WO2018179318A1 - Program and lens control device - Google Patents

Program and lens control device Download PDF

Info

Publication number
WO2018179318A1
WO2018179318A1 PCT/JP2017/013562 JP2017013562W WO2018179318A1 WO 2018179318 A1 WO2018179318 A1 WO 2018179318A1 JP 2017013562 W JP2017013562 W JP 2017013562W WO 2018179318 A1 WO2018179318 A1 WO 2018179318A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
focus
iris
zoom
microcomputer
Prior art date
Application number
PCT/JP2017/013562
Other languages
French (fr)
Japanese (ja)
Inventor
立奇 賀来
恒美 新倉
勝也 平野
Original Assignee
Cbc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cbc株式会社 filed Critical Cbc株式会社
Priority to PCT/JP2017/013562 priority Critical patent/WO2018179318A1/en
Publication of WO2018179318A1 publication Critical patent/WO2018179318A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • G03B17/14Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets interchangeably
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/76Circuitry for compensating brightness variation in the scene by influencing the image signals

Definitions

  • the present invention relates to a program used by being installed in a microcomputer built in a camera device, and a lens control device used by being mounted on the camera device.
  • IP cameras network cameras
  • CCTV Cell-circuit Television
  • FA factory automation
  • a camera device for such a use there is known a camera device configured to have a compatible lens mount such as a C mount or a CS mount.
  • a varifocal lens used in a CCTV camera is a lens device configured to be detachable from a CS mount provided in the CCTV camera, and performs zoom adjustment, focus adjustment, and the like by a drive motor. (For example, refer patent document 1).
  • the lens device disclosed in Patent Document 1 includes a control unit including a microcomputer on the lens side, and the control unit performs zoom adjustment by a drive motor in response to a command input from the camera side to the control unit.
  • the focus adjustment and the like are controlled. Therefore, in order to sufficiently bring out the performance of the lens device, the camera device side needs to appropriately correspond to the specifications of the lens device (particularly, the specifications of the control unit). Specifically, what functions the lens device has, how each function is related when there are multiple functions, and what procedure should be performed to control each function? Etc. need to be grasped by the camera device.
  • the present invention makes it possible to sufficiently draw out the performance of the lens device on the camera device side while suppressing the loss of versatility of the combination of the lens device and the camera device to which the lens device is mounted. It aims at providing the technology to do.
  • a program installed and used in a microcomputer built in the camera device In addition to the microcomputer, the camera device enables a lens mount to which a lens device is mounted, an image sensor that picks up an optical image obtained through the lens device, and communication between the lens device and the microcomputer. And an interface unit that enables communication between the host device of the camera device and the microcomputer,
  • the lens device includes at least a memory unit that records lens-specific characteristic data.
  • the program causes the microcomputer to
  • zoom control means that gives an operation instruction to the drive motor of the zoom adjustment unit so that the focal length is instructed from the host device;
  • the lens apparatus includes a focus adjustment unit that adjusts the focus position, the focus is adjusted so that the focus position is in accordance with the focal length of the lens apparatus while referring to the characteristic data acquired from the memory unit.
  • Focus control means for giving an operation instruction to the drive motor of the adjustment unit;
  • the lens device includes an iris adjustment unit that adjusts the iris, the iris adjustment unit is configured so as to obtain an iris according to the focal length of the lens device while referring to the characteristic data acquired from the memory unit.
  • Iris control means for giving an operation instruction to the drive motor;
  • Image correction control that determines the content of the image correction process for the imaging result of the imaging device based on at least one of the focal length of the lens device or the diaphragm of the lens device while referring to the characteristic data acquired from the memory unit Means, As a result, a program is provided.
  • the present invention it is possible to sufficiently bring out the performance of the lens device on the side of the camera device while suppressing the loss of versatility of the combination of the lens device and the camera device to which the lens device is mounted. It becomes.
  • the camera system includes a camera device 1, a lens device 2, and a personal computer (hereinafter also referred to as “PC”) device 3.
  • PC personal computer
  • the camera device 1 is used as, for example, a camera device for surveillance or industrial use, and includes an IP camera, a CCTV camera, an FA camera, and the like.
  • IP camera an IP camera
  • CCTV camera an FA camera
  • FA camera an FA camera
  • the present invention is not limited to this.
  • the camera device 1 includes a lens mount 1a such as a C mount or CS mount to which the lens device 2 is attached, and a CCD (Charge Coupled Device) that captures an optical image obtained through the lens device 2 attached to the lens mount 1a.
  • a microcomputer a microcomputer 1c composed of an imaging device 1b such as a sensor or a CMOS (Complementary Metal Oxide Semiconductor) sensor, a DSP (Digital Signal Processor) built in the camera device 1, and the like, and also functions as a computer in the camera device 1.
  • a central control unit 1d made of a control board or the like.
  • a case where the lens mount 1a is a CS mount is taken as an example, but the present invention is not limited to this.
  • the microcomputer 1c built in the camera device 1 controls the operation of the lens device 2 mounted on the lens mount 1a by executing a predetermined program. That is, the microcomputer 1 c functions as a lens control device that controls the operation of the lens device 2. The details of the control by the microcomputer 1c will be described later. Note that the microcomputer 1c may constitute a part of the central control unit 1d.
  • the central control unit 1d controls the overall operation of the camera device 1, and is configured to include an interface unit 1e that enables communication with the outside (especially communication between the outside and the microcomputer 1c). Is.
  • the interface unit 1e is not particularly limited to a communication protocol or the like.
  • the communication with the lens device 2 conforms to I 2 C performing serial communication.
  • communication with the PC device 3 is based on Ethernet (registered trademark), uses USB standard, wireless communication such as Wi-Fi or Bluetooth (registered trademark), CVBS, HD- A combination of a video signal such as SDI and AHD and serial communication such as RS485, RS422, and RS232 may be considered.
  • the lens device 2 is used by being mounted on the lens mount 1 a of the camera device 1.
  • the lens device 2 can be either a single focus lens or a variable focus lens (such as a zoom lens or a varifocal lens) as long as it can be attached to the lens mount 1a (that is, compatible with compatibility).
  • a case where the lens device 2 is a varifocal lens will be described as an example.
  • the varifocal lens is a variable focus lens configured so that the focus position (focus position) moves when the focal length (zoom position) is adjusted.
  • PC device The PC device 3 outputs signals and information received from the camera device 1 through communication with the camera device 1 and gives an operation instruction to the camera device 1. That is, the PC device 3 functions as a host device of the camera device 1. Note that a specific configuration, processing function, and the like in the PC device 3 may be configured using a known technique, and thus detailed description thereof is omitted here.
  • the varifocal lens 2 as a lens device exemplified in this embodiment includes a lens body 10 and a flexible circuit 20 attached thereto. Note that a semiconductor chip 21, which will be described in detail later, is mounted on the flexible circuit 20.
  • the lens body 10 includes a zoom adjustment unit 30, a focus adjustment unit 40, an iris adjustment unit 50, and drive units 60 and 70 that individually operate these adjustment units 30, 40, and 50. , 80.
  • the zoom adjustment unit 30 adjusts the focal length (zoom position) of the varifocal lens 2 and, as shown in FIG. 4, a zoom lens group 31 having a zoom lens attached to a lens frame, and a zoom lens A zoom holding frame 32 that houses the group 31 and guides the movement of the zoom lens group 31 in the optical axis direction, and a zoom rotation ring 33 that generates a driving force for moving the zoom lens group 31 are provided. More specifically, the zoom adjustment unit 30 includes a zoom holding frame 32 built in the zoom rotation ring 33, a zoom lens group 31 built in the zoom holding frame 32, and provided in the zoom lens group 31.
  • the movable pin 31a is engaged with the movable pin guide groove 32a provided in the zoom holding frame 32 and the concave portion 33a provided in the zoom rotary ring 33, and the zoom rotary ring 33 located on the outermost periphery is When rotated, the zoom lens group 31 is configured to move in the optical axis direction.
  • the zoom lens group 31 is composed of a plurality of lenses, but may be composed of a single lens instead of the plurality of lenses.
  • a gear portion 33 b is formed on the outer peripheral surface of the zoom rotation ring 33, and the gear portion 33 b is engaged with the zoom drive unit 60.
  • the zoom drive unit 60 includes a pulse motor 61 and a gear train 62 driven by the pulse motor 61. Then, the rotation of the pulse motor 61 is transmitted to the gear unit 33b of the zoom rotation ring 33 of the zoom adjustment unit 30 via the gear train 62, thereby moving the zoom lens group 31 in the zoom adjustment unit 30 in the optical axis direction. It is supposed to let you.
  • the moving direction of the zoom lens group 31 is determined by the rotation direction of the pulse motor 61.
  • the pulse motor 61 since the step angle of the rotating shaft with respect to one pulse is determined, the angle at which the rotating shaft rotates is determined by the number of pulses, and the gear ratio of the gear train 62 of the zoom drive unit 60 and the gear of the zoom rotating ring 33 are determined.
  • the amount of movement of the zoom lens group 31 with respect to the number of pulses of the pulse motor 61 is determined by the gear ratio of the portion 33b.
  • the position of the zoom lens group 31 is determined by the number of steps from the reference position of the pulse motor 61 by using the number of pulses of the pulse motor 61 as a count value from the reference position.
  • the zoom adjustment unit 30 and the zoom drive unit 60 having such a configuration use the pulse motor 61 capable of controlling the step angle as a drive source, so that the position of the zoom lens group 31 (that is, the zoom of the varifocal lens 2).
  • the position can be controlled with high accuracy.
  • the position control may be performed by open loop control, but it is preferable to improve the position accuracy by performing closed loop control using a photo interrupter (detector) mounted on the varifocal lens 2. It becomes.
  • the drive source of the zoom drive unit 60 does not necessarily need to be the pulse motor 61, and may be one using a DC motor and a potentiometer, for example. In this case, the position control of the zoom lens group 31 can be performed by A / D converting the output voltage of the potentiometer to obtain position information.
  • the focus adjustment unit 40 adjusts the focus position (focus) of the varifocal lens 2, and as shown in FIG. 4, a focus lens group 41 in which a lens for focusing is attached to a lens frame, and a focus lens group.
  • a focus holding frame 42 that houses 41 and guides the movement of the focus lens group 41 in the optical axis direction, and a focus rotation ring 43 that generates a driving force for moving the focus lens group 41.
  • the focus adjustment unit 40 has a focus holding frame 42 built in the focus rotation ring 43, a focus lens group 41 is built in the focus holding frame 42, and is provided in the focus lens group 41.
  • the moving pin 41a is engaged with the moving pin guide groove 42a provided in the focus holding frame 42 and the concave portion 43a provided in the focus rotating ring 43, and the focus rotating ring 43 located on the outermost periphery is
  • the focus lens group 41 is configured to move in the optical axis direction.
  • the focus lens group 41 is composed of a plurality of lenses, but may be composed of a single lens instead of the plurality of lenses.
  • a gear portion 43 b is formed on the outer peripheral surface of the focus rotation ring 43, and the gear portion 43 b is engaged with the focus drive unit 70.
  • the focus drive unit 70 has a pulse motor 71 and a gear train (not shown) driven thereby. Then, the rotation of the pulse motor 71 is transmitted to the gear unit 43b of the focus rotation ring 43 of the focus adjustment unit 40 through the gear train, thereby moving the focus lens group 41 in the focus adjustment unit 40 in the optical axis direction. It is like that.
  • the moving direction of the focus lens group 41 is determined by the rotation direction of the pulse motor 71.
  • the pulse motor 71 since the step angle of the rotation shaft for one pulse is determined, the angle at which the rotation shaft rotates is determined by the number of pulses, and the gear ratio of the focus drive unit 70 and the gear portion of the focus rotation ring 43 are determined.
  • the amount of movement of the focus lens group 41 with respect to the number of pulses of the pulse motor 71 is determined by the gear ratio of 43b.
  • the position of the focus lens group 41 is determined by the number of steps from the reference position of the pulse motor 71 by using the number of pulses of the pulse motor 71 as a count value from the reference position.
  • the focus adjustment unit 40 and the focus drive unit 70 having such a configuration use the pulse motor 71 capable of controlling the step angle as a drive source, so that the position of the focus lens group 41 (that is, the focus of the varifocal lens 2).
  • the position can be controlled with high accuracy.
  • the position control may be performed by open loop control, but it is preferable to improve the position accuracy by performing closed loop control using a photo interrupter (detector) mounted on the varifocal lens 2. It becomes.
  • the iris adjustment unit 50 adjusts the aperture of the varifocal lens 2, specifically, the amount of light from the focus lens group 41 as an objective lens, and is formed on a substrate having an opening that forms an optical path. It has two diaphragm blades 51 configured to be linearly slidable, and is configured to adjust the amount of light by controlling the sliding amount of the diaphragm blade 51.
  • the sliding of the diaphragm blade 51 is performed by a pulse motor 81 in the iris drive unit 80. That is, by controlling the number of pulses of the pulse motor 81, the sliding amount of the aperture blade 51 is determined.
  • the iris adjusting unit 50 may be provided with an optical filter unit 52 for inserting an optical filter on the optical path.
  • the optical filter has a transmission characteristic corresponding to the wavelength, and here, an infrared cut filter (IR cut filter) that blocks light in the infrared region is used.
  • the optical filter is inserted into the optical path and taken out from the optical path by a DC motor 82 as an actuator for driving the optical filter.
  • the optical filter unit 52 for inserting an optical filter (IR cut filter) on the optical path may not be provided depending on the environment in which the varifocal lens 2 is used.
  • Such an iris adjustment unit 50 is interposed between the focus adjustment unit 40 and the zoom adjustment unit 30 of the lens body 2 by being attached to a metal fitting 42 b formed on the focus holding frame 42 of the focus adjustment unit 40.
  • the lens body 2 is fixed.
  • the flexible circuit 20 attached to the lens main body 10 having the above-described configuration includes a semiconductor chip 21 mounted on a flexible substrate made of a flexible member such as a film and is electrically connected to the camera device 1.
  • the camera apparatus 1 is configured to be able to communicate with the interface unit 1e.
  • the semiconductor chip 21 on the flexible circuit 20 has at least a function as a non-volatile memory that holds and records various data.
  • the semiconductor chip 21 may have a function as a CPU (Central Processing Unit) in addition to a function as a memory and may be a microcomputer.
  • the semiconductor chip 21 is not necessarily mounted on the flexible circuit 20 as long as it is mounted on the varifocal lens 2, and may be mounted on a circuit board (not shown) other than the flexible circuit 20.
  • the various data held and recorded by the semiconductor chip 21 include lens-specific characteristic data related to the varifocal lens 2 on which the semiconductor chip 21 is mounted. That is, the semiconductor chip 21 functions as a memory unit in which lens-specific characteristic data is recorded. Therefore, hereinafter, the semiconductor chip 21 may be referred to as the memory unit 21.
  • lens-specific characteristic data The specific contents of lens-specific characteristic data will be described later in detail.
  • step 101 step is abbreviated as “S” hereinafter
  • the interface unit 1 e of the central control unit 1 d is first connected to the varifocal lens 2.
  • I 2 C serial communication is established (S102), data is acquired from the memory unit 21 of the varifocal lens 2, and the content of the acquired data is confirmed by the microcomputer 1c (S103).
  • lens-specific characteristic data regarding the varifocal lens 2 is acquired from the memory unit 21.
  • the characteristic data includes data related to functions provided in the varifocal lens 2 and operational characteristic data when each function is operated.
  • the function-related data is for specifying what function the varifocal lens 2 has, and is stored in a predetermined register (address) in the memory unit 21.
  • the data is such that if a certain function is mounted on the varifocal lens 2, the address corresponding to the function is “1”, and if not, “0” is stored.
  • the operating characteristic data is for specifying what operating characteristics the function shows when the function of the varifocal lens 2 is operated. Specifically, data as shown in FIGS. 6A to 6J is exemplified, and details of each data will be described later. Since the amount of data of the operation characteristic data varies depending on the type of the lens device 2, it is not arranged at a fixed position in the memory unit 21 (that is, not fixed to an address), for example, a data flag ( It is assumed that the data type and parameters (zoom position, object distance, etc.) are specified in 1: Tracking, 2: Distortion, etc.
  • a data type is specified using a flag
  • a flag for example, when data is acquired, only a part of the data (for example, a flag) is read and the data type is determined, and then, if necessary, details It becomes feasible to capture data to the camera side, and the processing load at the time of data acquisition can be reduced.
  • the microcomputer 1c After confirming the lens-specific characteristic data (hereinafter, also simply referred to as “lens data”) acquired from the memory unit 21, the microcomputer 1c refers to the contents of the lens data while referring to the contents of the lens data. The back is also referred to as “FB”.) It is determined whether or not to perform FB shift correction based on the shift curve (S104), and when it is determined to be necessary, glass thickness FB shift correction is performed (S105). Details of the glass thickness FB shift correction will be described later.
  • the microcomputer 1c performs an initialization process to initialize each function of the varifocal lens 2 (S106). Specifically, for example, each of the zoom adjustment unit 30, the focus adjustment unit 40, and the iris adjustment unit 50 in the varifocal lens 2 is moved to the origin position. At this time, for example, if a photo interrupter or the like is mounted on the varifocal lens 2, the initialization process may be performed using the detection result of the photo interrupter or the like.
  • the microcomputer 1 c changes the focal length of the varifocal lens 2 in accordance with the instruction from the PC device 3. (S107). Specifically, an operation instruction is given to the pulse motor 61 of the zoom drive unit 60 that drives the zoom adjustment unit 30 so that the focal length is instructed from the PC device 3. As a result, the focal length of the varifocal lens 2 is adjusted by moving the zoom lens group 31 of the zoom adjustment unit 30 in the optical axis direction.
  • the microcomputer 1c determines whether or not to adjust the focus position while referring to the content of the lens data after adjusting the focal length (S108), and adjusts the focus position if necessary. (S109). Specifically, in the case of the varifocal lens 2, the microcomputer 1 c refers to the lens data acquired from the memory unit 21, particularly referring to data defining a tracking curve (see FIG. 6A). Then, an operation instruction is given to the pulse motor 71 of the focus drive unit 70 that drives the focus adjustment unit 40 so that the focus position corresponds to the focal length adjusted by the zoom adjustment unit 30.
  • the focus lens group 41 of the focus adjustment unit 40 moves in the optical axis direction, and the shift of the focus position (so-called defocus) is corrected. Details of the focus position adjustment based on the tracking curve will be described later.
  • the microcomputer 1c selects an optical correction item to be executed while referring to the contents of the lens data (S110).
  • the optical correction items include distortion correction (S111), peripheral light reduction correction (S112), and iris adjustment (S113). Details of the correction process for each optical correction item will be described later.
  • the microcomputer 1c determines whether or not the execution of all the optical correction items to be selected is completed while referring to the contents of the lens data. (S114) The above processing steps are repeated (S110 to S114) until the execution of all the optical correction items is completed.
  • the microcomputer 1c selects display items to be output by the camera device 1 or the PC device 3 which is a host device thereof with reference to the contents of the lens data (S115).
  • Examples of display items include focal length display (S116), F value display (S117), and temperature display (S118). Details of output processing for each display item will be described later.
  • the microcomputer 1c refers to the contents of the lens data and determines whether or not the execution for all the display items to be selected is completed. Then, the above-described processing steps are repeated until the execution of all display items is completed (S115 to S119).
  • the microcomputer 1c selects a shift item to be executed while referring to the contents of the lens data (S120).
  • Examples of the shift item include correction corresponding to the temperature shift (S121) and correction corresponding to the IR shift (S122). Details of the correction process for each shift item will be described later.
  • the microcomputer 1c refers to the contents of the lens data and determines whether or not the execution for all the shift items to be selected has been completed. Judgment is made (S123), and the above-described processing steps are repeated until implementation for all the shift items is completed (S120 to S123).
  • the microcomputer 1c In performing the processing step (S109), as shown in FIG. 7, the microcomputer 1c first reads position information of the pulse motor 61 of the zoom drive unit 60 that drives the zoom adjustment unit 30 (S201). Reading the position information may be performed by recognizing the number of steps since the position of the zoom lens group 31 is determined by the number of steps from the reference position of the pulse motor 61.
  • the microcomputer 1c After recognizing the position information of the pulse motor 61, the microcomputer 1c confirms the object distance of the varifocal lens 2 and selects a tracking curve to be used from the operation characteristic data acquired from the memory unit 21 (S202). ).
  • the tracking curve defines the relationship between the focal length (zoom position) and the focus position (see FIG. 6A), and a plurality of types of curves are previously stored in the memory unit 21 in accordance with the object distance of the varifocal lens 2. Assume that it is stored.
  • the object distance as a key for selecting any one of the tracking curves from among a plurality of types is specified from the GUI (Graphical User Interface) of the PC device 3, for example.
  • GUI Graphic User Interface
  • the present invention is not necessarily limited to this.
  • it may be specified by using another method such as calculating with reference to a tracking curve from a focused focus position.
  • the microcomputer 1c calculates and obtains the focus position corresponding to the zoom position specified from the position information of the pulse motor 61 while referring to the tracking curve (S203). Then, an operation instruction is given to the pulse motor 71 of the focus drive unit 70 that drives the focus adjustment unit 40 by the number of pulses that will be the obtained focus position (S204).
  • the varifocal lens 2 is automatically adjusted in focus (image formation) even if the zoom (magnification) operation is performed.
  • Distortion correction is a process for correcting lens distortion (that is, distortion of an image caused by a lens).
  • the microcomputer 1c In performing the processing step (S111), as shown in FIG. 8, the microcomputer 1c first reads position information of the pulse motor 61 of the zoom drive unit 60 that drives the zoom adjustment unit 30 (S301). Then, based on the position information of the pulse motor 61 and the object distance specified as in the case of the focus adjustment described above, a distortion curve to be used is selected from the operation characteristic data acquired from the memory unit 21 (S302). ). The reason why the distortion curve is selected is that the magnitude of the generated distortion varies depending on whether the zoom position is wide angle, standard or telephoto.
  • the angle (angle) of incident light to the varifocal lens 2 and the image height (image height) formed on the imaging surface of the imaging device 1b are correlated with each other.
  • the distortion curve defines the relationship between the angle data and the image height data (see FIG. 6B), and depends on the zoom position of the varifocal lens 2 and the object distance. It is assumed that a plurality of types of curves are stored in the memory unit 21 in advance.
  • the microcomputer 1c calculates angle data from the image height on the imaging surface of the image sensor 1b while referring to the distortion curve (S303), and uses the angle data obtained from the calculation.
  • the corrected image height data is obtained (S304). That is, by performing coordinate transformation according to the selected distortion curve, performing pixel interpolation processing as necessary, and obtaining a correction coefficient that corrects image distortion due to lens distortion as corrected image height data, the image sensor The content of the image correction process for the imaging result in 1b is determined.
  • the microcomputer 1c When the corrected image height data is obtained, the microcomputer 1c outputs the corrected image height data (that is, lens distortion aberration correction data) to the PC device 3 side (S305). This is because the processing load may be excessive if distortion correction is performed on the imaging result of the imaging device 1b inside the microcomputer 1c, and the PC device 3 having a sufficient processing capacity compared to the microcomputer 1c is used instead. This is to perform processing.
  • the corrected image height data that is, lens distortion aberration correction data
  • the correction program that is set in advance is used while using the correction data. Is executed, image correction processing is performed on the image data that is the imaging result, and image distortion due to lens distortion is corrected. Then, the image data after the image correction processing is displayed and output on the monitor.
  • the varifocal lens 2 can correct the distortion of the image due to the lens distortion even when the lens distortion (that is, the distortion of the image due to the lens) occurs, so that the lens distortion is suppressed. It is possible to treat it as equivalent to an object (that is, an image having no distortion in the entire image).
  • the microcomputer 1c In performing the processing step (S112), as shown in FIG. 10, the microcomputer 1c first reads position information of the pulse motor 61 of the zoom drive unit 60 that drives the zoom adjustment unit 30 (S401). Further, the position information of the pulse motor 81 of the iris driving unit 80 that drives the iris adjusting unit 50 is read (S402). Then, based on the position information of the pulse motor 61 and the position information of the pulse motor 81, a vignetting curve to be used is selected from the operation characteristic data acquired from the memory unit 21 (S403). The reason why the vignetting curve is selected is that the degree of decrease in the amount of light around the lens differs depending on the zoom position, the aperture, and the like.
  • the vignetting curve defines the relationship between image height (image height) data and the peripheral light amount ratio (see FIG. 6G), and there are a plurality of types in advance according to the zoom position and aperture of the varifocal lens 2. Are stored in the memory unit 21.
  • the microcomputer 1c After selecting the vignetting curve, the microcomputer 1c refers to the vignetting curve and calculates light amount data from the image height on the imaging surface of the image sensor 1b (S404), and the light amount data obtained from the calculation is calculated. The correction data for performing the peripheral light reduction correction to compensate for the decrease in the lens peripheral light amount is obtained (S405).
  • the microcomputer 1c When the correction data for the peripheral dimming correction is obtained, the microcomputer 1c outputs the correction data to the PC device 3 side. This is for the same reason as in the case of distortion correction.
  • the PC device 3 When the PC device 3 receives the image data that is the imaging result of the imaging device 1b and the correction data for the peripheral light attenuation correction specified by the microcomputer 1c, the correction that is set in advance using the correction data is received.
  • the program is executed, image correction processing is performed on the image data that is the imaging result, and the brightness reduction of the image due to the lens peripheral light amount is corrected. Then, the image data after the image correction processing is displayed and output on the monitor.
  • the varifocal lens 2 suppresses the decrease in the lens peripheral light amount even when the lens peripheral light amount decreases, because the peripheral light reduction correction is performed and the entire image is corrected to uniform brightness. Can be handled in the same way as the processed image (that is, the entire image can be obtained with a uniform brightness).
  • the iris adjustment based on the MTF curve is a process for adjusting the aperture of the lens, and the process includes a process for optimizing the resolution of the contrast transfer function of the lens through the adjustment of the aperture.
  • the microcomputer 1c In performing the processing step (S113), as shown in FIG. 11, the microcomputer 1c first reads position information of the pulse motor 81 of the iris drive unit 80 that drives the iris adjustment unit 50 (S501). Further, the position information of the pulse motor 61 of the zoom drive unit 60 that drives the zoom adjustment unit 30 is read, and the operation characteristic data acquired from the memory unit 21 based on the position information of the pulse motor 81 and the position information of the pulse motor 61 is read.
  • the MTF curve to be used is selected from the inside (S502). The MTF curve is selected because the applied MTF curve differs depending on the zoom position or the like.
  • the MTF curve defines the relationship between the F value (F number) of the lens and the MTF resolution (see FIG. 6D), and a plurality of types of curves are preliminarily set according to the zoom position of the varifocal lens 2 or the like. Are stored in the memory unit 21.
  • the F value is represented by the ratio between the focal length and the diameter of the effective light beam incident on the lens, and indicates the brightness of the lens.
  • the optimization of the MTF resolution of the lens is to adjust the position of the iris of the iris adjustment unit 50 so that the MTF resolution becomes the maximum resolution at the focal length at wide angle, standard, or telephoto.
  • the iris adjustment unit 50 is controlled by the pulse motor 81, and an F value is defined for the number of steps from the reference position of the pulse motor 81.
  • the microcomputer 1c refers to the MTF curve, specifies the F value from the position information of the pulse motor 81, and calculates the MTF resolution from the F value (S503).
  • the moving position by the pulse motor 81 can be specified and moved to that position. The fact is displayed on the monitor of the camera device 1 or the monitor of the PC device 3 (S504). That is, the microcomputer 1c announces to the user of the varifocal lens 2 that the varifocal lens 2 can be used at a higher MTF resolution (for example, resolution peak).
  • the microcomputer 1c determines that priority is given to the resolution based on the user operation content in the camera device 1 or the PC device 3 or based on the pre-set content (S505), the microcomputer 1c moves to the specified position.
  • an operation instruction is given to the pulse motor 81, and the iris position of the iris adjustment unit 50 is adjusted so as to achieve a higher MTF resolution (S506).
  • the varifocal lens 2 is adjusted to a diaphragm having the maximum resolution according to the focal length (zoom position), and the F value of the maximum resolution at the focal length is selected.
  • the MTF resolution becomes the highest and the resolution is increased, so that a clearer image can be obtained.
  • the microcomputer 1c When it is determined that the aperture is prioritized without giving priority to the resolution (S505), the microcomputer 1c does not give an operation instruction to the pulse motor 81 and does not adjust the aperture position.
  • the microcomputer 1c may correspond to the resolution threshold set in order to obtain a deep depth of field while considering the balance between the allowable resolution and the depth of field (S507). ). Specifically, for example, when a resolution threshold value is input by a user operation on the camera device 1 or the PC device 3 or when a pre-input resolution threshold value exists (S508), the microcomputer 1c is equal to or higher than the resolution threshold value. So that the F value of the iris adjustment unit 50 is not adjusted (that is, the position is moved to a position corresponding to the F value not exceeding the resolution threshold), and the iris position of the iris adjustment unit 50 is adjusted (S509). ).
  • the varifocal lens 2 can achieve both an appropriate resolution and a deep depth of field.
  • the microcomputer 1c adjusts only the light amount without considering the resolution.
  • the microcomputer 1c In performing the processing step (S116), as shown in FIG. 12, the microcomputer 1c first reads position information of the pulse motor 61 of the zoom drive unit 60 that drives the zoom adjustment unit 30 (S601). Then, based on the position information of the pulse motor 61 and the object distance specified as in the case of the focus adjustment described above, data used for display is selected (S602). Specifically, data relating to the current position of the pulse motor 61 (for example, step value data from the reference position) is selected.
  • the microcomputer 1c refers to the focal length curve in the operation characteristic data acquired from the memory unit 21.
  • the focal length curve defines the relationship between the position information of the pulse motor 61 (specifically, the step value from the reference position, etc.) and the focal length (focal length) of the varifocal lens 2 (FIG. 6). (See (c)), it is assumed that it is stored in advance in the memory unit 21 in accordance with the specifications of the zoom drive unit 60 of the varifocal lens 2.
  • the microcomputer 1c calculates and obtains a focal length value corresponding to the zoom position specified from the position information of the pulse motor 61 while referring to the focal length curve (S603), and obtains the focal length value. Display output is performed on the monitor of the camera device 1 or the monitor of the PC device 3 (S604).
  • the user who refers to the display output content on the monitor of the camera device 1 or the PC device 3 can easily and accurately recognize the focal length value of the varifocal lens 2.
  • the microcomputer 1c In performing the processing step (S117), as shown in FIG. 13, the microcomputer 1c first reads position information of the pulse motor 81 of the iris drive unit 80 that drives the iris adjustment unit 50 (S701). Then, based on the position information of the pulse motor 81, data used for display is selected (S702). Specifically, data relating to the current position of the pulse motor 81 (for example, step value data from the reference position) is selected.
  • the microcomputer 1c refers to the 1 / F number curve in the operation characteristic data acquired from the memory unit 21.
  • the 1 / F number curve defines the relationship between the position information of the pulse motor 81 (specifically, the step value from the reference position, etc.) and the F value (F number) of the varifocal lens 2 ( It is assumed that the data is stored in the memory unit 21 in advance according to the specifications of the iris drive unit 80 of the varifocal lens 2 (see FIG. 6E).
  • the microcomputer 1c calculates and obtains an F value corresponding to the position information of the pulse motor 81 while referring to the 1 / F number curve (S703), and the camera device 1 has the F value of the focal length.
  • a display is output on the monitor or the monitor of the PC device 3 (S704).
  • the user who refers to the display output content on the monitor of the camera device 1 or the PC device 3 can easily and accurately recognize the F value which is information regarding the aperture of the varifocal lens 2.
  • the microcomputer 1c In performing the processing step (S118), as shown in FIG. 14, the microcomputer 1c first reads the voltage of a predetermined circuit (not shown) connected to the varifocal lens 2 as an A / D value (S801).
  • the predetermined circuit is a circuit having a function as a measuring element (for example, a thermistor) for measuring the temperature in the varifocal lens 2.
  • the microcomputer 1c refers to the temperature curve in the operation characteristic data acquired from the memory unit 21.
  • the temperature curve defines the relationship between the A / D value of the predetermined circuit and the actual temperature (see FIG. 6F), and is stored in the memory unit 21 in advance according to the specifications of the predetermined circuit in the varifocal lens 2. It is assumed that
  • the microcomputer 1c calculates and obtains a temperature value (for example, unit: cK) corresponding to the read A / D value while referring to the temperature curve (S802), and a unit of the temperature value as necessary. After the conversion, the temperature value (for example, unit: ° C.) is displayed on the monitor of the camera device 1 or the monitor of the PC device 3 (S803).
  • a temperature value for example, unit: cK
  • the user who refers to the display output content on the monitor of the camera device 1 or the PC device 3 can easily and accurately recognize the temperature in the varifocal lens 2.
  • the microcomputer 1c In performing the processing step (S121), as shown in FIG. 15, the microcomputer 1c first calculates the A / D value of the predetermined circuit by the same method as in the temperature display processing step (S118) described above. The current temperature value is read and calculated (S901). Further, the microcomputer 1 c reads position information of the pulse motor 61 of the zoom drive unit 60 that drives the zoom adjustment unit 30. Then, based on the position information of the pulse motor 61, a temperature shift curve to be used is selected from the operation characteristic data acquired from the memory unit 21 (S902). The reason why the temperature shift curve is selected is that the magnitude of the focus shift due to the temperature change differs depending on the zoom position. The focus shift here means that a shift occurs in the focus position due to the influence of thermal contraction or thermal stress of the member due to temperature change.
  • the temperature shift curve defines the relationship between the generated temperature change and the magnitude of the focus shift caused by the temperature change (see FIG. 6H), and a plurality of the temperature shift curves are previously set according to the zoom position of the varifocal lens 2. It is assumed that the type of curve is stored in the memory unit 21.
  • the microcomputer 1c After selecting the temperature shift curve, the microcomputer 1c refers to the temperature shift curve and calculates the focus shift amount (that is, the magnitude of the generated focus shift) from the temperature difference between the reference temperature value and the current temperature value. Calculate (S903). Then, by giving an operation instruction to the pulse motor 71 of the focus drive unit 70 that drives the focus adjustment unit 40 by the number of pulses corresponding to the obtained focus shift amount, the focus position adds the focus shift amount from the current position. It moves so that it may become the position (S904).
  • the focus shift amount that is, the magnitude of the generated focus shift
  • the varifocal lens 2 is automatically adjusted in focus (imaging) so as to correct the focus shift caused by the temperature change.
  • the microcomputer 1c checks the wavelength of an IR (Infrared) light provided on the camera device 1 side as shown in FIG. Specifically, for example, it is confirmed whether the wavelength is 780 nm, 850 nm, or 940 nm. Such a wavelength check may be performed by inquiring, for example, the central control unit 1d, but is not limited to this, and may be performed based on an input from the PC device 3, for example.
  • the microcomputer 1c selects the IR shift curve to be used from the operating characteristic data acquired from the memory unit 21 based on the wavelength of the IR light (S1001).
  • the reason for selecting the IR shift curve is that the magnitude of the focus shift differs depending on the wavelength of the IR light.
  • the focus shift here means that a shift occurs in the focus position due to the influence of the wavelength of light incident on the image sensor 1b.
  • the IR shift curve defines the magnitude of the focus shift that can occur at the zoom position of the varifocal lens 2 when the IR light is used for each wavelength of the IR light (see FIG. 6J). It is assumed that a plurality of types of curves are stored in advance in the memory unit 21 according to the wavelength.
  • the microcomputer 1c reads position information of the pulse motor 61 of the zoom drive unit 60 that drives the zoom adjustment unit 30 (S1002). Then, referring to the selected IR shift curve, the focus shift value corresponding to the zoom position specified from the position information of the pulse motor 61 (that is, the magnitude of the focus shift that can occur at the zoom position) is calculated. Obtain (S1003). Then, by giving an operation instruction to the pulse motor 71 of the focus drive unit 70 that drives the focus adjustment unit 40 by the number of pulses corresponding to the obtained focus shift amount, the focus position adds the focus shift amount from the current position. It moves so that it may become the set position (S1004).
  • the varifocal lens 2 automatically performs focus (image formation) adjustment so as to correct even when a focus shift may occur when the IR light included in the camera device 1 is used. Will be.
  • Some camera devices 1 have different optical path configurations from the lens mount 1a to the image sensor 1b. Specifically, there are a structure constituted by a space having no optical path (IN AIR) and a structure in which a sheet glass material is interposed on the optical path. Also, the glass material may have a different thickness. Therefore, an FB shift may occur depending on the optical path configuration of the camera device 1.
  • FB shift correction is a process for correcting such FB shift.
  • the microcomputer 1c In carrying out this processing step (S104), the microcomputer 1c, as shown in FIG. 17, first, the total glass thickness of the plate-like glass material provided on the optical path from the lens mount 1a to the image sensor 1b by the camera device 1. Is confirmed (S1101).
  • the confirmation may be performed by inquiring of the central control unit 1d, but is not limited thereto, and may be performed based on an input from the PC device 3, for example.
  • the microcomputer 1c After confirming the total glass thickness, the microcomputer 1c refers to the glass thickness FB shift curve in the operation characteristic data acquired from the memory unit 21.
  • the glass thickness FB shift curve defines the relationship between the total glass thickness on the optical path and the FB shift amount (see FIG. 6 (i)), and is stored in the memory unit 21 in advance.
  • the microcomputer 1c calculates the FB shift amount from the total glass thickness used by the camera device 1 while referring to the glass thickness FB shift curve (S1102). After obtaining the FB shift amount, the microcomputer 1c sets the sensor position of the image pickup device 1b (position of the image pickup surface) so that the FB position in the case of IN AIR is added by the calculated FB shift amount. Move (S1103).
  • the operation control process described above is performed by the microcomputer 1c executing a predetermined program.
  • a program necessary for the operation control process is used by being installed in the microcomputer 1c.
  • the term “installed in the microcomputer 1c” as used herein refers to a case in which the microcomputer 1c is installed in any location accessible to the microcomputer 1c in addition to being installed in the microcomputer 1c itself. Including.
  • the installed program has a function that makes it possible to support updates as necessary.
  • the microcomputer 1 c performs a predetermined server device (not shown) through the interface unit 1 e of the central control unit 1 d.
  • the latest program is downloaded from the server device (S1201).
  • the downloaded program version is compared with the program version already installed on the camera device 1 side, and it is confirmed whether or not the downloaded program version is the latest (S1202).
  • the program executed by the microcomputer 1c can easily and appropriately cope with updates, corrections, specification changes, and the like.
  • the microcomputer 1c desirably performs all of these processing steps and program updates, but is not necessarily limited to this, and may selectively perform some of these. .
  • the varifocal lens 2 is very suitable for fully exhibiting the performance.
  • the load on the camera device 1 side can be reduced.
  • focus position adjustment (S109), distortion correction (S111), peripheral light reduction correction (S112), correction corresponding to temperature shift (S121), and correction corresponding to IR shift (S122) in each processing step
  • S109 focus position adjustment
  • S111 distortion correction
  • S112 peripheral light reduction correction
  • S121 correction corresponding to temperature shift
  • S122 correction corresponding to IR shift
  • S113 the iris adjustment
  • S116 focal length display
  • S117 F value display
  • temperature display S118
  • FB shift correction (S104) other than these are more important than the above-mentioned essential processing items. Is set low, for example, as a selective processing item to be executed as necessary.
  • each processing step mentioned here is only an example, and is not limited to this. Further, the degree of necessity of each processing step does not have to be fixed, and may be appropriately corrected through program update, for example.
  • a microcomputer (hereinafter, this microcomputer is also referred to as a “lens control device”) 1c that functions as a lens control device in the camera device 1 executes the above-described series of operation control processes by executing a predetermined program. Execute. This means that the lens control device 1c in the present embodiment has the following functional configuration.
  • the lens control device 1c includes a lens confirmation unit 91, a zoom control unit 92, a focus control unit 93, an iris control unit 94, an image correction control unit 95, an information output unit 96, a flange back (FB). ) Functions as shift correction means 97 and update control means 98 are provided.
  • the lens confirmation means 91 is a function for discriminating the type of the lens device 2 attached to the lens mount 1 a based on the lens data acquired from the memory unit 21. Specifically, the lens confirmation unit 91 refers to the lens data and what functions the mounted lens apparatus 2 has (for example, zoom adjustment, focus adjustment, iris adjustment, etc.) The type of lens device is determined by recognizing the presence or absence of correspondence (see S103 in FIG. 5).
  • the zoom control means 92 is a function for controlling the zoom adjustment unit 30 provided in the lens device 2 mounted on the lens mount 1a. Specifically, the zoom control unit 92 gives an operation instruction to the pulse motor 61 of the zoom drive unit 60 that drives the zoom adjustment unit 30 so that the focal length is instructed from the PC device 3 (S107 in FIG. 5). reference).
  • the focus control means 93 is a function for controlling the focus adjustment unit 40 provided in the lens device 2 mounted on the lens mount 1a. Specifically, the focus control unit 93 drives the focus adjustment unit 40 so that the focus position corresponds to the focal length adjusted by the zoom adjustment unit 30 while referring to the tracking curve acquired from the memory unit 21. An operation instruction is given to the pulse motor 71 of the focus drive unit 70 (see S109 in FIG. 5). Further, the focus control means 93 performs a process of correcting the focus shift amount caused by the temperature change while referring to the temperature shift curve acquired from the memory unit 21 (see S121 in FIG. 5).
  • the focus control unit 93 performs a process of correcting the focus shift amount caused by the wavelength of the irradiation light from the light source of the camera device 1 while referring to the IR shift curve (wavelength shift curve) acquired from the memory unit 21. This is performed (see S122 in FIG. 5).
  • the iris control means 94 has a function of controlling the iris adjustment unit 50 provided in the lens device 2 mounted on the lens mount 1a. Specifically, the iris control means 94 refers to the MTF curve acquired from the memory unit 21, and according to the focal length adjusted by the zoom adjusting unit 30, the iris control unit 94 has a maximum resolution at that focal length. An operation instruction is given to the pulse motor 81 of the iris driving unit 80 that drives the iris adjusting unit 50 (see S113 in FIG. 5). Furthermore, if a resolution threshold value is set, the iris control means 94 applies to the pulse motor 81 of the iris drive unit 80 that drives the iris adjustment unit 50 so that the diaphragm corresponds to the F value that does not exceed the resolution threshold value. An operation instruction is given (see S113 in FIG. 5).
  • the iris control means 94 may have a function of performing aperture control corresponding to auto iris such as so-called video iris, DC iris, P iris, etc. in addition to MTF correction.
  • the image correction control means 95 is a function for controlling the imaging result of the imaging device 1b provided in the lens device 2 mounted on the lens mount 1a. Specifically, the image correction control unit 95 refers to the characteristic data acquired from the memory unit 21 and performs imaging based on at least one of the focal length adjusted by the zoom adjustment unit 30 or the diaphragm adjusted by the iris adjustment unit 50. The content of the image correction process for the imaging result of the element 1b is determined. More specifically, the image correction control means 95 performs image correction processing for correcting lens distortion aberration at the focal length of the lens apparatus 2 while referring to the distortion curve acquired from the memory unit 21 as image correction processing for the imaging result. The content is determined (see S111 in FIG. 5).
  • the image correction control unit 95 refers to the vignetting curve acquired from the memory unit 21 and performs image correction processing for performing peripheral light attenuation correction at the aperture of the lens device 2 as the content of the image correction processing for the imaging result. Determine (see S112 in FIG. 5).
  • the information output means 96 is a function of outputting information for notifying information on the state of the lens device 2 attached to the lens mount 1a.
  • the information output unit 96 refers to the focal length curve acquired from the memory unit 21 and specifies the value of the focal length as information on the focal length of the lens device 2, and specifies the specified focal length value. Is output (see S116 in FIG. 5).
  • the information output means 96 specifies an F value as information related to the aperture of the lens device 2 while referring to the 1 / F number curve acquired from the memory unit 21, and outputs information for notifying the F value. (See S117 in FIG. 5).
  • the information output means 96 specifies a temperature value as information related to the temperature in the lens device 2 while referring to the temperature curve acquired from the memory unit 21, and outputs information for notifying the temperature value (FIG. 5). S118).
  • the FB shift correction means 97 is a function for controlling the correction of the FB shift. Specifically, the FB shift correction unit 97 corrects the FB shift correction shift amount according to the optical path configuration to the imaging device 1b of the camera device 1 while referring to the glass thickness FB shift curve acquired from the memory unit 21. (See S104 in FIG. 5).
  • the update control means 98 is a function for controlling update processing of a program that realizes the function as the lens control device 1c. Specifically, the update control means 98 updates the program to the latest one as necessary so that the program can be updated, modified, changed in specification, etc. (see S1201 to S1205 in FIG. 18). ).
  • a microcomputer as a hardware resource having functions such as a calculation unit and a storage unit executes a program that is software that implements the above-described units 91 to 98. Realized. That is, the lens control device 1c executes the above-described series of operation control processes in cooperation with a program (software) and hardware resources.
  • the program is installed in the camera apparatus 1 so that the microcomputer 1c can access it, the program is stored in a recording medium (for example, a memory card, a semiconductor memory, etc.) that can be read by the camera apparatus 1 side. It may be stored and provided, or may be provided from the outside through the interface unit 1e through a network such as the Internet or a dedicated line.
  • a recording medium for example, a memory card, a semiconductor memory, etc.
  • the microcomputer 1c in the camera device 1 at least causes the zoom control unit 92, the focus control unit 93, and the iris by the program installed in the camera device 1 to which the lens device 2 is mounted.
  • Functions as the control means 94 and the image correction control means 95 are provided. That is, each of these means 92 to 95 is provided on the camera device 1 side in a packaged state, and is realized in the camera device 1. Therefore, the zoom adjustment unit 30, the focus adjustment unit 40, and the iris adjustment unit 50 in the lens device 2 have the main functions on the side to be controlled by the respective means 92 to 95 that are packaged and provided as one unit.
  • Control is performed according to the function, control procedure, and the like of each of the adjustment units 30, 40, and 50 (that is, appropriately corresponding to the specifications of the lens device 2) without causing excess or deficiency. Thereby, the camera device 1 side can realize the performance of the lens device 2 sufficiently.
  • the functions of the zoom control unit 92, the focus control unit 93, the iris control unit 94, and the image correction control unit 95 in the camera device 1 follow the instructions from the PC device 3 or the lens device.
  • the operation of the lens device 2 is controlled while referring to the characteristic data acquired from the second memory unit 21.
  • the operation control for the lens device 2 is mainly performed on the camera device 1 side, and is performed while referring to the characteristic data acquired from the memory unit 21 of the lens device 2. Therefore, for example, even if the lens is replaced, if the lens device 2 after the replacement has a configuration in which the characteristic data is recorded in the memory unit 21, the operation control on the lens device 2 cannot be performed. And the versatility of the combination with the camera device 1 to which it is attached can be prevented from being impaired.
  • the present embodiment it is possible to sufficiently extract the performance of the lens device 2 while suppressing the versatility of the combination of the lens device 2 and the camera device 1 to which the lens device 2 is mounted. It becomes possible.
  • the function as the lens confirmation unit 91 in the camera device 1 is the type of the lens device 2 attached to the lens mount 1a. Is determined. For this reason, on the camera device 1 side, functions (for example, zoom adjustment, focus adjustment, iris adjustment, etc.) provided to the lens device 2 regardless of what type of lens device 2 is mounted on the lens mount 1a. It is possible to control the operation of the lens device 2 while appropriately responding to each function. Also in this respect, it is possible to realize sufficiently the performance of the lens device 2 while suppressing the versatility of the combination of the lens device 2 and the camera device 1 to which the lens device 2 is mounted.
  • the focus control unit 93 adjusts the focus position while referring to the tracking curve. Therefore, for example, the camera apparatus 1 has a varifocal lens (that is, the focus position according to the zoom position adjustment). Even when a lens 2 having a configuration in which the angle fluctuates is mounted, the focus position can be adjusted according to the zoom position. That is, according to the present embodiment, it is possible to realize sufficiently the performance of the varifocal lens 2 with respect to the focus position of the varifocal lens 2.
  • the focus control unit 93 performs at least one of processing for correcting the focus shift amount based on the temperature shift curve and processing for correcting the focus shift amount based on the wavelength shift curve. For this reason, it is possible to adjust the focus position to the focus position while appropriately dealing with the fluctuation of the focus position due to the temperature change and the fluctuation of the focus position due to the wavelength of the irradiation light from the light source of the camera device 1.
  • the iris control means 94 adjusts the aperture position after determining the aperture position that provides the maximum resolution at the zoom position while referring to the MTF curve. Therefore, it is possible to match the aperture position that provides the maximum resolution at the zoom position, and it is possible to realize the performance of the lens device 2 sufficiently with respect to the aperture position of the lens device 2. Moreover, according to the present embodiment, when the resolution threshold is set, the iris control means 94 adjusts the aperture position so that the F value does not exceed the resolution threshold. It becomes possible to achieve both the depth of field.
  • the image correction control means 95 determines at least one of image correction processing for performing peripheral light attenuation correction at the position. Therefore, for example, even when the lens distortion of the lens device 2 causes a lens distortion or a reduction in the amount of light around the lens, a correction process can be performed to eliminate the influence. In other words, it is possible to realize the performance of the lens device 2 sufficiently with respect to the influence of the lens characteristics of the lens device 2.
  • the information output means 96 performs information output for notifying at least one of the information regarding the zoom position and the information regarding the aperture position. Therefore, if the information output result by the information output means 96 is displayed on, for example, the camera device 1 or the PC device 3, the zoom position, aperture position, etc. of the lens device 2 can be obtained by referring to the contents of the display output. The state can be easily and accurately recognized, and as a result, the convenience for the user of the lens device 2 or the camera device 1 can be improved.
  • the FB shift correction means 97 corrects the FB shift amount. Therefore, for example, even when there is an optical member on the optical path to the image sensor 1b of the camera device 1 and an FB shift occurs due to this, it is possible to correct the FB shift amount accordingly. As a result, it is possible to realize the performance of the lens device 2 sufficiently.
  • the camera apparatus 1 is a CCTV camera
  • the present invention is not limited to this, and may be another camera apparatus such as an IP camera or an FA camera.
  • the present invention can be applied in exactly the same manner.
  • the lens mount 1a is not limited to the CS mount exemplified in the present embodiment, and may be another type of lens mount such as a C mount.
  • the lens apparatus 2 is mainly a varifocal lens
  • the present invention is not limited to this, and other such as a single focus lens and a zoom lens
  • the present invention can be applied to the lens apparatus in exactly the same manner.

