WO2018179094A1 - レーザシステム、及びeuv光生成システム - Google Patents

レーザシステム、及びeuv光生成システム Download PDF

Info

Publication number
WO2018179094A1
WO2018179094A1 PCT/JP2017/012676 JP2017012676W WO2018179094A1 WO 2018179094 A1 WO2018179094 A1 WO 2018179094A1 JP 2017012676 W JP2017012676 W JP 2017012676W WO 2018179094 A1 WO2018179094 A1 WO 2018179094A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
optical system
sensor
path
Prior art date
Application number
PCT/JP2017/012676
Other languages
English (en)
French (fr)
Inventor
能史 植野
悠太 高島
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to PCT/JP2017/012676 priority Critical patent/WO2018179094A1/ja
Publication of WO2018179094A1 publication Critical patent/WO2018179094A1/ja
Priority to US16/534,806 priority patent/US11228156B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0014Monitoring arrangements not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/034Optical devices within, or forming part of, the tube, e.g. windows, mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1022Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • H01S3/1024Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping for pulse generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1304Stabilisation of laser output parameters, e.g. frequency or amplitude by using an active reference, e.g. second laser, klystron or other standard frequency source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0071Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/2232Carbon dioxide (CO2) or monoxide [CO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements

Definitions

  • the present disclosure relates to a laser system and an EUV light generation system.
  • an LPP (Laser Produced) Plasma) type device using plasma generated by irradiating a target material with laser light, and a DPP (Discharge Produced Plasma) using plasma generated by discharge are used.
  • Three types of devices have been proposed: a device of the type and an SR (Synchrotron-Radiation) type device using orbital radiation.
  • JP 62-173629 A International Publication No. 2016/142959 JP 61-155833 A
  • a laser system includes a laser apparatus that emits laser light, a transmission optical system that is disposed in a path between the laser apparatus and a target supplied in an EUV chamber in which EUV light is generated, and a transmission optical system Is disposed in the path between the transmission optical system and the reflection optical system that reflects the laser light from the transmission optical system in the direction of the target, and is disposed in the path between the transmission optical system and the reflection optical system, and is reflected from the laser device.
  • a first sensor that detects a laser beam traveling toward the optical system and a return beam of the laser beam that is provided in a path from the reflection optical system to the inside of the laser device and reflected back by the reflection optical system to the laser device
  • the amount of the return light detected by the second sensor exceeds a predetermined light amount value
  • a determining controller and damage to the reflective optical system is present.
  • An EUV light generation system includes an EUV chamber in which EUV light is generated, a laser device that emits laser light, and a transmission optical device disposed in a path between the laser device and a target supplied in the EUV chamber. Is provided in a path between the transmission optical system and the reflection optical system, and is disposed in a path between the transmission optical system and the target, and reflects the laser light from the transmission optical system in the direction of the target.
  • a first sensor that detects laser light traveling from the laser device to the reflection optical system, and a laser that is provided in a path from the reflection optical system to the inside of the laser device and is reflected by the reflection optical system and travels back to the laser device
  • the amount of the return light detected by the second sensor is If it exceeds the amount of the constant, and a and determining controller damage to the reflective optical system is present.
  • FIG. 1 schematically illustrates an exemplary configuration of an exemplary LPP type EUV light generation system.
  • FIG. 2 schematically shows a configuration example of a laser system according to a comparative example applied to the EUV light generation system.
  • FIG. 3 schematically illustrates a configuration example of the laser system according to the first embodiment.
  • FIG. 4 schematically shows an example of a flowchart of optical element damage diagnosis in the laser system according to the first embodiment.
  • FIG. 5 schematically shows a configuration example of a laser system according to the second embodiment.
  • FIG. 6 schematically shows a configuration example of a main pulse laser apparatus in the laser system according to the second embodiment.
  • FIG. 1 schematically illustrates an exemplary configuration of an exemplary LPP type EUV light generation system.
  • FIG. 2 schematically shows a configuration example of a laser system according to a comparative example applied to the EUV light generation system.
  • FIG. 3 schematically illustrates a configuration example of the laser system according to the first embodiment.
  • FIG. 4 schematically shows an
  • FIG. 7 schematically illustrates a configuration example of a laser system according to the third embodiment.
  • FIG. 8 schematically shows an example of a flowchart of optical element damage diagnosis in the laser system according to the third embodiment.
  • FIG. 9 schematically illustrates a configuration example of a laser system according to the fourth embodiment.
  • FIG. 10 schematically shows an example of a flowchart of optical element damage diagnosis in the laser system according to the fourth embodiment.
  • FIG. 11 schematically illustrates a configuration example of a laser system according to the fifth embodiment.
  • FIG. 12 schematically illustrates a configuration example of a prepulse laser apparatus in the laser system according to the fifth embodiment.
  • Embodiment> (Laser System that Enables Diagnosis of Damage to Chamber Window) (FIGS. 7 to 8) 5.1 Configuration 5.2 Operation 5.3 Action / Effect ⁇ 6.
  • Embodiment 4> (Laser system including return light sensor for detecting return light of prepulse laser light) (FIGS. 9 to 10) 6.1 Configuration 6.2 Operation 6.3 Action / Effect ⁇ 7.
  • Embodiment 5> (Laser system provided with a return light sensor inside the pre-pulse laser apparatus) (FIGS. 11 to 12) 7.1 Configuration 7.2 Operation 7.3 Action / Effect ⁇ 8.
  • FIG. 1 schematically shows a configuration of an exemplary LPP type EUV light generation system.
  • the EUV light generation apparatus 1 may be used with at least one laser apparatus 3.
  • a system including the EUV light generation apparatus 1 and the laser apparatus 3 is referred to as an EUV light generation system 11.
  • the EUV light generation apparatus 1 includes a chamber 2 and a target supply unit 26.
  • the chamber 2 is a container that can be sealed.
  • the target supply unit 26 is configured to supply the target material to the inside of the chamber 2 and is attached so as to penetrate the wall of the chamber 2, for example.
  • the material of the target substance may include, but is not limited to, tin, terbium, gadolinium, lithium, xenon, or a combination of any two or more thereof.
  • the wall of the chamber 2 is provided with at least one through hole.
  • the through hole is closed by the window 21, and the pulse laser beam 32 output from the laser device 3 is transmitted through the window 21.
  • an EUV collector mirror 23 having a spheroidal reflecting surface is disposed.
  • the EUV collector mirror 23 has first and second focal points.
  • the EUV collector mirror 23 may be arranged such that its first focal point is located in the plasma generation region 25 and its second focal point is located in the intermediate focal point (IF) 292.
  • a through hole 24 is provided at the center of the EUV collector mirror 23, and the pulse laser beam 33 passes through the through hole 24.
  • the EUV light generation apparatus 1 includes an EUV light generation controller 5, a target sensor 4, and the like.
  • the target sensor 4 is configured to detect one or more of the presence, trajectory, position, and speed of the target 27.
  • the target sensor 4 may have an imaging function.
  • the EUV light generation apparatus 1 includes a connection portion 29 that allows communication between the inside of the chamber 2 and the inside of the exposure apparatus 6.
  • a wall 291 in which an aperture 293 is formed is provided inside the connection portion 29. The wall 291 is arranged such that its aperture 293 is located at the second focal position of the EUV collector mirror 23.
  • the EUV light generation apparatus 1 includes a laser beam transmission device 34, a laser beam focusing mirror 22, a target recovery unit 28 for recovering the target 27, and the like.
  • the laser light transmission device 34 includes an optical element for defining the transmission state of the laser light and an actuator for adjusting the position, posture, and the like of the optical element.
  • the pulsed laser beam 31 output from the laser device 3 passes through the window 21 as the pulsed laser beam 32 through the laser beam transmission device 34 and enters the chamber 2.
  • the pulsed laser light 32 travels in the chamber 2 along at least one laser light path, is reflected by the laser light focusing mirror 22, and is irradiated onto at least one target 27 as pulsed laser light 33.
  • the target supply unit 26 is configured to output a target 27 formed of the target material toward the plasma generation region 25 inside the chamber 2.
  • the target 27 is irradiated with at least one pulse included in the pulse laser beam 33.
  • the target 27 irradiated with the pulse laser beam is turned into plasma, and radiation light 251 is emitted from the plasma.
  • the EUV light 252 included in the radiation light 251 is selectively reflected by the EUV collector mirror 23.
  • the EUV light 252 reflected by the EUV collector mirror 23 is collected at the intermediate condensing point 292 and output to the exposure apparatus 6.
  • a single target 27 may be irradiated with a plurality of pulses included in the pulse laser beam 33.
  • the EUV light generation controller 5 is configured to control the entire EUV light generation system 11.
  • the EUV light generation controller 5 is configured to process the detection result of the target sensor 4. Based on the detection result of the target sensor 4, the EUV light generation controller 5 may be configured to control, for example, the timing at which the target 27 is output, the output direction of the target 27, and the like. Further, the EUV light generation controller 5 may be configured to control, for example, the oscillation timing of the laser device 3, the traveling direction of the pulse laser light 32, the focusing position of the pulse laser light 33, and the like.
  • the various controls described above are merely examples, and other controls may be added as necessary.
  • FIG. 2 schematically shows a configuration example of a laser system 300 according to a comparative example applied to, for example, the EUV light generation system 11 shown in FIG.
  • substantially the same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the EUV light generation system 11 may have a configuration including the chamber 2, the EUV light generation controller 5, and the laser system 300.
  • the chamber 2 is an EUV chamber in which the target 27 is supplied and EUV light 252 is generated.
  • the chamber 2 is installed on the clean room floor 202 via the installation mechanism 203.
  • the chamber 2 includes a chamber window 73 that allows the pre-pulse laser beam 31P and the main pulse laser beam 31M to pass into the chamber 2.
  • the chamber 2 may include a focus unit (FU) 74 that focuses the pre-pulse laser beam 31P and the main pulse laser beam 31M on the target 27 supplied inside.
  • FU focus unit
  • the laser system 300 includes a laser device 3 and a laser beam transmission device 34.
  • the laser device 3 is installed on the subfab floor 201.
  • the laser device 3 includes a pre-pulse laser device 30P and a main pulse laser device 30M.
  • the prepulse laser device 30P is a laser device that outputs a prepulse laser beam 31P having a pulse width on the order of, for example, ps (picoseconds) or ns (nanoseconds).
  • the main pulse laser device 30M may be a CO 2 laser device that outputs a main pulse laser beam 31M.
  • the main pulse laser beam 31M may be a laser beam having a wavelength different from that of the pre-pulse laser beam 31P.
  • the laser beam transmission device 34 may connect the chamber 2 and the laser device 3.
  • the laser light transmission device 34 includes a beam combiner 71, a tilt mirror 72, a combiner sensor 81, a beam controller 80, a beam adjustment device 90, a plurality of reflection mirrors 91M, 92M, 93M, and 94M, and a plurality of reflection mirrors. 91P, 92P, 93P, 94P, and 95P.
  • the beam adjusting device 90 may be disposed on the optical path of the prepulse laser beam 31P output from the prepulse laser device 30P.
  • the beam adjusting device 90 may be configured to adjust the beam parameter of the pre-pulse laser beam 31P.
  • the beam parameter may be, for example, a beam position, a beam shape, a beam cross-sectional area, a divergence, a wavefront, and a traveling direction of the beam.
  • the beam combiner 71 is disposed at a position where the optical path of the pre-pulse laser beam 31P and the optical path of the main pulse laser beam 31M intersect.
  • the beam combiner 71 is arranged so that the optical path of the pre-pulse laser beam 31P output from the beam adjusting device 90 and the optical path of the main pulse laser beam 31M output from the main pulse laser device 30M are substantially matched.
  • the beam combiner 71 may be, for example, a dichroic mirror that highly reflects the wavelength of the pre-pulse laser beam 31P and highly transmits the wavelength of the main pulse laser beam 31M.
  • the combiner sensor 81 may be a first sensor that detects a part of the main pulse laser beam 31M branched by the beam combiner 71 and a part of the pre-pulse laser beam 31P.
  • the combiner sensor 81 may be configured to measure, for example, the beam parameter of the pre-pulse laser beam 31P that has passed through the beam combiner 71 and the beam parameter of the main pulse laser beam 31M reflected by the beam combiner 71.
  • the beam controller 80 is connected to the EUV light generation controller 5, the combiner sensor 81, and the beam adjustment device 90.
  • the plurality of reflection mirrors 91M, 92M, 93M, and 94M are arranged to constitute a part of a transmission path that guides the main pulse laser beam 31M from the main pulse laser apparatus 30M to the chamber 2.
  • the plurality of reflection mirrors 91P, 92P, 93P, 94P, and 95P are arranged to constitute a part of a transmission path that guides the prepulse laser beam 31P from the prepulse laser apparatus 30P to the chamber 2.
  • the tilt mirror 72 includes a substrate opaque to the pre-pulse laser beam 31P and the main pulse laser beam 31M, and a reflection mirror formed on the substrate and a metal film that reflects the pre-pulse laser beam 31P and the main pulse laser beam 31M. It may be.
  • the substrate opaque to the laser light may be SiC or copper.
  • the material of the metal film may be gold. Instead of the metal film, a reflection mirror including a dielectric film may be used.
  • the laser beam transmission device 34 includes a transmission optical system arranged in a path between the laser device 3 and the target 27 supplied into the chamber 2.
  • the transmission optical system may include a beam adjusting device 90, a plurality of reflection mirrors 91M, 92M, 93M, and 94M, and a plurality of reflection mirrors 91P, 92P, 93P, 94P, and 95P.
  • the laser beam transmission device 34 includes a reflection optical system arranged in a path between the transmission optical system and the target 27.
  • the reflection optical system is configured to reflect the prepulse laser light 31P and the main pulse laser light 31M from the transmission optical system in the direction of the target 27.
  • This reflection optical system may include a tilt mirror 72.
  • the focus unit 74 in the chamber 2 may be included in the reflection optical system in the laser light transmission device 34.
  • a beam combiner 71 may be disposed between the transmission optical system and the reflection optical system.
  • the laser beam transmission device 34 may include a plurality of optical path tubes that shield the transmission paths of the pre-pulse laser beam 31P and the main pulse laser beam 31M.
  • the laser device 3 may output each laser beam in the order of the pre-pulse laser beam 31P and the main pulse laser beam 31M.
  • the prepulse laser beam 31P is guided to the beam combiner 71 via the beam adjusting device 90 and a transmission path including a plurality of reflection mirrors 91P, 92P, 93P, 94P, and 95P.
  • Part of the pre-pulse laser beam 31 ⁇ / b> P passes through the beam combiner 71 and enters the combiner sensor 81.
  • the prepulse laser beam 31 ⁇ / b> P reflected by the beam combiner 71 is introduced into the chamber 2 by the tilt mirror 72 and the chamber window 73.
  • the main pulse laser beam 31M is guided to the beam combiner 71 through a transmission path including a plurality of reflection mirrors 91M, 92M, 93M, and 94M. A part of the main pulse laser beam 31M is reflected by the beam combiner 71 and enters the combiner sensor 81. On the other hand, the main pulse laser beam 31M transmitted through the beam combiner 71 is introduced into the chamber 2 by the tilt mirror 72 and the chamber window 73.
  • the combiner sensor 81 can measure the beam parameter of the pre-pulse laser beam 31P and the beam parameter of the main pulse laser beam 31M.
  • the measured value of the beam parameter by the combiner sensor 81 is input to the beam controller 80.
  • the beam controller 80 controls the beam adjusting device 90 so that the beam parameter measured by the combiner sensor 81 becomes a desired value.
  • the target 27 can be diffused by being irradiated with the pre-pulse laser beam 31P guided to the chamber 2 and condensed by the focus unit 74. Thereafter, the diffused target 27 is irradiated with the main pulse laser beam 31M condensed by the focus unit 74, whereby the target 27 is turned into plasma, and EUV light 252 can be emitted from the plasma.
