range of 3 ⁇ m to 8 ⁇ m, and more preferably in the range of 5 ⁇ m to 7 ⁇ m.
  • the average particle size of the inorganic filler can be measured by using, for example, a laser diffraction / scattering particle size distribution measuring apparatus (Nikkiso Co., Ltd., “Microtrack MT3000II”). Specifically, an inorganic filler is introduced into pure water and then dispersed with an ultrasonic disperser. By measuring the particle size distribution of the dispersion, the particle size distribution of the inorganic filler is measured. Based on this particle size distribution, the particle size (D50) corresponding to 50% volume accumulation from the small diameter side is determined as the average particle size.
  • a laser diffraction / scattering particle size distribution measuring apparatus Nikkiso Co., Ltd., “Microtrack MT3000II”.
  • the inorganic filler preferably has an aspect ratio in the range of 1 to 10, and more preferably in the range of 1 to 9. Further, the boron nitride contained in the inorganic filler preferably has an aspect ratio in the range of 1 to 10, more preferably in the range of 1 to 9.
  • the aspect ratio of the inorganic filler or boron nitride is in the range of 1 to 10
  • the surface area where the inorganic filler or boron nitride is in contact with the resin increases, and the inorganic filler or boron nitride is more closely attached to the backing material through the resin, and the coil
  • the scattering of the inorganic filler is more suppressed when the mica tape is wound around.
  • the ratio of the length of the major axis to the minor axis is measured for each of 20 representative particles, and the arithmetic average value of the obtained measured values is used.
  • the method for measuring the aspect ratio of the inorganic filler or boron nitride is not particularly limited.
  • a cured product of mica tape is cut in the thickness direction, and the cut surface is smoothed by ion milling, and then the cut surface obtained by depositing platinum is scanned with an electron microscope (SEM) (magnification: 3000 times). And can be measured using a micrometer.
  • SEM electron microscope
  • the inorganic filler may be used alone or in combination of two or more.
  • two or more inorganic fillers are used in combination, for example, when two or more inorganic fillers having the same component and different average particle sizes are used, two or more inorganic fillers having the same average particle size and different components are used, and A case where two or more inorganic fillers having different average particle diameters and types are used.
  • the inorganic filler may be surface-treated by a coupling agent, heat treatment or light treatment.
  • a coupling agent for example, in the case of heat treatment, impurities on the surface of the inorganic filler are removed by heating the inorganic filler at an appropriate high temperature (for example, 250 ° C. to 800 ° C.) for 1 hour to 3 hours. Therefore, the affinity when the inorganic filler is mixed with the resin component is improved, and the viscosity of the composition containing the inorganic filler and the resin component is lowered and tends to be easily applied. Further, the coated surface of the composition has few smears and irregularities and tends to improve smoothness.
  • the mica tape may contain a resin component.
  • the kind of resin used as the resin component is not particularly limited. From the viewpoint of curing the mica tape to form the insulating layer, a curable resin is preferable, and a thermosetting resin is more preferable.
  • the curable resin include an epoxy resin, a phenol resin, an unsaturated polyester resin, and a silicone resin. From the viewpoint of adhesion between the mica layer and the backing layer and electrical insulation, an epoxy resin is preferable.
  • Epoxy resins in the case of using an epoxy resin as a resin component include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolak type epoxy resin, naphthalene type epoxy resin, cycloaliphatic epoxy resin, etc. Is mentioned. Among these, from the viewpoint of heat resistance, phenol novolac type epoxy resins, bisphenol A type epoxy resins and bisphenol F type epoxy resins are preferable.
  • the epoxy equivalent of the epoxy resin is not particularly limited. For example, it is preferably 130 g / eq to 500 g / eq, more preferably 135 g / eq to 400 g / eq, and even more preferably 140 g / eq to 300 g / eq.
  • the epoxy equivalent is measured by dissolving a precisely weighed epoxy resin in a solvent such as methyl ethyl ketone, adding acetic acid and a tetraethylammonium bromide acetic acid solution, and then performing potentiometric titration with a perchloric acid acetic acid standard solution. An indicator may be used for potentiometric titration.
  • the number average molecular weight of the resin used as the resin component is not particularly limited. For example, from the viewpoint of fluidity, it is preferably 100 to 100,000, more preferably 200 to 50,000, and still more preferably 300 to 10,000.
  • the number average molecular weight of the resin is a value measured under the following conditions using a gel permeation chromatography method (GPC) according to a conventional method.
  • a curing agent may be included as a resin component.
  • the curing agent is not particularly limited and can be appropriately selected depending on the type of the curable resin.
  • curing agent may be used individually by 1 type, or may use 2 or more types together.
  • the curing agent can be appropriately selected from curing agents usually used as a curing agent for epoxy resins. Specific examples include amine curing agents such as dicyandiamide and aromatic diamine; phenol resin curing agents such as phenol novolac and cresol novolac; acid anhydride curing agents such as alicyclic acid anhydrides and the like.
  • the ratio of the curing agent to the epoxy resin should be 0.8 to 1.2 in terms of equivalent ratio (curing agent / epoxy resin) from the viewpoint of curability and electrical characteristics of the cured product To preferred.
  • a curing catalyst may be included for the purpose of accelerating the curing reaction of the curable resin.
  • the curing catalyst is not particularly limited, and can be selected according to the type of the curable resin and the curing agent used as necessary.
  • Specific examples of the curing catalyst include tertiary amine compounds such as trimethylamine, imidazole compounds such as 2-methylimidazole and 2-methyl-4-ethylimidazole, organometallic salts such as tin, zinc and cobalt, boron trifluoride.
  • examples include amine complexes of Lewis acids such as monoethylamine, and organic phosphorus compounds such as organic phosphine compounds.
  • a hardening accelerator may be used individually by 1 type, or may use 2 or more types together.
  • the content is not particularly limited.
  • the content of the curing catalyst is generally in the range of 0.01% by mass to 5% by mass with respect to the total amount of the epoxy resin and the curing agent included as necessary. is there.
  • the mica tape may contain other components other than the components described above as necessary.
  • examples of other components include coupling agents, antioxidants, anti-aging agents, stabilizers, flame retardants, and thickeners.
  • the content is not particularly limited.
  • the mica tape of this embodiment has a mica layer containing mica and a backing layer containing a backing material and boron nitride, and may have other layers as necessary.
  • the other layer include a protective layer (protective film) provided on the outermost surface of the mica tape.
  • the average thickness of the mica tape (the total thickness of the mica layer and the backing layer) is not particularly limited.
  • the average thickness of the mica tape may be 400 ⁇ m or less, preferably 350 ⁇ m or less, and more preferably 300 ⁇ m or less.
  • the average thickness of the mica tape is preferably 300 ⁇ m or less and more preferably 290 ⁇ m or less from the viewpoint of easy winding of the mica tape. From the viewpoint of electrical insulation, the average thickness of the mica tape is preferably 120 ⁇ m or more, more preferably 150 ⁇ m or more, and further preferably 160 ⁇ m or more.
  • the average thickness of the mica tape is preferably 220 ⁇ m or less and more preferably 190 ⁇ m or less from the viewpoint of ease of winding the mica tape. From the viewpoint of electrical insulation, the average thickness of the mica tape is preferably 120 ⁇ m or more, more preferably 150 ⁇ m or more, and further preferably 180 ⁇ m or more.
  • the average thickness of the mica layer is not particularly limited. From the viewpoint of ease of winding the mica tape, the average thickness of the mica layer is preferably 180 ⁇ m or less, and more preferably 170 ⁇ m or less. From the viewpoint of electrical insulation, the average thickness of the mica layer is preferably 80 ⁇ m or more, and more preferably 90 ⁇ m or more.
  • the average thickness of the backing layer is not particularly limited. From the viewpoint of ease of winding the mica tape, the average thickness of the backing layer is preferably 60 ⁇ m or less, and more preferably 50 ⁇ m or less. From the viewpoint of the strength of the mica tape, the average thickness of the backing layer is preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • the average thickness of the mica tape (the total thickness of the mica layer and the backing layer) was measured at a total of 10 locations using a micrometer (MDC-SB, Mitutoyo Corporation). The arithmetic average value of the measured values obtained is used.
  • the thickness of the mica layer and the backing layer in the mica tape is determined by measuring the thickness of the mica layer and the backing layer in the cross section of the mica tape with a micrometer of a stereomicroscope (for example, Olympus Corporation “BX51”). Observe 3 points and use the arithmetic average.
  • a stereomicroscope for example, Olympus Corporation “BX51”.
  • the content of the inorganic filler in the nonvolatile content excluding mica and the backing material of the mica tape is not particularly limited. For example, it is preferably 20% by volume to 50% by volume and more preferably 25% by volume to 35% by volume of the total volume of non-volatile components excluding mica and the backing material.
  • the content of the inorganic filler is 20% by volume or more of the total volume of nonvolatile components excluding mica and the backing material, the thermal conductivity of the insulating layer formed from the mica tape tends to be further improved.
  • the content of the inorganic filler is 50% by volume or less of the total volume of non-volatile components excluding mica and the backing material, filling of the inorganic filler into the resin component tends to be facilitated.
  • the content of non-volatile components excluding mica and the backing material in the total mass of the mica layer and the backing layer of the mica tape is not particularly limited. For example, it is preferably 5% by mass to 45% by mass of the total mass of the mica layer and the backing layer, more preferably 10% by mass to 30% by mass, and further preferably 15% by mass to 20% by mass. preferable.
  • the content of nonvolatile components excluding mica and the backing material is 5% by mass or more of the total mass of the mica layer and the backing layer, the thermal conductivity tends to be more effectively improved.
  • the non-volatile content excluding mica and the backing material is 45% by mass or less of the total mass of the mica layer and the backing layer, an increase in the thickness of the mica tape tends to be suppressed. In addition, varnish impregnation tends to proceed during the production of mica tape.
  • the content of the resin component in the nonvolatile content excluding mica and the backing material of the mica tape is not particularly limited. For example, it is preferably 35% by mass to 70% by mass, more preferably 50% by mass to 65% by mass, and more preferably 55% by mass to 60% by mass with respect to the total mass of the nonvolatile content excluding mica and the backing material. More preferably.
  • the content of the resin component is 35% by mass or more of the total mass of nonvolatile components excluding mica and the backing material, the adhesion between the backing layer and the mica layer tends to be improved.
  • the content of the resin component is 70% by mass or less of the total nonvolatile content excluding mica and the backing material, the thermal conductivity tends to be improved.
  • the content of the resin component in the mica tape is not particularly limited and can be selected according to the use of the mica tape.
  • the content of the resin component may be 40% by mass or less of the total mass of the mica layer and the backing layer, and is preferably 5% by mass to 33% by mass.
  • the content of the resin component is preferably 25% by mass to 33% by mass of the total mass of the mica layer and the backing layer, for example, 25% by mass to 30% by mass. It is more preferable that When the content of the resin component is 25% by mass or more of the total mass of the mica layer and the backing layer, the mica from the mica tape and, if necessary, the falling off (powder off) of the inorganic filler are suppressed, and the insulator As a result of the occurrence of cracks, cuts, wrinkles, and the like of the mica tape when the mica tape is wound around, the insulation reliability and the thermal conductivity tend to be suppressed.
  • the content of the resin component is 33% by mass or less of the total mass of the mica layer and the backing layer, an increase in the thickness of the mica tape is suppressed and good winding properties tend to be maintained. Furthermore, the resin component tends to be prevented from dropping beyond the volume necessary to fill the gap between the overlapping mica tapes with the mica tape wound around the insulator. As a result, generation of voids is reduced, and a decrease in insulation reliability tends to be suppressed.
  • the content of the resin component in the mica tape is preferably 5% by mass to 15% by mass of the total mass of the mica layer and the backing layer, for example, 5% by mass. More preferably, it is ⁇ 12% by mass, and further preferably 8% by mass to 10% by mass.
  • the content of the resin component is 5% by mass or more of the total mass of the mica layer and the backing layer, the adhesion between the backing layer and the mica layer tends to be sufficiently secured.
  • the content of the resin component is 15% by mass or less of the total mass of the mica layer and the backing layer, high thermal conductivity tends to be achieved.
  • the content rate of the resin component in the mica tape is calculated by the following method, for example.
  • the mica tape cut to a size of 30 mm in width and 50 mm in length is heated in an electric furnace at 600 ° C. for 2 hours, and the mass reduction rate (%) before and after heating is obtained by the following formula.
  • the above process is performed three times, and an arithmetic average value of the obtained values is obtained.
  • Content of resin component ⁇ (mass before heating ⁇ mass after heating) / mass before heating ⁇ ⁇ 100
  • the content of the resin component in the mica layer is preferably 15% by mass or less of the total mass of the mica layer, and more preferably 10% by mass or less. More preferably, it is 5 mass% or less, and it is especially preferable that it is 0 mass%.
  • the mica layer preferably contains substantially no inorganic filler other than mica.
  • the content of the inorganic filler other than mica in the mica layer is preferably 3% by mass or less, more preferably 2% by mass or less, and more preferably 1% by mass or less of the total mass of the mica layer. More preferably, it is particularly preferably 0% by mass.
  • the mica layer does not substantially contain fibrites.
  • the content of fibrils in the mica layer is preferably 1% by mass or less of the total mass of the mica layer, more preferably 0.5% by mass or less, and 0.1% by mass. The following is more preferable, and 0% by mass is particularly preferable.
  • the fibrit is a fibrous substance mixed so that the mica layer can stand on its own, and examples thereof include organic fibers such as polyamide and polyimide, and inorganic fibers such as glass fibers.
  • the mica tape of this embodiment may be manufactured through any process, and conventionally known manufacturing methods can be applied.
  • the details and preferred embodiments of the mica, backing material, inorganic filler and resin component used in the above method, and the produced mica tape are as described above.
  • the mica paper is a sheet-like object formed by collecting mica pieces.
  • the composition may contain a solvent.
  • the solvent By including the solvent, the viscosity of the composition is lowered, and the inorganic filler tends to be easily mixed.
  • the type of the solvent is not particularly limited, and can be selected from commonly used organic solvents. Specific examples include methyl ethyl ketone, toluene, methanol, cyclohexanone and the like.
  • a solvent may be used individually by 1 type, or may use 2 or more types together.
  • the content of the inorganic filler in the composition is not particularly limited. For example, it is preferably 20% by volume to 90% by volume, and more preferably 25% by volume to 35% by volume of the total nonvolatile content (components excluding the solvent) of the composition.
  • the content of the inorganic filler is 20% by volume or more of the entire nonvolatile content of the composition, the thermal conductivity of the insulating layer formed using mica tape tends to be further improved.
  • the content of the inorganic filler is 90% by volume or less of the entire nonvolatile content of the composition, the mixing property of the inorganic filler and the resin component tends to be improved.
  • the viscosity at the time of application of the composition is not particularly limited. For example, it is preferably 500 mPa ⁇ s to 3000 mPa ⁇ s.
  • the viscosity at the time of application of the composition is a temperature of the composition when the composition is applied to the backing material, and is a value measured using an E-type viscometer under a condition of 50 revolutions / minute (rpm).
  • the application of the composition can be performed, for example, by applying the composition to the backing material using a roll coater or the like.
  • the composition applied to the backing material oozes out to the other surface side of the backing material and penetrates all or part of the mica paper.
  • the mica paper can easily become independent and is not easily collapsed.
  • the thermal conductivity tends to be improved.
  • the mica tape of this embodiment can be used, for example, for forming an insulating layer provided on the outer periphery of an insulator such as a coil conductor used for a rotating electrical machine coil or the like.
  • the cured product of the mica tape of this embodiment is obtained by curing the mica tape described above. More specifically, it is obtained by curing a resin component contained in a mica tape.
  • the curing method is not particularly limited, and can be selected from ordinary methods.
  • the insulator of this embodiment includes an insulator and an insulating layer that is a cured product of the mica tape of this embodiment that is disposed on at least a part of the surface of the insulator.
  • the method for forming the insulating layer using the mica tape of the present embodiment is not particularly limited, and conventionally known production methods can be applied. For example, after winding mica tape around an insulator, heat it while applying pressure to the mica tape (heat press), and let the resin component contained in the mica tape flow out of the mica tape in advance and overlap between the overlapping mica tapes.
  • a resin component is formed by filling and curing an insulating layer (in the case of a prepreg mica tape), winding a mica tape around an insulator, and then applying a vacuum pressure impregnation (VPI).
  • a vacuum pressure impregnation A method of impregnating a mica tape and curing the same to form an insulating layer (in the case of dry mica tape).
  • the resin component impregnated into the mica tape is not particularly limited.
  • epoxy resins such as a bisphenol A type epoxy resin
  • curing agents such as an alicyclic acid anhydride
  • the impregnation method of the resin component in the vacuum pressure impregnation method the curing conditions after the impregnation, the ratio of the epoxy resin and the curing agent, etc., conventionally known methods, known conditions and the like can be referred to.
  • the kind of insulator to be insulated is not particularly limited, and examples thereof include metal materials (copper, etc.) having shapes such as coils, rods, and plates.
  • Specific examples of the insulator include a coil conductor of a coil for a rotating electrical machine.
  • an insulating layer exhibiting high thermal conductivity can be formed. Therefore, when the insulator of this embodiment is a coil, when cooling the coil, a hydrogen cooling method or an air cooling method should be adopted even for a coil of a scale that conventionally employs a direct water cooling method. As a result, the coil structure can be simplified.
  • Example 1 (1) Production of mica paper Unfired hard mica was dispersed in water to form mica particles, and the mica was made with a paper machine to produce mica paper having a mica amount of 140 g / m 2 .
  • boron nitride (Electrochemical Industry Co., Ltd.) having a particle size distribution peak in the range of 2 ⁇ m to 3 ⁇ m and in the range of 7 ⁇ m to 9 ⁇ m is added and stirred, and boron nitride containing boron nitride as an inorganic filler A containing varnish was prepared.
  • the particle size distribution of the boron nitride used is shown in FIG.
  • the particle size distribution of boron nitride was measured by a laser diffraction method using Nikkiso Co., Ltd. “Microtrack MT3000II”). Specifically, 10 mg of boron nitride was added to 50 mg of pure water and dispersed by shaking for 10 minutes. 20 ml was injected into the cell and measured at 25 ° C. The refractive index of water was 1.333, and the refractive index of boron nitride was 2.17. The ratio by mass of the epoxy resin and the curing catalyst in the boron nitride-containing varnish (epoxy resin: curing catalyst) was 97: 3.
  • Example 2 Production of mica paper Unfired hard mica was dispersed in water to form mica particles, and the paper was made with a paper machine to produce mica paper having a mica amount of 180 g / m 2 .
  • Epoxy novolak resin (Dow Chemical Japan Co., Ltd., trade name “D.N.438” (“D.N.” is a registered trademark)) 36 as a resin component 0.7% by mass, 1.1% by mass of boron trifluoride monoethylamine (Wako Pure Chemical Industries, Ltd.) as a curing accelerator, and 31.1% by mass of methyl ethyl ketone (Wako Pure Chemical Industries, Ltd.) as a solvent did.
  • boron nitride (Electrochemical Co., Ltd.) having a particle size distribution peak in the range of 2 ⁇ m to 3 ⁇ m and in the range of 7 ⁇ m to 9 ⁇ m was added and further mixed to prepare a boron nitride-containing varnish.
  • Example 2 A mica tape was prepared in the same manner as in Example 2 except that boron nitride (electrochemical industry) having a particle size distribution peak of only 6 ⁇ m was used as the boron nitride used for the preparation of the boron nitride-containing varnish. And evaluated. The results are shown in Table 1. Further, when the mica tape was produced, uneven coating and resin loss occurred, resulting in a non-uniform tape. When a 16-layer laminated cured product of mica tape was produced, the presence or absence of outflow of boron nitride was visually confirmed. As a result, the varnish extruded by the press became cloudy and outflow of boron nitride occurred.
  • boron nitride electrochemical industry
  • Example 3 Mica tape and lamination hardening were carried out in the same manner as in Example 1 except that boron nitride (Electrochemical Industry Co., Ltd.) having a particle size distribution peak of only 2 ⁇ m was used as boron nitride used for the preparation of the boron nitride-containing varnish. A product was prepared and evaluated. The results are shown in Table 1. Moreover, when the presence or absence of outflow of boron nitride into the impregnating varnish during vacuum impregnation was visually confirmed, the impregnating varnish became cloudy and outflow of boron nitride occurred.
  • boron nitride Electrochemical Industry Co., Ltd.
  • a mica tape was prepared in the same manner as in Example 2 except that boron nitride (electrochemical industry) having a particle size distribution peak of only 6 ⁇ m was used as the boron nitride used for the preparation of the boron nitride-containing varnish. And evaluated. The results are shown in Table 1. Further, when the mica tape was produced, uneven coating and resin loss occurred, resulting in a non-uniform tape. When a 16-layer laminated cured product of mica tape was produced, the presence or absence of outflow of boron nitride was visually confirmed. As a result, the varnish extruded by the press became cloudy and outflow of boron nitride occurred.
  • boron nitride electrochemical industry
  • Example 1 using boron nitride having a first particle size distribution peak existing in a range of 5 ⁇ m or less and a second particle size distribution peak present in a range of 7 ⁇ m or more is a particle size distribution.
  • Good thermal conductivity was achieved even with a small amount of boron nitride as compared with Comparative Example 1 using boron nitride having a peak only at 6 ⁇ m.
  • Example 2 using boron nitride having a first particle size distribution peak existing in a range of 5 ⁇ m or less and a second particle size distribution peak present in a range of 6 ⁇ m or more has a particle size distribution peak of 6 ⁇ m. Thermal conductivity was significantly improved with the same amount of boron nitride as in Comparative Example 2 using only boron nitride.