Abstract

The present invention makes it possible for the capabilities of a lens device to be fully exploited by a camera device in which the lens device is installed, without the versatility with which the camera device can be combined with lens devices being diminished. According to the present invention, a microcomputer that is built into a camera device is made to function as: a zoom control means that gives operating instructions to a drive motor for a zoom adjustment part of a lens device that is installed in the camera device; a focus control means that gives operating instructions to a drive motor for a focus adjustment part of the lens device; an iris control means that gives operating instructions to a drive motor for an iris adjustment part of the lens device; and an image correction control means that determines the details of image correction processing for imaging results at an imaging element of the camera device.

Description

プログラムおよびレンズ制御装置Program and lens control device
 本発明は、カメラ装置に内蔵されたマイクロコンピュータにインストールされて用いられるプログラムおよびカメラ装置に搭載されて用いられるレンズ制御装置に関する。 The present invention relates to a program used by being installed in a microcomputer built in a camera device, and a lens control device used by being mounted on the camera device.
 近年、監視用や産業用等のカメラ装置として、IPカメラ(ネットワークカメラ)、CCTV(Closed-circuit Television)カメラ、FA(factory automation)カメラ等が広く用いられている。また、このような用途のカメラ装置として、CマウントやCSマウント等といった互換性のあるレンズマウントを備えて構成されたものが知られている。 Recently, IP cameras (network cameras), CCTV (Closed-circuit Television) cameras, FA (factory automation) cameras, and the like are widely used as camera devices for surveillance and industrial use. In addition, as a camera device for such a use, there is known a camera device configured to have a compatible lens mount such as a C mount or a CS mount.
 互換性のあるレンズマウントには、単焦点レンズまたは可変焦点レンズ(ズームレンズやバリフォーカルレンズ等)が装着され得るが、撮像対象に合わせて焦点距離(ズーム位置)を調整することが可能であり、またズームレンズと比較して軽量、低コスト、F値の向上等というメリットがあることから、近年ではバリフォーカルレンズが装着されて用いられることが増えつつある。具体的には、例えばCCTVカメラに用いられるバリフォーカルレンズとして、CCTVカメラに設けられたCSマウントに対して着脱可能に構成されたレンズ装置であって、ズーム調整やフォーカス調整等を駆動モータによって行うように構成されたものがある(例えば、特許文献1参照)。 Compatible lens mounts can be equipped with single-focus lenses or variable-focus lenses (zoom lenses, varifocal lenses, etc.), but the focal length (zoom position) can be adjusted according to the object to be imaged. In addition, since there are advantages such as light weight, low cost, and improvement in F-number compared with a zoom lens, in recent years, varifocal lenses are increasingly used. Specifically, for example, a varifocal lens used in a CCTV camera is a lens device configured to be detachable from a CS mount provided in the CCTV camera, and performs zoom adjustment, focus adjustment, and the like by a drive motor. (For example, refer patent document 1).
特許第5893746号公報Japanese Patent No. 5893746
 特許文献1で開示されたレンズ装置は、レンズ側にマイクロコンピュータ等からなる制御部を搭載しており、その制御部に対するカメラ側からのコマンド入力に応じて、制御部が駆動モータによるズーム調整やフォーカス調整等を制御するようになっている。したがって、レンズ装置が有する性能を十分に引き出すためには、カメラ装置の側がレンズ装置の仕様(特に、制御部の仕様)に適切に対応している必要がある。具体的には、レンズ装置がどのような機能を備えているか、複数の機能を備えている場合に各機能がどのように関連するか、各機能の制御をどのような手順で行えばよいか等について、カメラ装置の側で把握している必要がある。 The lens device disclosed in Patent Document 1 includes a control unit including a microcomputer on the lens side, and the control unit performs zoom adjustment by a drive motor in response to a command input from the camera side to the control unit. The focus adjustment and the like are controlled. Therefore, in order to sufficiently bring out the performance of the lens device, the camera device side needs to appropriately correspond to the specifications of the lens device (particularly, the specifications of the control unit). Specifically, what functions the lens device has, how each function is related when there are multiple functions, and what procedure should be performed to control each function? Etc. need to be grasped by the camera device.
 ところが、これらの項目をカメラ装置の側で把握することは、カメラ装置の側からみると、様々な種類のレンズ装置やカメラ装置等の組み合わせが存在し得る状況下では、必ずしも容易なことではない。また、レンズ装置とカメラ装置とを1対1で作り込んだ場合であっても、例えばレンズ交換によって他種のレンズ装置が装着されると、カメラ装置の側が交換後のレンズ仕様に対応しなくなってしまう、といったことが生じ得る。つまり、上述した従来技術では、様々な種類のレンズ装置やカメラ装置等の組み合わせが存在し得ることを考慮すると、その組み合わせの汎用性が損なわれてしまうおそれがあり、またレンズ装置が有する性能をカメラ装置の側で十分に引き出すことができないおそれもある。 However, grasping these items on the camera device side is not always easy when viewed from the camera device side under a situation in which various types of combinations of lens devices and camera devices may exist. . Even if the lens device and the camera device are built on a one-to-one basis, for example, if another type of lens device is attached by exchanging the lens, the camera device side will not support the lens specification after the exchange. Can occur. In other words, in the above-described conventional technology, considering that various types of combinations of lens devices, camera devices, and the like may exist, the versatility of the combinations may be impaired, and the performance of the lens device may be reduced. There is also a possibility that the camera device cannot be pulled out sufficiently.
 そこで、本発明は、レンズ装置とこれが装着されるカメラ装置との組み合わせの汎用性が損なわれてしまうのを抑制しつつ、レンズ装置が有する性能をカメラ装置の側で十分に引き出すことを可能にする技術を提供することを目的とする。 Therefore, the present invention makes it possible to sufficiently draw out the performance of the lens device on the camera device side while suppressing the loss of versatility of the combination of the lens device and the camera device to which the lens device is mounted. It aims at providing the technology to do.
 本発明の一態様によれば、
 カメラ装置に内蔵されたマイクロコンピュータにインストールされて用いられるプログラムであって、
 前記カメラ装置は、前記マイクロコンピュータに加えて、レンズ装置が装着されるレンズマウントと、前記レンズ装置を通して得られる光学像を撮像する撮像素子と、前記レンズ装置と前記マイクロコンピュータとの通信を可能にするとともに前記カメラ装置の上位装置と前記マイクロコンピュータとの通信を可能にするインタフェース部と、を備えて構成されており、
 前記レンズ装置は、少なくとも、レンズ固有の特性データを記録したメモリ部、を備えて構成されており、
 前記プログラムは、前記マイクロコンピュータを、
 前記レンズ装置が焦点距離を調整するズーム調整部を備えている場合に、前記上位装置から指示された焦点距離となるように、前記ズーム調整部の駆動モータに動作指示を与えるズーム制御手段と、
 前記レンズ装置がフォーカス位置を調整するフォーカス調整部を備えている場合に、前記メモリ部から取得した特性データを参照しつつ、前記レンズ装置の焦点距離に応じたフォーカス位置となるように、前記フォーカス調整部の駆動モータに動作指示を与えるフォーカス制御手段と、
 前記レンズ装置が絞りを調整するアイリス調整部を備えている場合に、前記メモリ部から取得した特性データを参照しつつ、前記レンズ装置の焦点距離に応じた絞りとなるように、前記アイリス調整部の駆動モータに動作指示を与えるアイリス制御手段と、
 前記メモリ部から取得した特性データを参照しつつ、前記レンズ装置の焦点距離または前記レンズ装置の絞りの少なくとも一方に基づき、前記撮像素子での撮像結果に対する画像補正処理の内容を決定する画像補正制御手段と、
 として機能させることを特徴とするプログラムが提供される。
According to one aspect of the invention,
A program installed and used in a microcomputer built in the camera device,
In addition to the microcomputer, the camera device enables a lens mount to which a lens device is mounted, an image sensor that picks up an optical image obtained through the lens device, and communication between the lens device and the microcomputer. And an interface unit that enables communication between the host device of the camera device and the microcomputer,
The lens device includes at least a memory unit that records lens-specific characteristic data.
The program causes the microcomputer to
When the lens device includes a zoom adjustment unit that adjusts the focal length, zoom control means that gives an operation instruction to the drive motor of the zoom adjustment unit so that the focal length is instructed from the host device;
When the lens apparatus includes a focus adjustment unit that adjusts the focus position, the focus is adjusted so that the focus position is in accordance with the focal length of the lens apparatus while referring to the characteristic data acquired from the memory unit. Focus control means for giving an operation instruction to the drive motor of the adjustment unit;
When the lens device includes an iris adjustment unit that adjusts the iris, the iris adjustment unit is configured so as to obtain an iris according to the focal length of the lens device while referring to the characteristic data acquired from the memory unit. Iris control means for giving an operation instruction to the drive motor;
Image correction control that determines the content of the image correction process for the imaging result of the imaging device based on at least one of the focal length of the lens device or the diaphragm of the lens device while referring to the characteristic data acquired from the memory unit Means,
As a result, a program is provided.
 本発明によれば、レンズ装置とこれが装着されるカメラ装置との組み合わせの汎用性が損なわれてしまうのを抑制しつつ、レンズ装置が有する性能をカメラ装置の側で十分に引き出すことが実現可能となる。 According to the present invention, it is possible to sufficiently bring out the performance of the lens device on the side of the camera device while suppressing the loss of versatility of the combination of the lens device and the camera device to which the lens device is mounted. It becomes.
本発明の一実施形態に係るカメラシステムの全体構成の一例を示すブロック図である。It is a block diagram which shows an example of the whole structure of the camera system which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレンズ装置の外観の一例を示す説明図である。It is explanatory drawing which shows an example of the external appearance of the lens apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレンズ装置のレンズ本体および各ユニットの一例を示す分解斜視図である。It is a disassembled perspective view which shows an example of the lens main body and each unit of the lens apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレンズ装置のレンズ本体の一例を示す分解斜視図である。It is a disassembled perspective view which shows an example of the lens main body of the lens apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレンズ装置に対する動作制御処理の全体フローの一例を示すフロー図である。It is a flowchart which shows an example of the whole flow of the operation control process with respect to the lens apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレンズ装置におけるレンズ固有の特性データの具体例を示す模式図である。It is a schematic diagram which shows the specific example of the lens specific characteristic data in the lens apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレンズ装置に対するフォーカス調整の手順の一例を示すフロー図である。It is a flowchart which shows an example of the procedure of the focus adjustment with respect to the lens apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレンズ装置に対するディストーション補正の手順の一例を示すフロー図である。It is a flowchart which shows an example of the procedure of the distortion correction with respect to the lens apparatus which concerns on one Embodiment of this invention. レンズ入射光の角度(アングル)と撮像面上に形成される像高(イメージハイト)との相関を模式的に示す説明図である。It is explanatory drawing which shows typically the correlation with the angle (angle) of lens incident light, and the image height (image height) formed on an imaging surface. 本発明の一実施形態に係るレンズ装置に対する周辺減光補正の手順の一例を示すフロー図である。It is a flowchart which shows an example of the procedure of a peripheral darkening correction | amendment with respect to the lens apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレンズ装置に対するアイリス調整の手順の一例を示すフロー図である。It is a flowchart which shows an example of the procedure of iris adjustment with respect to the lens apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレンズ装置についての焦点距離表示の手順の一例を示すフロー図である。It is a flowchart which shows an example of the procedure of the focal distance display about the lens apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレンズ装置についてのF値表示の手順の一例を示すフロー図である。It is a flowchart which shows an example of the procedure of the F value display about the lens apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレンズ装置についての温度表示の手順の一例を示すフロー図である。It is a flowchart which shows an example of the procedure of the temperature display about the lens apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレンズ装置に対する温度シフト補正の手順の一例を示すフロー図である。It is a flowchart which shows an example of the procedure of the temperature shift correction | amendment with respect to the lens apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレンズ装置に対するIRシフト補正の手順の一例を示すフロー図である。It is a flowchart which shows an example of the procedure of IR shift correction | amendment with respect to the lens apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレンズ装置に対するフランジバックシフト補正の手順の一例を示すフロー図である。It is a flowchart which shows an example of the procedure of the flange backshift correction | amendment with respect to the lens apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るプログラムアップデートの手順の一例を示すフロー図である。It is a flowchart which shows an example of the procedure of the program update which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレンズ制御装置の機能構成の一例を示すブロック図である。It is a block diagram which shows an example of a function structure of the lens control apparatus which concerns on one Embodiment of this invention.
<本発明の一実施形態>
 以下、本発明の実施の形態について、図面を参照しながら説明する。
<One Embodiment of the Present Invention>
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(1)カメラシステムの全体構成
 先ず、本実施形態に係るカメラシステムの全体構成について説明する。
(1) Overall Configuration of Camera System First, the overall configuration of the camera system according to the present embodiment will be described.
 図1に示すように、カメラシステムは、カメラ装置1と、レンズ装置2と、パーソナルコンピュータ(以下「PC」とも言う。)装置3と、を備えて構成されている。 As shown in FIG. 1, the camera system includes a camera device 1, a lens device 2, and a personal computer (hereinafter also referred to as “PC”) device 3.
(カメラ装置)
 カメラ装置1は、例えば、監視用や産業用等のカメラ装置として用いられるもので、IPカメラ、CCTVカメラ、FAカメラ等からなるものである。以下の説明では、カメラ装置1がCCTVカメラである場合を例に挙げるが、本発明がこれに限定されるものではない。
(Camera device)
The camera device 1 is used as, for example, a camera device for surveillance or industrial use, and includes an IP camera, a CCTV camera, an FA camera, and the like. In the following description, a case where the camera apparatus 1 is a CCTV camera is taken as an example, but the present invention is not limited to this.
 また、カメラ装置1は、レンズ装置2が装着されるCマウントやCSマウント等のレンズマウント1aと、そのレンズマウント1aに装着されたレンズ装置2を通して得られる光学像を撮像するCCD(Charge Coupled Device)センサやCMOS(Complementary Metal Oxide Semiconductor)センサ等の撮像素子1bと、カメラ装置1に内蔵されたDSP(Digital Signal Processor)等からなるマイクロコンピュータ1cと、同じくカメラ装置1内にてコンピュータとして機能する制御基板等からなる中央制御部1dと、を備えて構成されている。なお、以下の説明では、レンズマウント1aがCSマウントである場合を例に挙げるが、本発明がこれに限定されるものではない。 In addition, the camera device 1 includes a lens mount 1a such as a C mount or CS mount to which the lens device 2 is attached, and a CCD (Charge Coupled Device) that captures an optical image obtained through the lens device 2 attached to the lens mount 1a. ) A microcomputer, a microcomputer 1c composed of an imaging device 1b such as a sensor or a CMOS (Complementary Metal Oxide Semiconductor) sensor, a DSP (Digital Signal Processor) built in the camera device 1, and the like, and also functions as a computer in the camera device 1. And a central control unit 1d made of a control board or the like. In the following description, a case where the lens mount 1a is a CS mount is taken as an example, but the present invention is not limited to this.
 カメラ装置1に内蔵されたマイクロコンピュータ1cは、所定のプログラムの実行により、レンズマウント1aに装着されたレンズ装置2の動作制御を行うものである。つまり、マイクロコンピュータ1cは、レンズ装置2の動作制御を行うレンズ制御装置として機能する。マイクロコンピュータ1cによる制御内容については、詳細を後述する。なお、マイクロコンピュータ1cは、中央制御部1dの一部を構成するものであってもよい。 The microcomputer 1c built in the camera device 1 controls the operation of the lens device 2 mounted on the lens mount 1a by executing a predetermined program. That is, the microcomputer 1 c functions as a lens control device that controls the operation of the lens device 2. The details of the control by the microcomputer 1c will be described later. Note that the microcomputer 1c may constitute a part of the central control unit 1d.
 中央制御部1dは、カメラ装置1の全体の動作制御を行うもので、外部との通信(特に外部とマイクロコンピュータ1cとの間の通信)を可能にするインタフェース部1eを有して構成されたものである。インタフェース部1eとしては、通信プロトコル等が特に限定されるものではないが、例えば、レンズ装置2との通信についてはシリアル通信を行うICに準拠したものとすることが考えられる。また、例えば、PC装置3との通信については、イーサネット(登録商標)に準拠したもの、USB規格を利用したもの、Wi-Fiやブルートゥース(登録商標)等の無線通信によるもの、CVBS、HD-SDI、AHD等の映像信号とRS485、RS422、RS232等のシリアル通信を組み合わせたもの等とすることが考えられる。 The central control unit 1d controls the overall operation of the camera device 1, and is configured to include an interface unit 1e that enables communication with the outside (especially communication between the outside and the microcomputer 1c). Is. The interface unit 1e is not particularly limited to a communication protocol or the like. For example, it is conceivable that the communication with the lens device 2 conforms to I 2 C performing serial communication. Further, for example, communication with the PC device 3 is based on Ethernet (registered trademark), uses USB standard, wireless communication such as Wi-Fi or Bluetooth (registered trademark), CVBS, HD- A combination of a video signal such as SDI and AHD and serial communication such as RS485, RS422, and RS232 may be considered.
(レンズ装置)
 レンズ装置2は、カメラ装置1のレンズマウント1aに装着されて用いられるものである。レンズ装置2としては、レンズマウント1aに装着可能なものであれば(すなわち、互換性に対応したものであれば)、単焦点レンズまたは可変焦点レンズ(ズームレンズやバリフォーカルレンズ等)のいずれであってもよいが、以下の説明ではレンズ装置2がバリフォーカルレンズである場合を例に挙げる。バリフォーカルレンズは、焦点距離(ズーム位置)を調整した際にフォーカス位置(ピント位置)が移動してしまうように構成された可変焦点レンズである。
(Lens device)
The lens device 2 is used by being mounted on the lens mount 1 a of the camera device 1. The lens device 2 can be either a single focus lens or a variable focus lens (such as a zoom lens or a varifocal lens) as long as it can be attached to the lens mount 1a (that is, compatible with compatibility). However, in the following description, a case where the lens device 2 is a varifocal lens will be described as an example. The varifocal lens is a variable focus lens configured so that the focus position (focus position) moves when the focal length (zoom position) is adjusted.
 本実施形態において例に挙げるバリフォーカルレンズの具体的な構成等については、その詳細を後述する。 Details of the specific configuration of the varifocal lens exemplified in this embodiment will be described later.
(PC装置)
 PC装置3は、カメラ装置1との通信により、カメラ装置1から受け取った信号や情報等の出力を行ったり、カメラ装置1に対して動作指示を与えたりするものである。つまり、PC装置3は、カメラ装置1の上位装置として機能する。なお、PC装置3における具体的な構成や処理機能等については、公知技術を利用して構成されたものであればよいため、ここではその詳細な説明を省略する。
(PC device)
The PC device 3 outputs signals and information received from the camera device 1 through communication with the camera device 1 and gives an operation instruction to the camera device 1. That is, the PC device 3 functions as a host device of the camera device 1. Note that a specific configuration, processing function, and the like in the PC device 3 may be configured using a known technique, and thus detailed description thereof is omitted here.
(2)レンズ装置の構成
 続いて、本実施形態に係るレンズ装置2の具体的な構成等について、レンズ装置2がバリフォーカルレンズである場合を例に挙げて、詳しく説明する。
(2) Configuration of Lens Device Next, a specific configuration and the like of the lens device 2 according to the present embodiment will be described in detail with an example in which the lens device 2 is a varifocal lens.
 図2に示すように、本実施形態で例に挙げるレンズ装置としてのバリフォーカルレンズ2は、レンズ本体10と、これに付設されたフレキシブル回路20と、を備えて構成されている。なお、フレキシブル回路20には、詳細を後述する半導体チップ21が搭載されている。 As shown in FIG. 2, the varifocal lens 2 as a lens device exemplified in this embodiment includes a lens body 10 and a flexible circuit 20 attached thereto. Note that a semiconductor chip 21, which will be described in detail later, is mounted on the flexible circuit 20.
(レンズ本体)
 レンズ本体10は、図3に示すように、ズーム調整部30と、フォーカス調整部40と、アイリス調整部50と、これらの各調整部30,40,50を個別に動作させる駆動ユニット60,70,80と、を備えている。
(Lens body)
As shown in FIG. 3, the lens body 10 includes a zoom adjustment unit 30, a focus adjustment unit 40, an iris adjustment unit 50, and drive units 60 and 70 that individually operate these adjustment units 30, 40, and 50. , 80.
(ズーム調整部)
 ズーム調整部30は、バリフォーカルレンズ2の焦点距離(ズーム位置)の調整を行うものであり、図4に示すように、レンズ枠にズーム用のレンズを取りつけたズームレンズ群31と、ズームレンズ群31を収納しズームレンズ群31の光軸方向への移動を案内するズーム保持枠32と、ズームレンズ群31を移動するための駆動力を発生するズーム回転リング33と、を備える。さらに詳しくは、ズーム調整部30は、ズーム回転リング33の内部にズーム保持枠32が内蔵され、そのズーム保持枠32の内部にズームレンズ群31が組み込まれているとともに、ズームレンズ群31に設けられた移動ピン31aがズーム保持枠32に設けられた移動ピン案内溝32aおよびズーム回転リング33に設けられた凹部33aと係合するようになっており、最外周に位置するズーム回転リング33が回転するとズームレンズ群31が光軸方向に移動するように構成されている。なお、ズームレンズ群31は複数のレンズから構成されているが、複数のレンズに代えて1枚のレンズで構成してもよい。
(Zoom adjustment part)
The zoom adjustment unit 30 adjusts the focal length (zoom position) of the varifocal lens 2 and, as shown in FIG. 4, a zoom lens group 31 having a zoom lens attached to a lens frame, and a zoom lens A zoom holding frame 32 that houses the group 31 and guides the movement of the zoom lens group 31 in the optical axis direction, and a zoom rotation ring 33 that generates a driving force for moving the zoom lens group 31 are provided. More specifically, the zoom adjustment unit 30 includes a zoom holding frame 32 built in the zoom rotation ring 33, a zoom lens group 31 built in the zoom holding frame 32, and provided in the zoom lens group 31. The movable pin 31a is engaged with the movable pin guide groove 32a provided in the zoom holding frame 32 and the concave portion 33a provided in the zoom rotary ring 33, and the zoom rotary ring 33 located on the outermost periphery is When rotated, the zoom lens group 31 is configured to move in the optical axis direction. The zoom lens group 31 is composed of a plurality of lenses, but may be composed of a single lens instead of the plurality of lenses.
 ズーム回転リング33の外周面にはギア部33bが形成されており、そのギア部33bがズーム駆動ユニット60と係合するようになっている。ズーム駆動ユニット60は、図3に示すように、パルスモータ61と、これにより駆動されるギア列62と、を有している。そして、パルスモータ61の回転が、ギア列62を介してズーム調整部30のズーム回転リング33のギア部33bに伝達されて、これによりズーム調整部30におけるズームレンズ群31を光軸方向に移動させるようになっている。 A gear portion 33 b is formed on the outer peripheral surface of the zoom rotation ring 33, and the gear portion 33 b is engaged with the zoom drive unit 60. As shown in FIG. 3, the zoom drive unit 60 includes a pulse motor 61 and a gear train 62 driven by the pulse motor 61. Then, the rotation of the pulse motor 61 is transmitted to the gear unit 33b of the zoom rotation ring 33 of the zoom adjustment unit 30 via the gear train 62, thereby moving the zoom lens group 31 in the zoom adjustment unit 30 in the optical axis direction. It is supposed to let you.