  • the beam controller 80 can detect an alignment abnormality upstream of the laser optical path including the beam combiner 71 and damage to the optical element. For example, the beam controller 80 may issue an error signal to the EUV light generation controller 5 when a significant asymmetry is recognized in the beam shape. When the EUV light generation controller 5 receives the error signal, the EUV light generation controller 5 displays the possibility of damage to the optical elements upstream of the laser light path including the beam combiner 71 on a display (not shown), and the prepulse laser light 31P and the main pulse laser The output of the light 31M may be stopped.
  • the combiner sensor 81 can detect damage or the like of an optical element on the optical path between the beam combiner 71 and the laser apparatus 3, the optical disposed in the path between the beam combiner 71 and the target 27 in the chamber 2. Damage to elements, such as tilt mirror 72, cannot be detected.
  • damage to the optical element in the path from the beam combiner 71 to the target 27 in the chamber 2 can only appear in the form of a decrease in the output of the generated EUV light 252.
  • Possible causes of a decrease in the output of the EUV light 252 include possibilities other than the pulse laser beam path, such as a decrease in the reflectance of the EUV collector mirror 23 and an output abnormality of the target 27. For this reason, it takes time to identify the cause of damage to the optical element in the path from the beam combiner 71 to the target 27 in the chamber 2, or the identification itself is difficult.
  • Embodiment 1> (Laser system including a return light sensor for detecting return light of main pulse laser light) Next, the laser system according to the first embodiment of the present disclosure will be described. In the following description, substantially the same parts as those of the laser system according to the comparative example are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • FIG. 3 schematically shows a configuration example of the laser system 300A according to the first embodiment.
  • the EUV light generation system 11 may be configured to include a laser system 300A instead of the laser system 300 according to the comparative example.
  • the laser system 300A includes a laser device 3A and a laser beam transmission device 34A.
  • the laser system 300 ⁇ / b> A further includes a return light sensor 82.
  • the configuration of the laser device 3A may be substantially the same as that of the laser device 3 in the laser system 300 according to the comparative example.
  • the laser system 300A includes a laser light transmission device 34A instead of the laser light transmission device 34 according to the comparative example.
  • the return light sensor 82 may be provided in a path from the tilt mirror 72 that is a reflection optical system to the inside of the main pulse laser device 30M.
  • the return light sensor 82 is configured to detect a part of the return light 31Rm that travels backward through the optical path of the main pulse laser light 31M.
  • the return light sensor 82 may be a power meter that detects the amount of the return light 31Rm.
  • the return light sensor 82 is provided on the optical path of the return light 31Rm of the main pulse laser light 31M reflected by the tilt mirror 72 and going back to the main pulse laser device 30M, and detects a part of the return light 31Rm.
  • FIG. 3 shows an example in which the return light sensor 82 is disposed between the reflection mirror 93M and the reflection mirror 92M. However, the return light sensor 82 is on the optical path of the return light 31Rm at another position in the laser light transmission device 34A. It may be provided.
  • the return light sensor 82 is connected to the beam controller 80 and outputs a detection result of the return light 31Rm to the beam controller 80.
  • the beam controller 80 When the combiner sensor 81 detects no abnormality in the pre-pulse laser beam 31P and the main pulse laser beam 31M, the beam controller 80 has a light amount of the return light 31Rm detected by the return light sensor 82 exceeding a predetermined light amount value. In this case, the control unit may determine that the tilt mirror 72 is damaged. The beam controller 80 has damage to the tilt mirror 72 when the light amount of the return light 31Rm is smaller than the first light amount value that is the first threshold value and larger than the second light amount value that is the second threshold value. May be determined.
  • FIG. 4 schematically shows an example of a flowchart of optical element damage diagnosis in the laser system 300A according to the first embodiment.
  • the beam controller 80 measures the light quantity of the return light 31Rm of the main pulse laser light 31M by the return light sensor 82 (step S101).
  • the beam controller 80 determines whether or not the measurement result by the combiner sensor 81 is abnormal (step S102). For example, the beam controller 80 may determine whether or not the beam parameter of the pre-pulse laser beam 31P and the beam parameter beam parameter of the main pulse laser beam 31M measured by the combiner sensor 81 are abnormal.
  • the beam controller 80 determines that there is an abnormality in the beam combiner 71 or upstream thereof (step S103), and processing for optical element damage diagnosis Exit.
  • the beam controller 80 may issue an error signal including a diagnosis result to the EUV light generation controller 5, for example.
  • the EUV light generation controller 5 stops the oscillation trigger to the laser device 3A, stops the operation of the laser device 3A, and displays an indicator (not shown) that may damage the optical element upstream of the laser optical path including the beam combiner 71. May be displayed. Thereby, the operator may check whether the beam combiner 71 or the optical element upstream thereof is damaged. If there is a damaged optical element, the operator may replace the damaged optical element.
  • the beam controller 80 detects the abnormality of the return light 31Rm based on the measurement value by the return light sensor 82.
  • the detection threshold value of the return light 31Rm may be two thresholds, a first threshold value and a second threshold value. Also, (first threshold)> (second threshold) may be satisfied.
  • the first threshold value and the second threshold value may be changed for each laser irradiation condition of the pre-pulse laser beam 31P and the main pulse laser beam 31M.
  • the first threshold value and the second threshold value may be changed based on table data associated with the laser irradiation conditions.
  • the first threshold value may be a value set in advance based on the tolerance of the optical element, for example.
  • a value set in advance based on the resistance of the EO element may be used.
  • the second threshold value may be a value set based on the intensity of the standard return light 31Rm for each laser irradiation condition. For example, twice the intensity of the standard return light 31Rm for each laser irradiation condition may be set as the second threshold value.
  • the intensity [W] of the return light with respect to the pulsed laser light applied to the target 27 can be proportional to the following equation.
  • P represents the output value of the pulse laser beam at the position of the target 27 that has been converted to plasma.
  • f indicates the laser frequency.
  • D indicates the duty of the pulse of the laser beam irradiated to the target 27.
  • R indicates the ratio of the return light to the pulsed laser light applied to the target 27.
  • the beam controller 80 may determine whether the measurement value of the return light 31Rm by the return light sensor 82 exceeds the first threshold value or the second threshold value, and specify the cause of the abnormality.
  • the just focus of the main pulse laser beam 31M to the target 27 when the just focus of the main pulse laser beam 31M to the target 27 occurs, the return light 31Rm increases rapidly, and the optical element may be damaged.
  • the just focus indicates a state in which the position of the beam waist of the main pulse laser beam 31M and the position of the target 27 are substantially matched.
  • the first threshold value may be set to a value that can detect an increase in the return light 31Rm when a just focus occurs.
  • the return light 31Rm can increase.
  • the second threshold may be set to a value that can detect such an increase in the return light 31Rm.
  • the beam controller 80 may determine whether or not the light amount of the return light 31Rm is smaller than the first threshold based on the measurement value by the return light sensor 82 (step S104).
  • the beam controller 80 determines that the return light 31Rm is increased due to the just focus (step S105), and the optical element.
  • the damage diagnosis process is terminated.
  • the beam controller 80 may issue an error signal including a diagnosis result to the EUV light generation controller 5, for example.
  • the EUV light generation controller 5 may stop the oscillation trigger to the laser device 3A.
  • the EUV light generation controller 5 may adjust the optical axis to avoid the just focus state. For example, the focusing position of the main pulse laser beam 31M may be shifted from the just focus position by adjustment by a focusing position adjusting mechanism (not shown).
  • the beam controller 80 When it is determined that the light amount of the return light 31Rm is smaller than the first threshold value (step S104; Y), the beam controller 80 next determines the light amount of the return light 31Rm based on the measurement value by the return light sensor 82. It may be determined whether or not the threshold value is smaller than 2 (step S106).
  • the beam controller 80 determines that the return light 31Rm is increased due to damage of the tilt mirror 27 (step S107). Then, the optical element damage diagnosis process is terminated. In this case, as a response after the optical element damage diagnosis process, the beam controller 80 may issue an error signal including a diagnosis result to the EUV light generation controller 5, for example.
  • the EUV light generation controller 5 may stop the oscillation trigger to the laser device 3A, stop the operation of the laser device 3A, and display the possibility of damage to the tilt mirror 27 on a display (not shown). Thereby, the operator may check whether or not the tilt mirror 72 is damaged. The operator may replace the tilt mirror 72 when the tilt mirror 72 is damaged.
  • step S106 When it is determined that the amount of the return light 31Rm is smaller than the second threshold (step S106; Y), the beam controller 80 determines that there is no abnormality (step S108), and ends the optical element damage diagnosis process.
  • the case of detecting the damage of the tilt mirror 72 is taken as an example.
  • the damage of the other reflecting optical system between the beam combiner 71 and the target 27 is also the same as the case of the tilt mirror 72.
  • damage to the focus unit 74 can also be detected.
  • the beam controller 80 can determine the damage of the optical element such as the tilt mirror 72 in a short time based on the measurement value of the return light sensor 82.
  • the increase in the return light 31Rm due to damage to the optical element downstream from the beam combiner 71 is less than the increase in the return light 31Rm due to just focus. Therefore, when the amount of the return light 31Rm is larger than the first threshold, it can be determined that the cause is an increase in the return light 31Rm due to just focus. When the amount of the return light 31Rm is smaller than the first threshold and larger than the second threshold, it can be determined that the optical element downstream of the beam combiner 71, particularly the tilt mirror 72 is damaged.
  • the tilt mirror 72 has a configuration including, for example, a copper substrate and a metal film made of gold. If the tilt mirror 72 is damaged, the metal film or the surface of the substrate may be rough and the main pulse laser beam 31M may be irregularly reflected. The irregularly reflected light due to the damage of the tilt mirror 72 often has an intensity that can be detected by the return light sensor 82. Therefore, it is possible to determine whether the tilt mirror 72 is damaged based on the measurement value of the return light sensor 82.
  • Second Embodiment> (Laser system provided with a return light sensor inside the main pulse laser device) Next, a laser system according to Embodiment 2 of the present disclosure will be described. Note that, in the following, the same reference numerals are given to substantially the same parts as those of the comparative example or the laser system according to the first embodiment, and description thereof will be omitted as appropriate.
  • FIG. 5 schematically shows a configuration example of a laser system 300B according to the second embodiment.
  • FIG. 6 schematically shows a configuration example of the main pulse laser apparatus 30M in the laser system 300B according to the second embodiment.
  • the EUV light generation system 11 may be configured to include a laser system 300B instead of the laser system 300 according to the comparative example.
  • the laser system 300B includes a laser device 3B and a laser beam transmission device 34B.
  • the laser system 300 ⁇ / b> B further includes a return light sensor 82.
  • the configuration of the laser beam transmission apparatus 34B may be substantially the same as that of the laser beam transmission apparatus 34 in the laser system 300 according to the comparative example.
  • the return light sensor 82 is provided on the transmission path in the laser light transmission device 34A.
  • the return light sensor 82 is provided inside the laser device 3B, more specifically, the main pulse laser device 30M. Is placed inside.
  • the main pulse laser device 30M may include a master oscillator (MO) 110M and a laser amplifier.
  • the laser amplifier may include one or more amplifiers PA1, PA2,.
  • Each of the plurality of amplifiers PA1, PA2,... PAk may be a laser amplifier using a CO 2 laser gas as a laser medium.
  • the main pulse laser device 30M in the laser device 3A of the first embodiment may be configured to include a master oscillator (MO) 110M and a laser amplifier in substantially the same manner.
  • the main pulse laser device 30M may further include a beam splitter 111 disposed between the master oscillator 110M and the laser amplifier.
  • the return light sensor 82 may be disposed between the master oscillator 110M and the laser amplifier, or between any two amplifiers among the plurality of amplifiers PA1, PA2,.
  • the return light sensor 82 detects the amount of the return light 31Rm after passing backward through at least one amplifier.
  • the return light sensor 82 may be configured to detect the return light 31Rm branched by the beam splitter 111 disposed in the laser light path. In FIG. 6, the return light sensor 82 is arranged on the optical path of the return light 31Rm that has passed through the beam splitter 111.
  • optical element damage diagnosis process in the laser system 300B according to the second embodiment may be performed in the same manner as the laser system 300A according to the first embodiment, as shown in FIG.
  • the return light 31Rm is amplified by the laser amplifier in the process of reversing the laser optical path.
  • the return light sensor 82 is the case of the first embodiment.
  • the return light 31Rm amplified more than is detected.
  • the first threshold value and the second threshold value may be set to values larger than those in the first embodiment.
  • the first threshold value and the second threshold value are compared with the case of the first embodiment. Can be set to a large value. For this reason, discrimination from noise is facilitated, and determination of optical element damage diagnosis with higher accuracy becomes possible.
  • FIG. 7 schematically shows a configuration example of a laser system 300C according to the third embodiment.
  • the EUV light generation system 11 may include a laser system 300C instead of the laser system 300 according to the comparative example.
  • the laser system 300C includes a laser device 3C and a laser beam transmission device 34C.
  • the laser system 300 ⁇ / b> C further includes a return light sensor 82.
  • the return light sensor 82 may be disposed inside the laser device 3C, more specifically, inside the main pulse laser device 30M, as in the second embodiment.
  • the laser device 3C further includes a reference laser device in addition to the pre-pulse laser device 30P and the main pulse laser device 30M.
  • the reference laser device may be a pre-pulse guide laser device 30Pg and a main pulse guide laser device 30Mg.
  • the prepulse guide laser device 30Pg outputs a prepulse guide laser beam 31Pg that is coaxial with the prepulse laser beam 31P as a reference laser beam for the prepulse laser beam 31P.
  • the prepulse guide laser device 30Pg may output a prepulse guide laser beam laser 31Pg having a wavelength different from that of the prepulse laser beam 31P.
  • the main pulse guide laser device 30Mg outputs a main pulse guide laser beam 31Mg that is coaxial with the main pulse laser beam 31M as a reference laser beam for the main pulse laser beam 31M.
  • the main pulse guide laser device 30Mg may output a main pulse guide laser beam 31Mg having a wavelength different from that of the main pulse laser beam 31M.
  • the chamber window 73 may transmit the pre-pulse laser beam 31P and the main pulse laser beam 31M, and may reflect the pre-pulse guide laser beam laser 31Pg and the main pulse guide laser beam 31Mg.
  • the laser system 300C further includes an optical position detector (PSD: PositionDSensitive Detector) 83 as a third sensor that measures the reflected light 31Rg of the main pulse guide laser beam 31Mg and the prepulse guide laser beam 31Pg from the chamber window 73. You may prepare.
  • PSD PositionDSensitive Detector
  • PSD83 may measure the position (X, Y) and intensity of the reflected light 31Rg.
  • an optical sensor that detects at least the intensity of the reflected light 31Rg may be used instead of the PSD 83.
  • the beam controller 80 determines whether the chamber window 73 is damaged based on the detection result of the intensity of the reflected light 31Rg by the PSD 83. When it is determined that there is no abnormality in the pre-pulse laser beam 31P and the main pulse laser beam 31M and damage to the tilt mirror 72, the beam controller 80 determines that the intensity of the reflected light 31Rg is out of a predetermined intensity range. It may be a controller that determines that the chamber window 73 is damaged.