Abstract

This coil for a rotary electric machine comprises a coil conductor and an insulating layer arranged on the outer periphery of the coil conductor. The insulating layer includes a mica tape. The mica tape includes: a mica layer including mica; and a backing layer including a backing material and an inorganic filler. The inorganic filler includes boron nitride having a first particle-size distribution peak that is present within a range of less than or equal to 5 µm and a second particle-size distribution peak that is present within a range of greater than or equal to 6 µm.

Description

回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの製造方法、マイカテープの硬化物及び絶縁物Coil for rotating electrical machine, method for manufacturing coil for rotating electrical machine, mica tape, method for manufacturing mica tape, cured product and insulator of mica tape
 本発明は、回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの製造方法、マイカテープの硬化物及び絶縁物に関する。 The present invention relates to a coil for a rotating electrical machine, a method for manufacturing a coil for a rotating electrical machine, a mica tape, a method for manufacturing a mica tape, a cured product of an mica tape, and an insulator.
 発電機、電動機等の回転電機に用いられるコイル(以下、単にコイルとも称する)は、一般にコイル導体と、コイル導体を外部環境から絶縁するためにコイル導体の外周に配置される絶縁層とを有している。コイル等の部材(被絶縁体)を外部環境から絶縁するための絶縁層を形成する材料として、マイカテープと呼ばれるマイカを用いた絶縁材が知られている。マイカテープは、一般に、裏打ち材を含む裏打ち層と、マイカを含むマイカ層とから主に構成され、マイカテープに含浸している樹脂を硬化することで絶縁層が形成される。 A coil (hereinafter also simply referred to as a coil) used in a rotating electrical machine such as a generator or an electric motor generally has a coil conductor and an insulating layer disposed on the outer periphery of the coil conductor to insulate the coil conductor from the external environment. is doing. As a material for forming an insulating layer for insulating a member (insulator) such as a coil from an external environment, an insulating material using mica called a mica tape is known. The mica tape is generally mainly composed of a backing layer containing a backing material and a mica layer containing mica, and an insulating layer is formed by curing a resin impregnated in the mica tape.
 一方、コイルの外側に水素ガス又は空気を通して冷却する間接冷却の方式を採用する発電機等の分野では、コイルの外側に設けられた絶縁層の高熱伝導化が望まれている。絶縁層の熱伝導率を高める手法としては、マイカテープに熱伝導率の高い無機フィラーを含有させる手法が挙げられる。 On the other hand, in the field of generators and the like that employ an indirect cooling method in which hydrogen gas or air is cooled outside the coil, it is desired to increase the thermal conductivity of the insulating layer provided on the outside of the coil. As a technique for increasing the thermal conductivity of the insulating layer, a technique in which an inorganic filler having a high thermal conductivity is contained in the mica tape can be mentioned.
 例えば、特許文献1には、マイカ層の中に無機フィラーとして熱伝導率の高いアルミナが充填されたマイカテープが開示されており、このマイカテープを用いることで0.32W/(m・K)~0.36W/(m・K)の熱伝導率を有する絶縁層が得られるとされている。 For example, Patent Document 1 discloses a mica tape in which alumina having a high thermal conductivity is filled as an inorganic filler in a mica layer. By using this mica tape, 0.32 W / (m · K) is disclosed. An insulating layer having a thermal conductivity of ˜0.36 W / (m · K) is obtained.
 特許文献2には、熱伝導率の高い無機フィラーを含有する熱伝導層が一方の面に配置されたマイカテープが開示されており、0.35W/(m・K)~0.48W/(m・K)の熱伝導率を有する絶縁層が得られるとされている。 Patent Document 2 discloses a mica tape in which a thermal conductive layer containing an inorganic filler having a high thermal conductivity is disposed on one surface, and 0.35 W / (m · K) to 0.48 W / ( An insulating layer having a thermal conductivity of m · K) is obtained.
 特許文献3には、マイカテープの裏打ち層にHTC(高熱伝導性)粒子を浸透させ、裏打ち層を通して複合体テープの中に含浸樹脂を含浸させる方法が開示されている。 Patent Document 3 discloses a method in which HTC (high thermal conductivity) particles are infiltrated into a backing layer of a mica tape, and the composite tape is impregnated into the composite tape through the backing layer.
特開2005-199562号公報Japanese Patent Laid-Open No. 2005-199562 特開2002-93257号公報JP 2002-93257 A 特表2009-532242号公報Special table 2009-532242
 マイカテープの熱伝導性を向上させる手法として無機フィラーを含有させることは有効であるが、製造コスト等の観点から、良好な熱伝導性を達成しつつも使用する無機フィラーの量を抑える技術の開発が待たれている。
 しかしながら、無機フィラーを含むマイカテープは、無機フィラーがマイカテープから脱落する可能性がある。特に、マイカテープをコイル導体に巻き付け、樹脂ワニスに浸漬して含浸する場合、無機フィラーがマイカテープから樹脂ワニス中に流出して絶縁層中に残存する無機フィラーの量が減少することがある。そのため、高い熱伝導率を得るためには無機フィラーの量を多めに配合する場合があった。
 また、マイカテープから樹脂ワニス中に無機フィラーが流出することによって樹脂ワニスの品質が変わるといった問題もあった。
Although it is effective to contain an inorganic filler as a method for improving the thermal conductivity of mica tape, from the viewpoint of production cost, etc., it is a technique for suppressing the amount of inorganic filler to be used while achieving good thermal conductivity. Development is awaited.
However, the mica tape containing the inorganic filler may drop off from the mica tape. In particular, when a mica tape is wound around a coil conductor and immersed in a resin varnish for impregnation, the inorganic filler may flow out of the mica tape into the resin varnish and the amount of the inorganic filler remaining in the insulating layer may be reduced. Therefore, in order to obtain a high thermal conductivity, a large amount of the inorganic filler may be blended.
There is also a problem that the quality of the resin varnish changes due to the outflow of the inorganic filler from the mica tape into the resin varnish.
 本発明は上記事情に鑑み、マイカテープからの無機フィラーの脱落を抑制可能なマイカテープを含む絶縁層を有する回転電気用コイル及びその製造方法を提供することを課題とする。マイカテープからの無機フィラーの脱落を抑制可能なマイカテープ、マイカテープの製造方法、マイカテープの硬化物及びそれを用いた絶縁物を提供することを課題とする。 In view of the above circumstances, an object of the present invention is to provide a coil for rotating electricity having an insulating layer containing a mica tape that can suppress the dropping of the inorganic filler from the mica tape, and a method for manufacturing the same. It is an object of the present invention to provide a mica tape capable of suppressing the falling off of the inorganic filler from the mica tape, a method for producing the mica tape, a cured product of the mica tape, and an insulator using the mica tape.
 前記課題を達成するための具体的手段は以下の通りである。
<1>コイル導体と、前記コイル導体の外周に配置された絶縁層と、を有し、前記絶縁層はマイカテープを含み、前記マイカテープは、マイカを含むマイカ層と、裏打ち材及び無機フィラーを含む裏打ち層と、を有し、前記無機フィラーは、5μm以下の範囲に存在する第一の粒度分布ピークと、6μm以上の範囲に存在する第二の粒度分布ピークと、を有する窒化ホウ素を含む、回転電機用コイル。
<2>前記マイカテープにおいて、前記窒化ホウ素の第一の粒度分布ピークは2μm~5μmの範囲に存在し、第二の粒度分布ピークは6μm~10μmの範囲に存在する、<1>に記載の回転電機用コイル。
<3>前記マイカテープにおいて、前記無機フィラーの含有率が、前記マイカと前記裏打ち材を除く不揮発分の総体積の20体積%~50体積%である、<1>又は<2>に記載の回転電機用コイル。
<4>前記コイル導体の外周に前記マイカテープを巻きつける工程と、前記コイル導体の外周に巻きつけられた前記マイカテープを含む前記絶縁層を形成する工程と、を有する、<1>~<3>のいずれか1項に記載の回転電機用コイルの製造方法。
<5>マイカを含むマイカ層と、裏打ち材及び無機フィラーを含む裏打ち層と、を有し、前記無機フィラーは、5μm以下の範囲に存在する第一の粒度分布ピークと、6μm以上の範囲に存在する第二の粒度分布ピークと、を有する窒化ホウ素を含む、マイカテープ。
<6>前記窒化ホウ素の第一の粒度分布ピークは2μm~5μmの範囲に存在し、第二の粒度分布ピークは6μm~10μmの範囲に存在する、<5>に記載のマイカテープ。
<7>前記無機フィラーの含有率が、前記マイカと前記裏打ち材を除く不揮発分の総体積の20体積%~50体積%である、<5>又は<6>に記載のマイカテープ。
<8>裏打ち材をマイカの上に配置して積層体を準備する工程と、5μm以下の範囲に存在する第一の粒度分布ピークと、6μm以上の範囲に存在する第二の粒度分布ピークと、を有する窒化ホウ素を含む無機フィラーと、樹脂成分と、を含む組成物を、前記積層体の前記裏打ち材側に付与する工程と、を含む、マイカテープの製造方法。
<9>前記組成物中の前記無機フィラーの含有率は、前記組成物の不揮発分全体の20体積%~50体積%である、請求項8に記載のマイカテープの製造方法。
<10>前記組成物の付与時の粘度は500mPa・s~3000mPa・sである、<8>又は<9>に記載のマイカテープの製造方法。
<11>樹脂成分を含み、前記樹脂成分を硬化して得られる<5>~<7>のいずれか1項に記載のマイカテープの硬化物。
<12>被絶縁体と、前記被絶縁体の表面の少なくとも一部に配置される<11>に記載のマイカテープの硬化物である絶縁層と、を有する絶縁物。
Specific means for achieving the above object are as follows.
<1> a coil conductor and an insulating layer disposed on an outer periphery of the coil conductor, wherein the insulating layer includes a mica tape, and the mica tape includes a mica layer including mica, a backing material, and an inorganic filler. And the inorganic filler comprises boron nitride having a first particle size distribution peak existing in a range of 5 μm or less and a second particle size distribution peak existing in a range of 6 μm or more. Including coils for rotating electrical machines.
<2> In the mica tape, the first particle size distribution peak of the boron nitride exists in a range of 2 μm to 5 μm, and the second particle size distribution peak exists in a range of 6 μm to 10 μm. Coil for rotating electrical machines.
<3> The content of the inorganic filler in the mica tape is 20% by volume to 50% by volume of the total volume of non-volatile components excluding the mica and the backing material, according to <1> or <2> Coil for rotating electrical machines.
<4> The step of winding the mica tape around the outer periphery of the coil conductor, and the step of forming the insulating layer including the mica tape wound around the outer periphery of the coil conductor. The manufacturing method of the coil for rotary electric machines of any one of 3>.
<5> A mica layer containing mica and a backing layer containing a backing material and an inorganic filler, wherein the inorganic filler has a first particle size distribution peak existing in a range of 5 μm or less and a range of 6 μm or more. A mica tape comprising boron nitride having a second particle size distribution peak present.
<6> The mica tape according to <5>, wherein the first particle size distribution peak of the boron nitride exists in a range of 2 μm to 5 μm, and the second particle size distribution peak exists in a range of 6 μm to 10 μm.
<7> The mica tape according to <5> or <6>, wherein the content of the inorganic filler is 20% by volume to 50% by volume of the total volume of nonvolatile components excluding the mica and the backing material.
<8> A step of arranging a backing material on mica to prepare a laminate, a first particle size distribution peak existing in a range of 5 μm or less, and a second particle size distribution peak existing in a range of 6 μm or more And a step of applying a composition containing an inorganic filler containing boron nitride and a resin component to the backing material side of the laminate.
<9> The method for producing a mica tape according to claim 8, wherein the content of the inorganic filler in the composition is 20% by volume to 50% by volume of the entire nonvolatile content of the composition.
<10> The method for producing a mica tape according to <8> or <9>, wherein the viscosity at the time of application of the composition is 500 mPa · s to 3000 mPa · s.
<11> The cured product of mica tape according to any one of <5> to <7>, comprising a resin component and obtained by curing the resin component.
<12> An insulator having an insulator and an insulating layer that is a cured product of the mica tape according to <11>, which is disposed on at least a part of the surface of the insulator.
 本発明によれば、マイカテープからの無機フィラーの脱落を抑制可能なマイカテープを含む絶縁層を有する回転電気用コイル及びその製造方法が提供される。また、本発明によれば、マイカテープからの無機フィラーの脱落を抑制可能なマイカテープ、マイカテープの製造方法、マイカテープの硬化物及びそれを用いた絶縁物が提供される。 According to the present invention, there are provided a coil for rotating electricity having an insulating layer containing a mica tape that can prevent the inorganic filler from dropping off from the mica tape, and a method for manufacturing the same. Moreover, according to this invention, the mica tape which can suppress the drop-off | omission of the inorganic filler from a mica tape, the manufacturing method of a mica tape, the hardened | cured material of a mica tape, and an insulator using the same are provided.
マイカテープの構成の一例を表す概略断面図である。It is a schematic sectional drawing showing an example of a structure of a mica tape. 第一の粒度分布ピークに相当する窒化ホウ素と第二の粒度分布ピークに相当する窒化ホウ素の両方が存在する場合の窒化ホウ素の状態(A)と、第二の粒度分布ピークに相当する窒化ホウ素のみが存在する場合の窒化ホウ素の状態(B)をそれぞれ表す概念図である。Boron nitride state (A) when both boron nitride corresponding to the first particle size distribution peak and boron nitride corresponding to the second particle size distribution peak exist, and boron nitride corresponding to the second particle size distribution peak It is a conceptual diagram showing the state (B) of boron nitride in the case where only is present. 実施例で用いた窒化ホウ素の粒度分布を表すグラフである。It is a graph showing the particle size distribution of the boron nitride used in the Example.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and the present invention is not limited thereto.
 本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本明細書において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本明細書において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
In this specification, the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
In the present specification, numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the numerical ranges described stepwise in this specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
In the present specification, the content rate or content of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, the plurality of kinds present in the composition unless otherwise specified. It means the total content or content of substances.
In the present specification, the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
In this specification, the term “layer” refers to the case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. Is also included.
In this specification, the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
<回転電機用コイル>
 本実施形態の回転電機用コイルは、コイル導体と、前記コイル導体の外周に配置された絶縁層と、を有し、前記絶縁層はマイカテープを含み、
 前記マイカテープは、マイカを含むマイカ層と、裏打ち材及び無機フィラーを含む裏打ち層と、を有し、前記無機フィラーは、5μm以下の範囲に存在する第一の粒度分布ピークと、6μm以上の範囲に存在する第二の粒度分布ピークと、を有する窒化ホウ素を含む。
<Coils for rotating electrical machines>
The coil for a rotating electrical machine of the present embodiment has a coil conductor and an insulating layer disposed on the outer periphery of the coil conductor, and the insulating layer includes mica tape,
The mica tape has a mica layer containing mica, and a backing layer containing a backing material and an inorganic filler, and the inorganic filler has a first particle size distribution peak existing in a range of 5 μm or less, and 6 μm or more. Boron nitride having a second particle size distribution peak present in the range.
 本実施形態の回転電機用コイルは、絶縁層を形成するマイカテープが無機フィラーとして5μm以下の範囲に存在する第一の粒度分布ピークと、6μm以上の範囲に存在する第二の粒度分布ピークと、を有する窒化ホウ素を含むことで、無機フィラーの脱落が抑制されている。その理由は明らかではないが、窒化ホウ素が5μm以下の範囲に存在する第一の粒度分布ピークと、6μm以上の範囲に存在する第二の粒度分布ピークと、を有することで、大きい窒化ホウ素粒子の間に小さい窒化ホウ素粒子が入り込むことにより、マイカテープの作製に用いる組成物(ワニス)中の窒化ホウ素の分散性が向上し、粘度が低下するために、塗布後の窒化ホウ素の分布ムラが抑制されることが考えられる。さらに、窒化ホウ素が良好に分散した組成物を用いて形成される裏打ち層では窒化ホウ素が裏打ち材にトラップされやすく、無機フィラーの脱落が生じにくいためと考えられる。 The coil for a rotating electrical machine of the present embodiment includes a first particle size distribution peak in which the mica tape forming the insulating layer exists as an inorganic filler in a range of 5 μm or less, and a second particle size distribution peak in a range of 6 μm or more. The inclusion of boron nitride having, prevents the inorganic filler from falling off. The reason for this is not clear, but boron nitride has large boron nitride particles by having a first particle size distribution peak in the range of 5 μm or less and a second particle size distribution peak in the range of 6 μm or more. When small boron nitride particles enter between the layers, the dispersibility of boron nitride in the composition (varnish) used for producing the mica tape is improved and the viscosity is lowered. It can be suppressed. Furthermore, it is considered that in the backing layer formed using a composition in which boron nitride is well dispersed, boron nitride is easily trapped by the backing material, and the inorganic filler does not easily fall off.
 本実施形態のコイルの絶縁層の形成に用いられるマイカテープの詳細及び好ましい態様は、後述する本実施形態のマイカテープと同様である。また、本実施形態のコイルに用いられるコイル導体の材質、形状、大きさ等は特に制限されず、コイルの用途等に応じて選択できる。 Details and preferred aspects of the mica tape used for forming the insulating layer of the coil of the present embodiment are the same as those of the mica tape of the present embodiment described later. Further, the material, shape, size, and the like of the coil conductor used in the coil of the present embodiment are not particularly limited, and can be selected according to the use of the coil.
<回転電機用コイルの製造方法>
 本実施形態の回転電機用コイルの製造方法は、コイル導体の外周にマイカテープを巻きつける工程と、前記コイル導体の外周に巻きつけられた前記マイカテープを含む前記絶縁層を形成する工程と、を有する。
<Manufacturing method of coil for rotating electrical machine>
The method for manufacturing a coil for a rotating electrical machine of the present embodiment includes a step of winding a mica tape around the outer periphery of a coil conductor, a step of forming the insulating layer including the mica tape wound around the outer periphery of the coil conductor, Have
 コイル導体の外周にマイカテープを巻きつける方法は特に制限されず、通常行われる方法を採用することができる。 The method of winding the mica tape around the outer periphery of the coil conductor is not particularly limited, and a usual method can be adopted.