 ズームレンズ群31の移動方向は、パルスモータ61の回転方向によって決定される。パルスモータ61は、1パルスに対する回転軸のステップ角が決まっているため、パルス数により回転軸が回転する角度が決定し、ズーム駆動ユニット60のギア列62のギア比およびズーム回転リング33のギア部33bのギア比により、パルスモータ61のパルス数に対するズームレンズ群31の移動量が決まる。また、パルスモータ61のパルス数を基準位置からの計数値とすることにより、ズームレンズ群31の位置は、パルスモータ61の基準位置からのステップ数で決定される。 The moving direction of the zoom lens group 31 is determined by the rotation direction of the pulse motor 61. In the pulse motor 61, since the step angle of the rotating shaft with respect to one pulse is determined, the angle at which the rotating shaft rotates is determined by the number of pulses, and the gear ratio of the gear train 62 of the zoom drive unit 60 and the gear of the zoom rotating ring 33 are determined. The amount of movement of the zoom lens group 31 with respect to the number of pulses of the pulse motor 61 is determined by the gear ratio of the portion 33b. Further, the position of the zoom lens group 31 is determined by the number of steps from the reference position of the pulse motor 61 by using the number of pulses of the pulse motor 61 as a count value from the reference position.
 このような構成のズーム調整部30およびズーム駆動ユニット60は、駆動源としてステップ角の制御が可能なパルスモータ61を使用したことにより、ズームレンズ群31の位置(すなわち、バリフォーカルレンズ2のズーム位置)について高精度に制御することが可能である。なお、位置制御は、オープンループ制御により行ってもよいが、バリフォーカルレンズ2に実装されているフォトインタラプタ(検出器)等を利用したクローズドループ制御によって行えば、位置精度を高める上で好ましいものとなる。また、ズーム駆動ユニット60の駆動源は、必ずしもパルスモータ61である必要はなく、例えば、DCモータおよびポテンショメータを使用したものであってもよい。その場合には、ポテンショメータの出力電圧をA/D変換して位置情報を得ることで、ズームレンズ群31の位置制御を行うことが可能である。 The zoom adjustment unit 30 and the zoom drive unit 60 having such a configuration use the pulse motor 61 capable of controlling the step angle as a drive source, so that the position of the zoom lens group 31 (that is, the zoom of the varifocal lens 2). The position) can be controlled with high accuracy. The position control may be performed by open loop control, but it is preferable to improve the position accuracy by performing closed loop control using a photo interrupter (detector) mounted on the varifocal lens 2. It becomes. Further, the drive source of the zoom drive unit 60 does not necessarily need to be the pulse motor 61, and may be one using a DC motor and a potentiometer, for example. In this case, the position control of the zoom lens group 31 can be performed by A / D converting the output voltage of the potentiometer to obtain position information.
(フォーカス調整部)
 フォーカス調整部40は、バリフォーカルレンズ2のフォーカス位置(ピント)の調整を行うものであり、図4に示すように、レンズ枠にフォーカス用のレンズを取り付けたフォーカスレンズ群41と、フォーカスレンズ群41を収納しフォーカスレンズ群41の光軸方向への移動を案内するフォーカス保持枠42と、フォーカスレンズ群41を移動するための駆動力を発生するフォーカス回転リング43と、を備える。さらに詳しくは、フォーカス調整部40は、フォーカス回転リング43の内部にフォーカス保持枠42が内蔵され、そのフォーカス保持枠42の内部にフォーカスレンズ群41が組み込まれているとともに、フォーカスレンズ群41に設けられた移動ピン41aがフォーカス保持枠42に設けられた移動ピン案内溝42aおよびフォーカス回転リング43に設けられた凹部43aと係合するようになっており、最外周に位置するフォーカス回転リング43が回転するとフォーカスレンズ群41が光軸方向に移動するように構成されている。なお、フォーカスレンズ群41は複数のレンズから構成されているが、複数のレンズに代えて1枚のレンズで構成してもよい。
(Focus adjustment part)
The focus adjustment unit 40 adjusts the focus position (focus) of the varifocal lens 2, and as shown in FIG. 4, a focus lens group 41 in which a lens for focusing is attached to a lens frame, and a focus lens group. A focus holding frame 42 that houses 41 and guides the movement of the focus lens group 41 in the optical axis direction, and a focus rotation ring 43 that generates a driving force for moving the focus lens group 41. More specifically, the focus adjustment unit 40 has a focus holding frame 42 built in the focus rotation ring 43, a focus lens group 41 is built in the focus holding frame 42, and is provided in the focus lens group 41. The moving pin 41a is engaged with the moving pin guide groove 42a provided in the focus holding frame 42 and the concave portion 43a provided in the focus rotating ring 43, and the focus rotating ring 43 located on the outermost periphery is When the lens is rotated, the focus lens group 41 is configured to move in the optical axis direction. The focus lens group 41 is composed of a plurality of lenses, but may be composed of a single lens instead of the plurality of lenses.
 フォーカス回転リング43の外周面にはギア部43bが形成されており、そのギア部43bがフォーカス駆動ユニット70と係合するようになっている。フォーカス駆動ユニット70は、図3に示すように、パルスモータ71と、これにより駆動されるギア列(ただし不図示)と、を有している。そして、パルスモータ71の回転が、ギア列を介してフォーカス調整部40のフォーカス回転リング43のギア部43bに伝達されて、これによりフォーカス調整部40におけるフォーカスレンズ群41を光軸方向に移動させるようになっている。 A gear portion 43 b is formed on the outer peripheral surface of the focus rotation ring 43, and the gear portion 43 b is engaged with the focus drive unit 70. As shown in FIG. 3, the focus drive unit 70 has a pulse motor 71 and a gear train (not shown) driven thereby. Then, the rotation of the pulse motor 71 is transmitted to the gear unit 43b of the focus rotation ring 43 of the focus adjustment unit 40 through the gear train, thereby moving the focus lens group 41 in the focus adjustment unit 40 in the optical axis direction. It is like that.
 フォーカスレンズ群41の移動方向は、パルスモータ71の回転方向によって決定される。パルスモータ71は、1パルスに対する回転軸のステップ角が決まっているため、パルス数により回転軸が回転する角度が決定し、フォーカス駆動ユニット70のギア列のギア比およびフォーカス回転リング43のギア部43bのギア比により、パルスモータ71のパルス数に対するフォーカスレンズ群41の移動量が決まる。また、パルスモータ71のパルス数を基準位置からの計数値とすることにより、フォーカスレンズ群41の位置は、パルスモータ71の基準位置からのステップ数で決定される。 The moving direction of the focus lens group 41 is determined by the rotation direction of the pulse motor 71. In the pulse motor 71, since the step angle of the rotation shaft for one pulse is determined, the angle at which the rotation shaft rotates is determined by the number of pulses, and the gear ratio of the focus drive unit 70 and the gear portion of the focus rotation ring 43 are determined. The amount of movement of the focus lens group 41 with respect to the number of pulses of the pulse motor 71 is determined by the gear ratio of 43b. Further, the position of the focus lens group 41 is determined by the number of steps from the reference position of the pulse motor 71 by using the number of pulses of the pulse motor 71 as a count value from the reference position.
 このような構成のフォーカス調整部40およびフォーカス駆動ユニット70は、駆動源としてステップ角の制御が可能なパルスモータ71を使用したことにより、フォーカスレンズ群41の位置(すなわち、バリフォーカルレンズ2のフォーカス位置)について高精度に制御することが可能である。なお、位置制御は、オープンループ制御により行ってもよいが、バリフォーカルレンズ2に実装されているフォトインタラプタ(検出器)等を利用したクローズドループ制御によって行えば、位置精度を高める上で好ましいものとなる。 The focus adjustment unit 40 and the focus drive unit 70 having such a configuration use the pulse motor 71 capable of controlling the step angle as a drive source, so that the position of the focus lens group 41 (that is, the focus of the varifocal lens 2). The position) can be controlled with high accuracy. The position control may be performed by open loop control, but it is preferable to improve the position accuracy by performing closed loop control using a photo interrupter (detector) mounted on the varifocal lens 2. It becomes.
(アイリス調整部)
 アイリス調整部50は、バリフォーカルレンズ2の絞りの調整、具体的には対物レンズとしてのフォーカスレンズ群41からの光量の調整を行うものであり、光路を形成する開口部を有した基板上に直線スライド可能に構成された2枚の絞り羽根51を有しており、絞り羽根51のスライド量を制御することにより光量の調整を行うように構成されている。
(Iris adjustment section)
The iris adjustment unit 50 adjusts the aperture of the varifocal lens 2, specifically, the amount of light from the focus lens group 41 as an objective lens, and is formed on a substrate having an opening that forms an optical path. It has two diaphragm blades 51 configured to be linearly slidable, and is configured to adjust the amount of light by controlling the sliding amount of the diaphragm blade 51.
 絞り羽根51のスライドは、アイリス駆動ユニット80におけるパルスモータ81によって行われる。つまり、パルスモータ81のパルス数を制御することにより、絞り羽根51のスライド量が決定されることになる。 The sliding of the diaphragm blade 51 is performed by a pulse motor 81 in the iris drive unit 80. That is, by controlling the number of pulses of the pulse motor 81, the sliding amount of the aperture blade 51 is determined.
 アイリス調整部50には、光路上に光学フィルタを挿入する光学フィルタ部52が設けられていてもよい。光学フィルタは、波長に応じた透過特性を有するもので、ここでは赤外線領域の光を遮断する赤外カットフィルタ(IRカットフィルタ)が使用されている。光学フィルタの光路上への挿入および光路上からの取り出し動作は、光学フィルタ駆動用のアクチュエータとしての直流モータ82によって行われる。なお、光路上に光学フィルタ(IRカットフィルタ)を挿入する光学フィルタ部52は、バリフォーカルレンズ2が使用される環境によっては設けなくてもよい。 The iris adjusting unit 50 may be provided with an optical filter unit 52 for inserting an optical filter on the optical path. The optical filter has a transmission characteristic corresponding to the wavelength, and here, an infrared cut filter (IR cut filter) that blocks light in the infrared region is used. The optical filter is inserted into the optical path and taken out from the optical path by a DC motor 82 as an actuator for driving the optical filter. Note that the optical filter unit 52 for inserting an optical filter (IR cut filter) on the optical path may not be provided depending on the environment in which the varifocal lens 2 is used.
 このようなアイリス調整部50は、フォーカス調整部40のフォーカス保持枠42に形成された金具42bに取り付けられることで、レンズ本体2のフォーカス調整部40とズーム調整部30との間に介装され、レンズ本体2に固定されるようになっている。 Such an iris adjustment unit 50 is interposed between the focus adjustment unit 40 and the zoom adjustment unit 30 of the lens body 2 by being attached to a metal fitting 42 b formed on the focus holding frame 42 of the focus adjustment unit 40. The lens body 2 is fixed.
(フレキシブル回路)
 以上のような構成のレンズ本体10に付設されるフレキシブル回路20は、フィルム等の可撓性部材からなるフレキシブル基板上に半導体チップ21が搭載されたもので、カメラ装置1と電気的に接続することで、そのカメラ装置1におけるインタフェース部1eとの間で通信を行い得るように構成されたものである。
(Flexible circuit)
The flexible circuit 20 attached to the lens main body 10 having the above-described configuration includes a semiconductor chip 21 mounted on a flexible substrate made of a flexible member such as a film and is electrically connected to the camera device 1. Thus, the camera apparatus 1 is configured to be able to communicate with the interface unit 1e.
 フレキシブル回路20上の半導体チップ21は、少なくとも、各種データの保持記録を行う不揮発性メモリとしての機能を有しているものとする。ただし、半導体チップ21は、メモリとしての機能に加えてCPU(Central Processing Unit)としての機能を有しマイクロコンピュータからなるものであってもよい。また、半導体チップ21は、バリフォーカルレンズ2に実装されていれば、必ずしもフレキシブル回路20上に搭載されている必要はなく、フレキシブル回路20以外の図示しない回路基板上に搭載されていてもよい。 The semiconductor chip 21 on the flexible circuit 20 has at least a function as a non-volatile memory that holds and records various data. However, the semiconductor chip 21 may have a function as a CPU (Central Processing Unit) in addition to a function as a memory and may be a microcomputer. Further, the semiconductor chip 21 is not necessarily mounted on the flexible circuit 20 as long as it is mounted on the varifocal lens 2, and may be mounted on a circuit board (not shown) other than the flexible circuit 20.
 半導体チップ21が保持記録する各種データには、その半導体チップ21を搭載したバリフォーカルレンズ2に関するレンズ固有の特性データが含まれるものとする。つまり、半導体チップ21は、レンズ固有の特性データを記録したメモリ部として機能する。このことから、以下、半導体チップ21のことをメモリ部21ということもある。 The various data held and recorded by the semiconductor chip 21 include lens-specific characteristic data related to the varifocal lens 2 on which the semiconductor chip 21 is mounted. That is, the semiconductor chip 21 functions as a memory unit in which lens-specific characteristic data is recorded. Therefore, hereinafter, the semiconductor chip 21 may be referred to as the memory unit 21.
 なお、レンズ固有の特性データの具体的な内容については、その詳細を後述する。 The specific contents of lens-specific characteristic data will be described later in detail.
(3)レンズ装置に対する動作制御処理
 次に、上述した構成のバリフォーカルレンズ2に対する動作制御処理の手順について詳しく説明する。以下に説明する動作制御処理は、主として、カメラ装置1に内蔵されたマイクロコンピュータ1cが所定のプログラムを実行することにより行われる。
(3) Operation Control Processing for Lens Device Next, the operation control processing procedure for the varifocal lens 2 having the above-described configuration will be described in detail. The operation control process described below is mainly performed by the microcomputer 1c built in the camera device 1 executing a predetermined program.
(動作制御処理の全体フロー)
 図5に示すように、カメラ装置1では、電源オンがあると(ステップ101、以下ステップを「S」と略す。)、先ず、中央制御部1dのインタフェース部1eがバリフォーカルレンズ2との間のICシリアル通信を確立し(S102)、そのバリフォーカルレンズ2のメモリ部21からのデータ取得を行い、取得データの内容をマイクロコンピュータ1cに確認させる(S103)。
(Overall flow of operation control processing)
As shown in FIG. 5, in the camera apparatus 1, when the power is turned on (step 101, step is abbreviated as “S” hereinafter), the interface unit 1 e of the central control unit 1 d is first connected to the varifocal lens 2. I 2 C serial communication is established (S102), data is acquired from the memory unit 21 of the varifocal lens 2, and the content of the acquired data is confirmed by the microcomputer 1c (S103).
 このとき、メモリ部21からは、バリフォーカルレンズ2に関するレンズ固有の特性データを取得する。特性データとしては、バリフォーカルレンズ2が備える機能に関するデータと、各機能を動作させる際の動作特性データとがある。 At this time, lens-specific characteristic data regarding the varifocal lens 2 is acquired from the memory unit 21. The characteristic data includes data related to functions provided in the varifocal lens 2 and operational characteristic data when each function is operated.
 機能に関するデータは、バリフォーカルレンズ2がどのような機能を備えているかを特定するためのもので、メモリ部21における所定レジスタ(アドレス)に格納されるものである。例えば、ある機能がバリフォーカルレンズ2に搭載されていれば、その機能に対応するアドレスが「1」となり、搭載されていなければ「0」となる、といったデータである。このようなデータを読み取ることで、カメラ装置1の側では、装着されたレンズ装置2がどのような機能を備えているか、具体的にはズーム調整、フォーカス調整、アイリス調整等の各機能への対応の有無(すなわち、レンズ装置2の種類)がわかるようになる。 The function-related data is for specifying what function the varifocal lens 2 has, and is stored in a predetermined register (address) in the memory unit 21. For example, the data is such that if a certain function is mounted on the varifocal lens 2, the address corresponding to the function is “1”, and if not, “0” is stored. By reading such data, on the camera device 1 side, what functions the mounted lens device 2 has, specifically, zoom adjustment, focus adjustment, iris adjustment, etc. The presence or absence of correspondence (that is, the type of the lens device 2) can be known.
 また、動作特性データは、バリフォーカルレンズ2が備える機能を動作させる際に、その機能がどのような動作特性を示すかを特定するためのものである。具体的には、図6(a)~(j)に示すようなデータが例示されるが、それぞれのデータの詳細については後述する。なお、動作特性データは、レンズ装置2の種類によってデータ量が異なるため、メモリ部21内の固定した位置に配置されているのではなく(すなわち、アドレス固定ではなく)、例えば、データのフラグ(1:トラッキング、2:ディストーション、…等)でデータ種類やパラメータ(ズーム位置、物体距離等)が指定されるようになっているものとする。このように、例えばフラグを利用してデータ種類等が指定されていれば、データ取得に際して、データの一部(例えばフラグ)のみを読み込んでデータ種類等の判別を経た後に、必要に応じて詳細データをカメラ側に取り込む、といったことが実現可能となり、データ取得の際の処理負荷の軽減が図れるようになる。 Also, the operating characteristic data is for specifying what operating characteristics the function shows when the function of the varifocal lens 2 is operated. Specifically, data as shown in FIGS. 6A to 6J is exemplified, and details of each data will be described later. Since the amount of data of the operation characteristic data varies depending on the type of the lens device 2, it is not arranged at a fixed position in the memory unit 21 (that is, not fixed to an address), for example, a data flag ( It is assumed that the data type and parameters (zoom position, object distance, etc.) are specified in 1: Tracking, 2: Distortion, etc. In this way, for example, if a data type is specified using a flag, for example, when data is acquired, only a part of the data (for example, a flag) is read and the data type is determined, and then, if necessary, details It becomes feasible to capture data to the camera side, and the processing load at the time of data acquisition can be reduced.
 メモリ部21から取得したレンズ固有の特性データ(以下、単に「レンズデータ」ともいう。)を確認した後、マイクロコンピュータ1cは、レンズデータの内容を参照しつつ、ガラス厚フランジバック(以下、フランジバックのことを「FB」ともいう。)シフトカーブに基づくFBシフト補正を行うか否かを判断し(S104)、必要と判断した場合にガラス厚FBシフト補正を実施する(S105)。なお、ガラス厚FBシフト補正の詳細については後述する。 After confirming the lens-specific characteristic data (hereinafter, also simply referred to as “lens data”) acquired from the memory unit 21, the microcomputer 1c refers to the contents of the lens data while referring to the contents of the lens data. The back is also referred to as “FB”.) It is determined whether or not to perform FB shift correction based on the shift curve (S104), and when it is determined to be necessary, glass thickness FB shift correction is performed (S105). Details of the glass thickness FB shift correction will be described later.
 その後、マイクロコンピュータ1cは、イニシャライズ処理を行って、バリフォーカルレンズ2が備える各機能の初期化を行う(S106)。具体的には、例えば、バリフォーカルレンズ2におけるズーム調整部30、フォーカス調整部40およびアイリス調整部50について、それぞれを原点位置に移動させる。このとき、例えば、バリフォーカルレンズ2にフォトインタラプタ等が実装されていれば、そのフォトインタラプタ等による検出結果を利用してイニシャライズ処理を行うようにしてもよい。 Thereafter, the microcomputer 1c performs an initialization process to initialize each function of the varifocal lens 2 (S106). Specifically, for example, each of the zoom adjustment unit 30, the focus adjustment unit 40, and the iris adjustment unit 50 in the varifocal lens 2 is moved to the origin position. At this time, for example, if a photo interrupter or the like is mounted on the varifocal lens 2, the initialization process may be performed using the detection result of the photo interrupter or the like.
 イニシャライズ処理の後、カメラ装置1の上位装置であるPC装置3からの指示があると、マイクロコンピュータ1cは、PC装置3からの指示に応じて、バリフォーカルレンズ2の焦点距離を変更する制御処理を行う(S107)。具体的には、PC装置3から指示された焦点距離となるように、ズーム調整部30を駆動するズーム駆動ユニット60のパルスモータ61に動作指示を与える。これにより、バリフォーカルレンズ2は、ズーム調整部30のズームレンズ群31が光軸方向に移動して、焦点距離が調整されることになる。 After the initialization process, when there is an instruction from the PC device 3 that is a host device of the camera device 1, the microcomputer 1 c changes the focal length of the varifocal lens 2 in accordance with the instruction from the PC device 3. (S107). Specifically, an operation instruction is given to the pulse motor 61 of the zoom drive unit 60 that drives the zoom adjustment unit 30 so that the focal length is instructed from the PC device 3. As a result, the focal length of the varifocal lens 2 is adjusted by moving the zoom lens group 31 of the zoom adjustment unit 30 in the optical axis direction.
 バリフォーカルレンズ2の場合、焦点距離を調整すると、これに伴ってフォーカス位置が移動してしまう。このことから、マイクロコンピュータ1cは、焦点距離の調整後には、レンズデータの内容を参照しつつ、フォーカス位置の調整を行うか否かを判断し(S108)、必要である場合にフォーカス位置の調整を実施する(S109)。具体的には、バリフォーカルレンズ2の場合であれば、マイクロコンピュータ1cは、メモリ部21から取得したレンズデータのうち、特にトラッキングカーブを規定するデータ(図6(a)参照)を参照しつつ、ズーム調整部30が調整した焦点距離に応じたフォーカス位置となるように、フォーカス調整部40を駆動するフォーカス駆動ユニット70のパルスモータ71に動作指示を与える。これにより、バリフォーカルレンズ2は、フォーカス調整部40のフォーカスレンズ群41が光軸方向に移動して、フォーカス位置のずれ(いわゆるピンボケ)が修正されることになる。なお、トラッキングカーブに基づくフォーカス位置の調整の詳細については後述する。 In the case of the varifocal lens 2, when the focal length is adjusted, the focus position is moved accordingly. Therefore, the microcomputer 1c determines whether or not to adjust the focus position while referring to the content of the lens data after adjusting the focal length (S108), and adjusts the focus position if necessary. (S109). Specifically, in the case of the varifocal lens 2, the microcomputer 1 c refers to the lens data acquired from the memory unit 21, particularly referring to data defining a tracking curve (see FIG. 6A). Then, an operation instruction is given to the pulse motor 71 of the focus drive unit 70 that drives the focus adjustment unit 40 so that the focus position corresponds to the focal length adjusted by the zoom adjustment unit 30. Thereby, in the varifocal lens 2, the focus lens group 41 of the focus adjustment unit 40 moves in the optical axis direction, and the shift of the focus position (so-called defocus) is corrected. Details of the focus position adjustment based on the tracking curve will be described later.
 焦点距離およびフォーカス位置の調整の調整後、マイクロコンピュータ1cは、レンズデータの内容を参照しつつ、実施すべき光学補正項目を選択する(S110)。光学補正項目としては、例えば、ディストーション補正(S111)、周辺減光補正(S112)およびアイリス調整(S113)が挙げられる。なお、各光学補正項目の補正処理の詳細については後述する。そして、選択した光学補正項目について実施をしたら(S111~S113)、マイクロコンピュータ1cは、レンズデータの内容を参照しつつ、選択すべき全ての光学補正項目についての実施が完了したか否かを判断し(S114)、全ての光学補正項目についての実施が完了するまで上述した処理ステップを繰り返す(S110~S114)。 After the adjustment of the adjustment of the focal length and the focus position, the microcomputer 1c selects an optical correction item to be executed while referring to the contents of the lens data (S110). Examples of the optical correction items include distortion correction (S111), peripheral light reduction correction (S112), and iris adjustment (S113). Details of the correction process for each optical correction item will be described later. When the selected optical correction item is executed (S111 to S113), the microcomputer 1c determines whether or not the execution of all the optical correction items to be selected is completed while referring to the contents of the lens data. (S114) The above processing steps are repeated (S110 to S114) until the execution of all the optical correction items is completed.
 また、マイクロコンピュータ1cは、レンズデータの内容を参照しつつ、カメラ装置1またはその上位装置であるPC装置3にて出力すべき表示項目を選択する(S115)。表示項目としては、例えば、焦点距離表示(S116)、F値表示(S117)および温度表示(S118)が挙げられる。なお、各表示項目についての出力処理の詳細については後述する。そして、選択した表示項目についての出力を実施したら(S116~S118)、マイクロコンピュータ1cは、レンズデータの内容を参照しつつ、選択すべき全ての表示項目についての実施が完了したか否かを判断し(S119)、全ての表示項目についての実施が完了するまで上述した処理ステップを繰り返す(S115~S119)。 Further, the microcomputer 1c selects display items to be output by the camera device 1 or the PC device 3 which is a host device thereof with reference to the contents of the lens data (S115). Examples of display items include focal length display (S116), F value display (S117), and temperature display (S118). Details of output processing for each display item will be described later. When the output for the selected display item is executed (S116 to S118), the microcomputer 1c refers to the contents of the lens data and determines whether or not the execution for all the display items to be selected is completed. Then, the above-described processing steps are repeated until the execution of all display items is completed (S115 to S119).
 さらに、マイクロコンピュータ1cは、レンズデータの内容を参照しつつ、実施すべきシフト項目を選択する(S120)。シフト項目としては、例えば、温度シフトに対応した補正(S121)およびIRシフトに対応した補正(S122)が挙げられる。なお、各シフト項目の補正処理の詳細については後述する。そして、選択したシフト項目についての補正処理を実施したら(S121~S122)、マイクロコンピュータ1cは、レンズデータの内容を参照しつつ、選択すべき全てのシフト項目についての実施が完了したか否かを判断し(S123)、全てのシフト項目についての実施が完了するまで上述した処理ステップを繰り返す(S120~S123)。 Further, the microcomputer 1c selects a shift item to be executed while referring to the contents of the lens data (S120). Examples of the shift item include correction corresponding to the temperature shift (S121) and correction corresponding to the IR shift (S122). Details of the correction process for each shift item will be described later. When the correction process for the selected shift item is performed (S121 to S122), the microcomputer 1c refers to the contents of the lens data and determines whether or not the execution for all the shift items to be selected has been completed. Judgment is made (S123), and the above-described processing steps are repeated until implementation for all the shift items is completed (S120 to S123).
(S109:トラッキングカーブに基づくフォーカス位置の調整)
 ここで、上述した全体フローのうち、トラッキングカーブに基づくフォーカス位置の調整を行う処理ステップ(S109)について、詳しく説明する。
(S109: Adjustment of focus position based on tracking curve)
Here, the processing step (S109) for adjusting the focus position based on the tracking curve in the overall flow described above will be described in detail.