  • the chamber window 73 for introducing the pre-pulse laser beam 31P and the main pulse laser beam 31M into the chamber 2 may be arranged so that the pre-pulse laser beam 31P and the main pulse laser beam 31M do not enter 0 degree.
  • the normal line of the surface of the chamber window 73 is arranged to be inclined by several degrees with respect to the laser optical path. This is because when the pre-pulse laser beam 31P and the main pulse laser beam 31M are incident on the chamber window 73 at 0 degree, the surface reflected light becomes return light. Even the surface reflected light of the chamber window 73 is amplified by the laser amplifier, so there is a risk of destroying the upstream optical element.
  • the surface reflected light from the chamber window 73 deviates from the laser beam path. Therefore, it becomes difficult to detect the damage of the chamber window 73 by the return light sensor 82.
  • the chamber window 73 is structurally difficult to visually confirm, and it takes time to specify damage. Therefore, in the third embodiment, damage of the chamber window 73 is determined based on the measurement result of the PSD 83.
  • the reflection component on the surface of the chamber window 73 increases, and the intensity of the reflected light 31Rg can increase.
  • the reflected light 31Rg may deviate from the measurement surface of the PSD 83, and the intensity of the reflected light 31Rg may decrease.
  • the beam controller 80 can detect an abnormality in the reflected light 31Rg based on the intensity of the reflected light 31Rg at the PSD 83.
  • the threshold for detecting the abnormality of the reflected light 31Rg may have an upper limit and a lower limit.
  • the upper limit and lower limit values of the abnormality detection threshold of the reflected light 31Rg may be changed for each laser irradiation condition. For example, when the normal intensity detected by the PSD 83 is X, the upper limit may be 2X and the lower limit may be 0.5X.
  • the beam controller 80 may specify the cause of the abnormality depending on whether or not the intensity of the reflected light 31Rg at the PSD 83 exceeds the upper limit or lower limit threshold. This specification is based on the condition that there is no abnormality in the main pulse guide laser beam 31Mg and the prepulse guide laser beam 31Pg measured by the combiner sensor 81. For example, it may be assumed that one or more of the intensity, position, and size of the main pulse guide laser beam 31Mg and the pre-pulse guide laser beam 31Pg are measured within a predetermined range.
  • the upper and lower limits of the abnormality detection threshold of the reflected light 31Rg may be set to values that can detect the intensity change of the reflected light 31Rg when the chamber window 73 is damaged.
  • FIG. 8 schematically shows an example of a flowchart of optical element damage diagnosis in the laser system according to the third embodiment.
  • the beam controller 80 measures the light quantity of the return light 31Rm of the main pulse laser light 31M by the return light sensor 82 (step S201).
  • the beam controller 80 determines whether or not there is an abnormality in the measurement result by the combiner sensor 81 (step S202). For example, the beam controller 80 may determine whether or not the beam parameter of the pre-pulse laser beam 31P and the beam parameter beam parameter of the main pulse laser beam 31M measured by the combiner sensor 81 are abnormal.
  • the beam controller 80 determines that there is an abnormality in the beam combiner 71 or upstream thereof (step S203), and processing for optical element damage diagnosis Exit.
  • the beam controller 80 may issue an error signal including a diagnosis result to the EUV light generation controller 5, for example.
  • the EUV light generation controller 5 stops the oscillation trigger to the laser device 3C, stops the operation of the laser device 3C, and displays an indicator (not shown) that may damage the optical element upstream of the laser optical path including the beam combiner 71. May be displayed. Thereby, the operator may check whether the beam combiner 71 or the optical element upstream thereof is damaged. If there is a damaged optical element, the operator may replace the damaged optical element.
  • the beam controller 80 detects the abnormality of the return light 31Rm based on the measurement value by the return light sensor 82.
  • the processing for detecting abnormality of the return light 31Rm based on the measurement value by the return light sensor 82 is substantially the same as steps S104 to S107 in FIG.
  • the return light 31 ⁇ / b> Rm is amplified by the laser amplifier in the process of reversing the laser optical path, and the return light sensor 82 receives the amplified return light 31 ⁇ / b> Rm more than in the first embodiment. Detected. For this reason, the first threshold value and the second threshold value may be set to values larger than those in the first embodiment.
  • the beam controller 80 may determine whether or not the light amount of the return light 31Rm is smaller than the first threshold based on the measurement value by the return light sensor 82 (step S204).
  • the beam controller 80 determines that the return light 31Rm is increased due to the just focus (step S205), and the optical element.
  • the damage diagnosis process is terminated.
  • the beam controller 80 may issue an error signal including a diagnosis result to the EUV light generation controller 5, for example.
  • the EUV light generation controller 5 may stop the oscillation trigger to the laser device 3C.
  • the EUV light generation controller 5 may adjust the optical axis to avoid the just focus state. For example, the focusing position of the main pulse laser beam 31M may be shifted from the just focus position by adjustment by a focusing position adjusting mechanism (not shown).
  • the beam controller 80 When it is determined that the light amount of the return light 31Rm is smaller than the first threshold value (step S204; Y), the beam controller 80 next determines the light amount of the return light 31Rm based on the measurement value by the return light sensor 82. It may be determined whether or not the threshold value is smaller than 2 (step S206).
  • the beam controller 80 determines that the return light 31Rm is increased due to damage of the tilt mirror 27 (Step S207). Then, the optical element damage diagnosis process is terminated. In this case, as a response after the optical element damage diagnosis process, the beam controller 80 may issue an error signal including a diagnosis result to the EUV light generation controller 5, for example.
  • the EUV light generation controller 5 may stop the oscillation trigger for the laser device 3C, stop the operation of the laser device 3C, and display the possibility of damage to the tilt mirror 27 on a display (not shown). Thereby, the operator may check whether or not the tilt mirror 72 is damaged. The operator may replace the tilt mirror 72 when the tilt mirror 72 is damaged.
  • the beam controller 80 When it is determined that the light amount of the return light 31Rm is smaller than the second threshold (step S206; Y), the beam controller 80 next determines that the intensity of the reflected light 31Rg is within the reference value based on the measurement value by the PSD 83. It may be determined whether or not there is (step S208).
  • the beam controller 80 determines that the intensity of the reflected light 31Rg is changed due to damage of the chamber window 73 (step S209), and the optical The element damage diagnosis process is terminated.
  • the beam controller 80 may issue an error signal including a diagnosis result to the EUV light generation controller 5, for example.
  • the EUV light generation controller 5 may stop the oscillation trigger to the laser device 3C, stop the operation of the laser device 3C, and display the possibility of damage to the chamber window 73 on a display (not shown). Accordingly, the operator may check whether or not the chamber window 73 is damaged. The operator may replace the chamber window 73 when the chamber window 73 is damaged.
  • the beam controller 80 determines that there is no abnormality (step S210), and ends the optical element damage diagnosis process.
  • the determination is made by combining the measurement result of the main pulse guide laser beam 31Mg and the prepulse guide laser beam 31Pg measured by the combiner sensor 81 and the measurement result of the intensity of the reflected light 31Rg of the PSD 83.
  • damage to the chamber window 73 can be specified in a short time.
  • Embodiment 4> Laser system including a return light sensor for detecting return light of a pre-pulse laser beam
  • a laser system according to Embodiment 4 of the present disclosure will be described.
  • substantially the same components as those of the comparative example or the laser system according to any one of the first to third embodiments are denoted by the same reference numerals, and description thereof is omitted as appropriate.
  • FIG. 9 schematically shows a configuration example of a laser system 300D according to the fourth embodiment.
  • the EUV light generation system 11 may have a configuration including a laser system 300D instead of the laser system 300 according to the comparative example.
  • the laser system 300D includes a laser device 3D and a laser beam transmission device 34D.
  • the laser system 300D further includes a return light sensor 82.
  • the configuration of the laser device 3D may be substantially the same as that of the laser device 3 in the laser system 300 according to the comparative example.
  • the return light sensor 82 is provided in the path from the tilt mirror 72, which is a reflection optical system, to the inside of the main pulse laser device 30M.
  • the return mirror 82 is provided. It is provided in a path from 72 to the inside of the prepulse laser apparatus 30P.
  • the return light sensor 82 is configured to detect a part of the return light 31Rp that travels backward through the optical path of the pre-pulse laser light 31P.
  • the return light sensor 82 may be a power meter that detects the amount of the return light 31Rp.
  • the return light sensor 82 is provided on the optical path of the return light 31Rp of the prepulse laser light 31P reflected by the tilt mirror 72 and going back to the prepulse laser apparatus 30P, and detects a part of the return light 31Rp.
  • FIG. 9 shows an example in which the return light sensor 82 is disposed between the reflection mirror 93P and the reflection mirror 92P, but it is on the optical path of the return light 31Rp at another position in the laser light transmission device 34D. It may be provided.
  • the return light sensor 82 is connected to the beam controller 80 and outputs the detection result of the return light 31Rp to the beam controller 80.
  • the beam controller 80 when the combiner sensor 81 does not detect any abnormality in the pre-pulse laser beam 31P and the main pulse laser beam 31M, the light amount of the return light 31Rp detected by the return light sensor 82 is a predetermined light amount value.
  • the controller may determine that the tilt mirror 72 is damaged when the third threshold is exceeded.
  • FIG. 10 schematically shows an example of a flowchart of optical element damage diagnosis in the laser system 300D according to the fourth embodiment.
  • the beam controller 80 measures the amount of the return light 31Rp of the prepulse laser light 31P by the return light sensor 82 (step S301).
  • the beam controller 80 determines whether or not there is an abnormality in the measurement result by the combiner sensor 81 (step S302). For example, the beam controller 80 may determine whether or not the beam parameter of the pre-pulse laser beam 31P and the beam parameter beam parameter of the main pulse laser beam 31M measured by the combiner sensor 81 are abnormal.
  • the beam controller 80 determines that there is an abnormality in the measurement result by the combiner sensor 81 (step S302; N), the beam controller 80 determines that there is an abnormality in the beam combiner 71 or upstream thereof (step S303), and processing for optical element damage diagnosis Exit.
  • the beam controller 80 may issue an error signal including a diagnosis result to the EUV light generation controller 5, for example.
  • the EUV light generation controller 5 stops the oscillation trigger to the laser device 3D, stops the operation of the laser device 3D, and displays an indicator (not shown) that may damage the optical element upstream of the laser light path including the beam combiner 71. May be displayed. Thereby, the operator may check whether the beam combiner 71 or the optical element upstream thereof is damaged. If there is a damaged optical element, the operator may replace the damaged optical element.
  • the beam controller 80 detects the abnormality of the return light 31Rp based on the measurement value by the return light sensor 82.
  • the threshold value for detecting the abnormality of the return light 31Rp may be one threshold value.
  • this is referred to as a third threshold value.
  • the third threshold value may be changed for each laser irradiation condition of the pre-pulse laser beam 31P and the main pulse laser beam 31M.
  • the third threshold value may be changed based on table data associated with the laser irradiation condition.
  • the beam controller 80 may determine whether the measured value of the return light 31Rp by the return light sensor 82 exceeds the third threshold value, and specify the cause of the abnormality.
  • the return light 31Rp can increase.
  • the third threshold value may be set to a value that can detect such an increase in the return light 31Rp.
  • the beam controller 80 may determine whether or not the light amount of the return light 31Rp is smaller than the third threshold value based on the measurement value by the return light sensor 82 (step S304).
  • the beam controller 80 determines that the return light 31Rp is increased due to damage of the tilt mirror 27 (step S305). Then, the optical element damage diagnosis process is terminated. In this case, as a response after the optical element damage diagnosis process, the beam controller 80 may issue an error signal including a diagnosis result to the EUV light generation controller 5, for example.
  • the EUV light generation controller 5 may stop the oscillation trigger to the laser device 3D, stop the operation of the laser device 3D, and display the possibility of damage to the tilt mirror 27 on a display (not shown). Thereby, the operator may check whether or not the tilt mirror 72 is damaged. The operator may replace the tilt mirror 72 when the tilt mirror 72 is damaged.
  • step S304 When it is determined that the amount of the return light 31Rp is smaller than the third threshold (step S304; Y), the beam controller 80 determines that there is no abnormality (step S306), and ends the optical element damage diagnosis process.
  • the beam controller 80 determines damage to optical elements such as the tilt mirror 72 in a short time based on the measurement value of the return light 31Rp of the prepulse laser light 31P by the return light sensor 82. obtain.
  • Embodiment 5> (Laser system including a return light sensor inside a pre-pulse laser apparatus) Next, a laser system according to Embodiment 5 of the present disclosure will be described.
  • substantially the same components as those of the comparative example or the laser system according to any of Embodiments 1 to 4 are denoted by the same reference numerals, and description thereof is omitted as appropriate.
  • FIG. 11 schematically illustrates a configuration example of a laser system 300E according to the fifth embodiment.
  • FIG. 12 schematically illustrates a configuration example of the prepulse laser apparatus 30P in the laser system 300E according to the fifth embodiment.
  • the EUV light generation system 11 may have a configuration including a laser system 300E instead of the laser system 300 according to the comparative example.
  • the laser system 300E includes a laser device 3E and a laser beam transmission device 34E.
  • the laser system 300E further includes a return light sensor 82.
  • the configuration of the laser beam transmission apparatus 34E may be substantially the same as that of the laser beam transmission apparatus 34 in the laser system 300 according to the comparative example.
  • the return light sensor 82 is provided in the transmission path of the laser light transmission device 34D.
  • the return light sensor 82 is provided in the laser device 3E, more specifically, in the prepulse laser device 30P. Arranged inside.
  • the prepulse laser device 30P may include a master oscillator (MO) 110P, an optical element 122, a laser amplifier 123, and an optical shutter 124, as shown in FIG.
  • the laser amplifier 123 may include one or more amplifiers.
  • the one or more amplifiers may be laser amplifiers using YAG crystal as a laser medium.
  • the pre-pulse laser apparatus 30P may further include a beam splitter 121 disposed between the master oscillator 110P and the laser amplifier 123.
  • the return light sensor 82 may be disposed between the master oscillator 110P and the laser amplifier 123. The return light sensor 82 detects the light amount of the return light 31Rp after passing backward through the laser amplifier 123.
  • the return light sensor 82 may be configured to detect the return light 31Rp branched by the beam splitter 121 disposed in the laser light path. In FIG. 12, the return light sensor 82 is disposed on the optical path of the return light 31 ⁇ / b> Rp that has passed through the beam splitter 121.
  • optical element damage diagnosis process in the laser system 300E according to the fifth embodiment may be performed in the same manner as the laser system 300D according to the fourth embodiment, as shown in FIG.
  • the return light 31Rp is amplified by the laser amplifier 123 in the process of reversing the laser optical path.
  • the return light sensor 82 detects the return light 31Rp amplified more than in the case of the fourth embodiment. For this reason, you may set a 3rd threshold value larger than the case of Embodiment 4.
  • FIG. 1 is a diagrammatic representation of the return light 31Rp in the laser system 300E according to the fifth embodiment.
  • the measurement value of the return light sensor 82 is that of the amplified return light 31Rp, so the third threshold value can be set to a larger value than in the case of the fourth embodiment. For this reason, discrimination from noise is facilitated, and determination of optical element damage diagnosis with higher accuracy becomes possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)

