WO2018179071A1 - 無線装置、無線システムおよび通信周波数割り当て方法 - Google Patents
無線装置、無線システムおよび通信周波数割り当て方法 Download PDFInfo
- Publication number
- WO2018179071A1 WO2018179071A1 PCT/JP2017/012491 JP2017012491W WO2018179071A1 WO 2018179071 A1 WO2018179071 A1 WO 2018179071A1 JP 2017012491 W JP2017012491 W JP 2017012491W WO 2018179071 A1 WO2018179071 A1 WO 2018179071A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel
- communication
- wireless device
- communication speed
- terminal
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 266
- 238000000034 method Methods 0.000 title claims description 20
- 238000005259 measurement Methods 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 description 41
- 230000005540 biological transmission Effects 0.000 description 39
- 238000010586 diagram Methods 0.000 description 16
- 230000007704 transition Effects 0.000 description 12
- UWWVLQOLROBFTD-GADKELDLSA-N (2S,3S,5R,10R,12S,14S,15R,16R)-2-amino-12,16-dimethylicosane-3,5,10,14,15-pentol Chemical compound CCCC[C@@H](C)[C@@H](O)[C@@H](O)C[C@@H](C)C[C@H](O)CCCC[C@@H](O)C[C@H](O)[C@H](C)N UWWVLQOLROBFTD-GADKELDLSA-N 0.000 description 11
- 101100161473 Arabidopsis thaliana ABCB25 gene Proteins 0.000 description 10
- 101100096893 Mus musculus Sult2a1 gene Proteins 0.000 description 10
- 101150081243 STA1 gene Proteins 0.000 description 10
- 230000010355 oscillation Effects 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- 230000015654 memory Effects 0.000 description 9
- OVGWMUWIRHGGJP-WVDJAODQSA-N (z)-7-[(1s,3r,4r,5s)-3-[(e,3r)-3-hydroxyoct-1-enyl]-6-thiabicyclo[3.1.1]heptan-4-yl]hept-5-enoic acid Chemical compound OC(=O)CCC\C=C/C[C@@H]1[C@@H](/C=C/[C@H](O)CCCCC)C[C@@H]2S[C@H]1C2 OVGWMUWIRHGGJP-WVDJAODQSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 101000988961 Escherichia coli Heat-stable enterotoxin A2 Proteins 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 102100022749 Aminopeptidase N Human genes 0.000 description 1
- 101710099461 Aminopeptidase N Proteins 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/12—WLAN [Wireless Local Area Networks]
Definitions
- the present invention relates to a wireless device that performs wireless communication, a wireless system, and a communication frequency allocation method.
- the 2.4 GHz band includes Wi-Fi (registered trademark), Bluetooth (registered trademark), mobile router, amateur radio, and the like.
- the 5 GHz band includes Wi-Fi, various radars such as weather, amateur radio, and the like.
- the ISM band does not require a radio station license or radio wave usage fee, and the number of systems using this ISM band is increasing year by year.
- the systems may coexist without causing interference with each other at the same frequency of the ISM band. Desired. In order to grasp the state of interference, it is necessary to measure continuous radio waves for a certain period of time.
- the channel is selected based on the radio wave environment of each channel, for example, the received power of channel search.
- the access point may not select an appropriate channel.
- the area of the Bluetooth communication apparatus which is another system of the same ISM band overlaps with a part of the area of the access point of the wireless LAN. Since the local wireless LAN access point selects the channel without considering the radio wave environment of the terminal located in the local area, it is determined that the terminal can be selected even if the terminal receives interference from other systems. To do. In this case, the access point cannot select an optimum channel for communication with the terminal, and communication performance such as throughput deteriorates.
- an object of the present invention is to perform communication using an optimum channel in consideration of a radio wave environment of a wireless device that performs communication.
- the wireless device determines the channel with the maximum communication speed based on the communication speeds of the current channel and the other channel that communicated with the other wireless device as the other wireless device. It is necessary to have a control unit that selects as a new channel to be used for communication with the network.
- communication can be performed using an optimum channel in consideration of the radio wave environment of a wireless device that performs communication.
- FIG. 1 is a block diagram of a configuration example of a terminal of the wireless device according to the first embodiment.
- FIG. 2 is a table showing a setting example of the SINR-communication speed correspondence table stored in the terminal according to the first embodiment.
- FIG. 3 is a block diagram of a configuration example of an access point of the wireless device according to the first embodiment.
- FIG. 4 is a diagram illustrating a hardware configuration example of a control unit of the radio apparatus according to the first embodiment.
- FIG. 5 is a flowchart of an operation process example of the wireless device according to the first embodiment.
- FIG. 6 is a diagram showing various systems using the ISM band.
- FIG. 7 is a diagram illustrating channel selection processing for an access point according to an existing technique.
- FIG. 8 is a diagram illustrating channel selection processing for an access point according to the first embodiment.
- FIG. 9 is a block diagram of a configuration example of a terminal of the wireless device according to the second embodiment.
- FIG. 10 is a block diagram of a configuration example of an access point of the wireless device according to the second embodiment.
- FIG. 11 is a flowchart of an operation process example of the wireless device according to the second embodiment.
- FIG. 1 is a block diagram of a configuration example of a terminal of the wireless device according to the first embodiment.
- the wireless system according to the embodiment includes one wireless device and the other wireless device, and these two wireless devices perform wireless communication with each other using a frequency band of an ISM band, for example.
- One wireless device is an access point (AP) of a wireless LAN such as Wi-Fi, and the other wireless device is described using an example of a terminal (STA) that performs wireless communication with the access point.
- the terminal is, for example, a mobile phone, a smartphone, a mobile router, etc. that can be freely moved.
- Embodiment 1 describes a configuration in which an access point (AP) performs channel selection by downlink (DL) communication from the access point (AP) to a terminal (STA) 100.
- AP access point
- DL downlink
- the terminal 100 includes a baseband (BB) unit 101, a radio frequency (RF) unit 102, and a signal processing unit 103.
- BB baseband
- RF radio frequency
- the baseband unit 101 performs signal processing on signals transmitted and received by the terminal 100.
- the baseband unit 101 includes a modulator 111, a digital-analog converter (DAC) 112, and an oscillator 113 as a configuration for processing a transmission signal.
- DAC digital-analog converter
- the modulator 111 digitally modulates a digital transmission signal according to a predetermined wireless system.
- the DAC 112 is supplied with an oscillation signal having a predetermined frequency from the oscillator 1 (113), and converts a digital signal to be wirelessly transmitted into an analog signal.
- the baseband unit 101 includes an analog-digital converter (ADC) 123 and a demodulator 124 as a configuration for processing the received signal.
- ADC analog-digital converter
- the ADC 123 is supplied with the oscillation signal of the oscillator 1 (113), and converts the received signal from an analog signal to a digital signal.
- the demodulator 124 demodulates the received signal.
- the high-frequency unit 102 includes an amplifier (PA: Power Amp) 114 and an oscillator 2 (115) as a configuration on the transmission side.
- the amplifier 114 receives a baseband signal input from the baseband unit 101 and receives an oscillation signal of a predetermined frequency from the oscillator 2 (115), and amplifies a transmission signal by a high frequency (radio frequency, RF: Radio Frequency). Wirelessly transmitted from the antenna 116.
- PA Power Amp
- RF Radio Frequency
- the high-frequency unit 102 includes an amplifier (LNA: Low Noise Amp) 122 as a configuration on the receiving side.
- the amplifier 122 amplifies the radio signal received by the antenna 116 by receiving an oscillation signal having a predetermined frequency from the oscillator 2 (115), and outputs the amplified signal to the baseband unit 101.
- the signal processing unit 103 acquires information on its own radio wave environment and notifies the access point. At this time, the signal processing unit 103 performs control to calculate the communication speed based on the communication quality of each channel during DL communication from the access point to the terminal 100 and notify the access point. For example, the channel (for example, 1ch), the communication quality, and the communication quality of other channels that are communicating with the access point are calculated. Other channels include, for example, the possibility of interference from other systems.
- the signal processing unit 103 includes a reception signal processing unit 131 and a transmission signal processing unit 141.
- Received signal processing section 131 includes channel transition section 132, SINR calculation section 133, communication speed calculation section 134, and storage section 135.
- the channel transition unit 132 scans a plurality of channels that can communicate with the access point, and controls to change the frequency of the oscillator 2 (115).
- the SINR calculation unit 133 calculates a communication quality SINR (Signal to Interference Noise Ratio) of the reception signal RD output from the baseband unit 101 (demodulator 124). At this time, the SINR calculation unit 133 obtains the SINR of each of a plurality of channels that can communicate with the access point.
- SINR Signal to Interference Noise Ratio
- the SINR calculation unit 133 calculates the SNIR of DL communication from the access point in the own terminal l (100) based on the following formula (1).
- SINR l communication quality of terminal l in the ch-th channel
- RSSI l average received power from the AP to which the terminal l is connected
- ⁇ ⁇ RSSI k (ch) ⁇ term other AP in the ch-th channel
- Received average power from terminals connected to other APs N (ch): Average received power other than wireless LAN signals in the ch-th channel (including noise power) ⁇ , ⁇ : adjustment parameters (default values: 1, 0 ⁇ ⁇ ⁇ 1, 0 ⁇ ⁇ ⁇ 1)
- the terminal l (100) uses the received intensity (received average power RSSI l ) for one channel actually communicated with the access point (AP) as the numerator, and calculates the SINR. Calculated.
- the communication speed calculation unit 134 calculates a communication speed based on the SINR calculated by the SINR calculation unit 133.
- the storage unit 135 correspondence information between SINR and communication speed (SINR-communication speed correspondence table 201) is set in advance.
- the communication speed calculation unit 134 reads the communication speed corresponding to the communication speed of the reception signal RD calculated by the SINR calculation unit 133 with reference to the storage unit 135.