 かかる処理ステップ(S109)の実施にあたり、マイクロコンピュータ1cは、図7に示すように、先ず、ズーム調整部30を駆動するズーム駆動ユニット60のパルスモータ61の位置情報を読み込む(S201)。位置情報の読み込みは、ズームレンズ群31の位置がパルスモータ61の基準位置からのステップ数で決定されることから、そのステップ数を認識することで行えばよい。 In performing the processing step (S109), as shown in FIG. 7, the microcomputer 1c first reads position information of the pulse motor 61 of the zoom drive unit 60 that drives the zoom adjustment unit 30 (S201). Reading the position information may be performed by recognizing the number of steps since the position of the zoom lens group 31 is determined by the number of steps from the reference position of the pulse motor 61.
 そして、パルスモータ61の位置情報を認識したら、マイクロコンピュータ1cは、バリフォーカルレンズ2の物体距離を確認し、メモリ部21から取得した動作特性データの中から、使用するトラッキングカーブを選択する(S202)。 After recognizing the position information of the pulse motor 61, the microcomputer 1c confirms the object distance of the varifocal lens 2 and selects a tracking curve to be used from the operation characteristic data acquired from the memory unit 21 (S202). ).
 トラッキングカーブは、焦点距離(ズーム位置)とフォーカス位置との関係を規定するもので(図6(a)参照)、バリフォーカルレンズ2の物体距離に応じて予め複数種類のカーブがメモリ部21に格納されているものとする。 The tracking curve defines the relationship between the focal length (zoom position) and the focus position (see FIG. 6A), and a plurality of types of curves are previously stored in the memory unit 21 in accordance with the object distance of the varifocal lens 2. Assume that it is stored.
 複数種類の中からいずれか一つのトラッキングカーブを選択するキーとなる物体距離は、例えば、PC装置3のGUI(Graphical User Interface)から指定することが考えられる。ただし、必ずしもこれに限定されることはなく、例えば、ピントの合ったフォーカス位置からトラッキングカーブを参照して算出する、といった他の手法を用いて特定されるものであってもよい。 It is conceivable that the object distance as a key for selecting any one of the tracking curves from among a plurality of types is specified from the GUI (Graphical User Interface) of the PC device 3, for example. However, the present invention is not necessarily limited to this. For example, it may be specified by using another method such as calculating with reference to a tracking curve from a focused focus position.
 トラッキングカーブを選択したら、マイクロコンピュータ1cは、そのトラッキングカーブを参照しつつ、パルスモータ61の位置情報から特定されるズーム位置に対応するフォーカス位置を計算して求める(S203)。そして、求めたフォーカス位置となるようなパルス数の分だけ、フォーカス調整部40を駆動するフォーカス駆動ユニット70のパルスモータ71に動作指示を与える(S204)。 When the tracking curve is selected, the microcomputer 1c calculates and obtains the focus position corresponding to the zoom position specified from the position information of the pulse motor 61 while referring to the tracking curve (S203). Then, an operation instruction is given to the pulse motor 71 of the focus drive unit 70 that drives the focus adjustment unit 40 by the number of pulses that will be the obtained focus position (S204).
 これにより、バリフォーカルレンズ2は、ズーム(変倍)操作を行っても、自動的にフォーカス(結像)調整が行われることになる。 Thus, the varifocal lens 2 is automatically adjusted in focus (image formation) even if the zoom (magnification) operation is performed.
(S111:ディストーションカーブに基づくディストーション補正)
 次に、上述した全体フローのうち、ディストーション補正を行う処理ステップ(S111)について、詳しく説明する。ディストーション補正は、レンズ歪曲収差(すなわち、レンズによる像の歪み)を補正する処理である。
(S111: Distortion correction based on distortion curve)
Next, in the overall flow described above, the processing step (S111) for performing distortion correction will be described in detail. Distortion correction is a process for correcting lens distortion (that is, distortion of an image caused by a lens).
 かかる処理ステップ(S111)の実施に際して、マイクロコンピュータ1cは、図8に示すように、先ず、ズーム調整部30を駆動するズーム駆動ユニット60のパルスモータ61の位置情報を読み込む(S301)。そして、パルスモータ61の位置情報と、上述したフォーカス調整の場合と同様に特定される物体距離とに基づき、メモリ部21から取得した動作特性データの中から、使用するディストーションカーブを選択する(S302)。ディストーションカーブを選択するのは、ズーム位置が広角、標準または望遠であるか等によって、生じる歪曲収差の大きさが異なるからである。 In performing the processing step (S111), as shown in FIG. 8, the microcomputer 1c first reads position information of the pulse motor 61 of the zoom drive unit 60 that drives the zoom adjustment unit 30 (S301). Then, based on the position information of the pulse motor 61 and the object distance specified as in the case of the focus adjustment described above, a distortion curve to be used is selected from the operation characteristic data acquired from the memory unit 21 (S302). ). The reason why the distortion curve is selected is that the magnitude of the generated distortion varies depending on whether the zoom position is wide angle, standard or telephoto.
 図9に示すように、バリフォーカルレンズ2への入射光の角度(アングル)と、撮像素子1bの撮像面上に形成される像高(イメージハイト)とは、互いに相関がある。 As shown in FIG. 9, the angle (angle) of incident light to the varifocal lens 2 and the image height (image height) formed on the imaging surface of the imaging device 1b are correlated with each other.
 ディストーションカーブは、これら角度(アングル)データと像高(イメージハイト)データとの間の関係を規定するもので(図6(b)参照)、バリフォーカルレンズ2のズーム位置および物体距離に応じて予め複数種類のカーブがメモリ部21に格納されているものとする。 The distortion curve defines the relationship between the angle data and the image height data (see FIG. 6B), and depends on the zoom position of the varifocal lens 2 and the object distance. It is assumed that a plurality of types of curves are stored in the memory unit 21 in advance.
 ディストーションカーブを選択したら、マイクロコンピュータ1cは、そのディストーションカーブを参照しつつ、撮像素子1bの撮像面上の像高から角度データを計算し(S303)、その計算から得られた角度データを利用して補正後の像高データを得る(S304)。つまり、選択したディストーションカーブに従って座標変換をし、必要に応じて画素補間処理を行い、レンズ歪曲収差による像の歪みを修正するような補正係数を補正後の像高データとして得ることで、撮像素子1bでの撮像結果に対する画像補正処理の内容を決定する。 After selecting the distortion curve, the microcomputer 1c calculates angle data from the image height on the imaging surface of the image sensor 1b while referring to the distortion curve (S303), and uses the angle data obtained from the calculation. Thus, the corrected image height data is obtained (S304). That is, by performing coordinate transformation according to the selected distortion curve, performing pixel interpolation processing as necessary, and obtaining a correction coefficient that corrects image distortion due to lens distortion as corrected image height data, the image sensor The content of the image correction process for the imaging result in 1b is determined.
 補正後の像高データを得たら、マイクロコンピュータ1cは、その補正後の像高データ(すなわち、レンズ歪曲収差の補正データ)をPC装置3の側へ出力する(S305)。これは、マイクロコンピュータ1cの内部で撮像素子1bでの撮像結果に対するディストーション補正を行うと処理負荷が過大になるおそれがあり、マイクロコンピュータ1cに比べると処理能力に余裕があるPC装置3にて代替処理を行うようにするためである。 When the corrected image height data is obtained, the microcomputer 1c outputs the corrected image height data (that is, lens distortion aberration correction data) to the PC device 3 side (S305). This is because the processing load may be excessive if distortion correction is performed on the imaging result of the imaging device 1b inside the microcomputer 1c, and the PC device 3 having a sufficient processing capacity compared to the microcomputer 1c is used instead. This is to perform processing.
 PC装置3では、撮像素子1bでの撮像結果である画像データと、マイクロコンピュータ1cが特定したレンズ歪曲収差の補正データとを受け取ると、その補正データを利用しつつ、予め設定されている補正プログラムを実行して、撮像結果である画像データに対する画像補正処理を行って、レンズ歪曲収差による画像の歪みを修正する。そして、画像補正処理を行った後の画像データをモニタ上に表示出力する。 When the PC device 3 receives the image data that is the imaging result of the imaging device 1b and the correction data for the lens distortion specified by the microcomputer 1c, the correction program that is set in advance is used while using the correction data. Is executed, image correction processing is performed on the image data that is the imaging result, and image distortion due to lens distortion is corrected. Then, the image data after the image correction processing is displayed and output on the monitor.
 これにより、バリフォーカルレンズ2は、レンズ歪曲収差(すなわち、レンズによる像の歪み)が生じる場合であっても、そのレンズ歪曲収差による画像の歪みを修正されるので、レンズ歪曲収差が抑制されたもの(すなわち、画像全体に歪みのない画像が得られるもの)と同等に扱われることが可能になる。 Thereby, the varifocal lens 2 can correct the distortion of the image due to the lens distortion even when the lens distortion (that is, the distortion of the image due to the lens) occurs, so that the lens distortion is suppressed. It is possible to treat it as equivalent to an object (that is, an image having no distortion in the entire image).
(S112:ヴィグネッティングカーブに基づく周辺減光補正)
 次に、上述した全体フローのうち、周辺減光補正を行う処理ステップ(S112)について、詳しく説明する。レンズの周辺での明るさ(周辺光量)は、入射光の光軸に対する傾きが増加するにつれて、すなわち像高が大きくなるにつれて、減少する。周辺減光補正、レンズ周辺光量(すなわち、レンズの周辺部分における明るさ)の減少を補正する処理である。
(S112: Peripheral dimming correction based on vignetting curve)
Next, in the entire flow described above, the processing step (S112) for performing the peripheral light reduction correction will be described in detail. The brightness around the lens (peripheral light quantity) decreases as the inclination of the incident light with respect to the optical axis increases, that is, as the image height increases. This is a process for correcting the peripheral light reduction and a decrease in the amount of light around the lens (that is, the brightness in the peripheral part of the lens).
 かかる処理ステップ(S112)の実施にあたり、マイクロコンピュータ1cは、図10に示すように、先ず、ズーム調整部30を駆動するズーム駆動ユニット60のパルスモータ61の位置情報を読み込む(S401)。さらに、アイリス調整部50を駆動するアイリス駆動ユニット80のパルスモータ81の位置情報を読み込む(S402)。そして、パルスモータ61の位置情報およびパルスモータ81の位置情報に基づき、メモリ部21から取得した動作特性データの中から、使用するヴィグネッティングカーブを選択する(S403)。ヴィグネッティングカーブを選択するのは、ズーム位置や絞り等によって、レンズ周辺光量の低下の度合いが異なるからである。 In performing the processing step (S112), as shown in FIG. 10, the microcomputer 1c first reads position information of the pulse motor 61 of the zoom drive unit 60 that drives the zoom adjustment unit 30 (S401). Further, the position information of the pulse motor 81 of the iris driving unit 80 that drives the iris adjusting unit 50 is read (S402). Then, based on the position information of the pulse motor 61 and the position information of the pulse motor 81, a vignetting curve to be used is selected from the operation characteristic data acquired from the memory unit 21 (S403). The reason why the vignetting curve is selected is that the degree of decrease in the amount of light around the lens differs depending on the zoom position, the aperture, and the like.
 ヴィグネッティングカーブは、像高(イメージハイト)データと周辺光量比との間の関係を規定するもので(図6(g)参照)、バリフォーカルレンズ2のズーム位置および絞りに応じて予め複数種類のカーブがメモリ部21に格納されているものとする。 The vignetting curve defines the relationship between image height (image height) data and the peripheral light amount ratio (see FIG. 6G), and there are a plurality of types in advance according to the zoom position and aperture of the varifocal lens 2. Are stored in the memory unit 21.
 ヴィグネッティングカーブを選択したら、マイクロコンピュータ1cは、そのヴィグネッティングカーブを参照しつつ、撮像素子1bの撮像面上の像高から光量データを計算し(S404)、その計算から得られた光量データを使用して、レンズ周辺光量の減少を補う周辺減光補正を行うための補正データを得る(S405)。 After selecting the vignetting curve, the microcomputer 1c refers to the vignetting curve and calculates light amount data from the image height on the imaging surface of the image sensor 1b (S404), and the light amount data obtained from the calculation is calculated. The correction data for performing the peripheral light reduction correction to compensate for the decrease in the lens peripheral light amount is obtained (S405).
 周辺減光補正の補正データを得たら、マイクロコンピュータ1cは、その補正データをPC装置3の側へ出力する。これは、ディストーション補正の場合と同様の理由によるものである。 When the correction data for the peripheral dimming correction is obtained, the microcomputer 1c outputs the correction data to the PC device 3 side. This is for the same reason as in the case of distortion correction.
 PC装置3では、撮像素子1bでの撮像結果である画像データと、マイクロコンピュータ1cが特定した周辺減光補正の補正データとを受け取ると、その補正データを利用しつつ、予め設定されている補正プログラムを実行して、撮像結果である画像データに対する画像補正処理を行って、レンズ周辺光量による画像の明度減少を修正する。そして、画像補正処理を行った後の画像データをモニタ上に表示出力する。 When the PC device 3 receives the image data that is the imaging result of the imaging device 1b and the correction data for the peripheral light attenuation correction specified by the microcomputer 1c, the correction that is set in advance using the correction data is received. The program is executed, image correction processing is performed on the image data that is the imaging result, and the brightness reduction of the image due to the lens peripheral light amount is corrected. Then, the image data after the image correction processing is displayed and output on the monitor.
 これにより、バリフォーカルレンズ2は、レンズ周辺光量の減少が生じる場合であっても、周辺減光補正が行われて画像全体が均一な明るさに補正されるので、レンズ周辺光量の減少が抑制されたもの(すなわち、画像全体が均一な明るさの画像が得られるもの)と同等に扱われることが可能になる。 As a result, the varifocal lens 2 suppresses the decrease in the lens peripheral light amount even when the lens peripheral light amount decreases, because the peripheral light reduction correction is performed and the entire image is corrected to uniform brightness. Can be handled in the same way as the processed image (that is, the entire image can be obtained with a uniform brightness).
(S113:MTFカーブに基づくアイリス調整)
 次に、上述した全体フローのうち、MTFカーブに基づくアイリス調整を行う処理ステップ(S113)について、詳しく説明する。MTFカーブに基づくアイリス調整は、レンズの絞りを調整する処理であり、その処理には絞りの調整を通じてレンズのコントラスト伝達関数(Modulation Transfer Function)の解像度の最適化を図る処理が含まれている。
(S113: Iris adjustment based on MTF curve)
Next, the processing step (S113) for performing iris adjustment based on the MTF curve in the overall flow described above will be described in detail. The iris adjustment based on the MTF curve is a process for adjusting the aperture of the lens, and the process includes a process for optimizing the resolution of the contrast transfer function of the lens through the adjustment of the aperture.
 かかる処理ステップ(S113)の実施にあたり、マイクロコンピュータ1cは、図11に示すように、先ず、アイリス調整部50を駆動するアイリス駆動ユニット80のパルスモータ81の位置情報を読み込む(S501)。さらに、ズーム調整部30を駆動するズーム駆動ユニット60のパルスモータ61の位置情報を読み込み、パルスモータ81の位置情報およびパルスモータ61の位置情報に基づいて、メモリ部21から取得した動作特性データの中から、使用するMTFカーブを選択する(S502)。MTFカーブを選択するのは、ズーム位置等によって、適用されるMTFカーブが異なるからである。 In performing the processing step (S113), as shown in FIG. 11, the microcomputer 1c first reads position information of the pulse motor 81 of the iris drive unit 80 that drives the iris adjustment unit 50 (S501). Further, the position information of the pulse motor 61 of the zoom drive unit 60 that drives the zoom adjustment unit 30 is read, and the operation characteristic data acquired from the memory unit 21 based on the position information of the pulse motor 81 and the position information of the pulse motor 61 is read. The MTF curve to be used is selected from the inside (S502). The MTF curve is selected because the applied MTF curve differs depending on the zoom position or the like.
 MTFカーブは、レンズのF値(Fナンバー)とMTF解像度との間の関係を規定するもので(図6(d)参照)、バリフォーカルレンズ2のズーム位置等に応じて予め複数種類のカーブがメモリ部21に格納されているものとする。なお、F値とは、焦点距離とレンズに入射する有効光束の径との比で表され、レンズの明るさを示すものである。レンズのMTF解像度の最適化は、広角、標準または望遠での焦点距離で最もMTF解像度が最大解像度となるように、アイリス調整部50の絞りの位置を調整するものである。アイリス調整部50は、パルスモータ81によって絞りが制御され、パルスモータ81の基準位置からのステップ数に対するF値が規定されている。 The MTF curve defines the relationship between the F value (F number) of the lens and the MTF resolution (see FIG. 6D), and a plurality of types of curves are preliminarily set according to the zoom position of the varifocal lens 2 or the like. Are stored in the memory unit 21. The F value is represented by the ratio between the focal length and the diameter of the effective light beam incident on the lens, and indicates the brightness of the lens. The optimization of the MTF resolution of the lens is to adjust the position of the iris of the iris adjustment unit 50 so that the MTF resolution becomes the maximum resolution at the focal length at wide angle, standard, or telephoto. The iris adjustment unit 50 is controlled by the pulse motor 81, and an F value is defined for the number of steps from the reference position of the pulse motor 81.
 MTFカーブを選択したら、マイクロコンピュータ1cは、そのMTFカーブを参照しつつ、パルスモータ81の位置情報からF値を特定し、そのF値からMTF解像度を計算する(S503)。そして、その計算結果に対して、より高いMTF解像度となるようにアイリス調整部50の絞りの位置を調整すべく、パルスモータ81による移動位置を特定して、その位置に移動させることが可能である旨をカメラ装置1が有するモニタまたはPC装置3が有するモニタに表示出力させる(S504)。つまり、マイクロコンピュータ1cは、より高いMTF解像度(例えば、解像ピーク)でバリフォーカルレンズ2を使用することが可能である旨を、そのバリフォーカルレンズ2のユーザにアナウンスするのである。 When the MTF curve is selected, the microcomputer 1c refers to the MTF curve, specifies the F value from the position information of the pulse motor 81, and calculates the MTF resolution from the F value (S503). In order to adjust the iris position of the iris adjustment unit 50 so as to obtain a higher MTF resolution, the moving position by the pulse motor 81 can be specified and moved to that position. The fact is displayed on the monitor of the camera device 1 or the monitor of the PC device 3 (S504). That is, the microcomputer 1c announces to the user of the varifocal lens 2 that the varifocal lens 2 can be used at a higher MTF resolution (for example, resolution peak).
 ここで、マイクロコンピュータ1cは、カメラ装置1またはPC装置3でのユーザ操作内容に基づき、または予めの設定内容に基づき、解像度を優先すると判断した場合であれば(S505)、特定した位置に移動するようにパルスモータ81に動作指示を与えて、より高いMTF解像度となるようにアイリス調整部50の絞りの位置を調整する(S506)。 Here, if the microcomputer 1c determines that priority is given to the resolution based on the user operation content in the camera device 1 or the PC device 3 or based on the pre-set content (S505), the microcomputer 1c moves to the specified position. Thus, an operation instruction is given to the pulse motor 81, and the iris position of the iris adjustment unit 50 is adjusted so as to achieve a higher MTF resolution (S506).
 これにより、バリフォーカルレンズ2は、焦点距離(ズーム位置)に応じた最大解像度となる絞りに調整され、その焦点距離での最大解像度のF値が選定されることになるので、ズーム位置に応じてMTF解像度が最高となり解像度アップが図られて、より鮮明な画像を得ることができる。 As a result, the varifocal lens 2 is adjusted to a diaphragm having the maximum resolution according to the focal length (zoom position), and the F value of the maximum resolution at the focal length is selected. As a result, the MTF resolution becomes the highest and the resolution is increased, so that a clearer image can be obtained.
 なお、解像度を優先せずに絞り優先であると判断した場合には(S505)、マイクロコンピュータ1cは、パルスモータ81に動作指示を与えずに、絞りの位置調整を行わない。 When it is determined that the aperture is prioritized without giving priority to the resolution (S505), the microcomputer 1c does not give an operation instruction to the pulse motor 81 and does not adjust the aperture position.
 ところで、解像度を優先して選定されたF値については、さらに絞り込んだ場合に、解像度が低下してしまうが、被写界深度が深くなるといったメリットが得られるようになる。このことから、マイクロコンピュータ1cは、解像度の許容値と被写界深度とのバランスを考慮しつつ深い被写界深度を得るために設定された解像度閾値に対応するものであってもよい(S507)。具体的には、例えば、カメラ装置1またはPC装置3でのユーザ操作により解像度閾値が入力され、または予め入力された解像度閾値が存在する場合に(S508)、マイクロコンピュータ1cは、その解像度閾値以上のF値とならないように(すなわち、解像度閾値を超えないF値に対応する位置に移動するように)、パルスモータ81に動作指示を与えてアイリス調整部50の絞りの位置を調整する(S509)。 By the way, with regard to the F value selected with priority given to the resolution, when further narrowing down, the resolution is lowered, but the merit that the depth of field becomes deeper can be obtained. Therefore, the microcomputer 1c may correspond to the resolution threshold set in order to obtain a deep depth of field while considering the balance between the allowable resolution and the depth of field (S507). ). Specifically, for example, when a resolution threshold value is input by a user operation on the camera device 1 or the PC device 3 or when a pre-input resolution threshold value exists (S508), the microcomputer 1c is equal to or higher than the resolution threshold value. So that the F value of the iris adjustment unit 50 is not adjusted (that is, the position is moved to a position corresponding to the F value not exceeding the resolution threshold), and the iris position of the iris adjustment unit 50 is adjusted (S509). ).
 これにより、バリフォーカルレンズ2は、適度な解像度と深い被写界深度とを両立させることが可能となる。 Thereby, the varifocal lens 2 can achieve both an appropriate resolution and a deep depth of field.
 なお、解像度閾値の設定がなかった場合には(S508)、マイクロコンピュータ1cは、解像度を考慮せず、光量のみを調整することとなる。 If the resolution threshold is not set (S508), the microcomputer 1c adjusts only the light amount without considering the resolution.
(S116:フォーカルレングスカーブに基づく焦点距離表示)
 次に、上述した全体フローのうち、焦点距離表示についての出力処理を行う処理ステップ(S116)について、詳しく説明する。
(S116: Focal length display based on focal length curve)
Next, the processing step (S116) for performing the output processing for the focal length display in the overall flow described above will be described in detail.
 かかる処理ステップ(S116)の実施にあたり、マイクロコンピュータ1cは、図12に示すように、先ず、ズーム調整部30を駆動するズーム駆動ユニット60のパルスモータ61の位置情報を読み込む(S601)。そして、パルスモータ61の位置情報と、上述したフォーカス調整の場合と同様に特定される物体距離とに基づき、表示に使用するデータを選択する(S602)。具体的には、パルスモータ61の現在位置に関するデータ(例えば、基準位置からのステップ値のデータ)を選択する。 In performing the processing step (S116), as shown in FIG. 12, the microcomputer 1c first reads position information of the pulse motor 61 of the zoom drive unit 60 that drives the zoom adjustment unit 30 (S601). Then, based on the position information of the pulse motor 61 and the object distance specified as in the case of the focus adjustment described above, data used for display is selected (S602). Specifically, data relating to the current position of the pulse motor 61 (for example, step value data from the reference position) is selected.
 データを選択したら、マイクロコンピュータ1cは、メモリ部21から取得した動作特性データのうちのフォーカルレングスカーブを参照する。フォーカルレングスカーブは、パルスモータ61の位置情報(具体的には、基準位置からのステップ値等)とバリフォーカルレンズ2の焦点距離(フォーカルレングス)との間の関係を規定するもので(図6(c)参照)、バリフォーカルレンズ2のズーム駆動ユニット60の仕様に応じて予めメモリ部21に格納されているものとする。 When the data is selected, the microcomputer 1c refers to the focal length curve in the operation characteristic data acquired from the memory unit 21. The focal length curve defines the relationship between the position information of the pulse motor 61 (specifically, the step value from the reference position, etc.) and the focal length (focal length) of the varifocal lens 2 (FIG. 6). (See (c)), it is assumed that it is stored in advance in the memory unit 21 in accordance with the specifications of the zoom drive unit 60 of the varifocal lens 2.
 そして、マイクロコンピュータ1cは、そのフォーカルレングスカーブを参照しつつ、パルスモータ61の位置情報から特定されるズーム位置に対応する焦点距離の値を計算して求め(S603)、その焦点距離の値をカメラ装置1が有するモニタまたはPC装置3が有するモニタに表示出力させる(S604)。 The microcomputer 1c calculates and obtains a focal length value corresponding to the zoom position specified from the position information of the pulse motor 61 while referring to the focal length curve (S603), and obtains the focal length value. Display output is performed on the monitor of the camera device 1 or the monitor of the PC device 3 (S604).
 これにより、カメラ装置1またはPC装置3のモニタにおける表示出力内容を参照したユーザは、バリフォーカルレンズ2の焦点距離の値について、これを容易かつ的確に認識し得るようになる。 Thereby, the user who refers to the display output content on the monitor of the camera device 1 or the PC device 3 can easily and accurately recognize the focal length value of the varifocal lens 2.
(S117:1/Fナンバーカーブに基づくF値表示)
 次に、上述した全体フローのうち、F値表示についての出力処理を行う処理ステップ(S117)について、詳しく説明する。
(S117: F value display based on 1 / F number curve)
Next, in the overall flow described above, the processing step (S117) for performing output processing for F value display will be described in detail.