Abstract

本開示によるレーザシステムは、レーザ光を出射するレーザ装置と、レーザ装置とEUV光が生成されるEUVチャンバ内に供給されたターゲットとの間の経路に配置された伝送光学系と、伝送光学系とターゲットとの間の経路に配置され、伝送光学系からのレーザ光をターゲットの方向に反射する反射光学系と、伝送光学系と反射光学系との間の経路に設けられ、レーザ装置から反射光学系へと向かうレーザ光を検出する第1のセンサと、反射光学系からレーザ装置の内部に至る経路に設けられ、反射光学系により反射されレーザ装置へと逆行するレーザ光の戻り光を検出する第2のセンサと、第1のセンサによってレーザ光の異常が検出されなかった場合において、第2のセンサにより検出された戻り光の光量が所定の光量値を超えた場合に、反射光学系に損傷が有ると判定する制御部とを備える。

Description

レーザシステム、及びEUV光生成システム
 本開示は、レーザシステム、及びEUV光生成システムに関する。
 近年、半導体プロセスの微細化に伴って、半導体プロセスの光リソグラフィにおける転写パターンの微細化が急速に進展している。次世代においては、20nm以下の微細加工が要求されるようになる。このため、波長13nm程度の極端紫外(EUV)光を生成するための装置と縮小投影反射光学系とを組み合わせた露光装置の開発が期待されている。
 EUV光生成装置としては、ターゲット物質にレーザ光を照射することによって生成されるプラズマが用いられるLPP(Laser Produced Plasma)式の装置と、放電によって生成されるプラズマが用いられるDPP(Discharge Produced Plasma)式の装置と、軌道放射光が用いられるSR(Synchrotron Radiation)式の装置との3種類の装置が提案されている。
特開昭62-173629号公報 国際公開第2016/142995号 特開昭61-155833号公報
概要
 本開示のレーザシステムは、レーザ光を出射するレーザ装置と、レーザ装置とEUV光が生成されるEUVチャンバ内に供給されたターゲットとの間の経路に配置された伝送光学系と、伝送光学系とターゲットとの間の経路に配置され、伝送光学系からのレーザ光をターゲットの方向に反射する反射光学系と、伝送光学系と反射光学系との間の経路に設けられ、レーザ装置から反射光学系へと向かうレーザ光を検出する第1のセンサと、反射光学系からレーザ装置の内部に至る経路に設けられ、反射光学系により反射されレーザ装置へと逆行するレーザ光の戻り光を検出する第2のセンサと、第1のセンサによってレーザ光の異常が検出されなかった場合において、第2のセンサにより検出された戻り光の光量が所定の光量値を超えた場合に、反射光学系に損傷が有ると判定する制御部とを備える。
 本開示のEUV光生成システムは、EUV光が生成されるEUVチャンバと、レーザ光を出射するレーザ装置と、レーザ装置とEUVチャンバ内に供給されたターゲットとの間の経路に配置された伝送光学系と、伝送光学系とターゲットとの間の経路に配置され、伝送光学系からのレーザ光をターゲットの方向に反射する反射光学系と、伝送光学系と反射光学系との間の経路に設けられ、レーザ装置から反射光学系へと向かうレーザ光を検出する第1のセンサと、反射光学系からレーザ装置の内部に至る経路に設けられ、反射光学系により反射されレーザ装置へと逆行するレーザ光の戻り光を検出する第2のセンサと、第1のセンサによってレーザ光の異常が検出されなかった場合において、第2のセンサにより検出された戻り光の光量が所定の光量値を超えた場合に、反射光学系に損傷が有ると判定する制御部とを備える。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、例示的なLPP式のEUV光生成システムの一構成例を概略的に示す。 図2は、EUV光生成システムに適用される比較例に係るレーザシステムの一構成例を概略的に示す。 図3は、実施形態1に係るレーザシステムの一構成例を概略的に示す。 図4は、実施形態1に係るレーザシステムにおける光学素子損傷診断のフローチャートの一例を概略的に示す。 図5は、実施形態2に係るレーザシステムの一構成例を概略的に示す。 図6は、実施形態2に係るレーザシステムにおけるメインパルスレーザ装置の一構成例を概略的に示す。 図7は、実施形態3に係るレーザシステムの一構成例を概略的に示す。 図8は、実施形態3に係るレーザシステムにおける光学素子損傷診断のフローチャートの一例を概略的に示す。 図9は、実施形態4に係るレーザシステムの一構成例を概略的に示す。 図10は、実施形態4に係るレーザシステムにおける光学素子損傷診断のフローチャートの一例を概略的に示す。 図11は、実施形態5に係るレーザシステムの一構成例を概略的に示す。 図12は、実施形態5に係るレーザシステムにおけるプリパルスレーザ装置の一構成例を概略的に示す。
実施形態
<内容>
<1.EUV光生成装置の全体説明>(図1)
 1.1 構成
 1.2 動作
<2.比較例>(レーザ光伝送装置を含むレーザシステム)(図2)
 2.1 構成
 2.2 動作
 2.3 課題
<3.実施形態1>(メインパルスレーザ光の戻り光を検出する戻り光センサを備えたレーザシステム)(図3~図4)
 3.1 構成
 3.2 動作
 3.3 作用・効果
<4.実施形態2>(メインパルスレーザ装置の内部に戻り光センサを備えたレーザシステム)(図5~図6)
 4.1 構成
 4.2 動作
 4.3 作用・効果
<5.実施形態3>(チャンバウインドウの損傷を診断することを可能にしたレーザシステム)(図7~図8)
 5.1 構成
 5.2 動作
 5.3 作用・効果
<6.実施形態4>(プリパルスレーザ光の戻り光を検出する戻り光センサを備えたレーザシステム)(図9~図10)
 6.1 構成
 6.2 動作
 6.3 作用・効果
<7.実施形態5>(プリパルスレーザ装置の内部に戻り光センサを備えたレーザシステム)(図11~図12)
 7.1 構成
 7.2 動作
 7.3 作用・効果
<8.その他>
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。
 以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。
 なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
<1.EUV光生成装置の全体説明>
[1.1 構成]
 図1に、例示的なLPP式のEUV光生成システムの構成を概略的に示す。EUV光生成装置1は、少なくとも1つのレーザ装置3と共に用いられる場合がある。本願においては、EUV光生成装置1及びレーザ装置3を含むシステムを、EUV光生成システム11と称する。図1に示し、かつ、以下に詳細に説明するように、EUV光生成装置1は、チャンバ2、ターゲット供給部26を含む。チャンバ2は、密閉可能な容器である。ターゲット供給部26は、ターゲット物質をチャンバ2内部に供給するよう構成され、例えば、チャンバ2の壁を貫通するように取り付けられる。ターゲット物質の材料は、スズ、テルビウム、ガドリニウム、リチウム、キセノン、又は、それらの内のいずれか2つ以上の組み合せを含んでもよいが、これらに限定されない。
 チャンバ2の壁には、少なくとも1つの貫通孔が設けられている。その貫通孔は、ウインドウ21によって塞がれ、ウインドウ21をレーザ装置3から出力されるパルスレーザ光32が透過する。チャンバ2の内部には、例えば、回転楕円面形状の反射面を有するEUV集光ミラー23が配置される。EUV集光ミラー23は、第1及び第2の焦点を有する。EUV集光ミラー23の表面には、例えば、モリブデンとシリコンとが交互に積層された多層反射膜が形成される。EUV集光ミラー23は、例えば、その第1の焦点がプラズマ生成領域25に位置し、その第2の焦点が中間集光点(IF)292に位置するように配置されてもよい。EUV集光ミラー23の中央部には貫通孔24が設けられ、貫通孔24をパルスレーザ光33が通過する。
 EUV光生成装置1は、EUV光生成コントローラ5、ターゲットセンサ4等を含む。ターゲットセンサ4は、ターゲット27の存在、軌跡、位置、速度のうちいずれか又は複数を検出するよう構成される。ターゲットセンサ4は、撮像機能を備えてもよい。
 また、EUV光生成装置1は、チャンバ2の内部と露光装置6の内部とを連通させる接続部29を含む。接続部29内部には、アパーチャ293が形成された壁291が設けられる。壁291は、そのアパーチャ293がEUV集光ミラー23の第2の焦点位置に位置するように配置される。
 さらに、EUV光生成装置1は、レーザ光伝送装置34、レーザ光集光ミラー22、ターゲット27を回収するためのターゲット回収部28等を含む。レーザ光伝送装置34は、レーザ光の伝送状態を規定するための光学素子と、この光学素子の位置、姿勢等を調整するためのアクチュエータとを備える。
[1.2 動作]
 図1を参照して、例示的なLPP式のEUV光生成システムの動作を説明する。レーザ装置3から出力されたパルスレーザ光31は、レーザ光伝送装置34を経て、パルスレーザ光32としてウインドウ21を透過してチャンバ2内に入射する。パルスレーザ光32は、少なくとも1つのレーザ光経路に沿ってチャンバ2内を進み、レーザ光集光ミラー22で反射されて、パルスレーザ光33として少なくとも1つのターゲット27に照射される。
 ターゲット供給部26は、ターゲット物質によって形成されたターゲット27をチャンバ2内部のプラズマ生成領域25に向けて出力するよう構成される。ターゲット27には、パルスレーザ光33に含まれる少なくとも1つのパルスが照射される。パルスレーザ光が照射されたターゲット27はプラズマ化し、そのプラズマから放射光251が放射される。放射光251に含まれるEUV光252は、EUV集光ミラー23によって選択的に反射される。EUV集光ミラー23によって反射されたEUV光252は、中間集光点292で集光され、露光装置6に出力さる。なお、1つのターゲット27に、パルスレーザ光33に含まれる複数のパルスが照射されてもよい。
 EUV光生成コントローラ5は、EUV光生成システム11全体の制御を統括するよう構成される。EUV光生成コントローラ5は、ターゲットセンサ4の検出結果を処理するよう構成される。ターゲットセンサ4の検出結果に基づいて、EUV光生成コントローラ5は、例えば、ターゲット27が出力されるタイミング、ターゲット27の出力方向等を制御するよう構成されてもよい。さらに、EUV光生成コントローラ5は、例えば、レーザ装置3の発振タイミング、パルスレーザ光32の進行方向、パルスレーザ光33の集光位置等を制御するよう構成されてもよい。上述の様々な制御は単なる例示に過ぎず、必要に応じて他の制御が追加されてもよい。
<2.比較例>(レーザ光伝送装置を含むレーザシステム)
[2.1 構成]
 図2に、例えば図1に示したEUV光生成システム11に適用される比較例に係るレーザシステム300の一構成例を概略的に示す。なお、以下では図1の構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
 EUV光生成システム11は、チャンバ2と、EUV光生成コントローラ5と、レーザシステム300とを備えた構成であってもよい。
 チャンバ2は、上述したように、内部にターゲット27が供給され、EUV光252が生成されるEUVチャンバである。チャンバ2は、設置機構203を介してクリーンルームフロア202に設置されている。
 チャンバ2は、プリパルスレーザ光31P及びメインパルスレーザ光31Mをチャンバ2内に向けて通過させるチャンバウインドウ73を含んでいる。チャンバ2は、内部に供給されたターゲット27にプリパルスレーザ光31P及びメインパルスレーザ光31Mを集光させるフォーカスユニット(FU)74を含んでもよい。
 レーザシステム300は、レーザ装置3と、レーザ光伝送装置34とを備えている。
 レーザ装置3は、サブファブフロア201に設置されている。レーザ装置3は、プリパルスレーザ装置30Pと、メインパルスレーザ装置30Mとを備えている。
 プリパルスレーザ装置30Pは、例えばps(ピコ秒)又はns(ナノ秒)オーダのパルス幅のプリパルスレーザ光31Pを出力するレーザ装置である。
 メインパルスレーザ装置30Mは、メインパルスレーザ光31Mを出力するCO2レーザ装置であってもよい。メインパルスレーザ光31Mは、プリパルスレーザ光31Pとは異なる波長のレーザ光であってもよい。
 レーザ光伝送装置34は、チャンバ2とレーザ装置3とを接続してもよい。
 レーザ光伝送装置34は、ビームコンバイナ71と、チルトミラー72と、コンバイナセンサ81と、ビームコントローラ80と、ビーム調節装置90と、複数の反射ミラー91M,92M,93M,94Mと、複数の反射ミラー91P,92P,93P,94P,95Pとを備えている。
 ビーム調節装置90は、プリパルスレーザ装置30Pが出力するプリパルスレーザ光31Pの光路上に配置されてもよい。ビーム調節装置90はプリパルスレーザ光31Pのビームパラメータを調節するよう構成されてもよい。ビームパラメータは、例えば、ビーム位置、ビーム形状、ビーム断面積、ダイバージェンス、波面、及びビームの進行方向等であってもよい。
 ビームコンバイナ71は、プリパルスレーザ光31Pの光路とメインパルスレーザ光31Mの光路とが交差する位置に配置されている。ビームコンバイナ71は、ビーム調節装置90から出力されたプリパルスレーザ光31Pの光路と、メインパルスレーザ装置30Mから出力されたメインパルスレーザ光31Mの光路とを略一致させるように配置されている。ビームコンバイナ71は、例えば、プリパルスレーザ光31Pの波長を高反射し、メインパルスレーザ光31Mの波長を高透過するダイクロイックミラーであってもよい。
 コンバイナセンサ81は、ビームコンバイナ71により分岐されたメインパルスレーザ光31Mの一部とプリパルスレーザ光31Pの一部とを検出する第1のセンサであってもよい。コンバイナセンサ81は、例えば、ビームコンバイナ71を透過したプリパルスレーザ光31Pのビームパラメータと、ビームコンバイナ71で反射されたメインパルスレーザ光31Mのビームパラメータとを計測するように構成されてもよい。