- FIG. 2 is a chart showing a setting example of the SINR-communication speed correspondence table stored in the terminal according to the first embodiment.
- the SINR-communication speed correspondence table 201 stored in the storage unit 135 communication speeds corresponding to SINRs for a plurality of ranges are set.
- the SINR-communication speed correspondence table 201 a value having a higher communication speed is set as the SINR is larger.
- Communication speed communication rate calculation unit 134 has calculated, at the downlink DL from the access point to the terminal 100, a communication speed of channel currently communicating (DL_Comm_Speed l (ch)).
- the communication speed data F calculated by the communication speed calculation unit 134 is output to the transmission signal processing unit 141.
- the transmission signal processing unit 141 transmits the communication speed data F calculated by the communication speed calculation unit 134 to the access point as the transmission signal SD.
- FIG. 3 is a block diagram of a configuration example of an access point of the wireless device according to the first embodiment.
- the access point (AP) 300 includes a baseband (BB) unit 301, a radio frequency (RF) unit 302, and a signal processing unit 303.
- BB baseband
- RF radio frequency
- the baseband unit 301 performs signal processing on signals transmitted and received by the access point 300.
- the baseband unit 301 includes a modulator 311, a digital-analog converter (DAC) 312, and an oscillator 313 as a configuration for processing a transmission signal.
- DAC digital-analog converter
- the modulator 311 digitally modulates a digital transmission signal according to a predetermined wireless system.
- the DAC 312 is supplied with an oscillation signal having a predetermined frequency from the oscillator 1 (313), and converts a digital signal to be wirelessly transmitted into an analog signal.
- the baseband unit 301 includes an analog-digital converter (ADC) 323 and a demodulator 324 as a configuration for processing the received signal.
- ADC analog-digital converter
- the ADC 323 is supplied with the oscillation signal of the oscillator 1 (313), and converts the received signal from an analog signal to a digital signal.
- the demodulator 324 demodulates the received signal.
- the high frequency unit 302 includes an amplifier (PA) 314 and an oscillator 2 (315) as a configuration on the transmission side.
- the amplifier 314 receives the baseband signal input from the baseband unit 301 by receiving an oscillation signal having a predetermined frequency from the oscillator 2 (315), amplifies the transmission signal by radio frequency (RF), and wirelessly transmits the signal from the antenna 316. Send.
- PA amplifier
- RF radio frequency
- the high frequency unit 302 includes an amplifier (LNA) 322 as a configuration on the receiving side.
- the amplifier 322 amplifies the radio signal received by the antenna 316 by receiving an oscillation signal having a predetermined frequency from the oscillator 2 (315), and outputs the amplified signal to the baseband unit 301.
- the signal processing unit 303 includes a reception signal processing unit 331 and a transmission signal processing unit 341.
- the signal processing unit 303 performs control to select a channel (communication frequency) from which an optimal communication state can be obtained based on the communication speed of each channel acquired from the access point 300.
- the received signal processing unit 331 performs channel selection processing based on the received signal RD.
- the transmission signal processing unit 341 performs data processing on the transmission signal SD in association with the channel selection processing performed by the reception signal processing unit 331.
- the received signal processing unit 331 includes a total communication speed calculation unit 332, a comparison unit 333, a selection unit 334, and a channel transition unit 335.
- the total communication speed calculation unit 332 calculates the communication speed (communication speed data F) of each channel calculated and transmitted by the terminal 100 from the terminal 100 based on the reception signal RD output from the baseband unit 301 (demodulator 324). To obtain the total communication speed for each channel.
- the total communication speed is a total speed of downlink (DL: communication from access point to terminal) acquired from each of the plurality of terminals 100 having a communication request to the access point 300.
- DL downlink
- the total communication speed calculation unit 332 is simply connected to the access point 300, but does not include the communication speed of the terminal 100 that is not performing communication. That is, the total communication speed calculation unit 332 obtains the total communication speed of the current channel and the total communication speed of other channels for a plurality of terminals 100 that can actually perform communication. For example, the total communication speed (DL_Total_Comm_Speed (ch) is calculated based on the following formula (2), where L is the number of terminals.
- the comparison unit 333 stores and holds information on the total communication speed RD1 of the current channel (for example, 1ch) calculated by the total communication speed calculation unit 332 and the total communication speed RDn of other channels in an updatable manner. Then, the comparison unit 333 compares the total communication speed RD1 of the current channel with the total communication speed RDn of other channels. For example, the total communication speed RD1 of the current channel is compared with the total communication speed RD2 of each of a plurality of channels.
- the selection unit 334 selects a channel having the maximum total communication speed as a result of comparison by the comparison unit 333. Then, the channel shifter 335 shifts to a channel that maximizes the total communication speed. For example, if the total communication speed RD2 of the other channel (ch5) is larger than the current channel (Ch1), the subsequent communication channel is set to ch5, and the channel is shifted from the current channel 1ch to 5ch. If the total communication speed of the current channel (1ch) is higher than any of the other channels, the current channel (1ch) remains unchanged, and no channel transition is performed.
- the channel shifting unit 335 changes the oscillation frequency of the oscillator 2 (315) to a frequency corresponding to the channel to be shifted for channel shifting. As a result, the transmission frequency of PA 314 of the transmission signal and the reception frequency of LNA 322 of the reception signal are changed (communication frequency allocation). In addition, the channel transition unit 335 notifies the transmission signal processing unit 341 of a channel change at the time of channel transition.
- the transmission signal processing unit 341 includes a beacon transmission unit 342 and a channel change notification unit 343.
- the beacon transmission unit 342 transmits a predetermined beacon signal to the terminal 100 at a predetermined timing or periodically. That is, every time the access point 300 sets an optimum channel (communication frequency) with the terminal 100, the beacon transmission unit 342 transmits a measurement beacon to the terminal 100 as the transmission signal SD. This beacon is transmitted on the current communication frequency (channel) or a predetermined initial value channel (for example, 1ch).
- the channel change notification unit 343 When the channel change notification unit 343 receives the notification of the channel shift from the received signal processing unit 331 (channel shift unit 335), the channel change notification unit 343 transmits the received changed channel information to the terminal 100 as the transmission signal SD.
- the terminal 100 changes the channel corresponding to the channel information included in the transmission signal SD. Thereby, even if the channel is changed at the access point 300, communication with the terminal 100 can be continued.
- FIG. 4 is a diagram illustrating a hardware configuration example of the control unit of the wireless device according to the first embodiment.
- the control unit 400 shown in FIG. 4 controls each part of the apparatus. Then, the control unit 400 provided in the terminal 100 executes functions of the baseband unit 101 and the signal processing unit 103 of the terminal 100.
- the control unit 400 provided in the access point 300 executes the functions of the baseband unit 301 and the signal processing unit 303 of the access point 300.
- a CPU (Central Processing Unit) 401 shown in FIG. 4 reads and executes a program stored in the memory 402, and at that time, a part of the area of the memory 402 is used as a work area.
- the terminal 100 can perform overall control of the terminal 100 and can realize the functions of the baseband unit 101 and the signal processing unit 103 of FIG.
- the access point 300 can perform overall control of the access point 300 and can realize the functions of the baseband unit 301 and the signal processing unit 303 of FIG.
- the baseband units 101 and 301 can also be configured using a dedicated DSP or IC.
- the memory 402 can be ROM, RAM, or the like. Also, an extended memory 403 such as an HDD or a flash memory can be used for a data storage area or the like. As the storage unit 135 in FIG. 1, for example, the memories 402 and 403 can be used.
- Reference numeral 404 denotes a bus.
- the wireless communication unit 405 realizes a function related to wireless communication of the high frequency unit 102 in the terminal 100 and realizes a function related to wireless communication of the high frequency unit 302 in the access point 300.
- a communication interface (I / F) unit 406 realizes a function of a communication interface with an external device in each of the terminal 100 and the access point 300.
- FIG. 5 is a flowchart of an operation process example of the wireless device according to the first embodiment.
- An example of channel selection processing performed by a control unit 400 (CPU 401) provided in each of a plurality of terminals (STAs) 100 and an access point (AP) 300 that configure a wireless system will be described.
- the access point (AP) 300 transmits a beacon signal to the terminal 100 through a channel currently communicating with the terminal 100 or an initial value channel (for example, 1ch) (step S501).
- the AP 300 starts a channel selection process of the wireless system shown in FIG. 5 by transmitting a beacon signal to the terminal 100 at a predetermined timing or periodically.
- AP 300 acquires the communication speed of each channel to be transmitted from each terminal 100 (DL_Comm_Speed l (ch)) , calculates the total transmission rate of each channel (DL_Total_Comm_Speed (ch)) (step S502).
- the AP 300 compares the total communication speed of the current channel with the total communication speed of other channels (step S503). At this time, if the total communication speed of the other channel is higher than the total communication speed of the current channel communicating with the terminal 100 (step S503: Yes), the AP 300 proceeds to step S504. If the total communication speed of the current channel communicating with the terminal 100 is equal to or higher than the total communication speed of other channels (step S503: No), the process returns to step S501 without changing the channel of the current channel.
- step S504 the AP 300 changes the channel to the channel with the maximum total communication speed (step S504), notifies the terminal (STA) 100 of the channel to be changed (step S505), and ends the above processing.
- the STA l (100) receives the radio wave from the AP 300 reaching its own device, and calculates the communication speed (DL_Comm_Speed l (ch)) in the current channel (for example, 1ch) (step S510). As described above, the communication speed is calculated based on, for example, SINR.
- STA l (100) determines whether all channels have been scanned (step S511). If all the channels have not been scanned (step S511: No), STA l (100) changes the channel (step S512) and returns to the process of step S510. For example, the next channel of the current channel (for example, 1ch ⁇ 2ch) is sequentially scanned.