 かかる処理ステップ(S117)の実施にあたり、マイクロコンピュータ1cは、図13に示すように、先ず、アイリス調整部50を駆動するアイリス駆動ユニット80のパルスモータ81の位置情報を読み込む(S701)。そして、パルスモータ81の位置情報に基づき、表示に使用するデータを選択する(S702)。具体的には、パルスモータ81の現在位置に関するデータ(例えば、基準位置からのステップ値のデータ)を選択する。 In performing the processing step (S117), as shown in FIG. 13, the microcomputer 1c first reads position information of the pulse motor 81 of the iris drive unit 80 that drives the iris adjustment unit 50 (S701). Then, based on the position information of the pulse motor 81, data used for display is selected (S702). Specifically, data relating to the current position of the pulse motor 81 (for example, step value data from the reference position) is selected.
 データを選択したら、マイクロコンピュータ1cは、メモリ部21から取得した動作特性データのうちの1/Fナンバーカーブを参照する。1/Fナンバーカーブは、パルスモータ81の位置情報(具体的には、基準位置からのステップ値等)とバリフォーカルレンズ2のF値(Fナンバー)との間の関係を規定するもので(図6(e)参照)、バリフォーカルレンズ2のアイリス駆動ユニット80の仕様に応じて予めメモリ部21に格納されているものとする。 When the data is selected, the microcomputer 1c refers to the 1 / F number curve in the operation characteristic data acquired from the memory unit 21. The 1 / F number curve defines the relationship between the position information of the pulse motor 81 (specifically, the step value from the reference position, etc.) and the F value (F number) of the varifocal lens 2 ( It is assumed that the data is stored in the memory unit 21 in advance according to the specifications of the iris drive unit 80 of the varifocal lens 2 (see FIG. 6E).
 そして、マイクロコンピュータ1cは、その1/Fナンバーカーブを参照しつつ、パルスモータ81の位置情報に対応するF値を計算して求め(S703)、その焦点距離のF値をカメラ装置1が有するモニタまたはPC装置3が有するモニタに表示出力させる(S704)。 The microcomputer 1c calculates and obtains an F value corresponding to the position information of the pulse motor 81 while referring to the 1 / F number curve (S703), and the camera device 1 has the F value of the focal length. A display is output on the monitor or the monitor of the PC device 3 (S704).
 これにより、カメラ装置1またはPC装置3のモニタにおける表示出力内容を参照したユーザは、バリフォーカルレンズ2の絞りに関する情報であるF値について、これを容易かつ的確に認識し得るようになる。 Thereby, the user who refers to the display output content on the monitor of the camera device 1 or the PC device 3 can easily and accurately recognize the F value which is information regarding the aperture of the varifocal lens 2.
(S118:温度カーブに基づく温度表示)
 次に、上述した全体フローのうち、温度表示についての出力処理を行う処理ステップ(S118)について、詳しく説明する。
(S118: Temperature display based on temperature curve)
Next, in the overall flow described above, the processing step (S118) for performing output processing for temperature display will be described in detail.
 かかる処理ステップ(S118)の実施にあたり、マイクロコンピュータ1cは、図14に示すように、先ず、バリフォーカルレンズ2に繋がる所定回路(ただし不図示)の電圧をA/D値として読み込む(S801)。所定回路は、バリフォーカルレンズ2における温度を測定するための測定子(例えば、サーミスタ)としての機能を有する回路である。 In performing the processing step (S118), as shown in FIG. 14, the microcomputer 1c first reads the voltage of a predetermined circuit (not shown) connected to the varifocal lens 2 as an A / D value (S801). The predetermined circuit is a circuit having a function as a measuring element (for example, a thermistor) for measuring the temperature in the varifocal lens 2.
 A/D値を読み込んだら、マイクロコンピュータ1cは、メモリ部21から取得した動作特性データのうちの温度カーブを参照する。温度カーブは、所定回路のA/D値と実際の温度との関係を規定するもので(図6(f)参照)、バリフォーカルレンズ2における所定回路の仕様に応じて予めメモリ部21に格納されているものとする。 When the A / D value is read, the microcomputer 1c refers to the temperature curve in the operation characteristic data acquired from the memory unit 21. The temperature curve defines the relationship between the A / D value of the predetermined circuit and the actual temperature (see FIG. 6F), and is stored in the memory unit 21 in advance according to the specifications of the predetermined circuit in the varifocal lens 2. It is assumed that
 そして、マイクロコンピュータ1cは、その温度カーブを参照しつつ、読み込んだA/D値に対応する温度値(例えば、単位:cK)を計算して求め(S802)、必要に応じて温度値の単位変換を行った後に、その温度値(例えば、単位:℃)をカメラ装置1が有するモニタまたはPC装置3が有するモニタに表示出力させる(S803)。 The microcomputer 1c calculates and obtains a temperature value (for example, unit: cK) corresponding to the read A / D value while referring to the temperature curve (S802), and a unit of the temperature value as necessary. After the conversion, the temperature value (for example, unit: ° C.) is displayed on the monitor of the camera device 1 or the monitor of the PC device 3 (S803).
 これにより、カメラ装置1またはPC装置3のモニタにおける表示出力内容を参照したユーザは、バリフォーカルレンズ2における温度について、これを容易かつ的確に認識し得るようになる。 Thereby, the user who refers to the display output content on the monitor of the camera device 1 or the PC device 3 can easily and accurately recognize the temperature in the varifocal lens 2.
(S121:温度シフトに対応した補正)
 次に、上述した全体フローのうち、温度シフトに対応した補正を行う処理ステップ(S121)について、詳しく説明する。
(S121: Correction corresponding to temperature shift)
Next, the processing step (S121) for performing the correction corresponding to the temperature shift in the overall flow described above will be described in detail.
 かかる処理ステップ(S121)の実施にあたり、マイクロコンピュータ1cは、図15に示すように、先ず、上述した温度表示の処理ステップ(S118)の場合と同様に手法により、所定回路のA/D値を読み込んで現在の温度値を計算する(S901)。さらに、マイクロコンピュータ1cは、ズーム調整部30を駆動するズーム駆動ユニット60のパルスモータ61の位置情報を読み込む。そして、パルスモータ61の位置情報に基づき、メモリ部21から取得した動作特性データの中から、使用する温度シフトカーブを選択する(S902)。温度シフトカーブを選択するのは、ズーム位置によって、温度変化によるフォーカスシフトの大きさが異なるからである。ここでのフォーカスシフトは、温度変化に起因する部材の熱収縮や熱応力等の影響でフォーカス位置にズレが発生することをいう。 In performing the processing step (S121), as shown in FIG. 15, the microcomputer 1c first calculates the A / D value of the predetermined circuit by the same method as in the temperature display processing step (S118) described above. The current temperature value is read and calculated (S901). Further, the microcomputer 1 c reads position information of the pulse motor 61 of the zoom drive unit 60 that drives the zoom adjustment unit 30. Then, based on the position information of the pulse motor 61, a temperature shift curve to be used is selected from the operation characteristic data acquired from the memory unit 21 (S902). The reason why the temperature shift curve is selected is that the magnitude of the focus shift due to the temperature change differs depending on the zoom position. The focus shift here means that a shift occurs in the focus position due to the influence of thermal contraction or thermal stress of the member due to temperature change.
 温度シフトカーブは、発生する温度変化と温度変化に起因するフォーカスシフトの大きさとの間の関係を規定するもので(図6(h)参照)、バリフォーカルレンズ2のズーム位置に応じて予め複数種類のカーブがメモリ部21に格納されているものとする。 The temperature shift curve defines the relationship between the generated temperature change and the magnitude of the focus shift caused by the temperature change (see FIG. 6H), and a plurality of the temperature shift curves are previously set according to the zoom position of the varifocal lens 2. It is assumed that the type of curve is stored in the memory unit 21.
 温度シフトカーブを選択したら、マイクロコンピュータ1cは、その温度シフトカーブを参照しつつ、基準温度の値と現在の温度値との温度差からフォーカスシフト量(すなわち、発生したフォーカスシフトの大きさ)を計算する(S903)。そして、求めたフォーカスシフト量に対応するパルス数の分だけ、フォーカス調整部40を駆動するフォーカス駆動ユニット70のパルスモータ71に動作指示を与えることで、フォーカス位置が現在位置からフォーカスシフト量を加算した位置となるように移動させる(S904)。 After selecting the temperature shift curve, the microcomputer 1c refers to the temperature shift curve and calculates the focus shift amount (that is, the magnitude of the generated focus shift) from the temperature difference between the reference temperature value and the current temperature value. Calculate (S903). Then, by giving an operation instruction to the pulse motor 71 of the focus drive unit 70 that drives the focus adjustment unit 40 by the number of pulses corresponding to the obtained focus shift amount, the focus position adds the focus shift amount from the current position. It moves so that it may become the position (S904).
 これにより、バリフォーカルレンズ2は、温度変化に起因するフォーカスシフトが発生し得る場合であっても、これを是正するように自動的にフォーカス(結像)調整が行われることになる。 Thereby, the varifocal lens 2 is automatically adjusted in focus (imaging) so as to correct the focus shift caused by the temperature change.
(S122:IRシフトに対応した補正)
 次に、上述した全体フローのうち、IRシフトに対応した補正を行う処理ステップ(S122)について、詳しく説明する。
(S122: Correction corresponding to IR shift)
Next, the processing step (S122) for performing correction corresponding to the IR shift in the overall flow described above will be described in detail.
 かかる処理ステップ(S122)の実施にあたり、マイクロコンピュータ1cは、図16に示すように、カメラ装置1の側で備えるIR(Infrared:赤外線)ライトの波長を確認する。具体的には、例えば、波長が780nm、850nm、940nmのいずれであるかを確認する。このような波長の確認は、例えば中央制御部1dに問い合わせて行うことが考えられるが、これに限定されることはなく、例えばPC装置3からの入力に基づいて行うようにしてもよい。そして、IRライトの波長を確認したら、マイクロコンピュータ1cは、IRライトの波長に基づき、メモリ部21から取得した動作特性データの中から、使用するIRシフトカーブを選択する(S1001)。IRシフトカーブを選択するのは、IRライトの波長によって、フォーカスシフトの大きさが異なるからである。ここでのフォーカスシフトは、撮像素子1bに入射する光の波長の影響でフォーカス位置にズレが発生することをいう。 In performing the processing step (S122), the microcomputer 1c checks the wavelength of an IR (Infrared) light provided on the camera device 1 side as shown in FIG. Specifically, for example, it is confirmed whether the wavelength is 780 nm, 850 nm, or 940 nm. Such a wavelength check may be performed by inquiring, for example, the central control unit 1d, but is not limited to this, and may be performed based on an input from the PC device 3, for example. After confirming the wavelength of the IR light, the microcomputer 1c selects the IR shift curve to be used from the operating characteristic data acquired from the memory unit 21 based on the wavelength of the IR light (S1001). The reason for selecting the IR shift curve is that the magnitude of the focus shift differs depending on the wavelength of the IR light. The focus shift here means that a shift occurs in the focus position due to the influence of the wavelength of light incident on the image sensor 1b.
 IRシフトカーブは、IRライトを用いた場合にバリフォーカルレンズ2のズーム位置において発生し得るフォーカスシフトの大きさをIRライトの波長別に規定するもので(図6(j)参照)、IRライトの波長に応じて予め複数種類のカーブがメモリ部21に格納されているものとする。 The IR shift curve defines the magnitude of the focus shift that can occur at the zoom position of the varifocal lens 2 when the IR light is used for each wavelength of the IR light (see FIG. 6J). It is assumed that a plurality of types of curves are stored in advance in the memory unit 21 according to the wavelength.
 IRシフトカーブを選択したら、マイクロコンピュータ1cは、ズーム調整部30を駆動するズーム駆動ユニット60のパルスモータ61の位置情報を読み込む(S1002)。そして、選択したIRシフトカーブを参照しつつ、パルスモータ61の位置情報から特定されるズーム位置に対応するフォーカスシフト値(すなわち、そのズーム位置において発生し得るフォーカスシフトの大きさ)を計算して求める(S1003)。そして、求めたフォーカスシフト量に対応するパルス数の分だけ、フォーカス調整部40を駆動するフォーカス駆動ユニット70のパルスモータ71に動作指示を与えることで、フォーカス位置が現在位置からフォーカスシフト量を加算した位置となるように移動させる(S1004)。 When the IR shift curve is selected, the microcomputer 1c reads position information of the pulse motor 61 of the zoom drive unit 60 that drives the zoom adjustment unit 30 (S1002). Then, referring to the selected IR shift curve, the focus shift value corresponding to the zoom position specified from the position information of the pulse motor 61 (that is, the magnitude of the focus shift that can occur at the zoom position) is calculated. Obtain (S1003). Then, by giving an operation instruction to the pulse motor 71 of the focus drive unit 70 that drives the focus adjustment unit 40 by the number of pulses corresponding to the obtained focus shift amount, the focus position adds the focus shift amount from the current position. It moves so that it may become the set position (S1004).
 これにより、バリフォーカルレンズ2は、カメラ装置1が備えるIRライトを用いた場合にフォーカスシフトが発生し得る場合であっても、これを是正するように自動的にフォーカス(結像)調整が行われることになる。 As a result, the varifocal lens 2 automatically performs focus (image formation) adjustment so as to correct even when a focus shift may occur when the IR light included in the camera device 1 is used. Will be.
(S104:ガラス厚フランジバックシフトカーブに基づくフランジバックシフト補正)
 次に、上述した全体フローのうち、フランジバック(FB)シフト補正を行う処理ステップ(S104)について、詳しく説明する。
(S104: Flange backshift correction based on glass thickness flange backshift curve)
Next, in the overall flow described above, the processing step (S104) for performing flange back (FB) shift correction will be described in detail.
 カメラ装置1によっては、レンズマウント1aから撮像素子1bまでの光路構成が異なるものがある。具体的には、光路が何もない空間によって構成されたもの(IN AIR)や、光路上に板状ガラス材が介在するもの等がある。また、ガラス材についても、板厚が相違する場合がある。そのため、カメラ装置1の光路構成によっては、FBシフトが生じてしまうおそれがある。 Some camera devices 1 have different optical path configurations from the lens mount 1a to the image sensor 1b. Specifically, there are a structure constituted by a space having no optical path (IN AIR) and a structure in which a sheet glass material is interposed on the optical path. Also, the glass material may have a different thickness. Therefore, an FB shift may occur depending on the optical path configuration of the camera device 1.
 FBシフト補正は、このようなFBシフトを補正する処理である。 FB shift correction is a process for correcting such FB shift.
 かかる処理ステップ(S104)の実施にあたり、マイクロコンピュータ1cは、図17に示すように、先ず、カメラ装置1がレンズマウント1aから撮像素子1bまでの光路上に備える板状ガラス材のトータルのガラス厚を確認する(S1101)。この確認は、例えば中央制御部1dに問い合わせて行うことが考えられるが、これに限定されることはなく、例えばPC装置3からの入力に基づいて行うようにしてもよい。 In carrying out this processing step (S104), the microcomputer 1c, as shown in FIG. 17, first, the total glass thickness of the plate-like glass material provided on the optical path from the lens mount 1a to the image sensor 1b by the camera device 1. Is confirmed (S1101). For example, the confirmation may be performed by inquiring of the central control unit 1d, but is not limited thereto, and may be performed based on an input from the PC device 3, for example.
 トータルのガラス厚を確認したら、マイクロコンピュータ1cは、メモリ部21から取得した動作特性データのうちのガラス厚FBシフトカーブを参照する。ガラス厚FBシフトカーブは、光路上におけるトータルのガラス厚とFBシフト量との関係を規定するもので(図6(i)参照)、予めメモリ部21に格納されているものとする。 After confirming the total glass thickness, the microcomputer 1c refers to the glass thickness FB shift curve in the operation characteristic data acquired from the memory unit 21. The glass thickness FB shift curve defines the relationship between the total glass thickness on the optical path and the FB shift amount (see FIG. 6 (i)), and is stored in the memory unit 21 in advance.
 そして、マイクロコンピュータ1cは、そのガラス厚FBシフトカーブを参照しつつ、カメラ装置1が使用しているトータルのガラス厚からFBシフト量を計算して求める(S1102)。FBシフト量を求めたら、マイクロコンピュータ1cは、IN AIRの場合におけるFB位置に、求めたFBシフト量の分だけ加算した位置となるように、撮像素子1bのセンサ位置(撮像面の位置)を移動させる(S1103)。 The microcomputer 1c calculates the FB shift amount from the total glass thickness used by the camera device 1 while referring to the glass thickness FB shift curve (S1102). After obtaining the FB shift amount, the microcomputer 1c sets the sensor position of the image pickup device 1b (position of the image pickup surface) so that the FB position in the case of IN AIR is added by the calculated FB shift amount. Move (S1103).
 これにより、カメラ装置1の光路構成がどのようなものであっても、FBシフトが生じてしまうことがなく、レンズマウント1aに装着されるバリフォーカルレンズ2の性能を十分に発揮させ得るようになる。 Thereby, no matter what the optical path configuration of the camera device 1 is, the FB shift does not occur, and the performance of the varifocal lens 2 attached to the lens mount 1a can be sufficiently exhibited. Become.
(プログラムアップデート)
 以上に説明した動作制御処理は、マイクロコンピュータ1cが所定のプログラムを実行することにより行われる。動作制御処理のために必要となるプログラムは、マイクロコンピュータ1cにインストールされて用いられる。なお、ここでいう「マイクロコンピュータ1cにインストール」とは、マイクロコンピュータ1c自体にインストールされた場合に加えて、カメラ装置1内においてマイクロコンピュータ1cがアクセス可能ないずれかの箇所にインストールされた場合をも含む。
(Program update)
The operation control process described above is performed by the microcomputer 1c executing a predetermined program. A program necessary for the operation control process is used by being installed in the microcomputer 1c. The term “installed in the microcomputer 1c” as used herein refers to a case in which the microcomputer 1c is installed in any location accessible to the microcomputer 1c in addition to being installed in the microcomputer 1c itself. Including.
 インストールされるプログラムは、必要に応じてアップデートに対応することを可能にする機能を有しているものとする。具体的には、図18に示すように、カメラ装置1において、例えば、PC装置3からの指示に従い、マイクロコンピュータ1cは、中央制御部1dのインタフェース部1eを通じて所定のサーバ装置(ただし不図示)にアクセスし、そのサーバ装置から最新のプログラムをダウンロードする(S1201)。そして、ダウンロードしたプログラムバージョンを、カメラ装置1の側にインストール済みのプログラムバージョンと比較し、ダウンロードしたプログラムバージョンが最新のものであるか否かを確認する(S1202)。その結果、ダウンロードしたプログラムバージョンが最新のもの(すなわち、インストール済みのプログラムバージョンとは異なるもの)であれば(S1203)、インストール済みのプログラムをダウンロードしたプログラムに置き換えるプログラムアップデートを実行し(S1204)、正常にアップデートが終了したことを確認したら(S1205)、上述した一連のプログラムアップデートの処理を終了する。 Suppose that the installed program has a function that makes it possible to support updates as necessary. Specifically, as shown in FIG. 18, in the camera device 1, for example, in accordance with an instruction from the PC device 3, the microcomputer 1 c performs a predetermined server device (not shown) through the interface unit 1 e of the central control unit 1 d. And the latest program is downloaded from the server device (S1201). Then, the downloaded program version is compared with the program version already installed on the camera device 1 side, and it is confirmed whether or not the downloaded program version is the latest (S1202). As a result, if the downloaded program version is the latest (that is, different from the installed program version) (S1203), a program update for replacing the installed program with the downloaded program is executed (S1204), If it is confirmed that the update has been normally completed (S1205), the above-described series of program update processing is ended.
 これにより、マイクロコンピュータ1cが実行するプログラムは、更新、修正、仕様変更等にも容易かつ適切に対応し得るようになる。 As a result, the program executed by the microcomputer 1c can easily and appropriately cope with updates, corrections, specification changes, and the like.
(各処理ステップの必須度)
 以上に、トラッキングカーブに基づくフォーカス位置の調整(S109)、ディストーションカーブに基づくディストーション補正(S111)、ヴィグネッティングカーブに基づく周辺減光補正(S112)、MTFカーブに基づくアイリス調整(S113)、フォーカルレングスカーブに基づく焦点距離表示(S116)、1/Fナンバーカーブに基づくF値表示(S117)、温度カーブに基づく温度表示(S118)、温度シフトに対応した補正(S121)、IRシフトに対応した補正(S122)、および、ガラス厚FBシフトカーブに基づくFBシフト補正(S104)の各処理ステップ、並びに、プログラムアップデートについて、詳しく説明した。
(Necessity of each processing step)
The focus position adjustment based on the tracking curve (S109), the distortion correction based on the distortion curve (S111), the peripheral light attenuation correction based on the vignetting curve (S112), the iris adjustment based on the MTF curve (S113), and the focal length. Focal length display based on curve (S116), F value display based on 1 / F number curve (S117), Temperature display based on temperature curve (S118), Correction corresponding to temperature shift (S121), Correction corresponding to IR shift Each processing step and program update of (S122) and FB shift correction (S104) based on the glass thickness FB shift curve have been described in detail.
 マイクロコンピュータ1cは、これらの各処理ステップおよびプログラムアップデートの全てを行うものであることが望ましいが、必ずしもこれに限定されることはなく、これらの一部を選択的に行うものであってもよい。全てを行う場合には、バリフォーカルレンズ2の性能を十分に発揮させる上で非常に好適なものとなる。一方、選択的に行う場合には、カメラ装置1の側の負荷(特に、マイクロコンピュータ1cの処理負荷)の軽減が図れる。 The microcomputer 1c desirably performs all of these processing steps and program updates, but is not necessarily limited to this, and may selectively perform some of these. . In the case of performing all of them, the varifocal lens 2 is very suitable for fully exhibiting the performance. On the other hand, when selectively performing, the load on the camera device 1 side (particularly, the processing load on the microcomputer 1c) can be reduced.
 具体的には、以下のようにすることが考えられる。例えば、各処理ステップのうちのフォーカス位置調整(S109)、ディストーション補正(S111)、周辺減光補正(S112)、温度シフトに対応した補正(S121)およびIRシフトに対応した補正(S122)と、プログラムアップデートとについては、重要度の高い必須処理項目とする。そして、これら以外のアイリス調整(S113)、焦点距離表示(S116)、F値表示(S117)、温度表示(S118)およびFBシフト補正(S104)については、上述の必須処理項目に比べると重要度を低く設定し、例えば、必要に応じて実行する選択的処理項目とする。 Specifically, the following can be considered. For example, focus position adjustment (S109), distortion correction (S111), peripheral light reduction correction (S112), correction corresponding to temperature shift (S121), and correction corresponding to IR shift (S122) in each processing step, About program update, it is an essential process item with high importance. Further, the iris adjustment (S113), focal length display (S116), F value display (S117), temperature display (S118), and FB shift correction (S104) other than these are more important than the above-mentioned essential processing items. Is set low, for example, as a selective processing item to be executed as necessary.
 なお、ここで挙げた各処理ステップの必須度は、単なる一例に過ぎず、これに限定されるものではない。また、各処理ステップの必須度は、固定的なものである必要はなく、例えばプログラムアップデートを通じて適宜修正し得るものであってもよい。 In addition, the essentiality of each processing step mentioned here is only an example, and is not limited to this. Further, the degree of necessity of each processing step does not have to be fixed, and may be appropriately corrected through program update, for example.
(4)レンズ制御装置の機能構成
 次に、上述した動作制御処理を実行するマイクロコンピュータ1c(すなわち、本実施形態に係るレンズ制御装置の一具体例)について、その機能構成を詳しく説明する。
(4) Functional Configuration of Lens Control Device Next, the functional configuration of the microcomputer 1c that executes the above-described operation control process (that is, a specific example of the lens control device according to the present embodiment) will be described in detail.
(機能構成)
 カメラ装置1においてレンズ制御装置として機能するマイクロコンピュータ(以下、このマイクロコンピュータのことを「レンズ制御装置」ともいう。)1cは、所定のプログラムを実行することにより、上述した一連の動作制御処理を実行する。このことは、本実施形態におけるレンズ制御装置1cが、以下のような機能構成を備えていることを意味する。
(Functional configuration)
A microcomputer (hereinafter, this microcomputer is also referred to as a “lens control device”) 1c that functions as a lens control device in the camera device 1 executes the above-described series of operation control processes by executing a predetermined program. Execute. This means that the lens control device 1c in the present embodiment has the following functional configuration.
 すなわち、レンズ制御装置1cは、図19に示すように、レンズ確認手段91、ズーム制御手段92、フォーカス制御手段93、アイリス制御手段94、画像補正制御手段95、情報出力手段96、フランジバック(FB)シフト補正手段97およびアップデート制御手段98としての機能を備えている。 That is, as shown in FIG. 19, the lens control device 1c includes a lens confirmation unit 91, a zoom control unit 92, a focus control unit 93, an iris control unit 94, an image correction control unit 95, an information output unit 96, a flange back (FB). ) Functions as shift correction means 97 and update control means 98 are provided.
 レンズ確認手段91は、メモリ部21から取得したレンズデータに基づき、レンズマウント1aに装着されたレンズ装置2の種類を判別する機能である。具体的には、レンズ確認手段91は、レンズデータを参照しつつ、装着されたレンズ装置2がどのような機能を備えているか(例えば、ズーム調整、フォーカス調整、アイリス調整等の各機能への対応の有無)を認識することで、レンズ装置の種類を判別する(図5のS103参照)。 The lens confirmation means 91 is a function for discriminating the type of the lens device 2 attached to the lens mount 1 a based on the lens data acquired from the memory unit 21. Specifically, the lens confirmation unit 91 refers to the lens data and what functions the mounted lens apparatus 2 has (for example, zoom adjustment, focus adjustment, iris adjustment, etc.) The type of lens device is determined by recognizing the presence or absence of correspondence (see S103 in FIG. 5).