 ビームコントローラ80は、EUV光生成コントローラ5と、コンバイナセンサ81と、ビーム調節装置90とに接続されている。
 複数の反射ミラー91M,92M,93M,94Mは、メインパルスレーザ装置30Mからのメインパルスレーザ光31Mをチャンバ2まで導く伝送経路の一部を構成するように配置されている。
 複数の反射ミラー91P,92P,93P,94P,95Pは、プリパルスレーザ装置30Pからのプリパルスレーザ光31Pをチャンバ2まで導く伝送経路の一部を構成するように配置されている。
 チルトミラー72は、プリパルスレーザ光31P及びメインパルスレーザ光31Mに対して不透明な基板と、基板上に形成され、プリパルスレーザ光31P及びメインパルスレーザ光31Mを反射する金属膜とを備えた反射ミラーであってもよい。レーザ光に対して不透明な基板は、SiC又は銅であってもよい。金属膜の材質は金であってもよい。金属膜に代えて、誘電体膜を備えた反射ミラーであってもよい。
 レーザ光伝送装置34は、レーザ装置3とチャンバ2内に供給されたターゲット27との間の経路に配置された伝送光学系を含んでいる。この伝送光学系は、ビーム調節装置90と、複数の反射ミラー91M,92M,93M,94Mと、複数の反射ミラー91P,92P,93P,94P,95Pとを含んでもよい。
 レーザ光伝送装置34は、伝送光学系とターゲット27との間の経路に配置された反射光学系を含んでいる。この反射光学系は、伝送光学系からのプリパルスレーザ光31P、及びメインパルスレーザ光31Mをターゲット27の方向に反射するよう構成される。この反射光学系は、チルトミラー72を含んでもよい。チャンバ2におけるフォーカスユニット74を、レーザ光伝送装置34における反射光学系に含めてもよい。伝送光学系と反射光学系との間には、ビームコンバイナ71が配置されてもよい。
 その他、レーザ光伝送装置34は、プリパルスレーザ光31P及びメインパルスレーザ光31Mの伝送経路を遮蔽する複数の光路管を備えてもよい。
[2.2 動作]
 レーザ装置3は、プリパルスレーザ光31P、及びメインパルスレーザ光31Mの順に各レーザ光を出力してもよい。
 プリパルスレーザ光31Pは、ビーム調節装置90と複数の反射ミラー91P,92P,93P,94P,95Pを含む伝送経路とを介してビームコンバイナ71に導かれる。プリパルスレーザ光31Pの一部は、ビームコンバイナ71を透過してコンバイナセンサ81に入射する。一方、ビームコンバイナ71にて反射されたプリパルスレーザ光31Pは、チルトミラー72及びチャンバウインドウ73によってチャンバ2の内部に導入される。
 メインパルスレーザ光31Mは、複数の反射ミラー91M,92M,93M,94Mを含む伝送経路を介してビームコンバイナ71に導かれる。メインパルスレーザ光31Mの一部は、ビームコンバイナ71を反射してコンバイナセンサ81に入射する。一方、ビームコンバイナ71を透過したメインパルスレーザ光31Mは、チルトミラー72及びチャンバウインドウ73によってチャンバ2の内部に導入される。
 コンバイナセンサ81は、プリパルスレーザ光31Pのビームパラメータ及びメインパルスレーザ光31Mのビームパラメータを計測し得る。
 コンバイナセンサ81によるビームパラメータの計測値はビームコントローラ80に入力される。ビームコントローラ80は、コンバイナセンサ81により計測されたビームパラメータが所望の値となるように、ビーム調節装置90を制御する。
 ターゲット27は、チャンバ2に導かれフォーカスユニット74によって集光されたプリパルスレーザ光31Pによって照射されることで拡散し得る。その後、拡散されたターゲット27にフォーカスユニット74によって集光されたメインパルスレーザ光31Mが照射されることで、ターゲット27がプラズマ化し、プラズマからEUV光252が放射され得る。
[2.3 課題]
 ビームコントローラ80は、コンバイナセンサ81により計測されたビームパラメータが異常である場合、ビームコンバイナ71を含むレーザ光路の上流におけるアライメント異常や光学素子の損傷を検出し得る。ビームコントローラ80は、例えば、ビーム形状に著しい非対称性が認められる場合、EUV光生成コントローラ5にエラー信号を発報してもよい。EUV光生成コントローラ5は、エラー信号を受信すると、ビームコンバイナ71を含むレーザ光路の上流の光学素子の損傷の可能性を不図示の表示器に表示して、プリパルスレーザ光31P、及びメインパルスレーザ光31Mの出力を停止してもよい。
 コンバイナセンサ81では、ビームコンバイナ71とレーザ装置3との間の光路上の光学素子の損傷等を検出し得るものの、ビームコンバイナ71とチャンバ2内のターゲット27との間の経路に配置された光学素子、例えばチルトミラー72の損傷等は検出できない。比較例に係るレーザシステム300では、ビームコンバイナ71からチャンバ2内のターゲット27までの経路における光学素子の損傷等は、生成されるEUV光252の出力の低下という形でしか表れない。EUV光252の出力の低下の要因としては、EUV集光ミラー23の反射率低下やターゲット27の出力異常等、パルスレーザ光の経路以外の可能性も想定される。このため、ビームコンバイナ71からチャンバ2内のターゲット27までの経路における光学素子の損傷等の原因の特定に時間が掛かる、又は特定そのものが困難である。
 そこで、ビームコンバイナ71からチャンバ2内のターゲット27までの経路における光学素子の損傷等の特定を容易にする技術の開発が望まれる。
<3.実施形態1>(メインパルスレーザ光の戻り光を検出する戻り光センサを備えたレーザシステム)
 次に、本開示の実施形態1に係るレーザシステムについて説明する。なお、以下では上記比較例に係るレーザシステムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
[3.1 構成]
 図3は、実施形態1に係るレーザシステム300Aの一構成例を概略的に示している。
 EUV光生成システム11は、上記比較例に係るレーザシステム300に代えてレーザシステム300Aを備えた構成であってもよい。
 レーザシステム300Aは、レーザ装置3Aと、レーザ光伝送装置34Aとを備えている。レーザシステム300Aは、さらに、戻り光センサ82を備えている。
 レーザ装置3Aの構成は、上記比較例に係るレーザシステム300におけるレーザ装置3と略同様であってもよい。
 レーザシステム300Aは、上記比較例に係るレーザ光伝送装置34に代えてレーザ光伝送装置34Aを備えている。
 戻り光センサ82は、反射光学系であるチルトミラー72からメインパルスレーザ装置30Mの内部に至る経路中に設けられていればよい。
 実施形態1では、戻り光センサ82は、メインパルスレーザ光31Mの光路を逆行する戻り光31Rmの一部を検出するように構成されている。戻り光センサ82は、戻り光31Rmの光量を検出するパワーメータであってもよい。戻り光センサ82は、チルトミラー72により反射されメインパルスレーザ装置30Mへと逆行するメインパルスレーザ光31Mの戻り光31Rmの光路上に設けられ、戻り光31Rmの一部を検出する。なお、図3では、戻り光センサ82を、反射ミラー93Mと反射ミラー92Mとの間に配置した例を示しているが、レーザ光伝送装置34A内の他の位置における戻り光31Rmの光路上に設けられていてもよい。
 戻り光センサ82は、ビームコントローラ80に接続され、ビームコントローラ80に戻り光31Rmの検出結果を出力する。
 ビームコントローラ80は、コンバイナセンサ81によってプリパルスレーザ光31P、及びメインパルスレーザ光31Mの異常が検出されなかった場合において、戻り光センサ82により検出された戻り光31Rmの光量が所定の光量値を超えた場合に、チルトミラー72に損傷が有ると判定する制御部であってもよい。ビームコントローラ80は、戻り光31Rmの光量が第1の閾値である第1の光量値よりも小さく、第2の閾値である第2の光量値よりも大きい場合に、チルトミラー72に損傷が有ると判定してもよい。
 その他の構成は、上記比較例に係るレーザシステム300と略同様であってもよい。
[3.2 動作]
 図4は、実施形態1に係るレーザシステム300Aにおける光学素子損傷診断のフローチャートの一例を概略的に示している。
 ビームコントローラ80は、戻り光センサ82によって、メインパルスレーザ光31Mの戻り光31Rmの光量を計測する(ステップS101)。
 ビームコントローラ80は、コンバイナセンサ81による計測結果に異常が有るか否かを判定する(ステップS102)。例えば、ビームコントローラ80は、コンバイナセンサ81により計測されたプリパルスレーザ光31Pのビームパラメータ及びメインパルスレーザ光31Mのビームパラメータビームパラメータに異常が有るか否かを判定してもよい。
 コンバイナセンサ81による計測結果に異常が有ると判定した場合(ステップS102;N)、ビームコントローラ80は、ビームコンバイナ71又はその上流に異常があると判定(ステップS103)し、光学素子損傷診断の処理を終了する。この場合、光学素子損傷診断処理後の対応として、ビームコントローラ80は、例えばEUV光生成コントローラ5に診断結果を含むエラー信号を発報してもよい。EUV光生成コントローラ5は、レーザ装置3Aへの発振トリガを停止し、レーザ装置3Aの動作を停止し、ビームコンバイナ71を含むレーザ光路の上流の光学素子の損傷の可能性を不図示の表示器に表示してもよい。これによりオペレータは、ビームコンバイナ71又はその上流の光学素子に損傷があるか否かのチェックを行ってもよい。オペレータは、損傷した光学素子があった場合、損傷した光学素子の交換を実施しても良い。
 コンバイナセンサ81による計測結果に異常が無いと判定した場合(ステップS102;Y)、ビームコントローラ80は、戻り光センサ82による計測値に基づいて、戻り光31Rmの異常を検出する。
 戻り光31Rmの異常の検出の閾値は第1の閾値と第2の閾値との2つであってよい。また、(第1の閾値)>(第2の閾値)であってよい。
 第1の閾値と第2の閾値は、プリパルスレーザ光31P、及びメインパルスレーザ光31Mのレーザ照射条件毎に変化させてもよい。例えば、レーザ照射条件に対応付けたテーブルデータに基づいて、第1の閾値と第2の閾値とを変化させてもよい。
 第1の閾値は、例えば光学素子の耐性に基づいて事前に設定された値であってもよい。例えばレーザシステム300A内にEO(電気光学)素子を含む場合には、EO素子の耐性に基づいて事前に設定された値であってもよい。
 第2の閾値は、レーザ照射条件毎の標準的な戻り光31Rmの強度に基づいて設定された値であってもよい。例えば、レーザ照射条件毎の標準的な戻り光31Rmの強度の2倍を第2の閾値としてもよい。
 ここで、一般的に、ターゲット27に照射されるパルスレーザ光に対する戻り光の強度[W]は、以下の式に比例し得る。Pは、プラズマ化されたターゲット27の位置におけるパルスレーザ光の出力値を示す。fはレーザ周波数を示す。Dは、ターゲット27に照射されるパルスレーザ光のパルスのDutyを示す。Rは、ターゲット27に照射されるパルスレーザ光に対する戻り光の割合を示す。戻り光の割合は、例えばレーザシステム300A内に設けられたアイソレータによる減衰率、レーザシステム300A内に設けられたレーザ増幅器による増幅率、レーザシステム300A内に設けられた光学素子の反射率などを考慮した値であってもよい。
 P[mJ]*f[kHz]*D[%]*R[%]
 ビームコントローラ80は、戻り光センサ82による戻り光31Rmの計測値が第1の閾値と第2の閾値とのいずれを超えているかを判定し、異常の原因を特定してもよい。
 ここで、ターゲット27へのメインパルスレーザ光31Mのジャストフォーカスが発生すると、戻り光31Rmが急激に増加し、光学素子の損傷が発生し得る。ここで、ジャストフォーカスとは、メインパルスレーザ光31Mのビームウエストの位置とターゲット27の位置とが略一致した状態を示す。第1の閾値は、ジャストフォーカスが発生した場合の戻り光31Rmの増加を検出できるような値に設定してもよい。
 ビームコンバイナ71よりも下流の経路、換言すれば、ビームコンバイナ71とターゲット27との間の経路におけるチルトミラー72等の光学素子の損傷が発生すると、その光学素子の表面での反射光が増え、戻り光31Rmが増加し得る。第2の閾値は、そのような戻り光31Rmの増加を検出できるような値に設定してもよい。
 ビームコントローラ80は、戻り光センサ82による計測値に基づいて、戻り光31Rmの光量が第1の閾値より小さいか否かを判定してもよい(ステップS104)。
 戻り光31Rmの光量が第1の閾値よりも小さくないと判定した場合(ステップS104;N)、ビームコントローラ80は、ジャストフォーカスによる戻り光31Rmの増加であると判定(ステップS105)し、光学素子損傷診断の処理を終了する。この場合、光学素子損傷診断処理後の対応として、ビームコントローラ80は、例えばEUV光生成コントローラ5に診断結果を含むエラー信号を発報してもよい。EUV光生成コントローラ5は、レーザ装置3Aへの発振トリガを停止してもよい。そして、EUV光生成コントローラ5は、光軸調整を行い、ジャストフォーカス状態を回避してもよい。例えば、不図示の集光位置調整機構による調整によりメインパルスレーザ光31Mの集光位置をジャストフォーカスの位置からずらすようにしてもよい。
 戻り光31Rmの光量が第1の閾値よりも小さいと判定した場合(ステップS104;Y)、ビームコントローラ80は、次に、戻り光センサ82による計測値に基づいて、戻り光31Rmの光量が第2の閾値より小さいか否かを判定してもよい(ステップS106)。
 戻り光31Rmの光量が第2の閾値よりも小さくないと判定した場合(ステップS106;N)、ビームコントローラ80は、チルトミラー27の損傷による戻り光31Rmの増加であると判定(ステップS107)し、光学素子損傷診断の処理を終了する。この場合、光学素子損傷診断処理後の対応として、ビームコントローラ80は、例えばEUV光生成コントローラ5に診断結果を含むエラー信号を発報してもよい。EUV光生成コントローラ5は、レーザ装置3Aへの発振トリガを停止し、レーザ装置3Aの動作を停止し、チルトミラー27の損傷の可能性を不図示の表示器に表示してもよい。これによりオペレータは、チルトミラー72に損傷があるか否かのチェックを行ってもよい。オペレータは、チルトミラー72に損傷があった場合、チルトミラー72の交換を実施しても良い。