 コイル導体の外周に巻きつけられた前記マイカテープを含む絶縁層を形成する方法は、特に制限されない。例えば、コイル導体にマイカテープを巻き付けた後にマイカテープを加圧しながら加熱(ヒートプレス)して、あらかじめマイカテープに含まれている樹脂成分をマイカテープの外に流出させて重なり合うマイカテープ間を埋めるようにし、これを硬化させて絶縁層を形成する方法(プリプレグマイカテープの場合)、及びコイル導体にマイカテープを巻きつけた後に真空加圧含浸法(Vacuum Pressure Impregnation、VPI)にて樹脂成分をマイカテープに含浸し、これを硬化させて絶縁層を形成する方法(ドライマイカテープの場合)が挙げられる。 The method for forming the insulating layer including the mica tape wound around the outer periphery of the coil conductor is not particularly limited. For example, after a mica tape is wound around a coil conductor, the mica tape is heated while being pressed (heat press), and the resin component contained in the mica tape is caused to flow out of the mica tape in advance to fill the space between the overlapping mica tapes. The resin component is then formed by a method of curing this to form an insulating layer (in the case of prepreg mica tape), and after winding the mica tape around the coil conductor, a vacuum pressure impregnation method (Vacuum Pressure Impression, VPI). Examples include a method of impregnating mica tape and curing it to form an insulating layer (in the case of dry mica tape).
<マイカテープ>
 本実施形態のマイカテープは、マイカを含むマイカ層と、裏打ち材及び無機フィラーを含む裏打ち層と、を有し、前記無機フィラーは、5μm以下の範囲に存在する第一の粒度分布ピークと、6μm以上の範囲に存在する第二の粒度分布ピークと、を有する窒化ホウ素を含む。窒化ホウ素は、第一の粒度分布ピークと第二の粒度分布ピーク以外の粒度分布ピークを有していてもよい。また、第一の粒度分布ピークが2以上存在してもよく、第二の粒度分布ピークが2以上存在してもよい。
<Mica tape>
The mica tape of the present embodiment has a mica layer containing mica, a backing layer containing a backing material and an inorganic filler, and the inorganic filler has a first particle size distribution peak existing in a range of 5 μm or less, And boron nitride having a second particle size distribution peak existing in a range of 6 μm or more. Boron nitride may have a particle size distribution peak other than the first particle size distribution peak and the second particle size distribution peak. Further, two or more first particle size distribution peaks may be present, and two or more second particle size distribution peaks may be present.
 本発明者らの検討により、本実施形態のマイカテープは、無機フィラーの量を抑えつつ熱伝導性に優れる絶縁層を形成可能であることがわかった。
 その理由は明らかではないが、本発明者らは以下のように考える。まず、無機フィラーとして含まれる窒化ホウ素は高い熱伝導率を示すことが挙げられる。さらに、窒化ホウ素が5μm以下の範囲に存在する第一の粒度分布ピークと、6μm以上の範囲に存在する第二の粒度分布ピークと、を有することで、大きい窒化ホウ素粒子の間に小さい窒化ホウ素粒子が入り込むことにより、マイカテープの作製に用いる組成物(ワニス)中の窒化ホウ素の分散性が向上し、粘度が低下するために、塗布後の窒化ホウ素の分布ムラが抑制されることが考えられる。さらに、窒化ホウ素が良好に分散した組成物を用いて形成される裏打ち層では窒化ホウ素が裏打ち材にトラップされやすく、窒化ホウ素の脱落が生じにくいためと考えられる。
As a result of studies by the present inventors, it has been found that the mica tape of the present embodiment can form an insulating layer excellent in thermal conductivity while suppressing the amount of inorganic filler.
Although the reason is not clear, the present inventors consider as follows. First, it is mentioned that boron nitride contained as an inorganic filler exhibits high thermal conductivity. Furthermore, the boron nitride has a first particle size distribution peak that exists in a range of 5 μm or less and a second particle size distribution peak that exists in a range of 6 μm or more, so that small boron nitride is present between large boron nitride particles. It is considered that the dispersion of boron nitride in the composition (varnish) used for the preparation of the mica tape is improved and the viscosity is lowered, so that uneven distribution of boron nitride after coating is suppressed. It is done. Further, it is considered that boron nitride is easily trapped by the backing material in a backing layer formed using a composition in which boron nitride is well dispersed, and boron nitride is not easily dropped off.
 図2は、第一の粒度分布ピークに相当する窒化ホウ素と第二の粒度分布ピークに相当する窒化ホウ素の両方が存在する場合の窒化ホウ素の状態と、第二の粒度分布ピークに相当する窒化ホウ素のみが存在する場合の窒化ホウ素の状態をそれぞれ表す概念図である。
 図2(A)に示すように、第一の粒度分布ピークに相当する窒化ホウ素粒子7と、第二の粒度分布ピークに相当する窒化ホウ素粒子8の両方が存在する場合は、窒化ホウ素が面内のある方向に配向することが抑制され、熱伝導率の異方性が低減する傾向にある。
 一方、図2(B)に示すように、第二の粒度分布ピークに相当する窒化ホウ素粒子8のみが存在する場合、同じ充填量の窒化ホウ素と比較して熱伝導率は高い傾向にあるが、面内のある方向に窒化ホウ素が配向し、面内方向と厚さ方向で熱伝導率の差が大きく異方性が生じる傾向にある。
 また、図示しないが、第一の粒度分布ピークに相当する窒化ホウ素粒子7のみが存在する場合、熱伝導率の異方性は抑制されるが、同じ充填量の窒化ホウ素と比較して熱伝導率は低い傾向にある。
FIG. 2 shows the state of boron nitride when both boron nitride corresponding to the first particle size distribution peak and boron nitride corresponding to the second particle size distribution peak exist, and nitridation corresponding to the second particle size distribution peak. It is a conceptual diagram showing the state of boron nitride when only boron exists.
As shown in FIG. 2A, when both boron nitride particles 7 corresponding to the first particle size distribution peak and boron nitride particles 8 corresponding to the second particle size distribution peak are present, the boron nitride is a surface. Orientation in a certain direction is suppressed, and the anisotropy of thermal conductivity tends to be reduced.
On the other hand, as shown in FIG. 2B, when only boron nitride particles 8 corresponding to the second particle size distribution peak are present, the thermal conductivity tends to be higher than that of boron nitride of the same filling amount. The boron nitride is oriented in a certain direction in the plane, and the difference in thermal conductivity between the in-plane direction and the thickness direction tends to be large and anisotropy tends to occur.
Although not shown, when only boron nitride particles 7 corresponding to the first particle size distribution peak are present, the thermal conductivity anisotropy is suppressed, but the thermal conductivity is compared with boron nitride of the same filling amount. The rate tends to be low.
 窒化ホウ素の粒子分散性の向上の観点からは、窒化ホウ素の第一の粒度分布ピークが1μm~4μmの範囲に存在し、第二の粒度分布ピークが8μm~11μmの範囲に存在することが好ましく、第一の粒度分布ピークが2μm~3μmの範囲に存在し、第二の粒度分布ピークが9μm~10μmの範囲に存在することがより好ましい。 From the viewpoint of improving the particle dispersibility of boron nitride, it is preferable that the first particle size distribution peak of boron nitride exists in the range of 1 μm to 4 μm and the second particle size distribution peak exists in the range of 8 μm to 11 μm. More preferably, the first particle size distribution peak is in the range of 2 μm to 3 μm, and the second particle size distribution peak is in the range of 9 μm to 10 μm.
 本明細書において粒度分布ピークがある範囲に存在するという場合には、粒度分布ピークを含む山の全部が当該範囲内に存在する場合と、山の一部が当該範囲の外に存在する場合の両方が含まれる。さらに、体積基準の粒度分布曲線において5μm以下の範囲に存在する第一の粒度分布ピークは6μm以上の範囲に存在する第二の粒度分布ピークと比較して小さい(ピークの高さが低い)ことが好ましい。第二の粒度分布ピークは6μm~100μmの範囲にあることが好ましい。 In the present specification, when the particle size distribution peak is present in a certain range, the case where all of the peaks including the particle size distribution peak exist within the range, and the case where a part of the mountain exists outside the range. Both are included. Furthermore, in the volume-based particle size distribution curve, the first particle size distribution peak existing in the range of 5 μm or less is smaller than the second particle size distribution peak existing in the range of 6 μm or more (peak height is low). Is preferred. The second particle size distribution peak is preferably in the range of 6 μm to 100 μm.
 窒化ホウ素は、第一の粒度分布ピークにおける頻度が0.1%~5%であることが好ましく、1%~4%であることがより好ましい。また、第二の粒度分布ピークにおける頻度が1%~6%であることが好ましく、2%~5%であることがより好ましい。
 窒化ホウ素は、第一の粒度分布ピークにおける頻度/第二の粒度分布ピークにおける頻度の値が1未満であることが好ましく、0.9以下であることが好ましく、0.8以下であることがより好ましい。また、第一の粒度分布ピークにおける頻度/第二の粒度分布ピークにおける頻度の値が0.1以上であることが好ましく、0.2以上であることがより好ましい。
Boron nitride preferably has a frequency at the first particle size distribution peak of 0.1% to 5%, more preferably 1% to 4%. The frequency at the second particle size distribution peak is preferably 1% to 6%, and more preferably 2% to 5%.
Boron nitride preferably has a frequency at the first particle size distribution peak / frequency value at the second particle size distribution peak of less than 1, preferably 0.9 or less, and 0.8 or less. More preferred. Further, the frequency value at the first particle size distribution peak / the frequency value at the second particle size distribution peak is preferably 0.1 or more, and more preferably 0.2 or more.
 窒化ホウ素は、体積基準の粒度分布曲線の小径側からの累積が10%となるときの粒子径(D10)が0.1μm~3μmであることが好ましく、50%となるときの粒子径(D50)が3μm~8μmであることが好ましく、90%となるときの粒子径(D90)が8μm~100μmであることが好ましい。また、D10/D90の値が0.001~0.333であることが好ましく、D90-D10の値が6μm~99μmであることが好ましい。 Boron nitride preferably has a particle diameter (D10) of 0.1 μm to 3 μm when the accumulation from the small diameter side of the volume-based particle size distribution curve is 10%, and preferably has a particle diameter (D50) of 50%. ) Is preferably 3 μm to 8 μm, and the particle diameter (D90) at 90% is preferably 8 μm to 100 μm. The value of D10 / D90 is preferably 0.001 to 0.333, and the value of D90-D10 is preferably 6 μm to 99 μm.
 窒化ホウ素の粒度分布ピークは、レーザー回折法で測定することができる。レーザー回折法を用いる場合、純水中に窒化ホウ素を投入して超音波分散機で分散し、得られた分散液からレーザー回折散乱方式粒度分布測定装置(例えば、日機装株式会社、「マイクロトラック MT3000II」)を用いて測定される。また、マイカテープからフィラーを抽出して粒度分布ピークを測定する場合、有機溶剤を用いて、裏打ち層からフィラー成分を抽出し、超音波分散機等で十分に分散する。この分散液の粒子径分布を測定することでフィラーの粒子径分布を測定することができる。 The particle size distribution peak of boron nitride can be measured by a laser diffraction method. When the laser diffraction method is used, boron nitride is introduced into pure water and dispersed with an ultrasonic disperser, and a laser diffraction / scattering particle size distribution measuring device (for example, Nikkiso Co., Ltd., “Microtrack MT3000II” is obtained from the obtained dispersion. )). When measuring the particle size distribution peak by extracting the filler from the mica tape, the filler component is extracted from the backing layer using an organic solvent and sufficiently dispersed with an ultrasonic disperser or the like. By measuring the particle size distribution of this dispersion, the particle size distribution of the filler can be measured.
 図1は、本実施形態のマイカテープの構造の一例を表す概略断面図である。図1に示すように、マイカテープはマイカ4を含むマイカ層6と、裏打ち材2及び無機フィラー1を含む裏打ち層5と、を有していてもよい。また、マイカ層6と裏打ち層5はそれぞれ樹脂成分3を含んでいてもよい。樹脂成分3は、マイカ層6と裏打ち層5の両方に含まれても一方のみに含まれてもよい。マイカ層6(又は裏打ち層5)が樹脂成分3を含む場合、樹脂成分3は、マイカ層6(又は裏打ち層5)の全体に含まれていても、部分的に含まれていてもよい。 FIG. 1 is a schematic cross-sectional view showing an example of the structure of the mica tape of this embodiment. As shown in FIG. 1, the mica tape may have a mica layer 6 containing mica 4 and a backing layer 5 containing a backing material 2 and an inorganic filler 1. Further, the mica layer 6 and the backing layer 5 may each contain the resin component 3. The resin component 3 may be included in both the mica layer 6 and the backing layer 5 or only in one. When the mica layer 6 (or the backing layer 5) includes the resin component 3, the resin component 3 may be included in the entire mica layer 6 (or the backing layer 5) or may be partially included.
 本実施形態のマイカテープは、被絶縁体にマイカテープを巻き付けた後にあらかじめマイカテープに含まれている樹脂成分を硬化させて絶縁層を形成する方法に用いられるマイカテープ(プリプレグマイカテープ)であっても、被絶縁体に巻きつけた後に含浸する樹脂成分を硬化させて絶縁層を形成する方法に用いられるマイカテープ(ドライマイカテープ)であってもよい。 The mica tape of this embodiment is a mica tape (prepreg mica tape) used in a method for forming an insulating layer by curing a resin component contained in a mica tape in advance after the mica tape is wound around an object to be insulated. Alternatively, it may be a mica tape (dry mica tape) used in a method of forming an insulating layer by curing a resin component impregnated after being wound around an insulator.
(マイカ)
 マイカの種類は、特に制限されない。例えば、未焼成硬質マイカ、焼成硬質マイカ、未焼成軟質マイカ、焼成軟質マイカ、合成マイカ及びフレークマイカが挙げられる。これらの中でも、マイカと樹脂成分の接着性の観点からは、未焼成硬質マイカが好ましい。
(Mica)
The kind of mica is not particularly limited. Examples include unfired hard mica, fired hard mica, unfired soft mica, fired soft mica, synthetic mica, and flake mica. Among these, unfired hard mica is preferable from the viewpoint of adhesion between mica and the resin component.
 マイカの粒子径は、特に制限されない。例えば、絶縁性の観点からは、JIS標準篩を用いて篩い分けしたときに、粒子径が2.8mm以上であるマイカ片の割合が、マイカ片全体の45質量%未満であることが好ましく、マイカ片全体の30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。 The particle size of mica is not particularly limited. For example, from the viewpoint of insulation, when sieving using a JIS standard sieve, the proportion of mica pieces having a particle diameter of 2.8 mm or more is preferably less than 45% by mass of the whole mica pieces, It is more preferably 30% by mass or less, and further preferably 20% by mass or less, based on the entire mica piece.
 充分な絶縁破壊電界強度を確保する観点からは、JIS標準篩を用いて篩い分けしたときの粒子径が0.5mm以上であるマイカ片の割合が、マイカ片全体の40質量%以上であることが好ましく、60質量%以上であることがより好ましい。 From the viewpoint of securing sufficient dielectric breakdown electric field strength, the proportion of mica pieces having a particle diameter of 0.5 mm or more when sieved using a JIS standard sieve is 40% by mass or more of the entire mica pieces. Is preferable, and it is more preferable that it is 60 mass% or more.
 前記JIS標準篩はJIS-Z-8801-1:2006に準拠し、ISO3310-1:2000に対応する。尚、ISO3310-1:2000を用いる場合には、JIS-Z-8801-1:2006と同様に篩い目の形状が正方形であるものを適用することが好ましい。 The JIS standard sieve conforms to JIS-Z-8801-1: 2006 and corresponds to ISO3310-1: 2000. In addition, when using ISO3310-1: 2000, it is preferable to apply the one having a square mesh shape as in JIS-Z-8801-1: 2006.
 マイカは1種を単独で使用してもよく、2種以上を併用してもよい。マイカを2種以上併用する場合としては、例えば、同じ成分で粒子径が異なるマイカを2種以上用いる場合、粒子径が同じで成分の異なるマイカを2種以上用いる場合、並びに平均粒子径及び成分の異なるマイカを2種以上用いる場合が挙げられる。 Mica may be used alone or in combination of two or more. When two or more mica are used in combination, for example, when two or more mica having the same component and different particle sizes are used, when two or more mica having the same particle size and different components are used, and the average particle size and component The case where 2 or more types of mica having different types is used is mentioned.
 マイカ層中のマイカの量は、特に制限されない。例えば、80g/m~230g/mの範囲が好ましく、100g/m~200g/mの範囲がより好ましい。マイカ層中のマイカの量が80g/m以上であれば、絶縁性の低下が抑制される傾向にある。マイカ層中のマイカの量が230g/m以下であれば、マイカテープの厚さを薄くでき、熱伝導率の低下が抑制される傾向にある。 The amount of mica in the mica layer is not particularly limited. For example, a range of 80 g / m 2 to 230 g / m 2 is preferable, and a range of 100 g / m 2 to 200 g / m 2 is more preferable. If the amount of mica in the mica layer is 80 g / m 2 or more, a decrease in insulation tends to be suppressed. If the amount of mica in the mica layer is 230 g / m 2 or less, the thickness of the mica tape can be reduced, and the decrease in thermal conductivity tends to be suppressed.
(裏打ち材)
 裏打ち材の種類は、特に制限されない。例えば、ガラスクロスが挙げられる。裏打ち材としてガラスクロスを用いることで、ガラスクロスを構成する繊維の間に無機フィラーが取り込まれ、無機フィラーの脱落が抑制される傾向にある。また、繊維の間に浸透した樹脂成分によって隣接するマイカ層と良好に一体化し、熱伝導性が向上する傾向にある。さらに、被絶縁体に巻きつける際の切れ、ひび等が発生しにくい傾向にある。
(Lining material)
The type of the backing material is not particularly limited. For example, a glass cloth is mentioned. By using glass cloth as the backing material, the inorganic filler is taken in between the fibers constituting the glass cloth, and the falling of the inorganic filler tends to be suppressed. Further, the resin component penetrated between the fibers tends to be well integrated with the adjacent mica layer, and the thermal conductivity tends to be improved. Furthermore, there is a tendency that cuts, cracks and the like are less likely to occur when wound around an insulator.
 裏打ち材としてガラスクロスを用いる場合、その一部が有機材料で構成される繊維であってもよい。有機材料で構成される繊維は特に制限されず、アラミド、ポリアミド、ポリイミド、ポリエステル等の繊維が挙げられる。ガラスクロスの一部が有機材料で構成される繊維である場合には、縦糸、横糸又はその両方が有機材料で構成される繊維であってもよい。 When a glass cloth is used as the backing material, a part of the fiber may be an organic material. The fiber comprised in particular with an organic material is not restrict | limited, Fibers, such as an aramid, polyamide, a polyimide, polyester, are mentioned. When a part of the glass cloth is a fiber composed of an organic material, the warp, the weft, or both may be a fiber composed of an organic material.
 裏打ち材の平均厚さは特に限定されない。例えば、30μm~60μmであることが好ましく、45μm~50μmであることがより好ましい。裏打ち材の平均厚さが30μm以上であれば、マイカテープを加圧した際に裏打ち層が裏打ち材の厚さに追従して薄くなりすぎるのが抑制され、熱伝導率の低下が抑制される傾向にある。裏打ち材の厚さが60μm以下であれば、マイカテープが厚くなるのを抑制でき、マイカテープを被絶縁体に巻き付ける工程中のマイカテープの切れ、ひび等の発生が抑制される傾向にある。 The average thickness of the backing material is not particularly limited. For example, the thickness is preferably 30 μm to 60 μm, and more preferably 45 μm to 50 μm. When the average thickness of the backing material is 30 μm or more, it is suppressed that the backing layer becomes too thin following the thickness of the backing material when the mica tape is pressed, and a decrease in thermal conductivity is suppressed. There is a tendency. If the thickness of the backing material is 60 μm or less, the thickness of the mica tape can be suppressed, and the occurrence of breakage, cracks, and the like of the mica tape during the process of winding the mica tape around the insulator tends to be suppressed.
 本実施形態において裏打ち材の平均厚さは、マイクロメーター(MDC-SB、株式会社ミツトヨ)を用いて裏打ち材の厚さを計10箇所で測定し、得られた測定値の算術平均値とする。 In this embodiment, the average thickness of the backing material is the arithmetic average value of the measured values obtained by measuring the thickness of the backing material at a total of 10 locations using a micrometer (MDC-SB, Mitutoyo Corporation). .
 裏打ち材は、必要に応じて表面処理されたものでもよい。裏打ち材の表面処理の方法としては、例えば、シランカップリング剤による処理が挙げられる。 The backing material may be surface-treated if necessary. Examples of the surface treatment method for the backing material include treatment with a silane coupling agent.
(無機フィラー)
 無機フィラーは、5μm以下の範囲に存在する第一の粒度分布ピークと、6μm以上の範囲に存在する第二の粒度分布ピークと、を有する窒化ホウ素を含む。窒化ホウ素は、他の無機フィラー(例えば、アルミナ)よりも高い熱伝導性を示すため、マイカテープから形成される絶縁層の熱伝導性がより向上する傾向にある。無機フィラーは、シリカ、アルミナ等の窒化ホウ素以外の無機フィラーを含んでもよい。無機フィラーが窒化ホウ素と窒化ホウ素以外の無機フィラーとを含む場合、無機フィラー中の窒化ホウ素の割合は50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
(Inorganic filler)
The inorganic filler includes boron nitride having a first particle size distribution peak that exists in a range of 5 μm or less and a second particle size distribution peak that exists in a range of 6 μm or more. Since boron nitride exhibits higher thermal conductivity than other inorganic fillers (for example, alumina), the thermal conductivity of the insulating layer formed from the mica tape tends to be further improved. The inorganic filler may include inorganic fillers other than boron nitride such as silica and alumina. When the inorganic filler contains boron nitride and an inorganic filler other than boron nitride, the proportion of boron nitride in the inorganic filler is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass. More preferably, it is the above.
 窒化ホウ素の種類は特に限定されず、六方晶窒化ホウ素(h-BN)、立方晶窒化ホウ素(c-BN)、ウルツ鉱型窒化ホウ素等が挙げられる。これらの中でも、六方晶窒化ホウ素(h-BN)が好ましい。窒化ホウ素は、鱗片状に形成されている窒化ホウ素の一次粒子であっても、一次粒子が凝集して形成された二次粒子であってもよい。 The type of boron nitride is not particularly limited, and examples include hexagonal boron nitride (h-BN), cubic boron nitride (c-BN), and wurtzite boron nitride. Among these, hexagonal boron nitride (h-BN) is preferable. The boron nitride may be primary particles of boron nitride formed in a scale shape or secondary particles formed by agglomeration of primary particles.
 無機フィラーの平均粒子径は、5μm以下の範囲に存在する第一の粒度分布ピークと、6μm以上の範囲に存在する第二の粒度分布ピークとを有する窒化ホウ素を含むのであれば、特に制限されない。例えば、3μm~8μmの範囲内であることが好ましく、5μm~7μmの範囲内であることがより好ましい。 The average particle size of the inorganic filler is not particularly limited as long as it contains boron nitride having a first particle size distribution peak existing in the range of 5 μm or less and a second particle size distribution peak existing in the range of 6 μm or more. . For example, it is preferably in the range of 3 μm to 8 μm, and more preferably in the range of 5 μm to 7 μm.
 無機フィラーの平均粒子径は、例えば、レーザー回折散乱方式粒度分布測定装置(日機装株式会社、「マイクロトラック MT3000II」)を用いることで測定可能である。具体的には、純水中に無機フィラーを投入した後に、超音波分散機で分散する。この分散液の粒子径分布を測定することで、無機フィラーの粒子径分布が測定される。この粒子径分布に基づいて、小径側からの体積累積50%に対応する粒子径(D50)を平均粒子径として求める。 The average particle size of the inorganic filler can be measured by using, for example, a laser diffraction / scattering particle size distribution measuring apparatus (Nikkiso Co., Ltd., “Microtrack MT3000II”). Specifically, an inorganic filler is introduced into pure water and then dispersed with an ultrasonic disperser. By measuring the particle size distribution of the dispersion, the particle size distribution of the inorganic filler is measured. Based on this particle size distribution, the particle size (D50) corresponding to 50% volume accumulation from the small diameter side is determined as the average particle size.
 無機フィラーは、アスペクト比が1~10の範囲内であることが好ましく、1~9の範囲内であることがより好ましい。また、無機フィラーに含まれる窒化ホウ素は、アスペクト比が1~10の範囲内であることが好ましく、1~9の範囲内であることがより好ましい。無機フィラー又は窒化ホウ素のアスペクト比が1~10の範囲内にあると、無機フィラー又は窒化ホウ素が樹脂と接する表面積が増え、無機フィラー又は窒化ホウ素が樹脂を介して裏打ち材とより密着し、コイルにマイカテープを巻き付ける際の無機フィラーの飛散がより抑制される傾向にある。 The inorganic filler preferably has an aspect ratio in the range of 1 to 10, and more preferably in the range of 1 to 9. Further, the boron nitride contained in the inorganic filler preferably has an aspect ratio in the range of 1 to 10, more preferably in the range of 1 to 9. When the aspect ratio of the inorganic filler or boron nitride is in the range of 1 to 10, the surface area where the inorganic filler or boron nitride is in contact with the resin increases, and the inorganic filler or boron nitride is more closely attached to the backing material through the resin, and the coil There is a tendency that the scattering of the inorganic filler is more suppressed when the mica tape is wound around.
 無機フィラー又は窒化ホウ素のアスペクト比は、20個の代表的な粒子についてそれぞれ短径に対する長径の長さの比(長径/短径)を測定し、得られた測定値の算術平均値とする。 For the aspect ratio of the inorganic filler or boron nitride, the ratio of the length of the major axis to the minor axis (major axis / minor axis) is measured for each of 20 representative particles, and the arithmetic average value of the obtained measured values is used.
 無機フィラー又は窒化ホウ素のアスペクト比の測定方法は特に制限されない。例えば、マイカテープの硬化物を厚み方向に切断し、切断面をイオンミリング処理により平滑化した後、白金を蒸着して得られた切断面を走査型電子顕微鏡(SEM)(倍率:3000倍)により観察し、ミクロメーターを用いて測定することができる。 The method for measuring the aspect ratio of the inorganic filler or boron nitride is not particularly limited. For example, a cured product of mica tape is cut in the thickness direction, and the cut surface is smoothed by ion milling, and then the cut surface obtained by depositing platinum is scanned with an electron microscope (SEM) (magnification: 3000 times). And can be measured using a micrometer.
 無機フィラーは1種を単独で使用しても、2種以上を併用してもよい。無機フィラーを2種以上併用する場合としては、例えば、同じ成分で平均粒子径が異なる無機フィラーを2種以上用いる場合、平均粒子径が同じで成分の異なる無機フィラーを2種以上用いる場合、並びに平均粒子径及び種類の異なる無機フィラーを2種以上用いる場合が挙げられる。 The inorganic filler may be used alone or in combination of two or more. As a case where two or more inorganic fillers are used in combination, for example, when two or more inorganic fillers having the same component and different average particle sizes are used, two or more inorganic fillers having the same average particle size and different components are used, and A case where two or more inorganic fillers having different average particle diameters and types are used.
 必要に応じ、無機フィラーはカップリング剤、熱処理又は光処理により表面処理されたものであってもよい。
 例えば、熱処理の場合、無機フィラーを適切な高温(例えば、250℃~800℃)で1時間~3時間加熱することにより、無機フィラー表面の不純物が除去される。そのため、無機フィラーを樹脂成分と混合したときの親和性が向上し、無機フィラーと樹脂成分を含む組成物の粘度が下がり、塗布しやすくなる傾向にある。また、組成物の塗布面は塗り斑や凹凸が少なく平滑性が向上する傾向にある。
If necessary, the inorganic filler may be surface-treated by a coupling agent, heat treatment or light treatment.
For example, in the case of heat treatment, impurities on the surface of the inorganic filler are removed by heating the inorganic filler at an appropriate high temperature (for example, 250 ° C. to 800 ° C.) for 1 hour to 3 hours. Therefore, the affinity when the inorganic filler is mixed with the resin component is improved, and the viscosity of the composition containing the inorganic filler and the resin component is lowered and tends to be easily applied. Further, the coated surface of the composition has few smears and irregularities and tends to improve smoothness.
(樹脂成分)
 マイカテープは、樹脂成分を含んでもよい。樹脂成分として用いる樹脂の種類は特に制限されない。マイカテープを硬化させて絶縁層を形成する観点からは、硬化性樹脂であることが好ましく、熱硬化性樹脂であることがより好ましい。硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂及びシリコーン樹脂が挙げられる。マイカ層と裏打ち層との接着性及び電気絶縁性の観点からは、エポキシ樹脂が好ましい。
(Resin component)
The mica tape may contain a resin component. The kind of resin used as the resin component is not particularly limited. From the viewpoint of curing the mica tape to form the insulating layer, a curable resin is preferable, and a thermosetting resin is more preferable. Examples of the curable resin include an epoxy resin, a phenol resin, an unsaturated polyester resin, and a silicone resin. From the viewpoint of adhesion between the mica layer and the backing layer and electrical insulation, an epoxy resin is preferable.
 樹脂成分としてエポキシ樹脂を用いる場合のエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、環式脂肪族エポキシ樹脂等が挙げられる。中でも、耐熱性の観点からは、フェノールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂及びビスフェノールF型エポキシ樹脂が好ましい。 Epoxy resins in the case of using an epoxy resin as a resin component include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolak type epoxy resin, naphthalene type epoxy resin, cycloaliphatic epoxy resin, etc. Is mentioned. Among these, from the viewpoint of heat resistance, phenol novolac type epoxy resins, bisphenol A type epoxy resins and bisphenol F type epoxy resins are preferable.
 エポキシ樹脂のエポキシ当量は、特に制限されない。例えば、130g/eq~500g/eqであることが好ましく、135g/eq~400g/eqであることがより好ましく、140g/eq~300g/eqであることがさらに好ましい。なお、エポキシ当量は、精秤したエポキシ樹脂をメチルエチルケトン等の溶媒に溶解させ、酢酸と臭化テトラエチルアンモニウム酢酸溶液を加えた後、過塩素酸酢酸標準液によって電位差滴定することにより測定される。電位差滴定には、指示薬を用いてもよい。 The epoxy equivalent of the epoxy resin is not particularly limited. For example, it is preferably 130 g / eq to 500 g / eq, more preferably 135 g / eq to 400 g / eq, and even more preferably 140 g / eq to 300 g / eq. The epoxy equivalent is measured by dissolving a precisely weighed epoxy resin in a solvent such as methyl ethyl ketone, adding acetic acid and a tetraethylammonium bromide acetic acid solution, and then performing potentiometric titration with a perchloric acid acetic acid standard solution. An indicator may be used for potentiometric titration.
 樹脂成分として用いる樹脂の数平均分子量は、特に制限されない。例えば、流動性の観点からは100~100000であることが好ましく、200~50000であることがより好ましく、300~10000であることがさらに好ましい。樹脂の数平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)を用いて、定法に従い下記の条件で測定した値である。 The number average molecular weight of the resin used as the resin component is not particularly limited. For example, from the viewpoint of fluidity, it is preferably 100 to 100,000, more preferably 200 to 50,000, and still more preferably 300 to 10,000. The number average molecular weight of the resin is a value measured under the following conditions using a gel permeation chromatography method (GPC) according to a conventional method.
〔測定条件〕
 ポンプ:L-6000(株式会社日立製作所)
 カラム:TSKgel(登録商標)G4000HHR+G3000HHR+G2000HXL(東ソー株式会社)
 カラム温度:40℃
 溶出溶媒:テトラヒドロフラン(クロマトグラフィー用安定剤不含、和光純薬工業株式会社)
 試料濃度:5g/L(テトラヒドロフラン可溶分)
 注入量:100μL
 流速:1.0mL/分
 検出器:示差屈折率計(RI-8020、東ソー株式会社)
 分子量較正標準物質:標準ポリスチレン
 データ処理装置:GPC-8020(東ソー株式会社)
〔Measurement condition〕
Pump: L-6000 (Hitachi, Ltd.)
Column: TSKgel (registered trademark) G4000HHR + G3000HHR + G2000HXL (Tosoh Corporation)
Column temperature: 40 ° C
Elution solvent: Tetrahydrofuran (without chromatography stabilizer, Wako Pure Chemical Industries, Ltd.)
Sample concentration: 5 g / L (tetrahydrofuran soluble component)
Injection volume: 100 μL
Flow rate: 1.0 mL / min Detector: Differential refractometer (RI-8020, Tosoh Corporation)
Molecular weight calibration reference material: Standard polystyrene Data processor: GPC-8020 (Tosoh Corporation)
 マイカテープが樹脂成分として硬化性樹脂を含む場合、硬化剤を樹脂成分として含んでもよい。硬化剤は特に制限されず、硬化性樹脂の種類に応じて適宜選択できる。硬化剤は1種を単独で用いても、2種以上を併用してもよい。
 硬化性樹脂がエポキシ樹脂である場合、硬化剤としてはエポキシ樹脂用硬化剤として通常用いられる硬化剤から適宜選択して用いることができる。具体的には、ジシアンジアミド、芳香族ジアミン等のアミン硬化剤;フェノールノボラック、クレゾールノボラック等のフェノール樹脂硬化剤;脂環式酸無水物等の酸無水物硬化剤などを挙げることができる。硬化性樹脂がエポキシ樹脂である場合、硬化剤とエポキシ樹脂の割合は、当量比(硬化剤/エポキシ樹脂)で0.8~1.2とすることが硬化性及び硬化物の電気特性の観点から好ましい。
When the mica tape contains a curable resin as a resin component, a curing agent may be included as a resin component. The curing agent is not particularly limited and can be appropriately selected depending on the type of the curable resin. A hardening | curing agent may be used individually by 1 type, or may use 2 or more types together.
When the curable resin is an epoxy resin, the curing agent can be appropriately selected from curing agents usually used as a curing agent for epoxy resins. Specific examples include amine curing agents such as dicyandiamide and aromatic diamine; phenol resin curing agents such as phenol novolac and cresol novolac; acid anhydride curing agents such as alicyclic acid anhydrides and the like. When the curable resin is an epoxy resin, the ratio of the curing agent to the epoxy resin should be 0.8 to 1.2 in terms of equivalent ratio (curing agent / epoxy resin) from the viewpoint of curability and electrical characteristics of the cured product To preferred.
(硬化触媒)
 マイカテープが樹脂成分として硬化性樹脂を含む場合、硬化性樹脂の硬化反応を加速させる等の目的で硬化触媒を含んでもよい。硬化触媒は特に制限されず、硬化性樹脂及び必要に応じて用いられる硬化剤の種類等に応じて選択できる。硬化触媒として具体的には、トリメチルアミン等の第3級アミン化合物、2-メチルイミダゾール、2-メチル-4-エチルイミダゾール等のイミダゾール化合物、錫、亜鉛、コバルト等の有機金属塩、三フッ化ホウ素モノエチルアミン等のルイス酸のアミン錯体、有機ホスフィン化合物等の有機リン化合物などを挙げることができる。硬化促進剤は1種を単独で用いても、2種以上を併用してもよい。
 マイカテープが硬化触媒を含む場合、その含有率は特に制限されない。例えば、樹脂成分としてエポキシ樹脂を用いる場合の硬化触媒の含有率は、エポキシ樹脂及び必要に応じて含まれる硬化剤の合計量に対して0.01質量%~5質量%の範囲が一般的である。
(Curing catalyst)
When the mica tape includes a curable resin as a resin component, a curing catalyst may be included for the purpose of accelerating the curing reaction of the curable resin. The curing catalyst is not particularly limited, and can be selected according to the type of the curable resin and the curing agent used as necessary. Specific examples of the curing catalyst include tertiary amine compounds such as trimethylamine, imidazole compounds such as 2-methylimidazole and 2-methyl-4-ethylimidazole, organometallic salts such as tin, zinc and cobalt, boron trifluoride. Examples include amine complexes of Lewis acids such as monoethylamine, and organic phosphorus compounds such as organic phosphine compounds. A hardening accelerator may be used individually by 1 type, or may use 2 or more types together.
When the mica tape contains a curing catalyst, the content is not particularly limited. For example, when an epoxy resin is used as the resin component, the content of the curing catalyst is generally in the range of 0.01% by mass to 5% by mass with respect to the total amount of the epoxy resin and the curing agent included as necessary. is there.
(その他の成分)
 マイカテープは、必要に応じて上述した成分以外のその他の成分を含んでもよい。その他の成分としては、カップリング剤、酸化防止剤、老化防止剤、安定剤、難燃剤、増粘剤等が挙げられる。マイカテープがこれらの成分を含む場合、その含有量は特に制限されない。
(Other ingredients)
The mica tape may contain other components other than the components described above as necessary. Examples of other components include coupling agents, antioxidants, anti-aging agents, stabilizers, flame retardants, and thickeners. When a mica tape contains these components, the content is not particularly limited.
<マイカテープの全体構成>
 本実施形態のマイカテープは、マイカを含むマイカ層と、裏打ち材及び窒化ホウ素を含む裏打ち層と、を有し、必要に応じてその他の層を有していてもよい。その他の層としては、マイカテープの最表面に設けられる保護層(保護フィルム)等が挙げられる。
<Overall configuration of mica tape>
The mica tape of this embodiment has a mica layer containing mica and a backing layer containing a backing material and boron nitride, and may have other layers as necessary. Examples of the other layer include a protective layer (protective film) provided on the outermost surface of the mica tape.
 マイカテープの平均厚さ(マイカ層と裏打ち層の厚さの合計)は特に制限されない。例えば、マイカテープの平均厚さは400μm以下であってよく、350μm以下であることが好ましく、300μm以下であることがより好ましい。 The average thickness of the mica tape (the total thickness of the mica layer and the backing layer) is not particularly limited. For example, the average thickness of the mica tape may be 400 μm or less, preferably 350 μm or less, and more preferably 300 μm or less.
 マイカテープがプリプレグマイカテープとして使用される場合、マイカテープの巻きつけやすさの観点からは、マイカテープの平均厚さは300μm以下であることが好ましく、290μm以下であることがより好ましい。電気絶縁性の観点からは、マイカテープの平均厚さは120μm以上であることが好ましく、150μm以上であることがより好ましく、160μm以上であることがさらに好ましい。 When the mica tape is used as a prepreg mica tape, the average thickness of the mica tape is preferably 300 μm or less and more preferably 290 μm or less from the viewpoint of easy winding of the mica tape. From the viewpoint of electrical insulation, the average thickness of the mica tape is preferably 120 μm or more, more preferably 150 μm or more, and further preferably 160 μm or more.
 マイカテープがドライマイカテープとして使用される場合、マイカテープの巻きつけやすさの観点からは、マイカテープの平均厚さは220μm以下であることが好ましく、190μm以下であることがより好ましい。電気絶縁性の観点からは、マイカテープの平均厚さは120μm以上であることが好ましく、150μm以上であることがより好ましく、180μm以上であることがさらに好ましい。 When the mica tape is used as a dry mica tape, the average thickness of the mica tape is preferably 220 μm or less and more preferably 190 μm or less from the viewpoint of ease of winding the mica tape. From the viewpoint of electrical insulation, the average thickness of the mica tape is preferably 120 μm or more, more preferably 150 μm or more, and further preferably 180 μm or more.
 マイカ層の平均厚さは、特に制限されない。マイカテープの巻き付けやすさの観点からは、マイカ層の平均厚さは180μm以下であることが好ましく、170μm以下であることがより好ましい。電気絶縁性の観点からは、マイカ層の平均厚さは80μm以上であることが好ましく、90μm以上であることがより好ましい。 The average thickness of the mica layer is not particularly limited. From the viewpoint of ease of winding the mica tape, the average thickness of the mica layer is preferably 180 μm or less, and more preferably 170 μm or less. From the viewpoint of electrical insulation, the average thickness of the mica layer is preferably 80 μm or more, and more preferably 90 μm or more.
 裏打ち層の平均厚さは、特に制限されない。マイカテープの巻き付けやすさの観点からは、裏打ち層の平均厚さは60μm以下であることが好ましく、50μm以下であることがより好ましい。マイカテープの強度の観点からは、裏打ち層の平均厚さは10μm以上であることが好ましく、20μm以上であることがより好ましい。 The average thickness of the backing layer is not particularly limited. From the viewpoint of ease of winding the mica tape, the average thickness of the backing layer is preferably 60 μm or less, and more preferably 50 μm or less. From the viewpoint of the strength of the mica tape, the average thickness of the backing layer is preferably 10 μm or more, and more preferably 20 μm or more.
 本実施形態においてマイカテープの平均厚さ(マイカ層と裏打ち層の厚さの合計)は、マイクロメーター(MDC-SB、株式会社ミツトヨ)を用いてマイカテープの厚さを計10箇所で測定し、得られた測定値の算術平均値とする。 In this embodiment, the average thickness of the mica tape (the total thickness of the mica layer and the backing layer) was measured at a total of 10 locations using a micrometer (MDC-SB, Mitutoyo Corporation). The arithmetic average value of the measured values obtained is used.
 本実施形態においてマイカテープ中のマイカ層及び裏打ち層の厚さは、マイカテープの断面におけるマイカ層及び裏打ち層の厚さを実体顕微鏡(例えば、オリンパス株式会社、「BX51」)のミクロメーターにて3箇所観察し、その算術平均値とする。 In the present embodiment, the thickness of the mica layer and the backing layer in the mica tape is determined by measuring the thickness of the mica layer and the backing layer in the cross section of the mica tape with a micrometer of a stereomicroscope (for example, Olympus Corporation “BX51”). Observe 3 points and use the arithmetic average.
 マイカテープのマイカと裏打ち材を除く不揮発分における無機フィラーの含有率は、特に制限されない。例えば、マイカと裏打ち材を除く不揮発分の総体積の20体積%~50体積%であることが好ましく、25体積%~35体積%であることが更に好ましい。無機フィラーの含有率が、マイカと裏打ち材を除く不揮発分の総体積の20体積%以上であると、マイカテープから形成される絶縁層の熱伝導率がより向上する傾向にある。無機フィラーの含有率が、マイカと裏打ち材を除く不揮発分の総体積の50体積%以下であると、無機フィラーの樹脂成分への充填が容易となる傾向にある。 The content of the inorganic filler in the nonvolatile content excluding mica and the backing material of the mica tape is not particularly limited. For example, it is preferably 20% by volume to 50% by volume and more preferably 25% by volume to 35% by volume of the total volume of non-volatile components excluding mica and the backing material. When the content of the inorganic filler is 20% by volume or more of the total volume of nonvolatile components excluding mica and the backing material, the thermal conductivity of the insulating layer formed from the mica tape tends to be further improved. When the content of the inorganic filler is 50% by volume or less of the total volume of non-volatile components excluding mica and the backing material, filling of the inorganic filler into the resin component tends to be facilitated.
 マイカテープのマイカ層と裏打ち層の合計質量におけるマイカと裏打ち材を除く不揮発分の含有率は、特に制限されない。例えば、マイカ層と裏打ち層の合計質量の5質量%~45質量%であることが好ましく、10質量%~30質量%であることがより好ましく、15質量%~20質量%であることがさらに好ましい。マイカと裏打ち材を除く不揮発分の含有率が、マイカ層と裏打ち層の合計質量の5質量%以上であると、熱伝導率がより効果的に向上する傾向にある。マイカと裏打ち材を除く不揮発分の含有率が、マイカ層と裏打ち層の合計質量の45質量%以下であると、マイカテープの厚さの増大が抑えられる傾向にある。また、マイカテープの作製の際にワニスの含浸が進みやすい傾向にある。 The content of non-volatile components excluding mica and the backing material in the total mass of the mica layer and the backing layer of the mica tape is not particularly limited. For example, it is preferably 5% by mass to 45% by mass of the total mass of the mica layer and the backing layer, more preferably 10% by mass to 30% by mass, and further preferably 15% by mass to 20% by mass. preferable. When the content of nonvolatile components excluding mica and the backing material is 5% by mass or more of the total mass of the mica layer and the backing layer, the thermal conductivity tends to be more effectively improved. When the non-volatile content excluding mica and the backing material is 45% by mass or less of the total mass of the mica layer and the backing layer, an increase in the thickness of the mica tape tends to be suppressed. In addition, varnish impregnation tends to proceed during the production of mica tape.
 マイカテープのマイカと裏打ち材を除く不揮発分における樹脂成分の含有率は、特に制限されない。例えば、マイカと裏打ち材を除く不揮発分の総質量の35質量%~70質量%であることが好ましく、50質量%~65質量%であることがより好ましく、55質量%~60質量%であることがさらに好ましい。樹脂成分の含有率が、マイカと裏打ち材を除く不揮発分の総質量の35質量%以上であると、裏打ち層とマイカ層との接着性が向上する傾向にある。樹脂成分の含有率が、マイカと裏打ち材を除く不揮発分の総質量の70質量%以下であると、熱伝導性が向上する傾向にある。 The content of the resin component in the nonvolatile content excluding mica and the backing material of the mica tape is not particularly limited. For example, it is preferably 35% by mass to 70% by mass, more preferably 50% by mass to 65% by mass, and more preferably 55% by mass to 60% by mass with respect to the total mass of the nonvolatile content excluding mica and the backing material. More preferably. When the content of the resin component is 35% by mass or more of the total mass of nonvolatile components excluding mica and the backing material, the adhesion between the backing layer and the mica layer tends to be improved. When the content of the resin component is 70% by mass or less of the total nonvolatile content excluding mica and the backing material, the thermal conductivity tends to be improved.
 マイカテープ中の樹脂成分の含有率は特に制限されず、マイカテープの用途等に応じて選択できる。例えば、樹脂成分の含有率は、マイカ層と裏打ち層の合計質量の40質量%以下であってよく、5質量%~33質量%であることが好ましい。 The content of the resin component in the mica tape is not particularly limited and can be selected according to the use of the mica tape. For example, the content of the resin component may be 40% by mass or less of the total mass of the mica layer and the backing layer, and is preferably 5% by mass to 33% by mass.
 マイカテープがプリプレグマイカテープとして使用される場合、樹脂成分の含有率は、例えば、マイカ層と裏打ち層の合計質量の25質量%~33質量%であることが好ましく、25質量%~30質量%であることがより好ましい。樹脂成分の含有率がマイカ層と裏打ち層の合計質量の25質量%以上であると、マイカテープからのマイカ及び必要に応じて含まれる無機フィラーの脱落(粉落ち)が抑制され、被絶縁体にマイカテープを巻き付ける際のマイカテープのひび割れ、切れ、皺等の発生が抑制される結果、絶縁信頼性の低下及び熱伝導率の低下が抑制される傾向にある。一方、樹脂成分の含有率がマイカ層と裏打ち層の合計質量の33質量%以下であると、マイカテープの厚さの増大が抑制されて良好な巻き付け性が維持される傾向にある。さらに、被絶縁体にマイカテープを巻き付けた状態で重なり合ったマイカテープ間の空隙を埋めるために必要な体積以上に樹脂成分が脱落することが抑制される傾向にある。その結果、ボイドの発生が低減し、絶縁信頼性の低下が抑制される傾向にある。 When the mica tape is used as a prepreg mica tape, the content of the resin component is preferably 25% by mass to 33% by mass of the total mass of the mica layer and the backing layer, for example, 25% by mass to 30% by mass. It is more preferable that When the content of the resin component is 25% by mass or more of the total mass of the mica layer and the backing layer, the mica from the mica tape and, if necessary, the falling off (powder off) of the inorganic filler are suppressed, and the insulator As a result of the occurrence of cracks, cuts, wrinkles, and the like of the mica tape when the mica tape is wound around, the insulation reliability and the thermal conductivity tend to be suppressed. On the other hand, when the content of the resin component is 33% by mass or less of the total mass of the mica layer and the backing layer, an increase in the thickness of the mica tape is suppressed and good winding properties tend to be maintained. Furthermore, the resin component tends to be prevented from dropping beyond the volume necessary to fill the gap between the overlapping mica tapes with the mica tape wound around the insulator. As a result, generation of voids is reduced, and a decrease in insulation reliability tends to be suppressed.
 マイカテープがドライマイカテープとして使用される場合、マイカテープ中の樹脂成分の含有率は、例えば、マイカ層と裏打ち層の合計質量の5質量%~15質量%であることが好ましく、5質量%~12質量%であることがより好ましく、8質量%~10質量%であることがさらに好ましい。樹脂成分の含有率がマイカ層と裏打ち層の合計質量の5質量%以上であると、裏打ち層とマイカ層との接着性が充分に確保される傾向にある。一方、樹脂成分の含有率がマイカ層と裏打ち層の合計質量の15質量%以下であると、高い熱伝導率が達成される傾向にある。 When the mica tape is used as a dry mica tape, the content of the resin component in the mica tape is preferably 5% by mass to 15% by mass of the total mass of the mica layer and the backing layer, for example, 5% by mass. More preferably, it is ˜12% by mass, and further preferably 8% by mass to 10% by mass. When the content of the resin component is 5% by mass or more of the total mass of the mica layer and the backing layer, the adhesion between the backing layer and the mica layer tends to be sufficiently secured. On the other hand, when the content of the resin component is 15% by mass or less of the total mass of the mica layer and the backing layer, high thermal conductivity tends to be achieved.
 本実施形態において、マイカテープ中の樹脂成分の含有率は、例えば、下記方法によって算出される。
 幅30mm及び長さ50mmの大きさに切断したマイカテープを電気炉にて600℃及び2時間の条件で加熱し、加熱前後の質量減少率(%)を下記式により求める。以上の工程を3回行い、得られた値の算術平均値として求める。
 樹脂成分の含有率={(加熱前の質量-加熱後の質量)/加熱前の質量}×100
In this embodiment, the content rate of the resin component in the mica tape is calculated by the following method, for example.
The mica tape cut to a size of 30 mm in width and 50 mm in length is heated in an electric furnace at 600 ° C. for 2 hours, and the mass reduction rate (%) before and after heating is obtained by the following formula. The above process is performed three times, and an arithmetic average value of the obtained values is obtained.
Content of resin component = {(mass before heating−mass after heating) / mass before heating} × 100
 マイカテープがドライマイカテープとして使用される場合、マイカ層中の樹脂成分の含有率は、マイカ層の総質量の15質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることがさらに好ましく、0質量%であることが特に好ましい。 When the mica tape is used as a dry mica tape, the content of the resin component in the mica layer is preferably 15% by mass or less of the total mass of the mica layer, and more preferably 10% by mass or less. More preferably, it is 5 mass% or less, and it is especially preferable that it is 0 mass%.
 マイカ層は、マイカ以外の無機フィラーを実質的に含まないことが好ましい。具体的には、マイカ層中のマイカ以外の無機フィラーの含有率は、マイカ層の総質量の3質量%以下であることが好ましく、2質量%以下であることがより好ましく、1質量%以下であることがさらに好ましく、0質量%であることが特に好ましい。 The mica layer preferably contains substantially no inorganic filler other than mica. Specifically, the content of the inorganic filler other than mica in the mica layer is preferably 3% by mass or less, more preferably 2% by mass or less, and more preferably 1% by mass or less of the total mass of the mica layer. More preferably, it is particularly preferably 0% by mass.
 熱伝導率の低下を抑制する観点からは、マイカ層は、フィブリットを実質的に含まないことが好ましい。具体的には、マイカ層中のフィブリットの含有率は、マイカ層の総質量の1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましく、0質量%であることが特に好ましい。本明細書においてフィブリットとは、マイカ層が自立可能になるように混合される繊維状の物質であり、ポリアミド、ポリイミド等の有機繊維、ガラスファイバー等の無機繊維などが挙げられる。 From the viewpoint of suppressing a decrease in thermal conductivity, it is preferable that the mica layer does not substantially contain fibrites. Specifically, the content of fibrils in the mica layer is preferably 1% by mass or less of the total mass of the mica layer, more preferably 0.5% by mass or less, and 0.1% by mass. The following is more preferable, and 0% by mass is particularly preferable. In this specification, the fibrit is a fibrous substance mixed so that the mica layer can stand on its own, and examples thereof include organic fibers such as polyamide and polyimide, and inorganic fibers such as glass fibers.
<マイカテープの製造方法>
 本実施形態のマイカテープは、いかなる工程を経て製造されたものであってもよく、従来から公知の製造方法を適用することができる。
<Mica tape manufacturing method>
The mica tape of this embodiment may be manufactured through any process, and conventionally known manufacturing methods can be applied.
 マイカテープの製造方法の一例としては、裏打ち材をマイカペーパの上に配置して積層体を準備する工程と、5μm以下の範囲に存在する第一の粒度分布ピークと、6μm以上の範囲に存在する第二の粒度分布ピークと、を有する窒化ホウ素を含む無機フィラーと、樹脂成分と、を含む組成物(ワニス)を、前記積層体の前記裏打ち材側に付与する工程と、を含む方法が挙げられる。 As an example of a method for producing mica tape, a step of preparing a laminate by arranging a backing material on mica paper, a first particle size distribution peak existing in a range of 5 μm or less, and a range of 6 μm or more exist. A step of applying a composition (varnish) containing an inorganic filler containing boron nitride having a second particle size distribution peak and a resin component to the backing material side of the laminate. It is done.
 上記方法に用いられるマイカ、裏打ち材、無機フィラー及び樹脂成分、並びに製造されるマイカテープの詳細及び好ましい態様は、上述したとおりである。マイカペーパは、マイカ片が集合して形成されたシート状の物体である。 The details and preferred embodiments of the mica, backing material, inorganic filler and resin component used in the above method, and the produced mica tape are as described above. The mica paper is a sheet-like object formed by collecting mica pieces.
 必要に応じ、組成物は溶剤を含んでもよい。溶剤を含むことで組成物の粘度が低下し、無機フィラーの混合が容易になる傾向にある。溶剤の種類は特に制限されず、通常用いられる有機溶剤から選択できる。具体的には、メチルエチルケトン、トルエン、メタノール、シクロヘキサノン等が挙げられる。溶剤は1種を単独で用いても、2種以上を併用してもよい。 If necessary, the composition may contain a solvent. By including the solvent, the viscosity of the composition is lowered, and the inorganic filler tends to be easily mixed. The type of the solvent is not particularly limited, and can be selected from commonly used organic solvents. Specific examples include methyl ethyl ketone, toluene, methanol, cyclohexanone and the like. A solvent may be used individually by 1 type, or may use 2 or more types together.
 組成物中の無機フィラーの含有率は、特に限定されない。例えば、組成物の不揮発分(溶剤を除く成分)全体の20体積%~90体積%であることが好ましく、25体積%~35体積%であることがより好ましい。無機フィラーの含有率が組成物の不揮発分全体の20体積%以上であると、マイカテープを用いて形成される絶縁層の熱伝導率がより向上する傾向にある。無機フィラーの含有率が組成物の不揮発分全体の90体積%以下であると、無機フィラーと樹脂成分の混合性が向上する傾向にある。 The content of the inorganic filler in the composition is not particularly limited. For example, it is preferably 20% by volume to 90% by volume, and more preferably 25% by volume to 35% by volume of the total nonvolatile content (components excluding the solvent) of the composition. When the content of the inorganic filler is 20% by volume or more of the entire nonvolatile content of the composition, the thermal conductivity of the insulating layer formed using mica tape tends to be further improved. When the content of the inorganic filler is 90% by volume or less of the entire nonvolatile content of the composition, the mixing property of the inorganic filler and the resin component tends to be improved.
 組成物の付与時の粘度は、特に制限されない。例えば500mPa・s~3000mPa・sであることが好ましい。組成物の付与時の粘度は、組成物を裏打ち材に付与するときの組成物の温度で、E型粘度計を用いて50回転/分(rpm)の条件で測定した値とする。組成物の付与は、例えば、ロールコーター等を用いて組成物を裏打ち材に塗布することで行うことができる。 The viscosity at the time of application of the composition is not particularly limited. For example, it is preferably 500 mPa · s to 3000 mPa · s. The viscosity at the time of application of the composition is a temperature of the composition when the composition is applied to the backing material, and is a value measured using an E-type viscometer under a condition of 50 revolutions / minute (rpm). The application of the composition can be performed, for example, by applying the composition to the backing material using a roll coater or the like.
 組成物の付与は、裏打ち材に付与した組成物が裏打ち材の他方の面側ににじみ出てマイカペーパの全体又は一部に浸透するように行うことが好ましい。この場合、フィブリット混抄のマイカペーパでなくても、マイカペーパが自立可能となりやすく、崩れにくい。フィブリットを含まないマイカペーパを用いることで、熱伝導率が向上する傾向にある。 It is preferable to apply the composition so that the composition applied to the backing material oozes out to the other surface side of the backing material and penetrates all or part of the mica paper. In this case, even if it is not a fibrotic mixed paper, the mica paper can easily become independent and is not easily collapsed. By using mica paper that does not contain fibrites, the thermal conductivity tends to be improved.
 本実施形態のマイカテープは、例えば、回転電機コイル等に用いられるコイル導体等の被絶縁体の外周に設けられる絶縁層の形成に用いることができる。 The mica tape of this embodiment can be used, for example, for forming an insulating layer provided on the outer periphery of an insulator such as a coil conductor used for a rotating electrical machine coil or the like.
<マイカテープの硬化物>
 本実施形態のマイカテープの硬化物は、上述したマイカテープを硬化して得られる。より具体的には、マイカテープに含まれる樹脂成分を硬化して得られる。硬化の方法は特に制限されず、通常の方法から選択できる。
<Hardened mica tape>
The cured product of the mica tape of this embodiment is obtained by curing the mica tape described above. More specifically, it is obtained by curing a resin component contained in a mica tape. The curing method is not particularly limited, and can be selected from ordinary methods.
<絶縁物>
 本実施形態の絶縁物は、被絶縁体と、前記被絶縁体の表面の少なくとも一部に配置される本実施形態のマイカテープの硬化物である絶縁層と、を有する。本実施形態のマイカテープを用いて絶縁層を形成する方法は特に制限されず、従来から公知の製造方法を適用することができる。例えば、被絶縁体にマイカテープを巻き付けた後にマイカテープを加圧しながら加熱(ヒートプレス)して、あらかじめマイカテープに含まれている樹脂成分をマイカテープの外に流出させて重なり合うマイカテープ間を埋めるようにし、これを硬化させて絶縁層を形成する方法(プリプレグマイカテープの場合)、被絶縁体にマイカテープを巻きつけた後に真空加圧含浸法(Vacuum Pressure Impregnation、VPI)にて樹脂成分をマイカテープに含浸し、これを硬化させて絶縁層を形成する方法(ドライマイカテープの場合)などが挙げられる。
<Insulator>
The insulator of this embodiment includes an insulator and an insulating layer that is a cured product of the mica tape of this embodiment that is disposed on at least a part of the surface of the insulator. The method for forming the insulating layer using the mica tape of the present embodiment is not particularly limited, and conventionally known production methods can be applied. For example, after winding mica tape around an insulator, heat it while applying pressure to the mica tape (heat press), and let the resin component contained in the mica tape flow out of the mica tape in advance and overlap between the overlapping mica tapes. A resin component is formed by filling and curing an insulating layer (in the case of a prepreg mica tape), winding a mica tape around an insulator, and then applying a vacuum pressure impregnation (VPI). A method of impregnating a mica tape and curing the same to form an insulating layer (in the case of dry mica tape).
 絶縁層の形成を真空加圧含浸法により行う場合、マイカテープに含浸させる樹脂成分は特に制限されない。例えば、ビスフェノールA型エポキシ樹脂等のエポキシ樹脂と、脂環式酸無水物等の硬化剤を含むものが挙げられる。真空加圧含浸法における樹脂成分の含浸方法、含浸後の硬化条件、エポキシ樹脂と硬化剤との比率等は、従来から公知の方法、公知の条件等を参照できる。 When the insulating layer is formed by the vacuum pressure impregnation method, the resin component impregnated into the mica tape is not particularly limited. For example, what contains epoxy resins, such as a bisphenol A type epoxy resin, and hardening | curing agents, such as an alicyclic acid anhydride, is mentioned. For the impregnation method of the resin component in the vacuum pressure impregnation method, the curing conditions after the impregnation, the ratio of the epoxy resin and the curing agent, etc., conventionally known methods, known conditions and the like can be referred to.
 絶縁物における被絶縁体の種類は特に限定されず、コイル、棒、板等の形状を有する金属材料(銅等)などが挙げられる。被絶縁体として具体的には、回転電機用コイルのコイル導体が挙げられる。 The kind of insulator to be insulated is not particularly limited, and examples thereof include metal materials (copper, etc.) having shapes such as coils, rods, and plates. Specific examples of the insulator include a coil conductor of a coil for a rotating electrical machine.
 本実施形態のマイカテープを用いることで、高熱伝導性を示す絶縁層を形成することができる。従って、本実施形態の絶縁物がコイルである場合、当該コイルを冷却する際、従来では水直接冷却方式を採用されていた規模のコイルに対しても、水素冷却方式又は空冷方式を採用することができるようになり、コイルの構造を簡素化することが可能となる。 By using the mica tape of this embodiment, an insulating layer exhibiting high thermal conductivity can be formed. Therefore, when the insulator of this embodiment is a coil, when cooling the coil, a hydrogen cooling method or an air cooling method should be adopted even for a coil of a scale that conventionally employs a direct water cooling method. As a result, the coil structure can be simplified.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
<実施例1>
(1)マイカペーパの作製
 未焼成硬質マイカを水中に分散してマイカ粒子とし、抄紙機にて抄造して、マイカ量が140g/mのマイカペーパを作製した。
<Example 1>
(1) Production of mica paper Unfired hard mica was dispersed in water to form mica particles, and the mica was made with a paper machine to produce mica paper having a mica amount of 140 g / m 2 .
(2)窒化ホウ素含有ワニスの調製
 樹脂成分としてビスフェノールA型エポキシ樹脂(三菱化学株式会社、「エピコート828」)13.1質量%と、硬化触媒として亜鉛(II)アセチルアセトナート(純正化学株式会社)3.3質量%と、溶剤としてメチルエチルケトン(和光純薬工業株式会社)46.0質量%とを混合した。その後、粒度分布ピークが2μm~3μmの範囲と7μm~9μmの範囲にそれぞれ存在する窒化ホウ素(電気化学工業株式会社)37.6質量%を加えて撹拌し、無機フィラーとして窒化ホウ素を含む窒化ホウ素含有ワニスを調製した。用いた窒化ホウ素の粒度分布を図3に示す。窒化ホウ素の粒度分布はD10=2.9μm、D50=6.5μm、D90=13.0μmであった。
 尚、窒化ホウ素の粒度分布は、日機装株式会社「マイクロトラック MT3000II」)を用いて、レーザー回折法で測定した。具体的には、50mgの純水に、窒化ホウ素を10mg添加し、10分間振とうさせ分散した。20mlをセルに注入して25℃で測定した。尚、水の屈折率を1.333、窒化ホウ素の屈折率を2.17とした。
 窒化ホウ素含有ワニスにおけるエポキシ樹脂と硬化触媒との質量基準の比率(エポキシ樹脂:硬化触媒)は、97:3であった。
 得られた窒化ホウ素含有ワニスの塗布時の粘度として、25℃、50回転/分(rpm)での粘度(mPa・s)をE型粘度計を用いて測定した。結果を表1に示す。
(2) Preparation of boron nitride-containing varnish 13.1% by mass of a bisphenol A type epoxy resin (Mitsubishi Chemical Corporation, “Epicoat 828”) as a resin component and zinc (II) acetylacetonate (Junsei Co., Ltd.) as a curing catalyst ) 3.3% by mass and 46.0% by mass of methyl ethyl ketone (Wako Pure Chemical Industries, Ltd.) as a solvent were mixed. Thereafter, 37.6% by mass of boron nitride (Electrochemical Industry Co., Ltd.) having a particle size distribution peak in the range of 2 μm to 3 μm and in the range of 7 μm to 9 μm is added and stirred, and boron nitride containing boron nitride as an inorganic filler A containing varnish was prepared. The particle size distribution of the boron nitride used is shown in FIG. The particle size distribution of boron nitride was D10 = 2.9 μm, D50 = 6.5 μm, D90 = 13.0 μm.
The particle size distribution of boron nitride was measured by a laser diffraction method using Nikkiso Co., Ltd. “Microtrack MT3000II”). Specifically, 10 mg of boron nitride was added to 50 mg of pure water and dispersed by shaking for 10 minutes. 20 ml was injected into the cell and measured at 25 ° C. The refractive index of water was 1.333, and the refractive index of boron nitride was 2.17.
The ratio by mass of the epoxy resin and the curing catalyst in the boron nitride-containing varnish (epoxy resin: curing catalyst) was 97: 3.
As the viscosity at the time of application of the obtained boron nitride-containing varnish, the viscosity (mPa · s) at 25 ° C. and 50 revolutions / minute (rpm) was measured using an E-type viscometer. The results are shown in Table 1.
(3)マイカテープの作製
 マイカペーパの上にガラスクロス(株式会社双洋、「WEA 03G 103」、織目の隙間の合計体積:24.4cm/m)を重ね、ガラスクロスの上に調製した窒化ホウ素含有ワニスをロールコーターを用いて塗布した。塗布は、ガラスクロスの下のマイカペーパにも樹脂成分が浸透するように実施した。乾燥後、マイカペーパとガラスクロスの積層体を幅が30mmとなるように切断して、マイカ層と裏打ち層とを有するマイカテープを作製した。
 得られたマイカテープの平均厚さを、マイクロメーター(株式会社ミツトヨ、「MDC-SB」)を用いて10点の厚さを測定し、その算術平均値として求めた。結果を表1に示す。
(3) Production of mica tape A glass cloth (Soyo Co., Ltd., “WEA 03G 103”, total volume of interstices: 24.4 cm 3 / m 2 ) is laminated on mica paper and prepared on the glass cloth. The boron nitride-containing varnish was applied using a roll coater. The application was performed so that the resin component penetrated into the mica paper under the glass cloth. After drying, the laminate of mica paper and glass cloth was cut to a width of 30 mm to produce a mica tape having a mica layer and a backing layer.
The average thickness of the obtained mica tape was measured at 10 points using a micrometer (Mitutoyo Co., Ltd., “MDC-SB”) and obtained as the arithmetic average value. The results are shown in Table 1.
(4) マイカテープの積層硬化物の作製
 上記のマイカテープを25層に重ねて、含浸ワニスに浸漬し、真空含浸法により含浸ワニスをマイカテープに浸透させた。その後、130℃で2時間、次いで190℃で2時間のヒートプレスを行って樹脂成分を硬化させ、積層硬化物を作製した。このとき、窒化ホウ素の流出の有無を目視で確認したところ、視認可能な流出は生じなかった。
 含浸ワニスとしては、ビスフェノールA型エポキシ樹脂(三菱化学株式会社、「エピコート828」)と硬化剤(日立化成株式会社、「HN-5500」、メチルヘキサヒドロ無水フタル酸)とを質量基準で1:1で混合したものを用いた。
 作製した積層硬化物について、熱伝導率測定装置(英弘精機株式会社、「HC-110」)を用いて、熱伝導率 (W/(m・K))を測定した。結果を表1に示す。
(4) Production of laminated cured product of mica tape The above mica tape was layered on 25 layers and immersed in an impregnating varnish, and the impregnating varnish was infiltrated into the mica tape by a vacuum impregnation method. Thereafter, the resin component was cured by heat pressing at 130 ° C. for 2 hours and then at 190 ° C. for 2 hours to prepare a laminated cured product. At this time, the presence or absence of boron nitride outflow was visually confirmed, and no visible outflow occurred.
As the impregnating varnish, bisphenol A type epoxy resin (Mitsubishi Chemical Corporation, “Epicoat 828”) and a curing agent (Hitachi Chemical Co., Ltd., “HN-5500”, methylhexahydrophthalic anhydride) are used on a mass basis. What was mixed in 1 was used.
About the produced laminated cured product, thermal conductivity (W / (m · K)) was measured using a thermal conductivity measuring device (Hideko Seiki Co., Ltd., “HC-110”). The results are shown in Table 1.
(5)マイカテープ中の窒化ホウ素量の測定
 マイカテープに対して電気炉で600℃、2時間の加熱を行い、加熱前後の質量から減少分としての樹脂成分の質量と、残存分としての無機成分(窒化ホウ素、マイカ及びガラスクロス)の質量とを算出した。さらに、マイカテープの作製に使用したマイカとガラスクロスの質量を残存分の質量から差し引いて窒化ホウ素の量を算出した。結果を表1に示す。
(5) Measurement of the amount of boron nitride in mica tape The mica tape is heated in an electric furnace at 600 ° C. for 2 hours, and the mass of the resin component as a decrease from the mass before and after the heating, and the inorganic as the residual The mass of the components (boron nitride, mica and glass cloth) was calculated. Furthermore, the amount of boron nitride was calculated by subtracting the mass of the mica and glass cloth used for the production of the mica tape from the mass of the remaining portion. The results are shown in Table 1.
<実施例2>
(1)マイカペーパの作製
 未焼成硬質マイカを水中に分散してマイカ粒子とし、抄紙機にて抄造して、マイカ量が180g/mのマイカペーパを作製した。
<Example 2>
(1) Production of mica paper Unfired hard mica was dispersed in water to form mica particles, and the paper was made with a paper machine to produce mica paper having a mica amount of 180 g / m 2 .
(2)窒化ホウ素含有ワニスの調製
 樹脂成分としてエポキシノボラック樹脂(ダウ・ケミカル日本株式会社、商品名「D.E.N.438」(「D.E.N.」は、登録商標))36.7質量%と、硬化促進剤として三フッ化ホウ素モノエチルアミン(和光純薬工業株式会社)1.1質量%と、溶剤としてメチルエチルケトン(和光純薬工業株式会社)31.1質量%とを混合した。その後、粒度分布ピークが2μm~3μmの範囲と7μm~9μmの範囲にそれぞれ存在する窒化ホウ素(電気化学工業株式会社)を31.1質量%加え、さらに混合して窒化ホウ素含有ワニスを調製した。窒化ホウ素の粒度分布はD10=1.1μm、D50=5.2μm、D90=14.5μmであった。
(2) Preparation of boron nitride-containing varnish Epoxy novolak resin (Dow Chemical Japan Co., Ltd., trade name “D.N.438” (“D.N.” is a registered trademark)) 36 as a resin component 0.7% by mass, 1.1% by mass of boron trifluoride monoethylamine (Wako Pure Chemical Industries, Ltd.) as a curing accelerator, and 31.1% by mass of methyl ethyl ketone (Wako Pure Chemical Industries, Ltd.) as a solvent did. Thereafter, 31.1% by mass of boron nitride (Electrochemical Co., Ltd.) having a particle size distribution peak in the range of 2 μm to 3 μm and in the range of 7 μm to 9 μm was added and further mixed to prepare a boron nitride-containing varnish. The particle size distribution of boron nitride was D10 = 1.1 μm, D50 = 5.2 μm, and D90 = 14.5 μm.
(3)マイカテープの作製
 マイカペーパの上にガラスクロス(株式会社双洋、「WEA 03G 103」、織目の隙間の合計体積:24.4cm/m)を重ね、ガラスクロスの上に調製した窒化ホウ素含有ワニスをロールコーターを用いて塗布した。塗布は、ガラスクロスの下のマイカペーパにも樹脂成分が浸透するように実施した。乾燥後、マイカペーパとガラスクロスの積層体を幅が30mmとなるように切断して、マイカ層と裏打ち層とを有するマイカテープを作製した。
 得られたマイカテープについて、実施例1と同様にして平均厚さを測定した。結果を表1に示す。
(3) Production of mica tape A glass cloth (Soyo Co., Ltd., “WEA 03G 103”, total volume of interstices: 24.4 cm 3 / m 2 ) is laminated on mica paper and prepared on the glass cloth. The boron nitride-containing varnish was applied using a roll coater. The application was performed so that the resin component penetrated into the mica paper under the glass cloth. After drying, the laminate of mica paper and glass cloth was cut to a width of 30 mm to produce a mica tape having a mica layer and a backing layer.
About the obtained mica tape, it carried out similarly to Example 1, and measured average thickness. The results are shown in Table 1.
(4)マイカテープの積層硬化物の作製
 作製したマイカテープを16層に重ね、170℃で1時間のヒートプレスを行って樹脂成分を硬化させ、積層硬化物を作製した。このとき、窒化ホウ素の流出の有無を目視で確認したところ、視認可能な流出は生じなかった。
 得られた積層硬化物について、実施例1と同様にして熱伝導率を測定した。結果を表1に示す。
(4) Production of laminated cured product of mica tape The produced mica tape was stacked on 16 layers, and heat-pressed at 170 ° C. for 1 hour to cure the resin component, thereby producing a laminated cured product. At this time, the presence or absence of boron nitride outflow was visually confirmed, and no visible outflow occurred.
About the obtained laminated hardened | cured material, it carried out similarly to Example 1, and measured thermal conductivity. The results are shown in Table 1.
<比較例1>
 窒化ホウ素含有ワニスの調製に用いた窒化ホウ素として、粒度分布ピークが6μmにのみ存在する窒化ホウ素(電気化学工業株式会社)を用いたこと以外は実施例1と同様にして、マイカテープと積層硬化物を作製し、評価を行った。結果を表1に示す。
 また、真空含浸を行っているときの含浸ワニス中への窒化ホウ素の流出の有無を目視で確認したところ、含浸ワニスが白濁し、窒化ホウ素の流出が生じていた。
<Comparative Example 1>
As the boron nitride used for the preparation of the boron nitride-containing varnish, a mica tape and laminate curing were carried out in the same manner as in Example 1 except that boron nitride having a particle size distribution peak of only 6 μm (Electrochemical Co., Ltd.) was used. A product was prepared and evaluated. The results are shown in Table 1.
Moreover, when the presence or absence of outflow of boron nitride into the impregnating varnish during vacuum impregnation was visually confirmed, the impregnating varnish became cloudy and outflow of boron nitride occurred.
<比較例2>
 窒化ホウ素含有ワニスの調製に用いた窒化ホウ素として、粒度分布ピークが6μmにのみ存在する窒化ホウ素(電気化学工業株式会社)を用いたこと以外は実施例2と同様にして、マイカテープを作製し、評価を行った。結果を表1に示す。
 また、マイカテープを作製した際に塗りムラや樹脂抜けが発生し、不均一なテープとなった。マイカテープの16層積層硬化物を作製した際に、窒化ホウ素の流出の有無を目視で確認したところ、プレスにより押し出されたワニスは白濁し、窒化ホウ素の流出が生じていた。
<Comparative example 2>
A mica tape was prepared in the same manner as in Example 2 except that boron nitride (electrochemical industry) having a particle size distribution peak of only 6 μm was used as the boron nitride used for the preparation of the boron nitride-containing varnish. And evaluated. The results are shown in Table 1.
Further, when the mica tape was produced, uneven coating and resin loss occurred, resulting in a non-uniform tape. When a 16-layer laminated cured product of mica tape was produced, the presence or absence of outflow of boron nitride was visually confirmed. As a result, the varnish extruded by the press became cloudy and outflow of boron nitride occurred.
<比較例3>
 窒化ホウ素含有ワニスの調製に用いた窒化ホウ素として、粒度分布ピークが2μmにのみ存在する窒化ホウ素(電気化学工業株式会社)を用いたこと以外は実施例1と同様にして、マイカテープと積層硬化物を作製し、評価を行った。結果を表1に示す。
 また、真空含浸を行っているときの含浸ワニス中への窒化ホウ素の流出の有無を目視で確認したところ、含浸ワニスが白濁し、窒化ホウ素の流出が生じていた。
<Comparative Example 3>
Mica tape and lamination hardening were carried out in the same manner as in Example 1 except that boron nitride (Electrochemical Industry Co., Ltd.) having a particle size distribution peak of only 2 μm was used as boron nitride used for the preparation of the boron nitride-containing varnish. A product was prepared and evaluated. The results are shown in Table 1.
Moreover, when the presence or absence of outflow of boron nitride into the impregnating varnish during vacuum impregnation was visually confirmed, the impregnating varnish became cloudy and outflow of boron nitride occurred.
<比較例4>
 窒化ホウ素含有ワニスの調製に用いた窒化ホウ素として、粒度分布ピークが6μmにのみ存在する窒化ホウ素(電気化学工業株式会社)を用いたこと以外は実施例2と同様にして、マイカテープを作製し、評価を行った。結果を表1に示す。
 また、マイカテープを作製した際に塗りムラや樹脂抜けが発生し、不均一なテープとなった。マイカテープの16層積層硬化物を作製した際に、窒化ホウ素の流出の有無を目視で確認したところ、プレスにより押し出されたワニスは白濁し、窒化ホウ素の流出が生じていた。
<Comparative example 4>
A mica tape was prepared in the same manner as in Example 2 except that boron nitride (electrochemical industry) having a particle size distribution peak of only 6 μm was used as the boron nitride used for the preparation of the boron nitride-containing varnish. And evaluated. The results are shown in Table 1.
Further, when the mica tape was produced, uneven coating and resin loss occurred, resulting in a non-uniform tape. When a 16-layer laminated cured product of mica tape was produced, the presence or absence of outflow of boron nitride was visually confirmed. As a result, the varnish extruded by the press became cloudy and outflow of boron nitride occurred.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、5μm以下の範囲に存在する第一の粒度分布ピークと、7μm以上の範囲に存在する第二の粒度分布ピークとを有する窒化ホウ素を用いた実施例1は、粒度分布ピークを6μmにのみ有する窒化ホウ素を用いた比較例1に比べて少ない窒化ホウ素量でも良好な熱伝導性が達成されていた。一方で、5μm以下の範囲に存在する第一の粒度分布ピークと、6μm以上の範囲に存在する第二の粒度分布ピークとを有する窒化ホウ素を用いた実施例2は、粒度分布ピークを6μmにのみ有する窒化ホウ素を用いた比較例2とほぼ同量の窒化ホウ素量で大幅に熱伝導率が向上した。 As shown in Table 1, Example 1 using boron nitride having a first particle size distribution peak existing in a range of 5 μm or less and a second particle size distribution peak present in a range of 7 μm or more is a particle size distribution. Good thermal conductivity was achieved even with a small amount of boron nitride as compared with Comparative Example 1 using boron nitride having a peak only at 6 μm. On the other hand, Example 2 using boron nitride having a first particle size distribution peak existing in a range of 5 μm or less and a second particle size distribution peak present in a range of 6 μm or more has a particle size distribution peak of 6 μm. Thermal conductivity was significantly improved with the same amount of boron nitride as in Comparative Example 2 using only boron nitride.
 さらに、比較例1、2では窒化ホウ素がワニス中に流出しているのに対し、実施例1、2では流出がほとんどみられなかった。この理由としては、実施例1、2で作製した窒化ホウ素を含むワニスの塗布時の粘度が比較例1、2よりも低く、塗布ムラが生じにくいために裏打ち層中の窒化フィラーの分布のムラが抑えられ、かつ裏打ち層中に窒化フィラーが充分に取り込まれていることが考えられる。 Furthermore, in Comparative Examples 1 and 2, boron nitride flowed into the varnish, whereas in Examples 1 and 2, almost no outflow was observed. The reason for this is that the viscosity of the varnish containing boron nitride prepared in Examples 1 and 2 is lower than that of Comparative Examples 1 and 2 and uneven coating is less likely to occur, so the distribution of nitride filler in the backing layer is uneven. It is conceivable that the nitride filler is sufficiently taken into the backing layer.
 以上より、本発明によればマイカテープからの無機フィラーの脱落を抑制しつつ、絶縁層を形成可能であることがわかった。その結果、無機フィラーの量を抑えつつ熱伝導性に優れる絶縁層を形成可能であることがわかった。 From the above, it has been found that according to the present invention, it is possible to form an insulating layer while suppressing the falling off of the inorganic filler from the mica tape. As a result, it was found that an insulating layer having excellent thermal conductivity can be formed while suppressing the amount of inorganic filler.
1 無機フィラー
2 裏打ち材
3 樹脂成分
4 マイカ
5 裏打ち層
6 マイカ層
7 第一の粒度分布ピークに相当する窒化ホウ素粒子
8 第二の粒度分布ピークに相当する窒化ホウ素粒子
1 Inorganic filler 2 Backing material 3 Resin component 4 Mica 5 Backing layer 6 Mica layer 7 Boron nitride particles corresponding to the first particle size distribution peak 8 Boron nitride particles corresponding to the second particle size distribution peak

Claims (12)

  1.  コイル導体と、前記コイル導体の外周に配置された絶縁層と、を有し、前記絶縁層はマイカテープを含み、前記マイカテープは、マイカを含むマイカ層と、裏打ち材及び無機フィラーを含む裏打ち層と、を有し、前記無機フィラーは、5μm以下の範囲に存在する第一の粒度分布ピークと、6μm以上の範囲に存在する第二の粒度分布ピークと、を有する窒化ホウ素を含む、回転電機用コイル。 A coil conductor; and an insulating layer disposed on an outer periphery of the coil conductor, wherein the insulating layer includes a mica tape, and the mica tape includes a mica layer including mica, and a backing including a backing material and an inorganic filler. The inorganic filler comprises boron nitride having a first particle size distribution peak present in a range of 5 μm or less and a second particle size distribution peak present in a range of 6 μm or more. Electric coil.
  2.  前記マイカテープにおいて、前記窒化ホウ素の第一の粒度分布ピークは2μm~5μmの範囲に存在し、第二の粒度分布ピークは6μm~10μmの範囲に存在する、請求項1に記載の回転電機用コイル。 2. The rotating electrical machine according to claim 1, wherein in the mica tape, the first particle size distribution peak of the boron nitride exists in a range of 2 μm to 5 μm, and the second particle size distribution peak exists in a range of 6 μm to 10 μm. coil.
  3.  前記マイカテープにおいて、前記無機フィラーの含有率が、前記マイカと前記裏打ち材を除く不揮発分の総体積の20体積%~50体積%である、請求項1又は請求項2に記載の回転電機用コイル。 3. The rotating electrical machine according to claim 1, wherein the content of the inorganic filler in the mica tape is 20% by volume to 50% by volume of a total volume of non-volatile components excluding the mica and the backing material. coil.
  4.  前記コイル導体の外周に前記マイカテープを巻きつける工程と、
     前記コイル導体の外周に巻きつけられた前記マイカテープを含む前記絶縁層を形成する工程と、を有する、請求項1~請求項3のいずれか1項に記載の回転電機用コイルの製造方法。
    Winding the mica tape around the outer circumference of the coil conductor;
    The method for manufacturing a coil for a rotating electrical machine according to any one of claims 1 to 3, further comprising: forming the insulating layer including the mica tape wound around the outer periphery of the coil conductor.
  5.  マイカを含むマイカ層と、裏打ち材及び無機フィラーを含む裏打ち層と、を有し、前記無機フィラーは、5μm以下の範囲に存在する第一の粒度分布ピークと、6μm以上の範囲に存在する第二の粒度分布ピークと、を有する窒化ホウ素を含む、マイカテープ。 A mica layer containing mica, and a backing layer containing a backing material and an inorganic filler, wherein the inorganic filler has a first particle size distribution peak existing in a range of 5 μm or less and a first particle size distribution peak existing in a range of 6 μm or more. A mica tape comprising boron nitride having a second particle size distribution peak.
  6.  前記窒化ホウ素の第一の粒度分布ピークは2μm~5μmの範囲に存在し、第二の粒度分布ピークは6μm~10μmの範囲に存在する、請求項5に記載のマイカテープ。 6. The mica tape according to claim 5, wherein the first particle size distribution peak of the boron nitride exists in a range of 2 μm to 5 μm, and the second particle size distribution peak exists in a range of 6 μm to 10 μm.
  7.  前記無機フィラーの含有率が、前記マイカと前記裏打ち材を除く不揮発分の総体積の20体積%~50体積%である、請求項5又は請求項6に記載のマイカテープ。 The mica tape according to claim 5 or 6, wherein the content of the inorganic filler is 20% by volume to 50% by volume of the total volume of non-volatile components excluding the mica and the backing material.
  8.  裏打ち材をマイカの上に配置して積層体を準備する工程と、
     5μm以下の範囲に存在する第一の粒度分布ピークと、6μm以上の範囲に存在する第二の粒度分布ピークと、を有する窒化ホウ素を含む無機フィラーと、樹脂成分と、を含む組成物を、前記積層体の前記裏打ち材側に付与する工程と、を含む、マイカテープの製造方法。
    Arranging the backing material on mica and preparing a laminate;
    A composition comprising an inorganic filler containing boron nitride having a first particle size distribution peak present in a range of 5 μm or less and a second particle size distribution peak present in a range of 6 μm or more, and a resin component. And a step of applying to the backing material side of the laminate.
  9.  前記組成物中の前記無機フィラーの含有率は、前記組成物の不揮発分全体の20体積%~50体積%である、請求項8に記載のマイカテープの製造方法。 The method for producing a mica tape according to claim 8, wherein the content of the inorganic filler in the composition is 20% by volume to 50% by volume of the entire nonvolatile content of the composition.
  10.  前記組成物の付与時の粘度は500mPa・s~3000mPa・sである、請求項8又は請求項9に記載のマイカテープの製造方法。 The method for producing mica tape according to claim 8 or 9, wherein the viscosity at the time of application of the composition is 500 mPa · s to 3000 mPa · s.
  11.  樹脂成分を含み、前記樹脂成分を硬化して得られる請求項5~請求項7のいずれか1項に記載のマイカテープの硬化物。 The cured product of mica tape according to any one of claims 5 to 7, comprising a resin component and obtained by curing the resin component.
  12.  被絶縁体と、前記被絶縁体の表面の少なくとも一部に配置される請求項11に記載のマイカテープの硬化物である絶縁層と、を有する絶縁物。 An insulator having an insulator and an insulating layer that is a cured product of the mica tape according to claim 11 disposed on at least a part of a surface of the insulator.
PCT/JP2017/024056 2016-06-29 2017-06-29 Coil for rotary electric machine, method for producing coil for rotary electric machine, mica tape, method for producing mica tape, cured product of mica tape, and insulating article WO2018003950A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018525280A JPWO2018003950A1 (en) 2016-06-29 2017-06-29 Coil for rotating electrical machine, method for manufacturing coil for rotating electrical machine, mica tape, method for manufacturing mica tape, cured product and insulator of mica tape

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2016/069361 2016-06-29
PCT/JP2016/069361 WO2018003043A1 (en) 2016-06-29 2016-06-29 Coil for rotating electrical machine, method for producing coil for rotating electrical machine, mica tape, method for producing mica tape, cured product of mica tape, and insulating material

Publications (1)

Publication Number Publication Date
WO2018003950A1 true WO2018003950A1 (en) 2018-01-04

Family

ID=60787259

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/069361 WO2018003043A1 (en) 2016-06-29 2016-06-29 Coil for rotating electrical machine, method for producing coil for rotating electrical machine, mica tape, method for producing mica tape, cured product of mica tape, and insulating material
PCT/JP2017/024056 WO2018003950A1 (en) 2016-06-29 2017-06-29 Coil for rotary electric machine, method for producing coil for rotary electric machine, mica tape, method for producing mica tape, cured product of mica tape, and insulating article

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069361 WO2018003043A1 (en) 2016-06-29 2016-06-29 Coil for rotating electrical machine, method for producing coil for rotating electrical machine, mica tape, method for producing mica tape, cured product of mica tape, and insulating material

Country Status (2)

Country Link
JP (1) JPWO2018003950A1 (en)
WO (2) WO2018003043A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020115732A (en) * 2019-01-18 2020-07-30 西芝電機株式会社 Manufacturing method of rotor coil

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11196142B2 (en) 2018-08-31 2021-12-07 Micron Technology, Inc. Millimeter wave antenna and EMI shielding integrated with fan-out package
JP6522273B1 (en) * 2018-10-11 2019-05-29 三菱電機株式会社 Stator coil, method of manufacturing the same and rotary electric machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945133A (en) * 1995-08-01 1997-02-14 Japan Mica Ind Co Ltd Mica base sheet-like body and insulated coil
JPH11206056A (en) * 1998-01-12 1999-07-30 Hitachi Ltd Insulating coil and rotary electrical machine using the same
JP2014141626A (en) * 2012-12-28 2014-08-07 Konica Minolta Inc Application liquid, reflection coating, reflection sheet, solar cell module, led illumination device and packaging substrate
WO2015053374A1 (en) * 2013-10-09 2015-04-16 日立化成株式会社 Prepreg mica tape and coil using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846853B2 (en) * 2005-04-15 2010-12-07 Siemens Energy, Inc. Multi-layered platelet structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945133A (en) * 1995-08-01 1997-02-14 Japan Mica Ind Co Ltd Mica base sheet-like body and insulated coil
JPH11206056A (en) * 1998-01-12 1999-07-30 Hitachi Ltd Insulating coil and rotary electrical machine using the same
JP2014141626A (en) * 2012-12-28 2014-08-07 Konica Minolta Inc Application liquid, reflection coating, reflection sheet, solar cell module, led illumination device and packaging substrate
WO2015053374A1 (en) * 2013-10-09 2015-04-16 日立化成株式会社 Prepreg mica tape and coil using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020115732A (en) * 2019-01-18 2020-07-30 西芝電機株式会社 Manufacturing method of rotor coil

Also Published As

Publication number Publication date
WO2018003043A1 (en) 2018-01-04
JPWO2018003950A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
JP6520966B2 (en) Prepreg mica tape and coil using the same
JP6889153B2 (en) Coil for rotary electric machine, manufacturing method of coil for rotary electric machine, mica tape, cured product of mica tape and insulator
US9925744B2 (en) Insulating tape, method for producing same, and stator coil
JP2016105688A (en) Electromagnetic coil and manufacturing method thereof
JP6819589B2 (en) Coil for rotary electric machine, manufacturing method of coil for rotary electric machine and mica tape
WO2018003950A1 (en) Coil for rotary electric machine, method for producing coil for rotary electric machine, mica tape, method for producing mica tape, cured product of mica tape, and insulating article
JP2010158113A (en) Electrical insulating member, stator coil for rotating electrical machine, and rotating electrical machine
JP2012244861A (en) Insulation coil
JP3879054B2 (en) Mica base sheet and insulation coil
JP6891887B2 (en) Coil for rotary electric machine, manufacturing method of coil for rotary electric machine, mica tape, cured product of mica tape and insulator
JP2019122099A (en) Coil for rotary electric machine, method for manufacturing coil for rotary electric machine, mica tape, hardened material and insulator of mica tape
JP6403444B2 (en) Mica tape and stator coil
WO2018179440A1 (en) Coil for dynamo-electric machines, method for producing coil for dynamo-electric machines, mica tape, cured product of mica tape and insulated material
JP5159812B2 (en) Rotating electric machine
WO2018179439A1 (en) Coil for rotary electric device, method for producing coil for rotary electric device, mica tape, cured product of mica tape, and insulating article
WO2018179437A1 (en) Coil for rotary electric device, method for producing coil for rotary electric device, dry mica tape, and insulating article
JP2019217668A (en) Dry mica tape, insulator, coil for rotary electric machine, and method of manufacturing coil for rotary electric machine
JP2018026282A (en) Mica tape, method for producing mica tape, insulator, flow resistance calculation method, flow resistance calculation device, and flow resistance calculation program
JP2018170252A (en) Coil for rotary electric machines, prepreg mica tape, method for producing prepreg mica tape, cured product of prepreg mica tape, article with insulating layer, and method for producing coil for rotary electric machines

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018525280

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820304

Country of ref document: EP

Kind code of ref document: A1