 ズーム制御手段92は、レンズマウント1aに装着されたレンズ装置2が備えるズーム調整部30を制御する機能である。具体的には、ズーム制御手段92は、PC装置3から指示された焦点距離となるように、ズーム調整部30を駆動するズーム駆動ユニット60のパルスモータ61に動作指示を与える(図5のS107参照)。 The zoom control means 92 is a function for controlling the zoom adjustment unit 30 provided in the lens device 2 mounted on the lens mount 1a. Specifically, the zoom control unit 92 gives an operation instruction to the pulse motor 61 of the zoom drive unit 60 that drives the zoom adjustment unit 30 so that the focal length is instructed from the PC device 3 (S107 in FIG. 5). reference).
 フォーカス制御手段93は、レンズマウント1aに装着されたレンズ装置2が備えるフォーカス調整部40を制御する機能である。具体的には、フォーカス制御手段93は、メモリ部21から取得したトラッキングカーブを参照しつつ、ズーム調整部30が調整した焦点距離に応じたフォーカス位置となるように、フォーカス調整部40を駆動するフォーカス駆動ユニット70のパルスモータ71に動作指示を与える(図5のS109参照)。また、フォーカス制御手段93は、メモリ部21から取得した温度シフトカーブを参照しつつ、温度変化に起因するフォーカスシフト量を補正する処理を行う(図5のS121参照)。また、フォーカス制御手段93は、メモリ部21から取得したIRシフトカーブ(波長シフトカーブ)を参照しつつ、カメラ装置1が有する光源からの照射光の波長に起因するフォーカスシフト量を補正する処理を行う(図5のS122参照)。 The focus control means 93 is a function for controlling the focus adjustment unit 40 provided in the lens device 2 mounted on the lens mount 1a. Specifically, the focus control unit 93 drives the focus adjustment unit 40 so that the focus position corresponds to the focal length adjusted by the zoom adjustment unit 30 while referring to the tracking curve acquired from the memory unit 21. An operation instruction is given to the pulse motor 71 of the focus drive unit 70 (see S109 in FIG. 5). Further, the focus control means 93 performs a process of correcting the focus shift amount caused by the temperature change while referring to the temperature shift curve acquired from the memory unit 21 (see S121 in FIG. 5). Further, the focus control unit 93 performs a process of correcting the focus shift amount caused by the wavelength of the irradiation light from the light source of the camera device 1 while referring to the IR shift curve (wavelength shift curve) acquired from the memory unit 21. This is performed (see S122 in FIG. 5).
 アイリス制御手段94は、レンズマウント1aに装着されたレンズ装置2が備えるアイリス調整部50を制御する機能である。具体的には、アイリス制御手段94は、メモリ部21から取得したMTFカーブを参照しつつ、ズーム調整部30が調整した焦点距離に応じて、その焦点距離における最大解像度の絞りとなるように、アイリス調整部50を駆動するアイリス駆動ユニット80のパルスモータ81に動作指示を与える(図5のS113参照)。さらに、アイリス制御手段94は、解像度閾値が設定されていれば、その解像度閾値を超えないF値に対応した絞りとなるように、アイリス調整部50を駆動するアイリス駆動ユニット80のパルスモータ81に動作指示を与える(図5のS113参照)。 The iris control means 94 has a function of controlling the iris adjustment unit 50 provided in the lens device 2 mounted on the lens mount 1a. Specifically, the iris control means 94 refers to the MTF curve acquired from the memory unit 21, and according to the focal length adjusted by the zoom adjusting unit 30, the iris control unit 94 has a maximum resolution at that focal length. An operation instruction is given to the pulse motor 81 of the iris driving unit 80 that drives the iris adjusting unit 50 (see S113 in FIG. 5). Furthermore, if a resolution threshold value is set, the iris control means 94 applies to the pulse motor 81 of the iris drive unit 80 that drives the iris adjustment unit 50 so that the diaphragm corresponds to the F value that does not exceed the resolution threshold value. An operation instruction is given (see S113 in FIG. 5).
 なお、アイリス制御手段94は、MTF補正の他に、いわゆるビデオアイリス、DCアイリス、Pアイリス等といった、オートアイリスに対応した絞り制御を行う機能を有したものであってもよい。 The iris control means 94 may have a function of performing aperture control corresponding to auto iris such as so-called video iris, DC iris, P iris, etc. in addition to MTF correction.
 画像補正制御手段95は、レンズマウント1aに装着されたレンズ装置2が備える撮像素子1bでの撮像結果に対する制御を行う機能である。具体的には、画像補正制御手段95は、メモリ部21から取得した特性データを参照しつつ、ズーム調整部30が調整した焦点距離またはアイリス調整部50が調整した絞りの少なくとも一方に基づき、撮像素子1bでの撮像結果に対する画像補正処理の内容を決定する。さらに詳しくは、画像補正制御手段95は、メモリ部21から取得したディストーションカーブを参照しつつ、レンズ装置2の焦点距離でのレンズ歪曲収差を補正する画像補正処理を、撮像結果に対する画像補正処理の内容として決定する(図5のS111参照)。また、画像補正制御手段95は、メモリ部21から取得したヴィグネッティングカーブを参照しつつ、レンズ装置2の絞りでの周辺減光補正を行う画像補正処理を、撮像結果に対する画像補正処理の内容として決定する(図5のS112参照)。 The image correction control means 95 is a function for controlling the imaging result of the imaging device 1b provided in the lens device 2 mounted on the lens mount 1a. Specifically, the image correction control unit 95 refers to the characteristic data acquired from the memory unit 21 and performs imaging based on at least one of the focal length adjusted by the zoom adjustment unit 30 or the diaphragm adjusted by the iris adjustment unit 50. The content of the image correction process for the imaging result of the element 1b is determined. More specifically, the image correction control means 95 performs image correction processing for correcting lens distortion aberration at the focal length of the lens apparatus 2 while referring to the distortion curve acquired from the memory unit 21 as image correction processing for the imaging result. The content is determined (see S111 in FIG. 5). Further, the image correction control unit 95 refers to the vignetting curve acquired from the memory unit 21 and performs image correction processing for performing peripheral light attenuation correction at the aperture of the lens device 2 as the content of the image correction processing for the imaging result. Determine (see S112 in FIG. 5).
 情報出力手段96は、レンズマウント1aに装着されたレンズ装置2の状態に関する情報について、その情報を報知するための情報出力を行う機能である。具体的には、情報出力手段96は、メモリ部21から取得したフォーカルレングスカーブを参照しつつ、レンズ装置2の焦点距離に関する情報として、その焦点距離の値を特定し、特定した焦点距離の値を報知するための情報出力を行う(図5のS116参照)。また、情報出力手段96は、メモリ部21から取得した1/Fナンバーカーブを参照しつつ、レンズ装置2の絞りに関する情報としてF値を特定し、そのF値を報知するための情報出力を行う(図5のS117参照)。また、情報出力手段96は、メモリ部21から取得した温度カーブを参照しつつ、レンズ装置2における温度に関する情報として温度値を特定し、その温度値を報知するための情報出力を行う(図5のS118参照)。 The information output means 96 is a function of outputting information for notifying information on the state of the lens device 2 attached to the lens mount 1a. Specifically, the information output unit 96 refers to the focal length curve acquired from the memory unit 21 and specifies the value of the focal length as information on the focal length of the lens device 2, and specifies the specified focal length value. Is output (see S116 in FIG. 5). Further, the information output means 96 specifies an F value as information related to the aperture of the lens device 2 while referring to the 1 / F number curve acquired from the memory unit 21, and outputs information for notifying the F value. (See S117 in FIG. 5). Further, the information output means 96 specifies a temperature value as information related to the temperature in the lens device 2 while referring to the temperature curve acquired from the memory unit 21, and outputs information for notifying the temperature value (FIG. 5). S118).
 FBシフト補正手段97は、FBシフトの補正を制御する機能である。具体的には、FBシフト補正手段97は、メモリ部21から取得したガラス厚FBシフトカーブを参照しつつ、カメラ装置1の撮像素子1bまでの光路構成に応じたFBシフト補正シフト量を補正する(図5のS104参照)。 The FB shift correction means 97 is a function for controlling the correction of the FB shift. Specifically, the FB shift correction unit 97 corrects the FB shift correction shift amount according to the optical path configuration to the imaging device 1b of the camera device 1 while referring to the glass thickness FB shift curve acquired from the memory unit 21. (See S104 in FIG. 5).
 アップデート制御手段98は、レンズ制御装置1cとしての機能を実現するプログラムについて、そのプログラムのアップデート処理を制御する機能である。具体的には、アップデート制御手段98は、必要に応じてプログラムを最新のものにアップデートして、そのプログラムの更新、修正、仕様変更等に対応し得るようにする(図18のS1201~S1205参照)。 The update control means 98 is a function for controlling update processing of a program that realizes the function as the lens control device 1c. Specifically, the update control means 98 updates the program to the latest one as necessary so that the program can be updated, modified, changed in specification, etc. (see S1201 to S1205 in FIG. 18). ).
(プログラム)
 上述した機能構成のレンズ制御装置1cは、演算部や記憶部等の機能を有するハードウエア資源としてのマイクロコンピュータが、上述した各手段91~98を実現するソフトウエアであるプログラムを実行することにより実現される。つまり、レンズ制御装置1cは、プログラム(ソフトウエア)とハードウエア資源とが協働して、上述した一連の動作制御処理を実行する。
(program)
In the lens control device 1c having the above-described functional configuration, a microcomputer as a hardware resource having functions such as a calculation unit and a storage unit executes a program that is software that implements the above-described units 91 to 98. Realized. That is, the lens control device 1c executes the above-described series of operation control processes in cooperation with a program (software) and hardware resources.
 その場合に、プログラムは、マイクロコンピュータ1cがアクセス可能なようにカメラ装置1にインストールされるものであれば、カメラ装置1の側で読み取り可能な記録媒体(例えば、メモリカード、半導体メモリ等)に格納されて提供されるものであってもよいし、インターネットや専用回線等のネットワークを通じて外部からインタフェース部1eを通じて提供されるものであってもよい。 In this case, if the program is installed in the camera apparatus 1 so that the microcomputer 1c can access it, the program is stored in a recording medium (for example, a memory card, a semiconductor memory, etc.) that can be read by the camera apparatus 1 side. It may be stored and provided, or may be provided from the outside through the interface unit 1e through a network such as the Internet or a dedicated line.
(5)本実施形態により得られる効果
 本実施形態によれば、以下に示す1つまたは複数の効果が得られる。
(5) Effects obtained by the present embodiment According to the present embodiment, one or more effects shown below can be obtained.
(a)本実施形態によれば、レンズ装置2が装着されるカメラ装置1にインストールされたプログラムによって、そのカメラ装置1におけるマイクロコンピュータ1cが、少なくとも、ズーム制御手段92、フォーカス制御手段93、アイリス制御手段94および画像補正制御手段95としての機能を備えることになる。つまり、これらの各手段92~95が一つにパッケージングされた状態でカメラ装置1の側に提供され、そのカメラ装置1において実現される。そのため、レンズ装置2におけるズーム調整部30、フォーカス調整部40およびアイリス調整部50は、一つにパッケージングされて提供される各手段92~95によって、制御する側とされる側の主たる機能に過不足が生じることなく、各調整部30,40,50の機能や制御手順等に応じて(すなわち、レンズ装置2の仕様に適切に対応しつつ)制御される。これにより、カメラ装置1の側は、レンズ装置2が有する性能を十分に引き出すことが実現可能となる。 (A) According to the present embodiment, the microcomputer 1c in the camera device 1 at least causes the zoom control unit 92, the focus control unit 93, and the iris by the program installed in the camera device 1 to which the lens device 2 is mounted. Functions as the control means 94 and the image correction control means 95 are provided. That is, each of these means 92 to 95 is provided on the camera device 1 side in a packaged state, and is realized in the camera device 1. Therefore, the zoom adjustment unit 30, the focus adjustment unit 40, and the iris adjustment unit 50 in the lens device 2 have the main functions on the side to be controlled by the respective means 92 to 95 that are packaged and provided as one unit. Control is performed according to the function, control procedure, and the like of each of the adjustment units 30, 40, and 50 (that is, appropriately corresponding to the specifications of the lens device 2) without causing excess or deficiency. Thereby, the camera device 1 side can realize the performance of the lens device 2 sufficiently.
 しかも、本実施形態によれば、カメラ装置1におけるズーム制御手段92、フォーカス制御手段93、アイリス制御手段94および画像補正制御手段95としての機能が、PC装置3からの指示に従い、または、レンズ装置2のメモリ部21から取得した特性データを参照しつつ、レンズ装置2に対する動作制御を行う。このように、レンズ装置2に対する動作制御は、主としてカメラ装置1の側で司るとともに、そのレンズ装置2のメモリ部21から取得した特性データを参照しつつ行う。そのため、例えばレンズ交換があっても、交換後のレンズ装置2が特性データをメモリ部21に記録する構成のものであれば、そのレンズ装置2に対する動作制御が行えなくなることがなく、レンズ装置2とこれが装着されるカメラ装置1との組み合わせの汎用性が損なわれてしまうのを抑制することができる。 In addition, according to the present embodiment, the functions of the zoom control unit 92, the focus control unit 93, the iris control unit 94, and the image correction control unit 95 in the camera device 1 follow the instructions from the PC device 3 or the lens device. The operation of the lens device 2 is controlled while referring to the characteristic data acquired from the second memory unit 21. As described above, the operation control for the lens device 2 is mainly performed on the camera device 1 side, and is performed while referring to the characteristic data acquired from the memory unit 21 of the lens device 2. Therefore, for example, even if the lens is replaced, if the lens device 2 after the replacement has a configuration in which the characteristic data is recorded in the memory unit 21, the operation control on the lens device 2 cannot be performed. And the versatility of the combination with the camera device 1 to which it is attached can be prevented from being impaired.
 つまり、本実施形態によれば、レンズ装置2とこれが装着されるカメラ装置1との組み合わせの汎用性が損なわれてしまうのを抑制しつつ、レンズ装置2が有する性能を十分に引き出すことが実現可能となる。 That is, according to the present embodiment, it is possible to sufficiently extract the performance of the lens device 2 while suppressing the versatility of the combination of the lens device 2 and the camera device 1 to which the lens device 2 is mounted. It becomes possible.
(b)本実施形態によれば、レンズ装置2のメモリ部21から取得したレンズデータに基づき、カメラ装置1におけるレンズ確認手段91としての機能が、レンズマウント1aに装着されたレンズ装置2の種類を判別する。そのため、カメラ装置1の側では、レンズマウント1aにどのような種類のレンズ装置2が装着された場合であっても、そのレンズ装置2が備える機能(例えば、ズーム調整、フォーカス調整、アイリス調整等の各機能)に適切に対応しつつ、そのレンズ装置2に対する動作制御を行えるようになる。この点によっても、レンズ装置2とこれが装着されるカメラ装置1との組み合わせの汎用性が損なわれてしまうのを抑制しつつ、レンズ装置2が有する性能を十分に引き出すことが実現可能となる。 (B) According to the present embodiment, based on the lens data acquired from the memory unit 21 of the lens device 2, the function as the lens confirmation unit 91 in the camera device 1 is the type of the lens device 2 attached to the lens mount 1a. Is determined. For this reason, on the camera device 1 side, functions (for example, zoom adjustment, focus adjustment, iris adjustment, etc.) provided to the lens device 2 regardless of what type of lens device 2 is mounted on the lens mount 1a. It is possible to control the operation of the lens device 2 while appropriately responding to each function. Also in this respect, it is possible to realize sufficiently the performance of the lens device 2 while suppressing the versatility of the combination of the lens device 2 and the camera device 1 to which the lens device 2 is mounted.
(c)本実施形態によれば、トラッキングカーブを参照しつつフォーカス制御手段93がフォーカス位置の調整を行うので、例えば、カメラ装置1にバリフォーカルレンズ(すなわち、ズーム位置の調整に伴ってフォーカス位置が変動する構成のレンズ)2が装着される場合であっても、ズーム位置に応じたフォーカス位置に合わせることができる。つまり、本実施形態によれば、バリフォーカルレンズ2のフォーカス位置に関して、そのバリフォーカルレンズ2が有する性能を十分に引き出すことが実現可能となる。 (C) According to the present embodiment, the focus control unit 93 adjusts the focus position while referring to the tracking curve. Therefore, for example, the camera apparatus 1 has a varifocal lens (that is, the focus position according to the zoom position adjustment). Even when a lens 2 having a configuration in which the angle fluctuates is mounted, the focus position can be adjusted according to the zoom position. That is, according to the present embodiment, it is possible to realize sufficiently the performance of the varifocal lens 2 with respect to the focus position of the varifocal lens 2.
(d)本実施形態によれば、フォーカス制御手段93が、温度シフトカーブに基づきフォーカスシフト量を補正する処理と、波長シフトカーブに基づきフォーカスシフト量を補正する処理と、の少なくとも一方を行う。そのため、温度変化に起因するフォーカス位置の変動やカメラ装置1の光源からの照射光の波長に起因するフォーカス位置の変動等についても、適切に対応しつつフォーカス位置に合わせることができる。 (D) According to the present embodiment, the focus control unit 93 performs at least one of processing for correcting the focus shift amount based on the temperature shift curve and processing for correcting the focus shift amount based on the wavelength shift curve. For this reason, it is possible to adjust the focus position to the focus position while appropriately dealing with the fluctuation of the focus position due to the temperature change and the fluctuation of the focus position due to the wavelength of the irradiation light from the light source of the camera device 1.
(e)本実施形態によれば、MTFカーブを参照しつつ、ズーム位置における最大解像度となる絞り位置を決定した上で、アイリス制御手段94が絞り位置の調整を行う。そのため、そのズーム位置において最大解像度となる絞り位置に合わせることができ、レンズ装置2の絞り位置に関して、そのレンズ装置2が有する性能を十分に引き出すことが実現可能となる。しかも、本実施形態によれば、解像度閾値が設定されている場合に、その解像度閾値を超えないF値となるように、アイリス制御手段94が絞り位置の調整を行うので、適度な解像度と深い被写界深度とを両立させることが可能となる。 (E) According to this embodiment, the iris control means 94 adjusts the aperture position after determining the aperture position that provides the maximum resolution at the zoom position while referring to the MTF curve. Therefore, it is possible to match the aperture position that provides the maximum resolution at the zoom position, and it is possible to realize the performance of the lens device 2 sufficiently with respect to the aperture position of the lens device 2. Moreover, according to the present embodiment, when the resolution threshold is set, the iris control means 94 adjusts the aperture position so that the F value does not exceed the resolution threshold. It becomes possible to achieve both the depth of field.
(f)本実施形態によれば、撮像素子1bでの撮像結果に対する画像補正処理の内容として、ディストーションカーブに基づきズーム位置でのレンズ歪曲収差を補正する画像補正処理と、ヴィグネッティングカーブに基づき絞り位置での周辺減光補正を行う画像補正処理と、の少なくとも一方を画像補正制御手段95が決定する。そのため、例えばレンズ装置2のレンズ特性によりレンズ歪曲収差またはレンズ周辺光量低下が生じる場合であっても、その影響を排除する補正処理を行うことができる。つまり、レンズ装置2のレンズ特性による影響に関して、そのレンズ装置2が有する性能を十分に引き出すことが実現可能となる。 (F) According to the present embodiment, as the content of the image correction process for the imaging result of the image sensor 1b, the image correction process for correcting the lens distortion at the zoom position based on the distortion curve, and the aperture based on the vignetting curve The image correction control means 95 determines at least one of image correction processing for performing peripheral light attenuation correction at the position. Therefore, for example, even when the lens distortion of the lens device 2 causes a lens distortion or a reduction in the amount of light around the lens, a correction process can be performed to eliminate the influence. In other words, it is possible to realize the performance of the lens device 2 sufficiently with respect to the influence of the lens characteristics of the lens device 2.
(g)本実施形態によれば、ズーム位置に関する情報または絞り位置に関する情報の少なくとも一方について、その情報を報知するための情報出力を情報出力手段96が行う。そのため、情報出力手段96による情報出力の結果を、例えばカメラ装置1またはPC装置3に表示出力させれば、その表示出力の内容を参照することで、レンズ装置2におけるズーム位置や絞り位置等の状態を容易かつ的確に認識し得るようになり、その結果としてレンズ装置2またはカメラ装置1の利用者にとっての利便性を向上させることができる。 (G) According to the present embodiment, the information output means 96 performs information output for notifying at least one of the information regarding the zoom position and the information regarding the aperture position. Therefore, if the information output result by the information output means 96 is displayed on, for example, the camera device 1 or the PC device 3, the zoom position, aperture position, etc. of the lens device 2 can be obtained by referring to the contents of the display output. The state can be easily and accurately recognized, and as a result, the convenience for the user of the lens device 2 or the camera device 1 can be improved.
(h)本実施形態によれば、FBシフト補正手段97がFBシフト量を補正する。そのため、例えば、カメラ装置1の撮像素子1bまでの光路上に光学部材が存在し、これによりFBシフトが生じる場合であっても、これに応じてFBシフト量を補正することが可能となり、その結果としてレンズ装置2が有する性能を十分に引き出すことが実現可能となる。 (H) According to this embodiment, the FB shift correction means 97 corrects the FB shift amount. Therefore, for example, even when there is an optical member on the optical path to the image sensor 1b of the camera device 1 and an FB shift occurs due to this, it is possible to correct the FB shift amount accordingly. As a result, it is possible to realize the performance of the lens device 2 sufficiently.
(i)本実施形態によれば、カメラ装置1とレンズ装置2との間で、メモリ部21からのデータ取得および駆動モータ61,71,81への動作指示等をシリアル通信によって行うので、カメラ装置1とレンズ装置2との間を接続する構成の複雑化を極力抑制することができ、装置構成の小型軽量化や低コスト化等を図る上で非常に好適なものとなる。 (I) According to the present embodiment, data acquisition from the memory unit 21 and operation instructions to the drive motors 61, 71, 81 are performed between the camera device 1 and the lens device 2 by serial communication. The complication of the configuration for connecting the device 1 and the lens device 2 can be suppressed as much as possible, which is very suitable for reducing the size and weight of the device configuration and reducing the cost.
<他の実施形態>
 以上に、本発明の一実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other embodiments>
Although one embodiment of the present invention has been specifically described above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
 例えば、本実施形態では、主として、カメラ装置1がCCTVカメラである場合を例に挙げたが、本発明がこれに限定されるものではなく、IPカメラやFAカメラ等といった他のカメラ装置であっても、全く同様に本発明を適用することが可能である。また、カメラ装置1が備えるレンズマウント1aについても同様であり、本実施形態で例に挙げたCSマウントに限定されることはなく、Cマウント等の他形式のレンズマウントであってもよい。 For example, in the present embodiment, the case where the camera apparatus 1 is a CCTV camera is mainly described as an example, but the present invention is not limited to this, and may be another camera apparatus such as an IP camera or an FA camera. However, the present invention can be applied in exactly the same manner. The same applies to the lens mount 1a included in the camera apparatus 1. The lens mount 1a is not limited to the CS mount exemplified in the present embodiment, and may be another type of lens mount such as a C mount.
 また、例えば、本実施形態では、主として、レンズ装置2がバリフォーカルレンズである場合を例に挙げたが、本発明がこれに限定されるものではなく、単焦点レンズやズームレンズ等)といった他のレンズ装置であっても、全く同様に本発明を適用することが可能である。 Further, for example, in the present embodiment, the case where the lens apparatus 2 is mainly a varifocal lens has been described as an example, but the present invention is not limited to this, and other such as a single focus lens and a zoom lens) The present invention can be applied to the lens apparatus in exactly the same manner.
1   カメラ装置
1a  レンズマウント
1b  撮像素子
1c  マイクロコンピュータ(レンズ制御装置)
1d  中央制御部
1e  インタフェース部
2   バリフォーカルレンズ(レンズ装置)
3   PC装置(上位装置)
10  レンズ本体
21  半導体チップ(メモリ部)
30  ズーム調整部
40  フォーカス調整部
50  アイリス調整部
60  ズーム駆動ユニット
70  フォーカス駆動ユニット
80  アイリス駆動ユニット
61、71、81  パルスモータ
91  レンズ確認手段
92  ズーム制御手段
93  フォーカス制御手段
94  アイリス制御手段
95  画像補正制御手段
96  情報出力手段
97  フランジバックシフト補正手段
DESCRIPTION OF SYMBOLS 1 Camera apparatus 1a Lens mount 1b Image pick-up element 1c Microcomputer (lens control apparatus)
1d Central control unit 1e Interface unit 2 Varifocal lens (lens device)
3 PC device (host device)
10 Lens body 21 Semiconductor chip (memory part)
30 Zoom adjuster 40 Focus adjuster 50 Iris adjuster 60 Zoom drive unit 70 Focus drive unit 80 Iris drive units 61, 71, 81 Pulse motor 91 Lens confirmation means 92 Zoom control means 93 Focus control means 94 Iris control means 95 Image correction Control means 96 Information output means 97 Flange backshift correction means