 戻り光31Rmの光量が第2の閾値よりも小さいと判定した場合(ステップS106;Y)、ビームコントローラ80は、異常無しと判定(ステップS108)し、光学素子損傷診断の処理を終了する。
 なお、以上の説明では、チルトミラー72の損傷を検出する場合を例にしたが、ビームコンバイナ71とターゲット27との間のその他の反射光学系の損傷もチルトミラー72の場合と同様にして損傷を検出し得る。例えば、フォーカスユニット74の損傷も検出し得る。
 その他の動作は、上記比較例に係るレーザシステム300と略同様であってもよい。
[3.3 作用・効果]
 実施形態1のレーザシステム300Aによれば、ビームコントローラ80は戻り光センサ82の計測値に基づいて、チルトミラー72等の光学素子の損傷を短時間に判定し得る。
 ビームコンバイナ71より下流の光学素子の損傷による戻り光31Rmの増加は、ジャストフォーカスによる戻り光31Rmの増加に比べ少ない。そのため、戻り光31Rmの光量が第1の閾値よりも大きい場合、原因はジャストフォーカスによる戻り光31Rmの増加であると判定し得る。また、戻り光31Rmの光量が、第1の閾値よりも小さく、第2の閾値よりも大きい場合、ビームコンバイナ71より下流の光学素子、特にチルトミラー72の損傷と判定し得る。
 チルトミラー72は、例えば銅による基板と金による金属膜とを含む構成であるため、損傷すると金属膜あるいは基板の表面が荒れてメインパルスレーザ光31Mを乱反射することがある。チルトミラー72の損傷による乱反射光は戻り光センサ82で検出可能な程度の強度を有することが多い。このため、戻り光センサ82の計測値に基づいて、チルトミラー72の損傷の判定が可能となる。
<4.実施形態2>(メインパルスレーザ装置の内部に戻り光センサを備えたレーザシステム)
 次に、本開示の実施形態2に係るレーザシステムについて説明する。なお、以下では上記比較例、又は実施形態1に係るレーザシステムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
[4.1 構成]
 図5は、実施形態2に係るレーザシステム300Bの一構成例を概略的に示している。図6は、実施形態2に係るレーザシステム300Bにおけるメインパルスレーザ装置30Mの一構成例を概略的に示している。
 EUV光生成システム11は、上記比較例に係るレーザシステム300に代えてレーザシステム300Bを備えた構成であってもよい。
 レーザシステム300Bは、レーザ装置3Bと、レーザ光伝送装置34Bとを備えている。レーザシステム300Bは、さらに、戻り光センサ82を備えている。
 レーザ光伝送装置34Bの構成は、上記比較例に係るレーザシステム300におけるレーザ光伝送装置34と略同様であってもよい。
 実施形態1では、レーザ光伝送装置34Aにおける伝送経路に戻り光センサ82を設けるようにしたが、本実施形態2では、戻り光センサ82がレーザ装置3Bの内部、より詳しくはメインパルスレーザ装置30Mの内部に配置されている。
 メインパルスレーザ装置30Mは、図6に示したように、マスタオシレータ(MO)110Mと、レーザ増幅器とを含んでいてもよい。レーザ増幅器は、1又は複数の増幅器PA1,PA2,…PAkを含んでいてもよい。複数の増幅器PA1,PA2,…PAkはそれぞれ、CO2レーザガスをレーザ媒質とするレーザ増幅器であってもよい。なお、実施形態1のレーザ装置3Aにおけるメインパルスレーザ装置30Mも略同様に、マスタオシレータ(MO)110Mと、レーザ増幅器とを備えた構成であってもよい。
 メインパルスレーザ装置30Mは、さらに、マスタオシレータ110Mとレーザ増幅器との間に配置されたビームスプリッタ111を含んでいてもよい。戻り光センサ82は、マスタオシレータ110Mとレーザ増幅器との間、あるいは、複数の増幅器PA1,PA2,…PAkのうち、任意の2つの増幅器間に配置されていてもよい。戻り光センサ82は、少なくとも1つの増幅器を逆行通過した後の戻り光31Rmの光量を検出する。
 戻り光センサ82は、レーザ光路に配置されたビームスプリッタ111で分岐された戻り光31Rmを検出するよう構成されてもよい。図6では、ビームスプリッタ111を透過した戻り光31Rmの光路上に戻り光センサ82を配置している。
 その他の構成は、上記比較例、又は実施形態1に係るレーザシステムと略同様であってもよい。
[4.2 動作]
 実施形態2に係るレーザシステム300Bにおける光学素子損傷診断の処理は、実施形態1に係るレーザシステム300Aと略同様に、図4に示した処理を行ってもよい。
 ただし、実施形態2に係るレーザシステム300Bでは、戻り光31Rmはレーザ光路を逆行する過程で、レーザ増幅器によって増幅される。ターゲット27へのメインパルスレーザ光31Mのジャストフォーカスが発生した場合と、ビームコンバイナ71よりも下流の光学素子の損傷が発生した場合とのいずれにおいても、戻り光センサ82では、実施形態1の場合よりも増幅された戻り光31Rmが検出される。このため、第1の閾値と第2の閾値は、実施形態1の場合よりも大きい値に設定してもよい。
 その他の動作は、上記比較例、又は実施形態1に係るレーザシステムと略同様であってもよい。
[4.3 作用・効果]
 実施形態2のレーザシステム300Bによれば、戻り光センサ82の計測値は増幅された戻り光31Rmのものとなるため、第1の閾値と第2の閾値とを実施形態1の場合に比べて大きい値に設定できる。このため、ノイズとの識別が容易となり、より精度の高い光学素子損傷診断の判定が可能となる。
 その他の作用・効果は、上記比較例、又は実施形態1に係るレーザシステムと略同様であってもよい。
<5.実施形態3>(チャンバウインドウの損傷を診断することを可能にしたレーザシステム)
 次に、本開示の実施形態3に係るレーザシステムについて説明する。なお、以下では上記比較例、又は実施形態1若しくは2に係るレーザシステムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
[5.1 構成]
 図7は、実施形態3に係るレーザシステム300Cの一構成例を概略的に示している。
 EUV光生成システム11は、上記比較例に係るレーザシステム300に代えてレーザシステム300Cを備えた構成であってもよい。
 レーザシステム300Cは、レーザ装置3Cと、レーザ光伝送装置34Cとを備えている。レーザシステム300Cは、さらに、戻り光センサ82を備えている。
 戻り光センサ82は、実施形態2と略同様に、レーザ装置3Cの内部、より詳しくはメインパルスレーザ装置30Mの内部に配置されていてもよい。
 レーザ装置3Cは、プリパルスレーザ装置30Pとメインパルスレーザ装置30Mとに加えて、さらに、参照レーザ装置を備えている。参照レーザ装置は、プリパルスガイドレーザ装置30Pgとメインパルスガイドレーザ装置30Mgとであってもよい。
 プリパルスガイドレーザ装置30Pgは、プリパルスレーザ光31Pに対する参照レーザ光として、プリパルスレーザ光31Pと同軸となるプリパルスガイドレーザ光31Pgを出力する。プリパルスガイドレーザ装置30Pgは、プリパルスレーザ光31Pとは異なる波長のプリパルスガイドレーザ光レーザ31Pgを出力してもよい。
 メインパルスガイドレーザ装置30Mgは、メインパルスレーザ光31Mに対する参照レーザ光として、メインパルスレーザ光31Mと同軸となるメインパルスガイドレーザ光31Mgを出力する。メインパルスガイドレーザ装置30Mgは、メインパルスレーザ光31Mとは異なる波長のメインパルスガイドレーザ光31Mgを出力してもよい。
 チャンバウインドウ73は、プリパルスレーザ光31P及びメインパルスレーザ光31Mを透過し、プリパルスガイドレーザ光レーザ31Pg及びメインパルスガイドレーザ光31Mgを反射してもよい。
 レーザシステム300Cは、さらに、チャンバウインドウ73からのメインパルスガイドレーザ光31Mg及びプリパルスガイドレーザ光31Pgの反射光31Rgを計測する第3のセンサとしての光位置検出器(PSD:Position Sensitive Detector)83を備えてもよい。
 PSD83は、反射光31Rgの位置(X,Y)と強度とを計測してもよい。なお、光学素子損傷診断を行うだけの目的であれば、PSD83に代えて、少なくとも反射光31Rgの強度を検出する光センサを用いてもよい。
 ビームコントローラ80は、PSD83による反射光31Rgの強度の検出結果に基づいて、チャンバウインドウ73の損傷の有無を判定する。ビームコントローラ80は、プリパルスレーザ光31P及びメインパルスレーザ光31Mの異常とチルトミラー72の損傷とが共に無いと判定された場合において、反射光31Rgの強度が所定の強度範囲から外れた場合に、チャンバウインドウ73に損傷が有ると判定する制御部であってもよい。
 その他の構成は、上記比較例、又は実施形態1若しくは2に係るレーザシステムと略同様であってもよい。
[5.2 動作]
 プリパルスレーザ光31P及びメインパルスレーザ光31Mをチャンバ2に導入するためのチャンバウインドウ73は、プリパルスレーザ光31P及びメインパルスレーザ光31Mが0度入射しないように配置されることがある。例えば、チャンバウインドウ73の表面の法線が、レーザ光路に対して数度傾けて配置される。この理由は、プリパルスレーザ光31P及びメインパルスレーザ光31Mがチャンバウインドウ73に0度入射すると、表面反射光が戻り光となるからである。チャンバウインドウ73の表面反射光であってもレーザ増幅器によって増幅されるので上流の光学素子を破壊する危険性がある。
 プリパルスレーザ光31P及びメインパルスレーザ光31Mが0度入射しないように配置された場合、チャンバウインドウ73による表面反射光はレーザ光路から逸れる。従ってチャンバウインドウ73の損傷は戻り光センサ82で検出することが困難となる。チャンバウインドウ73は、構造上目視確認が困難で、損傷特定には時間が掛かる。そこで、本実施形態3では、PSD83の計測結果に基づいて、チャンバウインドウ73の損傷の判定を行う。
 チャンバウインドウ73に損傷が生じると、チャンバウインドウ73の表面での反射成分が増加し、反射光31Rgの強度が増加し得る。また、損傷の状態によっては、反射光31RgがPSD83の計測面上からずれ、反射光31Rgの強度が低下し得る。
 ビームコントローラ80はPSD83での反射光31Rgの強度に基づいて、反射光31Rgの異常を検出し得る。
 反射光31Rgの異常検出の閾値は上限と下限があってもよい。反射光31Rgの異常検出の閾値の上限と下限の値は、レーザ照射条件毎に変化させてもよい。例えば、PSD83で検出される通常時の強度をXとした場合、上限を2X、下限を0.5Xとしてもよい。
 ビームコントローラ80は、PSD83での反射光31Rgの強度が上限又は下限の閾値を超えているか否かで、異常の原因を特定してもよい。この特定は、コンバイナセンサ81で計測されるメインパルスガイドレーザ光31Mg及びプリパルスガイドレーザ光31Pgに異常が無いという条件を前提とする。例えば、メインパルスガイドレーザ光31Mg及びプリパルスガイドレーザ光31Pgの強度、位置、大きさのいずれか又は複数が所定範囲内で計測されているという条件を前提としてもよい。
 反射光31Rgの異常検出の閾値の上限、下限は、チャンバウインドウ73の損傷時の反射光31Rgの強度変化を検出できるような値に設定してもよい。
 図8は、実施形態3に係るレーザシステムにおける光学素子損傷診断のフローチャートの一例を概略的に示している。
 ビームコントローラ80は、戻り光センサ82によって、メインパルスレーザ光31Mの戻り光31Rmの光量を計測する(ステップS201)。
 ビームコントローラ80は、コンバイナセンサ81による計測結果に異常が有るか否かを判定する(ステップS202)。例えば、ビームコントローラ80は、コンバイナセンサ81により計測されたプリパルスレーザ光31Pのビームパラメータ及びメインパルスレーザ光31Mのビームパラメータビームパラメータに異常が有るか否かを判定してもよい。
 コンバイナセンサ81による計測結果に異常が有ると判定した場合(ステップS202;N)、ビームコントローラ80は、ビームコンバイナ71又はその上流に異常があると判定(ステップS203)し、光学素子損傷診断の処理を終了する。この場合、光学素子損傷診断処理後の対応として、ビームコントローラ80は、例えばEUV光生成コントローラ5に診断結果を含むエラー信号を発報してもよい。EUV光生成コントローラ5は、レーザ装置3Cへの発振トリガを停止し、レーザ装置3Cの動作を停止し、ビームコンバイナ71を含むレーザ光路の上流の光学素子の損傷の可能性を不図示の表示器に表示してもよい。これによりオペレータは、そして、ビームコンバイナ71又はその上流の光学素子に損傷があるか否かのチェックを行ってもよい。オペレータは、損傷した光学素子があった場合、損傷した光学素子の交換を実施しても良い。
 コンバイナセンサ81による計測結果に異常が無いと判定した場合(ステップS202;Y)、ビームコントローラ80は、戻り光センサ82による計測値に基づいて、戻り光31Rmの異常を検出する。
 戻り光センサ82による計測値に基づく戻り光31Rmの異常の検出の処理は、図4におけるステップS104~S107と略同様である。ただし、実施形態3に係るレーザシステム300Cでは、戻り光31Rmはレーザ光路を逆行する過程で、レーザ増幅器によって増幅され、戻り光センサ82では、実施形態1の場合よりも増幅された戻り光31Rmが検出される。このため、第1の閾値と第2の閾値は、実施形態1の場合よりも大きい値に設定してもよい。
 ビームコントローラ80は、戻り光センサ82による計測値に基づいて、戻り光31Rmの光量が第1の閾値より小さいか否かを判定してもよい(ステップS204)。
 戻り光31Rmの光量が第1の閾値よりも小さくないと判定した場合(ステップS204;N)、ビームコントローラ80は、ジャストフォーカスによる戻り光31Rmの増加であると判定(ステップS205)し、光学素子損傷診断の処理を終了する。この場合、光学素子損傷診断処理後の対応として、ビームコントローラ80は、例えばEUV光生成コントローラ5に診断結果を含むエラー信号を発報してもよい。EUV光生成コントローラ5は、レーザ装置3Cへの発振トリガを停止してもよい。そして、EUV光生成コントローラ5は、光軸調整を行い、ジャストフォーカス状態を回避してもよい。例えば、不図示の集光位置調整機構による調整によりメインパルスレーザ光31Mの集光位置をジャストフォーカスの位置からずらすようにしてもよい。