- step S511 If scanning of all channels has been completed (step S511: Yes), the STA l (100) changes the channel to the current channel communicating with the AP 300 (step S513). Then, STA l (100) transmits the communication speed data of each channel obtained by the processing of steps S510 to S512 to AP 300 (step S514).
- STA l (100) matches the same channel as the changed channel notified from the AP 300 (step S515), and ends the above processing.
- FIG. 6 is a diagram showing various systems using the ISM band.
- the horizontal axis is frequency.
- the 2.4 GHz band includes Wi-Fi (registered trademark), mobile router, Bluetooth (registered trademark), ZigBee, amateur radio, medical microwave heating device, microwave oven, and the like.
- the 5 GHz band includes Wi-Fi, various radars such as weather, fixed / search satellites, radio astronomy, microwave landing guidance, aeronautical radio navigation, amateur radio, and the like.
- the ISM band does not require a radio station license or radio wave usage fee, and the number of systems using this ISM band is increasing year by year.
- the systems may coexist without causing interference with each other at the same frequency of the ISM band. Desired. In order to grasp the state of interference, it is necessary to measure continuous radio waves for a certain time and create statistical information and the like.
- FIG. 7 is a diagram for explaining channel selection processing of an access point using existing technology.
- FIG. 7A shows an arrangement state of a plurality of wireless LAN APs 1 and 2 (300) and another system (for example, a communication device of Bluetooth) 700. It is assumed that AP1, 2 (300) and other system 700 are arranged so that a part of the radio wave reachable range (corresponding to a cell) overlaps.
- Terminals (STA1, 2) 100 are located so as to be able to communicate with AP1 and other systems 700.
- the STA1 (100) is in a position where it can communicate with the AP1 (300) and the other system 700.
- STA2 (100) is in a position where it can communicate with AP1 (300) and AP2 (300).
- AP1 (300) is located outside the radio wave coverage of AP2 (300) and other system 700, and AP1 (300) is in a state where these AP1 (300) cannot grasp the presence of AP2 (100). is there.
- the communication channel is ch1
- the communication channel of AP2 (300) is ch2.
- the existing AP1 (300) communicates with ch1 to ch3 in both STA1 and 2 (100) due to the received power at the time of channel search. (S701).
- STA1 (100) receives interference from ch1 of other system 700
- STA2 (100) receives interference from ch2 of AP2 (300) (S702).
- AP1 (300) when communicating with STA1 and 2 (100), AP1 (300) preferably selects a channel (ch3) that does not cause interference, considering the radio wave environment of STA1 and 2 (100). Desirable (S703).
- AP1 (300) determines that all of ch1 to ch3 can be used for communication without considering the radio wave environment (S702) of STA1 and 2 (100) performing communication (S701).
- the transmission / reception channel selection is performed based on the above. For this reason, when communication is actually performed, there is a high possibility that communication performance (throughput) with the STAs 1 and 2 (100) is deteriorated.
- FIG. 8 is a diagram for explaining access point channel selection processing according to the first embodiment.
- FIG. 8A shows an arrangement state of a plurality of wireless LAN APs 1 and 2 (300) and another system (for example, a communication device of Bluetooth) 700, as in FIG. 7A.
- another system for example, a communication device of Bluetooth
- AP1 (300) of the first embodiment as shown in FIG. 8 (b), communication speed data of each channel when communication is performed from STA1, 2 (100) is acquired based on the channel selection process described above. Then, channel selection is performed (S801). Thereby, AP1 (300) selects a channel for communication in consideration of the radio wave environment of STA1 and 2 (100). In this case, AP1 (300) selects a channel (for example, ch3) excluding ch1 and 2 affected by other system 700 and AP2 (300), and communicates with STA1 and 2 (100).
- a channel for example, ch3 excluding ch1 and 2 affected by other system 700 and AP2 (300
- the access point (AP) 300 transmits the downlink communication speed of the channel actually communicated with the terminal (STA) 100, the communication speed of other channels, and so on. Based on the above, the channel with the maximum communication speed is changed. At this time, the AP 300 shifts to a channel having the maximum total communication speed obtained by summing the communication speeds for each channel acquired from the plurality of STAs 100. In this way, the AP 300 autonomously selects an optimum channel for communication with the STA 100 in consideration of the radio wave environment of the STA 100. As a result, the AP 300 can improve the wireless communication performance (communication speed, communication quality, throughput, etc.) with the STA 100.
- FIG. 9 is a block diagram of a configuration example of a terminal of the wireless device according to the second embodiment.
- the terminal (STA) 100 of the second embodiment the same components as those of the first embodiment (see FIG. 1) are denoted by the same reference numerals.
- the configuration of the signal processing unit 103 is different from that of the first embodiment.
- the received signal processing unit 131 of the signal processing unit 103 includes a channel transition unit 132 that changes to a channel notified from the AP 300.
- the transmission signal processing unit 141 transmits the transmission signal SD on the current channel.
- FIG. 10 is a block diagram of a configuration example of an access point of the wireless device according to the second embodiment.
- the access point (AP) 300 of the second embodiment the same components as those of the first embodiment (see FIG. 3) are denoted by the same reference numerals.
- the access point 300 of the second embodiment is different from the first embodiment in the configuration of the signal processing unit 303.
- the received signal processing unit 331 of the signal processing unit 303 includes a total communication speed calculation unit 332, a comparison unit 333, a selection unit 334, and a channel transition unit 335, as in the first embodiment. Further, the received signal processing unit 331 includes a SINR calculation unit 1001 and a communication speed calculation unit 1002.
- the SINR calculation unit 1001 calculates the communication quality SINR of the reception signal RD output from the baseband unit 301 (demodulator 324). At this time, the SINR calculation unit 133 obtains the SINR of each of a plurality of channels that can communicate with the terminal 100.
- the SINR calculation unit 1001 calculates the SNIR of UL communication with the terminal l (100) connected to the own access point 300 based on the following formula (3).
- SINR l Communication quality of AP in ch-th channel
- RSSI l Received average power from terminal l connected to AP ⁇ ⁇ RSSI k (ch) ⁇ term: Other AP and others in ch-th channel
- Received average power from terminals connected to AP N Received average power other than wireless LAN signal in ch-th channel (including noise power) ⁇ , ⁇ : adjustment parameters (default values: 1, 0 ⁇ ⁇ ⁇ 1, 0 ⁇ ⁇ ⁇ 1)
- the communication speed calculation unit 1002 calculates a communication speed based on the SINR calculated by the SINR calculation unit 1001.
- correspondence information between SINR and communication speed (SINR-communication speed correspondence table 201, see FIG. 2) is set in advance.
- the communication speed calculation unit 134 reads the communication speed corresponding to the communication speed of the reception signal RD calculated by the SINR calculation unit 1001 with reference to the storage unit 1003.
- Communication speed communication rate calculation unit 1002 calculates, in the uplink UL from the terminal 100 to the access point 300, a communication rate of a channel which currently communicating (UL_Comm_Speed l (ch)).
- the communication speed data F calculated by the communication speed calculation unit 1002 is output to the total communication speed calculation unit 332.
- the total communication speed calculation unit 332 calculates the total communication speed for each channel for the channel communication speed (communication speed data F) calculated by the communication speed calculation unit 1002.
- the total communication speed is a total speed of uplink (UL: communication from the terminal to the access point) of each of the plurality of terminals 100 that perform UL communication with the access point 300.
- UL uplink
- the total communication speed calculation unit 332 is simply connected to the access point 300, but does not include the communication speed of the terminal 100 that is not performing communication. That is, the total communication speed calculation unit 332 obtains the total communication speed of the current channel and the total communication speed of other channels for a plurality of terminals 100 that can actually perform communication. For example, the total communication speed (UL_Total_Comm_Speed (ch) is calculated based on the following formula (4), where L is the number of terminals.
- the comparison unit 333 stores and holds information on the total communication speed RD1 of the current channel (for example, 1ch) calculated by the total communication speed calculation unit 332 and the total communication speed RDn of other channels in an updatable manner. Then, the comparison unit 333 compares the total communication speed RD1 of the current channel with the total communication speed RDn of other channels. For example, the total communication speed RD1 of the current channel is compared with the total communication speed RD2 of a plurality of other channels.
- the selection unit 334 selects a channel having the maximum total communication speed as a result of comparison by the comparison unit 333. Then, the channel shifter 335 shifts to a channel that maximizes the total communication speed. For example, if the total communication speed RD2 of the other channel (ch5) is larger than the current channel (Ch1), the subsequent communication channel is set to ch5, and the channel is shifted from the current channel 1ch to 5ch. If the total communication speed of the current channel (1ch) is higher than any of the other channels, the current channel (1ch) remains unchanged, and no channel transition is performed.
- the channel shifting unit 335 changes the oscillation frequency of the oscillator 2 (315) to a frequency corresponding to the channel to be shifted for channel shifting. As a result, the transmission frequency of PA 314 of the transmission signal and the reception frequency of LNA 322 of the reception signal are changed (communication frequency allocation). In addition, the channel transition unit 335 notifies the transmission signal processing unit 341 of a channel change at the time of channel transition.
- the transmission signal processing unit 341 includes a channel change notification unit 343.
- the channel change notification unit 343 receives the notification of the channel shift from the reception signal processing unit 331 (channel shift unit 335)
- the channel change notification unit 343 transmits the received changed channel information to the terminal 100 as the transmission signal SD.
- the terminal 100 changes the channel corresponding to the channel information included in the transmission signal SD. Thereby, even if the channel is changed at the access point 300, communication with the terminal 100 can be continued.
- the terminal 100 and the access point 300 of the second embodiment are also controlled by the control unit 400 shown in FIG. Thereby, in the terminal 100, the control unit 400 performs overall control of the terminal 100, and executes and controls the functions of the baseband unit 101 and the signal processing unit 103 of the terminal 100. In the access point 300, the control unit 400 performs overall control of the access point 300, and executes and controls functions of the baseband unit 301 and the signal processing unit 303 of the access point 300.