Claims (10)

  1.  カメラ装置に内蔵されたマイクロコンピュータにインストールされて用いられるプログラムであって、
     前記カメラ装置は、前記マイクロコンピュータに加えて、レンズ装置が装着されるレンズマウントと、前記レンズ装置を通して得られる光学像を撮像する撮像素子と、前記レンズ装置と前記マイクロコンピュータとの通信を可能にするとともに前記カメラ装置の上位装置と前記マイクロコンピュータとの通信を可能にするインタフェース部と、を備えて構成されており、
     前記レンズ装置は、少なくとも、レンズ固有の特性データを記録したメモリ部、を備えて構成されており、
     前記プログラムは、前記マイクロコンピュータを、
     前記レンズ装置が焦点距離を調整するズーム調整部を備えている場合に、前記上位装置から指示された焦点距離となるように、前記ズーム調整部の駆動モータに動作指示を与えるズーム制御手段と、
     前記レンズ装置がフォーカス位置を調整するフォーカス調整部を備えている場合に、前記メモリ部から取得した特性データを参照しつつ、前記レンズ装置の焦点距離に応じたフォーカス位置となるように、前記フォーカス調整部の駆動モータに動作指示を与えるフォーカス制御手段と、
     前記レンズ装置が絞りを調整するアイリス調整部を備えている場合に、前記メモリ部から取得した特性データを参照しつつ、前記レンズ装置の焦点距離に応じた絞りとなるように、前記アイリス調整部の駆動モータに動作指示を与えるアイリス制御手段と、
     前記メモリ部から取得した特性データを参照しつつ、前記レンズ装置の焦点距離または前記レンズ装置の絞りの少なくとも一方に基づき、前記撮像素子での撮像結果に対する画像補正処理の内容を決定する画像補正制御手段と、
     として機能させることを特徴とするプログラム。
    A program installed and used in a microcomputer built in the camera device,
    In addition to the microcomputer, the camera device enables a lens mount to which a lens device is mounted, an image sensor that picks up an optical image obtained through the lens device, and communication between the lens device and the microcomputer. And an interface unit that enables communication between the host device of the camera device and the microcomputer,
    The lens device includes at least a memory unit that records lens-specific characteristic data.
    The program causes the microcomputer to
    When the lens device includes a zoom adjustment unit that adjusts the focal length, zoom control means that gives an operation instruction to the drive motor of the zoom adjustment unit so that the focal length is instructed from the host device;
    When the lens apparatus includes a focus adjustment unit that adjusts the focus position, the focus is adjusted so that the focus position is in accordance with the focal length of the lens apparatus while referring to the characteristic data acquired from the memory unit. Focus control means for giving an operation instruction to the drive motor of the adjustment unit;
    When the lens device includes an iris adjustment unit that adjusts the iris, the iris adjustment unit is configured so as to obtain an iris according to the focal length of the lens device while referring to the characteristic data acquired from the memory unit. Iris control means for giving an operation instruction to the drive motor;
    Image correction control that determines the content of the image correction process for the imaging result of the imaging device based on at least one of the focal length of the lens device or the diaphragm of the lens device while referring to the characteristic data acquired from the memory unit Means,
    A program characterized by functioning as
  2.  前記プログラムは、前記マイクロコンピュータを、
     前記メモリ部から取得した特性データに基づき、前記レンズ装置における前記ズーム調整部、前記フォーカス調整部および前記アイリス調整部の有無を認識して、前記レンズ装置の種類を判別するレンズ確認手段
     として機能させることを特徴とする請求項1に記載のプログラム。
    The program causes the microcomputer to
    Based on the characteristic data acquired from the memory unit, the lens device recognizes the presence or absence of the zoom adjustment unit, the focus adjustment unit, and the iris adjustment unit, and functions as a lens confirmation unit that determines the type of the lens device. 2. The program according to claim 1, wherein:
  3.  前記フォーカス制御手段は、
     前記フォーカス位置の調整を前記特性データにおけるトラッキングカーブを参照しつつ行う
     ことを特徴とする請求項1に記載のプログラム。
    The focus control means includes
    The program according to claim 1, wherein the focus position is adjusted with reference to a tracking curve in the characteristic data.
  4.  前記フォーカス制御手段は、
     前記特性データにおける温度シフトカーブを参照しつつ、温度変化に起因するフォーカスシフト量を補正する処理と、前記特性データにおける波長シフトカーブを参照しつつ、前記カメラ装置が有する光源からの照射光の波長に起因するフォーカスシフト量を補正する処理と、の少なくとも一方を行う
     ことを特徴とする請求項1に記載のプログラム。
    The focus control means includes
    A process of correcting a focus shift amount due to a temperature change while referring to a temperature shift curve in the characteristic data, and a wavelength of light emitted from a light source of the camera device while referring to a wavelength shift curve in the characteristic data The program according to claim 1, wherein at least one of a process of correcting a focus shift amount caused by the correction is performed.
  5.  前記アイリス制御手段は、前記特性データにおけるMTFカーブを参照しつつ、前記レンズ装置の焦点距離における最大解像度となる絞りに調整するとともに、解像度閾値が設定されている場合に当該解像度閾値を超えないように絞りを調整する
     ことを特徴とする請求項1に記載のプログラム。
    The iris control means adjusts the aperture to the maximum resolution at the focal length of the lens apparatus while referring to the MTF curve in the characteristic data, and does not exceed the resolution threshold when a resolution threshold is set. The program according to claim 1, wherein the aperture is adjusted.
  6.  前記画像補正制御手段は、
     前記特性データにおけるディストーションカーブを参照しつつ、前記レンズ装置の焦点距離でのレンズ歪曲収差を補正する画像補正処理と、
     前記特性データにおけるヴィグネッティングカーブを参照しつつ、前記レンズ装置の絞りでの周辺減光補正を行う画像補正処理と、
     の少なくとも一方を、前記撮像素子での撮像結果に対する画像補正処理の内容として決定する
     ことを特徴とする請求項1に記載のプログラム。
    The image correction control means includes
    Image correction processing for correcting lens distortion at the focal length of the lens device while referring to the distortion curve in the characteristic data;
    While referring to the vignetting curve in the characteristic data, image correction processing for performing peripheral light attenuation correction at the aperture of the lens device;
    2. The program according to claim 1, wherein at least one of the two is determined as a content of an image correction process for an imaging result of the imaging device.
  7.  前記マイクロコンピュータを、
     前記メモリ部から取得した特性データを参照しつつ、前記レンズ装置の焦点距離に関する情報または前記レンズ装置の絞りに関する情報の少なくとも一方を特定し、特定した情報を報知するための情報出力を行う情報出力手段
     として機能させることを特徴とする請求項1に記載のプログラム。
    The microcomputer;
    An information output for specifying at least one of information relating to the focal length of the lens device or information relating to the diaphragm of the lens device and outputting information for notifying the specified information while referring to the characteristic data acquired from the memory unit The program according to claim 1, wherein the program functions as means.
  8.  前記マイクロコンピュータを、
     前記メモリ部から取得した特性データを参照しつつ、前記カメラ装置の前記撮像素子までの光路構成に応じたフランジバックシフト量を補正するフランジバックシフト補正手段
     として機能させることを特徴とする請求項1に記載のプログラム。
    The microcomputer;
    2. A flange backshift correction unit that corrects a flange backshift amount according to an optical path configuration to the image sensor of the camera device while referring to characteristic data acquired from the memory unit. The program described in.
  9.  前記メモリ部からのデータ取得および前記駆動モータへの動作指示をシリアル通信によって行う
     ことを特徴とする請求項1に記載のプログラム。
    The program according to claim 1, wherein data acquisition from the memory unit and operation instruction to the drive motor are performed by serial communication.
  10.  カメラ装置に搭載されて用いられるレンズ制御装置であって、
     前記カメラ装置は、前記レンズ制御装置に加えて、レンズ装置が装着されるレンズマウントと、前記レンズ装置を通して得られる光学像を撮像する撮像素子と、前記レンズ装置と前記レンズ制御装置との通信を可能にするとともに前記カメラ装置の上位装置と前記レンズ制御装置との通信を可能にするインタフェース部と、を備えて構成されており、
     前記レンズ装置は、少なくとも、レンズ固有の特性データを記録したメモリ部、を備えて構成されており、
     前記レンズ制御装置は、
     前記レンズ装置が焦点距離を調整するズーム調整部を備えている場合に、前記上位装置から指示された焦点距離となるように、前記ズーム調整部の駆動モータに動作指示を与えるズーム制御手段と、
     前記レンズ装置がフォーカス位置を調整するフォーカス調整部を備えている場合に、前記メモリ部から取得した特性データを参照しつつ、前記レンズ装置の焦点距離に応じたフォーカス位置となるように、前記フォーカス調整部の駆動モータに動作指示を与えるフォーカス制御手段と、
     前記レンズ装置が絞りを調整するアイリス調整部を備えている場合に、前記メモリ部から取得した特性データを参照しつつ、前記レンズ装置の焦点距離に応じた絞りとなるように、前記アイリス調整部の駆動モータに動作指示を与えるアイリス制御手段と、
     前記メモリ部から取得した特性データを参照しつつ、前記レンズ装置の焦点距離または前記レンズ装置の絞りの少なくとも一方に基づき、前記撮像素子での撮像結果に対する画像補正処理の内容を決定する画像補正制御手段と、
     を備えて構成されていることを特徴とするレンズ制御装置。
    A lens control device mounted on a camera device and used.
    In addition to the lens control device, the camera device communicates between the lens mount on which the lens device is mounted, an image sensor that captures an optical image obtained through the lens device, and communication between the lens device and the lens control device. And an interface unit that enables communication between the upper device of the camera device and the lens control device.
    The lens device includes at least a memory unit that records lens-specific characteristic data.
    The lens control device includes:
    When the lens device includes a zoom adjustment unit that adjusts the focal length, zoom control means that gives an operation instruction to the drive motor of the zoom adjustment unit so that the focal length is instructed from the host device;
    When the lens apparatus includes a focus adjustment unit that adjusts the focus position, the focus is adjusted so that the focus position is in accordance with the focal length of the lens apparatus while referring to the characteristic data acquired from the memory unit. Focus control means for giving an operation instruction to the drive motor of the adjustment unit;
    When the lens device includes an iris adjustment unit that adjusts the iris, the iris adjustment unit is configured so as to obtain an iris according to the focal length of the lens device while referring to the characteristic data acquired from the memory unit. Iris control means for giving an operation instruction to the drive motor;
    Image correction control that determines the content of the image correction process for the imaging result of the imaging device based on at least one of the focal length of the lens device or the diaphragm of the lens device while referring to the characteristic data acquired from the memory unit Means,
    A lens control device comprising:
PCT/JP2017/013562 2017-03-31 2017-03-31 Program and lens control device WO2018179318A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013562 WO2018179318A1 (en) 2017-03-31 2017-03-31 Program and lens control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013562 WO2018179318A1 (en) 2017-03-31 2017-03-31 Program and lens control device