 戻り光31Rmの光量が第1の閾値よりも小さいと判定した場合(ステップS204;Y)、ビームコントローラ80は、次に、戻り光センサ82による計測値に基づいて、戻り光31Rmの光量が第2の閾値より小さいか否かを判定してもよい(ステップS206)。
 戻り光31Rmの光量が第2の閾値よりも小さくないと判定した場合(ステップS206;N)、ビームコントローラ80は、チルトミラー27の損傷による戻り光31Rmの増加であると判定(ステップS207)し、光学素子損傷診断の処理を終了する。この場合、光学素子損傷診断処理後の対応として、ビームコントローラ80は、例えばEUV光生成コントローラ5に診断結果を含むエラー信号を発報してもよい。EUV光生成コントローラ5は、レーザ装置3Cへの発振トリガを停止し、レーザ装置3Cの動作を停止し、チルトミラー27の損傷の可能性を不図示の表示器に表示してもよい。これによりオペレータは、チルトミラー72に損傷があるか否かのチェックを行ってもよい。オペレータは、チルトミラー72に損傷があった場合、チルトミラー72の交換を実施しても良い。
 戻り光31Rmの光量が第2の閾値よりも小さいと判定した場合(ステップS206;Y)、ビームコントローラ80は、次に、PSD83による計測値に基づいて、反射光31Rgの強度が基準値以内にあるか否かを判定してもよい(ステップS208)。
 反射光31Rgの強度が基準値を超えると判定した場合(ステップS208;N)、ビームコントローラ80は、チャンバウインドウ73の損傷による反射光31Rgの強度の変化であると判定(ステップS209)し、光学素子損傷診断の処理を終了する。この場合、光学素子損傷診断処理後の対応として、ビームコントローラ80は、例えばEUV光生成コントローラ5に診断結果を含むエラー信号を発報してもよい。EUV光生成コントローラ5は、レーザ装置3Cへの発振トリガを停止し、レーザ装置3Cの動作を停止し、チャンバウインドウ73の損傷の可能性を不図示の表示器に表示してもよい。これによりオペレータは、チャンバウインドウ73に損傷があるか否かのチェックを行ってもよい。オペレータは、チャンバウインドウ73に損傷があった場合、チャンバウインドウ73の交換を実施しても良い。
 反射光31Rgの強度が基準値以内であると判定した場合(ステップS208;Y)、ビームコントローラ80は、異常無しと判定(ステップS210)し、光学素子損傷診断の処理を終了する。
 その他の動作は、上記比較例、又は実施形態1若しくは2に係るレーザシステムと略同様であってもよい。
[5.3 作用・効果]
 実施形態3のレーザシステム300Cによれば、コンバイナセンサ81で計測されるメインパルスガイドレーザ光31Mg及びプリパルスガイドレーザ光31Pgの計測結果と、PSD83の反射光31Rgの強度の計測結果とを合わせて判定することで、チャンバウインドウ73の損傷を短時間で特定することができる。
 その他の作用・効果は、上記比較例、又は実施形態1若しくは2に係るレーザシステムと略同様であってもよい。
<6.実施形態4>(プリパルスレーザ光の戻り光を検出する戻り光センサを備えたレーザシステム)
 次に、本開示の実施形態4に係るレーザシステムについて説明する。なお、以下では上記比較例、又は実施形態1ないし3のいずれかに係るレーザシステムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
[6.1 構成]
 図9は、実施形態4に係るレーザシステム300Dの一構成例を概略的に示している。
 EUV光生成システム11は、上記比較例に係るレーザシステム300に代えてレーザシステム300Dを備えた構成であってもよい。
 レーザシステム300Dは、レーザ装置3Dと、レーザ光伝送装置34Dとを備えている。レーザシステム300Dは、さらに、戻り光センサ82を備えている。
 レーザ装置3Dの構成は、上記比較例に係るレーザシステム300におけるレーザ装置3と略同様であってもよい。
 実施形態1ないし実施形態3では、戻り光センサ82は、反射光学系であるチルトミラー72からメインパルスレーザ装置30Mの内部に至る経路中に設けるようにしたが、本実施形態4では、チルトミラー72からプリパルスレーザ装置30Pの内部に至る経路中に設けられている。
 本実施形態4では、戻り光センサ82は、プリパルスレーザ光31Pの光路を逆行する戻り光31Rpの一部を検出するように構成されている。戻り光センサ82は、戻り光31Rpの光量を検出するパワーメータであってもよい。戻り光センサ82は、チルトミラー72により反射されプリパルスレーザ装置30Pへと逆行するプリパルスレーザ光31Pの戻り光31Rpの光路上に設けられ、戻り光31Rpの一部を検出する。なお、図9では、戻り光センサ82を、反射ミラー93Pと反射ミラー92Pとの間に配置した例を示しているが、レーザ光伝送装置34D内の他の位置における戻り光31Rpの光路上に設けられていてもよい。
 戻り光センサ82は、ビームコントローラ80に接続され、ビームコントローラ80に戻り光31Rpの検出結果を出力する。
 ビームコントローラ80は、コンバイナセンサ81によってプリパルスレーザ光31P、及びメインパルスレーザ光31Mの異常が検出されなかった場合において、戻り光センサ82により検出された戻り光31Rpの光量が所定の光量値である第3の閾値を超えた場合に、チルトミラー72に損傷が有ると判定する制御部であってもよい。
 その他の構成は、上記比較例、又は実施形態1ないし3のいずれかに係るレーザシステムと略同様であってもよい。
[6.2 動作]
 図10は、実施形態4に係るレーザシステム300Dにおける光学素子損傷診断のフローチャートの一例を概略的に示している。
 ビームコントローラ80は、戻り光センサ82によって、プリパルスレーザ光31Pの戻り光31Rpの光量を計測する(ステップS301)。
 ビームコントローラ80は、コンバイナセンサ81による計測結果に異常が有るか否かを判定する(ステップS302)。例えば、ビームコントローラ80は、コンバイナセンサ81により計測されたプリパルスレーザ光31Pのビームパラメータ及びメインパルスレーザ光31Mのビームパラメータビームパラメータに異常が有るか否かを判定してもよい。
 コンバイナセンサ81による計測結果に異常が有ると判定した場合(ステップS302;N)、ビームコントローラ80は、ビームコンバイナ71又はその上流に異常があると判定(ステップS303)し、光学素子損傷診断の処理を終了する。この場合、光学素子損傷診断処理後の対応として、ビームコントローラ80は、例えばEUV光生成コントローラ5に診断結果を含むエラー信号を発報してもよい。EUV光生成コントローラ5は、レーザ装置3Dへの発振トリガを停止し、レーザ装置3Dの動作を停止し、ビームコンバイナ71を含むレーザ光路の上流の光学素子の損傷の可能性を不図示の表示器に表示してもよい。これによりオペレータは、ビームコンバイナ71又はその上流の光学素子に損傷があるか否かのチェックを行ってもよい。オペレータは、損傷した光学素子があった場合、損傷した光学素子の交換を実施しても良い。
 コンバイナセンサ81による計測結果に異常が無いと判定した場合(ステップS302;Y)、ビームコントローラ80は、戻り光センサ82による計測値に基づいて、戻り光31Rpの異常を検出する。
 戻り光31Rpの異常の検出の閾値は1つの閾値であってよい。ここでは、第3の閾値と称する。第3の閾値は、プリパルスレーザ光31P、及びメインパルスレーザ光31Mのレーザ照射条件毎に変化させてもよい。例えば、レーザ照射条件に対応付けたテーブルデータに基づいて、第3の閾値を変化させてもよい。
 ビームコントローラ80は、戻り光センサ82による戻り光31Rpの計測値が第3の閾値を超えているかを判定し、異常の原因を特定してもよい。
 ビームコンバイナ71よりも下流の経路、換言すれば、ビームコンバイナ71とターゲット27との間の経路におけるチルトミラー72等の光学素子の損傷が発生すると、その光学素子の表面での反射光が増え、戻り光31Rpが増加し得る。第3の閾値は、そのような戻り光31Rpの増加を検出できるような値に設定してもよい。
 ビームコントローラ80は、戻り光センサ82による計測値に基づいて、戻り光31Rpの光量が第3の閾値より小さいか否かを判定してもよい(ステップS304)。
 戻り光31Rpの光量が第3の閾値よりも小さくないと判定した場合(ステップS304;N)、ビームコントローラ80は、チルトミラー27の損傷による戻り光31Rpの増加であると判定(ステップS305)し、光学素子損傷診断の処理を終了する。この場合、光学素子損傷診断処理後の対応として、ビームコントローラ80は、例えばEUV光生成コントローラ5に診断結果を含むエラー信号を発報してもよい。EUV光生成コントローラ5は、レーザ装置3Dへの発振トリガを停止し、レーザ装置3Dの動作を停止し、チルトミラー27の損傷の可能性を不図示の表示器に表示してもよい。これによりオペレータは、チルトミラー72に損傷があるか否かのチェックを行ってもよい。オペレータは、チルトミラー72に損傷があった場合、チルトミラー72の交換を実施しても良い。
 戻り光31Rpの光量が第3の閾値よりも小さいと判定した場合(ステップS304;Y)、ビームコントローラ80は、異常無しと判定(ステップS306)し、光学素子損傷診断の処理を終了する。
 その他の動作は、上記比較例、又は実施形態1ないし3のいずれかに係るレーザシステムと略同様であってもよい。
[6.3 作用・効果]
 実施形態4のレーザシステム300Dによれば、ビームコントローラ80は戻り光センサ82によるプリパルスレーザ光31Pの戻り光31Rpの計測値に基づいて、チルトミラー72等の光学素子の損傷を短時間に判定し得る。
 その他の作用・効果は、上記比較例、又は実施形態1ないし3のいずれかに係るレーザシステムと略同様であってもよい。
<7.実施形態5>(プリパルスレーザ装置の内部に戻り光センサを備えたレーザシステム)
 次に、本開示の実施形態5に係るレーザシステムについて説明する。なお、以下では上記比較例、又は実施形態1ないし4のいずれかに係るレーザシステムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
[7.1 構成]
 図11は、実施形態5に係るレーザシステム300Eの一構成例を概略的に示している。図12は、実施形態5に係るレーザシステム300Eにおけるプリパルスレーザ装置30Pの一構成例を概略的に示す。
 EUV光生成システム11は、上記比較例に係るレーザシステム300に代えてレーザシステム300Eを備えた構成であってもよい。
 レーザシステム300Eは、レーザ装置3Eと、レーザ光伝送装置34Eとを備えている。レーザシステム300Eは、さらに、戻り光センサ82を備えている。
 レーザ光伝送装置34Eの構成は、上記比較例に係るレーザシステム300におけるレーザ光伝送装置34と略同様であってもよい。
 実施形態4では、レーザ光伝送装置34Dにおける伝送経路に戻り光センサ82を設けるようにしたが、本実施形態5では、戻り光センサ82がレーザ装置3Eの内部、より詳しくはプリパルスレーザ装置30Pの内部に配置されている。
 プリパルスレーザ装置30Pは、図12に示したように、マスタオシレータ(MO)110Pと、光学素子122と、レーザ増幅器123と、光シャッタ124とを含んでいてもよい。レーザ増幅器123は、1又は複数の増幅器を含んでいてもよい。1又は複数の増幅器は、YAG結晶をレーザ媒質とするレーザ増幅器であってもよい。
 プリパルスレーザ装置30Pは、さらに、マスタオシレータ110Pとレーザ増幅器123との間に配置されたビームスプリッタ121を含んでいてもよい。戻り光センサ82は、マスタオシレータ110Pとレーザ増幅器123との間に配置されていてもよい。戻り光センサ82は、レーザ増幅器123を逆行通過した後の戻り光31Rpの光量を検出する。
 戻り光センサ82は、レーザ光路に配置されたビームスプリッタ121で分岐された戻り光31Rpを検出するよう構成されてもよい。図12では、ビームスプリッタ121を透過した戻り光31Rpの光路上に戻り光センサ82を配置している。
 その他の構成は、上記比較例、又は実施形態1ないし4のいずれかに係るレーザシステムと略同様であってもよい。
[7.2 動作]
 実施形態5に係るレーザシステム300Eにおける光学素子損傷診断の処理は、実施形態4に係るレーザシステム300Dと略同様に、図10に示した処理を行ってもよい。
 ただし、実施形態5に係るレーザシステム300Eでは、戻り光31Rpはレーザ光路を逆行する過程で、レーザ増幅器123によって増幅される。戻り光センサ82では、実施形態4の場合よりも増幅された戻り光31Rpが検出される。このため、第3の閾値は、実施形態4の場合よりも大きい値に設定してもよい。
 その他の動作は、上記比較例、又は実施形態1ないし4のいずれかに係るレーザシステムと略同様であってもよい。
[7.3 作用・効果]
 実施形態5のレーザシステム300Eによれば、戻り光センサ82の計測値は増幅された戻り光31Rpのものとなるため、第3の閾値を実施形態4の場合に比べて大きい値に設定できる。このため、ノイズとの識別が容易となり、より精度の高い光学素子損傷診断の判定が可能となる。
 その他の作用・効果は、上記比較例、又は実施形態1ないし4のいずれかに係るレーザシステムと略同様であってもよい。
<8.その他>
 上記の説明は、制限ではなく単なる例示を意図している。従って、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
 本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書、及び添付の特許請求の範囲に記載される不定冠詞「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。

Claims (11)

  1.  レーザ光を出射するレーザ装置と、
     前記レーザ装置とEUV光が生成されるEUVチャンバ内に供給されたターゲットとの間の経路に配置された伝送光学系と、
     前記伝送光学系と前記ターゲットとの間の経路に配置され、前記伝送光学系からの前記レーザ光を前記ターゲットの方向に反射する反射光学系と、
     前記伝送光学系と前記反射光学系との間の経路に設けられ、前記レーザ装置から前記反射光学系へと向かう前記レーザ光を検出する第1のセンサと、
     前記反射光学系から前記レーザ装置の内部に至る経路に設けられ、前記反射光学系により反射され前記レーザ装置へと逆行する前記レーザ光の戻り光を検出する第2のセンサと、
     前記第1のセンサによって前記レーザ光の異常が検出されなかった場合において、前記第2のセンサにより検出された前記戻り光の光量が所定の光量値を超えた場合に、前記反射光学系に損傷が有ると判定する制御部と
     を備える
     レーザシステム。
  2.  請求項1に記載のレーザシステムであって、
     前記第2のセンサは、前記レーザ装置の内部に配置されている。
  3.  請求項2に記載のレーザシステムであって、
     前記レーザ装置は、マスタオシレータと、少なくとも1つのレーザ増幅器とを含み、
     前記第2のセンサは、少なくとも1つの前記レーザ増幅器を逆行通過した後の前記戻り光の光量を検出する。
  4.  請求項1に記載のレーザシステムであって、
     前記レーザ装置は、
     プリパルスレーザ光を出射するプリパルスレーザ装置と、
     メインパルスレーザ光を出射するメインパルスレーザ装置と
     を含み、
     前記伝送光学系と前記反射光学系との間の前記経路において、前記プリパルスレーザ光の光路と前記メインパルスレーザ光の光路とが交差する位置に配置され、前記プリパルスレーザ光の光路と前記メインパルスレーザ光の光路とを略一致させるビームコンバイナ、をさらに備え、
     前記第1のセンサは、前記ビームコンバイナにより分岐された前記メインパルスレーザ光の一部と前記プリパルスレーザ光の一部とを検出する。
  5.  請求項4に記載のレーザシステムであって、
     前記第2のセンサは、前記ビームコンバイナから前記メインパルスレーザ装置へと逆行する前記メインパルスレーザ光の戻り光の一部を検出する。
  6.  請求項5に記載のレーザシステムであって、
     前記制御部は、前記戻り光の光量が第1の光量値よりも小さく、前記第1の光量値よりも小さい値となる第2の光量値よりも大きい場合に、前記反射光学系に損傷が有ると判定する。
  7.  請求項4に記載のレーザシステムであって、
     前記第2のセンサは、前記ビームコンバイナから前記プリパルスレーザ装置へと逆行する前記プリパルスレーザ光の戻り光の一部を検出する。
  8.  請求項1に記載のレーザシステムであって、
     前記EUVチャンバは、前記レーザ光を前記EUVチャンバ内に向けて通過させるチャンバウインドウを含み、
     前記レーザ装置は、前記レーザ光と同一の光路上を進む参照レーザ光を出射する参照レーザ装置を含み、
     前記参照レーザ光の前記チャンバウインドウによる反射光を検出する第3のセンサ、をさらに備え、
     前記制御部は、前記第3のセンサによる前記反射光の強度の検出結果に基づいて、前記チャンバウインドウの損傷の有無を判定する。
  9.  請求項8に記載のレーザシステムであって、
     前記制御部は、前記レーザ光の異常と前記反射光学系の損傷とが共に無いと判定された場合において、前記反射光の強度が所定の強度範囲から外れた場合に、前記チャンバウインドウに損傷が有ると判定する。
  10.  請求項1に記載のレーザシステムであって、
     前記反射光学系は、前記レーザ光に対して不透明な基板と前記基板上に形成された前記レーザ光を反射する金属膜とを備えた反射ミラーを含む
  11.  EUV光が生成されるEUVチャンバと、
     レーザ光を出射するレーザ装置と、
     前記レーザ装置と前記EUVチャンバ内に供給されたターゲットとの間の経路に配置された伝送光学系と、
     前記伝送光学系と前記ターゲットとの間の経路に配置され、前記伝送光学系からの前記レーザ光を前記ターゲットの方向に反射する反射光学系と、
     前記伝送光学系と前記反射光学系との間の経路に設けられ、前記レーザ装置から前記反射光学系へと向かう前記レーザ光を検出する第1のセンサと、
     前記反射光学系から前記レーザ装置の内部に至る経路に設けられ、前記反射光学系により反射され前記レーザ装置へと逆行する前記レーザ光の戻り光を検出する第2のセンサと、
     前記第1のセンサによって前記レーザ光の異常が検出されなかった場合において、前記第2のセンサにより検出された前記戻り光の光量が所定の光量値を超えた場合に、前記反射光学系に損傷が有ると判定する制御部と
     を備える
     EUV光生成システム。
PCT/JP2017/012676 2017-03-28 2017-03-28 レーザシステム、及びeuv光生成システム WO2018179094A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/012676 WO2018179094A1 (ja) 2017-03-28 2017-03-28 レーザシステム、及びeuv光生成システム
US16/534,806 US11228156B2 (en) 2017-03-28 2019-08-07 Laser system and extreme ultraviolet light generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/012676 WO2018179094A1 (ja) 2017-03-28 2017-03-28 レーザシステム、及びeuv光生成システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/534,806 Continuation US11228156B2 (en) 2017-03-28 2019-08-07 Laser system and extreme ultraviolet light generation system

Publications (1)

Publication Number Publication Date
WO2018179094A1 true WO2018179094A1 (ja) 2018-10-04

Family

ID=63677485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012676 WO2018179094A1 (ja) 2017-03-28 2017-03-28 レーザシステム、及びeuv光生成システム

Country Status (2)

Country Link
US (1) US11228156B2 (ja)
WO (1) WO2018179094A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021137765A1 (en) * 2019-12-31 2021-07-08 ResMed Asia Pte Ltd A patient interface formed from a textile construction and including a stiffened portion to provide for customization

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134974A (ja) * 2004-11-04 2006-05-25 Canon Inc 露光装置、判定方法及びデバイス製造方法
JP2008103545A (ja) * 2006-10-19 2008-05-01 Komatsu Ltd 極端紫外光源装置及びコレクタミラー
JP2012147022A (ja) * 2012-04-19 2012-08-02 Komatsu Ltd 極端紫外光源装置
JP2013218286A (ja) * 2012-03-14 2013-10-24 Gigaphoton Inc ファラデーローテータ、光アイソレータ、レーザ装置、および極端紫外光生成装置
JP2014041828A (ja) * 2008-11-06 2014-03-06 Gigaphoton Inc 極端紫外光生成装置
WO2016142995A1 (ja) * 2015-03-06 2016-09-15 ギガフォトン株式会社 レーザ装置及び極端紫外光生成システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155833A (ja) 1984-12-28 1986-07-15 Toshiba Corp 光フアイバ異常検出装置
JPS62173629A (ja) 1986-01-28 1987-07-30 Matsushita Electric Ind Co Ltd 光学式記録再生装置
JP5368261B2 (ja) 2008-11-06 2013-12-18 ギガフォトン株式会社 極端紫外光源装置、極端紫外光源装置の制御方法
JP5932306B2 (ja) * 2011-11-16 2016-06-08 ギガフォトン株式会社 極端紫外光生成装置
JP6168760B2 (ja) * 2012-01-11 2017-07-26 ギガフォトン株式会社 レーザビーム制御装置及び極端紫外光生成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134974A (ja) * 2004-11-04 2006-05-25 Canon Inc 露光装置、判定方法及びデバイス製造方法
JP2008103545A (ja) * 2006-10-19 2008-05-01 Komatsu Ltd 極端紫外光源装置及びコレクタミラー
JP2014041828A (ja) * 2008-11-06 2014-03-06 Gigaphoton Inc 極端紫外光生成装置
JP2013218286A (ja) * 2012-03-14 2013-10-24 Gigaphoton Inc ファラデーローテータ、光アイソレータ、レーザ装置、および極端紫外光生成装置
JP2012147022A (ja) * 2012-04-19 2012-08-02 Komatsu Ltd 極端紫外光源装置
WO2016142995A1 (ja) * 2015-03-06 2016-09-15 ギガフォトン株式会社 レーザ装置及び極端紫外光生成システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021137765A1 (en) * 2019-12-31 2021-07-08 ResMed Asia Pte Ltd A patient interface formed from a textile construction and including a stiffened portion to provide for customization

Also Published As

Publication number Publication date
US20190363508A1 (en) 2019-11-28
US11228156B2 (en) 2022-01-18

Similar Documents

Publication Publication Date Title
US9713239B2 (en) Laser produced plasma EUV light source
JP6195474B2 (ja) 極端紫外光生成装置及び極端紫外光生成システムにおけるレーザシステムの制御方法
US20230139746A1 (en) Optical isolation module
JP7225224B2 (ja) プラズマをモニタするためのシステム
WO2017149712A1 (ja) レーザ装置及び極端紫外光生成システム
WO2015012099A1 (ja) レーザシステム、極端紫外光生成システム及びレーザ装置の制御方法
KR20150131187A (ko) 극자외 광원
JP2018525666A (ja) Lpp euv光源におけるソースレーザの発射を制御するためのシステム及び方法
JPWO2014119199A1 (ja) レーザ装置及び極端紫外光生成装置
WO2014119198A1 (ja) レーザ装置及び極端紫外光生成装置
US20140346375A1 (en) Laser apparatus, laser system, and extreme ultraviolet light generation apparatus
WO2018179094A1 (ja) レーザシステム、及びeuv光生成システム
JP2018512723A (ja) 放射源
US9271382B2 (en) Laser apparatus and extreme ultraviolet light generation apparatus
JP6748730B2 (ja) 極端紫外光生成装置
US10925143B2 (en) Laser apparatus and EUV light generating system
JPWO2018134971A1 (ja) レーザ装置及び極端紫外光生成システム
NL2034792B1 (en) Euv light generation system and electronic device manufacturing method
US11043784B2 (en) Laser apparatus and EUV light generation system
US10958033B2 (en) Laser apparatus
KR20240032026A (ko) 계측 빔 산란을 활용한 액적 검출 방법
TW202338484A (zh) 孔徑及方法
CN110692283A (zh) 辐射源
NL2012718A (en) Radiation systems and associated methods.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902886

Country of ref document: EP

Kind code of ref document: A1

WD Withdrawal of designations after international publication

Designated state(s): JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902886

Country of ref document: EP

Kind code of ref document: A1