- FIG. 11 is a flowchart of an operation process example of the wireless device according to the second embodiment.
- An example of channel selection processing performed by a control unit 400 (CPU 401) provided in each of a plurality of terminals (STAs) 100 and an access point (AP) 300 that configure a wireless system will be described.
- the plurality of terminals (STAs) 100 that can communicate with the AP 300 each transmit a UL transmission signal SD to the access point (AP) 300 on the current channel (for example, 1ch) (step S1101). Thereafter, if there is a channel change notification from the AP 300, the STA 100 matches the same channel as the notified AP 300 (step S1102), and ends the above processing.
- the AP 300 receives the radio wave reaching the device itself, and calculates the UL communication speed (UL_Comm_Speed l (ch)) in the current channel (for example, 1ch) (step S1111). Then, the AP 300 calculates the total communication speed (UL_Total_Comm_Speed (ch)) for each channel transmitted from each terminal 100 (step S1112).
- the AP 300 determines whether all channels communicating with the STA 100 have been scanned (step S1113). If all channels have not been scanned (step S1113: No), the AP 300 changes the channel (step S1114) and returns to the process of step S1111. For example, the next channel of the current channel (for example, 1ch ⁇ 2ch) is sequentially scanned.
- step S1113: Yes the AP 300 compares the total communication speed of the current channel with the total communication speed of other channels (step S1115). At this time, if the total communication speed of the other channel is higher than the total communication speed of the current channel communicating with the terminal 100 (step S1115: Yes), the AP 300 proceeds to the process of step S1116. If the total communication speed of the current channel communicating with the terminal 100 is equal to or higher than the total communication speed of other channels (step S1115: No), the process returns to step S1111 without changing the channel of the current channel.
- step S1116 the AP 300 changes the channel to the channel with the maximum total communication speed (step S1116), notifies the terminal (STA) 100 of the channel to be changed (step S1117), and ends the above processing.
- the access point (AP) 300 transmits the uplink communication speed when actually communicating with the terminal (STA) 100, the communication speed of other channels, Based on the above, the channel with the maximum communication speed is changed. At this time, the AP 300 shifts to a channel having a maximum total communication speed obtained by summing up the communication speeds of a plurality of channels. In this way, the AP 300 autonomously selects an optimum channel for communication with the STA 100 in consideration of the radio wave environment of the STA 100. As a result, the AP 300 can improve the wireless communication performance (communication speed, communication quality, throughput, etc.) with the STA 100.
- the configuration of the first embodiment and the configuration of the second embodiment may be combined. That is, channel selection based on the downlink DL communication speed according to the first embodiment may be combined with channel selection based on the uplink UL communication speed according to the second embodiment.
- the access point (AP) 300 switches between DL and UL based on the communication amount of DL and UL, the ratio of DL / UL data amount, and the like.
- the AP 300 may perform channel selection based on the DL total communication rate when the DL communication amount increases, and may perform channel selection based on the UL total communication rate when the UL communication amount increases.
- the signal processing unit 103 of the terminal 100 includes each configuration of the first embodiment (FIG. 1) and the second embodiment (FIG. 9).
- the signal processing unit 303 of the AP 300 may have the configurations of the first embodiment (FIG. 3) and the second embodiment (FIG. 10).
- the wireless device can select a channel in consideration of a radio wave environment such as interference from another system received by another wireless device that performs communication.
- the wireless device changes to the channel with the maximum communication speed based on the communication speed of each of the current channel and the other channel when actually communicating with another wireless device.
- the wireless device shifts to a channel having the maximum total communication speed obtained by adding up the communication speeds for each channel acquired from the plurality of wireless devices.
- the wireless device can autonomously select the optimum channel for communication with other wireless devices that perform communication. Thereby, the wireless device can improve wireless communication performance (communication speed, communication quality, throughput, etc.) with other wireless devices.
- the wireless device has a simple configuration and wireless communication with the wireless device of the communication partner without being affected by interference and noise from other systems using the same frequency such as the ISM band. Can be done.
- the communication frequency allocation method described in the present embodiment can be realized by executing a control program prepared in advance by a computer (CPU or the like) of a target device (a terminal or an access point that is the wireless device). it can.
- This control program is recorded on a computer-readable recording medium such as a magnetic disk, an optical disk, or a USB (Universal Serial Bus) flash memory, and is executed by being read from the recording medium by the computer.
- the control program may be distributed via a network such as the Internet.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
アクセスポイント(300)は、他のシステムと(700)同一の周波数帯域を用い端末(100)と通信する。アクセスポイント(300)は、端末(100)との間で通信を行った現チャネルと他のチャネルとのそれぞれの通信速度に基づき、通信速度が最大となるチャネルを端末(100)との通信に使用する新たなチャネルとして選択する信号処理部を有する。信号処理部は、端末(100)と通信を行った現チャネルの通信速度と、他の複数チャネルの通信速度とを比較し、通信速度が最大となるチャネルを端末(100)との通信に使用する新たなチャネルに変更する。
Description
本発明は、無線通信を行う無線装置、無線システムおよび通信周波数割り当て方法に関する。
産業科学医療用(ISM:Industry Science Medical)バンドは同一周波数を使用する複数のシステムが存在する。例えば、2.4GHz帯は、Wi-Fi(登録商標)、Bluetooth(登録商標)、モバイルルータ、アマチュア無線等がある。5GHz帯は、Wi-Fi、気象等の各種レーダ、アマチュア無線等がある。
ISMバンドは、無線局免許状と電波利用料が不要であり、このISMバンドを使用するシステムが年々増加しており、ISMバンドの同一周波数において各システムが互いに干渉を起こすことなく共存することが求められる。干渉の状態を把握するためには、一定時間の連続した無線電波を測定する必要がある。
従来、無線の通信品質を評価し、最良の通信チャネルを通じてクライアントと通信する切り替えを実施する技術がある(例えば、下記特許文献1参照。)。また、アクセスポイントがビーコンを送信し、チャネル毎のビーコン強度により適切なチャネル設定を行う技術がある(例えば、下記特許文献2参照。)。
従来技術では、アクセスポイントがチャネルを選択する際には、各チャネルの電波環境、例えば、チャネルサーチの受信電力でチャネルを選択している。しかし、この場合、アクセスポイントが適切なチャネルを選択していない場合が生じる。
例えば、無線LANのアクセスポイントのエリアの一部に、同一ISMバンドの他のシステムであるBluetooth通信装置のエリアが重なっている場合を想定する。自無線LANアクセスポイントは、自エリアに位置している端末の電波環境を考慮せずにチャネルを選択するため、端末が他のシステムから干渉等を受けているチャネルであっても選択可能と判断する。この場合、アクセスポイントは、端末との通信で最適なチャネルを選択できず、スループット等の通信性能が劣化する。
一つの側面では、本発明は、通信を行う無線装置の電波環境を考慮して最適なチャネルで通信できることを目的とする。
一つの案では、無線装置は、他の無線装置との間で通信を行った現チャネルと他のチャネルとのそれぞれの通信速度に基づき、前記通信速度が最大となるチャネルを前記他の無線装置との通信に使用する新たなチャネルとして選択する制御部、を有することを要件とする。
一つの実施形態によれば、通信を行う無線装置の電波環境を考慮して最適なチャネルで通信できる。
(実施の形態1)
図1は、実施の形態1にかかる無線装置の端末の構成例を示すブロック図である。実施の形態の無線システムは、一方の無線装置と、他方の無線装置と、を含み、これら両無線装置は、例えば、ISMバンドの周波数帯域を用いて相互に無線通信を行う。
図1は、実施の形態1にかかる無線装置の端末の構成例を示すブロック図である。実施の形態の無線システムは、一方の無線装置と、他方の無線装置と、を含み、これら両無線装置は、例えば、ISMバンドの周波数帯域を用いて相互に無線通信を行う。
一方の無線装置は、Wi-Fi等の無線LANのアクセスポイント(AP)であり、他方の無線装置は、アクセスポイントとの間で無線通信を行う端末(STA)の例を用いて説明する。端末は、例えば、移動自在な携帯電話機やスマートフォン、モバイルルータ等である。
実施の形態1では、アクセスポイント(AP)から端末(STA)100へのダウンリンク(DL)通信により、アクセスポイント(AP)がチャネル選択を行う構成について説明する。
図1に示すように、端末100は、ベースバンド(BB)部101と、高周波(RF)部102と、信号処理部103と、を含む。
ベースバンド部101は、端末100が送受信する信号を信号処理する。このベースバンド部101は、送信信号を処理する構成として、変調器111と、デジタルアナログ変換器(DAC)112と、発振器113と、を含む。
変調器111は、デジタルの送信信号を所定の無線方式にしたがいデジタル変調する。DAC112には、発振器1(113)の所定周波数の発振信号が供給され、無線送信するデジタル信号をアナログ信号に変換する。
また、ベースバンド部101は、受信信号を処理する構成として、アナログデジタル変換器(ADC)123と、復調器124と、を含む。
ADC123には、発振器1(113)の発振信号が供給され、受信信号をアナログ信号からデジタル信号に変換する。復調器124は、受信信号の復調を行う。
高周波部102は、送信側の構成として、増幅器(PA:Power Amp)114と、発振器2(115)を含む。増幅器114は、ベースバンド部101から入力されたベースバンド帯域の信号を、発振器2(115)の所定周波数の発振信号の供給を受けて、送信信号を高周波(無線帯域、RF:Radio Frequency)増幅し、アンテナ116から無線送信する。
また、高周波部102は、受信側の構成として、増幅器(LNA:Low Noise Amp)122を含む。増幅器122は、アンテナ116で受信した無線信号を、発振器2(115)の所定周波数の発振信号の供給を受けて増幅し、ベースバンド部101に出力する。
実施の形態1の信号処理部103は、自身の電波環境の情報を取得して、アクセスポイントに通知する。この際、信号処理部103は、アクセスポイントから端末100へのDL通信時の各チャネルの通信品質に基づき通信速度を算出し、アクセスポイントに通知する制御を行う。例えば、アクセスポイントと通信中のチャネル(例えば1ch)と通信品質と、他のチャネルの通信品質をそれぞれ算出する。他のチャネルは、例えば、他のシステムによって干渉を受けている可能性を含む。
信号処理部103は、受信信号処理部131と、送信信号処理部141と、を含む。受信信号処理部131は、チャネル移行部132と、SINR算出部133と、通信速度計算部134と、記憶部135と、を含む。チャネル移行部132は、アクセスポイントとの間で通信可能な複数のチャネルを走査し、発振器2(115)の周波数を変更制御する。
SINR算出部133は、ベースバンド部101(復調器124)が出力する受信信号RDの通信品質SINR(Signal to Interference Noise Ratio)を算出する。この際、SINR算出部133は、アクセスポイントと通信可能な複数のチャネルそれぞれのSINRを求める。
具体的には、SINR算出部133は、下記式(1)に基づき、自端末l(100)におけるアクセスポイントからのDL通信のSNIRを算出する。
SINRl(ch):ch番目のチャネルにおける端末lの通信品質
RSSIl:端末lがつながっているAPからの受信平均電力
Σ{RSSIk(ch)}の項:ch番目のチャネルにおける他APと他APにつながっている端末からの受信平均電力
N(ch):ch番目のチャネルにおける無線LAN信号以外の受信平均電力(雑音電力含む)
α,β:調整パラメータ(デフォルト値:1、0≦α≦1、0≦β≦1)
RSSIl:端末lがつながっているAPからの受信平均電力
Σ{RSSIk(ch)}の項:ch番目のチャネルにおける他APと他APにつながっている端末からの受信平均電力
N(ch):ch番目のチャネルにおける無線LAN信号以外の受信平均電力(雑音電力含む)
α,β:調整パラメータ(デフォルト値:1、0≦α≦1、0≦β≦1)
上記の式(1)に示すように、端末l(100)は、アクセスポイント(AP)と実際に通信を行った1チャネル分の受信強度(受信平均電力RSSIl)を分子に用いてSINRを算出している。
通信速度計算部134は、SINR算出部133が算出したSINRに基づく通信速度を計算する。記憶部135には、SINRと通信速度の対応情報(SINR-通信速度対応表201)が予め設定されている。通信速度計算部134は、記憶部135を参照して、SINR算出部133が算出した受信信号RDの通信速度に対応する通信速度を読み出す。
図2は、実施の形態1の端末が記憶するSINR-通信速度対応表の設定例を示す図表である。記憶部135に記憶されているSINR-通信速度対応表201には、複数範囲毎のSINRに対応する通信速度が設定されている。
例えば、受信信号RDのSINRが4~6[dB]であれば、通信速度は9[Mbps]であると算出する。SINR-通信速度対応表201には、SINRが大きい値ほど通信速度が高い値が設定されている。
通信速度計算部134が計算した通信速度は、アクセスポイントから端末100へのダウンリンクDLにおいて、現在通信を行ったチャネルの通信速度である(DL_Comm_Speedl(ch))。通信速度計算部134が計算した通信速度データFは、送信信号処理部141に出力される。
送信信号処理部141は、通信速度計算部134が計算した通信速度データFを送信信号SDとして、アクセスポイントに送信する。
図3は、実施の形態1にかかる無線装置のアクセスポイントの構成例を示すブロック図である。アクセスポイント(AP)300は、ベースバンド(BB)部301と、高周波(RF)部302と、信号処理部303と、を含む。
ベースバンド部301は、アクセスポイント300が送受信する信号を信号処理する。このベースバンド部301は、送信信号を処理する構成として、変調器311と、デジタルアナログ変換器(DAC)312と、発振器313と、を含む。
変調器311は、デジタルの送信信号を所定の無線方式にしたがいデジタル変調する。DAC312には、発振器1(313)の所定周波数の発振信号が供給され、無線送信するデジタル信号をアナログ信号に変換する。
また、ベースバンド部301は、受信信号を処理する構成として、アナログデジタル変換器(ADC)323と、復調器324と、を含む。
ADC323には、発振器1(313)の発振信号が供給され、受信信号をアナログ信号からデジタル信号に変換する。復調器324は、受信信号の復調を行う。
高周波部302は、送信側の構成として、増幅器(PA)314と、発振器2(315)を含む。増幅器314は、ベースバンド部301から入力されたベースバンド帯域の信号を、発振器2(315)の所定周波数の発振信号の供給を受けて、送信信号を高周波(RF)増幅し、アンテナ316から無線送信する。
また、高周波部302は、受信側の構成として、増幅器(LNA)322を含む。増幅器322は、アンテナ316で受信した無線信号を、発振器2(315)の所定周波数の発振信号の供給を受けて増幅し、ベースバンド部301に出力する。
信号処理部303は、受信信号処理部331と、送信信号処理部341と、を含む。信号処理部303は、アクセスポイント300から取得した各チャネルの通信速度に基づき、最適な通信状態が得られるチャネル(通信周波数)を選択する制御を行う。
受信信号処理部331は、受信信号RDに基づきチャネル選択の処理を行う。送信信号処理部341は、受信信号処理部331が行うチャネル選択の処理に関連して、送信信号SDに対するデータ処理等を行う。
受信信号処理部331は、合計通信速度算出部332と、比較部333と、選択部334と、チャネル移行部335と、を含む。
合計通信速度算出部332は、ベースバンド部301(復調器324)が出力する受信信号RDに基づき、端末100が算出して送信した各チャネルの通信速度(通信速度データF)を、端末100から取得し、チャネル毎の合計通信速度を算出する。
この合計通信速度とは、アクセスポイント300に通信要求がある複数の端末100それぞれから取得したダウンリンク(DL:アクセスポイント→端末への通信)の通信速度を合計した速度である。
ここで、合計通信速度算出部332は、合計通信速度の算出にあたり、単にアクセスポイント300と接続されているが、通信を行っていない端末100の通信速度は合計通信速度に含めない。すなわち、合計通信速度算出部332は、実際に通信を行える複数の端末100を対象として、現チャネルの合計通信速度と、他チャネルの合計通信速度と、をそれぞれ求める。例えば、合計通信速度(DL_Total_Comm_Speed(ch)は、下記式(2)に基づき算出する。Lは端末数である。
比較部333は、合計通信速度算出部332が算出した現チャネル(例えば1ch)の合計通信速度RD1と、他チャネルの合計通信速度RDnの情報をそれぞれ更新自在に記憶保持する。そして、比較部333は、現チャネルの合計通信速度RD1と、他チャネルの合計通信速度RDnとを比較する。例えば、現チャネルの合計通信速度RD1と複数の各チャネルの合計通信速度RD2とを比較する。
選択部334は、比較部333による比較結果、合計通信速度が最大となるチャネルを選択する。そして、チャネル移行部335は、合計通信速度が最大となるチャネルに移行する。例えば、現チャネル(Ch1)よりも、他チャネル(ch5)の合計通信速度RD2の方が大きければ、以降の通信チャネルをch5とし、現チャネル1ch→5chへのチャネル移行を行う。現チャネル(1ch)の合計通信速度が複数のどの他のチャネルよりも大きければ現チャネル(1ch)のままとし、チャネル移行は行なわない。
チャネル移行部335は、チャネル移行のために、発振器2(315)の発振周波数を移行するチャネルに対応した周波数に変更する。これにより、送信信号のPA314の送信周波数、および受信信号のLNA322の受信周波数がチャネル変更される(通信周波数の割り当て)。また、チャネル移行部335は、チャネル移行時、送信信号処理部341に対し、チャネル変更通知を行う。
送信信号処理部341は、ビーコン送信部342と、チャネル変更通知部343と、を含む。ビーコン送信部342は、端末100に対し、所定のタイミングあるいは定期的に所定のビーコン信号を送信する。すなわち、アクセスポイント300において、端末100との間で最適なチャネル(通信周波数)を設定する毎に、ビーコン送信部342は、送信信号SDとして測定用のビーコンを端末100に送信する。このビーコンは、現在の通信周波数(チャネル)または、予め定めた初期値のチャネル(例えば1ch)で送信する。
チャネル変更通知部343は、受信信号処理部331(チャネル移行部335)からチャネル移行の通知を受けると、通知を受けた変更後のチャネルの情報を送信信号SDとして端末100に送信する。端末100は、送信信号SDに含まれるチャネル情報に対応してチャネル変更を行う。これにより、アクセスポイント300でチャネル変更しても端末100との通信を継続できる。
図4は、実施の形態1の無線装置の制御部のハードウェア構成例を示す図である。図1に示した端末100および図3に示したアクセスポイント300は、それぞれ図4に示す制御部400が装置各部を統括制御する。そして、端末100に設けられた制御部400は、端末100のベースバンド部101と信号処理部103の機能を実行する。また、アクセスポイント300に設けられた制御部400は、アクセスポイント300のベースバンド部301と信号処理部303の機能を実行する。
図4に示したCPU(Central Processing Unit)401がメモリ402に格納されたプログラムを読み出し実行し、その際、メモリ402の領域の一部を作業領域に使用する。これにより、端末100においては、端末100を統括制御し、また、図1のベースバンド部101と信号処理部103の機能を実現可能である。また、アクセスポイント300においては、アクセスポイント300を統括制御し、また、図3のベースバンド部301と信号処理部303の機能を実現可能である。なお、ベースバンド部101,301は、専用のDSPやICを用いて構成することもできる。
メモリ402は、ROM,RAM等を用いることができる。また、HDDやフラッシュメモリ等の拡張メモリ403をデータ格納領域等に用いることもできる。図1の記憶部135は、例えばメモリ402,403を用いることができる。404は、バスである。
無線通信部405は、端末100においては高周波部102の無線通信にかかる機能を実現し、アクセスポイント300においては高周波部302の無線通信にかかる機能を実現する。通信インタフェース(I/F)部406は、端末100およびアクセスポイント300のそれぞれにおいて、外部装置との間の通信インタフェースの機能を実現する。
図5は、実施の形態1にかかる無線装置の動作処理例を示すフローチャートである。無線システムを構成する、複数の端末(STA)100と、アクセスポイント(AP)300とが連携し、それぞれに設けられた制御部400(CPU401)が行うチャネル選択処理例を説明する。
アクセスポイント(AP)300は、現在、端末100と通信を行っているチャネル、もしくは初期値のチャネル(例えば1ch)でビーコン信号を端末100に送信する(ステップS501)。AP300は、所定のタイミング、あるいは定期的にビーコン信号を端末100に送信することで、図5に示す無線システムのチャネル選択処理を開始する。
この後、AP300は、各端末100から送信されるチャネル毎の通信速度(DL_Comm_Speedl(ch))を取得し、チャネル毎の合計通信速度(DL_Total_Comm_Speed(ch))を算出する(ステップS502)。
次に、AP300は、現チャネルの合計通信速度と、他チャネルの合計通信速度とを比較する(ステップS503)。この際、AP300は、端末100と通信を行っている現チャネルの合計通信速度よりも、他チャネルの合計通信速度が大きい場合には(ステップS503:Yes)、ステップS504に移行する。端末100と通信を行っている現チャネルの合計通信速度が、他チャネルの合計通信速度以上の場合には(ステップS503:No)、現チャネルをチャネル変更せずにステップS501の処理に戻る。
ステップS504では、AP300は、合計通信速度が最大となるチャネルにチャネル変更し(ステップS504)、端末(STA)100に対し、変更するチャネルを通知すし(ステップS505)、以上の処理を終了する。
次に、AP300に通信接続された複数の各端末(STAl)100の処理例を説明する。STAl(100)は、自装置に届くAP300からの電波を受信し、現チャネル(例えば1ch)における通信速度(DL_Comm_Speedl(ch))を算出する(ステップS510)。通信速度は、上述したように例えば、SINRに基づき算出する。
一方、STAl(100)は、全てのチャネルを走査したか判断する(ステップS511)。全てのチャネルを走査していなければ(ステップS511:No)、STAl(100)は、チャネル変更を行い(ステップS512)、ステップS510の処理に戻る。例えば、現チャネルの次のチャネル(例えば1ch→2ch)を順次走査する。
全てのチャネルの走査が終了していれば(ステップS511:Yes)、STAl(100)は、AP300と通信している現チャネルにチャネル変更する(ステップS513)。そして、STAl(100)は、ステップS510~S512の処理で得た各チャネルの通信速度データをAP300へ送信する(ステップS514)。
この後、STAl(100)は、AP300から通知された変更後のチャネルと同じチャネルに合わせ(ステップS515)、以上の処理を終了する。
(既存の技術との対比)
次に、チャネル選択処理について、既存の技術と実施の形態1と対比説明する。図6は、ISMバンドを使用する各種システムを示す図である。横軸は周波数である。ISMバンドは同一周波数を使用する複数のシステムが存在する。例えば、2.4GHz帯は、Wi-Fi(登録商標)、モバイルルータ、Bluetooth(登録商標)、ZigBee、アマチュア無線、医療用マイクロ波加熱装置、電子レンジ等がある。5GHz帯には、Wi-Fi、気象等の各種レーダ、固定/探索の衛星、電波天文、マイクロ波着陸誘導、航空無線航行、アマチュア無線等がある。
次に、チャネル選択処理について、既存の技術と実施の形態1と対比説明する。図6は、ISMバンドを使用する各種システムを示す図である。横軸は周波数である。ISMバンドは同一周波数を使用する複数のシステムが存在する。例えば、2.4GHz帯は、Wi-Fi(登録商標)、モバイルルータ、Bluetooth(登録商標)、ZigBee、アマチュア無線、医療用マイクロ波加熱装置、電子レンジ等がある。5GHz帯には、Wi-Fi、気象等の各種レーダ、固定/探索の衛星、電波天文、マイクロ波着陸誘導、航空無線航行、アマチュア無線等がある。
ISMバンドは、無線局免許状と電波利用料が不要であり、このISMバンドを使用するシステムが年々増加しており、ISMバンドの同一周波数において各システムが互いに干渉を起こすことなく共存することが求められる。干渉の状態を把握するためには、一定時間の連続した無線電波を測定し、統計情報等を作成する必要がある。
図7は、既存の技術によるアクセスポイントのチャネル選択処理を説明する図である。図7(a)には、複数の無線LANのAP1,2(300)および、他システム(例えばBluetoothの通信装置)700の配置状態を示す。AP1,2(300)と、他システム700は、電波到達範囲(セルに相当)の一部が重なって配置されているとする。
端末(STA1,2)100は、AP1および他システム700と通信可能に位置している。STA1(100)はAP1(300)と他システム700と通信可能な位置にいる。STA2(100)はAP1(300)とAP2(300)と通信可能な位置にいるとする。AP1(300)は、AP2(300)および他システム700の電波到達範囲の外に位置しており、AP1(300)は、これらAP1(300)は、AP2(100)の存在を把握できない状態である。他システム700は、通信チャネルがch1であり、AP2(300)の通信チャネルがch2であるとする。
このような電波環境の場合、図7(b)に示すように、既存のAP1(300)は、チャネルサーチ時の受信電力により、STA1,2(100)のいずれもch1~ch3の全てが通信に使用できると判断している(S701)。
しかし、STA1(100)は、他システム700のch1による干渉を受け、STA2(100)はAP2(300)のch2による干渉を受けている(S702)。この場合、AP1(300)は、これらSTA1,2(100)と通信を行う際、望ましくはSTA1,2(100)の電波環境を考慮すると、干渉が生じないチャネル(ch3)を選択することが望ましい(S703)。
ここで、既存の技術では、AP1(300)は、通信を行うSTA1,2(100)の電波環境(S702)を考慮せず、ch1~ch3の全てが通信に使用できるとの判断(S701)に基づいて送受信のチャネル選択を行う。このため、実際に通信を行った場合に、STA1,2(100)との間の通信性能(スループット)の劣化を招くおそれが高くなる。
図8は、実施の形態1によるアクセスポイントのチャネル選択処理を説明する図である。図8(a)は、図7(a)同様に、複数の無線LANのAP1,2(300)および、他システム(例えばBluetoothの通信装置)700の配置状態を示す。
実施の形態1のAP1(300)では、図8(b)に示すように、上記のチャネル選択処理に基づき、STA1,2(100)から通信を行った際の各チャネルの通信速度データを取得してチャネル選択を行う(S801)。これにより、AP1(300)は、STA1,2(100)の電波環境を考慮して通信を行うチャネルを選択する。この場合、AP1(300)は、他システム700やAP2(300)の影響を受けるch1,2を除くチャネル(例えばch3)を選択し、STA1,2(100)と通信を行う。
以上のように、実施の形態1によれば、アクセスポイント(AP)300は、端末(STA)100との間で実際に通信したチャネルのダウンリンクの通信速度と、他のチャネルの通信速度とに基づき、通信速度が最大のチャネルに変更する。この際、AP300は、複数のSTA100から取得したチャネル毎の通信速度を合計した合計通信速度が最大となるチャネルに移行する。このように、AP300は、STA100の電波環境を考慮してSTA100との通信に最適なチャネルを自律的に選択する。これにより、AP300は、STA100との無線通信性能(通信速度、通信品質、スループット等)を向上できるようになる。
(実施の形態2)
次に、無線装置の実施の形態2について説明する。実施の形態2では、端末100からアクセスポイント300へのアップリンク(UL)通信を行う際、アクセスポイント300がチャネル選択する構成である。このため、実施の形態2では、SINRおよび通信速度算出にかかる構成は、アクセスポイント300に設けられる。
次に、無線装置の実施の形態2について説明する。実施の形態2では、端末100からアクセスポイント300へのアップリンク(UL)通信を行う際、アクセスポイント300がチャネル選択する構成である。このため、実施の形態2では、SINRおよび通信速度算出にかかる構成は、アクセスポイント300に設けられる。
図9は、実施の形態2にかかる無線装置の端末の構成例を示すブロック図である。実施の形態2の端末(STA)100について、実施の形態1(図1参照)と同様の構成部には同一の符号を付してある。
実施の形態2の端末100では、実施の形態1に対して信号処理部103の構成が異なる。信号処理部103の受信信号処理部131は、AP300から通知されたチャネルに変更するチャネル移行部132を有する。送信信号処理部141は、送信信号SDを現チャネルで送信する。
図10は、実施の形態2にかかる無線装置のアクセスポイントの構成例を示すブロック図である。実施の形態2のアクセスポイント(AP)300について、実施の形態1(図3参照)と同様の構成部には同一の符号を付してある。
実施の形態2のアクセスポイント300は、実施の形態1に対して信号処理部303の構成が異なる。信号処理部303の受信信号処理部331は、実施の形態1同様に合計通信速度算出部332と、比較部333と、選択部334と、チャネル移行部335と、を含む。さらに受信信号処理部331は、SINR算出部1001と、通信速度計算部1002と、を含む。
SINR算出部1001は、ベースバンド部301(復調器324)が出力する受信信号RDの通信品質SINRを算出する。この際、SINR算出部133は、端末100と通信可能な複数のチャネルそれぞれのSINRを求める。
具体的には、SINR算出部1001は、下記式(3)に基づき、自アクセスポイント300につながっている端末l(100)とのUL通信のSNIRを算出する。
SINRl(ch):ch番目のチャネルにおけるAPの通信品質
RSSIl:APにつながっている端末lからの受信平均電力
Σ{RSSIk(ch)}の項:ch番目のチャネルにおける他APと他APにつながっている端末からの受信平均電力
N(ch):ch番目のチャネルにおける無線LAN信号以外の受信平均電力(雑音電力含む)
α,β:調整パラメータ(デフォルト値:1、0≦α≦1、0≦β≦1)
RSSIl:APにつながっている端末lからの受信平均電力
Σ{RSSIk(ch)}の項:ch番目のチャネルにおける他APと他APにつながっている端末からの受信平均電力
N(ch):ch番目のチャネルにおける無線LAN信号以外の受信平均電力(雑音電力含む)
α,β:調整パラメータ(デフォルト値:1、0≦α≦1、0≦β≦1)
通信速度計算部1002は、SINR算出部1001が算出したSINRに基づく通信速度を計算する。記憶部1003には、SINRと通信速度の対応情報(SINR-通信速度対応表201、図2参照)が予め設定されている。通信速度計算部134は、記憶部1003を参照して、SINR算出部1001が算出した受信信号RDの通信速度に対応する通信速度を読み出す。
通信速度計算部1002が計算した通信速度は、端末100からアクセスポイント300へのアップリンクULにおいて、現在通信を行ったチャネルの通信速度である(UL_Comm_Speedl(ch))。通信速度計算部1002が計算した通信速度データFは、合計通信速度算出部332に出力される。
合計通信速度算出部332は、通信速度計算部1002が計算したチャネルの通信速度(通信速度データF)について、チャネル毎の合計通信速度を算出する。
この合計通信速度とは、アクセスポイント300とUL通信を行う複数の端末100それぞれのアップリンク(UL:端末→アクセスポイントへの通信)の通信速度を合計した速度である。
ここで、合計通信速度算出部332は、合計通信速度の算出にあたり、単にアクセスポイント300と接続されているが、通信を行っていない端末100の通信速度は合計通信速度に含めない。すなわち、合計通信速度算出部332は、実際に通信を行える複数の端末100を対象として、現チャネルの合計通信速度と、他チャネルの合計通信速度と、をそれぞれ求める。例えば、合計通信速度(UL_Total_Comm_Speed(ch)は、下記式(4)に基づき算出する。Lは端末数である。
比較部333は、合計通信速度算出部332が算出した現チャネル(例えば1ch)の合計通信速度RD1と、他チャネルの合計通信速度RDnの情報をそれぞれ更新自在に記憶保持する。そして、比較部333は、現チャネルの合計通信速度RD1と、他チャネルの合計通信速度RDnとを比較する。例えば、現チャネルの合計通信速度RD1と複数の他チャネルの合計通信速度RD2とを比較する。
選択部334は、比較部333による比較結果、合計通信速度が最大となるチャネルを選択する。そして、チャネル移行部335は、合計通信速度が最大となるチャネルに移行する。例えば、現チャネル(Ch1)よりも、他チャネル(ch5)の合計通信速度RD2の方が大きければ、以降の通信チャネルをch5とし、現チャネル1ch→5chへのチャネル移行を行う。現チャネル(1ch)の合計通信速度が複数のどの他のチャネルよりも大きければ現チャネル(1ch)のままとし、チャネル移行は行なわない。
チャネル移行部335は、チャネル移行のために、発振器2(315)の発振周波数を移行するチャネルに対応した周波数に変更する。これにより、送信信号のPA314の送信周波数、および受信信号のLNA322の受信周波数がチャネル変更される(通信周波数の割り当て)。また、チャネル移行部335は、チャネル移行時、送信信号処理部341に対し、チャネル変更通知を行う。
送信信号処理部341は、チャネル変更通知部343を含む。チャネル変更通知部343は、受信信号処理部331(チャネル移行部335)からチャネル移行の通知を受けると、通知を受けた変更後のチャネルの情報を送信信号SDとして端末100に送信する。端末100は、送信信号SDに含まれるチャネル情報に対応してチャネル変更を行う。これにより、アクセスポイント300でチャネル変更しても端末100との通信を継続できる。
実施の形態2の端末100およびアクセスポイント300についても、図4に示した制御部400により統括制御される。これにより、端末100においては、制御部400は、端末100を統括制御し、また、端末100のベースバンド部101と信号処理部103の機能を実行制御する。また、アクセスポイント300においては、制御部400は、アクセスポイント300を統括制御し、また、アクセスポイント300のベースバンド部301と信号処理部303の機能を実行制御する。
図11は、実施の形態2にかかる無線装置の動作処理例を示すフローチャートである。無線システムを構成する、複数の端末(STA)100と、アクセスポイント(AP)300とが連携し、それぞれに設けられた制御部400(CPU401)が行うチャネル選択処理例を説明する。
AP300と通信可能な複数の端末(STA)100は、それぞれ、現チャネル(例えば1ch)でアクセスポイント(AP)300に対してULの送信信号SDを送信する(ステップS1101)。この後、STA100はAP300からチャネル変更の通知があれば、通知されたAP300と同じチャネルに合わせ(ステップS1102)、以上の処理を終了する。
一方、AP300は、自装置に届く電波を受信し、現チャネル(例えば1ch)におけるULの通信速度(UL_Comm_Speedl(ch))を算出する(ステップS1111)。そして、AP300は、各端末100から送信されるチャネル毎の合計通信速度(UL_Total_Comm_Speed(ch))を算出する(ステップS1112)。
次に、AP300は、STA100と通信する全てのチャネルを走査したか判断する(ステップS1113)。全てのチャネルを走査していなければ(ステップS1113:No)、AP300は、チャネル変更を行い(ステップS1114)、ステップS1111の処理に戻る。例えば、現チャネルの次のチャネル(例えば1ch→2ch)を順次走査する。
全てのチャネルの走査が終了していれば(ステップS1113:Yes)、AP300は、現チャネルの合計通信速度と、他チャネルの合計通信速度とを比較する(ステップS1115)。この際、AP300は、端末100と通信を行っている現チャネルの合計通信速度よりも、他チャネルの合計通信速度が大きい場合には(ステップS1115:Yes)、ステップS1116の処理に移行する。端末100と通信を行っている現チャネルの合計通信速度が、他チャネルの合計通信速度以上の場合には(ステップS1115:No)、現チャネルをチャネル変更せずにステップS1111の処理に戻る。
ステップS1116では、AP300は、合計通信速度が最大となるチャネルにチャネル変更し(ステップS1116)、端末(STA)100に対し、変更するチャネルを通知し(ステップS1117)、以上の処理を終了する。
以上のように、実施の形態2によれば、アクセスポイント(AP)300は、端末(STA)100との間で実際に通信した際のアップリンクの通信速度と、他のチャネルの通信速度とに基づき、通信速度が最大のチャネルに変更する。この際、AP300は、複数のチャネル毎の通信速度を合計した合計通信速度が最大となるチャネルに移行する。このように、AP300は、STA100の電波環境を考慮してSTA100との通信に最適なチャネルを自律的に選択する。これにより、AP300は、STA100との無線通信性能(通信速度、通信品質、スループット等)を向上できるようになる。
また、実施の形態1の構成と実施の形態2の構成をそれぞれ組み合わせてもよい。すなわち、実施の形態1によるダウンリンクDLの通信速度に基づくチャネル選択と、実施の形態2によるアップリンクULの通信速度に基づくチャネル選択を組み合わせてもよい。例えば、アクセスポイント(AP)300は、DLとULそれぞれの通信量や、DL/ULのデータ量の割合等、に基づきこれらを切り替える。AP300は、DLの通信量が増えたときにDLの合計通信速度に基づきチャネル選択を行い、ULの通信量が増えたときにULの合計通信速度に基づきチャネル選択を行ってもよい。
上記組み合わせ時には、端末100の信号処理部103は実施の形態1(図1)と、実施の形態2(図9)の各構成を備える。AP300の信号処理部303は、実施の形態1(図3)と、実施の形態2(図10)の各構成を備えればよい。
以上説明した各実施の形態によれば、無線装置は、通信を行う他の無線装置が受けている他のシステムからの干渉等の電波環境を考慮して、チャネル選択できるようになる。この際、無線装置は、他の無線装置との間で実際に通信した際の現チャネルと他のチャネルのそれぞれの通信速度に基づき、通信速度が最大のチャネルに変更する。また、無線装置は、複数の無線装置から取得したチャネル毎の通信速度を合計した合計通信速度が最大となるチャネルに移行する。
そして、無線装置は、通信を行う他の無線装置との間の通信に最適なチャネルを自律的に選択できる。これにより、無線装置は、他の無線装置との間の無線通信性能(通信速度、通信品質、スループット等)を向上できるようになる。
そして、各実施の形態によれば、無線装置は、簡単な構成で、ISMバンドなどの同一周波数を用いる他のシステムからの干渉および雑音の影響を受けずに通信相手の無線装置との無線通信が行えるようになる。また、無線装置の実際の設置環境に適合できるようになり、設置環境が変わっても他の無線装置との間で常に最適なチャネルを用いて通信できるようになる。
なお、本実施の形態で説明した通信周波数割り当て方法は、予め用意された制御プログラムを対象機器(上記無線装置である端末やアクセスポイント)のコンピュータ(CPU等)が実行することにより実現することができる。本制御プログラムは、磁気ディスク、光ディスク、USB(Universal Serial Bus)フラッシュメモリなどのコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行される。また、制御プログラムは、インターネット等のネットワークを介して配布してもよい。
100 端末(STA、無線装置)
101,301 ベースバンド部
102,302 高周波部
103,303 信号処理部
131 受信信号処理部
132 チャネル移行部
133 SINR算出部
134 通信速度計算部
135,1003 記憶部
141 送信信号処理部
201 通信速度対応表
300 アクセスポイント(AP、無線装置)
331 受信信号処理部
332 合計通信速度算出部
333 比較部
334 選択部
335 チャネル移行部
341 送信信号処理部
342 ビーコン送信部
343 チャネル変更通知部
400 制御部
401 CPU
402 メモリ
403 拡張メモリ
405 無線通信部
1001 SINR算出部
1002 通信速度計算部
101,301 ベースバンド部
102,302 高周波部
103,303 信号処理部
131 受信信号処理部
132 チャネル移行部
133 SINR算出部
134 通信速度計算部
135,1003 記憶部
141 送信信号処理部
201 通信速度対応表
300 アクセスポイント(AP、無線装置)
331 受信信号処理部
332 合計通信速度算出部
333 比較部
334 選択部
335 チャネル移行部
341 送信信号処理部
342 ビーコン送信部
343 チャネル変更通知部
400 制御部
401 CPU
402 メモリ
403 拡張メモリ
405 無線通信部
1001 SINR算出部
1002 通信速度計算部
Claims (12)
- 無線装置であって、
他の無線装置との間で通信を行った現チャネルと他のチャネルとのそれぞれの通信速度に基づき、通信速度が最大となるチャネルを前記他の無線装置との通信に使用する新たなチャネルとして選択する制御部、
を有することを特徴とする無線装置。 - 前記制御部は、前記他の無線装置と通信を行った現チャネルの通信速度と前記現チャネル以外の複数の前記他のチャネルの通信速度とをそれぞれ比較し、前記通信速度が最大となるチャネルを前記他の無線装置との通信に使用する新たなチャネルとすることを特徴とする請求項1に記載の無線装置。
- 前記制御部は、測定用のビーコン信号を所定のチャネルで前記他の無線装置に送信し、
前記他の無線装置が前記ビーコン信号の受信により求めた前記現チャネルのダウンリンクの通信速度と、前記現チャネル以外の複数の前記他のチャネルのダウンリンクの通信速度の情報を、前記他の無線装置から受信し、
前記通信速度が最大となるチャネルを前記他の無線装置との通信に使用する新たなチャネルとして選択することを特徴とする請求項1に記載の無線装置。 - 前記制御部は、端末がアップリンクの所定の現チャネルで信号を自装置に送信したとき、前記信号の受信により求めた前記現チャネルのアップリンクの通信速度と前記現チャネル以外の複数の他のチャネルのアップリンクの通信速度を求め、
前記通信速度が最大となるチャネルを前記他の無線装置との通信に使用する新たなチャネルとして選択することを特徴とする請求項1に記載の無線装置。 - 前記制御部は、複数の他の無線装置との間で通信可能な複数のチャネルの通信速度をそれぞれ合計し、当該合計した通信速度が最大となるチャネルを前記他の無線装置との通信に使用する新たなチャネルとして選択することを特徴とする請求項1に記載の無線装置。
- 前記制御部は、前記他の無線装置との間で通信した際の前記通信品質を求め、前記通信品質に対応して予め設定した通信速度を求めることを特徴とする請求項1に記載の無線装置。
- 無線装置であって、
他の無線装置との間で通信を行った現チャネルと他のチャネルとのそれぞれの通信速度を求め、前記他の無線装置に前記通信速度を送信する制御部、
を有することを特徴とする無線装置。 - 前記制御部は、前記他の無線装置との間で通信した際の前記通信品質を求め、前記通信品質に対応して予め設定した通信速度を求めることを特徴とする請求項7に記載の無線装置。
- 前記制御部は、前記他の無線装置からチャネル変更の通知に基づき、前記他の無線装置と通信を行うチャネルを変更することを特徴とする請求項7または8に記載の無線装置。
- 無線装置および端末を含む無線システムであって、
前記無線装置は、
前記端末との間で通信を行った現チャネルと他のチャネルとのそれぞれの通信速度に基づき、前記通信速度が最大となるチャネルを前記端末との通信に使用する新たなチャネルとして選択し、前記端末に通知する制御部を有し、
前記端末は、
前記無線装置から通知されたチャネルを用いた通信を行う制御部を有する、
ことを特徴とする無線システム。 - 無線装置における通信周波数割り当て方法であって、
他の無線装置との間で通信を行った現チャネルと他のチャネルとのそれぞれの通信速度に基づき、前記通信速度が最大となるチャネルを前記他の無線装置との通信に使用する新たなチャネルとして選択する、
ことを特徴とする通信周波数割り当て方法。 - 前記他の無線装置と通信を行った現チャネルの通信速度と前記チャネル以外の複数チャネルの通信速度とをそれぞれ比較し、前記通信速度が最大となるチャネルを前記他の無線装置との通信に使用する新たなチャネルに変更する、
ことを特徴とする請求項11に記載の通信周波数割り当て方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019508368A JP6766952B2 (ja) | 2017-03-27 | 2017-03-27 | 無線装置、無線システムおよび通信周波数割り当て方法 |
PCT/JP2017/012491 WO2018179071A1 (ja) | 2017-03-27 | 2017-03-27 | 無線装置、無線システムおよび通信周波数割り当て方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/012491 WO2018179071A1 (ja) | 2017-03-27 | 2017-03-27 | 無線装置、無線システムおよび通信周波数割り当て方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018179071A1 true WO2018179071A1 (ja) | 2018-10-04 |
Family
ID=63674715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/012491 WO2018179071A1 (ja) | 2017-03-27 | 2017-03-27 | 無線装置、無線システムおよび通信周波数割り当て方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6766952B2 (ja) |
WO (1) | WO2018179071A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109005597A (zh) * | 2018-06-29 | 2018-12-14 | 杭州涂鸦信息技术有限公司 | 无线通信防冲突方法及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007074097A (ja) * | 2005-09-05 | 2007-03-22 | Nippon Telegr & Teleph Corp <Ntt> | 無線パケット通信システム及び通信方法 |
JP2009021784A (ja) * | 2007-07-11 | 2009-01-29 | Ricoh Co Ltd | 無線通信装置 |
WO2012111261A1 (ja) * | 2011-02-16 | 2012-08-23 | パナソニック株式会社 | 無線通信装置 |
JP2014131285A (ja) * | 2014-01-07 | 2014-07-10 | Mitsubishi Electric Corp | 基地局、端末局および無線通信システム |
-
2017
- 2017-03-27 JP JP2019508368A patent/JP6766952B2/ja active Active
- 2017-03-27 WO PCT/JP2017/012491 patent/WO2018179071A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007074097A (ja) * | 2005-09-05 | 2007-03-22 | Nippon Telegr & Teleph Corp <Ntt> | 無線パケット通信システム及び通信方法 |
JP2009021784A (ja) * | 2007-07-11 | 2009-01-29 | Ricoh Co Ltd | 無線通信装置 |
WO2012111261A1 (ja) * | 2011-02-16 | 2012-08-23 | パナソニック株式会社 | 無線通信装置 |
JP2014131285A (ja) * | 2014-01-07 | 2014-07-10 | Mitsubishi Electric Corp | 基地局、端末局および無線通信システム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109005597A (zh) * | 2018-06-29 | 2018-12-14 | 杭州涂鸦信息技术有限公司 | 无线通信防冲突方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6766952B2 (ja) | 2020-10-14 |
JPWO2018179071A1 (ja) | 2019-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10848214B2 (en) | Mechanism and procedure of base station selection based on uplink pilot and distributed user-proximity detection | |
US20030220112A1 (en) | System and method for enabling the use of spatially distributed multichannel wireless access points/base stations | |
KR102412960B1 (ko) | 채널의 속성을 결정하기 위한 장치 및 방법 | |
CN110169142B (zh) | 上行信号发射功率控制 | |
JP5173626B2 (ja) | 集中制御基地局及び信号制御方法 | |
JP7293435B2 (ja) | Pcp/ap通信装置および通信方法 | |
JP7039181B2 (ja) | non-PCP/AP通信装置および通信方法 | |
US9967019B2 (en) | Communication system, communication method, base station device, and terminal device | |
WO2017159259A1 (ja) | 通信システム、通信システムの制御方法、基地局装置、および無線端末装置 | |
WO2012173062A1 (ja) | 通信端末装置および方法、基地局装置、並びに、通信システム | |
EP3100570A1 (en) | Radio node, communication devices and methods therein | |
JP2015159421A (ja) | 無線通信装置及び指向性制御方法 | |
US20150271801A1 (en) | Wireless communication apparatus and method, wireless terminal, memory card, and integrated circuit | |
WO2018179071A1 (ja) | 無線装置、無線システムおよび通信周波数割り当て方法 | |
WO2021240958A1 (ja) | アクセスポイント、端末、及び、通信方法 | |
CN114424631B (zh) | 用于在组播通信中进行功率控制的第一通信设备和第二通信设备 | |
US20190215043A1 (en) | Beamforming scheduling in a distribution network | |
JP6891631B2 (ja) | 通信装置、制御装置、通信システム、通信方法、および通信制御用プログラム | |
JP5468577B2 (ja) | 無線通信システムおよび無線通信方法 | |
US20240163686A1 (en) | Beamforming enhancements using machine learning models | |
US11211981B2 (en) | Control apparatus, method of controlling the same, and communication system | |
US20220240097A1 (en) | Dynamic configuration of overlapping basic service set preamble detect (obss pd) parameters for access points | |
KR20210084291A (ko) | Twt에서 트리거 프레임을 이용한 액세스 포인트 중심의 상향 링크 제어 방법 | |
KR20170006692A (ko) | 빔 생성 장치 및 이를 이용한 빔 생성 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17903673 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019508368 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17903673 Country of ref document: EP Kind code of ref document: A1 |