Publications (1)

Publication Number Publication Date
WO2018179318A1 true WO2018179318A1 (en) 2018-10-04

Family

ID=63674410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013562 WO2018179318A1 (en) 2017-03-31 2017-03-31 Program and lens control device

Country Status (1)

Country Link
WO (1) WO2018179318A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3667384A1 (en) * 2018-12-14 2020-06-17 Canon Kabushiki Kaisha Correction data, lens apparatus, image pickup apparatus, processing apparatus, camera apparatus, method of manufacturing lens apparatus, and method of manufacturing processing apparatus
EP3667388A1 (en) * 2018-12-14 2020-06-17 Canon Kabushiki Kaisha Lens apparatus, image pickup apparatus, processing apparatus, camera apparatus, and correction data
CN112630924A (en) * 2020-11-30 2021-04-09 中山联合光电研究院有限公司 Zoom curve correction method, device, storage medium and system
CN114730124A (en) * 2019-12-02 2022-07-08 Cbc株式会社 Lens device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153066A (en) * 1992-11-12 1994-05-31 Canon Inc Image pickup device
JPH10206722A (en) * 1997-01-23 1998-08-07 Canon Inc Optical equipment
JP2006072006A (en) * 2004-09-02 2006-03-16 Olympus Corp Lens system, camera body, camera system, and stop control method
JP2008096907A (en) * 2006-10-16 2008-04-24 Sony Corp Lens device, imaging apparatus, and aberration correcting method
JP2008129455A (en) * 2006-11-22 2008-06-05 Sony Corp Imaging device, control method, and program
JP2011004391A (en) * 2009-05-21 2011-01-06 Panasonic Corp Camera system, camera body and interchangeable lens unit
WO2014115274A1 (en) * 2013-01-24 2014-07-31 Cbc株式会社 Cctv lens and method for correcting same
JP2015012320A (en) * 2013-06-26 2015-01-19 キヤノン株式会社 Imaging apparatus, external apparatus, imaging system, imaging apparatus control method, external apparatus control method, and imaging system control method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153066A (en) * 1992-11-12 1994-05-31 Canon Inc Image pickup device
JPH10206722A (en) * 1997-01-23 1998-08-07 Canon Inc Optical equipment
JP2006072006A (en) * 2004-09-02 2006-03-16 Olympus Corp Lens system, camera body, camera system, and stop control method
JP2008096907A (en) * 2006-10-16 2008-04-24 Sony Corp Lens device, imaging apparatus, and aberration correcting method
JP2008129455A (en) * 2006-11-22 2008-06-05 Sony Corp Imaging device, control method, and program
JP2011004391A (en) * 2009-05-21 2011-01-06 Panasonic Corp Camera system, camera body and interchangeable lens unit
WO2014115274A1 (en) * 2013-01-24 2014-07-31 Cbc株式会社 Cctv lens and method for correcting same
JP2015012320A (en) * 2013-06-26 2015-01-19 キヤノン株式会社 Imaging apparatus, external apparatus, imaging system, imaging apparatus control method, external apparatus control method, and imaging system control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3667384A1 (en) * 2018-12-14 2020-06-17 Canon Kabushiki Kaisha Correction data, lens apparatus, image pickup apparatus, processing apparatus, camera apparatus, method of manufacturing lens apparatus, and method of manufacturing processing apparatus
EP3667388A1 (en) * 2018-12-14 2020-06-17 Canon Kabushiki Kaisha Lens apparatus, image pickup apparatus, processing apparatus, camera apparatus, and correction data
US10986278B2 (en) 2018-12-14 2021-04-20 Canon Kabushiki Kaisha Lens apparatus, image pickup apparatus, processing apparatus, camera apparatus, and storage medium
US11514561B2 (en) 2018-12-14 2022-11-29 Canon Kabushiki Kaisha Storage medium, lens apparatus, image pickup apparatus, processing apparatus, camera apparatus, method of manufacturing lens apparatus, and method of manufacturing processing apparatus
CN114730124A (en) * 2019-12-02 2022-07-08 Cbc株式会社 Lens device
CN112630924A (en) * 2020-11-30 2021-04-09 中山联合光电研究院有限公司 Zoom curve correction method, device, storage medium and system

Similar Documents

Publication Publication Date Title
WO2018179318A1 (en) Program and lens control device
JP5293716B2 (en) Interchangeable lens, camera body and camera system
JP5637776B2 (en) Optical equipment
CN105376475A (en) Image stabilization apparatus and method of controlling image stabilization apparatus
WO2017029846A1 (en) Lens device
JP6033015B2 (en) Optical equipment
JP2016005050A (en) Lens device and imaging apparatus
JP5263354B2 (en) Interchangeable lens and camera system
JP6539075B2 (en) Imaging device, control method therefor, program, storage medium
JP6188407B2 (en) interchangeable lens
JP6218385B2 (en) Interchangeable lens and imaging device
JP2008129455A (en) Imaging device, control method, and program
JP2012013982A (en) Electric zoom lens
JP2021067710A (en) Lens control device, optical instrument, and lens control method
US11394867B2 (en) Lens apparatus, camera, and non-transitory computer-readable storage medium
JP2007121492A (en) Lens unit and imaging system
JP2005217504A (en) Image pickup system with peripheral light amount correcting function
JP4933195B2 (en) Lens control device and imaging device
JP6618575B2 (en) Image processing apparatus, imaging apparatus, lens apparatus, and image processing method
JP2022072631A (en) Control device, optical device, control method, and program
JP2016004175A (en) Signal processor, imaging apparatus, lens device, computer and imaging system
JP2020126181A (en) Lens device and imaging system
JP6768419B2 (en) Accessory device, image pickup device and communication control program
JP6781556B2 (en) Lens unit and imaging system equipped with it
JP5263353B2 (en) Interchangeable lens and camera system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP