WO2018178798A1 - Display device and method for driving display device - Google Patents

Display device and method for driving display device Download PDF

Info

Publication number
WO2018178798A1
WO2018178798A1 PCT/IB2018/051793 IB2018051793W WO2018178798A1 WO 2018178798 A1 WO2018178798 A1 WO 2018178798A1 IB 2018051793 W IB2018051793 W IB 2018051793W WO 2018178798 A1 WO2018178798 A1 WO 2018178798A1
Authority
WO
WIPO (PCT)
Prior art keywords
row
wiring
pixel
electrically connected
display device
Prior art date
Application number
PCT/IB2018/051793
Other languages
French (fr)
Japanese (ja)
Inventor
宍戸英明
魚地秀貴
山崎舜平
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2018178798A1 publication Critical patent/WO2018178798A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Definitions

  • One embodiment of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method.
  • one embodiment of the invention disclosed in this specification and the like relates to a process, a machine, a manufacture, or a composition (composition of matter).
  • the present invention relates to a semiconductor device, a display device, or a driving method of the display device.
  • a semiconductor device refers to any device that can function by utilizing semiconductor characteristics.
  • a display device (a liquid crystal display device, a light-emitting display device, or the like), a projection device, a lighting device, an electro-optical device, a power storage device, a memory device, a semiconductor circuit, an imaging device, an electronic device, or the like may be referred to as a semiconductor device.
  • a semiconductor device Alternatively, it may be said that these include semiconductor devices.
  • an active matrix display device As a display device that realizes such a requirement, an active matrix display device is known.
  • an active matrix type liquid crystal display device using a liquid crystal element as a display element an active matrix type light emitting display device using a light emitting element such as an organic EL (Electro Luminescence) element as a display element, and the like are known.
  • Patent Document 1 discloses a liquid crystal display device that combines a common inversion driving method and a dot inversion driving method.
  • Patent Document 1 since the polarity of the common voltage of the entire display unit is inverted every frame period (corresponding to “one field period” in Patent Document 1), insufficient writing of common voltage (insufficient inversion). Is likely to occur. In particular, in the case of a display device having a large screen size, the display quality tends to deteriorate. In addition, there is a problem that the frame frequency cannot be increased because the writing of the common voltage becomes insufficient as the frame frequency increases.
  • An object of one embodiment of the present invention is to provide a display device with high display quality, a driving method thereof, or the like. Another object is to provide a display device with low power consumption, a driving method thereof, or the like. Another object is to provide a display device that can operate at high speed, a driving method thereof, or the like. Another object is to provide a display device with high productivity or a driving method thereof. Another object is to provide a display device with high reliability, a driving method thereof, or the like. Another object is to provide a novel display device or the like. Another object is to provide a novel driving method of a display device or the like.
  • a plurality of pixels arranged in m rows and n columns (m and n are each an integer of 2 or more), m rows of scanning lines, n columns of video signal lines, m + 1 common lines, the m + 1 common lines extend in a direction substantially parallel to the m rows of scanning lines, and each of the plurality of pixels includes a transistor and a display element, and x
  • the pixel in the row j column (x is an integer from 1 to m-1 and j is an integer from 1 to n) is the x-th scanning line, the j-th video signal line, and the x-th common line.
  • the pixel in the xth row, j + 1th column is electrically connected to the xth row scanning line, the j + 1th column video signal line, and the x + 1th common line, and the mth row, jth column.
  • the pixels are electrically connected to the m-th scanning line, the j-th video signal line, and the m-th common line.
  • Scan lines a display device, characterized in that it is connected j + 1 column of the video signal lines, and m + and electrically one th common line.
  • Another aspect of the present invention includes a plurality of pixels arranged in m rows and n columns, m rows of scanning lines, n columns of video signal lines, and m + 1 common lines,
  • the m + 1 common lines extend in a direction substantially parallel to the m rows of scanning lines, and each of the plurality of pixels includes a transistor and a display element.
  • the x row and the j column (x is 1 or more and m) -1 or less integer, j is an integer between 1 and n inclusive) is electrically connected to the x-th scanning line, the j-th video signal line, and the (x + 1) -th common line, and x-row j + 1
  • the pixel in the column is electrically connected to the scanning line in the x-th row, the video signal line in the j + 1-th column, and the x-th common line, and the pixel in the m-th row and j-th column is the scanning line in the m-th row,
  • the video signal line in the jth column and the m + 1th common line are electrically connected, and the pixel in the mth row, j + 1th column is the scanning line in the mth row, the video in the j + 1th column.
  • Another embodiment of the present invention is the display device according to (1) or (2) described above, in a period in which a pixel in the p-th row (p is an integer of 1 to m-2) is selected.
  • the display device driving method is characterized in that the polarity of the voltage supplied to the p + 2 common line is inverted.
  • Another embodiment of the present invention is the display device described in (1) or (2) above, in which the voltage supplied to the first common line in the period in which the pixels in the (m ⁇ 1) th row are selected.
  • the display device driving method is characterized in that the polarity of the display is reversed.
  • Another embodiment of the present invention is the display device described in the above (1) or (2), wherein the polarity of the voltage supplied to the first common line during the period when the m-th row pixel is selected. Is a method for driving a display device.
  • Another embodiment of the present invention is the display device described in the above (1) or (2), wherein the polarity of the voltage supplied to the second common line during the period when the m-th row pixel is selected. Is a method for driving a display device.
  • Another aspect of the present invention is that a plurality of pixels arranged in m rows and n columns (m and n are integers of 4 or more, respectively), m rows of scanning lines, and n first videos A signal line, n second video signal lines, and m + 1 common lines, the m + 1 common lines extending in a direction substantially parallel to the m rows of scanning lines,
  • Each pixel includes a transistor and a display element, and the pixel in the xth row and jth column (x is an integer from 1 to m-2 and j is an integer from 1 to n) is the scanning line in the xth row,
  • the pixels of the (x + 1) th row and the jth column are electrically connected to the jth first video signal line and the xth common line, and the x + 1th row scanning line, the jth second video signal line, and the x + 1th row are connected.
  • the pixel in the xth row, j + 1th column is electrically connected to the common line, the xth row scanning line, the j + 1th first video signal line, and the x + 1th row.
  • the pixel in the (x + 1) th row and the (j + 1) th column is electrically connected to the (x + 1) th row scanning line, the (j + 1) th second video signal line, and the (x + 2) th common line, and m ⁇
  • the pixel in the 1st row and the jth column is electrically connected to the m ⁇ 1th row scanning line, the jth first video signal line, and the m ⁇ 1th common line.
  • the m-th scanning line, the j-th second video signal line, and the m-th common line are electrically connected to the m ⁇ 1-th row j + 1-column pixel
  • the pixel in the m-th row, j + 1-th column is electrically connected to the j + 1-th first video signal line and the m-th common line
  • the m-th row, j + 1-th column pixel is the m + 1-th scanning line, the j + 1-th second video signal line
  • the display device is electrically connected to the common line.
  • a plurality of pixels arranged in m rows and n columns (m and n are integers of 4 or more, respectively), m rows of scanning lines, and n first videos
  • Each pixel includes a transistor and a display element, and the pixel in the xth row and jth column (x is an integer from 1 to m-2 and j is an integer from 1 to n) is the scanning line in the xth row
  • the pixels of the (x + 1) th row and the jth column are electrically connected to the jth first video signal line and the (x + 1) th common line, and the x + 1th row scanning line, the jth second video signal line, and the (x + 2) th row are connected.
  • the xth row, j + 1th column pixel is electrically connected to the xth scanning line, j + 1th first video signal line, and xth row.
  • the pixel in the (x + 1) th row and the (j + 1) th column is electrically connected to the (x + 1) th row scanning line, the (j + 1) th second video signal line, and the (x + 1) th common line.
  • the pixel in the 1st row and the jth column is electrically connected to the scanning line in the (m-1) th row, the jth first video signal line, and the mth common line, and the pixel in the mth and jth column is m
  • the pixels in the (m ⁇ 1) th row, (j + 1) th column are electrically connected to the scanning line in the row, the jth second video signal line, and the m + 1th common line.
  • the first video signal line and the (m-1) th common line are electrically connected to each other, and the pixel in the mth row, j + 1th column is the mth row scanning line, the j + 1th second video signal line, and the mth row.
  • the display device is electrically connected to the common line.
  • Another embodiment of the present invention is the display device according to (3) or (4) described above, in a period in which a pixel in the p-th row (p is an integer of 1 to m-3) is selected.
  • the display device driving method is characterized by inverting the polarity of the voltage supplied to the p + 2 common line and the polarity of the voltage supplied to the p + 3 common line.
  • Another embodiment of the present invention is the display device described in (3) or (4) above, in which the voltage supplied to the first common line during the period in which the pixel on the (m-2) th row is selected.
  • the display device driving method is characterized in that the polarity of the display is reversed.
  • Another embodiment of the present invention is the display device described in the above (3) or (4), wherein the polarity of the voltage supplied to the first common line during the period when the m-th row pixel is selected. Is a method for driving a display device.
  • Another embodiment of the present invention is the display device described in the above (3) or (4), wherein the polarity of the voltage supplied to the second common line in the period when the m-th row pixel is selected. And a polarity of the voltage supplied to the third common line, respectively.
  • a liquid crystal element or the like can be used.
  • the semiconductor layer of the transistor silicon, metal oxide, or the like can be used.
  • a display device with high display quality, a driving method thereof, or the like can be provided.
  • a display device with low power consumption or a driving method thereof can be provided.
  • a display device that can operate at high speed or a driving method thereof can be provided.
  • a display device with high productivity or a driving method thereof can be provided.
  • a display device with favorable reliability or a driving method thereof can be provided.
  • a novel display device or the like can be provided.
  • a novel driving method of the display device can be provided.
  • FIG. 10 illustrates a display device. 8A and 8B illustrate a circuit configuration example of pixels and a combination example of sub-pixels.
  • FIG. 10 illustrates a display device.
  • FIG. 10 illustrates a display device.
  • FIG. 10 illustrates a display device.
  • the figure explaining the common inversion drive method. 6 is a timing chart illustrating operation of a display device.
  • FIG. 14 illustrates operation of a display device.
  • FIG. 14 illustrates operation of a display device.
  • FIG. 14 illustrates operation of a display device.
  • FIG. 14 illustrates operation of a display device.
  • FIG. 14 illustrates operation of a display device.
  • FIG. 14 illustrates operation of a display device.
  • FIG. 14 illustrates operation of a display device.
  • FIG. 10 illustrates a display device.
  • FIG. 10 illustrates a display device.
  • FIG. 14 illustrates operation of a display device.
  • FIG. 14 illustrates operation of a display device.
  • FIG. 14 illustrates operation of a display device.
  • FIG. 14 illustrates operation of a display device.
  • FIG. 14 illustrates operation of a display device.
  • FIG. 14 illustrates operation of a display device.
  • FIG. 14 illustrates operation of a display device.
  • FIG. 14 illustrates operation of a display device.
  • FIG. 14 illustrates operation of a display device.
  • FIG. 14 illustrates operation of a display device.
  • FIG. 14 illustrates operation of a display device.
  • FIG. 14 illustrates operation of a display device.
  • 6A and 6B illustrate a structure example of a transistor.
  • 6A and 6B illustrate a structure example of a transistor.
  • 6A and 6B illustrate a structure example of a transistor.
  • 6A and 6B illustrate a structure example of a transistor.
  • 6A and 6B illustrate a structure example of a transistor.
  • 6A and 6B illustrate a structure example of a transistor.
  • FIG. 10 illustrates a display device.
  • FIG. 10 illustrates a display device.
  • 10A and 10B each illustrate an electronic device.
  • 10A and 10B each illustrate an electronic device.
  • the position, size, range, and the like of each component illustrated in the drawings and the like may not represent the actual position, size, range, or the like in order to facilitate understanding of the invention. Therefore, the disclosed invention is not necessarily limited to the position, size, range, or the like disclosed in the drawings and the like.
  • a layer or a resist mask may be unintentionally lost due to a process such as etching, but may be omitted to facilitate understanding of the invention.
  • a top view also referred to as a “plan view”
  • a perspective view a perspective view, and the like
  • some components may not be described in order to facilitate understanding of the invention.
  • description of some hidden lines may be omitted.
  • ordinal numbers such as “first” and “second” are used to avoid confusion between components, and do not indicate any order or order such as process order or stacking order.
  • an ordinal number may be added in the claims to avoid confusion between the constituent elements.
  • the ordinal numbers given in this specification and the like may differ from the ordinal numbers given in the claims. Even in the present specification and the like, terms with ordinal numbers are sometimes omitted in the claims.
  • Electrode and “wiring” do not functionally limit these components.
  • an “electrode” may be used as part of a “wiring” and vice versa.
  • the terms “electrode” and “wiring” include a case where a plurality of “electrodes” and “wirings” are provided integrally.
  • the “voltage” often indicates a potential difference between a certain potential and a reference potential (for example, ground potential). Therefore, it may be possible to paraphrase “voltage” and “potential”.
  • a transistor is an element having at least three terminals including a gate, a drain, and a source.
  • a channel formation region is provided between the drain (drain terminal, drain region or drain electrode) and the source (source terminal, source region or source electrode), and between the source and drain via the channel formation region. It is possible to pass a current through. Note that in this specification and the like, a channel formation region refers to a region through which a current mainly flows.
  • the transistors described in this specification and the like are enhancement-type (normally-off) field-effect transistors unless otherwise specified.
  • the transistors described in this specification and the like are n-channel transistors unless otherwise specified. Therefore, the threshold voltage (also referred to as “Vth”) is greater than 0 V unless otherwise specified.
  • Vth of a transistor having a back gate refers to Vth when the potential of the back gate is the same as that of the source or the gate unless otherwise specified.
  • off-state current refers to drain current when a transistor is off (also referred to as a non-conduction state or a cutoff state).
  • Vg the potential difference between the gate and the source
  • Vth the threshold voltage
  • a state a p-channel transistor, refers to a state where the voltage Vg between the gate and the source is higher than the threshold voltage Vth.
  • the off-state current of an n-channel transistor sometimes refers to a drain current when Vg is lower than a threshold voltage (hereinafter also referred to as “Vth”).
  • the drain may be read as the source. That is, the off-state current sometimes refers to a current that flows through the source when the transistor is off.
  • off-state current may refer to current that flows between a source and a drain when a transistor is off, for example.
  • “electrically connected” includes a case of being connected via “thing having some electric action”.
  • the “thing having some electric action” is not particularly limited as long as it can exchange electric signals between connection targets. Therefore, even in the case of being expressed as “electrically connected”, in an actual circuit, there is a case where there is no physical connection portion and the wiring is merely extended.
  • the terms “upper” and “lower” do not limit that the positional relationship between the components is directly above or directly below and is in direct contact.
  • the electrode B on the insulating layer A the electrode B does not need to be provided directly on the insulating layer A, and another configuration is provided between the insulating layer A and the electrode B. Do not exclude things that contain elements.
  • parallel means a state in which two straight lines are arranged at an angle of ⁇ 10 ° to 10 °, unless otherwise specified. Therefore, the case of ⁇ 5 ° to 5 ° is also included.
  • substantially parallel means a state in which two straight lines are arranged at an angle of ⁇ 30 ° to 30 °, unless otherwise specified.
  • “Vertical” and “orthogonal” refer to a state in which two straight lines are arranged at an angle of 80 ° or more and 100 ° or less, unless otherwise specified. Therefore, the case of 85 ° to 95 ° is also included.
  • substantially vertical refers to a state in which two straight lines are arranged at an angle of 60 ° or more and 120 ° or less, unless otherwise specified.
  • FIG. 1A is a block diagram for explaining a configuration example of the display device 100.
  • the display device 100 includes a display unit 110, a scanning line driving circuit 121, a signal line driving circuit 131, a signal line driving circuit 132, and a common line driving circuit 141.
  • a generic term for circuits included in the scanning line driver circuit 121, the signal line driver circuit 131, the signal line driver circuit 132, and the common line driver circuit 141 may be referred to as “peripheral driver circuit” or “driver circuit”.
  • peripheral driver circuit various circuits such as a shift register, a level shifter, an inverter, a latch, an analog switch, and a logic circuit can be used.
  • FIG. 1B is a block diagram illustrating part of the display portion 110.
  • the display unit 110 includes a plurality of pixels 111.
  • the pixel 111 includes a plurality of pixels 111 arranged in a matrix of m rows and n columns (m and n are integers of 2 or more).
  • m and n are integers of 2 or more.
  • the pixel 111 located in the i-th row and j-th column i is an integer of 1 to m.
  • J is an integer of 1 to n
  • the pixel 111 in the i-th row and j-th column is electrically connected to the i + 1-th wiring COM, and the pixel 111 in the i-th row j + 1 column is electrically connected to the i-th wiring COM.
  • a block diagram is shown. However, the configuration is not limited to this, and the pixel 111 in the i-th row and j-th column is electrically connected to the i-th wiring COM, and the pixel 111 in the i-th row j + 1 column is electrically connected to the i + 1-th wiring COM. But you can.
  • the display device 100 includes m wirings GL.
  • Each of the m wirings GL extends in the row direction.
  • each of the m wirings GL is electrically connected to the plurality of pixels 111 arranged in the row direction in the display unit 110.
  • the wiring GL in the first row is denoted as a wiring GL [1].
  • the wiring GL in the m-th row is denoted as wiring GL [m].
  • the i-th line GL is referred to as a line GL [i].
  • the scan line driver circuit 121 has a function of sequentially supplying a selection signal from the wiring GL [1] to the wiring GL [m]. In other words, the scan line driver circuit 121 has a function of sequentially scanning the wirings GL [1] to GL [m]. After scanning up to the wiring GL [m], scanning is performed again from the wiring GL [1] again.
  • the wiring GL has a function of transmitting a selection signal supplied from the scan line driver circuit 121 to the pixel 111. Note that in this specification and the like, the wiring GL may be referred to as a “gate line” or a “scan line”.
  • the display device 100 includes n wirings SL.
  • Each of the n wirings SL extends in the column direction (scanning direction).
  • each of the n wirings SL is electrically connected to the plurality of pixels 111 arranged in the column direction in the display portion 110.
  • the wiring SL in the first column is denoted as a wiring SL [1].
  • the wiring SL in the n-th column is denoted as a wiring SL [n].
  • the j-th line wiring GL is denoted as a wiring SL [j].
  • the wiring SL has a function of transmitting an image signal (also referred to as a “video signal”) supplied from the signal line driver circuit 131 and the signal line driver circuit 132 to the pixel 111.
  • an image signal also referred to as a “video signal”
  • the wiring SL may be referred to as a “source line” or a “signal line”.
  • the supply capability of the image signals to the wiring SL can be increased. Thereby, the charge / discharge time of the wiring SL can be shortened. Therefore, even a display device with an extremely high resolution such as 4K or 8K can be operated using a transistor with low field-effect mobility. Further, it becomes easy to realize a large display device having a screen size of 50 inches diagonal or more, 60 inches diagonal or more, or 70 inches diagonal or more. Note that one of the signal line driver circuit 131 and the signal line driver circuit 132 may be omitted depending on the purpose or the like.
  • the display device 100 includes m + 1 wirings COM.
  • Each of the m + 1 wirings COM extends in the row direction. Therefore, the wiring COM extends substantially parallel to the wiring GL.
  • the first wiring COM is referred to as wiring COM [1].
  • the (m + 1) th wiring COM is denoted as a wiring COM [m + 1].
  • the i-th wiring COM is denoted as wiring COM [i].
  • One end of the wiring COM is electrically connected to the common line driving circuit 141.
  • the common line driver circuit 141 has a function of supplying a common potential signal in order from the wiring COM [1] to the wiring COM [m + 1].
  • the common line driving circuit 141 and the scanning line driving circuit 121 are provided at positions facing each other across the display unit 110.
  • the wiring COM has a function of transmitting a common potential signal supplied from the common line driver circuit 141 to the pixel 111. Note that in this specification and the like, the wiring COM may be referred to as a “common line”.
  • ⁇ Connection of Pixel 111 and Wiring COM Of the plurality of pixels 111 arranged in the first row, one of the odd-numbered or even-numbered pixels 111 is electrically connected to the first wiring COM. In addition, among the plurality of pixels 111 arranged in the first row, the other pixel 111 in the odd-numbered column or the even-numbered column is electrically connected to the second wiring COM. Of the plurality of pixels 111 arranged in the m-th row, one of the odd-numbered columns or even-numbered columns 111 is electrically connected to the m-th wiring COM. In addition, among the plurality of pixels 111 arranged in the m-th row, the other pixel 111 in the odd-numbered column or the even-numbered column is electrically connected to the (m + 1) th wiring COM.
  • the i-th wiring COM includes the pixel 111 in the (i ⁇ 1) th row and jth column, the pixel 111 in the (i ⁇ 1) th row j + 2th column, the pixel 111 in the ith row j + 1th column, and the ith row j + 3th column.
  • An example in which the eye pixel 111 is electrically connected is shown.
  • connection relationship between the pixel 111 and the wiring COM will be described more specifically.
  • the odd-numbered pixels 111 are electrically connected to the first wiring COM, and the even-numbered pixels 111 are electrically connected to the second wiring COM. .
  • the odd-numbered pixels 111 are electrically connected to the second wiring COM, and the even-numbered pixels 111 are electrically connected to the third wiring COM. Is done.
  • the odd-numbered columns 111 are electrically connected to the m-th wiring COM, and the even-numbered pixels 111 are electrically connected to the m + 1-th wiring COM. Is done.
  • the pixel 111 in the x-row odd column is electrically connected to the wiring GL in the x-th row, the wiring SL in the odd-numbered column, and the x-th wiring COM.
  • the pixel 111 in the x-th even column is electrically connected to the wiring GL in the x-th row, the wiring SL in the even-numbered column, and the x + 1-th wiring COM.
  • the pixel 111 in the m-th row and odd-numbered column is electrically connected to the wiring GL in the m-th row, the wiring SL in the odd-numbered column, and the x-th wiring COM, and the pixel 111 in the m-th row and even-numbered column It is electrically connected to the wiring GL in the row, the wiring SL in the even-numbered column, and the m + 1th wiring COM.
  • the pixel 111 in the x-th row 2y + 1 column is electrically connected to the x-th wiring GL, the 2y + 1-th column wiring SL, and the x-th wiring COM, and the x-th row
  • the pixel 111 in the 2y + 2 column is electrically connected to the wiring GL in the x-th row, the wiring SL in the 2y + 2 column, and the x + 1-th wiring COM.
  • the pixel 111 in the m-th row 2y + 1 column is electrically connected to the m-th line wiring GL, the 2y + 1-th line wiring SL, and the m-th wiring COM, and the m-th row 2y + second-column pixel 111 is m It is electrically connected to the wiring GL in the row, the wiring SL in the 2y + 2 column, and the m + 1th wiring COM.
  • the even-numbered pixels 111 are electrically connected to the first wiring COM, and the odd-numbered pixels 111 are electrically connected to the second wiring COM. .
  • the pixels 111 in the even columns are electrically connected to the second wiring COM, and the pixels 111 in the odd columns are electrically connected to the third wiring COM. Is done.
  • the even-numbered pixels 111 are electrically connected to the m-th wiring COM, and the odd-numbered pixels 111 are electrically connected to the m + 1-th wiring COM. Is done.
  • the pixel 111 in the x-th even column is electrically connected to the x-th line wiring GL, the even-numbered line wiring SL, and the x-th line COM. Then, the pixels 111 in the x-th row and odd-numbered columns are electrically connected to the wiring GL in the x-th row, the wiring SL in the odd-numbered column, and the x + 1-th wiring COM.
  • the pixels 111 in the m-th even column are electrically connected to the wiring GL in the m-th row, the wiring SL in the even-numbered column, and the x-th wiring COM, and the pixel 111 in the m-th odd column is m It is electrically connected to the wiring GL in the row, the wiring SL in the odd-numbered column, and the (m + 1) th wiring COM.
  • the pixel 111 in the x row 2y + 2 column is electrically connected to the wiring GL in the x row, the wiring SL in the 2y + 2 column, and the x th wiring COM, and the x row
  • the pixel 111 in the 2y + 1 column is electrically connected to the wiring GL in the x-th row, the wiring SL in the 2y + 1 column, and the x + 1-th wiring COM.
  • the pixel 111 in the m-th row 2y + 2 column is electrically connected to the m-th wiring GL, the 2y + 2-th column wiring SL, and the m-th wiring COM. It is electrically connected to the wiring GL in the row, the wiring SL in the 2y + 1th column, and the m + 1th wiring COM.
  • FIG. 2 shows a circuit configuration example that can be used for the pixel 111.
  • the pixel 111 includes a pixel circuit 534 and a display element 462.
  • Display element Various display elements can be used for the display element 462.
  • Examples of display elements include EL (electroluminescence) elements (organic EL elements, inorganic EL elements, or EL elements including organic and inorganic substances), LEDs (white LEDs, red LEDs, green LEDs, blue LEDs, etc.), transistors (Transistor that emits light in response to current), electron-emitting device, liquid crystal device, electronic ink, electrophoretic device, GLV (grating light valve), display device using MEMS (micro electro mechanical system), DMD (digital Micromirror device), DMS (digital micro shutter), MIRASOL (registered trademark), IMOD (interferometric modulation) element, shutter type MEMS display element, optical interference type MEMS display element, electrowetting Child, piezoceramic display, display using carbon nanotubes, etc., by electrical or magnetic action, those having contrast, brightness, reflectance, a display medium such as transmittance changes.
  • quantum dots may be used as the display element.
  • an example of a display device using an EL element as the display element 462 is an EL display.
  • a display device using an electron-emitting device there is an FED (Field Emission Display) or an SED type flat display (SED: Surface-conduction Electron-emitter Display).
  • An example of a display device using quantum dots is a quantum dot display.
  • a display device using a liquid crystal element there is a liquid crystal display (a transmissive liquid crystal display, a transflective liquid crystal display, a reflective liquid crystal display, a direct view liquid crystal display, a projection liquid crystal display) and the like.
  • the display device may be a PDP (plasma display panel).
  • the display device may be a retinal scanning type projection device.
  • the display apparatus using micro LED may be sufficient.
  • the liquid crystal element is an element that controls transmission or non-transmission of light by an optical modulation action of liquid crystal.
  • the optical modulation action of the liquid crystal is controlled by an electric field applied to the liquid crystal (including a horizontal electric field, a vertical electric field, and / or an oblique electric field).
  • a thermotropic liquid crystal a low molecular liquid crystal, a polymer liquid crystal, a polymer dispersed liquid crystal, a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like can be used.
  • These liquid crystal materials exhibit a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, and the like depending on conditions.
  • liquid crystal material either a positive type liquid crystal or a negative type liquid crystal may be used, and an optimal liquid crystal material may be used according to an applied mode or design.
  • an alignment film can be provided.
  • a liquid crystal exhibiting a blue phase without using an alignment film may be used.
  • the blue phase is one of the liquid crystal phases.
  • a liquid crystal composition mixed with several percent by weight or more of a chiral agent is used for the liquid crystal layer in order to improve the temperature range.
  • a liquid crystal composition containing a liquid crystal exhibiting a blue phase and a chiral agent has a short response speed and is optically isotropic.
  • a liquid crystal composition including a liquid crystal exhibiting a blue phase and a chiral agent does not require alignment treatment and has a small viewing angle dependency. Further, since it is not necessary to provide an alignment film, a rubbing process is not required, so that electrostatic breakdown caused by the rubbing process can be prevented, and defects or breakage of the liquid crystal display device during the manufacturing process can be reduced. . Therefore, the productivity of the liquid crystal display device can be improved.
  • the reflective liquid crystal display device using a circularly polarizing plate is switched between the on state and the off state (switching between the bright state and the dark state) by aligning the major axis of the liquid crystal molecules in a direction substantially perpendicular to the substrate, It is done by aligning in a substantially horizontal direction.
  • a liquid crystal element that operates in a lateral electric field mode such as an IPS (In-Plane-Switching) mode has a major axis of liquid crystal molecules aligned in a substantially horizontal direction with respect to a substrate in both an on state and an off state. Difficult to use in equipment.
  • a liquid crystal element that operates in the VA-IPS mode operates in a lateral electric field mode, and switches between an on state and an off state so that the major axis of the liquid crystal molecules is aligned in a direction substantially perpendicular to the substrate, or is substantially horizontal to the substrate. It is done by aligning the direction. Therefore, when a liquid crystal element that operates in a horizontal electric field mode is used for a reflective liquid crystal display device, it is preferable to use a liquid crystal element that operates in a VA-IPS (Vertical Alignment In-Plane-Switching) mode.
  • VA-IPS Very Alignment In-Plane-Switching
  • multi-domain or multi-domain design which is devised to divide the pixel 111 into several regions and tilt the molecules in different directions, can be used.
  • the specific resistance of the liquid crystal material is 1 ⁇ 10 9 ⁇ ⁇ cm or more, preferably 1 ⁇ 10 11 ⁇ ⁇ cm or more, and more preferably 1 ⁇ 10 12 ⁇ ⁇ cm or more.
  • the value of the specific resistance in this specification shall be the value measured at 20 degreeC.
  • part or all of the pixel electrode may have a function as a reflective electrode.
  • part or all of the pixel electrode may have aluminum, silver, or the like.
  • a memory circuit such as an SRAM can be provided under the reflective electrode. Thereby, power consumption can be further reduced.
  • Graphene or graphite may be a multilayer film in which a plurality of layers are stacked.
  • a nitride semiconductor for example, an n-type GaN semiconductor layer having a crystal can be easily formed thereon.
  • a p-type GaN semiconductor layer having a crystal or the like can be provided thereon to form an LED.
  • an AlN layer may be provided between graphene or graphite and an n-type GaN semiconductor layer having a crystal.
  • the GaN semiconductor layer of the LED may be formed by MOCVD.
  • the GaN semiconductor layer of the LED can be formed by a sputtering method.
  • a pixel circuit 534 illustrated in FIG. 2A includes a transistor 461 and a capacitor 463.
  • the pixel circuit 534 illustrated in FIG. 2A is electrically connected to a liquid crystal element that can function as the display element 462.
  • One potential of the pair of electrodes of the display element 462 is appropriately set in accordance with the specification of the pixel circuit 534.
  • a common potential may be applied to one of the pair of electrodes of the display element 462, or the potential may be the same as that of a capacitor line CL which will be described later.
  • a different potential may be applied to one of the pair of electrodes of the display element 462 for each pixel 532.
  • the other of the pair of electrodes of the display element 462 is electrically connected to the node 466.
  • the orientation state of the display element 462 is set by data written to the node 466.
  • a driving method of the liquid crystal element for example, a TN (Twisted Nematic) mode, an STN (Super Twisted Nematic) mode, a VA (Vertical Alignment Aligned Coaxial) mode, an ASM (Axially Symmetrical Bounded Micro mode).
  • FLC Fluroelectric Liquid Crystal
  • AFLC Anti Ferroelectric Liquid Crystal
  • MVA Multi Vertical Domain
  • PVA Powerned Vertical Alignment
  • FFS Feringe Field Switching
  • VA-IPS mode or TBA the like may be used (Transverse Bend Alignment) mode.
  • ECB Electrode Controlled Birefringence
  • PDLC Polymer Dispersed Liquid Crystal
  • PNLC Polymer Network Liquid Crystal mode
  • the present invention is not limited to this, and various liquid crystal elements and driving methods thereof can be used.
  • one of a source and a drain of the transistor 461 is electrically connected to the wiring SL [j], and the other is electrically connected to the node 466.
  • a gate of the transistor 461 is electrically connected to the wiring GL [i].
  • a video signal is supplied from the wiring SL [j].
  • the transistor 461 has a function of controlling writing of a video signal to the node 466.
  • the capacitor 463 has a function as a storage capacitor that stores data written to the node 466.
  • the scan line driver circuit 121 sequentially selects the pixel circuits 534 in each row, turns on the transistors 461, and writes a video signal to the node 466.
  • the pixel circuit 534 in which the video signal is written to the node 466 enters the holding state when the transistor 461 is turned off. By sequentially performing this for each row, an image can be displayed on the display unit 110.
  • one of a source and a drain of the transistor 461 is electrically connected to the wiring SL [j + 1], and the other is electrically connected to the node 466.
  • a gate of the transistor 461 is electrically connected to the wiring GL [i].
  • a video signal is supplied from the wiring SL [j + 1].
  • the transistor 461 has a function of controlling writing of a video signal to the node 466.
  • one of the pair of electrodes of the capacitor 463 is electrically connected to the wiring COM [i], and the other is electrically connected to the node 466.
  • the capacitor 463 has a function as a storage capacitor that stores data written to the node 466.
  • a transistor having a back gate may be used as the transistor 461.
  • a gate of the transistor 461 illustrated in FIG. 2B is electrically connected to the back gate. Therefore, the gate and the back gate are always at the same potential.
  • the pixel 111 can function as a subpixel. As shown in FIG. 2C, full color display can be realized by combining at least three pixels 111 to function as one pixel 112. Each of the three pixels 111 controls the transmittance, reflectance, light emission amount, etc. of red light (R), green light (G), or blue light (B). Note that the color of light controlled by the three pixels 111 is not limited to a combination of red, green, and blue, and may be yellow (Y), cyan (C), and magenta (M).
  • a pixel 111 that controls white light (W) is added to a pixel that controls red light, green light, and blue light, and the four pixels 111 are combined into one pixel. 112 may function.
  • the luminance of the display image can be increased by adding the pixel 111 that controls white light.
  • a pixel 111 that controls yellow light (Y) may be provided instead of the pixel 111 that controls white light (W).
  • the pixels 111 that control yellow (Y), cyan (C), magenta (M), and white (W) light may be combined.
  • color gamuts of various standards can be reproduced by combining pixels 111 that control light of different colors.
  • PAL Phase Alternating Line
  • NTSC National Television System Committee
  • sRGB standard RGB
  • HDTV High Definition Television
  • 709 International Telecommunication Union Radiocommunication Sector Broadcasting Service (Television) 709) Standard
  • DCI-P3 DigitalCineMitiTitiHit3P
  • the display device 100 When the pixels 112 are arranged in a 1920 ⁇ 1080 matrix, the display device 100 that can display at a resolution of so-called full high-definition (also referred to as “2K resolution”, “2K1K”, or “2K”) can be realized. it can. Further, for example, when the pixels 112 are arranged in a 3840 ⁇ 2160 matrix, the display device 100 that can display at a resolution of so-called ultra high vision (also referred to as “4K resolution”, “4K2K”, or “4K”) is provided. Can be realized.
  • the display device 100 that can display at a resolution of so-called super high vision (also referred to as “8K resolution”, “8K4K”, or “8K”) is provided.
  • 8K resolution also referred to as “8K resolution”, “8K4K”, or “8K”
  • 8K resolution also referred to as “8K resolution”
  • 8K4K 8K
  • 8K the display device 100 that can display at a resolution of 16K or 32K.
  • FIG. 3A is a block diagram for describing a configuration example of the display device 100A.
  • the display device 100 ⁇ / b> A includes a scanning line driving circuit 122 at a position facing the scanning line driving circuit 121 with the display unit 110 interposed therebetween.
  • One end of the wiring GL is electrically connected to the scan line driver circuit 121, and the other end of the wiring GL is electrically connected to the scan line driver circuit 122.
  • the scan line driver circuit 122 has a function similar to that of the scan line driver circuit 121.
  • the scan line driver circuit 122 is provided between the display portion 110 and the common line driver circuit 141; however, the common line driver circuit 141 is provided between the display portion 110 and the scan line driver circuit 122. It may be provided. Further, the common line driver circuit 141 may have the function of the scanning line driver circuit 122. Further, the scan line driver circuit 122 may have the function of the common line driver circuit 141.
  • FIG. 3B is a block diagram for describing a configuration example of the display device 100B.
  • the display device 100B includes a common line drive circuit 142 at a position facing the common line drive circuit 141 with the display unit 110 interposed therebetween.
  • one end of the wiring COM is electrically connected to the common line driving circuit 141, and the other end of the wiring COM is electrically connected to the common line driving circuit 142.
  • the common line drive circuit 142 has the same function as the common line drive circuit 141.
  • the scan line driver circuit 121 is provided between the display portion 110 and the common line drive circuit 142; however, the common line drive circuit 142 is provided between the display portion 110 and the scan line drive circuit 121. It may be provided. Further, the common line driver circuit 142 may have the function of the scan line driver circuit 121. Further, the scan line driver circuit 121 may have the function of the common line driver circuit 142.
  • FIG. 4A is a block diagram for describing a configuration example of the display device 100C.
  • the display device 100C has a configuration in which the display unit 110 is vertically divided.
  • the upper side (upstream side in the scanning direction) of the display unit 110 is shown as a display unit 110a
  • the lower side (downstream side in the scanning direction) of the display unit 110 is shown as a display unit 110b.
  • the display device 100C includes n wirings SLa and n wirings SLb.
  • Each of the n wirings SLa extends in the scanning direction (column direction) and is electrically connected to the plurality of pixels 111 arranged in the column direction in the display portion 110a.
  • Each of the n wirings SLb extends in the scanning direction (column direction) and is electrically connected to the plurality of pixels 111 arranged in the column direction in the display portion 110b.
  • the wiring SLa and the wiring SLb have the same function and structure as the wiring SL. That is, the display device 100C has a structure in which the wiring SL is divided into the wiring SLa and the wiring SLb.
  • the upstream line GL in the scanning direction and the upstream line COM in the scanning direction are electrically connected to the display unit 110a.
  • the downstream wiring GL in the scanning direction and the downstream wiring COM in the scanning direction are electrically connected to the display unit 110b.
  • the wiring SLa electrically connected to the pixel 111 in the first column in the display portion 110a is illustrated as a wiring SLa [1].
  • a wiring SLa electrically connected to the pixel 111 in the j-th column is denoted as a wiring SLa [j].
  • a wiring SLa electrically connected to the pixel 111 in the n-th column is denoted as a wiring SLa [n].
  • the wiring SLb electrically connected to the pixel 111 in the first column in the display portion 110b is denoted as a wiring SLb [1].
  • a wiring SLb electrically connected to the pixel 111 in the j-th column is denoted as a wiring SLb [j].
  • a wiring SLb electrically connected to the pixel 111 in the n-th column is denoted as a wiring SLb [n].
  • One end of the wiring SLa is electrically connected to the signal line driver circuit 131, and one end of the wiring SLb is electrically connected to the signal line driver circuit 132.
  • the wiring resistance and parasitic capacitance per wiring can be halved. Therefore, the influence (time constant) on the delay and rounding of the video signal can be reduced to 1 ⁇ 4. That is, the display quality of the display device can be improved.
  • the time for writing the video signal to the pixel 111 can be shortened, the frame frequency can be increased.
  • the output load of the signal line driver circuit is reduced, the reliability of the display device can be increased.
  • FIG. 4B is a block diagram for describing a configuration example of the display device 100D.
  • the display device 100D has a configuration obtained by modifying the display device 100C.
  • the display device 100D includes a scanning line driving circuit 121a, a scanning line driving circuit 121b, a common line driving circuit 141a, and a common line driving circuit 141b.
  • the scan line driver circuit 121 a and the scan line driver circuit 121 b have the same functions as the scan line driver circuit 121.
  • the common line drive circuit 141a and the common line drive circuit 141b have the same functions as the common line drive circuit 141.
  • the display device 100D includes m wirings GLa, m wirings GLb, m + 1 wirings COMa, and m + 1 wirings COMb.
  • the wiring GLa and the wiring GLb have the same function and structure as the wiring GL.
  • the wiring COMa and the wiring COMb have the same function and structure as the wiring COM.
  • Each of the m wirings GLa extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display portion 110a.
  • One end of the wiring GLa is electrically connected to the scan line driver circuit 121a.
  • the wiring GLa electrically connected to the pixel 111 in the first row is denoted as wiring GLa [1]
  • the wiring GLa electrically connected to the pixel 111 in the mth row is denoted as wiring GLa [m].
  • the scan line driver circuit 121a has a function of sequentially supplying a selection signal from the wiring GLa [1] to the wiring GLa [m].
  • Each of the m wirings GLb extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display portion 110b.
  • One end of the wiring GLb is electrically connected to the scan line driver circuit 121b.
  • the wiring GLb electrically connected to the pixel 111 in the first row is denoted as a wiring GLb [1]
  • the wiring GLb electrically connected to the pixel 111 in the m-th row is denoted as a wiring GLb [m].
  • the scan line driver circuit 121b has a function of sequentially supplying a selection signal from the wiring GLb [1] to the wiring GLb [m].
  • Each of the m + 1 wirings COMa extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display portion 110a.
  • One end of the wiring COMa is electrically connected to the common line driving circuit 141a.
  • the first wiring COMa is denoted as wiring COMa [1]
  • the (m + 1) th wiring COMa is denoted as wiring COMa [m + 1].
  • the common line driver circuit 141a has a function of sequentially supplying a selection signal from the wiring COMa [1] to the wiring COMa [m + 1].
  • Each of the m + 1 wirings COMb extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display unit 110b.
  • One end of the wiring COMb is electrically connected to the common line driving circuit 141b.
  • the first wiring COMb is denoted as wiring COMb [1]
  • the (m + 1) th wiring COMb is denoted as wiring COMb [m + 1].
  • the common line driver circuit 141b has a function of sequentially supplying a selection signal from the wiring COMb [1] to the wiring COMb [m + 1].
  • the display portion 110a and the common line drive circuit 141a are provided for the display portion 110a, and the scan line drive circuit 121b and the common line drive circuit 141b are provided for the display portion 110b, whereby the display portion 110a and the display portion 110b are provided. It can be operated independently. In addition, since video signals can be simultaneously written into the pixel 111 included in the display portion 110a and the pixel 111 included in the display portion 110b, the frame frequency of the entire display portion 110 can be increased.
  • FIG. 5A is a block diagram for describing a configuration example of the display device 100E.
  • the display device 100E has a configuration obtained by modifying the display device 100B.
  • the display device 100E has a configuration in which the display unit 110 is divided into left and right.
  • the left side (scanning line driver circuit 121 side) of the display portion 110 is indicated as a display portion 110a
  • the right side of the display portion 110 (scanning line driver circuit 122 side) is indicated as a display portion 110b.
  • the display device 100E includes m wirings GLa, m wirings GLb, m + 1 wirings COMa, and m + 1 wirings COMb.
  • Each of the m wirings GLa extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display portion 110a.
  • One end of the wiring GLa is electrically connected to the scan line driver circuit 121.
  • the scan line driver circuit 121 has a function of sequentially supplying a selection signal from the wiring GLa [1] to the wiring GLa [m].
  • Each of the m wirings GLb extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display portion 110b.
  • One end of the wiring GLb is electrically connected to the scan line driver circuit 122.
  • the scan line driver circuit 122 has a function of sequentially supplying a selection signal from the wiring GLb [1] to the wiring GLb [m].
  • Each of the m + 1 wirings COMa extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display portion 110a.
  • One end of the wiring COMa is electrically connected to the common line driving circuit 142.
  • the common line driver circuit 142 has a function of sequentially supplying a selection signal from the wiring COMa [1] to the wiring COMa [m + 1].
  • Each of the m + 1 wirings COMb extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display unit 110b.
  • One end of the wiring COMb is electrically connected to the common line driving circuit 141.
  • the common line driver circuit 141 has a function of sequentially supplying a selection signal from the wiring COMb [1] to the wiring COMb [m + 1].
  • the wiring GLa and the wiring GLb have the same function and structure as the wiring GL. That is, the display device 100E has a configuration in which the wiring GL is divided into the wiring GLa and the wiring GLb.
  • the wiring COMa and the wiring COMb have the same function and structure as the wiring COM. That is, the display device 100E has a configuration in which the wiring COM is divided into the wiring COMa and the wiring COMb.
  • the wiring resistance and the parasitic capacitance per wiring can be halved.
  • the wiring COM By dividing the wiring COM into the wiring COMa and the wiring COMb, the wiring resistance and parasitic capacitance per wiring can be halved. Therefore, the influence (time constant) on signal delay and rounding can be reduced to 1 ⁇ 4. That is, the display quality of the display device can be improved. In addition, the frame frequency can be increased. In addition, since the output load of the scan line driver circuit and the common line driver circuit is reduced, the reliability of the display device can be increased.
  • FIG. 5B is a block diagram for describing a configuration example of the display device 100F.
  • the display device 100F has a configuration obtained by modifying the display device 100E.
  • the display device 100F includes a signal line driver circuit 131a, a signal line driver circuit 131b, a signal line driver circuit 132a, and a signal line driver circuit 132b.
  • the signal line driver circuit 131a and the signal line driver circuit 131b have the same functions as the signal line driver circuit 131.
  • the signal line driver circuit 132 a and the signal line driver circuit 132 b have the same functions as the signal line driver circuit 132.
  • the display device 100F includes n wirings SLa and n wirings SLb.
  • Each of the n wirings SLa extends in the scanning direction (column direction) and is electrically connected to the plurality of pixels 111 arranged in the column direction in the display portion 110a.
  • one end of the wiring SLa is electrically connected to the signal line driver circuit 131a, and the other end is electrically connected to the signal line driver circuit 132a.
  • Each of the n wirings SLb extends in the scanning direction (column direction) and is electrically connected to the plurality of pixels 111 arranged in the column direction in the display portion 110b.
  • One end of the wiring SLb is electrically connected to the signal line driver circuit 131b, and the other end is electrically connected to the signal line driver circuit 132b.
  • the wiring SLa and the wiring SLb have the same function and structure as the wiring SL.
  • the signal line driver circuit 131a and the signal line driver circuit 132a are provided for the display portion 110a, and the signal line driver circuit 131b and the signal line driver circuit 132b are provided for the display portion 110b, whereby the display portion 110a and the display portion 110b are provided. It can be operated independently. In addition, since video signals can be simultaneously written into the pixel 111 included in the display portion 110a and the pixel 111 included in the display portion 110b, the frame frequency of the entire display portion 110 can be increased.
  • FIG. 6A is a block diagram for describing a configuration example of the display device 100G.
  • the display device 100G has a configuration obtained by modifying the display device 100F.
  • the display device 100G includes a display unit 110a, a display unit 110b, a display unit 110c, and a display unit 110d.
  • the display device 100G has a structure in which the display unit 110a and the display unit 110b in the display device 100F are vertically divided into two.
  • the upstream wiring GLa in the scanning direction and the upstream wiring COMa in the scanning direction are electrically connected to the plurality of pixels 111 arranged in the row direction in the display portion 110a.
  • the wiring GLa on the downstream side in the scanning direction and the wiring COMa on the downstream side in the scanning direction are electrically connected to the plurality of pixels 111 arranged in the row direction in the display unit 110c.
  • the upstream wiring GLb in the scanning direction and the upstream wiring COMb in the scanning direction are electrically connected to the plurality of pixels 111 arranged in the row direction in the display unit 110b.
  • the downstream wiring GLb in the scanning direction and the downstream wiring COMb in the scanning direction are electrically connected to the plurality of pixels 111 arranged in the row direction in the display unit 110d.
  • the display device 100G includes n wirings SLa, n wirings SLb, n wirings SLc, and n wirings SLd.
  • the wiring SLa, the wiring SLb, the wiring SLc, and the wiring SLd have functions and structures similar to those of the wiring SL. That is, the display device 100G has a structure in which the wiring SL is divided into the wiring SLa and the wiring SLc. In addition, the display device 100G has a structure in which the wiring SL is divided into a wiring SLb and a wiring SLd.
  • Each of the n wirings SLa extends in the scanning direction (column direction) and is electrically connected to the plurality of pixels 111 arranged in the column direction in the display portion 110a.
  • Each of the n wirings SLb extends in the scanning direction (column direction) and is electrically connected to the plurality of pixels 111 arranged in the column direction in the display portion 110b.
  • Each of the n wirings SLc extends in the scanning direction (column direction) and is electrically connected to the plurality of pixels 111 arranged in the column direction in the display portion 110c.
  • Each of the n wirings SLd extends in the scanning direction (column direction) and is electrically connected to the plurality of pixels 111 arranged in the column direction in the display portion 110d.
  • One end of the wiring SLa is electrically connected to the signal line driver circuit 131a.
  • One end of the wiring SLb is electrically connected to the signal line driver circuit 131b.
  • One end of the wiring SLc is electrically connected to the signal line driver circuit 132a.
  • One end of the wiring SLd is electrically connected to the signal line driver circuit 132b.
  • the wiring resistance and parasitic capacitance per wiring can be halved. Further, by dividing the wiring SL into the wiring SLb and the wiring SLd, the wiring resistance and parasitic capacitance per wiring can be halved. Therefore, the influence (time constant) on the delay and rounding of the video signal can be reduced to 1 ⁇ 4. That is, the display quality of the display device can be improved. In addition, since the time for writing the video signal to the pixel 111 can be shortened, the frame frequency can be increased. In addition, since the output load of the signal line driver circuit is reduced, the reliability of the display device can be increased.
  • FIG. 6B is a block diagram for describing a configuration example of the display device 100H.
  • the display device 100H has a configuration obtained by modifying the display device 100G.
  • the display device 100H includes a scan line driver circuit 121a, a scan line driver circuit 121b, a scan line driver circuit 122a, a scan line driver circuit 122b, a common line driver circuit 141a, a common line driver circuit 141b, a common line driver circuit 142a, and a common line.
  • a driving circuit 142b is included.
  • the scan line driver circuit 121 a and the scan line driver circuit 121 b have the same functions as the scan line driver circuit 121.
  • the scan line driver circuit 122 a and the scan line driver circuit 122 b have the same functions as the scan line driver circuit 122.
  • the common line drive circuit 141a and the common line drive circuit 141b have the same functions as the common line drive circuit 141.
  • the common line drive circuit 142 a and the common line drive circuit 142 b have the same functions as the common line drive circuit 142.
  • the display device 100H includes m wirings GLa, m wirings GLb, m wirings GLc, m wirings GLd, m + 1 wirings COMa, m + 1 wirings COMb, m + 1 wirings COMc, and It has m + 1 wirings COMd.
  • the wiring GLa, the wiring GLb, the wiring GLc, and the wiring GLd have the same function and structure as the wiring GL.
  • the wiring COMa and the wiring COMb have the same function and structure as the wiring COM.
  • Each of the m wirings GLa and the m + 1 wirings COMa extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display portion 110a.
  • One end of the wiring GLa is electrically connected to the scan line driver circuit 121a.
  • One end of the wiring COMa is electrically connected to the common line driving circuit 142a.
  • Each of the m wirings GLb and the m + 1 wirings COMb extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display unit 110b.
  • One end of the wiring GLb is electrically connected to the scan line driver circuit 122a.
  • One end of the wiring COMb is electrically connected to the common line driving circuit 141a.
  • Each of the m wirings GLc and the m + 1 wirings COMc extends in the row direction, and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display unit 110c.
  • One end of the wiring GLc is electrically connected to the scan line driver circuit 121b.
  • One end of the wiring COMc is electrically connected to the common line driving circuit 142b.
  • Each of the m wirings GLd and the m + 1 wirings COMd extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display unit 110d.
  • One end of the wiring GLd is electrically connected to the scan line driver circuit 122b.
  • One end of the wiring COMd is electrically connected to the common line driving circuit 141b.
  • a scanning line driving circuit 121a and a common line driving circuit 142a are provided for the display portion 110a, a scanning line driving circuit 122a and a common line driving circuit 141a are provided for the display portion 110b, and a scanning line driving circuit is provided for the display portion 110c.
  • 121b and a common line driving circuit 142b are provided, and a scanning line driving circuit 122b and a common line driving circuit 141b are provided for the display portion 110d, whereby the display portion 110a, the display portion 110b, the display portion 110c, and the display portion 110d are provided.
  • video signals can be simultaneously written in the pixels 111 included in the display portion 110a, the display portion 110b, the display portion 110c, and the display portion 110d, the frame frequency of the entire display portion 110 can be increased.
  • a liquid crystal element tends to be deteriorated when a DC voltage is continuously applied. For this reason, in a display device using a liquid crystal element as a display element, a driving method (also referred to as a “frame inversion driving method”) that reverses the polarity applied to the liquid crystal element for each frame is used. For example, a positive potential signal is supplied to all pixels in an odd frame, and a negative potential signal is supplied to all pixels in an even frame.
  • the polarity inversion is not limited to every frame, but may be performed every specific number of frames depending on the liquid crystal element used.
  • the source line inversion driving method (also referred to as “column inversion driving method” or “column inversion driving method”) is a signal supplied to a pixel for each specific number of frames and each specific number of signal lines (source lines). This is a driving method for inverting the polarity.
  • the gate line inversion driving method (also referred to as “row inversion driving method” or “row inversion driving method”) is a signal supplied to a pixel for each specific number of frames and each specific number of scanning lines (gate lines). This is a driving method for inverting the polarity.
  • the dot inversion driving method (also referred to as “row inversion driving method”, “row inversion driving method”, etc.) inverts the polarity of signals supplied to adjacent pixels in a specific number of frames and in the row and column directions. This is a driving method.
  • the signal polarity inversion in the dot inversion driving method can be performed for each specific number of pixels. For example, the polarity of a signal supplied for each pixel may be inverted, or the polarity of a signal supplied for each of a plurality of pixels may be inverted.
  • the dot inversion driving method is more effective in suppressing phenomena such as flicker and crosstalk than the source line inversion driving method and the gate line inversion driving method. Therefore, the dot inversion driving method is often used as a driving method for the liquid crystal display device.
  • the operation state of the liquid crystal element is a voltage V LC that is a voltage difference between the voltage V SL of the video signal written to the node 466 and the voltage supplied to the wiring COM (also referred to as “voltage V COM ” or “common voltage”). Determined by.
  • a driving method for keeping the voltage V COM constant during a period in which an image is displayed on the display portion 110 is referred to as a “common DC driving method” (see FIG. 7A).
  • Such a driving method is generally called a “common inversion driving method” (see FIG. 7B).
  • the common inversion driving method can be combined with the above-described frame inversion driving method, source line inversion driving method, gate line inversion driving method, or dot inversion driving method.
  • the common inversion driving method and the dot inversion driving method are used in combination.
  • Example of Driving Method of One Embodiment of the Present Invention An example of a method for driving the display device 100 of one embodiment of the present invention is described. In this embodiment, a driving method is described in the case where the display device 100 includes the display portion 110 in which 20 pixels 111 are provided in a matrix of 4 rows and 5 columns.
  • FIG. 8 is a timing chart for explaining the driving method.
  • a driving method example of the display device 100 will be described by illustrating the kth frame (k is an arbitrary natural number) and the (k + 1) th frame.
  • One frame has four periods.
  • the four periods of the kth frame are denoted as periods T1 to T4.
  • four periods included in the (k + 1) th frame are denoted as periods T5 to T8.
  • FIGS 9 to 13 are diagrams illustrating the operation state of the display unit 110 for each period.
  • an H potential is supplied to the wiring GL
  • the pixels 111 in the first to fifth columns are selected in the row to which the wiring GL is connected, and a video signal is written to each pixel 111 through the wiring SL.
  • an L potential is supplied to the wiring GL
  • the pixels 111 in the first to fifth columns are not selected in the row to which the wiring GL is connected, and a video signal is not written.
  • “H” is attached to the wiring GL to which the H potential is supplied
  • “L” is attached to the wiring GL to which the L potential is supplied.
  • “H” or “L” is used as an enclosing character.
  • “+” is attached to the wiring COM to which the positive voltage is supplied
  • “ ⁇ ” is attached to the wiring COM to which the negative voltage is supplied.
  • “+” or “ ⁇ ” is enclosed.
  • the pixel 111 to which the video signal is supplied is hatched. Further, “+” is added to the pixel 111 supplied with the positive video signal, and “ ⁇ ” is added to the pixel 111 supplied with the negative video signal.
  • Period T1 In the period T1, the L potential is supplied to the wiring GL [4] and the H potential is supplied to the wiring GL [1] (see FIG. 9A). Then, the pixels 111 in the first row and first column to the first row and fifth column are selected, and a video signal is written to each pixel 111 through the wiring SL. In the period T1, a negative video signal is written to the pixels 111 in the first row and odd columns, and a positive video signal is written to the pixels 111 in the first row and even columns. Further, a positive voltage (common voltage) is supplied to the wiring COM [3].
  • the pixels 111 in the first row and odd columns are electrically connected to the wiring COM [1] to which a positive voltage is supplied, and the pixels 111 in the first row and even columns are connected to the wiring COM to which a negative voltage is supplied. [2] is electrically connected.
  • a voltage having a polarity opposite to the polarity of the video signal written to the pixel 111 in the first row is supplied to the wiring COM [1] and the wiring COM [2]. Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
  • Period T2 In the period T2, the L potential is supplied to the wiring GL [1] and the H potential is supplied to the wiring GL [2] (see FIG. 9B). Then, the pixels 111 in the second row, first column to the second row, fifth column are selected, and a video signal is written to each pixel 111 through the wiring SL. In the period T2, a positive video signal is written to the pixels 111 in the second row and odd columns, and a negative video signal is written to the pixels 111 in the second row and even columns. Further, a negative voltage is supplied to the wiring COM [4].
  • the pixels 111 in the second row and odd columns are electrically connected to the wiring COM [2] to which a negative voltage is supplied, and the pixels 111 in the second row and even columns are connected to the wiring COM to which a positive voltage is supplied. [3] is electrically connected.
  • a voltage having a polarity opposite to the polarity of the video signal written to the pixel 111 in the second row is supplied to the wiring COM [2] and the wiring COM [3]. Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
  • Period T3 In the period T3, the L potential is supplied to the wiring GL [2] and the H potential is supplied to the wiring GL [3] (see FIG. 10A). Then, the pixel 111 in the third row, first column to the second row, fifth column is selected, and a video signal is written to each pixel 111 through the wiring SL. In the period T3, a negative video signal is written to the pixels 111 in the third row and odd columns, and a positive video signal is written to the pixels 111 in the third row and even columns. Further, a positive voltage is supplied to the wiring COM [5], and a negative voltage is supplied to the wiring COM [1].
  • the pixels 111 in the third row and odd columns are electrically connected to the wiring COM [3] to which a positive voltage is supplied, and the pixels 111 in the third row and even columns are connected to the wiring COM to which a negative voltage is supplied. [4] is electrically connected.
  • a voltage having a polarity opposite to the polarity of the video signal written to the pixel 111 in the third row is supplied to the wiring COM [3] and the wiring COM [4]. Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
  • Period T4 In the period T4, the L potential is supplied to the wiring GL [3] and the H potential is supplied to the wiring GL [4] (see FIG. 10B). Then, the pixels 111 in the 4th row, the 1st column to the 4th row, the 5th column are selected, and a video signal is written to each pixel 111 through the wiring SL. In the period T4, a positive video signal is written to the pixels 111 in the fourth row and odd columns, and a negative video signal is written to the pixels 111 in the fourth row and even columns. Further, a positive voltage is supplied to the wiring COM [2].
  • the pixels 111 in the 4th row and odd columns are electrically connected to the wiring COM [4] to which a negative voltage is supplied, and the pixels 111 in the 4th and even columns are connected to the wiring COM to which a positive voltage is supplied. [5] is electrically connected.
  • a voltage having a polarity opposite to the polarity of the video signal written to the pixels 111 in the fourth row is supplied to the wiring COM [4] and the wiring COM [5]. Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
  • the rewriting operation of the pixel 111 in the k-th frame can be performed.
  • the polarity of the voltage supplied to the wiring COM [1] and the wiring COM [5] is reversed in the period T3.
  • inversion of the polarity of the voltage supplied to the wiring COM [1] may be performed in the period T4 instead of in the period T3 (see FIG. 13A).
  • Period T5 In the period T5, the L potential is supplied to the wiring GL [4] and the H potential is supplied to the wiring GL [1] (see FIG. 11A). Then, the pixels 111 in the first row and first column to the first row and fifth column are selected, and a video signal is written to each pixel 111 through the wiring SL. In the period T5, a positive video signal is written to the pixels 111 in the first row and odd columns, and a negative video signal is written to the pixels 111 in the first row and even columns. Further, a negative voltage is supplied to the wiring COM [3].
  • the pixels 111 in the first row and odd columns are electrically connected to the wiring COM [1] to which the negative voltage is supplied, and the pixels 111 in the first row and even columns are connected to the wiring COM to which the positive voltage is supplied. [2] is electrically connected.
  • a voltage having a polarity opposite to the polarity of the video signal written to the pixel 111 in the first row is supplied to the wiring COM [1] and the wiring COM [2]. Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
  • Period T6 In the period T6, the L potential is supplied to the wiring GL [1] and the H potential is supplied to the wiring GL [2] (see FIG. 11B). Then, the pixels 111 in the second row, first column to the second row, fifth column are selected, and a video signal is written to each pixel 111 through the wiring SL. In the period T ⁇ b> 6, a negative video signal is written to the pixels 111 in the second row and odd columns, and a positive video signal is written to the pixels 111 in the second row and even columns. Further, a positive voltage is supplied to the wiring COM [4].
  • the pixels 111 in the second row and odd columns are electrically connected to the wiring COM [2] to which a positive voltage is supplied, and the pixels 111 in the second row and even columns are connected to the wiring COM to which a negative voltage is supplied. [3] is electrically connected.
  • a voltage having a polarity opposite to the polarity of the video signal written to the pixel 111 in the second row is supplied to the wiring COM [2] and the wiring COM [3]. Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
  • Period T7 In the period T7, the L potential is supplied to the wiring GL [2] and the H potential is supplied to the wiring GL [3] (see FIG. 12A). Then, the pixel 111 in the third row, first column to the second row, fifth column is selected, and a video signal is written to each pixel 111 through the wiring SL. In the period T7, a positive video signal is written to the pixels 111 in the third row and odd columns, and a negative video signal is written to the pixels 111 in the third row and even columns. Further, a negative voltage is supplied to the wiring COM [5], and a positive voltage is supplied to the wiring COM [1].
  • the pixels 111 in the third row and odd columns are electrically connected to the wiring COM [3] to which the negative voltage is supplied, and the pixels 111 in the third row and even columns are connected to the wiring COM to which the positive voltage is supplied. [4] is electrically connected.
  • a voltage having a polarity opposite to the polarity of the video signal written to the pixel 111 in the third row is supplied to the wiring COM [3] and the wiring COM [4]. Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
  • the pixels 111 in the fourth row and odd columns are electrically connected to the wiring COM [4] to which a positive voltage is supplied, and the pixels 111 in the fourth row and even columns are connected to the wiring COM to which a negative voltage is supplied. [5] is electrically connected.
  • a voltage having a polarity opposite to the polarity of the video signal written to the pixels 111 in the fourth row is supplied to the wiring COM [4] and the wiring COM [5]. Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
  • the rewriting operation of the pixel 111 in the (k + 1) th frame can be performed.
  • the polarity of the voltage supplied to the wiring COM [1] and the wiring COM [5] is reversed in the period T7.
  • inversion of the polarity of the voltage supplied to the wiring COM [1] may be performed in the period T8 instead of in the period T7 (see FIG. 13B).
  • accurate video can be obtained by inverting the polarity of the voltage supplied to the (p + 2) -th wiring COM during the period when the p-th row (p is an integer between 1 and m ⁇ 1) is selected.
  • Signal rewriting can be realized.
  • the polarity of the voltage supplied to the first wiring COM is inverted during the period when the (m-1) th row or the mth row is selected. Further, the reversal of the polarity of the voltage supplied to the second wiring COM is performed during the period when the m-th row is selected.
  • polarity inversion of the common voltage is performed for each row, so that common voltage writing shortage (insufficient shortage) hardly occurs.
  • the output load of the peripheral driver circuit can be reduced; thus, power consumption of the display device can be reduced.
  • good display quality can be realized even in a display device with 8K resolution or higher.
  • a good display quality can be realized even in a display device having a screen size of 60 inches diagonal or more and further 120 inches diagonal or more.
  • a display device that can operate at high speed can be realized.
  • good display quality can be realized even when the frame frequency of the display device is 120 Hz or more, or 240 Hz or more.
  • a display device 200 including a plurality of source lines per pixel column is described with reference to drawings.
  • the display device 200 has many parts in common with the display device 100.
  • other embodiments and the like are referred to for matters not described in this embodiment and items common to the display device 100, and detailed description in this embodiment is omitted.
  • FIG. 14A is a block diagram for explaining a configuration example of the display device 200.
  • FIG. 14B is a block diagram illustrating part of the display portion 210. Similar to the display unit 110, the display unit 210 includes a plurality of pixels 111. 14A and 14B, a display device having two source lines per pixel column is shown as the display device 200. FIG.
  • the display unit 210 includes a plurality of pixels 111 arranged in a matrix of m rows and n columns.
  • the display device 200 includes two lines SL (source lines) per pixel column. Therefore, the display device 200 includes 2 ⁇ n lines SL. Note that three or more wirings SL may be provided per column of pixels.
  • g wirings SL g is an integer of 2 or more
  • g ⁇ n wirings SL are connected to the signal line driver circuit 131 and the signal line driver circuit 132.
  • two wirings SL corresponding to the pixels in the first column are denoted as wirings SL 1 [1] and wirings SL 2 [1], respectively.
  • the two wirings SL corresponding to the pixels in the j-th column are denoted as a wiring SL 1 [j] or a wiring SL 2 [j], respectively.
  • the two wirings SL corresponding to the pixels in the n-th column are denoted as a wiring SL 1 [n] or a wiring SL 2 [n], respectively.
  • different signals can be supplied to the different wirings SL.
  • different signals can be supplied to the wiring SL 1 (j) and the wiring SL 2 (j).
  • Display device 200 has a n wirings SL 1 and n wirings SL 2.
  • the wiring SL 1 may be referred to as “first wiring SL” or “first video signal line”.
  • the wiring SL 2 may be referred to as “second line SL” or the “second video signal line”. Therefore, it can be said that the display device 200 has n first video signal lines and n second video signal lines.
  • the wiring SL 1 [j] is electrically connected to one of an odd-numbered row pixel and an even-numbered row pixel.
  • the wiring SL 2 [j] is electrically connected to the other of the pixels in the odd rows or the pixels in the even rows.
  • FIG. 14B illustrates a connection relationship between the pixel 111 and the wiring SL in the case where the i-row is an even-numbered row.
  • the pixel 111 in the i-th row and j-th column is electrically connected to the i + 1-th wiring COM, and the pixel 111 in the i-th row j + 1 column is electrically connected to the i-th wiring COM.
  • a block diagram of the configuration is shown. However, the configuration is not limited to this, and the pixel 111 in the i-th row and j-th column is electrically connected to the i-th wiring COM, and the pixel 111 in the i-th row j + 1 column is electrically connected to the i + 1-th wiring COM. But you can.
  • FIG. 15A and FIG. 15B are block diagrams of the display device 200. 15A and 15B are different in the connection configuration of the wiring GL. As described above, the display device 200 has two lines SL per pixel column. Therefore, a selection signal can be simultaneously supplied to two adjacent gate lines, and a video signal can be simultaneously written to the pixels 111 in two adjacent rows.
  • the scanning line driving circuit 121 has a plurality of wirings GL 0 electrically connected.
  • the e-th wiring GL 0 is referred to as a wiring GL 0 [e].
  • e is an integer of 1 or more.
  • the wiring GL 0 [e] is electrically connected to the two wirings GL (the wiring GL [i] and the wiring GL [i + 1]). Therefore, the same selection signal is given to these two wirings GL.
  • the wiring GL 0 also has a function as a gate line like the wiring GL.
  • one horizontal period can be made longer than in the prior art.
  • the length of one horizontal period can be doubled that of the display device 100.
  • the length of one horizontal period can be tripled.
  • the output load of the signal line driver circuit can be reduced.
  • a display device with extremely high resolution such as 4K or 8K can be operated using a transistor with low field-effect mobility.
  • a display device having a resolution exceeding 8K eg, 10K, 12K, or 16K
  • One embodiment of the present invention can also be applied to a large display device having a screen size of 50 inches diagonal, 60 inches diagonal, or 70 inches diagonal.
  • the frame frequency of the display device can be increased.
  • the scanning line driving circuit 121 may be connected to wiring GL.
  • the display device 200 includes a display portion 210 in which 32 pixels 111 are provided in a matrix of 8 rows and 4 columns, and the wiring SL 1 is electrically connected to the pixels 111 in the odd rows. for if the wiring SL 2 is to connect the pixel 111 electrically even rows, the description of the driving method.
  • 16 and 17 are timing charts for explaining the driving method.
  • a driving method example of the display device 200 will be described by illustrating the kth frame and the (k + 1) th frame.
  • One frame has four periods.
  • the four periods of the kth frame are denoted as periods T1 to T4.
  • four periods included in the (k + 1) th frame are denoted as periods T5 to T8.
  • 18 to 27 are diagrams for explaining the operation state of the display unit 210 for each period.
  • an H potential is supplied to the wiring GL
  • the pixels 111 in the first to fourth columns are selected in the row to which the wiring GL is connected, and a video signal is written to each pixel 111 through the wiring SL.
  • the L potential is supplied to the wiring GL
  • the pixels 111 in the first to fourth columns are not selected in the row to which the wiring GL is connected, and the video signal is not written.
  • “H” is attached to the wiring GL to which the H potential is supplied
  • “L” is attached to the wiring GL to which the L potential is supplied.
  • “H” or “L” is used as an enclosing character.
  • “+” is attached to the wiring COM to which the positive voltage is supplied
  • “ ⁇ ” is attached to the wiring COM to which the negative voltage is supplied.
  • “+” or “ ⁇ ” is enclosed.
  • the pixel 111 to which the video signal is supplied is hatched. Further, “+” is added to the pixel 111 supplied with the positive video signal, and “ ⁇ ” is added to the pixel 111 supplied with the negative video signal.
  • a positive video signal is written to the odd-numbered and odd-numbered pixels 111 and a negative-polarity video signal is written to the even-numbered and even-numbered pixels 111 in the period T0.
  • an L potential is supplied to the wirings GL [1] to GL [6]
  • an H potential is supplied to the wirings GL [7] and GL [8].
  • a positive voltage is supplied to the wiring COM [1], the wiring COM [3], the wiring COM [4], the wiring COM [6], and the wiring COM [8], and the wiring COM [2] and the wiring COM [ 5]
  • a negative voltage is supplied to the wiring COM [7] and the wiring COM [9].
  • Period T1 In the period T1, the L potential is supplied to the wiring GL [7] and the wiring GL [8], and the H potential is supplied to the wiring GL [1] and the wiring GL [2] (see FIG. 18A). Then, the pixels 111 in the first row, first column to the second row, fourth column are selected, and a video signal is written to each pixel 111 via the wiring SL.
  • a negative video signal is written to the pixels 111 in the first row and odd columns, and a positive video signal is written to the pixels 111 in the first row and even columns.
  • a positive video signal is written to the pixels 111 in the second row and odd columns, and a negative video signal is written to the pixels 111 in the second row and even columns.
  • a negative voltage (common voltage) is supplied to the wiring COM [4], and a positive voltage is supplied to the wiring COM [5].
  • the pixels 111 in the first row and odd columns are electrically connected to the wiring COM [1] to which a positive voltage is supplied, and the pixels 111 in the first row and even columns are connected to the wiring COM to which a negative voltage is supplied.
  • [2] is electrically connected.
  • the pixels 111 in the second row and odd columns are electrically connected to the wiring COM [2] to which a negative voltage is supplied, and the pixels 111 in the second row and even columns are connected to the wiring COM to which a positive voltage is supplied. [3] is electrically connected.
  • the wiring COM [1], the wiring COM [2], and the wiring COM [3] are supplied with a voltage having a polarity opposite to the polarity of the video signal written to the pixels 111 in the first and second rows. . Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
  • a negative video signal is written in the pixels 111 in the third row and odd columns, and a positive video signal is written in the pixels 111 in the third row and even columns.
  • a positive video signal is written to the pixels 111 in the 4th row and odd columns, and a negative video signal is written to the pixels 111 in the 4th row and even columns.
  • a negative voltage is supplied to the wiring COM [6], and a positive voltage is supplied to the wiring COM [7].
  • the pixels 111 in the third row and odd columns are electrically connected to the wiring COM [3] to which a positive voltage is supplied, and the pixels 111 in the third row and even columns are connected to the wiring COM to which a negative voltage is supplied.
  • [4] is electrically connected.
  • the pixels 111 in the 4th row and odd columns are electrically connected to the wiring COM [4] to which a negative voltage is supplied, and the pixels 111 in the 4th and even columns are connected to the wiring COM to which a positive voltage is supplied.
  • [5] is electrically connected.
  • the wiring COM [3], the wiring COM [4], and the wiring COM [5] are supplied with a voltage having a polarity opposite to the polarity of the video signal written to the pixels 111 in the third and fourth rows. . Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
  • a negative video signal is written to the pixels 111 in the fifth row and odd columns, and a positive video signal is written to the pixels 111 in the fifth row and even columns. Further, a positive video signal is written to the pixels 111 in the 6th row and odd columns, and a negative video signal is written to the pixels 111 in the 6th row and even columns. Further, a negative voltage (common voltage) is supplied to the wiring COM [8], a positive voltage is supplied to the wiring COM [9], and a negative voltage (common voltage) is supplied to the wiring COM [1]. Is done.
  • the pixels 111 in the fifth row and odd columns are electrically connected to the wiring COM [5] to which a positive voltage is supplied, and the pixels 111 in the fifth row and even columns are connected to the wiring COM to which a negative voltage is supplied.
  • [6] is electrically connected.
  • the pixels 111 in the sixth row and odd columns are electrically connected to the wiring COM [6] to which a negative voltage is supplied, and the pixels 111 in the sixth row and even columns are connected to the wiring COM to which a positive voltage is supplied. [7] is electrically connected.
  • the wiring COM [5], the wiring COM [6], and the wiring COM [7] are supplied with a voltage having a polarity opposite to the polarity of the video signal written to the pixels 111 in the fifth and sixth rows. . Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
  • a negative video signal is written to the pixels 111 in the seventh row and odd columns, and a positive video signal is written to the pixels 111 in the seventh row and even columns.
  • a positive video signal is written to the pixels 111 in the 8th row and odd columns, and a negative video signal is written to the pixels 111 in the 8th row and even columns.
  • a positive voltage is supplied to the wiring COM [2], and a negative voltage is supplied to the wiring COM [3].
  • the pixels 111 in the seventh row and odd columns are electrically connected to the wiring COM [7] to which the positive voltage is supplied, and the pixels 111 in the seventh row and even columns are connected to the wiring COM to which the negative voltage is supplied. [8] is electrically connected.
  • the pixels 111 in the 8th row and odd columns are electrically connected to the wiring COM [8] to which a negative voltage is supplied, and the pixels 111 in the 8th and even columns are connected to the wiring COM to which a positive voltage is supplied. [9] is electrically connected.
  • the wiring COM [7], the wiring COM [8], and the wiring COM [9] are supplied with a voltage having a polarity opposite to the polarity of the video signal written to the pixels 111 in the seventh and eighth rows. . Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
  • the rewriting operation of the pixel 111 in the k-th frame can be performed.
  • the polarity of the voltage supplied to the wiring COM [1], the wiring COM [8], and the wiring COM [9] is inverted in the period T3.
  • the polarity of the voltage supplied to the wiring COM [1] may be reversed in the period T4 instead of the period T3 (see FIG. 26).
  • a positive video signal is written to the pixels 111 in the first row and odd columns, and a negative video signal is written to the pixels 111 in the first row and even columns. Further, a negative video signal is written to the pixels 111 in the second row and odd columns, and a positive video signal is written to the pixels 111 in the second row and even columns. Further, a positive voltage is supplied to the wiring COM [4], and a negative voltage is supplied to the wiring COM [5].
  • the pixels 111 in the first row and odd columns are electrically connected to the wiring COM [1] to which the negative voltage is supplied, and the pixels 111 in the first row and even columns are connected to the wiring COM to which the positive voltage is supplied. [2] is electrically connected.
  • the pixels 111 in the second row and odd columns are electrically connected to the wiring COM [2] to which a positive voltage is supplied, and the pixels 111 in the second row and even columns are connected to the wiring COM to which a negative voltage is supplied. [3] is electrically connected.
  • the wiring COM [1], the wiring COM [2], and the wiring COM [3] are supplied with a voltage having a polarity opposite to the polarity of the video signal written to the pixels 111 in the first and second rows. . Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
  • a positive video signal is written to the pixels 111 in the third row and odd columns, and a negative video signal is written to the pixels 111 in the third row and even columns. Also, a negative video signal is written to the pixels 111 in the 4th row and odd columns, and a positive video signal is written to the pixels 111 in the 4th row and even columns. Further, a positive voltage is supplied to the wiring COM [6], and a negative voltage is supplied to the wiring COM [7].
  • the pixels 111 in the third row and odd columns are electrically connected to the wiring COM [3] to which the negative voltage is supplied, and the pixels 111 in the third row and even columns are connected to the wiring COM to which the positive voltage is supplied.
  • [4] is electrically connected.
  • the pixels 111 in the fourth row and odd columns are electrically connected to the wiring COM [4] to which a positive voltage is supplied, and the pixels 111 in the fourth row and even columns are connected to the wiring COM to which a negative voltage is supplied.
  • [5] is electrically connected.
  • the wiring COM [3], the wiring COM [4], and the wiring COM [5] are supplied with a voltage having a polarity opposite to the polarity of the video signal written to the pixels 111 in the third and fourth rows. . Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
  • a positive video signal is written to the pixels 111 in the fifth row and odd columns, and a negative video signal is written to the pixels 111 in the fifth row and even columns. Further, a negative video signal is written to the pixels 111 in the 6th row and odd columns, and a positive video signal is written to the pixels 111 in the 6th row and even columns. Further, a positive voltage (common voltage) is supplied to the wiring COM [8], a negative voltage is supplied to the wiring COM [9], and a positive voltage (common voltage) is supplied to the wiring COM [1]. Is done.
  • the pixels 111 in the fifth row and odd columns are electrically connected to the wiring COM [5] to which a negative voltage is supplied, and the pixels 111 in the fifth row and even columns are connected to the wiring COM to which a positive voltage is supplied.
  • [6] is electrically connected.
  • the pixels 111 in the sixth row and odd columns are electrically connected to the wiring COM [6] to which a positive voltage is supplied, and the pixels 111 in the sixth row and even columns are connected to the wiring COM to which a negative voltage is supplied. [7] is electrically connected.
  • the wiring COM [5], the wiring COM [6], and the wiring COM [7] are supplied with a voltage having a polarity opposite to the polarity of the video signal written to the pixels 111 in the fifth and sixth rows. . Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
  • a positive video signal is written to the pixel 111 in the seventh row and odd column, and a negative video signal is written to the pixel 111 in the seventh row and even column. Further, a negative video signal is written to the pixels 111 in the 8th row and odd columns, and a positive video signal is written to the pixels 111 in the 8th row and even columns. Further, a negative voltage is supplied to the wiring COM [2], and a positive voltage is supplied to the wiring COM [3].
  • the pixels 111 in the 7th row and odd columns are electrically connected to the wiring COM [7] to which a negative voltage is supplied, and the pixels 111 in the 7th row and even columns are connected to the wiring COM to which a positive voltage is supplied.
  • [8] is electrically connected.
  • the pixels 111 in the 8th row and odd columns are electrically connected to the wiring COM [8] to which a positive voltage is supplied, and the pixels 111 in the 8th row and even columns are connected to the wiring COM to which a negative voltage is supplied. [9] is electrically connected.
  • the wiring COM [7], the wiring COM [8], and the wiring COM [9] are supplied with a voltage having a polarity opposite to the polarity of the video signal written to the pixels 111 in the seventh and eighth rows. . Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
  • the rewriting operation of the pixel 111 in the (k + 1) th frame can be performed.
  • the polarity of the voltage supplied to the wiring COM [1], the wiring COM [8], and the wiring COM [9] is inverted in the period T7.
  • the polarity of the voltage supplied to the wiring COM [1] may be reversed in the period T8 instead of the period T7 (see FIG. 27).
  • the polarity of the voltage supplied to the (g + 3) th and (g + 4) th wiring COM is reversed during the period when the gth row (g is an integer of 1 to m-3) and the (g + 1) th row are selected. In this way, accurate video signal rewriting can be realized. Further, the polarity of the voltage supplied to the first wiring COM is inverted during the period in which the (m-2) th or mth row is selected. Further, the polarity of the voltage supplied to the second and third wirings COM is reversed during the period when the m-th row is selected.
  • polarity inversion of the common voltage is performed for each row, so that common voltage writing shortage (insufficient shortage) hardly occurs.
  • the output load of the peripheral driver circuit can be reduced; thus, power consumption of the display device can be reduced.
  • good display quality can be realized even in a display device with 8K resolution or higher.
  • a good display quality can be realized even in a display device having a screen size of 60 inches diagonal or more and further 120 inches diagonal or more.
  • a display device that can operate at high speed can be realized.
  • good display quality can be realized even when the frame frequency of the display device is 120 Hz or more, or 240 Hz or more.
  • the display device or the like of one embodiment of the present invention can be manufactured using various types of transistors such as a bottom-gate transistor and a top-gate transistor.
  • a planar transistor or a staggered transistor may be used. Therefore, the semiconductor layer material and the transistor structure to be used can be easily replaced in accordance with an existing production line.
  • FIG. 28A1 is a cross-sectional view of a channel protection transistor 310 which is a kind of bottom-gate transistor.
  • the transistor 310 is formed over a substrate 371.
  • the transistor 310 includes an electrode 322 over a substrate 371 with an insulating layer 372 interposed therebetween.
  • the semiconductor layer 324 is provided over the electrode 322 with the insulating layer 326 interposed therebetween.
  • the electrode 322 can function as a gate electrode.
  • the insulating layer 326 can function as a gate insulating layer.
  • an insulating layer 327 is provided over the channel formation region of the semiconductor layer 324.
  • the electrode 344 a and the electrode 344 b are provided over the insulating layer 326 in contact with part of the semiconductor layer 324.
  • the electrode 344a can function as one of a source electrode and a drain electrode.
  • the electrode 344b can function as the other of the source electrode and the drain electrode. Part of the electrode 344 a and part of the electrode 344 b are formed over the insulating layer 327.
  • the insulating layer 327 can function as a channel protective layer. By providing the insulating layer 327 over the channel formation region, it is possible to prevent the semiconductor layer 324 from being exposed when the electrodes 344a and 344b are formed. Therefore, the channel formation region of the semiconductor layer 324 can be prevented from being etched when the electrodes 344a and 344b are formed. According to one embodiment of the present invention, a transistor with favorable electrical characteristics can be realized.
  • the transistor 310 includes the insulating layer 328 over the electrode 344a, the electrode 344b, and the insulating layer 327, and the insulating layer 329 over the insulating layer 328.
  • a layer functioning as an n-type semiconductor or a p-type semiconductor is preferably provided between the semiconductor layer 324 and the electrode 344a and between the semiconductor layer 324 and the electrode 344b.
  • a layer functioning as an n-type semiconductor or a p-type semiconductor can function as a source region or a drain region of a transistor.
  • the insulating layer 329 is preferably formed using a material having a function of preventing or reducing impurity diffusion from the outside to the transistor. Note that the insulating layer 329 can be omitted as necessary.
  • a transistor 311 illustrated in FIG. 28A2 is different from the transistor 310 in that the transistor 311 includes an electrode 323 that can function as a back gate electrode over the insulating layer 329.
  • the electrode 323 can be formed using a material and a method similar to those of the electrode 322.
  • the back gate electrode is formed using a conductive layer, and the channel formation region of the semiconductor layer is sandwiched between the gate electrode and the back gate electrode. Therefore, the back gate electrode can function in the same manner as the gate electrode.
  • the potential of the back gate electrode may be the same as that of the gate electrode, or may be a ground potential (GND potential) or an arbitrary potential.
  • the threshold voltage of the transistor can be changed by changing the potential of the back gate electrode independently of the gate electrode.
  • both the electrode 322 and the electrode 323 can function as gate electrodes. Therefore, each of the insulating layer 326, the insulating layer 328, and the insulating layer 329 can function as a gate insulating layer. Note that the electrode 323 may be provided between the insulating layer 328 and the insulating layer 329.
  • the other is referred to as a “back gate electrode”.
  • the electrode 322 when the electrode 323 is referred to as a “gate electrode”, the electrode 322 is referred to as a “back gate electrode”.
  • the transistor 311 can be regarded as a kind of top-gate transistor.
  • either the electrode 322 or the electrode 323 may be referred to as a “first gate electrode” and the other may be referred to as a “second gate electrode”.
  • the electrode 322 and the electrode 323 With the electrode 322 and the electrode 323 with the semiconductor layer 324 interposed therebetween, and further by setting the electrode 322 and the electrode 323 to have the same potential, a region where carriers flow in the semiconductor layer 324 becomes larger in the film thickness direction. The amount of carrier movement increases. As a result, the on-state current of the transistor 311 increases and the field effect mobility increases.
  • the transistor 311 is a transistor having a large on-state current with respect to the occupied area. That is, the area occupied by the transistor 311 can be reduced with respect to the required on-state current. According to one embodiment of the present invention, the area occupied by a transistor can be reduced. Thus, according to one embodiment of the present invention, a highly integrated semiconductor device can be realized.
  • the gate electrode and the back gate electrode are formed using conductive layers, they have a function of preventing an electric field generated outside the transistor from acting on a semiconductor layer in which a channel is formed (particularly, an electric field shielding function against static electricity). .
  • the electric field shielding function can be improved by forming the back gate electrode larger than the semiconductor layer and covering the semiconductor layer with the back gate electrode.
  • each of the gate electrode and the back gate electrode has a function of shielding an electric field from the outside, charges such as charged particles generated above and below the transistor do not affect the channel formation region of the semiconductor layer. As a result, deterioration of a stress test (for example, an NGBT (Negative Gate Bias-Temperature) stress test (also referred to as “NBT” or “NBTS”) in which a negative voltage is applied to the gate is suppressed.
  • the back gate electrode can block the electric field generated from the drain electrode so as not to act on the semiconductor layer, and thus can suppress fluctuations in the rising voltage of the on-current due to fluctuations in the drain voltage. This effect is remarkable when a potential is supplied to the gate electrode and the back gate electrode.
  • a transistor having a back gate electrode has a variation in threshold voltage before and after a PGBT (Positive Gate Bias-Temperature) stress test (also referred to as “PBT” or “PBTS”) in which a positive voltage is applied to the gate. Smaller than a transistor without a back gate electrode.
  • PGBT Positive Gate Bias-Temperature stress test
  • a BT stress test such as NGBT and PGBT is a kind of accelerated test, and a transistor characteristic change (aging) caused by long-term use can be evaluated in a short time.
  • the amount of change in the threshold voltage of the transistor before and after the BT stress test is an important index for examining reliability. Before and after the BT stress test, the smaller the variation amount of the threshold voltage, the higher the reliability of the transistor.
  • the gate electrode and the back gate electrode are provided and both have the same potential, the amount of fluctuation in the threshold voltage is reduced. For this reason, variation in electrical characteristics among a plurality of transistors is also reduced at the same time.
  • the back gate electrode when light enters from the back gate electrode side, the back gate electrode is formed using a light-shielding conductive film, whereby light can be prevented from entering the semiconductor layer from the back gate electrode side. Therefore, light deterioration of the semiconductor layer can be prevented, and deterioration of electrical characteristics such as shift of the threshold voltage of the transistor can be prevented.
  • a highly reliable transistor can be realized.
  • a highly reliable semiconductor device can be realized.
  • FIG. 28B1 is a cross-sectional view of a channel protection transistor 320 which is one of bottom-gate transistors.
  • the transistor 320 has substantially the same structure as the transistor 310 except that an insulating layer 327 covers the semiconductor layer 324.
  • the semiconductor layer 324 and the electrode 344a are electrically connected to each other in an opening formed by selectively removing a part of the insulating layer 327 overlapping with the semiconductor layer 324.
  • the semiconductor layer 324 and the electrode 344b are electrically connected to each other in an opening formed by selectively removing part of the insulating layer 327 overlapping with the semiconductor layer 324.
  • a region of the insulating layer 327 overlapping with a channel formation region can function as a channel protective layer.
  • a transistor 321 illustrated in FIG. 28B2 is different from the transistor 320 in that the transistor 321 includes an electrode 323 that can function as a back gate electrode over the insulating layer 329.
  • the semiconductor layer 324 can be prevented from being exposed when the electrode 344a and the electrode 344b are formed. Therefore, the semiconductor layer 324 can be prevented from being thinned when the electrodes 344a and 344b are formed.
  • the distance between the electrode 344 a and the electrode 322 and the distance between the electrode 344 b and the electrode 322 are longer than those in the transistor 310 and the transistor 311.
  • parasitic capacitance generated between the electrode 344a and the electrode 322 can be reduced.
  • parasitic capacitance generated between the electrode 344b and the electrode 322 can be reduced. According to one embodiment of the present invention, a transistor with favorable electrical characteristics can be realized.
  • a transistor 325 illustrated in FIG. 28C1 is a channel-etched transistor which is one of bottom-gate transistors.
  • the electrode 344a and the electrode 344b are formed without using the insulating layer 327. For this reason, part of the semiconductor layer 324 exposed when the electrodes 344a and 344b are formed may be etched. On the other hand, since the insulating layer 327 is not provided, the productivity of the transistor can be increased.
  • a transistor 325 illustrated in FIG. 28C2 is different from the transistor 320 in that the transistor 325 includes an electrode 323 that can function as a back gate electrode over the insulating layer 329.
  • FIG. 29A1 is a cross-sectional view of a transistor 330 which is a kind of top-gate transistor.
  • the transistor 330 includes a semiconductor layer 324 over the insulating layer 372, and an electrode 344a in contact with part of the semiconductor layer 324 and an electrode 344b in contact with part of the semiconductor layer 324 over the semiconductor layer 324 and the insulating layer 372.
  • An insulating layer 326 is provided over the semiconductor layer 324, the electrode 344a, and the electrode 344b, and an electrode 322 is provided over the insulating layer 326.
  • the transistor 330 reduces the parasitic capacitance generated between the electrode 322 and the electrode 344a and the parasitic capacitance generated between the electrode 322 and the electrode 344b because the electrode 322 and the electrode 344a and the electrode 322 and the electrode 344b do not overlap with each other. be able to. Further, after the electrode 322 is formed, the impurity region can be formed in the semiconductor layer 324 in a self-alignment manner by introducing the impurity 255 into the semiconductor layer 324 using the electrode 322 as a mask ( (See FIG. 29A3). According to one embodiment of the present invention, a transistor with favorable electrical characteristics can be realized.
  • the impurity 255 can be introduced using an ion implantation apparatus, an ion doping apparatus, or a plasma treatment apparatus.
  • the impurity 255 for example, at least one element of a Group 13 element or a Group 15 element can be used.
  • at least one element of a rare gas, hydrogen, and nitrogen can be used as the impurity 255.
  • a transistor 331 illustrated in FIG. 29A2 is different from the transistor 330 in that the transistor 331 includes an electrode 323 and an insulating layer 227.
  • the transistor 331 includes the electrode 323 formed over the insulating layer 372 and the insulating layer 227 formed over the electrode 323.
  • the electrode 323 can function as a back gate electrode.
  • the insulating layer 227 can function as a gate insulating layer.
  • the insulating layer 227 can be formed using a material and a method similar to those of the insulating layer 326.
  • the transistor 331 is a transistor having a large on-state current with respect to the occupied area. That is, the area occupied by the transistor 331 can be reduced with respect to the required on-state current. According to one embodiment of the present invention, the area occupied by a transistor can be reduced. Thus, according to one embodiment of the present invention, a highly integrated semiconductor device can be realized.
  • a transistor 340 illustrated in FIG. 29B1 is one of top-gate transistors.
  • the transistor 340 is different from the transistor 330 in that the semiconductor layer 324 is formed after the electrodes 344a and 344b are formed.
  • a transistor 341 illustrated in FIG. 29B2 is different from the transistor 340 in that the transistor 341 includes an electrode 323 and an insulating layer 227. In the transistor 340 and the transistor 341, part of the semiconductor layer 324 is formed over the electrode 344a, and the other part of the semiconductor layer 324 is formed over the electrode 344b.
  • the transistor 341 is a transistor having a large on-state current with respect to the occupied area. That is, the area occupied by the transistor 341 can be reduced with respect to the required on-state current. According to one embodiment of the present invention, the area occupied by a transistor can be reduced. Thus, according to one embodiment of the present invention, a highly integrated semiconductor device can be realized.
  • a transistor 342 illustrated in FIG. 30A1 is one of top-gate transistors.
  • the transistor 342 is different from the transistors 330 and 340 in that the electrode 344a and the electrode 344b are formed after the insulating layer 329 is formed.
  • the electrodes 344 a and 344 b are electrically connected to the semiconductor layer 324 through openings formed in the insulating layers 328 and 329.
  • the transistor 342 includes a region where the insulating layer 326 extends beyond the end portion of the electrode 322.
  • the impurity concentration of the region into which the impurity 255 is introduced through the insulating layer 326 of the semiconductor layer 324 is higher than that in the region into which the impurity 255 is introduced without passing through the insulating layer 326. Get smaller. Therefore, in the semiconductor layer 324, an LDD (Lightly Doped Drain) region is formed in a region that does not overlap with the electrode 322.
  • LDD Lightly Doped Drain
  • a transistor 343 illustrated in FIG. 30A2 is different from the transistor 342 in that the electrode 323 is provided.
  • the transistor 343 includes an electrode 323 formed over the substrate 371 and overlaps with the semiconductor layer 324 with the insulating layer 372 interposed therebetween.
  • the electrode 323 can function as a back gate electrode.
  • the insulating layer 326 which does not overlap with the electrode 322 may be removed. Further, the insulating layer 326 may be left as in the transistor 346 illustrated in FIG. 30C1 and the transistor 347 illustrated in FIG.
  • the transistors 342 to 347 can also form an impurity region in the semiconductor layer 324 in a self-aligned manner by introducing the impurity 255 into the semiconductor layer 324 using the electrode 322 as a mask after the electrode 322 is formed.
  • a transistor with favorable electrical characteristics can be realized.
  • a highly integrated semiconductor device can be realized.
  • substrate There is no major limitation on the material used for the substrate. Depending on the purpose, it may be determined in consideration of the presence or absence of translucency and heat resistance enough to withstand heat treatment. For example, a glass substrate such as barium borosilicate glass or alumino borosilicate glass, a ceramic substrate, a quartz substrate, a sapphire substrate, or the like can be used. Further, a semiconductor substrate, a flexible substrate (flexible substrate), a bonded film, a base film, or the like may be used.
  • a glass substrate such as barium borosilicate glass or alumino borosilicate glass, a ceramic substrate, a quartz substrate, a sapphire substrate, or the like can be used.
  • a semiconductor substrate, a flexible substrate (flexible substrate), a bonded film, a base film, or the like may be used.
  • the semiconductor substrate examples include a semiconductor substrate made of silicon or germanium, or a compound semiconductor substrate made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, or gallium oxide.
  • the semiconductor substrate may be a single crystal semiconductor or a polycrystalline semiconductor.
  • the substrate for example, 6th generation (1500 mm ⁇ 1850 mm), 7th generation (1870 mm ⁇ 2200 mm), 8th generation (2200 mm ⁇ 2400 mm), 9th generation (2400 mm ⁇ 2800 mm), 10th generation (2950 mm ⁇ 3400 mm) ) And the like can be used.
  • 6th generation (1500 mm ⁇ 1850 mm) 7th generation (1870 mm ⁇ 2200 mm), 8th generation (2200 mm ⁇ 2400 mm), 9th generation (2400 mm ⁇ 2800 mm), 10th generation (2950 mm ⁇ 3400 mm)
  • the substrate for example, 6th generation (1500 mm ⁇ 1850 mm), 7th generation (1870 mm ⁇ 2200 mm), 8th generation (2200 mm ⁇ 2400 mm), 9th generation (2400 mm ⁇ 2800 mm), 10th generation (2950 mm ⁇ 3400 mm) ) And the like can be used.
  • a large display device can be manufactured.
  • a flexible substrate flexible substrate
  • a bonded film a base film, or the like
  • the substrate may be used as the substrate.
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyacrylonitrile resins, acrylic resins, polyimide resins, and polymethyl methacrylate.
  • Resin polycarbonate (PC) resin, polyethersulfone (PES) resin, polyamide resin (nylon, aramid, etc.), polysiloxane resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyurethane resin, polyvinyl chloride resin, polychlorinated resin Vinylidene resin, polypropylene resin, polytetrafluoroethylene (PTFE) resin, ABS resin, cellulose nanofiber, and the like can be used.
  • a lightweight display device can be provided.
  • a display device that is resistant to impact can be provided.
  • a display device which is not easily damaged can be provided.
  • the flexible substrate used for the substrate is preferably as the linear expansion coefficient is low because deformation due to the environment is suppressed.
  • a material having a linear expansion coefficient of 1 ⁇ 10 ⁇ 3 / K or less, 5 ⁇ 10 ⁇ 5 / K or less, or 1 ⁇ 10 ⁇ 5 / K or less may be used.
  • aramid since aramid has a low coefficient of linear expansion, it is suitable as a flexible substrate.
  • conductive materials that can be used for conductive layers such as various wirings and electrodes constituting the display device include aluminum (Al), chromium (Cr), copper (Cu), and silver. (Ag), gold (Au), platinum (Pt), tantalum (Ta), nickel (Ni), titanium (Ti), molybdenum (Mo), tungsten (W), hafnium (Hf), vanadium (V), niobium Metal elements selected from (Nb), manganese (Mn), magnesium (Mg), zirconium (Zr), beryllium (Be), alloys containing the above metal elements, or alloys combining the above metal elements Etc. can be used.
  • a semiconductor typified by polycrystalline silicon containing an impurity element such as phosphorus, or silicide such as nickel silicide may be used.
  • an impurity element such as phosphorus
  • silicide such as nickel silicide
  • there is no particular limitation on the method for forming the conductive material and various formation methods such as an evaporation method, a CVD method, a sputtering method, and a spin coating method can be used.
  • a Cu—X alloy (X is Mn, Ni, Cr, Fe, Co, Mo, Ta, or Ti) may be applied as the conductive material. Since the layer formed of the Cu—X alloy can be processed by a wet etching process, the manufacturing cost can be suppressed.
  • an aluminum alloy containing one or more elements selected from titanium, tantalum, tungsten, molybdenum, chromium, neodymium, and scandium may be used as the conductive material.
  • indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin containing titanium oxide, or the like can be used.
  • a conductive material containing oxygen such as oxide, indium zinc oxide, or indium tin oxide to which silicon oxide is added can also be used.
  • a conductive material containing nitrogen such as titanium nitride, tantalum nitride, or tungsten nitride can be used.
  • the conductive layer can have a stacked structure in which a conductive material containing oxygen, a conductive material containing nitrogen, and a material containing the above metal element are combined as appropriate.
  • the conductive layer is a single layer structure of an aluminum layer containing silicon, a two layer structure in which a titanium layer is stacked on an aluminum layer, a two layer structure in which a titanium layer is stacked on a titanium nitride layer, and a tungsten layer on a titanium nitride layer.
  • a plurality of conductive layers formed using the above conductive materials may be stacked.
  • the conductive layer may have a stacked structure in which the above-described material containing a metal element and a conductive material containing oxygen are combined.
  • a stacked structure in which the above-described material containing a metal element and a conductive material containing nitrogen are combined may be employed.
  • a stacked structure of the above-described material containing a metal element, a conductive material containing oxygen, and a conductive material containing nitrogen may be employed.
  • a conductive layer is formed by laminating a conductive layer containing copper on a conductive layer containing at least one of indium or zinc and oxygen, and further laminating a conductive layer containing at least one of indium or zinc and oxygen on the conductive layer. It may be a three-layer structure. In this case, the side surface of the conductive layer containing copper is also preferably covered with a conductive layer containing at least one of indium or zinc and oxygen. Further, for example, a plurality of conductive layers containing oxygen and at least one of indium or zinc may be used as the conductive layer.
  • Each insulating layer is made of aluminum nitride, aluminum oxide, aluminum nitride oxide, aluminum oxynitride, magnesium oxide, silicon nitride, silicon oxide, silicon nitride oxide, silicon oxynitride, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide
  • a material selected from neodymium oxide, hafnium oxide, tantalum oxide, aluminum silicate, or the like is used as a single layer or a stacked layer.
  • a material obtained by mixing a plurality of materials among oxide materials, nitride materials, oxynitride materials, and nitride oxide materials may be used.
  • a nitrided oxide refers to a compound having a higher nitrogen content than oxygen.
  • oxynitride refers to a compound having a higher oxygen content than nitrogen.
  • content of each element can be measured using Rutherford backscattering method (RBS: Rutherford Backscattering Spectrometry) etc., for example.
  • the insulating layer 372 and the insulating layer 329 are preferably formed using an insulating material which does not easily transmit impurities.
  • an insulating material including boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, lanthanum, neodymium, hafnium or tantalum, in a single layer, or What is necessary is just to use it by lamination
  • Examples of insulating materials that are difficult to transmit impurities include aluminum oxide, aluminum nitride, aluminum oxynitride, aluminum nitride oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, tantalum oxide, Examples thereof include silicon nitride.
  • an insulating layer that can function as a planarization layer may be used as the insulating layer.
  • a heat-resistant organic material such as polyimide, acrylic resin, benzocyclobutene resin, polyamide, or epoxy resin can be used.
  • a low dielectric constant material low-k material
  • a siloxane resin PSG (phosphorus glass), BPSG (phosphorus boron glass), or the like can be used. Note that a plurality of insulating layers formed using these materials may be stacked.
  • the siloxane resin corresponds to a resin including a Si—O—Si bond formed using a siloxane-based material as a starting material.
  • an organic group for example, an alkyl group or an aryl group
  • a fluoro group may be used as a substituent.
  • the organic group may have a fluoro group.
  • a CMP process may be performed on the surface of the insulating layer or the like. By performing the CMP treatment, unevenness on the surface of the sample can be reduced, and the coverage of the insulating layer and the conductive layer to be formed thereafter can be improved.
  • any of an amorphous semiconductor and a crystalline semiconductor (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor having part of a crystalline region) can be used. Good.
  • silicon, germanium, or the like can be used as a semiconductor material used for a semiconductor layer of the transistor.
  • a compound semiconductor such as silicon carbide, gallium arsenide, metal oxide, or nitride semiconductor, or an organic semiconductor can be used.
  • amorphous silicon can be used as a semiconductor material used for the transistor.
  • amorphous silicon is excellent in mass productivity and can be easily provided on a substrate having a large area.
  • amorphous silicon used for a transistor contains a large amount of hydrogen.
  • amorphous silicon containing a large amount of hydrogen may be referred to as “hydrogenated amorphous silicon” or “a-Si: H”.
  • a-Si: H hydrogenated amorphous silicon
  • amorphous silicon can be formed at a lower temperature than polycrystalline silicon, the maximum temperature during the manufacturing process can be lowered. Therefore, a material having low heat resistance can be used for the substrate, the conductive layer, the insulating layer, and the like.
  • silicon having crystallinity such as microcrystalline silicon, polycrystalline silicon, or single crystal silicon can be used.
  • polycrystalline silicon can be formed at a lower temperature than single crystal silicon, and has higher field effect mobility and higher reliability than amorphous silicon.
  • an oxide semiconductor which is a kind of metal oxide can be used.
  • an oxide semiconductor containing indium can be used.
  • An oxide semiconductor can realize higher field-effect mobility and higher reliability than amorphous silicon.
  • An oxide semiconductor is excellent in mass productivity and can be easily provided over a large substrate.
  • An oxide semiconductor which is a kind of metal oxide has a wider band gap and lower carrier density than silicon, and thus is preferably used for a semiconductor layer of a transistor.
  • An oxide semiconductor is preferably used for the semiconductor layer of the transistor because current flowing between the source and the drain in the off state of the transistor can be reduced.
  • An oxide semiconductor that is a kind of metal oxide preferably has an energy gap of 2 eV or more, and more preferably 2.5 eV or more. More preferably, it is 3 eV or more. In this manner, off-state current of a transistor can be reduced by using an oxide semiconductor with a wide energy gap.
  • An oxide semiconductor which is a kind of metal oxide includes, for example, at least indium, zinc, and M (a metal such as aluminum, titanium, gallium, germanium, yttrium, zirconium, lanthanum, cerium, tin, neodymium, or hafnium). It is preferable to include a material represented by —Zn-based oxide.
  • a stabilizer is preferably included together with the transistor.
  • Examples of the stabilizer include the metals described in M above, and examples include gallium, tin, hafnium, aluminum, and zirconium.
  • Other stabilizers include lanthanoids such as lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
  • an In—Ga—Zn-based oxide means an oxide containing In, Ga, and Zn as its main components, and there is no limitation on the ratio of In, Ga, and Zn. Moreover, metal elements other than In, Ga, and Zn may be contained.
  • Insulating layers, semiconductor layers, conductive layers for forming electrodes and wirings are formed by sputtering, chemical vapor deposition (CVD), vacuum vapor deposition, pulse laser deposition (PLD), or pulse laser deposition (PLD). In addition, it can be formed by using an atomic layer deposition (ALD) method or the like.
  • the CVD method may be a plasma enhanced chemical vapor deposition (PECVD) method or a thermal CVD method.
  • PECVD plasma enhanced chemical vapor deposition
  • thermal CVD method a metal organic chemical vapor deposition (MOCVD) method may be used.
  • insulating layers, semiconductor layers, conductive layers for forming electrodes and wiring, etc. that constitute display devices include spin coating, dip, spray coating, ink jet, dispensing, screen printing, offset printing, slit coating, roll coating, You may form by methods, such as a curtain coat and a knife coat.
  • the PECVD method can obtain a high quality film at a relatively low temperature.
  • a film formation method that does not use plasma at the time of film formation such as an MOCVD method, an ALD method, or a thermal CVD method
  • damage to the formation surface is unlikely to occur.
  • a wiring, an electrode, an element (a transistor, a capacitor, or the like) included in the semiconductor device may be charged up by receiving electric charge from plasma.
  • a wiring, an electrode, an element, or the like included in the semiconductor device may be destroyed by the accumulated charge.
  • plasma damage during film formation does not occur, so that the yield of semiconductor devices can be increased.
  • a film with few defects can be obtained.
  • the CVD method and the ALD method are film forming methods in which a film is formed by a reaction on the surface of an object to be processed, unlike a film forming method in which particles emitted from a target or the like are deposited. Therefore, it is a film forming method that is not easily affected by the shape of the object to be processed and has good step coverage.
  • the ALD method has excellent step coverage and excellent thickness uniformity, and thus is suitable for covering the surface of an opening having a high aspect ratio.
  • the ALD method since the ALD method has a relatively low film formation rate, it may be preferable to use it in combination with another film formation method such as a CVD method with a high film formation rate.
  • the composition of the obtained film can be controlled by the flow rate ratio of the source gases.
  • a film having an arbitrary composition can be formed depending on the flow rate ratio of the source gases.
  • a film whose composition is continuously changed can be formed by changing the flow rate ratio of the source gas while forming the film.
  • the layer can be processed using a photolithography method or the like.
  • the island-shaped layer may be formed by a film formation method using a shielding mask.
  • the layer may be processed by a nanoimprint method, a sand blast method, a lift-off method, or the like.
  • a photolithography method a resist mask is formed over a layer (thin film) to be processed, a part of the layer (thin film) is selectively removed using the resist mask as a mask, and then the resist mask is removed. And a method of forming a layer having photosensitivity and then performing exposure and development to process the layer into a desired shape.
  • light used for exposure can be, for example, i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or light obtained by mixing these.
  • ultraviolet light, KrF laser light, ArF laser light, or the like can be used.
  • exposure may be performed by an immersion exposure technique.
  • extreme ultraviolet light (EUV: Extreme-violet) or X-rays may be used as light used for exposure.
  • an electron beam can be used instead of the light used for exposure. It is preferable to use extreme ultraviolet light, X-rays, or an electron beam because extremely fine processing is possible. Note that a photomask is not necessary when exposure is performed by scanning a beam such as an electron beam.
  • etching For removal (etching) of the layer (thin film), a dry etching method, a wet etching method, a sand blasting method, or the like can be used. Moreover, you may use combining these etching methods.
  • ⁇ Composition of metal oxide> one of the metal oxides that can be used for a semiconductor device such as a transistor disclosed in one embodiment of the present invention, which is a CAC-OS (Cloud-Aligned Composite-Oxide Semiconductor), or CAC (Cloud-) The configuration of (Aligned Composite) -metal oxide will be described.
  • CAC-OS Cloud-Aligned Composite-Oxide Semiconductor
  • CAC Cloud-
  • CAC c-axis aligned crystal
  • CAAC c-axis aligned crystal
  • CAC-OS or CAC-metal oxide has a conductive function in part of a material and an insulating function in part of the material, and the whole material has a function as a semiconductor.
  • the conductive function is a function of flowing electrons (or holes) serving as carriers
  • the insulating function is an electron serving as carriers. It is a function that does not flow.
  • a function of switching (a function of turning on / off) can be imparted to CAC-OS or CAC-metal oxide by causing the conductive function and the insulating function to act complementarily.
  • CAC-OS or CAC-metal oxide by separating each function, both functions can be maximized.
  • the CAC-OS or the CAC-metal oxide has a conductive region and an insulating region.
  • the conductive region has the above-described conductive function
  • the insulating region has the above-described insulating function.
  • the conductive region and the insulating region may be separated at the nanoparticle level.
  • the conductive region and the insulating region may be unevenly distributed in the material, respectively.
  • the conductive region may be observed with the periphery blurred and connected in a cloud shape.
  • the conductive region and the insulating region are each dispersed in a material with a size of 0.5 nm to 10 nm, preferably 0.5 nm to 3 nm. There is.
  • CAC-OS or CAC-metal oxide is composed of components having different band gaps.
  • CAC-OS or CAC-metal oxide includes a component having a wide gap caused by an insulating region and a component having a narrow gap caused by a conductive region.
  • the carrier when the carrier flows, the carrier mainly flows in the component having the narrow gap.
  • the component having a narrow gap acts in a complementary manner to the component having a wide gap, and the carrier flows through the component having the wide gap in conjunction with the component having the narrow gap. Therefore, when the CAC-OS or the CAC-metal oxide is used for a channel formation region of a transistor, high current driving force, that is, high on-state current and high field-effect mobility can be obtained in the on-state of the transistor.
  • CAC-OS or CAC-metal oxide can also be called a matrix composite material (metal matrix composite) or a metal matrix composite material (metal matrix composite).
  • Metal oxides are classified into metal oxides made of a single crystal material and metal oxides made of a non-single crystal material.
  • the single crystal material has a single crystal structure.
  • the non-single-crystal material has one or more of an amorphous structure, a microcrystalline structure, and a polycrystalline structure.
  • a material called a semi-crystalline material can be given as one of the non-single crystal materials.
  • the semi-crystalline material has an intermediate structure between a single crystal structure and an amorphous structure.
  • a single crystal of a metal oxide has a structure in which oxygen polyhedrons having a metal atom at the center are connected with specific regularity. Specifically, in a single crystal of InGaZnO 4 , an oxygen octahedron having an In atom at the center and a trigonal bipyramid of oxygen having Ga or Zn at the center are connected with a specific regularity. Thus, it has a layered crystal structure.
  • the semi-crystalline material has a plurality of oxygen polyhedrons in which a metal atom is present at the center, and the polyhedrons are connected to each other without having a specific regularity.
  • the polyhedron that the semicrystalline material has is a polyhedron that is not observed in the single crystal, in which the polyhedron of the single crystal structure is significantly broken.
  • the semicrystalline material may have a part of a single crystal structure such as a polyhedron that the single crystal structure has or a region where the polyhedrons that the single crystal structure has have regularity.
  • the semi-crystalline material has a stable structure as compared with a so-called amorphous material by connecting polyhedrons to each other without having a specific regularity.
  • the metal oxide when the metal oxide is an oxide semiconductor, the metal oxide is divided into a single crystal oxide semiconductor and a non-single-crystal oxide semiconductor.
  • the non-single-crystal oxide semiconductor for example, a CAAC-OS (c-axis aligned crystal oxide semiconductor), a polycrystalline oxide semiconductor, an nc-OS (nanocrystalline oxide semiconductor), a pseudo-amorphous oxide semiconductor (a-like oxide semiconductor) OS: amorphous-like oxide semiconductor) and amorphous oxide semiconductor.
  • an oxide semiconductor having a CAAC structure and a CAC structure (hereinafter also referred to as CAAC / CAC) is given.
  • the CAAC-OS is an oxide semiconductor that has a c-axis orientation and a CAAC structure in which a plurality of nanocrystals are connected in the ab plane direction and have a strain.
  • the strain refers to a portion where the orientation of the lattice arrangement changes between a region where the lattice arrangement is aligned and a region where another lattice arrangement is aligned in a region where a plurality of nanocrystals are connected.
  • Nanocrystals are based on hexagons, but are not limited to regular hexagons and may be non-regular hexagons.
  • a lattice arrangement such as a pentagon and a heptagon in the distortion.
  • a clear crystal grain boundary also referred to as a grain boundary
  • the formation of crystal grain boundaries is suppressed by the distortion of the lattice arrangement. This is because the CAAC-OS can tolerate distortion due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to substitution of metal elements. This is probably because of this.
  • the CAAC-OS includes a layered crystal in which a layer containing indium and oxygen (hereinafter referred to as In layer) and a layer including elements M, zinc, and oxygen (hereinafter referred to as (M, Zn) layers) are stacked.
  • In layer a layer containing indium and oxygen
  • M, Zn elements M, zinc, and oxygen
  • indium and the element M can be replaced with each other, and when a part of the element M in the (M, Zn) layer is replaced with indium, it can also be expressed as an (In, M, Zn) layer. Further, when a part of indium in the In layer is replaced with the element M, it can also be expressed as an (In, M) layer.
  • the CAAC-OS is an oxide semiconductor with high crystallinity.
  • CAAC-OS cannot confirm a clear crystal grain boundary, it can be said that a decrease in electron mobility due to the crystal grain boundary hardly occurs.
  • the CAAC-OS can be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, the physical properties of the CAAC-OS are stable. Therefore, the CAAC-OS is resistant to heat and has high reliability.
  • the nc-OS is an oxide semiconductor having a structure in which atomic arrangement is periodic in a very small region (e.g., a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm).
  • the nc-OS has no regularity in crystal orientation between different nanocrystals. Therefore, orientation is not seen in the whole film. Therefore, the nc-OS may not be distinguished from an a-like OS or an amorphous oxide semiconductor depending on an analysis method.
  • the a-like OS is an oxide semiconductor having a structure between the nc-OS and the amorphous oxide semiconductor.
  • the a-like OS has a void or a low density region. That is, the a-like OS has lower crystallinity than the nc-OS and the CAAC-OS.
  • Oxide semiconductors have various structures and different properties.
  • the oxide semiconductor of one embodiment of the present invention may include two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, an nc-OS, and a CAAC-OS.
  • FIG. 31A is a top view of the transistor 500a.
  • 31B corresponds to a cross-sectional view of a cross-sectional surface taken along the dashed-dotted line X1-X2 in FIG. 31A, and
  • FIG. 31C is between the dashed-dotted line Y1-Y2 shown in FIG. This corresponds to a cross-sectional view of the cut surface in FIG.
  • some components such as an insulating layer functioning as a gate insulating layer
  • FIG. 31A is a top view of the transistor 500a.
  • 31B corresponds to a cross-sectional view of a cross-sectional surface taken along the dashed-dotted line X1-X2 in FIG. 31A
  • FIG. 31C is between the dashed-dotted line Y1-Y2 shown in FIG. This corresponds to a cross-sectional view of the cut surface in FIG.
  • some components such as an insulating layer functioning as a gate insulating layer
  • the alternate long and short dash line X1-X2 direction may be referred to as a channel length direction
  • the alternate long and short dash line Y1-Y2 direction may be referred to as a channel width direction. Note that in the top view of the transistor, some components may be omitted in the following drawings as in FIG. 31A.
  • the transistor 500a includes a conductive layer 521 over the insulating layer 524, an insulating layer 511 over the insulating layer 524 and the conductive layer 521, a semiconductor layer 531 over the insulating layer 511, and a conductive layer over the semiconductor layer 531 and the insulating layer 511.
  • a layer 522a, a conductive layer 522b over the semiconductor layer 531 and the insulating layer 511, an insulating layer 512 over the semiconductor layer 531, the conductive layer 522a, and the conductive layer 522b, a conductive layer 523 over the insulating layer 512, Have
  • the insulating layer 524 may be a substrate.
  • the substrate can be a substrate including a material similar to that of the substrate 371 described in the above embodiment.
  • the conductive layer 521 and the conductive layer 523 for example, a material similar to that of the electrode 322 described in the above embodiment can be included.
  • the insulating layer 511 for example, a material similar to that of the insulating layer 326 described in the above embodiment can be included.
  • the conductive layer 522a and the conductive layer 522b can include a material similar to that of the electrode 344a and the electrode 344b described in the above embodiment.
  • the insulating layer 512 can include a material similar to that of the insulating layer 328 described in the above embodiment.
  • the semiconductor layer 531 can include a material similar to that of the semiconductor layer 324 described in the above embodiment.
  • the semiconductor layer 531 is described as a semiconductor layer containing a metal oxide.
  • the insulating layer 511 and the insulating layer 512 have an opening 535.
  • the conductive layer 523 is electrically connected to the conductive layer 521 through the opening 535.
  • the insulating layer 511 functions as a first gate insulating layer of the transistor 500a
  • the insulating layer 512 functions as a second gate insulating layer of the transistor 500a
  • the conductive layer 521 functions as a first gate
  • the conductive layer 522a functions as one of a source and a drain
  • the conductive layer 522b serves as the other of the source and the drain. It has the function of.
  • the conductive layer 523 functions as a second gate.
  • the transistor 500a is a so-called channel etch transistor and has a dual-gate structure.
  • the transistor 500a can be formed without the conductive layer 523.
  • the transistor 500a is a so-called channel etch type transistor and has a bottom gate structure.
  • the semiconductor layer 531 is positioned so as to face the conductive layer 521 and the conductive layer 523, and is sandwiched between conductive layers having functions of two gates.
  • the length of the conductive layer 523 in the channel length direction and the length of the conductive layer 523 in the channel width direction are longer than the length of the semiconductor layer 531 in the channel length direction and the length of the semiconductor layer 531 in the channel width direction, respectively.
  • the entire semiconductor layer 531 is covered with the conductive layer 523 with the insulating layer 512 interposed therebetween.
  • the conductive layer 521 and the conductive layer 523 have a region which is connected to the opening 535 provided in the insulating layer 511 and the insulating layer 512 and located outside the side end portion of the semiconductor layer 531.
  • the semiconductor layer 531 included in the transistor 500a can be electrically surrounded by the electric fields of the conductive layer 521 and the conductive layer 523.
  • a device structure of a transistor that electrically surrounds a semiconductor layer in which a channel formation region is formed by an electric field of a first gate and a second gate as in the transistor 500a is referred to as a surround channel (s-channel) structure. Can do.
  • the transistor 500a Since the transistor 500a has an s-channel structure, an electric field for inducing a channel by the conductive layer 521 having the function of the first gate can be effectively applied to the semiconductor layer 531, so that the current of the transistor 500a The driving capability is improved and high on-current characteristics can be obtained. Further, since the on-state current can be increased, the transistor 500a can be miniaturized.
  • the transistor 500a has a structure in which the semiconductor layer 531 is surrounded by the conductive layer 521 having a first gate function and the conductive layer 523 having a second gate function, the mechanical strength of the transistor 500a is increased. Can be increased.
  • the transistor 500a having an s-channel structure has high field-effect mobility and high driving capability, the transistor 500a is used in a driver circuit, typically a scan line driver circuit.
  • a display device can be provided.
  • FIG. 32A is a top view of the transistor 500b.
  • 32B corresponds to a cross-sectional view of a cross section taken along the dashed-dotted line X1-X2 in FIG. 32A, and
  • FIG. 32C is between the dashed-dotted line Y1-Y2 shown in FIG. This corresponds to a cross-sectional view of the cut surface in FIG.
  • the transistor 500b is different from the transistor 500a in that the semiconductor layer 531, the conductive layer 522a, the conductive layer 522b, and the insulating layer 512 have a stacked structure.
  • the insulating layer 512 includes the insulating layer 512a over the semiconductor layer 531, the conductive layer 522a, and the conductive layer 522b, and the insulating layer 512b over the insulating layer 512a.
  • the insulating layer 512 has a function of supplying oxygen to the semiconductor layer 531. That is, the insulating layer 512 includes oxygen.
  • the insulating layer 512a is an insulating layer that can transmit oxygen. Note that the insulating layer 512a also functions as a damage reducing film for the semiconductor layer 531 when the insulating layer 512b to be formed later is formed.
  • silicon oxide, silicon oxynitride, or the like with a thickness of 5 nm to 150 nm, preferably 5 nm to 50 nm can be used.
  • the insulating layer 512a preferably has a small amount of defects.
  • oxygen that enters the insulating layer 512a from the outside does not move to the outside of the insulating layer 512a but remains in the insulating layer 512a. Further, oxygen enters the insulating layer 512a and oxygen contained in the insulating layer 512a moves to the outside of the insulating layer 512a, so that oxygen may move in the insulating layer 512a.
  • oxygen released from the insulating layer 512b provided over the insulating layer 512a is transferred to the semiconductor layer 531 through the insulating layer 512a. Can do.
  • the insulating layer 512a can be formed using an oxide insulating layer having a low level density due to nitrogen oxides. Note that the level density attributed to the nitrogen oxide may be formed between the energy at the upper end of the valence band of the metal oxide and the energy at the lower end of the conduction band of the metal oxide.
  • the oxide insulating layer a silicon oxynitride film with a low emission amount of nitrogen oxide, an aluminum oxynitride film with a low emission amount of nitrogen oxide, or the like can be used.
  • a silicon oxynitride film with a small amount of released nitrogen oxide is a film having a larger amount of released ammonia than a released amount of nitrogen oxide in a thermal desorption gas analysis (TDS) method.
  • the released amount of ammonia is 1 ⁇ 10 18 / cm 3 or more and 5 ⁇ 10 19 / cm 3 or less.
  • the amount of ammonia released is the amount released by heat treatment at a film surface temperature of 50 ° C. to 650 ° C., preferably 50 ° C. to 550 ° C.
  • Nitrogen oxide (NO x , x is larger than 0 and 2 or less, preferably 1 or more and 2 or less), typically NO 2 or NO forms a level in the insulating layer 512a or the like.
  • the level is located in the energy gap of the semiconductor layer 531. Therefore, when nitrogen oxide diffuses to the interface between the insulating layer 512a and the semiconductor layer 531, the level may trap electrons on the insulating layer 512a side. As a result, trapped electrons remain in the vicinity of the interface between the insulating layer 512a and the semiconductor layer 531, and the threshold voltage of the transistor is shifted in the positive direction.
  • Nitrogen oxide reacts with ammonia and oxygen in heat treatment. Since nitrogen oxide contained in the insulating layer 512d reacts with ammonia contained in the insulating layer 512b in the heat treatment, nitrogen oxide contained in the insulating layer 512a is reduced. Therefore, electrons are not easily trapped at the interface between the insulating layer 512a and the semiconductor layer 531.
  • the oxide insulating layer as the insulating layer 512a, a shift in threshold voltage of the transistor can be reduced, and fluctuation in electric characteristics of the transistor can be reduced.
  • the oxide insulating layer has a nitrogen concentration of 6 ⁇ 10 20 atoms / cm 3 or less as measured by SIMS.
  • oxide insulating layer By forming the oxide insulating layer using a PECVD method using silane and dinitrogen monoxide with a substrate temperature of 220 ° C. or higher and 350 ° C. or lower, a dense and high hardness film is formed. be able to.
  • the insulating layer 512b is an oxide insulating layer containing more oxygen than oxygen that satisfies the stoichiometric composition. Part of oxygen is released from the oxide insulating layer by heating. Note that in TDS, the above oxide insulating layer has a region where the amount of released oxygen is 1.0 ⁇ 10 19 atoms / cm 3 or more, preferably 3.0 ⁇ 10 20 atoms / cm 3 or more.
  • the amount of released oxygen is the total amount when the temperature of the heat treatment in TDS is 50 ° C. or higher and 650 ° C. or lower, or 50 ° C. or higher and 550 ° C. or lower.
  • the amount of released oxygen is the total amount in terms of oxygen atoms in TDS.
  • silicon oxide, silicon oxynitride, or the like with a thickness of 30 nm to 500 nm, preferably 50 nm to 400 nm can be used.
  • the insulating layer 512b preferably has a small amount of defects.
  • the insulating layer 512 can be formed using the same kind of insulating layer, an interface between the insulating layer 512a and the insulating layer 512b may not be clearly confirmed. Therefore, in this embodiment, the interface between the insulating layer 512a and the insulating layer 512b is illustrated by a broken line. Note that although a two-layer structure of the insulating layer 512a and the insulating layer 512b has been described in this embodiment mode, the present invention is not limited thereto, and for example, a single-layer structure of the insulating layer 512a or a stacked structure of three or more layers may be used. Good.
  • the semiconductor layer 531 includes a semiconductor layer 531_1 over the insulating layer 511 and a semiconductor layer 531_2 over the semiconductor layer 531_1.
  • the semiconductor layer 531_1 and the semiconductor layer 531_2 each have the same element.
  • the semiconductor layer 531_1 and the semiconductor layer 531_2 preferably each independently include the element included in the semiconductor layer 531 described above.
  • the semiconductor layer 531_1 and the semiconductor layer 531_2 preferably each independently have a region in which the atomic ratio of In is larger than the atomic ratio of M.
  • M is 1.5 or more and 2.5 or less
  • Zn is 2 or more and 4 or less.
  • the semiconductor layer 531_1 and the semiconductor layer 531_2 have substantially the same composition, so that manufacturing cost can be reduced.
  • the semiconductor layer 531_1 and the semiconductor layer 531_2 can be formed continuously in a vacuum in the same chamber; thus, impurities are incorporated into the interface between the semiconductor layer 531_1 and the semiconductor layer 531_2. Can be suppressed.
  • the semiconductor layer 531_1 may have a region with lower crystallinity than the semiconductor layer 531_2.
  • the crystallinity of the semiconductor layer 531_1 and the semiconductor layer 531_2 is analyzed using, for example, X-ray diffraction (XRD: X-Ray Diffraction), or using a transmission electron microscope (TEM). It can be analyzed by analyzing.
  • XRD X-ray diffraction
  • TEM transmission electron microscope
  • a region with low crystallinity of the semiconductor layer 531_1 serves as an excess oxygen diffusion path, and excess oxygen can be diffused into the semiconductor layer 531_2 with higher crystallinity than the semiconductor layer 531_1.
  • a highly reliable transistor can be provided by using a stacked structure of semiconductor layers having different crystal structures and using a region with low crystallinity as an excess oxygen diffusion path.
  • the semiconductor layer 531_2 includes a region having higher crystallinity than the semiconductor layer 531_1, impurities that can be mixed into the semiconductor layer 531 can be suppressed. In particular, by increasing the crystallinity of the semiconductor layer 531_2, damage when the conductive layers 522a and 522b are processed can be suppressed.
  • the surface of the semiconductor layer 531 that is, the surface of the semiconductor layer 531 ⁇ / b> _ ⁇ b> 2 is exposed to an etchant or an etching gas when the conductive layers 522 a and 522 b are processed.
  • the semiconductor layer 531_2 has a region with high crystallinity, the semiconductor layer 531_2 has excellent etching resistance as compared with the semiconductor layer 531_1 with low crystallinity. Therefore, the semiconductor layer 531_2 functions as an etching stopper.
  • the semiconductor layer 531_1 includes a region having lower crystallinity than the semiconductor layer 531_2, the carrier density may be increased.
  • the Fermi level may be relatively higher than the conduction band of the semiconductor layer 531_1. Accordingly, the lower end of the conduction band of the semiconductor layer 531_1 is lowered, and the energy difference between the lower end of the conduction band of the semiconductor layer 531_1 and the trap level that can be formed in the gate insulating layer (here, the insulating layer 511) is increased. There is a case. When the energy difference is increased, the charge trapped in the gate insulating layer is reduced, and the variation in threshold voltage of the transistor may be reduced in some cases. Further, when the carrier density of the semiconductor layer 531_1 is increased, the field-effect mobility of the semiconductor layer 531 can be increased.
  • the present invention is not limited to this, and a structure in which three or more layers are stacked may be employed.
  • the conductive layer 522a included in the transistor 500b includes a conductive layer 522a_1, a conductive layer 522a_2 over the conductive layer 522a_1, and a conductive layer 522a_3 over the conductive layer 522a_2.
  • the conductive layer 522b included in the transistor 500b includes a conductive layer 522b_1, a conductive layer 522b_2 over the conductive layer 522b_1, and a conductive layer 522b_3 over the conductive layer 522b_2.
  • the conductive layer 522a_1, the conductive layer 522b_1, the conductive layer 522a_3, and the conductive layer 522b_3 include one or more selected from titanium, tungsten, tantalum, molybdenum, indium, gallium, tin, and zinc. It is preferable.
  • the conductive layer 522a_2 and the conductive layer 522b_2 preferably include any one or more selected from copper, aluminum, and silver.
  • an In—Sn oxide or an In—Zn oxide is used for the conductive layer 522a_1, the conductive layer 522b_1, the conductive layer 522a_3, and the conductive layer 522b_3, and copper is used for the conductive layer 522a_2 and the conductive layer 522b_2. it can.
  • the end portion of the conductive layer 522a_1 has a region located outside the end portion of the conductive layer 522a_2, and the conductive layer 522a_3 covers a top surface and side surfaces of the conductive layer 522a_2 and is in contact with the conductive layer 522a_1.
  • an end portion of the conductive layer 522b_1 has a region located outside the end portion of the conductive layer 522b_2, and the conductive layer 522b_3 covers a top surface and a side surface of the conductive layer 522b_2 and is in contact with the conductive layer 522b_1.
  • the above structure is preferable because the wiring resistance of the conductive layers 522a and 522b can be reduced and the diffusion of copper into the semiconductor layer 531 can be suppressed.
  • FIG. 33A is a top view of the transistor 500c.
  • 33B corresponds to a cross-sectional view of a cross section taken along the dashed-dotted line X1-X2 in FIG. 33A, and
  • FIG. 33C is between the dashed-dotted line Y1-Y2 shown in FIG. This corresponds to a cross-sectional view of the cut surface in FIG.
  • the transistor 500c includes a conductive layer 521 over the insulating layer 524, an insulating layer 511 over the conductive layer 521 and the insulating layer 524, a semiconductor layer 531 over the insulating layer 511, and an insulating layer over the semiconductor layer 531 and the insulating layer 511.
  • the insulating layer 511, the insulating layer 516, and the insulating layer 512 have an opening 535.
  • the conductive layer 521 having a function as the first gate of the transistor 500c is electrically connected to the conductive layer 523 having a function as the second gate of the transistor 500c through the opening 535.
  • the insulating layer 516 includes an opening 538a and an opening 538b.
  • the conductive layer 522a functioning as one of the source and the drain of the transistor 500c is electrically connected to the semiconductor layer 531 through the opening 538a.
  • the conductive layer 522b functioning as the other of the source and the drain of the transistor 500c is electrically connected to the semiconductor layer 531 through the opening 538b.
  • the insulating layer 516 functions as a channel protective layer of the transistor 500c.
  • the channel formation region of the semiconductor layer 531 may be damaged when the conductive layer 522a and the conductive layer 522b are formed by an etching method or the like.
  • the electrical characteristics of the transistor may become unstable.
  • a semiconductor layer is formed by forming an insulating layer 516, forming an opening 538a and an opening 538b, forming a conductive layer, and processing the conductive layer by an etching method or the like to form the conductive layer 522a and the conductive layer 522b. Damage to the channel formation region of the layer 531 can be suppressed. Thereby, the electrical characteristics of the transistor can be stabilized and a highly reliable transistor can be realized.
  • the insulating layer 516 can include a material similar to that of the insulating layer 512, for example.
  • the insulating layer 516 preferably has an excess oxygen region.
  • oxygen can be supplied to the channel formation region of the semiconductor layer 531. Accordingly, oxygen vacancies formed in the channel formation region can be filled with excess oxygen; thus, a highly reliable display device can be provided.
  • an impurity element is preferably added to the semiconductor layer 531 after the opening 538a and the opening 538b are formed.
  • an element that forms oxygen vacancies or an element that bonds with oxygen vacancies is preferably added. Accordingly, although described in detail later, the conductivity of the semiconductor layer 531 in the region overlapping with the conductive layer 522a (one of the source region or the drain region) and the region overlapping with the conductive layer 522b (the other of the source region or the drain region) are increased. Can be high. Accordingly, the current driving capability of the transistor 500c is improved, and high on-current characteristics can be obtained.
  • the transistor 500c is a so-called channel protection transistor and has a dual-gate structure.
  • the transistor 500c has an s-channel structure similarly to the transistors 500a and 500b. With such a structure, the semiconductor layer 531 included in the transistor 500c can be electrically surrounded by the electric fields of the conductive layer 521 and the conductive layer 523.
  • the transistor 500c Since the transistor 500c has an s-channel structure, an electric field for inducing a channel by the conductive layer 521 or the conductive layer 523 can be effectively applied to the semiconductor layer 531. Accordingly, the current driving capability of the transistor 500f is improved, and high on-current characteristics can be obtained. In addition, since the on-state current can be increased, the transistor 500c can be miniaturized. Further, since the transistor 500c has a structure in which the semiconductor layer 531 is surrounded by the conductive layer 521 and the conductive layer 523, the mechanical strength of the transistor 500f can be increased.
  • the transistor 500c can be formed without the conductive layer 523.
  • the transistor 500c is a so-called channel protection transistor and has a bottom gate structure.
  • FIGS. 34A and 34B are cross-sectional views of the transistor 500d
  • FIGS. 34C and 34D are cross-sectional views of the transistor 500e.
  • the transistor 500d is a modification of the transistor 500b described above
  • the transistor 500e is a modification of the transistor 500c described above. Accordingly, in FIGS. 34A, 34B, 34C, and 34D, portions having functions similar to those of the transistor 500b and the transistor 500c are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 34A is a cross-sectional view in the channel length direction of the transistor 500d
  • FIG. 34B is a cross-sectional view in the channel width direction of the transistor 500d
  • FIG. 34C is a cross-sectional view of the transistor 500e in the channel length direction
  • FIG. 34D is a cross-sectional view of the transistor 500e in the channel width direction.
  • a transistor 500d illustrated in FIGS. 34A and 34B is not provided with the conductive layer 523 and the opening 535 as compared with the transistor 500b.
  • the transistor 500d is different from the transistor 500b in the structures of the insulating layer 512, the conductive layer 522a, and the conductive layer 522b.
  • the insulating layer 512 includes an insulating layer 512c and an insulating layer 512d over the insulating layer 512c.
  • the insulating layer 512c has a function of supplying oxygen to the semiconductor layer 531 and a function of suppressing entry of impurities (typically, water, hydrogen, and the like).
  • impurities typically, water, hydrogen, and the like.
  • an aluminum oxide film, an aluminum oxynitride film, or an aluminum nitride oxide film can be used.
  • the insulating layer 512c is preferably an aluminum oxide film formed by a reactive sputtering method.
  • a method for forming an aluminum oxide film by a reactive sputtering method the following method can be given.
  • a mixed gas of an inert gas (typically Ar gas) and oxygen gas is introduced into the sputtering chamber.
  • an aluminum oxide film can be formed by applying a voltage to the aluminum target disposed in the sputtering chamber.
  • a power supply which applies a voltage to an aluminum target DC power supply, AC power supply, or RF power supply is mentioned.
  • use of a DC power source is preferable because productivity is improved.
  • the insulating layer 512d has a function of suppressing entry of impurities (typically water, hydrogen, and the like).
  • impurities typically water, hydrogen, and the like.
  • a silicon nitride film, a silicon nitride oxide film, or a silicon oxynitride film can be used.
  • the insulating layer 512d is preferably a silicon nitride film formed by PECVD.
  • a silicon nitride film formed by PECVD is preferable because a high film density can be easily obtained. Note that a silicon nitride film formed by PECVD may have a high hydrogen concentration in the film.
  • the transistor 500d is a single-gate transistor, unlike the transistor 500b.
  • the number of masks can be reduced, so that productivity can be increased.
  • a transistor 500e illustrated in FIGS. 34C and 34D is different in structure of the insulating layer 516 and the insulating layer 512 from the transistor 500c. Specifically, the transistor 500e includes an insulating layer 516a instead of the insulating layer 516, and includes an insulating layer 512d instead of the insulating layer 512.
  • the insulating layer 516a has a function similar to that of the insulating layer 512c.
  • the structure of the transistor 500d and the transistor 500e can be manufactured using an existing production line without much capital investment.
  • a hydrogenated amorphous silicon manufacturing plant can be easily replaced with an oxide semiconductor manufacturing plant.
  • FIG. 35A is a top view of the transistor 500f.
  • 35B corresponds to a cross-sectional view of a cross section taken along the dashed-dotted line X1-X2 in FIG. 35A, and
  • FIG. 35C is between the dashed-dotted line Y1-Y2 shown in FIG. This corresponds to a cross-sectional view of the cut surface in FIG.
  • 35A, 35B, and 35C includes a conductive layer 521 over the insulating layer 524, an insulating layer 511 over the conductive layer 521 and the insulating layer 524, and a semiconductor over the insulating layer 511.
  • the insulating layer 512 over the semiconductor layer 531, the conductive layer 523 over the insulating layer 512, and the insulating layer 515 over the insulating layer 511, the semiconductor layer 531, and the conductive layer 523 are included.
  • the semiconductor layer 531 includes a channel formation region 531 i overlapping with the conductive layer 523, a source region 531 s in contact with the insulating layer 515, and a drain region 531 d in contact with the insulating layer 515.
  • the insulating layer 515 includes nitrogen or hydrogen.
  • nitrogen or hydrogen in the insulating layer 515 is added to the source region 531s and the drain region 531d.
  • the carrier density is increased by adding nitrogen or hydrogen.
  • the transistor 500f may include a conductive layer 522a electrically connected to the source region 531s through an opening 536a provided in the insulating layer 515.
  • the transistor 500f may include a conductive layer 522b electrically connected to the drain region 531d through an opening 536b provided in the insulating layer 515.
  • the insulating layer 511 functions as a first gate insulating layer, and the insulating layer 512 functions as a second gate insulating layer.
  • the insulating layer 515 functions as a protective insulating layer.
  • the insulating layer 512 has an excess oxygen region.
  • excess oxygen can be supplied to the channel formation region 531 i included in the semiconductor layer 531. Accordingly, oxygen vacancies that can be formed in the channel formation region 531i can be filled with excess oxygen; thus, a highly reliable display device can be provided.
  • excess oxygen may be supplied to the insulating layer 511 formed below the semiconductor layer 531.
  • excess oxygen contained in the insulating layer 511 can be supplied to the source region 531s and the drain region 531d included in the semiconductor layer 531.
  • the resistance of the source region 531s and the drain region 531d may increase.
  • excess oxygen can be selectively supplied only to the channel formation region 531i.
  • the carrier density of the source region 531s and the train region 531d is selectively increased, so that the source region 531s and the drain region 531d are increased. It is possible to suppress the increase in resistance.
  • the source region 531s and the drain region 531d included in the semiconductor layer 531 each preferably include an element that forms oxygen vacancies or an element that bonds to oxygen vacancies.
  • an element that forms oxygen vacancies or an element that combines with oxygen vacancies typically, hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, titanium, a rare gas, or the like can be given.
  • rare gas elements include helium, neon, argon, krypton, and xenon.
  • one or more elements that form oxygen vacancies are included in the insulating layer 515, they diffuse from the insulating layer 515 into the source region 531s and the drain region 531d, and / or the source region 531s is formed by impurity addition treatment, and It is added into the drain region 531d.
  • the impurity element When the impurity element is added to the metal oxide, the bond between the metal element in the metal oxide and oxygen is cut, and oxygen vacancies are formed.
  • oxygen bonded to the metal element in the metal oxide is bonded to the impurity element, oxygen is released from the metal element, and oxygen vacancies are formed.
  • the carrier density is increased and the conductivity is increased.
  • the conductive layer 521 has a function as a first gate
  • the conductive layer 523 has a function as a second gate
  • the conductive layer 522a has a function as a source
  • the conductive layer 522b Has a function as a drain.
  • the insulating layer 511 and the insulating layer 512 are provided with an opening 537.
  • the conductive layer 521 is electrically connected to the conductive layer 523 through the opening 537. Therefore, the same potential is applied to the conductive layer 521 and the conductive layer 523. Note that different potentials may be applied to the conductive layer 521 and the conductive layer 523 without providing the opening 537.
  • the conductive layer 521 may be used as a light-blocking film without providing the opening 537. For example, when the conductive layer 521 is formed using a light-blocking material, light from below irradiated to the channel formation region 531i can be suppressed.
  • the semiconductor layer 531 includes a conductive layer 521 having a function as a first gate and a conductive layer 523 having a function as a second gate. It is located so as to face each other, and is sandwiched between conductive layers that function as two gates.
  • the transistor 500f has an s-channel structure.
  • the semiconductor layer 531 included in the transistor 500f is electrically connected to the conductive layer 521 having a function as a first gate and the electric field of the conductive layer 523 having a function as a second gate. Can be surrounded.
  • the transistor 500f Since the transistor 500f has an s-channel structure, an electric field for inducing a channel by the conductive layer 521 or the conductive layer 523 can be effectively applied to the semiconductor layer 531. Accordingly, the current driving capability of the transistor 500f is improved, and high on-current characteristics can be obtained. Further, since the on-state current can be increased, the transistor 500f can be miniaturized. In addition, since the transistor 500f has a structure in which the semiconductor layer 531 is surrounded by the conductive layer 521 and the conductive layer 523, the mechanical strength of the transistor 500f can be increased.
  • the transistor 500f may be referred to as a TGSA (Top Gate Self Align) FET because of the position of the conductive layer 523 with respect to the semiconductor layer 531 or the formation method of the conductive layer 523.
  • TGSA Top Gate Self Align
  • the transistor 500f may have a structure in which two or more semiconductor layers 531 are stacked as in the transistor 500b.
  • the insulating layer 512 is provided only in a portion where the insulating layer 512 overlaps with the conductive layer 523; however, the present invention is not limited to this, and the insulating layer 512 can cover the semiconductor layer 531. Alternatively, the conductive layer 521 may be omitted.
  • an aluminum oxide layer may be provided between the insulating layer 512 and the conductive layer 523.
  • excess oxygen contained in the insulating layer 512 can be hardly diffused to the conductive layer 523 side.
  • the conductive layer 523 is preferably formed of a material in which at least a region in contact with the insulating layer 512 is difficult to diffuse oxygen. Examples of such materials include aluminum and molybdenum.
  • the conductive layer 523 may have a two-layer structure in which aluminum is provided on the insulating layer 512 side and titanium is provided thereover.
  • the conductive layer 523 may have a three-layer structure in which molybdenum is provided on the insulating layer 512 side and aluminum and titanium are provided thereover.
  • a structure example of a display device using a liquid crystal element and a structure example of a display device using an EL element will be described.
  • a sealant 4005 is provided so as to surround the display portion 115 provided over the first substrate 4001, and the display portion 115 is sealed with the sealant 4005 and the second substrate 4006. .
  • the display portion 115 has a structure similar to that of the display portion 110 or the display portion 210 described in the above embodiment.
  • the scan line driver circuit 121a, the signal line driver circuit 131a, the signal line driver circuit 132a, and the common line driver circuit 141a each include a plurality of integrated circuits 4042 provided over the printed board 4041.
  • the integrated circuit 4042 is formed using a single crystal semiconductor or a polycrystalline semiconductor.
  • the signal line driver circuit 131a and the signal line driver circuit 132a function in the same manner as the signal line driver circuit 131 described in the above embodiment.
  • the scan line driver circuit 121a functions in the same manner as the scan line driver circuit 121 described in the above embodiment.
  • the common line driver circuit 141a functions similarly to the common line driver circuit 141 described in the above embodiment.
  • An integrated circuit 4042 included in the scan line driver circuit 121 a and the common line driver circuit 141 a has a function of supplying a selection signal to the display portion 115.
  • the integrated circuit 4042 included in the signal line driver circuit 131 a and the signal line driver circuit 132 a has a function of supplying a video signal to the display portion 115.
  • the integrated circuit 4042 is mounted in a region different from the region surrounded by the sealant 4005 on the first substrate 4001 by a TAB (Tape Automated Bonding) method.
  • connection method of the integrated circuit 4042 is not particularly limited, and a wire bonding method, a COG (Chip On Glass) method, a TCP (Tape Carrier Package) method, a COF (Chip On Film) method, or the like can be used. it can.
  • FIG. 36B illustrates an example in which the integrated circuit 4042 included in the signal line driver circuit 131a and the signal line driver circuit 132a is mounted by a COG method. Further, with the use of the transistor described in any of the above embodiments, part or the whole of a driver circuit can be formed over the same substrate as the display portion 115 to form a system-on-panel.
  • FIG. 36B illustrates an example in which the scan line driver circuit 121a and the common line driver circuit 141a are formed over the same substrate as the display portion 115.
  • the driver circuit By forming the driver circuit at the same time as the pixel circuit in the display portion 115, the number of components can be reduced. Therefore, productivity can be improved.
  • a sealant 4005 is provided so as to surround the display portion 115 provided over the first substrate 4001, the scan line driver circuit 121a, and the common line driver circuit 141a.
  • a second substrate 4006 is provided over the display portion 115, the scan line driver circuit 121a, and the common line driver circuit 141a. Therefore, the display portion 115, the scan line driver circuit 121a, and the common line driver circuit 141a are sealed together with the display element by the first substrate 4001, the sealant 4005, and the second substrate 4006.
  • FIG. 36B illustrates an example in which the signal line driver circuit 131a and the signal line driver circuit 132a are separately formed and mounted on the first substrate 4001, but the present invention is not limited to this structure.
  • the scan line driver circuit may be separately formed and then mounted, or part of the signal line driver circuit or part of the scan line driver circuit may be separately formed and then mounted.
  • the display device includes a panel in which the display element is sealed, and a module in which an IC including a controller or the like is mounted on the panel.
  • the display portion and the scan line driver circuit provided over the first substrate include a plurality of transistors.
  • the transistor described in any of the above embodiments can be used as the transistor.
  • the transistor included in the peripheral driver circuit and the transistor included in the pixel circuit in the display portion may have the same structure or different structures.
  • the transistors included in the peripheral driver circuit may all have the same structure, or two or more structures may be used in combination.
  • the transistors included in the pixel circuit may all have the same structure, or two or more structures may be used in combination.
  • FIGS. 37A and 37B are cross-sectional views of a portion indicated by a chain line N1-N2 in FIG. 36B.
  • the display device illustrated in FIGS. 37A and 37B includes an electrode 4015, and the electrode 4015 is electrically connected to a terminal included in the FPC 4018 through an anisotropic conductive layer 4019.
  • the electrode 4015 is electrically connected to the wiring 4014 in the opening formed in the insulating layer 4112, the insulating layer 4111, and the insulating layer 4110.
  • the electrode 4015 is formed using the same conductive layer as the first electrode layer 4030, and the wiring 4014 is formed using the same conductive layer as the source electrode and the drain electrode of the transistor 4010 and the transistor 4011.
  • the display portion 115 and the scan line driver circuit 121a provided over the first substrate 4001 include a plurality of transistors, which are included in the display portion 115 in FIGS. 37A and 37B.
  • the transistor 4010 and the transistor 4011 included in the scan line driver circuit 121a are illustrated. Note that FIGS. 37A and 37B illustrate bottom-gate transistors as the transistor 4010 and the transistor 4011.
  • the insulating layer 4112 is provided over the transistors 4010 and 4011.
  • a partition wall 4510 is formed over the insulating layer 4112.
  • the transistor 4010 and the transistor 4011 are provided over the insulating layer 4102.
  • the transistor 4010 and the transistor 4011 include an electrode 4017 formed over the insulating layer 4111.
  • the electrode 4017 can function as a back gate electrode.
  • any of the transistors described in the above embodiments can be used.
  • the display device illustrated in FIGS. 37A and 37B includes a capacitor 4020.
  • the capacitor 4020 includes an electrode 4021 formed in the same step as the gate electrode of the transistor 4010 and an electrode formed in the same step as the source electrode and the drain electrode. Each electrode overlaps with the insulating layer 4103 interposed therebetween.
  • the capacitance of a capacitor provided in the pixel portion of the display device is set so that charge can be held for a predetermined period in consideration of leakage current of a transistor arranged in the pixel portion.
  • the capacity of the capacitor may be set in consideration of the off-state current of the transistor.
  • FIG. 37A illustrates an example of a liquid crystal display device using a liquid crystal element as a display element.
  • a liquid crystal element 4013 which is a display element includes a first electrode layer 4030, a second electrode layer 4031, and a liquid crystal layer 4008.
  • an insulating layer 4032 and an insulating layer 4033 which function as alignment films are provided so as to sandwich the liquid crystal layer 4008.
  • the second electrode layer 4031 is provided on the second substrate 4006 side, and the first electrode layer 4030 and the second electrode layer 4031 overlap with each other with the liquid crystal layer 4008 interposed therebetween.
  • the spacer 4035 is a columnar spacer obtained by selectively etching the insulating layer, and is provided to control the distance (cell gap) between the first electrode layer 4030 and the second electrode layer 4031. Yes.
  • a spherical spacer may be used.
  • an optical member such as a black matrix (light-shielding layer), a colored layer (color filter), a polarizing member, a retardation member, or an antireflection member may be provided as appropriate.
  • an optical member such as a black matrix (light-shielding layer), a colored layer (color filter), a polarizing member, a retardation member, or an antireflection member
  • circularly polarized light using a polarizing substrate and a retardation substrate may be used.
  • a backlight, a sidelight, or the like may be used as the light source.
  • a micro LED or the like may be used as the backlight and the sidelight.
  • a light-blocking layer 4132, a coloring layer 4131, and an insulating layer 4133 are provided between the substrate 4006 and the second electrode layer 4031.
  • the material that can be used for the light-shielding layer include carbon black, titanium black, metal, metal oxide, and composite oxide containing a solid solution of a plurality of metal oxides.
  • the light shielding layer may be a film containing a resin material or a thin film of an inorganic material such as a metal.
  • a stacked film of a film containing a material for the colored layer can be used for the light shielding layer.
  • a stacked structure of a film including a material used for a colored layer that transmits light of a certain color and a film including a material used for a colored layer that transmits light of another color can be used. It is preferable to use a common material for the coloring layer and the light-shielding layer because the apparatus can be shared and the process can be simplified.
  • Examples of materials that can be used for the colored layer include metal materials, resin materials, resin materials containing pigments or dyes, and the like.
  • the method for forming the light shielding layer and the colored layer may be performed in the same manner as the method for forming each layer described above. For example, the ink jet method may be used.
  • the display device illustrated in FIGS. 37A and 37B includes an insulating layer 4111 and an insulating layer 4104.
  • As the insulating layer 4111 and the insulating layer 4104 insulating layers that hardly transmit an impurity element are used. By sandwiching the semiconductor layer of the transistor between the insulating layer 4111 and the insulating layer 4104, entry of impurities from the outside can be prevented.
  • a light-emitting element utilizing electroluminescence can be used as a display element included in the display device.
  • An EL element includes a layer containing a light-emitting compound (also referred to as an “EL layer”) between a pair of electrodes. When a potential difference larger than the threshold voltage of the EL element is generated between the pair of electrodes, holes are injected into the EL layer from the anode side and electrons are injected from the cathode side. The injected electrons and holes are recombined in the EL layer, and the light-emitting substance contained in the EL layer emits light.
  • the EL element is distinguished depending on whether the light emitting material is an organic compound or an inorganic compound, and the former is generally called an organic EL element and the latter is called an inorganic EL element.
  • the organic EL element by applying a voltage, electrons from one electrode and holes from the other electrode are injected into the EL layer. Then, these carriers (electrons and holes) recombine, whereby the light-emitting organic compound forms an excited state, and emits light when the excited state returns to the ground state. Due to such a mechanism, such a light-emitting element is referred to as a current-excitation light-emitting element.
  • the EL layer includes a substance having a high hole-injecting property, a substance having a high hole-transporting property, a hole blocking material, a substance having a high electron-transporting property, a substance having a high electron-injecting property, or a bipolar layer.
  • Material a material having a high electron transporting property and a high hole transporting property may be included.
  • the EL layer can be formed by a method such as a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an ink jet method, or a coating method.
  • Inorganic EL elements are classified into a dispersion-type inorganic EL element and a thin-film inorganic EL element depending on the element structure.
  • the dispersion-type inorganic EL element has a light-emitting layer in which particles of a light-emitting material are dispersed in a binder, and the light emission mechanism is donor-acceptor recombination light emission using a donor level and an acceptor level.
  • the thin-film inorganic EL element has a structure in which a light emitting layer is sandwiched between dielectric layers and further sandwiched between electrodes, and the light emission mechanism is localized light emission utilizing inner-shell electron transition of metal ions. Note that description is made here using an organic EL element as a light-emitting element.
  • At least one of the pair of electrodes may be transparent. Then, a transistor and a light emitting element are formed over the substrate, and a top emission structure that extracts light from a surface opposite to the substrate, a bottom emission structure that extracts light from a surface on the substrate side, There is a light emitting element having a dual emission structure in which light emission is extracted from both sides, and any light emitting element having an emission structure can be applied.
  • FIG. 37B illustrates an example of a light-emitting display device (also referred to as an “EL display device”) using a light-emitting element as a display element.
  • a light-emitting element 4513 which is a display element is electrically connected to a transistor 4010 provided in the display portion 115.
  • the structure of the light-emitting element 4513 is a stacked structure of the first electrode layer 4030, the light-emitting layer 4511, and the second electrode layer 4031; however, the structure is not limited to this structure.
  • the structure of the light-emitting element 4513 can be changed as appropriate depending on the direction in which light is extracted from the light-emitting element 4513, or the like.
  • a partition wall 4510 is formed using an organic insulating material or an inorganic insulating material.
  • a photosensitive resin material it is preferable to use a photosensitive resin material and form an opening on the first electrode layer 4030 so that the side surface of the opening is an inclined surface formed with a continuous curvature.
  • the light emitting layer 4511 may be composed of a single layer or a plurality of layers stacked.
  • the light emission color of the light emitting element 4513 can be changed to white, red, green, blue, cyan, magenta, yellow, or the like depending on the material forming the light emitting layer 4511.
  • a method for realizing color display there are a method in which a light emitting element 4513 having a white emission color and a colored layer are combined, and a method in which a light emitting element 4513 having a different emission color is provided for each pixel.
  • the former method is more productive than the latter method.
  • productivity is inferior to the former method.
  • the latter method it is possible to obtain an emission color with higher color purity than in the former method.
  • the color purity can be further increased by providing the light-emitting element 4513 with a microcavity structure.
  • the light-emitting layer 4511 may include an inorganic compound such as a quantum dot.
  • a quantum dot can be used for a light emitting layer to function as a light emitting material.
  • a protective layer may be formed over the second electrode layer 4031 and the partition wall 4510 so that oxygen, hydrogen, moisture, carbon dioxide, or the like does not enter the light-emitting element 4513.
  • the protective layer silicon nitride, silicon nitride oxide, aluminum oxide, aluminum nitride, aluminum oxynitride, aluminum nitride oxide, DLC (Diamond Like Carbon), or the like can be formed.
  • a filler 4514 is provided and sealed in a space sealed by the first substrate 4001, the second substrate 4006, and the sealant 4005.
  • the protective film As described above, it is preferable to package (enclose) the protective film with a protective film (bonded film, ultraviolet curable resin film, or the like) or a cover material that has high hermeticity and little degassing so as not to be exposed to the outside air.
  • a protective film bonded film, ultraviolet curable resin film, or the like
  • a cover material that has high hermeticity and little degassing so as not to be exposed to the outside air.
  • an ultraviolet curable resin or a thermosetting resin can be used in addition to an inert gas such as nitrogen or argon.
  • PVC polyvinyl chloride
  • acrylic resin polyimide
  • epoxy resin epoxy resin
  • silicone resin silicone resin
  • PVB Polyvinyl butyral
  • EVA ethylene vinyl acetate
  • the filler 4514 may contain a desiccant.
  • the sealant 4005 a glass material such as glass frit, or a resin material such as a two-component mixed resin, a curable resin that cures at normal temperature, a photocurable resin, or a thermosetting resin can be used. Further, the sealing material 4005 may contain a desiccant.
  • an optical film such as a polarizing plate, a circularly polarizing plate (including an elliptical polarizing plate), a retardation plate ( ⁇ / 4 plate, ⁇ / 2 plate), a color filter, or the like is provided on the emission surface of the light emitting element. You may provide suitably.
  • an antireflection film may be provided on the polarizing plate or the circularly polarizing plate. For example, anti-glare treatment can be performed that diffuses reflected light due to surface irregularities and reduces reflection.
  • the light-emitting element has a microcavity structure
  • light with high color purity can be extracted.
  • the reflection can be reduced and the visibility of the display image can be improved.
  • first electrode layer and the second electrode layer (also referred to as a pixel electrode layer, a common electrode layer, a counter electrode layer, and the like) that apply a voltage to the display element, a direction of light to be extracted, a place where the electrode layer is provided, and What is necessary is just to select translucency and reflectivity by the pattern structure of an electrode layer.
  • the first electrode layer 4030 and the second electrode layer 4031 include indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide, and indium containing titanium oxide.
  • a light-transmitting conductive material such as tin oxide, indium zinc oxide, or indium tin oxide to which silicon oxide is added can be used.
  • the first electrode layer 4030 and the second electrode layer 4031 are tungsten (W), molybdenum (Mo), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), and tantalum (Ta). , Chromium (Cr), cobalt (Co), nickel (Ni), titanium (Ti), platinum (Pt), aluminum (Al), copper (Cu), silver (Ag) and other metals, or alloys thereof, or One or more metal nitrides can be used.
  • the first electrode layer 4030 and the second electrode layer 4031 can be formed using a conductive composition including a conductive high molecule (also referred to as a conductive polymer).
  • a conductive high molecule also referred to as a conductive polymer.
  • a so-called ⁇ -electron conjugated conductive polymer can be used.
  • polyaniline or a derivative thereof, polypyrrole or a derivative thereof, polythiophene or a derivative thereof, a copolymer of two or more of aniline, pyrrole, and thiophene or a derivative thereof can be given.
  • the protection circuit is preferably configured using a non-linear element.
  • an electronic device will be described with reference to FIGS.
  • good display quality and high visibility can be realized even with a display device that is large and / or high definition. Therefore, it can be suitably used for a television device, digital signage, a portable electronic device, a wearable electronic device (wearable device), an electronic book terminal, and the like. It can also be used for VR (Virtual Reality) devices and AR (Augmented Reality) devices.
  • VR Virtual Reality
  • AR Augmented Reality
  • An electronic device using the display system of one embodiment of the present invention may include a secondary battery, and it is preferable that the secondary battery can be charged using non-contact power transmission.
  • Secondary batteries include, for example, lithium ion secondary batteries such as lithium polymer batteries (lithium ion polymer batteries) using gel electrolyte, nickel metal hydride batteries, nickel-cadmium batteries, organic radical batteries, lead storage batteries, air secondary batteries, nickel A zinc battery, a silver zinc battery, etc. are mentioned.
  • lithium ion secondary batteries such as lithium polymer batteries (lithium ion polymer batteries) using gel electrolyte, nickel metal hydride batteries, nickel-cadmium batteries, organic radical batteries, lead storage batteries, air secondary batteries, nickel A zinc battery, a silver zinc battery, etc. are mentioned.
  • An electronic device using the display system of one embodiment of the present invention may include an antenna. By receiving a signal with an antenna, video, information, and the like can be displayed on the display unit.
  • the antenna may be used for non-contact power transmission.
  • An electronic device using the display system of one embodiment of the present invention includes a sensor (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness , Electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, smell, or infrared measurement function).
  • a sensor force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness , Electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, smell, or infrared measurement function).
  • An electronic device using the display system of one embodiment of the present invention can have a variety of functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, a function for executing various software (programs), and wireless communication A function, a function of reading a program or data recorded on a recording medium, and the like can be provided.
  • a function that displays image information mainly on one display unit and mainly displays character information on another display unit, or parallax is considered in the plurality of display units.
  • a function of displaying a stereoscopic image can be provided.
  • a function of displaying the photographed image on the display portion can be provided.
  • the functions of the electronic device of one embodiment of the present invention are not limited thereto, and the electronic device can have various functions.
  • FIG. 38A illustrates a television device 1810 using the display system of one embodiment of the present invention.
  • a television device 1810 includes a display portion 1811, a housing 1812, a speaker 1813, and the like. Furthermore, an LED lamp, operation keys (including a power switch or an operation switch), a connection terminal, various sensors, a microphone, and the like can be provided.
  • the television device 1810 can be operated by a remote controller 1814.
  • broadcast radio waves examples include ground waves or radio waves transmitted from satellites.
  • broadcast radio waves there are analog broadcasts, digital broadcasts, etc., and video and audio, or audio-only broadcasts.
  • broadcast radio waves transmitted in a specific frequency band in the UHF band (about 300 MHz to 3 GHz) or the VHF band (30 MHz to 300 MHz) can be received.
  • the transfer rate can be increased and more information can be obtained. Accordingly, an image having a resolution exceeding full high-definition can be displayed on the display unit 1831. For example, an image having a resolution of 4K, 8K, 16K, or higher can be displayed.
  • FIG. 38B illustrates a digital signage 1820 using the display system of one embodiment of the present invention.
  • the digital signage 1820 is attached to a cylindrical column 1822.
  • the digital signage 1820 has a display portion 1821.
  • the display portion 1821 As the display portion 1821 is wider, the amount of information that can be provided at a time can be increased. Moreover, the wider the display portion 1821 is, the easier it is to be noticed by humans. For example, the advertising effect of advertisement can be enhanced.
  • a touch panel for the display portion 1821 because not only an image or a moving image can be displayed on the display portion 1821 but also a user can operate intuitively.
  • usability can be improved by an intuitive operation.
  • FIG. 38C illustrates a laptop personal computer 1830 using the display system of one embodiment of the present invention.
  • the personal computer 1830 includes a display portion 1831, a housing 1832, a touch pad 1833, a connection port 1834, and the like.
  • the touch pad 1833 functions as an input unit such as a pointing device or a pen tablet, and can be operated with a finger, a stylus, or the like.
  • a display element is incorporated in the touch pad 1833.
  • the touch pad 1833 can be used as a keyboard.
  • a vibration module may be incorporated in the touch pad 1833 in order to realize tactile sensation by vibration.
  • FIG. 38D illustrates an example of a portable information terminal using the display system of one embodiment of the present invention.
  • a portable information terminal 1840 illustrated in FIG. 38D includes a housing 1841, a display portion 1842, operation buttons 1843, an external connection port 1844, a speaker 1845, a microphone 1846, a camera 1847, and the like.
  • the portable information terminal 1840 includes a touch sensor in the display unit 1842. Any operation such as making a call or inputting characters can be performed by touching the display portion 1842 with a finger, a stylus, or the like.
  • the operation button 1843 by operating the operation button 1843, the power ON / OFF operation and the type of image displayed on the display unit 1842 can be switched.
  • the mail creation screen can be switched to the main menu screen.
  • the orientation (portrait or landscape) of the portable information terminal 1840 is determined, and the screen display orientation of the display unit 1842 is determined. It can be switched automatically.
  • the screen display direction can also be switched by touching the display portion 1842, operating the operation buttons 1843, or inputting voice using the microphone 1846.
  • the portable information terminal 1840 has one or more functions selected from, for example, a telephone, a notebook, an information browsing device, or the like. Specifically, it can be used as a smartphone.
  • the portable information terminal 1840 can execute various applications such as mobile phone, electronic mail, text browsing and creation, music playback, video playback, Internet communication, and games.
  • FIGS. 38E and 38F illustrate an example of a portable information terminal 1850 using the display system of one embodiment of the present invention.
  • the portable information terminal 1850 includes a housing 1851, a housing 1852, a display portion 1853, a display portion 1854, a hinge portion 1855, and the like.
  • the housing 1851 and the housing 1852 are connected by a hinge portion 1855.
  • the portable information terminal 1850 can open the housing 1851 and the housing 1852 as illustrated in FIG. 38F from the folded state as illustrated in FIG.
  • document information can be displayed on the display portion 1853 and the display portion 1854 and can also be used as an electronic book terminal.
  • a still image or a moving image can be displayed on the display portion 1853 and the display portion 1854.
  • the portable information terminal 1850 can be folded when being carried, it is excellent in versatility.
  • housing 1851 and the housing 1852 may include a power button, an operation button, an external connection port, a speaker, a microphone, and the like.
  • FIG. 39A illustrates an appearance of a camera 1860 using the display system of one embodiment of the present invention with the viewfinder 1861 attached.
  • the camera 1860 includes a housing 1869, a display portion 1862, operation buttons 1863, a shutter button 1864, and the like. In addition, a detachable lens 1865 is attached to the camera 1860.
  • the lens 1865 can be removed from the housing 1869 and replaced as the camera 1860 here, the lens 1865 and the housing may be integrated.
  • the camera 1860 can capture an image by pressing a shutter button 1864. Further, the display portion 1862 has a function as a touch panel, and can be imaged by touching the display portion 1862.
  • a housing 1869 of the camera 1860 includes a mount having electrodes, and can connect a stroboscopic device or the like in addition to the finder 1861.
  • the viewfinder 1861 includes a housing 1866, a display portion 1867, a button 1868, and the like.
  • the display system of one embodiment of the present invention may be used for the viewfinder 1861.
  • the housing 1866 has a mount that engages with the mount of the camera 1860, and the finder 1861 can be attached to the camera 1860. Further, the mount includes an electrode, and an image received from the camera 1860 through the electrode can be displayed on the display portion 1867.
  • the button 1868 has a function as a power button.
  • a button 1868 can switch on / off the display of the display portion 1867.
  • the display device of one embodiment of the present invention can be applied to the display portion 1862 of the camera 1860 and the display portion 1867 of the viewfinder 1861.
  • the camera 1860 and the viewfinder 1861 are separate electronic devices and can be attached and detached.
  • the housing 1869 of the camera 1860 includes the display device of one embodiment of the present invention.
  • a finder may be built in.
  • FIG. 39B illustrates the appearance of a head mounted display 1870 using the display system of one embodiment of the present invention.
  • the head mounted display 1870 includes a mounting portion 1871, a lens 1872, a main body 1873, a display portion 1874, a cable 1875, and the like.
  • a battery 1876 is built in the mounting portion 1871.
  • the cable 1875 supplies power from the battery 1876 to the main body 1873.
  • the main body 1873 includes a wireless receiver and the like, and can display video information such as received image data on the display portion 1874.
  • the mounting portion 1871 may be provided with a plurality of electrodes at a position where the user touches the user.
  • the main body 1873 may have a function of recognizing the user's line of sight by detecting a current flowing through the electrode in accordance with the movement of the user's eyeball. Moreover, you may have a function which monitors a user's pulse by detecting the electric current which flows into the said electrode.
  • the mounting portion 1871 may have various sensors such as a temperature sensor, a pressure sensor, and an acceleration sensor, and may have a function of displaying the user's biological information on the display portion 1874. Further, the movement of the user's head or the like may be detected, and the video displayed on the display unit 1874 may be changed in accordance with the movement.
  • FIGS. 39C and 39D illustrate the appearance of a head mounted display 1880 using the display system of one embodiment of the present invention.
  • the head mounted display 1880 includes a housing 1881, two display portions 1882, operation buttons 1883, and a band-shaped fixture 1884.
  • the head mounted display 1880 includes two display units in addition to the functions of the head mounted display 1870.
  • the user can see one display portion for each eye. Thereby, even when performing three-dimensional display using parallax or the like, a high-resolution video can be displayed.
  • the display unit 1882 is curved in an arc shape with the user's eyes roughly at the center. Thereby, since the distance from the user's eyes to the display surface of the display unit is constant, the user can see a more natural image. Even if the luminance and chromaticity of the light from the display unit changes depending on the viewing angle, the user's eyes are positioned in the normal direction of the display surface of the display unit, The effect can be ignored. Therefore, a more realistic image can be displayed.
  • the operation button 1883 has a function as a power button or the like. In addition to the operation buttons 1883, buttons may be provided.
  • a lens 1885 may be provided between the display portion 1882 and the position of the user's eyes.
  • the lens 1885 allows the user to enlarge the display portion 1882, so that a sense of reality is further enhanced.
  • a dial 1886 for changing the position of the lens for diopter adjustment may be provided.
  • the display device of one embodiment of the present invention can be applied to the display portion 1882. Since the display device of one embodiment of the present invention has extremely high definition, even if the display device is enlarged using the lens 1885 as illustrated in FIG. 39E, the pixel is not visually recognized by the user and more realistic. High video can be displayed.
  • FIG. 39F illustrates an example of a television device using the display system of one embodiment of the present invention.
  • a display portion 1892 is incorporated in a housing 1891.
  • a structure in which the housing 1891 is supported by a stand 1893 is shown.
  • Operation of the television device 1890 illustrated in FIG. 39F can be performed with an operation switch included in the housing 1891 or a separate remote controller 1894.
  • the display portion 1892 may be provided with a touch sensor, and may be operated by touching the display portion 1892 with a finger or the like.
  • the remote controller 1894 may include a display unit that displays information output from the remote controller 1894. Channels and volume can be operated with an operation key or a touch panel included in the remote controller 1894, and an image displayed on the display portion 1892 can be operated.
  • the television set 1890 is provided with a receiver, a modem, and the like.
  • a general television broadcast can be received by the receiver.
  • information communication is performed in one direction (from the sender to the receiver) or in two directions (between the sender and the receiver or between the receivers). It is also possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

The present invention provides a display device capable of high-speed operation. The display device comprises: a plurality of pixels arranged in m rows and n columns; scanning lines arranged in m rows; video signal lines arranged in n columns; and m+1 common lines. The m+1 common lines extend substantially parallel to the scanning lines arranged in the m rows. Pixels in the xth row (x is an integer greater than or equal to 1 and less than or equal to m−1) and in the odd numbered columns are electrically connected to the scanning line in the xth row, the video signal lines in the odd numbered columns, and the xth common line, and pixels 111 in the xth row and in the even numbered columns are electrically connected to the scanning line in the xth row, the video signal lines in the even numbered columns, and the (x+1)th common line. Pixels in the mth row and in the odd numbered columns are electrically connected to the scanning line in the mth row, the video signal lines in the odd numbered columns, and the mth common line, and pixels 111 in the mth row and in the even numbered columns are electrically connected to the scanning line in the mth row, the video signal lines in the even numbered columns, and the (m+1)th common line.

Description

表示装置および表示装置の駆動方法Display device and driving method of display device
本明細書等で開示する発明の一態様は、物、方法、または、製造方法に関する。または、本明細書等で開示する発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。特に、半導体装置、表示装置または表示装置の駆動方法に関する。 One embodiment of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method. Alternatively, one embodiment of the invention disclosed in this specification and the like relates to a process, a machine, a manufacture, or a composition (composition of matter). In particular, the present invention relates to a semiconductor device, a display device, or a driving method of the display device.
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置および電子機器などは、半導体装置と言える場合がある。もしくは、これらは半導体装置を有すると言える場合がある。 Note that in this specification and the like, a semiconductor device refers to any device that can function by utilizing semiconductor characteristics. A display device (a liquid crystal display device, a light-emitting display device, or the like), a projection device, a lighting device, an electro-optical device, a power storage device, a memory device, a semiconductor circuit, an imaging device, an electronic device, or the like may be referred to as a semiconductor device. Alternatively, it may be said that these include semiconductor devices.
近年、高解像度の表示装置が求められている。例えば家庭用のテレビジョン装置(テレビ、またはテレビジョン受信機ともいう)では、解像度がフルハイビジョン(画素数1920×1080)であるものが主流となっているが、4K(画素数3840×2160)や、8K(画素数7680×4320)のように、高解像度な表示装置の開発が進められている。また、据え置き型の表示装置においては、画面サイズが対角30インチ以上と大型化する傾向にあり、対角60インチ以上さらには対角120インチ以上の画面サイズも視野に入れた開発が行われている。また、表示品位の向上のため、フレーム周波数の向上が求められている。 In recent years, high-resolution display devices have been demanded. For example, in a television device for home use (also referred to as a television or a television receiver), the resolution is full high-definition (pixel number 1920 × 1080), but 4K (pixel number 3840 × 2160). In addition, development of high-resolution display devices such as 8K (the number of pixels: 7680 × 4320) is in progress. In addition, stationary display devices tend to have a screen size of 30 inches or more diagonally, and developments are being made with a view to screen sizes of 60 inches diagonal or more and 120 inches diagonal or more. ing. Further, in order to improve display quality, an improvement in frame frequency is required.
このような要求を実現する表示装置として、アクティブマトリクス型の表示装置が知られている。例えば、表示素子として液晶素子を用いたアクティブマトリクス型の液晶表示装置、表示素子として有機EL(Electro Luminescence)素子などの発光素子を用いたアクティブマトリクス型の発光表示装置などが知られている。 As a display device that realizes such a requirement, an active matrix display device is known. For example, an active matrix type liquid crystal display device using a liquid crystal element as a display element, an active matrix type light emitting display device using a light emitting element such as an organic EL (Electro Luminescence) element as a display element, and the like are known.
アクティブマトリクス型の液晶表示装置では、消費電力の少ない駆動方法としてコモン反転駆動法が知られている。例えば、特許文献1では、コモン反転駆動法とドット反転駆動法を組み合わせた液晶表示装置が開示されている。 In an active matrix liquid crystal display device, a common inversion driving method is known as a driving method with low power consumption. For example, Patent Document 1 discloses a liquid crystal display device that combines a common inversion driving method and a dot inversion driving method.
特開平11−119193号公報JP 11-119193 A
しかしながら、特許文献1では、1フレーム期間(特許文献1中の「1フィールド期間」に相当する。)毎に表示部全体のコモン電圧の極性を反転させるため、コモン電圧の書き込み不足(反転不足)が生じ易い。特に画面サイズが大きい表示装置の場合、表示品位が低下しやすい。加えて、フレーム周波数が高くなるほどコモン電圧の書き込み不足が顕著になるため、フレーム周波数を高くできないなどの問題がある。 However, in Patent Document 1, since the polarity of the common voltage of the entire display unit is inverted every frame period (corresponding to “one field period” in Patent Document 1), insufficient writing of common voltage (insufficient inversion). Is likely to occur. In particular, in the case of a display device having a large screen size, the display quality tends to deteriorate. In addition, there is a problem that the frame frequency cannot be increased because the writing of the common voltage becomes insufficient as the frame frequency increases.
本発明の一態様は、表示品位が良好な表示装置またはその駆動方法などを提供することを課題の一つとする。または、消費電力の少ない表示装置またはその駆動方法などを提供することを課題の一とする。または、高速動作可能な表示装置またはその駆動方法などを提供することを課題の一とする。または、生産性の良好な表示装置またはその駆動方法などを提供することを課題の一とする。または、信頼性が良好な表示装置またはその駆動方法などを提供することを課題の一つとする。または、新規な表示装置などを提供することを課題の一つとする。または、表示装置の新規な駆動方法などを提供することを課題の一つとする。 An object of one embodiment of the present invention is to provide a display device with high display quality, a driving method thereof, or the like. Another object is to provide a display device with low power consumption, a driving method thereof, or the like. Another object is to provide a display device that can operate at high speed, a driving method thereof, or the like. Another object is to provide a display device with high productivity or a driving method thereof. Another object is to provide a display device with high reliability, a driving method thereof, or the like. Another object is to provide a novel display device or the like. Another object is to provide a novel driving method of a display device or the like.
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。 Note that the description of these problems does not disturb the existence of other problems. Note that one embodiment of the present invention does not have to solve all of these problems. Issues other than these will be apparent from the description of the specification, drawings, claims, etc., and other issues can be extracted from the descriptions of the specification, drawings, claims, etc. It is.
(1)本発明の一態様は、m行n列(mおよびnは、それぞれ2以上の整数)に配置された複数の画素と、m行の走査線と、n列のビデオ信号線と、m+1本の共通線と、を含み、m+1本の共通線は、m行の走査線と略平行な方向に延在し、複数の画素のそれぞれは、トランジスタと、表示素子と、を含み、x行j列目(xは1以上m−1以下の整数、jは1以上n以下の整数)の画素は、x行目の走査線、j列目のビデオ信号線、およびx本目の共通線と電気的に接続され、x行j+1列目の画素は、x行目の走査線、j+1列目のビデオ信号線、およびx+1本目の共通線と電気的に接続され、m行j列目の画素は、m行目の走査線、j列目のビデオ信号線、およびm本目の共通線と電気的に接続され、m行j+1列目の画素は、m行目の走査線、j+1列目のビデオ信号線、およびm+1本目の共通線と電気的に接続されることを特徴とする表示装置である。 (1) According to one embodiment of the present invention, a plurality of pixels arranged in m rows and n columns (m and n are each an integer of 2 or more), m rows of scanning lines, n columns of video signal lines, m + 1 common lines, the m + 1 common lines extend in a direction substantially parallel to the m rows of scanning lines, and each of the plurality of pixels includes a transistor and a display element, and x The pixel in the row j column (x is an integer from 1 to m-1 and j is an integer from 1 to n) is the x-th scanning line, the j-th video signal line, and the x-th common line. The pixel in the xth row, j + 1th column is electrically connected to the xth row scanning line, the j + 1th column video signal line, and the x + 1th common line, and the mth row, jth column. The pixels are electrically connected to the m-th scanning line, the j-th video signal line, and the m-th common line. Scan lines, a display device, characterized in that it is connected j + 1 column of the video signal lines, and m + and electrically one th common line.
(2)本発明の別の一態様は、m行n列に配置された複数の画素と、m行の走査線と、n列のビデオ信号線と、m+1本の共通線と、を含み、m+1本の共通線は、m行の走査線と略平行な方向に延在し、複数の画素のそれぞれは、トランジスタと、表示素子と、を含み、x行j列目(xは1以上m−1以下の整数、jは1以上n以下の整数)の画素は、x行目の走査線、j列目のビデオ信号線、およびx+1本目の共通線と電気的に接続され、x行j+1列目の画素は、x行目の走査線、j+1列目のビデオ信号線、およびx本目の共通線と電気的に接続され、m行j列目の画素は、m行目の走査線、j列目のビデオ信号線、およびm+1本目の共通線と電気的に接続され、m行j+1列目の画素は、m行目の走査線、j+1列目のビデオ信号線、およびm本目の共通線と電気的に接続されることを特徴とする表示装置である。 (2) Another aspect of the present invention includes a plurality of pixels arranged in m rows and n columns, m rows of scanning lines, n columns of video signal lines, and m + 1 common lines, The m + 1 common lines extend in a direction substantially parallel to the m rows of scanning lines, and each of the plurality of pixels includes a transistor and a display element. The x row and the j column (x is 1 or more and m) -1 or less integer, j is an integer between 1 and n inclusive) is electrically connected to the x-th scanning line, the j-th video signal line, and the (x + 1) -th common line, and x-row j + 1 The pixel in the column is electrically connected to the scanning line in the x-th row, the video signal line in the j + 1-th column, and the x-th common line, and the pixel in the m-th row and j-th column is the scanning line in the m-th row, The video signal line in the jth column and the m + 1th common line are electrically connected, and the pixel in the mth row, j + 1th column is the scanning line in the mth row, the video in the j + 1th column. Line, and a display device, characterized in that m is the first common line electrically connected.
本発明の別の一態様は、上記(1)または上記(2)に記載の表示装置において、p行目(pは1以上m−2以下の整数)の画素が選択されている期間に、p+2本目の共通線に供給される電圧の極性を反転させることを特徴とする表示装置の駆動方法である。 Another embodiment of the present invention is the display device according to (1) or (2) described above, in a period in which a pixel in the p-th row (p is an integer of 1 to m-2) is selected. The display device driving method is characterized in that the polarity of the voltage supplied to the p + 2 common line is inverted.
本発明の別の一態様は、上記(1)または上記(2)に記載の表示装置において、m−1行目の画素が選択されている期間に、1本目の共通線に供給される電圧の極性を反転させることを特徴とする表示装置の駆動方法である。 Another embodiment of the present invention is the display device described in (1) or (2) above, in which the voltage supplied to the first common line in the period in which the pixels in the (m−1) th row are selected. The display device driving method is characterized in that the polarity of the display is reversed.
本発明の別の一態様は、上記(1)または上記(2)に記載の表示装置において、m行目の画素が選択されている期間に、1本目の共通線に供給される電圧の極性を反転させることを特徴とする表示装置の駆動方法である。 Another embodiment of the present invention is the display device described in the above (1) or (2), wherein the polarity of the voltage supplied to the first common line during the period when the m-th row pixel is selected. Is a method for driving a display device.
本発明の別の一態様は、上記(1)または上記(2)に記載の表示装置において、m行目の画素が選択されている期間に、2本目の共通線に供給される電圧の極性を反転させることを特徴とする表示装置の駆動方法である。 Another embodiment of the present invention is the display device described in the above (1) or (2), wherein the polarity of the voltage supplied to the second common line during the period when the m-th row pixel is selected. Is a method for driving a display device.
(3)本発明の別の一態様は、m行n列(mおよびnは、それぞれ4以上の整数)に配置された複数の画素と、m行の走査線と、n本の第1ビデオ信号線と、n本の第2ビデオ信号線と、m+1本の共通線と、を含み、m+1本の共通線は、m行の走査線と略平行な方向に延在し、複数の画素のそれぞれは、トランジスタと、表示素子と、を含み、x行j列目(xは1以上m−2以下の整数、jは1以上n以下の整数)の画素は、x行目の走査線、j本目の第1ビデオ信号線、およびx本目の共通線と電気的に接続され、x+1行j列目の画素は、x+1行目の走査線、j本目の第2ビデオ信号線、およびx+1本目の共通線と電気的に接続され、x行j+1列目の画素は、x行目の走査線、j+1本目の第1ビデオ信号線、およびx+1本目の共通線と電気的に接続され、x+1行j+1列目の画素は、x+1行目の走査線、j+1本目の第2ビデオ信号線、およびx+2本目の共通線と電気的に接続され、m−1行j列目の画素は、m−1行目の走査線、j本目の第1ビデオ信号線、およびm−1本目の共通線と電気的に接続され、m行j列目の画素は、m行目の走査線、j本目の第2ビデオ信号線、およびm本目の共通線と電気的に接続され、m−1行j+1列目の画素は、m−1行目の走査線、j+1本目の第1ビデオ信号線、およびm本目の共通線と電気的に接続され、m行j+1列目の画素は、m行目の走査線、j+1本目の第2ビデオ信号線、およびm+1本目の共通線と電気的に接続されることを特徴とする表示装置である。 (3) Another aspect of the present invention is that a plurality of pixels arranged in m rows and n columns (m and n are integers of 4 or more, respectively), m rows of scanning lines, and n first videos A signal line, n second video signal lines, and m + 1 common lines, the m + 1 common lines extending in a direction substantially parallel to the m rows of scanning lines, Each pixel includes a transistor and a display element, and the pixel in the xth row and jth column (x is an integer from 1 to m-2 and j is an integer from 1 to n) is the scanning line in the xth row, The pixels of the (x + 1) th row and the jth column are electrically connected to the jth first video signal line and the xth common line, and the x + 1th row scanning line, the jth second video signal line, and the x + 1th row are connected. The pixel in the xth row, j + 1th column is electrically connected to the common line, the xth row scanning line, the j + 1th first video signal line, and the x + 1th row. The pixel in the (x + 1) th row and the (j + 1) th column is electrically connected to the (x + 1) th row scanning line, the (j + 1) th second video signal line, and the (x + 2) th common line, and m− The pixel in the 1st row and the jth column is electrically connected to the m−1th row scanning line, the jth first video signal line, and the m−1th common line. , The m-th scanning line, the j-th second video signal line, and the m-th common line are electrically connected to the m−1-th row j + 1-column pixel, The pixel in the m-th row, j + 1-th column is electrically connected to the j + 1-th first video signal line and the m-th common line, and the m-th row, j + 1-th column pixel is the m + 1-th scanning line, the j + 1-th second video signal line, The display device is electrically connected to the common line.
(4)本発明の別の一態様は、m行n列(mおよびnは、それぞれ4以上の整数)に配置された複数の画素と、m行の走査線と、n本の第1ビデオ信号線と、n本の第2ビデオ信号線と、m+1本の共通線と、を含み、m+1本の共通線は、m行の走査線と略平行な方向に延在し、複数の画素のそれぞれは、トランジスタと、表示素子と、を含み、x行j列目(xは1以上m−2以下の整数、jは1以上n以下の整数)の画素は、x行目の走査線、j本目の第1ビデオ信号線、およびx+1本目の共通線と電気的に接続され、x+1行j列目の画素は、x+1行目の走査線、j本目の第2ビデオ信号線、およびx+2本目の共通線と電気的に接続され、x行j+1列目の画素は、x行目の走査線、j+1本目の第1ビデオ信号線、およびx本目の共通線と電気的に接続され、x+1行j+1列目の画素は、x+1行目の走査線、j+1本目の第2ビデオ信号線、およびx+1本目の共通線と電気的に接続され、m−1行j列目の画素は、m−1行目の走査線、j本目の第1ビデオ信号線、およびm本目の共通線と電気的に接続され、m行j列目の画素は、m行目の走査線、j本目の第2ビデオ信号線、およびm+1本目の共通線と電気的に接続され、m−1行j+1列目の画素は、m−1行目の走査線、j+1本目の第1ビデオ信号線、およびm−1本目の共通線と電気的に接続され、m行j+1列目の画素は、m行目の走査線、j+1本目の第2ビデオ信号線、およびm本目の共通線と電気的に接続されることを特徴とする表示装置である。 (4) According to another aspect of the present invention, a plurality of pixels arranged in m rows and n columns (m and n are integers of 4 or more, respectively), m rows of scanning lines, and n first videos A signal line, n second video signal lines, and m + 1 common lines, the m + 1 common lines extending in a direction substantially parallel to the m rows of scanning lines, Each pixel includes a transistor and a display element, and the pixel in the xth row and jth column (x is an integer from 1 to m-2 and j is an integer from 1 to n) is the scanning line in the xth row, The pixels of the (x + 1) th row and the jth column are electrically connected to the jth first video signal line and the (x + 1) th common line, and the x + 1th row scanning line, the jth second video signal line, and the (x + 2) th row are connected. The xth row, j + 1th column pixel is electrically connected to the xth scanning line, j + 1th first video signal line, and xth row. The pixel in the (x + 1) th row and the (j + 1) th column is electrically connected to the (x + 1) th row scanning line, the (j + 1) th second video signal line, and the (x + 1) th common line. The pixel in the 1st row and the jth column is electrically connected to the scanning line in the (m-1) th row, the jth first video signal line, and the mth common line, and the pixel in the mth and jth column is m The pixels in the (m−1) th row, (j + 1) th column are electrically connected to the scanning line in the row, the jth second video signal line, and the m + 1th common line. The first video signal line and the (m-1) th common line are electrically connected to each other, and the pixel in the mth row, j + 1th column is the mth row scanning line, the j + 1th second video signal line, and the mth row. The display device is electrically connected to the common line.
本発明の別の一態様は、上記(3)または上記(4)に記載の表示装置において、p行目(pは1以上m−3以下の整数)の画素が選択されている期間に、p+2本目の共通線に供給される電圧の極性と、p+3本目の共通線に供給される電圧の極性を、それぞれ反転させることを特徴とする表示装置の駆動方法である。 Another embodiment of the present invention is the display device according to (3) or (4) described above, in a period in which a pixel in the p-th row (p is an integer of 1 to m-3) is selected. The display device driving method is characterized by inverting the polarity of the voltage supplied to the p + 2 common line and the polarity of the voltage supplied to the p + 3 common line.
本発明の別の一態様は、上記(3)または上記(4)に記載の表示装置において、m−2行目の画素が選択されている期間に、1本目の共通線に供給される電圧の極性を反転させることを特徴とする表示装置の駆動方法である。 Another embodiment of the present invention is the display device described in (3) or (4) above, in which the voltage supplied to the first common line during the period in which the pixel on the (m-2) th row is selected. The display device driving method is characterized in that the polarity of the display is reversed.
本発明の別の一態様は、上記(3)または上記(4)に記載の表示装置において、m行目の画素が選択されている期間に、1本目の共通線に供給される電圧の極性を反転させることを特徴とする表示装置の駆動方法である。 Another embodiment of the present invention is the display device described in the above (3) or (4), wherein the polarity of the voltage supplied to the first common line during the period when the m-th row pixel is selected. Is a method for driving a display device.
本発明の別の一態様は、上記(3)または上記(4)に記載の表示装置において、m行目の画素が選択されている期間に、2本目の共通線に供給される電圧の極性と、3本目の共通線に供給される電圧の極性と、をそれぞれ反転させることを特徴とする表示装置の駆動方法である。 Another embodiment of the present invention is the display device described in the above (3) or (4), wherein the polarity of the voltage supplied to the second common line in the period when the m-th row pixel is selected. And a polarity of the voltage supplied to the third common line, respectively.
上記表示素子としては、液晶素子などを用いることができる。上記トランジスタの半導体層としては、シリコンまたは金属酸化物などを用いることができる。 As the display element, a liquid crystal element or the like can be used. As the semiconductor layer of the transistor, silicon, metal oxide, or the like can be used.
本発明の一態様によれば、表示品位が良好な表示装置またはその駆動方法などを提供できる。または、消費電力の少ない表示装置またはその駆動方法などを提供できる。または、高速動作可能な表示装置またはその駆動方法などを提供できる。または、生産性の良好な表示装置またはその駆動方法などを提供できる。または、信頼性が良好な表示装置またはその駆動方法などを提供できる。または、新規な表示装置などを提供できる。または、表示装置の新規な駆動方法などを提供できる。 According to one embodiment of the present invention, a display device with high display quality, a driving method thereof, or the like can be provided. Alternatively, a display device with low power consumption or a driving method thereof can be provided. Alternatively, a display device that can operate at high speed or a driving method thereof can be provided. Alternatively, a display device with high productivity or a driving method thereof can be provided. Alternatively, a display device with favorable reliability or a driving method thereof can be provided. Alternatively, a novel display device or the like can be provided. Alternatively, a novel driving method of the display device can be provided.
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。 Note that the description of these effects does not disturb the existence of other effects. Note that one embodiment of the present invention need not have all of these effects. It should be noted that the effects other than these are naturally obvious from the description of the specification, drawings, claims, etc., and it is possible to extract the other effects from the descriptions of the specification, drawings, claims, etc. It is.
表示装置を説明する図。FIG. 10 illustrates a display device. 画素の回路構成例および副画素の組み合わせ例を説明する図。8A and 8B illustrate a circuit configuration example of pixels and a combination example of sub-pixels. 表示装置を説明する図。FIG. 10 illustrates a display device. 表示装置を説明する図。FIG. 10 illustrates a display device. 表示装置を説明する図。FIG. 10 illustrates a display device. 表示装置を説明する図。FIG. 10 illustrates a display device. コモン反転駆動法を説明する図。The figure explaining the common inversion drive method. 表示装置の動作を説明するタイミングチャート。6 is a timing chart illustrating operation of a display device. 表示装置の動作を説明する図。FIG. 14 illustrates operation of a display device. 表示装置の動作を説明する図。FIG. 14 illustrates operation of a display device. 表示装置の動作を説明する図。FIG. 14 illustrates operation of a display device. 表示装置の動作を説明する図。FIG. 14 illustrates operation of a display device. 表示装置の動作を説明する図。FIG. 14 illustrates operation of a display device. 表示装置を説明する図。FIG. 10 illustrates a display device. 表示装置を説明する図。FIG. 10 illustrates a display device. 表示装置の動作を説明するタイミングチャート。6 is a timing chart illustrating operation of a display device. 表示装置の動作を説明するタイミングチャート。6 is a timing chart illustrating operation of a display device. 表示装置の動作を説明する図。FIG. 14 illustrates operation of a display device. 表示装置の動作を説明する図。FIG. 14 illustrates operation of a display device. 表示装置の動作を説明する図。FIG. 14 illustrates operation of a display device. 表示装置の動作を説明する図。FIG. 14 illustrates operation of a display device. 表示装置の動作を説明する図。FIG. 14 illustrates operation of a display device. 表示装置の動作を説明する図。FIG. 14 illustrates operation of a display device. 表示装置の動作を説明する図。FIG. 14 illustrates operation of a display device. 表示装置の動作を説明する図。FIG. 14 illustrates operation of a display device. 表示装置の動作を説明する図。FIG. 14 illustrates operation of a display device. 表示装置の動作を説明する図。FIG. 14 illustrates operation of a display device. トランジスタの構成例を説明する図。6A and 6B illustrate a structure example of a transistor. トランジスタの構成例を説明する図。6A and 6B illustrate a structure example of a transistor. トランジスタの構成例を説明する図。6A and 6B illustrate a structure example of a transistor. トランジスタの構成例を説明する図。6A and 6B illustrate a structure example of a transistor. トランジスタの構成例を説明する図。6A and 6B illustrate a structure example of a transistor. トランジスタの構成例を説明する図。6A and 6B illustrate a structure example of a transistor. トランジスタの構成例を説明する図。6A and 6B illustrate a structure example of a transistor. トランジスタの構成例を説明する図。6A and 6B illustrate a structure example of a transistor. 表示装置を説明する図。FIG. 10 illustrates a display device. 表示装置を説明する図。FIG. 10 illustrates a display device. 電子機器を説明する図。10A and 10B each illustrate an electronic device. 電子機器を説明する図。10A and 10B each illustrate an electronic device.
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。 Embodiments will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it is easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below. Note that in the structures of the invention described below, the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and description thereof is not repeated.
また、図面などにおいて示す各構成の、位置、大きさ、範囲などは、発明の理解を容易とするため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面などに開示された位置、大きさ、範囲などに限定されない。例えば、実際の製造工程において、エッチングなどの処理により層やレジストマスクなどが意図せずに目減りすることがあるが、発明の理解を容易とするため、省略して示すことがある。 In addition, the position, size, range, and the like of each component illustrated in the drawings and the like may not represent the actual position, size, range, or the like in order to facilitate understanding of the invention. Therefore, the disclosed invention is not necessarily limited to the position, size, range, or the like disclosed in the drawings and the like. For example, in an actual manufacturing process, a layer or a resist mask may be unintentionally lost due to a process such as etching, but may be omitted to facilitate understanding of the invention.
また、特に上面図(「平面図」ともいう。)や斜視図などにおいて、発明の理解を容易とするため、一部の構成要素の記載を省略する場合がある。また、一部の隠れ線などの記載を省略する場合がある。 In particular, in a top view (also referred to as a “plan view”), a perspective view, and the like, some components may not be described in order to facilitate understanding of the invention. Moreover, description of some hidden lines may be omitted.
本明細書等において、「第1」、「第2」などの序数詞は、構成要素の混同を避けるために付すものであり、工程順または積層順など、なんらかの順番や順位を示すものではない。また、本明細書等において序数詞が付されていない用語であっても、構成要素の混同を避けるため、特許請求の範囲において序数詞が付される場合がある。また、本明細書等において付された序数詞と、特許請求の範囲において付された序数詞が異なる場合がある。また、本明細書等において序数詞が付されている用語であっても、特許請求の範囲などにおいて序数詞を省略する場合がある。 In the present specification and the like, ordinal numbers such as “first” and “second” are used to avoid confusion between components, and do not indicate any order or order such as process order or stacking order. In addition, even in terms that do not have an ordinal number in this specification and the like, an ordinal number may be added in the claims to avoid confusion between the constituent elements. In addition, the ordinal numbers given in this specification and the like may differ from the ordinal numbers given in the claims. Even in the present specification and the like, terms with ordinal numbers are sometimes omitted in the claims.
また、本明細書等において「電極」や「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配線」が一体となって設けられている場合なども含む。 Further, in this specification and the like, the terms “electrode” and “wiring” do not functionally limit these components. For example, an “electrode” may be used as part of a “wiring” and vice versa. Furthermore, the terms “electrode” and “wiring” include a case where a plurality of “electrodes” and “wirings” are provided integrally.
また、「電圧」は、ある電位と、基準の電位(例えばグラウンド電位)との電位差のことを示す場合が多い。よって、「電圧」と「電位」を互いに言い換えることが可能な場合がある。 The “voltage” often indicates a potential difference between a certain potential and a reference potential (for example, ground potential). Therefore, it may be possible to paraphrase “voltage” and “potential”.
また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイン領域またはドレイン電極)とソース(ソース端子、ソース領域またはソース電極)の間にチャネル形成領域を有しており、チャネル形成領域を介して、ソースとドレインとの間に電流を流すことができるものである。なお、本明細書等において、チャネル形成領域とは、電流が主として流れる領域をいう。 In this specification and the like, a transistor is an element having at least three terminals including a gate, a drain, and a source. A channel formation region is provided between the drain (drain terminal, drain region or drain electrode) and the source (source terminal, source region or source electrode), and between the source and drain via the channel formation region. It is possible to pass a current through. Note that in this specification and the like, a channel formation region refers to a region through which a current mainly flows.
また、本明細書等に示すトランジスタは、特に断りがない場合、エンハンスメント型(ノーマリーオフ型)の電界効果トランジスタとする。また、本明細書等に示すトランジスタは、特に断りがない場合、nチャネル型のトランジスタとする。よって、そのしきい値電圧(「Vth」ともいう。)は、特に断りがない場合、0Vよりも大きいものとする。 The transistors described in this specification and the like are enhancement-type (normally-off) field-effect transistors unless otherwise specified. The transistors described in this specification and the like are n-channel transistors unless otherwise specified. Therefore, the threshold voltage (also referred to as “Vth”) is greater than 0 V unless otherwise specified.
なお、本明細書等において、バックゲートを有するトランジスタのVthとは、特に断りがない場合、バックゲートの電位をソースまたはゲートと同電位としたときのVthをいう。 Note that in this specification and the like, Vth of a transistor having a back gate refers to Vth when the potential of the back gate is the same as that of the source or the gate unless otherwise specified.
また、本明細書等において、特に断りがない場合、オフ電流とは、トランジスタがオフ状態(非導通状態、遮断状態、ともいう)にあるときのドレイン電流をいう。オフ状態とは、特に断りがない場合、nチャネル型トランジスタでは、ソースを基準とした時のゲートとソースの間の電位差(以下、「Vg」ともいう。)がしきい値電圧Vthよりも低い状態、pチャネル型トランジスタでは、ゲートとソースの間の電圧Vgがしきい値電圧Vthよりも高い状態をいう。例えば、nチャネル型のトランジスタのオフ電流とは、Vgがしきい値電圧(以下、「Vth」ともいう。)よりも低いときのドレイン電流を言う場合がある。 In this specification and the like, unless otherwise specified, off-state current refers to drain current when a transistor is off (also referred to as a non-conduction state or a cutoff state). In the n-channel transistor, the potential difference between the gate and the source (hereinafter also referred to as “Vg”) with respect to the source is lower than the threshold voltage Vth unless otherwise specified. A state, a p-channel transistor, refers to a state where the voltage Vg between the gate and the source is higher than the threshold voltage Vth. For example, the off-state current of an n-channel transistor sometimes refers to a drain current when Vg is lower than a threshold voltage (hereinafter also referred to as “Vth”).
上記オフ電流の説明において、ドレインをソースと読み替えてもよい。つまり、オフ電流は、トランジスタがオフ状態にあるときのソースを流れる電流を言う場合もある。 In the description of the off-state current, the drain may be read as the source. That is, the off-state current sometimes refers to a current that flows through the source when the transistor is off.
また、本明細書等では、オフ電流と同じ意味で、リーク電流と記載する場合がある。また、本明細書等において、オフ電流とは、例えば、トランジスタがオフ状態にあるときに、ソースとドレインとの間に流れる電流を指す場合がある。 In this specification and the like, the term “leakage current” may be used in the same meaning as off-state current. In this specification and the like, off-state current may refer to current that flows between a source and a drain when a transistor is off, for example.
また、本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に記載されているものとする。 In addition, in this specification and the like, when it is explicitly described that X and Y are connected, X and Y are electrically connected, and X and Y function. And the case where X and Y are directly connected are disclosed in this specification and the like. Therefore, it is not limited to a predetermined connection relationship, for example, the connection relationship shown in the figure or text, and anything other than the connection relation shown in the figure or text is also described in the figure or text.
また、本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。よって、「電気的に接続する」と表現される場合であっても、現実の回路においては、物理的な接続部分がなく、配線が延在しているだけの場合もある。 In addition, in this specification and the like, “electrically connected” includes a case of being connected via “thing having some electric action”. Here, the “thing having some electric action” is not particularly limited as long as it can exchange electric signals between connection targets. Therefore, even in the case of being expressed as “electrically connected”, in an actual circuit, there is a case where there is no physical connection portion and the wiring is merely extended.
なお、本明細書等において「上」や「下」の用語は、構成要素の位置関係が直上または直下で、かつ、直接接していることを限定するものではない。例えば、「絶縁層A上の電極B」の表現であれば、絶縁層Aの上に電極Bが直接接して設けられている必要はなく、絶縁層Aと電極Bとの間に他の構成要素を含むものを除外しない。 In the present specification and the like, the terms “upper” and “lower” do not limit that the positional relationship between the components is directly above or directly below and is in direct contact. For example, in the expression “electrode B on the insulating layer A”, the electrode B does not need to be provided directly on the insulating layer A, and another configuration is provided between the insulating layer A and the electrode B. Do not exclude things that contain elements.
また、本明細書において、「平行」とは、明示されている場合を除き、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。従って、−5°以上5°以下の場合も含まれる。また、「略平行」とは、明示されている場合を除き、二つの直線が−30°以上30°以下の角度で配置されている状態をいう。また、「垂直」および「直交」とは、明示されている場合を除き、二つの直線が80°以上100°以下の角度で配置されている状態をいう。従って、85°以上95°以下の場合も含まれる。また、「略垂直」とは、明示されている場合を除き、二つの直線が60°以上120°以下の角度で配置されている状態をいう。 Further, in this specification, “parallel” means a state in which two straight lines are arranged at an angle of −10 ° to 10 °, unless otherwise specified. Therefore, the case of −5 ° to 5 ° is also included. In addition, “substantially parallel” means a state in which two straight lines are arranged at an angle of −30 ° to 30 °, unless otherwise specified. “Vertical” and “orthogonal” refer to a state in which two straight lines are arranged at an angle of 80 ° or more and 100 ° or less, unless otherwise specified. Therefore, the case of 85 ° to 95 ° is also included. In addition, “substantially vertical” refers to a state in which two straight lines are arranged at an angle of 60 ° or more and 120 ° or less, unless otherwise specified.
なお、本明細書等において、計数値および計量値に関して「同一」、「同じ」、「等しい」または「均一」(これらの同意語を含む)などと言う場合は、明示されている場合を除き、プラスマイナス20%の誤差を含むものとする。 In addition, in this specification, etc., the terms “same”, “same”, “equal”, “uniform” (including these synonyms), etc. with respect to the count value and the measured value, unless otherwise specified. And an error of plus or minus 20%.
(実施の形態1)
本発明の一態様の表示装置100の構成例について、図面を用いて説明する。
(Embodiment 1)
Configuration examples of the display device 100 of one embodiment of the present invention are described with reference to drawings.
<構成例>
図1(A)は、表示装置100の構成例を説明するためのブロック図である。表示装置100は、表示部110、走査線駆動回路121、信号線駆動回路131、信号線駆動回路132、および共通線駆動回路141を有する。なお、走査線駆動回路121、信号線駆動回路131、信号線駆動回路132、および共通線駆動回路141に含まれる回路の総称を、「周辺駆動回路」または「駆動回路」という場合がある。周辺駆動回路には、シフトレジスタ、レベルシフタ、インバータ、ラッチ、アナログスイッチ、論理回路等の様々な回路を用いることができる。
<Configuration example>
FIG. 1A is a block diagram for explaining a configuration example of the display device 100. The display device 100 includes a display unit 110, a scanning line driving circuit 121, a signal line driving circuit 131, a signal line driving circuit 132, and a common line driving circuit 141. Note that a generic term for circuits included in the scanning line driver circuit 121, the signal line driver circuit 131, the signal line driver circuit 132, and the common line driver circuit 141 may be referred to as “peripheral driver circuit” or “driver circuit”. As the peripheral driver circuit, various circuits such as a shift register, a level shifter, an inverter, a latch, an analog switch, and a logic circuit can be used.
図1(B)は、表示部110の一部を示すブロック図である。表示部110は複数の画素111を有する。例えば、m行n列(mおよびnは、2以上の整数。)のマトリクス状に配置された複数の画素111を有する。本明細書などでは、i行j列目(iは、1以上m以下の整数。jは、1以上n以下の整数。)に位置する画素111を画素111[i,j]と示す。 FIG. 1B is a block diagram illustrating part of the display portion 110. The display unit 110 includes a plurality of pixels 111. For example, the pixel 111 includes a plurality of pixels 111 arranged in a matrix of m rows and n columns (m and n are integers of 2 or more). In this specification and the like, the pixel 111 located in the i-th row and j-th column (i is an integer of 1 to m. J is an integer of 1 to n) is denoted as a pixel 111 [i, j].
図1(B)では、i行j列目の画素111がi+1本目の配線COMと電気的に接続し、i行j+1列目の画素111がi本目の配線COMと電気的に接続する構成のブロック図を示している。ただし、これに限定されず、i行j列目の画素111がi本目の配線COMと電気的に接続し、i行j+1列目の画素111がi+1本目の配線COMと電気的に接続する構成でもよい。 In FIG. 1B, the pixel 111 in the i-th row and j-th column is electrically connected to the i + 1-th wiring COM, and the pixel 111 in the i-th row j + 1 column is electrically connected to the i-th wiring COM. A block diagram is shown. However, the configuration is not limited to this, and the pixel 111 in the i-th row and j-th column is electrically connected to the i-th wiring COM, and the pixel 111 in the i-th row j + 1 column is electrically connected to the i + 1-th wiring COM. But you can.
《配線GL》
また、表示装置100は、m本の配線GLを有する。m本の配線GLのそれぞれは、行方向に延在する。また、m本の配線GLのそれぞれは、表示部110において行方向に並ぶ複数の画素111と電気的に接続する。なお、本明細書などでは、1行目の配線GLを配線GL[1]と示す。また、m行目の配線GLを配線GL[m]と示す。また、i行目の配線GLを配線GL[i]と示す。
<< Wiring GL >>
In addition, the display device 100 includes m wirings GL. Each of the m wirings GL extends in the row direction. In addition, each of the m wirings GL is electrically connected to the plurality of pixels 111 arranged in the row direction in the display unit 110. Note that in this specification and the like, the wiring GL in the first row is denoted as a wiring GL [1]. The wiring GL in the m-th row is denoted as wiring GL [m]. In addition, the i-th line GL is referred to as a line GL [i].
配線GLの一端は走査線駆動回路121と電気的に接続される。走査線駆動回路121は、配線GL[1]から配線GL[m]まで順に選択信号を供給する機能を有する。言い換えると、走査線駆動回路121は、配線GL[1]乃至配線GL[m]を順に走査する機能を有する。配線GL[m]まで走査した後、再び配線GL[1]から順に走査する。 One end of the wiring GL is electrically connected to the scan line driver circuit 121. The scan line driver circuit 121 has a function of sequentially supplying a selection signal from the wiring GL [1] to the wiring GL [m]. In other words, the scan line driver circuit 121 has a function of sequentially scanning the wirings GL [1] to GL [m]. After scanning up to the wiring GL [m], scanning is performed again from the wiring GL [1] again.
配線GLは、走査線駆動回路121から供給される選択信号を画素111に伝える機能を有する。なお、本明細書などにおいて、配線GLを「ゲート線」または「走査線」と呼ぶ場合がある。 The wiring GL has a function of transmitting a selection signal supplied from the scan line driver circuit 121 to the pixel 111. Note that in this specification and the like, the wiring GL may be referred to as a “gate line” or a “scan line”.
《配線SL》
また、表示装置100は、n本の配線SLを有する。n本の配線SLのそれぞれは、列方向(走査方向)に延在する。また、n本の配線SLのそれぞれは、表示部110において列方向に並ぶ複数の画素111と電気的に接続する。本明細書などでは、1列目の配線SLを配線SL[1]と示す。また、n列目の配線SLを配線SL[n]と示す。また、j列目の配線GLを配線SL[j]と示す。
<< Wiring SL >>
In addition, the display device 100 includes n wirings SL. Each of the n wirings SL extends in the column direction (scanning direction). In addition, each of the n wirings SL is electrically connected to the plurality of pixels 111 arranged in the column direction in the display portion 110. In this specification and the like, the wiring SL in the first column is denoted as a wiring SL [1]. In addition, the wiring SL in the n-th column is denoted as a wiring SL [n]. In addition, the j-th line wiring GL is denoted as a wiring SL [j].
また、配線SLの一端は信号線駆動回路131と電気的に接続され、配線SLの他端は信号線駆動回路132と電気的に接続される。よって、信号線駆動回路131と信号線駆動回路132は、表示部110を挟んで向かい合う位置に設けられている。配線SLは、信号線駆動回路131および信号線駆動回路132から供給される画像信号(「ビデオ信号」ともいう。)を画素111に伝える機能を有する。なお、本明細書などにおいて、配線SLを「ソース線」または「信号線」と呼ぶ場合がある。 One end of the wiring SL is electrically connected to the signal line driver circuit 131, and the other end of the wiring SL is electrically connected to the signal line driver circuit 132. Therefore, the signal line driver circuit 131 and the signal line driver circuit 132 are provided at positions facing each other with the display portion 110 interposed therebetween. The wiring SL has a function of transmitting an image signal (also referred to as a “video signal”) supplied from the signal line driver circuit 131 and the signal line driver circuit 132 to the pixel 111. Note that in this specification and the like, the wiring SL may be referred to as a “source line” or a “signal line”.
同じ配線SLに、信号線駆動回路131および信号線駆動回路132から同時に画像信号を供給することで、配線SLへの画像信号の供給能力を高めることができる。これにより、配線SLの充放電時間を短くすることができる。よって、解像度が4Kや8K等といった極めて高解像度の表示装置であっても、電界効果移動度の低いトランジスタを用いて動作させることが可能となる。また、画面サイズが対角50インチ以上、対角60インチ以上、または対角70インチ以上の大型の表示装置を実現しやすくなる。なお、目的などに応じて、信号線駆動回路131または信号線駆動回路132の一方を省略してもかまわない。 By simultaneously supplying image signals from the signal line driver circuit 131 and the signal line driver circuit 132 to the same wiring SL, the supply capability of the image signals to the wiring SL can be increased. Thereby, the charge / discharge time of the wiring SL can be shortened. Therefore, even a display device with an extremely high resolution such as 4K or 8K can be operated using a transistor with low field-effect mobility. Further, it becomes easy to realize a large display device having a screen size of 50 inches diagonal or more, 60 inches diagonal or more, or 70 inches diagonal or more. Note that one of the signal line driver circuit 131 and the signal line driver circuit 132 may be omitted depending on the purpose or the like.
《配線COM》
また、表示装置100は、m+1本の配線COMを有する。m+1本の配線COMのそれぞれは、行方向に延在する。よって、配線COMは配線GLと略平行に延在する。なお、本明細書などでは、1本目の配線COMを配線COM[1]と示す。また、m+1本目の配線COMを配線COM[m+1]と示す。また、i本目の配線COMを配線COM[i]と示す。配線COMの一端は共通線駆動回路141と電気的に接続される。共通線駆動回路141は、配線COM[1]から配線COM[m+1]まで順に共通電位信号を供給する機能を有する。
<< Wiring COM >>
In addition, the display device 100 includes m + 1 wirings COM. Each of the m + 1 wirings COM extends in the row direction. Therefore, the wiring COM extends substantially parallel to the wiring GL. Note that in this specification and the like, the first wiring COM is referred to as wiring COM [1]. In addition, the (m + 1) th wiring COM is denoted as a wiring COM [m + 1]. The i-th wiring COM is denoted as wiring COM [i]. One end of the wiring COM is electrically connected to the common line driving circuit 141. The common line driver circuit 141 has a function of supplying a common potential signal in order from the wiring COM [1] to the wiring COM [m + 1].
共通線駆動回路141と走査線駆動回路121は、表示部110を挟んで向かい合う位置に設けられている。配線COMは、共通線駆動回路141から供給される共通電位信号を画素111に伝える機能を有する。なお、本明細書などにおいて、配線COMを「共通線」と呼ぶ場合がある。 The common line driving circuit 141 and the scanning line driving circuit 121 are provided at positions facing each other across the display unit 110. The wiring COM has a function of transmitting a common potential signal supplied from the common line driver circuit 141 to the pixel 111. Note that in this specification and the like, the wiring COM may be referred to as a “common line”.
《画素111と配線COMの接続》
1行目に配列された複数の画素111のうち、奇数列または偶数列の一方の画素111は、1本目の配線COMと電気的に接続される。また、1行目に配列された複数の画素111のうち、奇数列または偶数列の他方の画素111は、2本目の配線COMと電気的に接続される。また、m行目に配列された複数の画素111のうち、奇数列または偶数列の一方の画素111は、m本目の配線COMと電気的に接続される。また、m行目に配列された複数の画素111のうち、奇数列または偶数列の他方の画素111は、m+1本目の配線COMと電気的に接続される。
<< Connection of Pixel 111 and Wiring COM >>
Of the plurality of pixels 111 arranged in the first row, one of the odd-numbered or even-numbered pixels 111 is electrically connected to the first wiring COM. In addition, among the plurality of pixels 111 arranged in the first row, the other pixel 111 in the odd-numbered column or the even-numbered column is electrically connected to the second wiring COM. Of the plurality of pixels 111 arranged in the m-th row, one of the odd-numbered columns or even-numbered columns 111 is electrically connected to the m-th wiring COM. In addition, among the plurality of pixels 111 arranged in the m-th row, the other pixel 111 in the odd-numbered column or the even-numbered column is electrically connected to the (m + 1) th wiring COM.
図1(B)では、i本目の配線COMが、i−1行j列目の画素111、i−1行j+2列目の画素111、i行j+1列目の画素111、およびi行j+3列目の画素111と電気的に接続する例を示している。 In FIG. 1B, the i-th wiring COM includes the pixel 111 in the (i−1) th row and jth column, the pixel 111 in the (i−1) th row j + 2th column, the pixel 111 in the ith row j + 1th column, and the ith row j + 3th column. An example in which the eye pixel 111 is electrically connected is shown.
前述した画素111と配線COMの接続関係について、より具体的に説明する。 The connection relationship between the pixel 111 and the wiring COM will be described more specifically.
〔接続例1〕
奇数本目の配線COMと奇数列の画素111が接続し、偶数本目の配線COMと偶数列の画素111が接続する場合について説明する。
[Connection example 1]
The case where the odd-numbered wiring lines COM and the pixels 111 in the odd-numbered columns are connected and the even-numbered wiring lines COM and the pixels 111 in the even-numbered columns are connected will be described.
1行目に配列された複数の画素111のうち、奇数列の画素111は1本目の配線COMと電気的に接続され、偶数列の画素111は2本目の配線COMと電気的に接続される。また、2行目に配列された複数の画素111のうち、奇数列の画素111は2本目の配線COMと電気的に接続され、偶数列の画素111は3本目の配線COMと電気的に接続される。また、m行目に配列された複数の画素111のうち、奇数列の画素111はm本目の配線COMと電気的に接続され、偶数列の画素111はm+1本目の配線COMと電気的に接続される。 Of the plurality of pixels 111 arranged in the first row, the odd-numbered pixels 111 are electrically connected to the first wiring COM, and the even-numbered pixels 111 are electrically connected to the second wiring COM. . Of the plurality of pixels 111 arranged in the second row, the odd-numbered pixels 111 are electrically connected to the second wiring COM, and the even-numbered pixels 111 are electrically connected to the third wiring COM. Is done. Of the plurality of pixels 111 arranged in the m-th row, the odd-numbered columns 111 are electrically connected to the m-th wiring COM, and the even-numbered pixels 111 are electrically connected to the m + 1-th wiring COM. Is done.
すなわち、xを1以上m−1以下の整数とすると、x行奇数列目の画素111は、x行目の配線GL、奇数列目の配線SL、およびx本目の配線COMと電気的に接続され、x行偶数列目の画素111は、x行目の配線GL、偶数列目の配線SL、およびx+1本目の配線COMと電気的に接続される。また、m行奇数列目の画素111は、m行目の配線GL、奇数列目の配線SL、およびx本目の配線COMと電気的に接続され、m行偶数列目の画素111は、m行目の配線GL、偶数列目の配線SL、およびm+1本目の配線COMと電気的に接続される。 That is, when x is an integer of 1 to m−1, the pixel 111 in the x-row odd column is electrically connected to the wiring GL in the x-th row, the wiring SL in the odd-numbered column, and the x-th wiring COM. Then, the pixel 111 in the x-th even column is electrically connected to the wiring GL in the x-th row, the wiring SL in the even-numbered column, and the x + 1-th wiring COM. The pixel 111 in the m-th row and odd-numbered column is electrically connected to the wiring GL in the m-th row, the wiring SL in the odd-numbered column, and the x-th wiring COM, and the pixel 111 in the m-th row and even-numbered column It is electrically connected to the wiring GL in the row, the wiring SL in the even-numbered column, and the m + 1th wiring COM.
また、yを0以上の整数とすると、x行2y+1列目の画素111は、x行目の配線GL、2y+1列目の配線SL、およびx本目の配線COMと電気的に接続され、x行2y+2列目の画素111は、x行目の配線GL、2y+2列目の配線SL、およびx+1本目の配線COMと電気的に接続される。また、m行2y+1列目の画素111は、m行目の配線GL、2y+1列目の配線SL、およびm本目の配線COMと電気的に接続され、m行2y+2列目の画素111は、m行目の配線GL、2y+2列目の配線SL、およびm+1本目の配線COMと電気的に接続される。 If y is an integer greater than or equal to 0, the pixel 111 in the x-th row 2y + 1 column is electrically connected to the x-th wiring GL, the 2y + 1-th column wiring SL, and the x-th wiring COM, and the x-th row The pixel 111 in the 2y + 2 column is electrically connected to the wiring GL in the x-th row, the wiring SL in the 2y + 2 column, and the x + 1-th wiring COM. The pixel 111 in the m-th row 2y + 1 column is electrically connected to the m-th line wiring GL, the 2y + 1-th line wiring SL, and the m-th wiring COM, and the m-th row 2y + second-column pixel 111 is m It is electrically connected to the wiring GL in the row, the wiring SL in the 2y + 2 column, and the m + 1th wiring COM.
〔接続例2〕
奇数本目の配線COMと偶数列の画素111が接続し、偶数本目の配線COMと奇数列の画素111が接続する場合について説明する。
[Connection example 2]
A case will be described in which the odd-numbered wiring lines COM and the pixels 111 in the even-numbered columns are connected, and the even-numbered wiring lines COM and the pixels 111 in the odd-numbered columns are connected.
1行目に配列された複数の画素111のうち、偶数列の画素111は1本目の配線COMと電気的に接続され、奇数列の画素111は2本目の配線COMと電気的に接続される。また、2行目に配列された複数の画素111のうち、偶数列の画素111は2本目の配線COMと電気的に接続され、奇数列の画素111は3本目の配線COMと電気的に接続される。また、m行目に配列された複数の画素111のうち、偶数列の画素111はm本目の配線COMと電気的に接続され、奇数列の画素111はm+1本目の配線COMと電気的に接続される。 Of the plurality of pixels 111 arranged in the first row, the even-numbered pixels 111 are electrically connected to the first wiring COM, and the odd-numbered pixels 111 are electrically connected to the second wiring COM. . In addition, among the plurality of pixels 111 arranged in the second row, the pixels 111 in the even columns are electrically connected to the second wiring COM, and the pixels 111 in the odd columns are electrically connected to the third wiring COM. Is done. Of the plurality of pixels 111 arranged in the m-th row, the even-numbered pixels 111 are electrically connected to the m-th wiring COM, and the odd-numbered pixels 111 are electrically connected to the m + 1-th wiring COM. Is done.
すなわち、xを1以上m−1以下の整数とすると、x行偶数列目の画素111は、x行目の配線GL、偶数列目の配線SL、およびx本目の配線COMと電気的に接続され、x行奇数列目の画素111は、x行目の配線GL、奇数列目の配線SL、およびx+1本目の配線COMと電気的に接続される。また、m行偶数列目の画素111は、m行目の配線GL、偶数列目の配線SL、およびx本目の配線COMと電気的に接続され、m行奇数列目の画素111は、m行目の配線GL、奇数列目の配線SL、およびm+1本目の配線COMと電気的に接続される。 That is, when x is an integer of 1 to m−1, the pixel 111 in the x-th even column is electrically connected to the x-th line wiring GL, the even-numbered line wiring SL, and the x-th line COM. Then, the pixels 111 in the x-th row and odd-numbered columns are electrically connected to the wiring GL in the x-th row, the wiring SL in the odd-numbered column, and the x + 1-th wiring COM. The pixels 111 in the m-th even column are electrically connected to the wiring GL in the m-th row, the wiring SL in the even-numbered column, and the x-th wiring COM, and the pixel 111 in the m-th odd column is m It is electrically connected to the wiring GL in the row, the wiring SL in the odd-numbered column, and the (m + 1) th wiring COM.
また、yを0以上の整数とすると、x行2y+2列目の画素111は、x行目の配線GL、2y+2列目の配線SL、およびx本目の配線COMと電気的に接続され、x行2y+1列目の画素111は、x行目の配線GL、2y+1列目の配線SL、およびx+1本目の配線COMと電気的に接続される。また、m行2y+2列目の画素111は、m行目の配線GL、2y+2列目の配線SL、およびm本目の配線COMと電気的に接続され、m行2y+1列目の画素111は、m行目の配線GL、2y+1列目の配線SL、およびm+1本目の配線COMと電気的に接続される。 If y is an integer greater than or equal to 0, the pixel 111 in the x row 2y + 2 column is electrically connected to the wiring GL in the x row, the wiring SL in the 2y + 2 column, and the x th wiring COM, and the x row The pixel 111 in the 2y + 1 column is electrically connected to the wiring GL in the x-th row, the wiring SL in the 2y + 1 column, and the x + 1-th wiring COM. The pixel 111 in the m-th row 2y + 2 column is electrically connected to the m-th wiring GL, the 2y + 2-th column wiring SL, and the m-th wiring COM. It is electrically connected to the wiring GL in the row, the wiring SL in the 2y + 1th column, and the m + 1th wiring COM.
《画素111の構成例》
図2は、画素111に用いることができる回路構成例を示している。画素111は、画素回路534および表示素子462を有する。
<< Configuration Example of Pixel 111 >>
FIG. 2 shows a circuit configuration example that can be used for the pixel 111. The pixel 111 includes a pixel circuit 534 and a display element 462.
〔表示素子〕
表示素子462には、様々な表示素子を用いることが出来る。表示素子の一例としては、EL(エレクトロルミネッセンス)素子(有機EL素子、無機EL素子、または、有機物および無機物を含むEL素子)、LED(白色LED、赤色LED、緑色LED、青色LEDなど)、トランジスタ(電流に応じて発光するトランジスタ)、電子放出素子、液晶素子、電子インク、電気泳動素子、GLV(グレーティングライトバルブ)、MEMS(マイクロ・エレクトロ・メカニカル・システム)を用いた表示素子、DMD(デジタルマイクロミラーデバイス)、DMS(デジタル・マイクロ・シャッター)、MIRASOL(登録商標)、IMOD(インターフェロメトリック・モジュレーション)素子、シャッター方式のMEMS表示素子、光干渉方式のMEMS表示素子、エレクトロウェッティング素子、圧電セラミックディスプレイ、カーボンナノチューブを用いた表示素子、など、電気的または磁気的作用により、コントラスト、輝度、反射率、透過率などが変化する表示媒体を有するものがある。また、表示素子として量子ドットを用いてもよい。
[Display element]
Various display elements can be used for the display element 462. Examples of display elements include EL (electroluminescence) elements (organic EL elements, inorganic EL elements, or EL elements including organic and inorganic substances), LEDs (white LEDs, red LEDs, green LEDs, blue LEDs, etc.), transistors (Transistor that emits light in response to current), electron-emitting device, liquid crystal device, electronic ink, electrophoretic device, GLV (grating light valve), display device using MEMS (micro electro mechanical system), DMD (digital Micromirror device), DMS (digital micro shutter), MIRASOL (registered trademark), IMOD (interferometric modulation) element, shutter type MEMS display element, optical interference type MEMS display element, electrowetting Child, piezoceramic display, display using carbon nanotubes, etc., by electrical or magnetic action, those having contrast, brightness, reflectance, a display medium such as transmittance changes. Further, quantum dots may be used as the display element.
なお、表示素子462としてEL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子放出素子を用いた表示装置の一例としては、FED(フィールドエミッションディスプレイ)又はSED方式平面型ディスプレイ(SED:Surface−conduction Electron−emitter Display)などがある。量子ドットを用いた表示装置の一例としては、量子ドットディスプレイなどがある。液晶素子を用いた表示装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)などがある。電子インク、電子粉流体(登録商標)、又は電気泳動素子を用いた表示装置の一例としては、電子ペーパーなどがある。また、表示装置はPDP(プラズマディスプレイパネル)であってもよい。また、表示装置は網膜走査型の投影装置であってもよい。また、マイクロLEDを用いた表示装置であってもよい。 Note that an example of a display device using an EL element as the display element 462 is an EL display. As an example of a display device using an electron-emitting device, there is an FED (Field Emission Display) or an SED type flat display (SED: Surface-conduction Electron-emitter Display). An example of a display device using quantum dots is a quantum dot display. As an example of a display device using a liquid crystal element, there is a liquid crystal display (a transmissive liquid crystal display, a transflective liquid crystal display, a reflective liquid crystal display, a direct view liquid crystal display, a projection liquid crystal display) and the like. An example of a display device using electronic ink, electronic powder fluid (registered trademark), or an electrophoretic element is electronic paper. The display device may be a PDP (plasma display panel). The display device may be a retinal scanning type projection device. Moreover, the display apparatus using micro LED may be sufficient.
液晶素子は、液晶の光学的変調作用によって光の透過または非透過を制御する素子である。液晶の光学的変調作用は、液晶にかかる電界(横方向の電界、縦方向の電界または/および斜め方向の電界を含む)によって制御される。表示素子462として、液晶素子を用いる場合、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶、強誘電性液晶、反強誘電性液晶等を用いることができる。これらの液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイラルネマチック相、等方相等を示す。 The liquid crystal element is an element that controls transmission or non-transmission of light by an optical modulation action of liquid crystal. The optical modulation action of the liquid crystal is controlled by an electric field applied to the liquid crystal (including a horizontal electric field, a vertical electric field, and / or an oblique electric field). When a liquid crystal element is used as the display element 462, a thermotropic liquid crystal, a low molecular liquid crystal, a polymer liquid crystal, a polymer dispersed liquid crystal, a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like can be used. These liquid crystal materials exhibit a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, and the like depending on conditions.
液晶材料としては、ポジ型の液晶、またはネガ型の液晶のいずれを用いてもよく、適用するモードや設計に応じて最適な液晶材料を用いればよい。 As the liquid crystal material, either a positive type liquid crystal or a negative type liquid crystal may be used, and an optimal liquid crystal material may be used according to an applied mode or design.
液晶の配向を制御するため、配向膜を設けることができる。なお、横電界方式を採用する場合、配向膜を用いないブルー相(Blue Phase)を示す液晶を用いてもよい。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善するために数重量%以上のカイラル剤を混合させた液晶組成物を液晶層に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が短く、光学的等方性である。また、ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、配向処理が不要であり、かつ、視野角依存性が小さい。また配向膜を設けなくてもよいのでラビング処理も不要となるため、ラビング処理によって引き起こされる静電破壊を防止することができ、作製工程中の液晶表示装置の不良や破損を軽減することができる。よって液晶表示装置の生産性を向上させることが可能となる。 In order to control the alignment of the liquid crystal, an alignment film can be provided. Note that when a horizontal electric field method is employed, a liquid crystal exhibiting a blue phase without using an alignment film may be used. The blue phase is one of the liquid crystal phases. When the temperature of the cholesteric liquid crystal is increased, the blue phase appears immediately before the transition from the cholesteric phase to the isotropic phase. Since the blue phase appears only in a narrow temperature range, a liquid crystal composition mixed with several percent by weight or more of a chiral agent is used for the liquid crystal layer in order to improve the temperature range. A liquid crystal composition containing a liquid crystal exhibiting a blue phase and a chiral agent has a short response speed and is optically isotropic. In addition, a liquid crystal composition including a liquid crystal exhibiting a blue phase and a chiral agent does not require alignment treatment and has a small viewing angle dependency. Further, since it is not necessary to provide an alignment film, a rubbing process is not required, so that electrostatic breakdown caused by the rubbing process can be prevented, and defects or breakage of the liquid crystal display device during the manufacturing process can be reduced. . Therefore, the productivity of the liquid crystal display device can be improved.
なお、液晶素子にゲスト−ホストモードで動作する液晶材料を用いることにより、光拡散層や偏光板などの機能性部材を省略することができる。よって、表示装置の生産性を高めることができる。また、偏光板などの機能性部材を設けないことにより、表示部110の表示素子462の反射輝度や透過光量などを高めることができる。よって、表示装置の視認性を高めることができる。 Note that by using a liquid crystal material that operates in a guest-host mode for the liquid crystal element, functional members such as a light diffusion layer and a polarizing plate can be omitted. Thus, productivity of the display device can be increased. Further, by not providing a functional member such as a polarizing plate, it is possible to increase the reflection brightness, the amount of transmitted light, and the like of the display element 462 of the display unit 110. Therefore, the visibility of the display device can be increased.
また、円偏光板を用いる反射型の液晶表示装置のオン状態とオフ状態の切り替え(明状態と暗状態の切り替え)は、液晶分子の長軸を基板と略垂直な方向にそろえるか、基板と略水平な方向にそろえるか、によって行なわれる。一般に、IPS(In−Plane−Switching)モードなどの横電界方式で動作する液晶素子は、オン状態およびオフ状態ともに液晶分子の長軸が基板と略水平な方向にそろうため、反射型の液晶表示装置に用いることが難しい。 In addition, the reflective liquid crystal display device using a circularly polarizing plate is switched between the on state and the off state (switching between the bright state and the dark state) by aligning the major axis of the liquid crystal molecules in a direction substantially perpendicular to the substrate, It is done by aligning in a substantially horizontal direction. In general, a liquid crystal element that operates in a lateral electric field mode such as an IPS (In-Plane-Switching) mode has a major axis of liquid crystal molecules aligned in a substantially horizontal direction with respect to a substrate in both an on state and an off state. Difficult to use in equipment.
VA−IPSモードで動作する液晶素子は、横電界方式で動作し、かつ、オン状態とオフ状態の切り替えを、液晶分子の長軸を基板と略垂直な方向にそろえるか、基板と略水平な方向にそろえるか、によって行なわれる。このため、反射型の液晶表示装置に横電界方式で動作する液晶素子を用いる場合は、VA−IPS(Vertical Alignment In−Plane−Switching)モードで動作する液晶素子を用いることが好ましい。 A liquid crystal element that operates in the VA-IPS mode operates in a lateral electric field mode, and switches between an on state and an off state so that the major axis of the liquid crystal molecules is aligned in a direction substantially perpendicular to the substrate, or is substantially horizontal to the substrate. It is done by aligning the direction. Therefore, when a liquid crystal element that operates in a horizontal electric field mode is used for a reflective liquid crystal display device, it is preferable to use a liquid crystal element that operates in a VA-IPS (Vertical Alignment In-Plane-Switching) mode.
また、画素111をいくつかの領域に分け、それぞれ別の方向に分子を倒すよう工夫されているマルチドメイン化あるいはマルチドメイン設計といわれる方法を用いることができる。 Further, a method called multi-domain or multi-domain design, which is devised to divide the pixel 111 into several regions and tilt the molecules in different directions, can be used.
また、液晶材料の固有抵抗は、1×10Ω・cm以上であり、好ましくは1×1011Ω・cm以上であり、さらに好ましくは1×1012Ω・cm以上である。なお、本明細書における固有抵抗の値は、20℃で測定した値とする。 The specific resistance of the liquid crystal material is 1 × 10 9 Ω · cm or more, preferably 1 × 10 11 Ω · cm or more, and more preferably 1 × 10 12 Ω · cm or more. In addition, the value of the specific resistance in this specification shall be the value measured at 20 degreeC.
なお、半透過型液晶ディスプレイや反射型液晶ディスプレイを実現する場合には、画素電極の一部、または、全部が、反射電極としての機能を有するようにすればよい。例えば、画素電極の一部、または、全部が、アルミニウム、銀、などを有するようにすればよい。さらに、その場合、反射電極の下に、SRAMなどの記憶回路を設けることも可能である。これにより、さらに、消費電力を低減することができる。 Note that in the case of realizing a transflective liquid crystal display or a reflective liquid crystal display, part or all of the pixel electrode may have a function as a reflective electrode. For example, part or all of the pixel electrode may have aluminum, silver, or the like. Further, in that case, a memory circuit such as an SRAM can be provided under the reflective electrode. Thereby, power consumption can be further reduced.
なお、LEDを用いる場合、LEDの電極や窒化物半導体の下に、グラフェンやグラファイトを配置してもよい。グラフェンやグラファイトは、複数の層を重ねて、多層膜としてもよい。このように、グラフェンやグラファイトを設けることにより、その上に、窒化物半導体、例えば、結晶を有するn型GaN半導体層などを容易に成膜することができる。さらに、その上に、結晶を有するp型GaN半導体層などを設けて、LEDを構成することができる。なお、グラフェンやグラファイトと、結晶を有するn型GaN半導体層との間に、AlN層を設けてもよい。なお、LEDが有するGaN半導体層は、MOCVDで成膜してもよい。ただし、グラフェンを設けることにより、LEDが有するGaN半導体層は、スパッタ法で成膜することも可能である。 In addition, when using LED, you may arrange | position graphene or graphite under the electrode and nitride semiconductor of LED. Graphene or graphite may be a multilayer film in which a plurality of layers are stacked. Thus, by providing graphene or graphite, a nitride semiconductor, for example, an n-type GaN semiconductor layer having a crystal can be easily formed thereon. Furthermore, a p-type GaN semiconductor layer having a crystal or the like can be provided thereon to form an LED. Note that an AlN layer may be provided between graphene or graphite and an n-type GaN semiconductor layer having a crystal. Note that the GaN semiconductor layer of the LED may be formed by MOCVD. However, by providing graphene, the GaN semiconductor layer of the LED can be formed by a sputtering method.
〔画素回路〕
[液晶表示装置用画素回路の一例]
図2(A)に示す画素回路534は、トランジスタ461と、容量素子463と、を有する。また、図2(A)に示す画素回路534は、表示素子462として機能できる液晶素子が電気的に接続されている。
[Pixel circuit]
[Example of pixel circuit for liquid crystal display device]
A pixel circuit 534 illustrated in FIG. 2A includes a transistor 461 and a capacitor 463. In addition, the pixel circuit 534 illustrated in FIG. 2A is electrically connected to a liquid crystal element that can function as the display element 462.
表示素子462の一対の電極の一方の電位は、画素回路534の仕様に応じて適宜設定される。例えば、表示素子462の一対の電極の一方に、共通の電位(コモン電位)を与えてもよいし、後述する容量線CLと同電位としてもよい。また、表示素子462の一対の電極の一方に、画素532毎に異なる電位を与えてもよい。表示素子462の一対の電極の他方はノード466に電気的に接続されている。表示素子462は、ノード466に書き込まれるデータにより配向状態が設定される。 One potential of the pair of electrodes of the display element 462 is appropriately set in accordance with the specification of the pixel circuit 534. For example, a common potential (common potential) may be applied to one of the pair of electrodes of the display element 462, or the potential may be the same as that of a capacitor line CL which will be described later. Further, a different potential may be applied to one of the pair of electrodes of the display element 462 for each pixel 532. The other of the pair of electrodes of the display element 462 is electrically connected to the node 466. The orientation state of the display element 462 is set by data written to the node 466.
液晶素子の駆動方法としては、例えば、TN(Twisted Nematic)モード、STN(Super Twisted Nematic)モード、VA(Vertical Alignment)モード、ASM(Axially Symmetric Aligned Micro−cell)モード、OCB(Optically Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モード、MVA(Multi Vertical Domain)モード、PVA(Patterned Vertical Alignment)モード、IPSモード、FFS(Fringe Field Switching)モード、VA−IPSモード、またはTBA(Transverse Bend Alignment)モードなどを用いてもよい。また、液晶素子の駆動方法としては、上述した駆動方法の他、ECB(Electrically Controlled Birefringence)モード、PDLC(Polymer Dispersed Liquid Crystal)モード、PNLC(Polymer Network Liquid Crystal)モード、ゲストホストモードなどがある。ただし、これに限定されず、液晶素子およびその駆動方式として様々なものを用いることができる。 As a driving method of the liquid crystal element, for example, a TN (Twisted Nematic) mode, an STN (Super Twisted Nematic) mode, a VA (Vertical Alignment Aligned Coaxial) mode, an ASM (Axially Symmetrical Bounded Micro mode). , FLC (Ferroelectric Liquid Crystal) mode, AFLC (Anti Ferroelectric Liquid Crystal) mode, MVA (Multi Vertical Domain) mode, PVA (Patterned Vertical Alignment) mode S mode, FFS (Fringe Field Switching) mode, VA-IPS mode or TBA the like may be used (Transverse Bend Alignment) mode. In addition to the above-described driving methods, there are ECB (Electrically Controlled Birefringence) mode, PDLC (Polymer Dispersed Liquid Crystal) mode, PNLC (Polymer Network Liquid Crystal mode), and other driving methods for liquid crystal elements. However, the present invention is not limited to this, and various liquid crystal elements and driving methods thereof can be used.
i行j列目の画素回路534において、トランジスタ461のソースおよびドレインの一方は、配線SL[j]に電気的に接続され、他方はノード466に電気的に接続される。トランジスタ461のゲートは、配線GL[i]に電気的に接続される。配線SL[j]からはビデオ信号が供給される。トランジスタ461は、ノード466へのビデオ信号の書き込みを制御する機能を有する。 In the pixel circuit 534 in the i-th row and j-th column, one of a source and a drain of the transistor 461 is electrically connected to the wiring SL [j], and the other is electrically connected to the node 466. A gate of the transistor 461 is electrically connected to the wiring GL [i]. A video signal is supplied from the wiring SL [j]. The transistor 461 has a function of controlling writing of a video signal to the node 466.
容量素子463の一対の電極の一方は、配線COM[i+1]に電気的に接続され、他方は、ノード466に電気的に接続される。容量素子463は、ノード466に書き込まれたデータを保持する保持容量としての機能を有する。 One of the pair of electrodes of the capacitor 463 is electrically connected to the wiring COM [i + 1], and the other is electrically connected to the node 466. The capacitor 463 has a function as a storage capacitor that stores data written to the node 466.
例えば、図2(A)の画素回路534を有する表示装置100では、走査線駆動回路121により各行の画素回路534を順次選択し、トランジスタ461をオン状態にしてノード466にビデオ信号を書き込む。 For example, in the display device 100 including the pixel circuit 534 in FIG. 2A, the scan line driver circuit 121 sequentially selects the pixel circuits 534 in each row, turns on the transistors 461, and writes a video signal to the node 466.
ノード466にビデオ信号が書き込まれた画素回路534は、トランジスタ461がオフ状態になることで保持状態になる。これを行毎に順次行うことにより、表示部110に画像を表示できる。 The pixel circuit 534 in which the video signal is written to the node 466 enters the holding state when the transistor 461 is turned off. By sequentially performing this for each row, an image can be displayed on the display unit 110.
また、i行j+1列目の画素回路534において、トランジスタ461のソースおよびドレインの一方は、配線SL[j+1]に電気的に接続され、他方はノード466に電気的に接続される。トランジスタ461のゲートは、配線GL[i]に電気的に接続される。配線SL[j+1]からはビデオ信号が供給される。トランジスタ461は、ノード466へのビデオ信号の書き込みを制御する機能を有する。 In the pixel circuit 534 in the i-th row and j + 1-th column, one of a source and a drain of the transistor 461 is electrically connected to the wiring SL [j + 1], and the other is electrically connected to the node 466. A gate of the transistor 461 is electrically connected to the wiring GL [i]. A video signal is supplied from the wiring SL [j + 1]. The transistor 461 has a function of controlling writing of a video signal to the node 466.
また、i行j+1列目の画素回路534において、容量素子463の一対の電極の一方は、配線COM[i]に電気的に接続され、他方は、ノード466に電気的に接続される。容量素子463は、ノード466に書き込まれたデータを保持する保持容量としての機能を有する。 In the pixel circuit 534 in the i-th row j + 1-th column, one of the pair of electrodes of the capacitor 463 is electrically connected to the wiring COM [i], and the other is electrically connected to the node 466. The capacitor 463 has a function as a storage capacitor that stores data written to the node 466.
また、図2(B)に示すように、トランジスタ461にバックゲートを有するトランジスタを用いてもよい。図2(B)に示すトランジスタ461は、ゲートがバックゲートと電気的に接続されている。よって、ゲートとバックゲートが常に同じ電位となる。 In addition, as illustrated in FIG. 2B, a transistor having a back gate may be used as the transistor 461. A gate of the transistor 461 illustrated in FIG. 2B is electrically connected to the back gate. Therefore, the gate and the back gate are always at the same potential.
画素111は副画素として機能できる。図2(C)に示すように、少なくとも3つの画素111をまとめて1つの画素112として機能させることで、フルカラー表示を実現することができる。3つの画素111は、それぞれが赤色光(R)、緑色光(G)、または青色光(B)の、透過率、反射率、または発光光量などを制御する。なお、3つの画素111で制御する光の色は赤、緑、青の組み合わせに限らず、黄(Y)、シアン(C)、マゼンタ(M)であってもよい。 The pixel 111 can function as a subpixel. As shown in FIG. 2C, full color display can be realized by combining at least three pixels 111 to function as one pixel 112. Each of the three pixels 111 controls the transmittance, reflectance, light emission amount, etc. of red light (R), green light (G), or blue light (B). Note that the color of light controlled by the three pixels 111 is not limited to a combination of red, green, and blue, and may be yellow (Y), cyan (C), and magenta (M).
また、図2(D)に示すように、赤色光、緑色光、青色光を制御する画素に、白色光(W)を制御する画素111を加えて、4つの画素111をまとめて1つの画素112として機能させてもよい。白色光を制御する画素111を加えることで、表示画像の輝度を高めることができる。 Further, as shown in FIG. 2D, a pixel 111 that controls white light (W) is added to a pixel that controls red light, green light, and blue light, and the four pixels 111 are combined into one pixel. 112 may function. The luminance of the display image can be increased by adding the pixel 111 that controls white light.
また、白色光(W)を制御する画素111に代えて黄色光(Y)を制御する画素111を設けてもよい。また、黄(Y)、シアン(C)、マゼンタ(M)、白(W)の光を制御する画素111を組み合わせてもよい。 Further, a pixel 111 that controls yellow light (Y) may be provided instead of the pixel 111 that controls white light (W). Alternatively, the pixels 111 that control yellow (Y), cyan (C), magenta (M), and white (W) light may be combined.
また、1つの画素112として機能させる画素111を増やし、赤、緑、青、黄、シアン、およびマゼンタを適宜組み合わせて用いることにより、より豊かな中間調表現を実現できる。 Further, by increasing the number of pixels 111 that function as one pixel 112 and using an appropriate combination of red, green, blue, yellow, cyan, and magenta, a richer halftone expression can be realized.
また、異なる色の光を制御する画素111を組み合わせることで、さまざまな規格の色域を再現することができる。例えば、テレビ放送で使われるPAL(Phase Alternating Line)規格およびNTSC(National Television System Committee)規格、パーソナルコンピュータ、デジタルカメラ、プリンタなどの電子機器に用いる表示装置で広く使われているsRGB(standard RGB)規格およびAdobe RGB規格、HDTV(High Definition Television、ハイビジョンともいう)で使われるITU−R BT.709(International Telecommunication Union Radiocommunication Sector Broadcasting Service(Television) 709)規格、デジタルシネマ映写で使われるDCI−P3(Digital Cinema Initiatives P3)規格、UHDTV(Ultra High Definition Television、スーパーハイビジョンともいう)で使われるITU−R BT.2020(REC.2020(Recommendation 2020))規格などの色域を再現することができる。 In addition, color gamuts of various standards can be reproduced by combining pixels 111 that control light of different colors. For example, PAL (Phase Alternating Line) standard and NTSC (National Television System Committee) standard used in TV broadcasting, sRGB (standard RGB) widely used in electronic devices such as personal computers, digital cameras, and printers And ITU-R BT. Used in the Adobe RGB standard and HDTV (also known as High Definition Television). 709 (International Telecommunication Union Radiocommunication Sector Broadcasting Service (Television) 709) Standard, DCI-P3 (DigitalCineMitiTitiHit3P) R BT. A color gamut such as 2020 (REC. 2020 (Recommendation 2020)) standard can be reproduced.
画素112を1920×1080のマトリクス状に配置すると、いわゆるフルハイビジョン(「2K解像度」、「2K1K」、または「2K」などとも言われる。)の解像度で表示可能な表示装置100を実現することができる。また、例えば、画素112を3840×2160のマトリクス状に配置すると、いわゆるウルトラハイビジョン(「4K解像度」、「4K2K」、または「4K」などとも言われる。)の解像度で表示可能な表示装置100を実現することができる。また、例えば、画素112を7680×4320のマトリクス状に配置すると、いわゆるスーパーハイビジョン(「8K解像度」、「8K4K」、または「8K」などとも言われる。)の解像度で表示可能な表示装置100を実現することができる。画素112を増やすことで、16Kや32Kの解像度で表示可能な表示装置100を実現することも可能である。 When the pixels 112 are arranged in a 1920 × 1080 matrix, the display device 100 that can display at a resolution of so-called full high-definition (also referred to as “2K resolution”, “2K1K”, or “2K”) can be realized. it can. Further, for example, when the pixels 112 are arranged in a 3840 × 2160 matrix, the display device 100 that can display at a resolution of so-called ultra high vision (also referred to as “4K resolution”, “4K2K”, or “4K”) is provided. Can be realized. For example, when the pixels 112 are arranged in a matrix of 7680 × 4320, the display device 100 that can display at a resolution of so-called super high vision (also referred to as “8K resolution”, “8K4K”, or “8K”) is provided. Can be realized. By increasing the number of pixels 112, it is possible to realize the display device 100 that can display at a resolution of 16K or 32K.
<変形例>
表示装置100の変形例について図面を用いて説明する。なお、説明の繰り返しを低減するため、主に表示装置100と異なる部分について説明する。
<Modification>
A modification of the display device 100 will be described with reference to the drawings. In order to reduce the repetition of the description, portions different from the display device 100 will be mainly described.
《変形例1》
図3(A)は、表示装置100Aの構成例を説明するためのブロック図である。表示装置100Aは、表示部110を挟んで走査線駆動回路121と向かい合う位置に走査線駆動回路122を有する。また、配線GLの一端は走査線駆動回路121と電気的に接続され、配線GLの他端は走査線駆動回路122と電気的に接続される。走査線駆動回路122は、走査線駆動回路121と同様の機能を有する。同じ配線GLに、走査線駆動回路121および走査線駆動回路122から同時に選択信号を供給することで、配線GLへの選択信号の供給能力を高めることができる。
<< Modification 1 >>
FIG. 3A is a block diagram for describing a configuration example of the display device 100A. The display device 100 </ b> A includes a scanning line driving circuit 122 at a position facing the scanning line driving circuit 121 with the display unit 110 interposed therebetween. One end of the wiring GL is electrically connected to the scan line driver circuit 121, and the other end of the wiring GL is electrically connected to the scan line driver circuit 122. The scan line driver circuit 122 has a function similar to that of the scan line driver circuit 121. By simultaneously supplying selection signals to the same wiring GL from the scanning line driving circuit 121 and the scanning line driving circuit 122, the supply capability of the selection signal to the wiring GL can be increased.
なお、図3(A)では、走査線駆動回路122を表示部110と共通線駆動回路141の間に設けているが、共通線駆動回路141を表示部110と走査線駆動回路122の間に設けてもよい。また、共通線駆動回路141が走査線駆動回路122の機能を有していてもよい。また、走査線駆動回路122が共通線駆動回路141の機能を有していてもよい。 3A, the scan line driver circuit 122 is provided between the display portion 110 and the common line driver circuit 141; however, the common line driver circuit 141 is provided between the display portion 110 and the scan line driver circuit 122. It may be provided. Further, the common line driver circuit 141 may have the function of the scanning line driver circuit 122. Further, the scan line driver circuit 122 may have the function of the common line driver circuit 141.
《変形例2》
図3(B)は、表示装置100Bの構成例を説明するためのブロック図である。表示装置100Bは、表示装置Aの構成に加えて、表示部110を挟んで共通線駆動回路141と向かい合う位置に共通線駆動回路142を有する。また、配線COMの一端は共通線駆動回路141と電気的に接続され、配線COMの他端は共通線駆動回路142と電気的に接続される。共通線駆動回路142は、共通線駆動回路141と同様の機能を有する。同じ配線COMに、共通線駆動回路141および共通線駆動回路142から同時に共通電位信号を供給することで、配線COMへの共通電位信号の供給能力を高めることができる。
<< Modification 2 >>
FIG. 3B is a block diagram for describing a configuration example of the display device 100B. In addition to the configuration of the display device A, the display device 100B includes a common line drive circuit 142 at a position facing the common line drive circuit 141 with the display unit 110 interposed therebetween. In addition, one end of the wiring COM is electrically connected to the common line driving circuit 141, and the other end of the wiring COM is electrically connected to the common line driving circuit 142. The common line drive circuit 142 has the same function as the common line drive circuit 141. By supplying a common potential signal to the same wiring COM from the common line driving circuit 141 and the common line driving circuit 142 at the same time, the common potential signal supply capability to the wiring COM can be increased.
なお、図3(B)では、走査線駆動回路121を表示部110と共通線駆動回路142の間に設けているが、共通線駆動回路142を表示部110と走査線駆動回路121の間に設けてもよい。また、共通線駆動回路142が走査線駆動回路121の機能を有していてもよい。また、走査線駆動回路121が共通線駆動回路142の機能を有していてもよい。 3B, the scan line driver circuit 121 is provided between the display portion 110 and the common line drive circuit 142; however, the common line drive circuit 142 is provided between the display portion 110 and the scan line drive circuit 121. It may be provided. Further, the common line driver circuit 142 may have the function of the scan line driver circuit 121. Further, the scan line driver circuit 121 may have the function of the common line driver circuit 142.
《変形例3》
図4(A)は、表示装置100Cの構成例を説明するためのブロック図である。表示装置100Cは、表示部110を上下に分割した構成を有する。図4(A)では、表示部110の上側(走査方向の上流側)を表示部110a、表示部110の下側(走査方向の下流側)を表示部110bと示している。
<< Modification 3 >>
FIG. 4A is a block diagram for describing a configuration example of the display device 100C. The display device 100C has a configuration in which the display unit 110 is vertically divided. In FIG. 4A, the upper side (upstream side in the scanning direction) of the display unit 110 is shown as a display unit 110a, and the lower side (downstream side in the scanning direction) of the display unit 110 is shown as a display unit 110b.
表示装置100Cは、n本の配線SLaと、n本の配線SLbと、を有する。n本の配線SLaのそれぞれは、走査方向(列方向)に延在し、表示部110aにおいて列方向に並ぶ複数の画素111と電気的に接続する。また、n本の配線SLbのそれぞれは、走査方向(列方向)に延在し、表示部110bにおいて列方向に並ぶ複数の画素111と電気的に接続する。配線SLaおよび配線SLbは、配線SLと同様の機能および構造を有する。すなわち、表示装置100Cは、配線SLを配線SLaと配線SLbに分割した構成を有する。 The display device 100C includes n wirings SLa and n wirings SLb. Each of the n wirings SLa extends in the scanning direction (column direction) and is electrically connected to the plurality of pixels 111 arranged in the column direction in the display portion 110a. Each of the n wirings SLb extends in the scanning direction (column direction) and is electrically connected to the plurality of pixels 111 arranged in the column direction in the display portion 110b. The wiring SLa and the wiring SLb have the same function and structure as the wiring SL. That is, the display device 100C has a structure in which the wiring SL is divided into the wiring SLa and the wiring SLb.
走査方向の上流側の配線GLと走査方向の上流側の配線COMは表示部110aと電気的に接続される。走査方向の下流側の配線GLと走査方向の下流側の配線COMは表示部110bと電気的に接続される。 The upstream line GL in the scanning direction and the upstream line COM in the scanning direction are electrically connected to the display unit 110a. The downstream wiring GL in the scanning direction and the downstream wiring COM in the scanning direction are electrically connected to the display unit 110b.
図4(A)では、表示部110aにおいて1列目の画素111と電気的に接続する配線SLaを配線SLa[1]と示している。また、j列目の画素111と電気的に接続する配線SLaを配線SLa[j]と示している。また、n列目の画素111と電気的に接続する配線SLaを配線SLa[n]と示している。 In FIG. 4A, the wiring SLa electrically connected to the pixel 111 in the first column in the display portion 110a is illustrated as a wiring SLa [1]. A wiring SLa electrically connected to the pixel 111 in the j-th column is denoted as a wiring SLa [j]. A wiring SLa electrically connected to the pixel 111 in the n-th column is denoted as a wiring SLa [n].
また、表示部110bにおいて1列目の画素111と電気的に接続する配線SLbを配線SLb[1]と示している。また、j列目の画素111と電気的に接続する配線SLbを配線SLb[j]と示している。また、n列目の画素111と電気的に接続する配線SLbを配線SLb[n]と示している。また、配線SLaの一端は信号線駆動回路131と電気的に接続され、配線SLbの一端は信号線駆動回路132と電気的に接続される。 In addition, the wiring SLb electrically connected to the pixel 111 in the first column in the display portion 110b is denoted as a wiring SLb [1]. A wiring SLb electrically connected to the pixel 111 in the j-th column is denoted as a wiring SLb [j]. A wiring SLb electrically connected to the pixel 111 in the n-th column is denoted as a wiring SLb [n]. One end of the wiring SLa is electrically connected to the signal line driver circuit 131, and one end of the wiring SLb is electrically connected to the signal line driver circuit 132.
配線SLを、配線SLaと配線SLbに2分割することで、配線1本あたりの配線抵抗と寄生容量をそれぞれ1/2とすることができる。よって、ビデオ信号の遅延やなまりに与える影響(時定数)を1/4に低減することができる。すなわち、表示装置の表示品位を高めることができる。また、ビデオ信号を画素111に書き込む時間を短くすることができるため、フレーム周波数を高めることができる。また、信号線駆動回路の出力負荷が軽減されるため、表示装置の信頼性を高めることができる。 By dividing the wiring SL into the wiring SLa and the wiring SLb, the wiring resistance and parasitic capacitance per wiring can be halved. Therefore, the influence (time constant) on the delay and rounding of the video signal can be reduced to ¼. That is, the display quality of the display device can be improved. In addition, since the time for writing the video signal to the pixel 111 can be shortened, the frame frequency can be increased. In addition, since the output load of the signal line driver circuit is reduced, the reliability of the display device can be increased.
《変形例4》
図4(B)は、表示装置100Dの構成例を説明するためのブロック図である。表示装置100Dは、表示装置100Cを変形した構成を有する。表示装置100Dは、走査線駆動回路121a、走査線駆動回路121b、共通線駆動回路141a、および共通線駆動回路141bを有する。走査線駆動回路121aおよび走査線駆動回路121bは、走査線駆動回路121と同様の機能を有する。共通線駆動回路141aおよび共通線駆動回路141bは、共通線駆動回路141と同様の機能を有する。
<< Modification 4 >>
FIG. 4B is a block diagram for describing a configuration example of the display device 100D. The display device 100D has a configuration obtained by modifying the display device 100C. The display device 100D includes a scanning line driving circuit 121a, a scanning line driving circuit 121b, a common line driving circuit 141a, and a common line driving circuit 141b. The scan line driver circuit 121 a and the scan line driver circuit 121 b have the same functions as the scan line driver circuit 121. The common line drive circuit 141a and the common line drive circuit 141b have the same functions as the common line drive circuit 141.
また、表示装置100Dは、m本の配線GLa、m本の配線GLb、m+1本の配線COMa、およびm+1本の配線COMbを有する。配線GLaおよび配線GLbは、配線GLと同様の機能および構造を有する。配線COMaおよび配線COMbは、配線COMと同様の機能および構造を有する。 The display device 100D includes m wirings GLa, m wirings GLb, m + 1 wirings COMa, and m + 1 wirings COMb. The wiring GLa and the wiring GLb have the same function and structure as the wiring GL. The wiring COMa and the wiring COMb have the same function and structure as the wiring COM.
m本の配線GLaのそれぞれは行方向に延在し、表示部110aにおいて行方向に並ぶ複数の画素111と電気的に接続する。配線GLaの一端は走査線駆動回路121aと電気的に接続される。表示部110aにおいて1行目の画素111と電気的に接続する配線GLaを配線GLa[1]と示し、m行目の画素111と電気的に接続する配線GLaを配線GLa[m]と示している。走査線駆動回路121aは、配線GLa[1]から配線GLa[m]まで順に選択信号を供給する機能を有する。 Each of the m wirings GLa extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display portion 110a. One end of the wiring GLa is electrically connected to the scan line driver circuit 121a. In the display portion 110a, the wiring GLa electrically connected to the pixel 111 in the first row is denoted as wiring GLa [1], and the wiring GLa electrically connected to the pixel 111 in the mth row is denoted as wiring GLa [m]. Yes. The scan line driver circuit 121a has a function of sequentially supplying a selection signal from the wiring GLa [1] to the wiring GLa [m].
m本の配線GLbのそれぞれは行方向に延在し、表示部110bにおいて行方向に並ぶ複数の画素111と電気的に接続する。配線GLbの一端は走査線駆動回路121bと電気的に接続される。表示部110bにおいて1行目の画素111と電気的に接続する配線GLbを配線GLb[1]と示し、m行目の画素111と電気的に接続する配線GLbを配線GLb[m]と示している。走査線駆動回路121bは、配線GLb[1]から配線GLb[m]まで順に選択信号を供給する機能を有する。 Each of the m wirings GLb extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display portion 110b. One end of the wiring GLb is electrically connected to the scan line driver circuit 121b. In the display portion 110b, the wiring GLb electrically connected to the pixel 111 in the first row is denoted as a wiring GLb [1], and the wiring GLb electrically connected to the pixel 111 in the m-th row is denoted as a wiring GLb [m]. Yes. The scan line driver circuit 121b has a function of sequentially supplying a selection signal from the wiring GLb [1] to the wiring GLb [m].
m+1本の配線COMaのそれぞれは行方向に延在し、表示部110aにおいて行方向に並ぶ複数の画素111と電気的に接続する。配線COMaの一端は共通線駆動回路141aと電気的に接続される。表示部110aにおいて1本目の配線COMaを配線COMa[1]と示し、m+1本目の配線COMaを配線COMa[m+1]と示している。共通線駆動回路141aは、配線COMa[1]から配線COMa[m+1]まで順に選択信号を供給する機能を有する。 Each of the m + 1 wirings COMa extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display portion 110a. One end of the wiring COMa is electrically connected to the common line driving circuit 141a. In the display portion 110a, the first wiring COMa is denoted as wiring COMa [1], and the (m + 1) th wiring COMa is denoted as wiring COMa [m + 1]. The common line driver circuit 141a has a function of sequentially supplying a selection signal from the wiring COMa [1] to the wiring COMa [m + 1].
m+1本の配線COMbのそれぞれは行方向に延在し、表示部110bにおいて行方向に並ぶ複数の画素111と電気的に接続する。配線COMbの一端は共通線駆動回路141bと電気的に接続される。表示部110bにおいて1本目の配線COMbを配線COMb[1]と示し、m+1本目の配線COMbを配線COMb[m+1]と示している。共通線駆動回路141bは、配線COMb[1]から配線COMb[m+1]まで順に選択信号を供給する機能を有する。 Each of the m + 1 wirings COMb extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display unit 110b. One end of the wiring COMb is electrically connected to the common line driving circuit 141b. In the display portion 110b, the first wiring COMb is denoted as wiring COMb [1], and the (m + 1) th wiring COMb is denoted as wiring COMb [m + 1]. The common line driver circuit 141b has a function of sequentially supplying a selection signal from the wiring COMb [1] to the wiring COMb [m + 1].
表示部110aに対して走査線駆動回路121aおよび共通線駆動回路141aを設け、表示部110bに対して走査線駆動回路121bおよび共通線駆動回路141bを設けることで、表示部110aと表示部110bを独立して動作させることができる。また、表示部110aが有する画素111と表示部110bが有する画素111に、ビデオ信号を同時に書き込むことができるため、表示部110全体のフレーム周波数を高めることができる。 The display portion 110a and the common line drive circuit 141a are provided for the display portion 110a, and the scan line drive circuit 121b and the common line drive circuit 141b are provided for the display portion 110b, whereby the display portion 110a and the display portion 110b are provided. It can be operated independently. In addition, since video signals can be simultaneously written into the pixel 111 included in the display portion 110a and the pixel 111 included in the display portion 110b, the frame frequency of the entire display portion 110 can be increased.
《変形例5》
図5(A)は、表示装置100Eの構成例を説明するためのブロック図である。表示装置100Eは、表示装置100Bを変形した構成を有する。表示装置100Eは、表示部110を左右に分割した構成を有する。図5(A)では、表示部110の左側(走査線駆動回路121側)を表示部110a、表示部110の右側(走査線駆動回路122側)を表示部110bと示している。
<< Modification 5 >>
FIG. 5A is a block diagram for describing a configuration example of the display device 100E. The display device 100E has a configuration obtained by modifying the display device 100B. The display device 100E has a configuration in which the display unit 110 is divided into left and right. In FIG. 5A, the left side (scanning line driver circuit 121 side) of the display portion 110 is indicated as a display portion 110a, and the right side of the display portion 110 (scanning line driver circuit 122 side) is indicated as a display portion 110b.
また、表示装置100Eは、m本の配線GLa、m本の配線GLb、m+1本の配線COMa、およびm+1本の配線COMbを有する。 The display device 100E includes m wirings GLa, m wirings GLb, m + 1 wirings COMa, and m + 1 wirings COMb.
m本の配線GLaのそれぞれは行方向に延在し、表示部110aにおいて行方向に並ぶ複数の画素111と電気的に接続する。配線GLaの一端は走査線駆動回路121と電気的に接続される。走査線駆動回路121は、配線GLa[1]から配線GLa[m]まで順に選択信号を供給する機能を有する。 Each of the m wirings GLa extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display portion 110a. One end of the wiring GLa is electrically connected to the scan line driver circuit 121. The scan line driver circuit 121 has a function of sequentially supplying a selection signal from the wiring GLa [1] to the wiring GLa [m].
m本の配線GLbのそれぞれは行方向に延在し、表示部110bにおいて行方向に並ぶ複数の画素111と電気的に接続する。配線GLbの一端は走査線駆動回路122と電気的に接続される。走査線駆動回路122は、配線GLb[1]から配線GLb[m]まで順に選択信号を供給する機能を有する。 Each of the m wirings GLb extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display portion 110b. One end of the wiring GLb is electrically connected to the scan line driver circuit 122. The scan line driver circuit 122 has a function of sequentially supplying a selection signal from the wiring GLb [1] to the wiring GLb [m].
m+1本の配線COMaのそれぞれは行方向に延在し、表示部110aにおいて行方向に並ぶ複数の画素111と電気的に接続する。配線COMaの一端は共通線駆動回路142と電気的に接続される。共通線駆動回路142は、配線COMa[1]から配線COMa[m+1]まで順に選択信号を供給する機能を有する。 Each of the m + 1 wirings COMa extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display portion 110a. One end of the wiring COMa is electrically connected to the common line driving circuit 142. The common line driver circuit 142 has a function of sequentially supplying a selection signal from the wiring COMa [1] to the wiring COMa [m + 1].
m+1本の配線COMbのそれぞれは行方向に延在し、表示部110bにおいて行方向に並ぶ複数の画素111と電気的に接続する。配線COMbの一端は共通線駆動回路141と電気的に接続される。共通線駆動回路141は、配線COMb[1]から配線COMb[m+1]まで順に選択信号を供給する機能を有する。 Each of the m + 1 wirings COMb extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display unit 110b. One end of the wiring COMb is electrically connected to the common line driving circuit 141. The common line driver circuit 141 has a function of sequentially supplying a selection signal from the wiring COMb [1] to the wiring COMb [m + 1].
配線GLaおよび配線GLbは、配線GLと同様の機能および構造を有する。すなわち、表示装置100Eは、配線GLを配線GLaと配線GLbに分割した構成を有する。 The wiring GLa and the wiring GLb have the same function and structure as the wiring GL. That is, the display device 100E has a configuration in which the wiring GL is divided into the wiring GLa and the wiring GLb.
配線COMaおよび配線COMbは、配線COMと同様の機能および構造を有する。すなわち、表示装置100Eは、配線COMを配線COMaと配線COMbに分割した構成を有する。 The wiring COMa and the wiring COMb have the same function and structure as the wiring COM. That is, the display device 100E has a configuration in which the wiring COM is divided into the wiring COMa and the wiring COMb.
配線GLを、配線GLaと配線GLbに2分割することで、配線1本あたりの配線抵抗と寄生容量をそれぞれ1/2とすることができる。配線COMを、配線COMaと配線COMbに2分割することで、配線1本あたりの配線抵抗と寄生容量をそれぞれ1/2とすることができる。よって、信号の遅延やなまりに与える影響(時定数)を1/4に低減することができる。すなわち、表示装置の表示品位を高めることができる。また、フレーム周波数を高めることができる。また、走査線駆動回路および共通線駆動回路の出力負荷が軽減されるため、表示装置の信頼性を高めることができる。 By dividing the wiring GL into the wiring GLa and the wiring GLb, the wiring resistance and the parasitic capacitance per wiring can be halved. By dividing the wiring COM into the wiring COMa and the wiring COMb, the wiring resistance and parasitic capacitance per wiring can be halved. Therefore, the influence (time constant) on signal delay and rounding can be reduced to ¼. That is, the display quality of the display device can be improved. In addition, the frame frequency can be increased. In addition, since the output load of the scan line driver circuit and the common line driver circuit is reduced, the reliability of the display device can be increased.
《変形例6》
図5(B)は、表示装置100Fの構成例を説明するためのブロック図である。表示装置100Fは、表示装置100Eを変形した構成を有する。
<< Modification 6 >>
FIG. 5B is a block diagram for describing a configuration example of the display device 100F. The display device 100F has a configuration obtained by modifying the display device 100E.
表示装置100Fは信号線駆動回路131a、信号線駆動回路131b、信号線駆動回路132a、および信号線駆動回路132bを有する。信号線駆動回路131aおよび信号線駆動回路131bは、信号線駆動回路131と同様の機能を有する。信号線駆動回路132aおよび信号線駆動回路132bは、信号線駆動回路132と同様の機能を有する。 The display device 100F includes a signal line driver circuit 131a, a signal line driver circuit 131b, a signal line driver circuit 132a, and a signal line driver circuit 132b. The signal line driver circuit 131a and the signal line driver circuit 131b have the same functions as the signal line driver circuit 131. The signal line driver circuit 132 a and the signal line driver circuit 132 b have the same functions as the signal line driver circuit 132.
表示装置100Fは、n本の配線SLaおよびn本の配線SLbを有する。n本の配線SLaのそれぞれは、走査方向(列方向)に延在し、表示部110aにおいて列方向に並ぶ複数の画素111と電気的に接続する。また、配線SLaの一端は信号線駆動回路131aと電気的に接続され、他端は信号線駆動回路132aと電気的に接続される。 The display device 100F includes n wirings SLa and n wirings SLb. Each of the n wirings SLa extends in the scanning direction (column direction) and is electrically connected to the plurality of pixels 111 arranged in the column direction in the display portion 110a. In addition, one end of the wiring SLa is electrically connected to the signal line driver circuit 131a, and the other end is electrically connected to the signal line driver circuit 132a.
また、n本の配線SLbのそれぞれは、走査方向(列方向)に延在し、表示部110bにおいて列方向に並ぶ複数の画素111と電気的に接続する。また、配線SLbの一端は信号線駆動回路131bと電気的に接続され、他端は信号線駆動回路132bと電気的に接続される。配線SLaおよび配線SLbは、配線SLと同様の機能および構造を有する。 Each of the n wirings SLb extends in the scanning direction (column direction) and is electrically connected to the plurality of pixels 111 arranged in the column direction in the display portion 110b. One end of the wiring SLb is electrically connected to the signal line driver circuit 131b, and the other end is electrically connected to the signal line driver circuit 132b. The wiring SLa and the wiring SLb have the same function and structure as the wiring SL.
表示部110aに対して信号線駆動回路131aおよび信号線駆動回路132aを設け、表示部110bに対して信号線駆動回路131bおよび信号線駆動回路132bを設けることで、表示部110aと表示部110bを独立して動作させることができる。また、表示部110aが有する画素111と表示部110bが有する画素111に、ビデオ信号を同時に書き込むことができるため、表示部110全体のフレーム周波数を高めることができる。 The signal line driver circuit 131a and the signal line driver circuit 132a are provided for the display portion 110a, and the signal line driver circuit 131b and the signal line driver circuit 132b are provided for the display portion 110b, whereby the display portion 110a and the display portion 110b are provided. It can be operated independently. In addition, since video signals can be simultaneously written into the pixel 111 included in the display portion 110a and the pixel 111 included in the display portion 110b, the frame frequency of the entire display portion 110 can be increased.
《変形例7》
図6(A)は、表示装置100Gの構成例を説明するためのブロック図である。表示装置100Gは、表示装置100Fを変形した構成を有する。表示装置100Gは、表示部110a、表示部110b、表示部110c、および表示部110dを有する。表示装置100Gは、表示装置100Fにおける表示部110aと表示部110bを、それぞれ上下に2分割した構造を有する。
<< Modification 7 >>
FIG. 6A is a block diagram for describing a configuration example of the display device 100G. The display device 100G has a configuration obtained by modifying the display device 100F. The display device 100G includes a display unit 110a, a display unit 110b, a display unit 110c, and a display unit 110d. The display device 100G has a structure in which the display unit 110a and the display unit 110b in the display device 100F are vertically divided into two.
走査方向の上流側の配線GLaと走査方向の上流側の配線COMaは、表示部110aにおいて行方向に並ぶ複数の画素111と電気的に接続される。走査方向の下流側の配線GLaと走査方向の下流側の配線COMaは、表示部110cにおいて行方向に並ぶ複数の画素111と電気的に接続される。走査方向の上流側の配線GLbと走査方向の上流側の配線COMbは、表示部110bにおいて行方向に並ぶ複数の画素111と電気的に接続される。走査方向の下流側の配線GLbと走査方向の下流側の配線COMbは、表示部110dにおいて行方向に並ぶ複数の画素111と電気的に接続される。 The upstream wiring GLa in the scanning direction and the upstream wiring COMa in the scanning direction are electrically connected to the plurality of pixels 111 arranged in the row direction in the display portion 110a. The wiring GLa on the downstream side in the scanning direction and the wiring COMa on the downstream side in the scanning direction are electrically connected to the plurality of pixels 111 arranged in the row direction in the display unit 110c. The upstream wiring GLb in the scanning direction and the upstream wiring COMb in the scanning direction are electrically connected to the plurality of pixels 111 arranged in the row direction in the display unit 110b. The downstream wiring GLb in the scanning direction and the downstream wiring COMb in the scanning direction are electrically connected to the plurality of pixels 111 arranged in the row direction in the display unit 110d.
また、表示装置100Gは、n本の配線SLa、n本の配線SLb、n本の配線SLc、およびn本の配線SLdを有する。配線SLa、配線SLb、配線SLc、および配線SLdは、配線SLと同様の機能および構造を有する。すなわち、表示装置100Gは、配線SLを配線SLaと配線SLcに分割した構成を有する。また、表示装置100Gは、配線SLを配線SLbと配線SLdに分割した構成を有する。 The display device 100G includes n wirings SLa, n wirings SLb, n wirings SLc, and n wirings SLd. The wiring SLa, the wiring SLb, the wiring SLc, and the wiring SLd have functions and structures similar to those of the wiring SL. That is, the display device 100G has a structure in which the wiring SL is divided into the wiring SLa and the wiring SLc. In addition, the display device 100G has a structure in which the wiring SL is divided into a wiring SLb and a wiring SLd.
n本の配線SLaのそれぞれは、走査方向(列方向)に延在し、表示部110aにおいて列方向に並ぶ複数の画素111と電気的に接続する。また、n本の配線SLbのそれぞれは、走査方向(列方向)に延在し、表示部110bにおいて列方向に並ぶ複数の画素111と電気的に接続する。また、n本の配線SLcのそれぞれは、走査方向(列方向)に延在し、表示部110cにおいて列方向に並ぶ複数の画素111と電気的に接続する。また、n本の配線SLdのそれぞれは、走査方向(列方向)に延在し、表示部110dにおいて列方向に並ぶ複数の画素111と電気的に接続する。 Each of the n wirings SLa extends in the scanning direction (column direction) and is electrically connected to the plurality of pixels 111 arranged in the column direction in the display portion 110a. Each of the n wirings SLb extends in the scanning direction (column direction) and is electrically connected to the plurality of pixels 111 arranged in the column direction in the display portion 110b. Each of the n wirings SLc extends in the scanning direction (column direction) and is electrically connected to the plurality of pixels 111 arranged in the column direction in the display portion 110c. Each of the n wirings SLd extends in the scanning direction (column direction) and is electrically connected to the plurality of pixels 111 arranged in the column direction in the display portion 110d.
また、配線SLaの一端は信号線駆動回路131aと電気的に接続される。配線SLbの一端は信号線駆動回路131bと電気的に接続される。配線SLcの一端は信号線駆動回路132aと電気的に接続される。配線SLdの一端は信号線駆動回路132bと電気的に接続される。 One end of the wiring SLa is electrically connected to the signal line driver circuit 131a. One end of the wiring SLb is electrically connected to the signal line driver circuit 131b. One end of the wiring SLc is electrically connected to the signal line driver circuit 132a. One end of the wiring SLd is electrically connected to the signal line driver circuit 132b.
配線SLを、配線SLaと配線SLcに2分割することで、配線1本あたりの配線抵抗と寄生容量をそれぞれ1/2とすることができる。また、配線SLを、配線SLbと配線SLdに2分割することで、配線1本あたりの配線抵抗と寄生容量をそれぞれ1/2とすることができる。よって、ビデオ信号の遅延やなまりに与える影響(時定数)を1/4に低減することができる。すなわち、表示装置の表示品位を高めることができる。また、ビデオ信号を画素111に書き込む時間を短くすることができるため、フレーム周波数を高めることができる。また、信号線駆動回路の出力負荷が軽減されるため、表示装置の信頼性を高めることができる。 By dividing the wiring SL into the wiring SLa and the wiring SLc, the wiring resistance and parasitic capacitance per wiring can be halved. Further, by dividing the wiring SL into the wiring SLb and the wiring SLd, the wiring resistance and parasitic capacitance per wiring can be halved. Therefore, the influence (time constant) on the delay and rounding of the video signal can be reduced to ¼. That is, the display quality of the display device can be improved. In addition, since the time for writing the video signal to the pixel 111 can be shortened, the frame frequency can be increased. In addition, since the output load of the signal line driver circuit is reduced, the reliability of the display device can be increased.
《変形例8》
図6(B)は、表示装置100Hの構成例を説明するためのブロック図である。表示装置100Hは、表示装置100Gを変形した構成を有する。
<< Modification 8 >>
FIG. 6B is a block diagram for describing a configuration example of the display device 100H. The display device 100H has a configuration obtained by modifying the display device 100G.
表示装置100Hは、走査線駆動回路121a、走査線駆動回路121b、走査線駆動回路122a、走査線駆動回路122b、共通線駆動回路141a、共通線駆動回路141b、共通線駆動回路142a、および共通線駆動回路142bを有する。走査線駆動回路121aおよび走査線駆動回路121bは、走査線駆動回路121と同様の機能を有する。走査線駆動回路122aおよび走査線駆動回路122bは、走査線駆動回路122と同様の機能を有する。共通線駆動回路141aおよび共通線駆動回路141bは、共通線駆動回路141と同様の機能を有する。共通線駆動回路142aおよび共通線駆動回路142bは、共通線駆動回路142と同様の機能を有する。 The display device 100H includes a scan line driver circuit 121a, a scan line driver circuit 121b, a scan line driver circuit 122a, a scan line driver circuit 122b, a common line driver circuit 141a, a common line driver circuit 141b, a common line driver circuit 142a, and a common line. A driving circuit 142b is included. The scan line driver circuit 121 a and the scan line driver circuit 121 b have the same functions as the scan line driver circuit 121. The scan line driver circuit 122 a and the scan line driver circuit 122 b have the same functions as the scan line driver circuit 122. The common line drive circuit 141a and the common line drive circuit 141b have the same functions as the common line drive circuit 141. The common line drive circuit 142 a and the common line drive circuit 142 b have the same functions as the common line drive circuit 142.
また、表示装置100Hは、m本の配線GLa、m本の配線GLb、m本の配線GLc、m本の配線GLd、m+1本の配線COMa、m+1本の配線COMb、m+1本の配線COMc、およびm+1本の配線COMdを有する。配線GLa、配線GLb、配線GLc、および配線GLdは、配線GLと同様の機能および構造を有する。配線COMaおよび配線COMbは、配線COMと同様の機能および構造を有する。 Further, the display device 100H includes m wirings GLa, m wirings GLb, m wirings GLc, m wirings GLd, m + 1 wirings COMa, m + 1 wirings COMb, m + 1 wirings COMc, and It has m + 1 wirings COMd. The wiring GLa, the wiring GLb, the wiring GLc, and the wiring GLd have the same function and structure as the wiring GL. The wiring COMa and the wiring COMb have the same function and structure as the wiring COM.
m本の配線GLaおよびm+1本の配線COMaのそれぞれは、行方向に延在し、表示部110aにおいて行方向に並ぶ複数の画素111と電気的に接続する。配線GLaの一端は走査線駆動回路121aと電気的に接続される。配線COMaの一端は共通線駆動回路142aと電気的に接続される。 Each of the m wirings GLa and the m + 1 wirings COMa extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display portion 110a. One end of the wiring GLa is electrically connected to the scan line driver circuit 121a. One end of the wiring COMa is electrically connected to the common line driving circuit 142a.
m本の配線GLbおよびm+1本の配線COMbのそれぞれは、行方向に延在し、表示部110bにおいて行方向に並ぶ複数の画素111と電気的に接続する。配線GLbの一端は走査線駆動回路122aと電気的に接続される。配線COMbの一端は共通線駆動回路141aと電気的に接続される。 Each of the m wirings GLb and the m + 1 wirings COMb extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display unit 110b. One end of the wiring GLb is electrically connected to the scan line driver circuit 122a. One end of the wiring COMb is electrically connected to the common line driving circuit 141a.
m本の配線GLcおよびm+1本の配線COMcのそれぞれは、行方向に延在し、表示部110cにおいて行方向に並ぶ複数の画素111と電気的に接続する。配線GLcの一端は走査線駆動回路121bと電気的に接続される。配線COMcの一端は共通線駆動回路142bと電気的に接続される。 Each of the m wirings GLc and the m + 1 wirings COMc extends in the row direction, and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display unit 110c. One end of the wiring GLc is electrically connected to the scan line driver circuit 121b. One end of the wiring COMc is electrically connected to the common line driving circuit 142b.
m本の配線GLdおよびm+1本の配線COMdのそれぞれは、行方向に延在し、表示部110dにおいて行方向に並ぶ複数の画素111と電気的に接続する。配線GLdの一端は走査線駆動回路122bと電気的に接続される。配線COMdの一端は共通線駆動回路141bと電気的に接続される。 Each of the m wirings GLd and the m + 1 wirings COMd extends in the row direction and is electrically connected to the plurality of pixels 111 arranged in the row direction in the display unit 110d. One end of the wiring GLd is electrically connected to the scan line driver circuit 122b. One end of the wiring COMd is electrically connected to the common line driving circuit 141b.
表示部110aに対して走査線駆動回路121aおよび共通線駆動回路142aを設け、表示部110bに対して走査線駆動回路122aおよび共通線駆動回路141aを設け、表示部110cに対して走査線駆動回路121bおよび共通線駆動回路142bを設け、表示部110dに対して走査線駆動回路122bおよび共通線駆動回路141bを設け、ることで、表示部110a、表示部110b、表示部110cおよび、表示部110dを独立して動作させることができる。また、表示部110a、表示部110b、表示部110cおよび、表示部110dが有するそれぞれの画素111にビデオ信号を同時に書き込むことができるため、表示部110全体のフレーム周波数を高めることができる。 A scanning line driving circuit 121a and a common line driving circuit 142a are provided for the display portion 110a, a scanning line driving circuit 122a and a common line driving circuit 141a are provided for the display portion 110b, and a scanning line driving circuit is provided for the display portion 110c. 121b and a common line driving circuit 142b are provided, and a scanning line driving circuit 122b and a common line driving circuit 141b are provided for the display portion 110d, whereby the display portion 110a, the display portion 110b, the display portion 110c, and the display portion 110d are provided. Can be operated independently. In addition, since video signals can be simultaneously written in the pixels 111 included in the display portion 110a, the display portion 110b, the display portion 110c, and the display portion 110d, the frame frequency of the entire display portion 110 can be increased.
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。 This embodiment can be implemented in appropriate combination with the structures described in the other embodiments.
(実施の形態2)
本実施の形態では、表示装置100の駆動方法例について図面を用いて説明する。一例として、表示素子として液晶素子を用いた液晶表示装置の駆動方法例について説明する。
(Embodiment 2)
In this embodiment, an example of a method for driving the display device 100 will be described with reference to drawings. As an example, a driving method example of a liquid crystal display device using a liquid crystal element as a display element will be described.
<駆動方法例>
まず、液晶表示装置の一般的な駆動方法例について説明しておく。
<Driving method example>
First, a general driving method example of a liquid crystal display device will be described.
《一般的な駆動方法例》
〔フレーム反転駆動法〕
一般に、液晶素子は、直流電圧を印加し続けると劣化しやすくなる傾向がある。このため、表示素子として液晶素子を用いた表示装置では、1フレーム毎に液晶素子に印加する極性を反転させる駆動方式(「フレーム反転駆動法」ともいう。)が用いられる。例えば、奇数フレームでは全ての画素に正電位の信号を供給し、偶数フレームでは全ての画素に負電位の信号を供給する。なお、極性の反転は1フレーム毎に限らず、用いる液晶素子によって、特定のフレーム数毎に行なってもよい。
《Example of general driving method》
[Frame inversion drive method]
In general, a liquid crystal element tends to be deteriorated when a DC voltage is continuously applied. For this reason, in a display device using a liquid crystal element as a display element, a driving method (also referred to as a “frame inversion driving method”) that reverses the polarity applied to the liquid crystal element for each frame is used. For example, a positive potential signal is supplied to all pixels in an odd frame, and a negative potential signal is supplied to all pixels in an even frame. The polarity inversion is not limited to every frame, but may be performed every specific number of frames depending on the liquid crystal element used.
また、全ての画素に同じ極性の電位を供給するフレーム反転駆動法では、画像表示時にフリッカ、クロストークなどの現象が生じ易く、表示装置の表示品位が低下する場合がある。このような現象を抑えるために、ソースライン反転駆動法、ゲートライン反転駆動法、およびドット反転駆動法などの駆動方式が考案されている。 In addition, in the frame inversion driving method in which potentials of the same polarity are supplied to all pixels, phenomena such as flicker and crosstalk are likely to occur during image display, and the display quality of the display device may deteriorate. In order to suppress such a phenomenon, driving methods such as a source line inversion driving method, a gate line inversion driving method, and a dot inversion driving method have been devised.
〔ソースライン反転駆動法〕
ソースライン反転駆動法(「列反転駆動法」、「カラム反転駆動法」などともいう。)とは、特定のフレーム数毎かつ特定本数の信号線(ソース線)毎に、画素に供給する信号の極性を反転させる駆動方法である。
[Source line inversion drive method]
The source line inversion driving method (also referred to as “column inversion driving method” or “column inversion driving method”) is a signal supplied to a pixel for each specific number of frames and each specific number of signal lines (source lines). This is a driving method for inverting the polarity.
〔ゲートライン反転駆動法〕
ゲートライン反転駆動法(「行反転駆動法」、「ロウ反転駆動法」などともいう。)とは、特定のフレーム数毎かつ特定本数の走査線(ゲート線)毎に、画素に供給する信号の極性を反転させる駆動方法である。
[Gate line inversion drive method]
The gate line inversion driving method (also referred to as “row inversion driving method” or “row inversion driving method”) is a signal supplied to a pixel for each specific number of frames and each specific number of scanning lines (gate lines). This is a driving method for inverting the polarity.
〔ドット反転駆動法〕
ドット反転駆動法(「行反転駆動法」、「ロウ反転駆動法」などともいう。)とは、特定のフレーム数毎かつ、行方向および列方向に隣り合う画素に供給する信号の極性を反転させる駆動方法である。ドット反転駆動法における信号極性の反転は、特定画素数毎に行なうことができる。例えば、1画素毎に供給する信号の極性を反転させてもよいし、複数画素毎に供給する信号の極性を反転させてもよい。
[Dot inversion drive method]
The dot inversion driving method (also referred to as “row inversion driving method”, “row inversion driving method”, etc.) inverts the polarity of signals supplied to adjacent pixels in a specific number of frames and in the row and column directions. This is a driving method. The signal polarity inversion in the dot inversion driving method can be performed for each specific number of pixels. For example, the polarity of a signal supplied for each pixel may be inverted, or the polarity of a signal supplied for each of a plurality of pixels may be inverted.
ドット反転駆動法は、ソースライン反転駆動法およびゲートライン反転駆動法よりもフリッカ、クロストークなどの現象を抑える効果が高い。よって、液晶表示装置の駆動方式としてドット反転駆動法を用いることが多い。 The dot inversion driving method is more effective in suppressing phenomena such as flicker and crosstalk than the source line inversion driving method and the gate line inversion driving method. Therefore, the dot inversion driving method is often used as a driving method for the liquid crystal display device.
〔コモン反転駆動法〕
液晶素子の動作状態は、ノード466に書き込まれるビデオ信号の電圧VSLと配線COMに供給される電圧(「電圧VCOM」または「コモン電圧」ともいう。)との電圧差である電圧VLCにより決定される。表示部110に画像を表示している期間中、電圧VCOMを一定に保つ駆動方法を「コモンDC駆動法」と呼ぶ(図7(A)参照。)。
[Common inversion drive method]
The operation state of the liquid crystal element is a voltage V LC that is a voltage difference between the voltage V SL of the video signal written to the node 466 and the voltage supplied to the wiring COM (also referred to as “voltage V COM ” or “common voltage”). Determined by. A driving method for keeping the voltage V COM constant during a period in which an image is displayed on the display portion 110 is referred to as a “common DC driving method” (see FIG. 7A).
電圧VSLの書き込み時に、電圧VCOMを電圧VSLの反対極性にすることで、電圧VLCを変えずに電圧VSLの振幅を小さくすることができる。よって、周辺駆動回路の出力負荷が低減され、表示装置の消費電力を低減することができる。このような駆動方法は、一般に「コモン反転駆動法」と呼ばれる(図7(B)参照。)。 When writing voltage V SL, by setting the voltage V COM to the opposite polarity of the voltage V SL, it is possible to reduce the amplitude of the voltage V SL without changing the voltage V LC. Therefore, the output load of the peripheral driver circuit is reduced, and the power consumption of the display device can be reduced. Such a driving method is generally called a “common inversion driving method” (see FIG. 7B).
コモン反転駆動法は、前述したフレーム反転駆動法、ソースライン反転駆動法、ゲートライン反転駆動法、またはドット反転駆動法と組み合わせることができる。 The common inversion driving method can be combined with the above-described frame inversion driving method, source line inversion driving method, gate line inversion driving method, or dot inversion driving method.
本発明の一態様の表示装置100では、コモン反転駆動法とドット反転駆動法と組み合わせて用いる。 In the display device 100 of one embodiment of the present invention, the common inversion driving method and the dot inversion driving method are used in combination.
《本発明の一態様の駆動方法例》
本発明の一態様の表示装置100の駆動方法例について説明する。本実施の形態では、表示装置100が、20個の画素111が4行5列のマトリクス状に設けられた表示部110を有する場合について、駆動方法の説明をする。
<< Example of Driving Method of One Embodiment of the Present Invention >>
An example of a method for driving the display device 100 of one embodiment of the present invention is described. In this embodiment, a driving method is described in the case where the display device 100 includes the display portion 110 in which 20 pixels 111 are provided in a matrix of 4 rows and 5 columns.
図8は、駆動方法を説明するためのタイミングチャートである。本実施の形態では、kフレーム目(kは任意の自然数。)とk+1フレーム目を例示して、表示装置100の駆動方法例を説明する。1つのフレームは4つの期間を有する。本実施の形態では、kフレーム目が有する4つの期間を、期間T1乃至期間T4と示す。また、k+1フレーム目が有する4つの期間を、期間T5乃至期間T8と示す。 FIG. 8 is a timing chart for explaining the driving method. In the present embodiment, a driving method example of the display device 100 will be described by illustrating the kth frame (k is an arbitrary natural number) and the (k + 1) th frame. One frame has four periods. In this embodiment, the four periods of the kth frame are denoted as periods T1 to T4. In addition, four periods included in the (k + 1) th frame are denoted as periods T5 to T8.
図9乃至図13は、表示部110の動作状態を期間毎に説明する図である。配線GLにH電位が供給されると、当該配線GLが接続する行において1~5列目の画素111が選択され、それぞれの画素111に配線SLを介してビデオ信号が書き込まれる。配線GLにL電位が供給されると、当該配線GLが接続する行において1~5列目の画素111は非選択となり、ビデオ信号は書き込まれない。 9 to 13 are diagrams illustrating the operation state of the display unit 110 for each period. When an H potential is supplied to the wiring GL, the pixels 111 in the first to fifth columns are selected in the row to which the wiring GL is connected, and a video signal is written to each pixel 111 through the wiring SL. When an L potential is supplied to the wiring GL, the pixels 111 in the first to fifth columns are not selected in the row to which the wiring GL is connected, and a video signal is not written.
図9乃至図13では、H電位が供給される配線GLに「H」を付し、L電位が供給される配線GLに「L」を付している。なお、配線GLに供給される電位に変化があった場合、「H」または「L」を囲み文字としている。また、正極性の電圧が供給されている配線COMに「+」を付し、負極性の電圧が供給されている配線COMに「−」を付している。なお、配線COMに供給される電圧の極性に変化があった場合、「+」または「−」を囲み文字としている。 9 to 13, “H” is attached to the wiring GL to which the H potential is supplied, and “L” is attached to the wiring GL to which the L potential is supplied. When there is a change in the potential supplied to the wiring GL, “H” or “L” is used as an enclosing character. Further, “+” is attached to the wiring COM to which the positive voltage is supplied, and “−” is attached to the wiring COM to which the negative voltage is supplied. When there is a change in the polarity of the voltage supplied to the wiring COM, “+” or “−” is enclosed.
また、図9乃至図13では、ビデオ信号が供給された画素111にハッチングを付している。また、正極性のビデオ信号が供給された画素111に「+」を付し、負極性のビデオ信号が供給された画素111に「−」を付している。 In FIGS. 9 to 13, the pixel 111 to which the video signal is supplied is hatched. Further, “+” is added to the pixel 111 supplied with the positive video signal, and “−” is added to the pixel 111 supplied with the negative video signal.
初期状態として、期間T0において、奇数行奇数列の画素111に正極性のビデオ信号が書き込まれ、偶数行偶数列の画素111に負極性のビデオ信号が書き込まれているものとする。また、配線GL[1]乃至配線GL[3]にL電位が供給され、配線GL[4]にH電位が供給されているものとする。また、配線COM[1]および配線COM[4]に正極性の電圧が供給され、配線COM[2]、配線COM[3]、および配線COM[5]に負極性の電圧が供給されているものとする。 As an initial state, it is assumed that a positive video signal is written to the odd-numbered and odd-numbered pixels 111 and a negative-polarity video signal is written to the even-numbered and even-numbered pixels 111 in the period T0. Further, it is assumed that the L potential is supplied to the wirings GL [1] to GL [3] and the H potential is supplied to the wiring GL [4]. Further, a positive voltage is supplied to the wiring COM [1] and the wiring COM [4], and a negative voltage is supplied to the wiring COM [2], the wiring COM [3], and the wiring COM [5]. Shall.
まず、kフレーム目の画素111の書き換え動作について説明する。 First, the rewriting operation of the pixel 111 in the kth frame will be described.
〔期間T1〕
期間T1において、配線GL[4]にL電位が供給され、配線GL[1]にH電位が供給される(図9(A)参照。)。すると、1行1列目~1行5列目の画素111が選択され、配線SLを介してそれぞれの画素111にビデオ信号が書き込まれる。期間T1では、1行奇数列の画素111に負極性のビデオ信号が書き込まれ、1行偶数列の画素111に正極性のビデオ信号が書き込まれる。また、配線COM[3]に正極性の電圧(コモン電圧)が供給される。
[Period T1]
In the period T1, the L potential is supplied to the wiring GL [4] and the H potential is supplied to the wiring GL [1] (see FIG. 9A). Then, the pixels 111 in the first row and first column to the first row and fifth column are selected, and a video signal is written to each pixel 111 through the wiring SL. In the period T1, a negative video signal is written to the pixels 111 in the first row and odd columns, and a positive video signal is written to the pixels 111 in the first row and even columns. Further, a positive voltage (common voltage) is supplied to the wiring COM [3].
1行奇数列の画素111は、正極性の電圧が供給されている配線COM[1]と電気的に接続され、1行偶数列の画素111は、負極性の電圧が供給されている配線COM[2]と電気的に接続されている。配線COM[1]と配線COM[2]には、1行目の画素111に書き込まれるビデオ信号の極性とは反対の極性の電圧が供給される。よって、それぞれの画素111に書き込むビデオ信号の振幅を低減することができる。 The pixels 111 in the first row and odd columns are electrically connected to the wiring COM [1] to which a positive voltage is supplied, and the pixels 111 in the first row and even columns are connected to the wiring COM to which a negative voltage is supplied. [2] is electrically connected. A voltage having a polarity opposite to the polarity of the video signal written to the pixel 111 in the first row is supplied to the wiring COM [1] and the wiring COM [2]. Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
〔期間T2〕
期間T2において、配線GL[1]にL電位が供給され、配線GL[2]にH電位が供給される(図9(B)参照。)。すると、2行1列目~2行5列目の画素111が選択され、配線SLを介してそれぞれの画素111にビデオ信号が書き込まれる。期間T2では、2行奇数列の画素111に正極性のビデオ信号が書き込まれ、2行偶数列の画素111に負極性のビデオ信号が書き込まれる。また、配線COM[4]に負極性の電圧が供給される。
[Period T2]
In the period T2, the L potential is supplied to the wiring GL [1] and the H potential is supplied to the wiring GL [2] (see FIG. 9B). Then, the pixels 111 in the second row, first column to the second row, fifth column are selected, and a video signal is written to each pixel 111 through the wiring SL. In the period T2, a positive video signal is written to the pixels 111 in the second row and odd columns, and a negative video signal is written to the pixels 111 in the second row and even columns. Further, a negative voltage is supplied to the wiring COM [4].
2行奇数列の画素111は、負極性の電圧が供給されている配線COM[2]と電気的に接続され、2行偶数列の画素111は、正極性の電圧が供給されている配線COM[3]と電気的に接続されている。配線COM[2]と配線COM[3]には、2行目の画素111に書き込まれるビデオ信号の極性とは反対の極性の電圧が供給される。よって、それぞれの画素111に書き込むビデオ信号の振幅を低減することができる。 The pixels 111 in the second row and odd columns are electrically connected to the wiring COM [2] to which a negative voltage is supplied, and the pixels 111 in the second row and even columns are connected to the wiring COM to which a positive voltage is supplied. [3] is electrically connected. A voltage having a polarity opposite to the polarity of the video signal written to the pixel 111 in the second row is supplied to the wiring COM [2] and the wiring COM [3]. Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
〔期間T3〕
期間T3において、配線GL[2]にL電位が供給され、配線GL[3]にH電位が供給される(図10(A)参照。)。すると、3行1列目~2行5列目の画素111が選択され、配線SLを介してそれぞれの画素111にビデオ信号が書き込まれる。期間T3では、3行奇数列の画素111に負極性のビデオ信号が書き込まれ、3行偶数列の画素111に正極性のビデオ信号が書き込まれる。また、配線COM[5]に正極性の電圧が供給され、配線COM[1]に負極性の電圧が供給される。
[Period T3]
In the period T3, the L potential is supplied to the wiring GL [2] and the H potential is supplied to the wiring GL [3] (see FIG. 10A). Then, the pixel 111 in the third row, first column to the second row, fifth column is selected, and a video signal is written to each pixel 111 through the wiring SL. In the period T3, a negative video signal is written to the pixels 111 in the third row and odd columns, and a positive video signal is written to the pixels 111 in the third row and even columns. Further, a positive voltage is supplied to the wiring COM [5], and a negative voltage is supplied to the wiring COM [1].
3行奇数列の画素111は、正極性の電圧が供給されている配線COM[3]と電気的に接続され、3行偶数列の画素111は、負極性の電圧が供給されている配線COM[4]と電気的に接続されている。配線COM[3]と配線COM[4]には、3行目の画素111に書き込まれるビデオ信号の極性とは反対の極性の電圧が供給される。よって、それぞれの画素111に書き込むビデオ信号の振幅を低減することができる。 The pixels 111 in the third row and odd columns are electrically connected to the wiring COM [3] to which a positive voltage is supplied, and the pixels 111 in the third row and even columns are connected to the wiring COM to which a negative voltage is supplied. [4] is electrically connected. A voltage having a polarity opposite to the polarity of the video signal written to the pixel 111 in the third row is supplied to the wiring COM [3] and the wiring COM [4]. Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
〔期間T4〕
期間T4において、配線GL[3]にL電位が供給され、配線GL[4]にH電位が供給される(図10(B)参照。)。すると、4行1列目~4行5列目の画素111が選択され、配線SLを介してそれぞれの画素111にビデオ信号が書き込まれる。期間T4では、4行奇数列の画素111に正極性のビデオ信号が書き込まれ、4行偶数列の画素111に負極性のビデオ信号が書き込まれる。また、配線COM[2]に正極性の電圧が供給される。
[Period T4]
In the period T4, the L potential is supplied to the wiring GL [3] and the H potential is supplied to the wiring GL [4] (see FIG. 10B). Then, the pixels 111 in the 4th row, the 1st column to the 4th row, the 5th column are selected, and a video signal is written to each pixel 111 through the wiring SL. In the period T4, a positive video signal is written to the pixels 111 in the fourth row and odd columns, and a negative video signal is written to the pixels 111 in the fourth row and even columns. Further, a positive voltage is supplied to the wiring COM [2].
4行奇数列の画素111は、負極性の電圧が供給されている配線COM[4]と電気的に接続され、4行偶数列の画素111は、正極性の電圧が供給されている配線COM[5]と電気的に接続されている。配線COM[4]と配線COM[5]には、4行目の画素111に書き込まれるビデオ信号の極性とは反対の極性の電圧が供給される。よって、それぞれの画素111に書き込むビデオ信号の振幅を低減することができる。 The pixels 111 in the 4th row and odd columns are electrically connected to the wiring COM [4] to which a negative voltage is supplied, and the pixels 111 in the 4th and even columns are connected to the wiring COM to which a positive voltage is supplied. [5] is electrically connected. A voltage having a polarity opposite to the polarity of the video signal written to the pixels 111 in the fourth row is supplied to the wiring COM [4] and the wiring COM [5]. Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
このようにして、kフレーム目の画素111の書き換え動作を行なうことができる。なお、期間T3で配線COM[1]と配線COM[5]に供給される電圧の極性を反転させている。ただし、配線COM[1]に供給される電圧の極性の反転は、期間T3で行わずに期間T4で行ってもよい(図13(A)参照。)。 In this way, the rewriting operation of the pixel 111 in the k-th frame can be performed. Note that the polarity of the voltage supplied to the wiring COM [1] and the wiring COM [5] is reversed in the period T3. Note that inversion of the polarity of the voltage supplied to the wiring COM [1] may be performed in the period T4 instead of in the period T3 (see FIG. 13A).
続いて、k+1フレーム目の画素111の書き換え動作について説明する。 Next, the rewriting operation of the pixel 111 in the (k + 1) th frame will be described.
〔期間T5〕
期間T5において、配線GL[4]にL電位が供給され、配線GL[1]にH電位が供給される(図11(A)参照。)。すると、1行1列目~1行5列目の画素111が選択され、配線SLを介してそれぞれの画素111にビデオ信号が書き込まれる。期間T5では、1行奇数列の画素111に正極性のビデオ信号が書き込まれ、1行偶数列の画素111に負極性のビデオ信号が書き込まれる。また、配線COM[3]に負極性の電圧が供給される。
[Period T5]
In the period T5, the L potential is supplied to the wiring GL [4] and the H potential is supplied to the wiring GL [1] (see FIG. 11A). Then, the pixels 111 in the first row and first column to the first row and fifth column are selected, and a video signal is written to each pixel 111 through the wiring SL. In the period T5, a positive video signal is written to the pixels 111 in the first row and odd columns, and a negative video signal is written to the pixels 111 in the first row and even columns. Further, a negative voltage is supplied to the wiring COM [3].
1行奇数列の画素111は、負極性の電圧が供給されている配線COM[1]と電気的に接続され、1行偶数列の画素111は、正極性の電圧が供給されている配線COM[2]と電気的に接続されている。配線COM[1]と配線COM[2]には、1行目の画素111に書き込まれるビデオ信号の極性とは反対の極性の電圧が供給される。よって、それぞれの画素111に書き込むビデオ信号の振幅を低減することができる。 The pixels 111 in the first row and odd columns are electrically connected to the wiring COM [1] to which the negative voltage is supplied, and the pixels 111 in the first row and even columns are connected to the wiring COM to which the positive voltage is supplied. [2] is electrically connected. A voltage having a polarity opposite to the polarity of the video signal written to the pixel 111 in the first row is supplied to the wiring COM [1] and the wiring COM [2]. Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
〔期間T6〕
期間T6において、配線GL[1]にL電位が供給され、配線GL[2]にH電位が供給される(図11(B)参照。)。すると、2行1列目~2行5列目の画素111が選択され、配線SLを介してそれぞれの画素111にビデオ信号が書き込まれる。期間T6では、2行奇数列の画素111に負極性のビデオ信号が書き込まれ、2行偶数列の画素111に正極性のビデオ信号が書き込まれる。また、配線COM[4]に正極性の電圧が供給される。
[Period T6]
In the period T6, the L potential is supplied to the wiring GL [1] and the H potential is supplied to the wiring GL [2] (see FIG. 11B). Then, the pixels 111 in the second row, first column to the second row, fifth column are selected, and a video signal is written to each pixel 111 through the wiring SL. In the period T <b> 6, a negative video signal is written to the pixels 111 in the second row and odd columns, and a positive video signal is written to the pixels 111 in the second row and even columns. Further, a positive voltage is supplied to the wiring COM [4].
2行奇数列の画素111は、正極性の電圧が供給されている配線COM[2]と電気的に接続され、2行偶数列の画素111は、負極性の電圧が供給されている配線COM[3]と電気的に接続されている。配線COM[2]と配線COM[3]には、2行目の画素111に書き込まれるビデオ信号の極性とは反対の極性の電圧が供給される。よって、それぞれの画素111に書き込むビデオ信号の振幅を低減することができる。 The pixels 111 in the second row and odd columns are electrically connected to the wiring COM [2] to which a positive voltage is supplied, and the pixels 111 in the second row and even columns are connected to the wiring COM to which a negative voltage is supplied. [3] is electrically connected. A voltage having a polarity opposite to the polarity of the video signal written to the pixel 111 in the second row is supplied to the wiring COM [2] and the wiring COM [3]. Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
〔期間T7〕
期間T7において、配線GL[2]にL電位が供給され、配線GL[3]にH電位が供給される(図12(A)参照。)。すると、3行1列目~2行5列目の画素111が選択され、配線SLを介してそれぞれの画素111にビデオ信号が書き込まれる。期間T7では、3行奇数列の画素111に正極性のビデオ信号が書き込まれ、3行偶数列の画素111に負極性のビデオ信号が書き込まれる。また、配線COM[5]に負極性の電圧が供給され、配線COM[1]に正極性の電圧が供給される。
[Period T7]
In the period T7, the L potential is supplied to the wiring GL [2] and the H potential is supplied to the wiring GL [3] (see FIG. 12A). Then, the pixel 111 in the third row, first column to the second row, fifth column is selected, and a video signal is written to each pixel 111 through the wiring SL. In the period T7, a positive video signal is written to the pixels 111 in the third row and odd columns, and a negative video signal is written to the pixels 111 in the third row and even columns. Further, a negative voltage is supplied to the wiring COM [5], and a positive voltage is supplied to the wiring COM [1].
3行奇数列の画素111は、負極性の電圧が供給されている配線COM[3]と電気的に接続され、3行偶数列の画素111は、正極性の電圧が供給されている配線COM[4]と電気的に接続されている。配線COM[3]と配線COM[4]には、3行目の画素111に書き込まれるビデオ信号の極性とは反対の極性の電圧が供給される。よって、それぞれの画素111に書き込むビデオ信号の振幅を低減することができる。 The pixels 111 in the third row and odd columns are electrically connected to the wiring COM [3] to which the negative voltage is supplied, and the pixels 111 in the third row and even columns are connected to the wiring COM to which the positive voltage is supplied. [4] is electrically connected. A voltage having a polarity opposite to the polarity of the video signal written to the pixel 111 in the third row is supplied to the wiring COM [3] and the wiring COM [4]. Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
〔期間T8〕
期間T8において、配線GL[3]にL電位が供給され、配線GL[4]にH電位が供給される(図12(B)参照。)。すると、4行1列目~4行5列目の画素111が選択され、配線SLを介してそれぞれの画素111にビデオ信号が書き込まれる。期間T8では、4行奇数列の画素111に負極性のビデオ信号が書き込まれ、4行偶数列の画素111に正極性のビデオ信号が書き込まれる。また、配線COM[2]に負極性の電圧が供給される。
[Period T8]
In the period T8, the L potential is supplied to the wiring GL [3] and the H potential is supplied to the wiring GL [4] (see FIG. 12B). Then, the pixels 111 in the 4th row, the 1st column to the 4th row, the 5th column are selected, and a video signal is written to each pixel 111 through the wiring SL. In the period T8, a negative video signal is written to the pixels 111 in the fourth row and odd columns, and a positive video signal is written to the pixels 111 in the fourth row and even columns. Further, a negative voltage is supplied to the wiring COM [2].
4行奇数列の画素111は、正極性の電圧が供給されている配線COM[4]と電気的に接続され、4行偶数列の画素111は、負極性の電圧が供給されている配線COM[5]と電気的に接続されている。配線COM[4]と配線COM[5]には、4行目の画素111に書き込まれるビデオ信号の極性とは反対の極性の電圧が供給される。よって、それぞれの画素111に書き込むビデオ信号の振幅を低減することができる。 The pixels 111 in the fourth row and odd columns are electrically connected to the wiring COM [4] to which a positive voltage is supplied, and the pixels 111 in the fourth row and even columns are connected to the wiring COM to which a negative voltage is supplied. [5] is electrically connected. A voltage having a polarity opposite to the polarity of the video signal written to the pixels 111 in the fourth row is supplied to the wiring COM [4] and the wiring COM [5]. Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
このようにして、k+1フレーム目の画素111の書き換え動作を行なうことができる。なお、期間T7で、配線COM[1]と配線COM[5]に供給される電圧の極性を反転させている。ただし、配線COM[1]に供給される電圧の極性の反転は、期間T7で行わずに期間T8で行ってもよい(図13(B)参照。)。 In this way, the rewriting operation of the pixel 111 in the (k + 1) th frame can be performed. Note that the polarity of the voltage supplied to the wiring COM [1] and the wiring COM [5] is reversed in the period T7. Note that inversion of the polarity of the voltage supplied to the wiring COM [1] may be performed in the period T8 instead of in the period T7 (see FIG. 13B).
ある行のビデオ信号を書き換える前に、当該行に接続する配線COMに供給される電圧の極性を反転させておくことで、正確なビデオ信号の書き換えを実現することができる。 By reversing the polarity of the voltage supplied to the wiring COM connected to the row before rewriting the video signal of a certain row, accurate rewriting of the video signal can be realized.
言い換えると、p行目(pは1以上m−1以下の整数。)が選択されている期間に、p+2本目の配線COMに供給される電圧の極性を反転させておくことで、正確なビデオ信号の書き換えを実現することができる。また、1本目の配線COMに供給される電圧の極性の反転は、m−1行目またはm行目が選択されている期間に行なう。また、2本目の配線COMに供給される電圧の極性の反転は、m行目が選択されている期間に行なう。 In other words, accurate video can be obtained by inverting the polarity of the voltage supplied to the (p + 2) -th wiring COM during the period when the p-th row (p is an integer between 1 and m−1) is selected. Signal rewriting can be realized. The polarity of the voltage supplied to the first wiring COM is inverted during the period when the (m-1) th row or the mth row is selected. Further, the reversal of the polarity of the voltage supplied to the second wiring COM is performed during the period when the m-th row is selected.
本発明の一態様によれば、コモン電圧の極性反転を行毎に行なうため、コモン電圧の書き込み不足(反転不足)が生じ難い。 According to one embodiment of the present invention, polarity inversion of the common voltage is performed for each row, so that common voltage writing shortage (insufficient shortage) hardly occurs.
また、本発明の一態様によれば、周辺駆動回路の出力負荷を軽減することができるため、表示装置の消費電力を低減することができる。または、8K解像度以上の表示装置においても、良好な表示品位を実現できる。または、画面サイズが対角60インチ以上さらには対角120インチ以上の表示装置においても、良好な表示品位を実現できる。または、高速動作可能な表示装置を実現できる。たとえば、表示装置のフレーム周波数を120Hz以上、もしくは240Hz以上とした場合においても、良好な表示品位を実現できる。 Further, according to one embodiment of the present invention, the output load of the peripheral driver circuit can be reduced; thus, power consumption of the display device can be reduced. Alternatively, good display quality can be realized even in a display device with 8K resolution or higher. Alternatively, a good display quality can be realized even in a display device having a screen size of 60 inches diagonal or more and further 120 inches diagonal or more. Alternatively, a display device that can operate at high speed can be realized. For example, good display quality can be realized even when the frame frequency of the display device is 120 Hz or more, or 240 Hz or more.
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。 This embodiment can be implemented in appropriate combination with the structures described in the other embodiments.
(実施の形態3)
本実施の形態では、画素1列あたり複数のソース線を有する表示装置200について、図面を用いて説明する。なお、表示装置200は表示装置100と共通する部分も多い。説明の繰り返しを低減するため、本実施の形態に説明の無い事項および表示装置100と共通する事項については他の実施の形態などを参酌し、本実施の形態での詳細な説明は省略する。
(Embodiment 3)
In this embodiment, a display device 200 including a plurality of source lines per pixel column is described with reference to drawings. The display device 200 has many parts in common with the display device 100. In order to reduce repetition of the description, other embodiments and the like are referred to for matters not described in this embodiment and items common to the display device 100, and detailed description in this embodiment is omitted.
<構成例>
図14(A)は、表示装置200の構成例を説明するためのブロック図である。また、図14(B)は、表示部210の一部を示すブロック図である。表示部210は表示部110と同様に複数の画素111を有する。図14(A)および図14(B)では、表示装置200として、画素1列あたり2本のソース線を有する表示装置を示している。
<Configuration example>
FIG. 14A is a block diagram for explaining a configuration example of the display device 200. FIG. 14B is a block diagram illustrating part of the display portion 210. Similar to the display unit 110, the display unit 210 includes a plurality of pixels 111. 14A and 14B, a display device having two source lines per pixel column is shown as the display device 200. FIG.
表示部210は、m行n列のマトリクス状に配置された複数の画素111を有する。表示装置200は、画素1列あたり2本の配線SL(ソース線)を有する。よって、表示装置200は、2×n本の配線SLを有する。なお、画素1列あたりに3本以上の配線SLを設けてもよい。画素1列あたりg本(gは2以上の整数)の配線SLを設ける場合、信号線駆動回路131および信号線駆動回路132には、g×n本の配線SLが接続される。 The display unit 210 includes a plurality of pixels 111 arranged in a matrix of m rows and n columns. The display device 200 includes two lines SL (source lines) per pixel column. Therefore, the display device 200 includes 2 × n lines SL. Note that three or more wirings SL may be provided per column of pixels. When g wirings SL (g is an integer of 2 or more) are provided per pixel column, g × n wirings SL are connected to the signal line driver circuit 131 and the signal line driver circuit 132.
本実施の形態では、1列目の画素に対応する2本の配線SLを、それぞれ配線SL[1]または配線SL[1]と示す。また、j列目の画素に対応する2本の配線SLを、それぞれ配線SL[j]または配線SL[j]と示す。また、n列目の画素に対応する2本の配線SLを、それぞれ配線SL[n]または配線SL[n]と示す。なお、異なる配線SLには、それぞれ異なる信号を供給することができる。例えば、配線SL(j)、および配線SL(j)には、それぞれ異なる信号を供給することができる。 In this embodiment mode, two wirings SL corresponding to the pixels in the first column are denoted as wirings SL 1 [1] and wirings SL 2 [1], respectively. In addition, the two wirings SL corresponding to the pixels in the j-th column are denoted as a wiring SL 1 [j] or a wiring SL 2 [j], respectively. In addition, the two wirings SL corresponding to the pixels in the n-th column are denoted as a wiring SL 1 [n] or a wiring SL 2 [n], respectively. Note that different signals can be supplied to the different wirings SL. For example, different signals can be supplied to the wiring SL 1 (j) and the wiring SL 2 (j).
表示装置200は、n本の配線SLおよびn本の配線SLを有する。なお、本明細書等において、配線SLを「第1配線SL」または「第1ビデオ信号線」などと呼ぶ場合がある。また、配線SLを「第2配線SL」または「第2ビデオ信号線」などと呼ぶ場合がある。よって、表示装置200は、n本の第1ビデオ信号線およびn本の第2ビデオ信号線を有すると言える。 Display device 200 has a n wirings SL 1 and n wirings SL 2. Note that in this specification and the like, the wiring SL 1 may be referred to as "first wiring SL" or "first video signal line". Further, the wiring SL 2 may be referred to as "second line SL" or the "second video signal line". Therefore, it can be said that the display device 200 has n first video signal lines and n second video signal lines.
配線SL[j]は、奇数行の画素または偶数行の画素の一方と電気的に接続される。また、配線SL[j]は、奇数行の画素または偶数行の画素の他方と電気的に接続される。図14(B)では、i行が偶数行である場合の画素111と配線SLの接続関係を示している。 The wiring SL 1 [j] is electrically connected to one of an odd-numbered row pixel and an even-numbered row pixel. The wiring SL 2 [j] is electrically connected to the other of the pixels in the odd rows or the pixels in the even rows. FIG. 14B illustrates a connection relationship between the pixel 111 and the wiring SL in the case where the i-row is an even-numbered row.
また、図14(B)では、i行j列目の画素111がi+1本目の配線COMと電気的に接続し、i行j+1列目の画素111がi本目の配線COMと電気的に接続する構成のブロック図を示している。ただし、これに限定されず、i行j列目の画素111がi本目の配線COMと電気的に接続し、i行j+1列目の画素111がi+1本目の配線COMと電気的に接続する構成でもよい。 In FIG. 14B, the pixel 111 in the i-th row and j-th column is electrically connected to the i + 1-th wiring COM, and the pixel 111 in the i-th row j + 1 column is electrically connected to the i-th wiring COM. A block diagram of the configuration is shown. However, the configuration is not limited to this, and the pixel 111 in the i-th row and j-th column is electrically connected to the i-th wiring COM, and the pixel 111 in the i-th row j + 1 column is electrically connected to the i + 1-th wiring COM. But you can.
図15(A)および図15(B)は、表示装置200のブロック図である。図15(A)と図15(B)では、配線GLの接続構成が異なる。前述したように、表示装置200は画素1列あたり2本の配線SLを有する。よって、隣接する2本のゲート線に選択信号を同時に供給し、隣接する2行の画素111に同時にビデオ信号を書き込むことができる。 FIG. 15A and FIG. 15B are block diagrams of the display device 200. 15A and 15B are different in the connection configuration of the wiring GL. As described above, the display device 200 has two lines SL per pixel column. Therefore, a selection signal can be simultaneously supplied to two adjacent gate lines, and a video signal can be simultaneously written to the pixels 111 in two adjacent rows.
図15(A)では、走査線駆動回路121が複数の配線GLと電気的に接続されている。本明細書等では、e本目の配線GLを配線GL[e]と示す。eは1以上の整数である。また、図15(A)では、配線GL[e]が2本の配線GL(配線GL[i]、配線GL[i+1])と電気的に接続されている。したがって、これら2本の配線GLには同じ選択信号が与えられる。配線GLも配線GLと同様にゲート線としての機能を有する。 15 In (A), the scanning line driving circuit 121 has a plurality of wirings GL 0 electrically connected. In this specification and the like, the e-th wiring GL 0 is referred to as a wiring GL 0 [e]. e is an integer of 1 or more. In FIG. 15A, the wiring GL 0 [e] is electrically connected to the two wirings GL (the wiring GL [i] and the wiring GL [i + 1]). Therefore, the same selection signal is given to these two wirings GL. The wiring GL 0 also has a function as a gate line like the wiring GL.
画素1列に2本のソース線を設け、それぞれに対応する2本のゲート線に選択信号を同時に供給することで、一水平期間を従来よりも長くすることができる。表示装置200では、一水平期間の長さを表示装置100の2倍にすることができる。また、画素1列に3本のソース線を設け、それぞれに対応する3本のゲート線に選択信号を同時に供給することで、一水平期間の長さを3倍にすることができる。さらに、1本のソース線と電気的に接続する画素111の数が低減されるため、信号線駆動回路の出力負荷を低減することができる。 By providing two source lines in one column of pixels and simultaneously supplying a selection signal to two corresponding gate lines, one horizontal period can be made longer than in the prior art. In the display device 200, the length of one horizontal period can be doubled that of the display device 100. Further, by providing three source lines in one pixel column and simultaneously supplying selection signals to the corresponding three gate lines, the length of one horizontal period can be tripled. Furthermore, since the number of pixels 111 electrically connected to one source line is reduced, the output load of the signal line driver circuit can be reduced.
これにより、解像度が4Kや8K等といった極めて高解像度の表示装置であっても、電界効果移動度の低いトランジスタを用いて動作させることが可能となる。もちろん、8Kを超える解像度(例えば、10K、12Kまたは16K等)の表示装置であっても、本発明の一態様を用いることで、動作させることが可能となる。また、本発明の一態様は、画面サイズが対角50インチ以上、対角60インチ以上、または対角70インチ以上の大型の表示装置にも適用することができる。 Accordingly, even a display device with extremely high resolution such as 4K or 8K can be operated using a transistor with low field-effect mobility. Needless to say, a display device having a resolution exceeding 8K (eg, 10K, 12K, or 16K) can be operated by using one embodiment of the present invention. One embodiment of the present invention can also be applied to a large display device having a screen size of 50 inches diagonal, 60 inches diagonal, or 70 inches diagonal.
また、複数行の画素111を同時に選択できるため、表示装置のフレーム周波数を高めることができる。 In addition, since a plurality of rows of pixels 111 can be selected simultaneously, the frame frequency of the display device can be increased.
また、図15(B)に示すように、配線GLを設けずに、走査線駆動回路121と配線GLを接続してもよい。 Further, as shown in FIG. 15 (B), without providing the interconnection GL 0, the scanning line driving circuit 121 may be connected to wiring GL.
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。 This embodiment can be implemented in appropriate combination with the structures described in the other embodiments.
(実施の形態4)
本実施の形態では、表示装置200の駆動方法例について図面を用いて説明する。一例として、表示素子として液晶素子を用いた液晶表示装置の駆動方法例について説明する。
(Embodiment 4)
In this embodiment, an example of a method for driving the display device 200 is described with reference to drawings. As an example, a driving method example of a liquid crystal display device using a liquid crystal element as a display element will be described.
<駆動方法例>
本発明の一態様の表示装置200の駆動方法例について説明する。本実施の形態では、表示装置200が、32個の画素111が8行4列のマトリクス状に設けられた表示部210を有し、配線SLが奇数行の画素111と電気的に接続し、配線SLが偶数行の画素111と電気的に接続する場合について、駆動方法の説明をする。
<Driving method example>
An example of a method for driving the display device 200 of one embodiment of the present invention is described. In this embodiment mode, the display device 200 includes a display portion 210 in which 32 pixels 111 are provided in a matrix of 8 rows and 4 columns, and the wiring SL 1 is electrically connected to the pixels 111 in the odd rows. for if the wiring SL 2 is to connect the pixel 111 electrically even rows, the description of the driving method.
図16および図17は、駆動方法を説明するためのタイミングチャートである。本実施の形態では、kフレーム目とk+1フレーム目を例示して、表示装置200の駆動方法例を説明する。1つのフレームは4つの期間を有する。本実施の形態では、kフレーム目が有する4つの期間を、期間T1乃至期間T4と示す。また、k+1フレーム目が有する4つの期間を、期間T5乃至期間T8と示す。 16 and 17 are timing charts for explaining the driving method. In the present embodiment, a driving method example of the display device 200 will be described by illustrating the kth frame and the (k + 1) th frame. One frame has four periods. In this embodiment, the four periods of the kth frame are denoted as periods T1 to T4. In addition, four periods included in the (k + 1) th frame are denoted as periods T5 to T8.
図18乃至図27は、表示部210の動作状態を期間毎に説明する図である。配線GLにH電位が供給されると、当該配線GLが接続する行において1~4列目の画素111が選択され、それぞれの画素111に配線SLを介してビデオ信号が書き込まれる。配線GLにL電位が供給されると、当該配線GLが接続する行において1~4列目の画素111は非選択となり、ビデオ信号は書き込まれない。 18 to 27 are diagrams for explaining the operation state of the display unit 210 for each period. When an H potential is supplied to the wiring GL, the pixels 111 in the first to fourth columns are selected in the row to which the wiring GL is connected, and a video signal is written to each pixel 111 through the wiring SL. When the L potential is supplied to the wiring GL, the pixels 111 in the first to fourth columns are not selected in the row to which the wiring GL is connected, and the video signal is not written.
図18乃至図27では、H電位が供給される配線GLに「H」を付し、L電位が供給される配線GLに「L」を付している。なお、配線GLに供給される電位に変化があった場合、「H」または「L」を囲み文字としている。また、正極性の電圧が供給されている配線COMに「+」を付し、負極性の電圧が供給されている配線COMに「−」を付している。なお、配線COMに供給される電圧の極性に変化があった場合、「+」または「−」を囲み文字としている。 In FIGS. 18 to 27, “H” is attached to the wiring GL to which the H potential is supplied, and “L” is attached to the wiring GL to which the L potential is supplied. When there is a change in the potential supplied to the wiring GL, “H” or “L” is used as an enclosing character. Further, “+” is attached to the wiring COM to which the positive voltage is supplied, and “−” is attached to the wiring COM to which the negative voltage is supplied. When there is a change in the polarity of the voltage supplied to the wiring COM, “+” or “−” is enclosed.
また、図18乃至図27では、ビデオ信号が供給された画素111にハッチングを付している。また、正極性のビデオ信号が供給された画素111に「+」を付し、負極性のビデオ信号が供給された画素111に「−」を付している。 In FIG. 18 to FIG. 27, the pixel 111 to which the video signal is supplied is hatched. Further, “+” is added to the pixel 111 supplied with the positive video signal, and “−” is added to the pixel 111 supplied with the negative video signal.
初期状態として、期間T0において、奇数行奇数列の画素111に正極性のビデオ信号が書き込まれ、偶数行偶数列の画素111に負極性のビデオ信号が書き込まれているものとする。また、配線GL[1]乃至配線GL[6]にL電位が供給され、配線GL[7]および配線GL[8]にH電位が供給されているものとする。また、配線COM[1]、配線COM[3]、配線COM[4]、配線COM[6]、および配線COM[8]に正極性の電圧が供給され、配線COM[2]、配線COM[5]、配線COM[7]、および配線COM[9]に負極性の電圧が供給されているものとする。 As an initial state, it is assumed that a positive video signal is written to the odd-numbered and odd-numbered pixels 111 and a negative-polarity video signal is written to the even-numbered and even-numbered pixels 111 in the period T0. Further, an L potential is supplied to the wirings GL [1] to GL [6], and an H potential is supplied to the wirings GL [7] and GL [8]. Further, a positive voltage is supplied to the wiring COM [1], the wiring COM [3], the wiring COM [4], the wiring COM [6], and the wiring COM [8], and the wiring COM [2] and the wiring COM [ 5], a negative voltage is supplied to the wiring COM [7] and the wiring COM [9].
まず、kフレーム目の画素111の書き換え動作について説明する。 First, the rewriting operation of the pixel 111 in the kth frame will be described.
〔期間T1〕
期間T1において、配線GL[7]および配線GL[8]にL電位が供給され、配線GL[1]および配線GL[2]にH電位が供給される(図18(A)参照。)。すると、1行1列目~2行4列目の画素111が選択され、配線SLを介してそれぞれの画素111にビデオ信号が書き込まれる。
[Period T1]
In the period T1, the L potential is supplied to the wiring GL [7] and the wiring GL [8], and the H potential is supplied to the wiring GL [1] and the wiring GL [2] (see FIG. 18A). Then, the pixels 111 in the first row, first column to the second row, fourth column are selected, and a video signal is written to each pixel 111 via the wiring SL.
期間T1では、1行奇数列の画素111に負極性のビデオ信号が書き込まれ、1行偶数列の画素111に正極性のビデオ信号が書き込まれる。また、2行奇数列の画素111に正極性のビデオ信号が書き込まれ、2行偶数列の画素111に負極性のビデオ信号が書き込まれる。また、配線COM[4]に負極性の電圧(コモン電圧)が供給され、配線COM[5]に正極性の電圧が供給される。 In the period T1, a negative video signal is written to the pixels 111 in the first row and odd columns, and a positive video signal is written to the pixels 111 in the first row and even columns. Also, a positive video signal is written to the pixels 111 in the second row and odd columns, and a negative video signal is written to the pixels 111 in the second row and even columns. Further, a negative voltage (common voltage) is supplied to the wiring COM [4], and a positive voltage is supplied to the wiring COM [5].
1行奇数列の画素111は、正極性の電圧が供給されている配線COM[1]と電気的に接続され、1行偶数列の画素111は、負極性の電圧が供給されている配線COM[2]と電気的に接続されている。2行奇数列の画素111は、負極性の電圧が供給されている配線COM[2]と電気的に接続され、2行偶数列の画素111は、正極性の電圧が供給されている配線COM[3]と電気的に接続されている。 The pixels 111 in the first row and odd columns are electrically connected to the wiring COM [1] to which a positive voltage is supplied, and the pixels 111 in the first row and even columns are connected to the wiring COM to which a negative voltage is supplied. [2] is electrically connected. The pixels 111 in the second row and odd columns are electrically connected to the wiring COM [2] to which a negative voltage is supplied, and the pixels 111 in the second row and even columns are connected to the wiring COM to which a positive voltage is supplied. [3] is electrically connected.
配線COM[1]、配線COM[2]、および配線COM[3]には、1行目および2行目の画素111に書き込まれるビデオ信号の極性とは反対の極性の電圧が供給されている。よって、それぞれの画素111に書き込むビデオ信号の振幅を低減することができる。 The wiring COM [1], the wiring COM [2], and the wiring COM [3] are supplied with a voltage having a polarity opposite to the polarity of the video signal written to the pixels 111 in the first and second rows. . Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
〔期間T2〕
期間T2において、配線GL[1]および配線GL[2]にL電位が供給され、配線GL[3]および配線GL[4]にH電位が供給される(図19参照。)。すると、3行1列目~4行4列目の画素111が選択され、配線SLを介してそれぞれの画素111にビデオ信号が書き込まれる。
[Period T2]
In the period T2, the L potential is supplied to the wiring GL [1] and the wiring GL [2], and the H potential is supplied to the wiring GL [3] and the wiring GL [4] (see FIG. 19). Then, the pixels 111 in the third row, first column to the fourth row, fourth column are selected, and a video signal is written to each pixel 111 through the wiring SL.
期間T2では、3行奇数列の画素111に負極性のビデオ信号が書き込まれ、3行偶数列の画素111に正極性のビデオ信号が書き込まれる。また、4行奇数列の画素111に正極性のビデオ信号が書き込まれ、4行偶数列の画素111に負極性のビデオ信号が書き込まれる。また、配線COM[6]に負極性の電圧が供給され、配線COM[7]に正極性の電圧が供給される。 In the period T2, a negative video signal is written in the pixels 111 in the third row and odd columns, and a positive video signal is written in the pixels 111 in the third row and even columns. A positive video signal is written to the pixels 111 in the 4th row and odd columns, and a negative video signal is written to the pixels 111 in the 4th row and even columns. Further, a negative voltage is supplied to the wiring COM [6], and a positive voltage is supplied to the wiring COM [7].
3行奇数列の画素111は、正極性の電圧が供給されている配線COM[3]と電気的に接続され、3行偶数列の画素111は、負極性の電圧が供給されている配線COM[4]と電気的に接続されている。4行奇数列の画素111は、負極性の電圧が供給されている配線COM[4]と電気的に接続され、4行偶数列の画素111は、正極性の電圧が供給されている配線COM[5]と電気的に接続されている。 The pixels 111 in the third row and odd columns are electrically connected to the wiring COM [3] to which a positive voltage is supplied, and the pixels 111 in the third row and even columns are connected to the wiring COM to which a negative voltage is supplied. [4] is electrically connected. The pixels 111 in the 4th row and odd columns are electrically connected to the wiring COM [4] to which a negative voltage is supplied, and the pixels 111 in the 4th and even columns are connected to the wiring COM to which a positive voltage is supplied. [5] is electrically connected.
配線COM[3]、配線COM[4]、および配線COM[5]には、3行目および4行目の画素111に書き込まれるビデオ信号の極性とは反対の極性の電圧が供給されている。よって、それぞれの画素111に書き込むビデオ信号の振幅を低減することができる。 The wiring COM [3], the wiring COM [4], and the wiring COM [5] are supplied with a voltage having a polarity opposite to the polarity of the video signal written to the pixels 111 in the third and fourth rows. . Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
〔期間T3〕
期間T3において、配線GL[3]および配線GL[4]にL電位が供給され、配線GL[5]および配線GL[6]にH電位が供給される(図20参照。)。すると、5行1列目~6行4列目の画素111が選択され、配線SLを介してそれぞれの画素111にビデオ信号が書き込まれる。
[Period T3]
In the period T3, the L potential is supplied to the wiring GL [3] and the wiring GL [4], and the H potential is supplied to the wiring GL [5] and the wiring GL [6] (see FIG. 20). Then, the pixel 111 in the fifth row, first column to the sixth row, fourth column is selected, and a video signal is written to each pixel 111 through the wiring SL.
期間T3では、5行奇数列の画素111に負極性のビデオ信号が書き込まれ、5行偶数列の画素111に正極性のビデオ信号が書き込まれる。また、6行奇数列の画素111に正極性のビデオ信号が書き込まれ、6行偶数列の画素111に負極性のビデオ信号が書き込まれる。また、配線COM[8]に負極性の電圧(コモン電圧)が供給され、配線COM[9]に正極性の電圧が供給され、配線COM[1]に負極性の電圧(コモン電圧)が供給される。 In the period T3, a negative video signal is written to the pixels 111 in the fifth row and odd columns, and a positive video signal is written to the pixels 111 in the fifth row and even columns. Further, a positive video signal is written to the pixels 111 in the 6th row and odd columns, and a negative video signal is written to the pixels 111 in the 6th row and even columns. Further, a negative voltage (common voltage) is supplied to the wiring COM [8], a positive voltage is supplied to the wiring COM [9], and a negative voltage (common voltage) is supplied to the wiring COM [1]. Is done.
5行奇数列の画素111は、正極性の電圧が供給されている配線COM[5]と電気的に接続され、5行偶数列の画素111は、負極性の電圧が供給されている配線COM[6]と電気的に接続されている。6行奇数列の画素111は、負極性の電圧が供給されている配線COM[6]と電気的に接続され、6行偶数列の画素111は、正極性の電圧が供給されている配線COM[7]と電気的に接続されている。 The pixels 111 in the fifth row and odd columns are electrically connected to the wiring COM [5] to which a positive voltage is supplied, and the pixels 111 in the fifth row and even columns are connected to the wiring COM to which a negative voltage is supplied. [6] is electrically connected. The pixels 111 in the sixth row and odd columns are electrically connected to the wiring COM [6] to which a negative voltage is supplied, and the pixels 111 in the sixth row and even columns are connected to the wiring COM to which a positive voltage is supplied. [7] is electrically connected.
配線COM[5]、配線COM[6]、および配線COM[7]には、5行目および6行目の画素111に書き込まれるビデオ信号の極性とは反対の極性の電圧が供給されている。よって、それぞれの画素111に書き込むビデオ信号の振幅を低減することができる。 The wiring COM [5], the wiring COM [6], and the wiring COM [7] are supplied with a voltage having a polarity opposite to the polarity of the video signal written to the pixels 111 in the fifth and sixth rows. . Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
〔期間T4〕
期間T4において、配線GL[5]および配線GL[6]にL電位が供給され、配線GL[7]および配線GL[8]にH電位が供給される(図21参照。)。すると、7行1列目~8行4列目の画素111が選択され、配線SLを介してそれぞれの画素111にビデオ信号が書き込まれる。
[Period T4]
In the period T4, the L potential is supplied to the wiring GL [5] and the wiring GL [6], and the H potential is supplied to the wiring GL [7] and the wiring GL [8] (see FIG. 21). Then, the pixel 111 in the seventh row, first column to the eighth row, fourth column is selected, and a video signal is written to each pixel 111 via the wiring SL.
期間T4では、7行奇数列の画素111に負極性のビデオ信号が書き込まれ、7行偶数列の画素111に正極性のビデオ信号が書き込まれる。また、8行奇数列の画素111に正極性のビデオ信号が書き込まれ、8行偶数列の画素111に負極性のビデオ信号が書き込まれる。また、配線COM[2]に正極性の電圧が供給され、配線COM[3]に負極性の電圧が供給される。 In the period T4, a negative video signal is written to the pixels 111 in the seventh row and odd columns, and a positive video signal is written to the pixels 111 in the seventh row and even columns. In addition, a positive video signal is written to the pixels 111 in the 8th row and odd columns, and a negative video signal is written to the pixels 111 in the 8th row and even columns. Further, a positive voltage is supplied to the wiring COM [2], and a negative voltage is supplied to the wiring COM [3].
7行奇数列の画素111は、正極性の電圧が供給されている配線COM[7]と電気的に接続され、7行偶数列の画素111は、負極性の電圧が供給されている配線COM[8]と電気的に接続されている。8行奇数列の画素111は、負極性の電圧が供給されている配線COM[8]と電気的に接続され、8行偶数列の画素111は、正極性の電圧が供給されている配線COM[9]と電気的に接続されている。 The pixels 111 in the seventh row and odd columns are electrically connected to the wiring COM [7] to which the positive voltage is supplied, and the pixels 111 in the seventh row and even columns are connected to the wiring COM to which the negative voltage is supplied. [8] is electrically connected. The pixels 111 in the 8th row and odd columns are electrically connected to the wiring COM [8] to which a negative voltage is supplied, and the pixels 111 in the 8th and even columns are connected to the wiring COM to which a positive voltage is supplied. [9] is electrically connected.
配線COM[7]、配線COM[8]、および配線COM[9]には、7行目および8行目の画素111に書き込まれるビデオ信号の極性とは反対の極性の電圧が供給されている。よって、それぞれの画素111に書き込むビデオ信号の振幅を低減することができる。 The wiring COM [7], the wiring COM [8], and the wiring COM [9] are supplied with a voltage having a polarity opposite to the polarity of the video signal written to the pixels 111 in the seventh and eighth rows. . Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
このようにして、kフレーム目の画素111の書き換え動作を行なうことができる。なお、期間T3で配線COM[1]、配線COM[8]、および配線COM[9]に供給される電圧の極性を反転させている。この中で、配線COM[1]に供給される電圧の極性の反転は、期間T3で行わずに期間T4で行ってもよい(図26参照。)。 In this way, the rewriting operation of the pixel 111 in the k-th frame can be performed. Note that the polarity of the voltage supplied to the wiring COM [1], the wiring COM [8], and the wiring COM [9] is inverted in the period T3. Among them, the polarity of the voltage supplied to the wiring COM [1] may be reversed in the period T4 instead of the period T3 (see FIG. 26).
続いて、k+1フレーム目の画素111の書き換え動作について説明する。 Next, the rewriting operation of the pixel 111 in the (k + 1) th frame will be described.
〔期間T5〕
期間T5において、配線GL[7]および配線GL[8]にL電位が供給され、配線GL[1]および配線GL[2]にH電位が供給される(図22参照。)。すると、1行1列目~2行4列目の画素111が選択され、配線SLを介してそれぞれの画素111にビデオ信号が書き込まれる。
[Period T5]
In the period T5, the L potential is supplied to the wiring GL [7] and the wiring GL [8], and the H potential is supplied to the wiring GL [1] and the wiring GL [2] (see FIG. 22). Then, the pixels 111 in the first row, first column to the second row, fourth column are selected, and a video signal is written to each pixel 111 via the wiring SL.
期間T5では、1行奇数列の画素111に正極性のビデオ信号が書き込まれ、1行偶数列の画素111に負極性のビデオ信号が書き込まれる。また、2行奇数列の画素111に負極性のビデオ信号が書き込まれ、2行偶数列の画素111に正極性のビデオ信号が書き込まれる。また、配線COM[4]に正極性の電圧が供給され、配線COM[5]に負極性の電圧が供給される。 In the period T5, a positive video signal is written to the pixels 111 in the first row and odd columns, and a negative video signal is written to the pixels 111 in the first row and even columns. Further, a negative video signal is written to the pixels 111 in the second row and odd columns, and a positive video signal is written to the pixels 111 in the second row and even columns. Further, a positive voltage is supplied to the wiring COM [4], and a negative voltage is supplied to the wiring COM [5].
1行奇数列の画素111は、負極性の電圧が供給されている配線COM[1]と電気的に接続され、1行偶数列の画素111は、正極性の電圧が供給されている配線COM[2]と電気的に接続されている。2行奇数列の画素111は、正極性の電圧が供給されている配線COM[2]と電気的に接続され、2行偶数列の画素111は、負極性の電圧が供給されている配線COM[3]と電気的に接続されている。 The pixels 111 in the first row and odd columns are electrically connected to the wiring COM [1] to which the negative voltage is supplied, and the pixels 111 in the first row and even columns are connected to the wiring COM to which the positive voltage is supplied. [2] is electrically connected. The pixels 111 in the second row and odd columns are electrically connected to the wiring COM [2] to which a positive voltage is supplied, and the pixels 111 in the second row and even columns are connected to the wiring COM to which a negative voltage is supplied. [3] is electrically connected.
配線COM[1]、配線COM[2]、および配線COM[3]には、1行目および2行目の画素111に書き込まれるビデオ信号の極性とは反対の極性の電圧が供給されている。よって、それぞれの画素111に書き込むビデオ信号の振幅を低減することができる。 The wiring COM [1], the wiring COM [2], and the wiring COM [3] are supplied with a voltage having a polarity opposite to the polarity of the video signal written to the pixels 111 in the first and second rows. . Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
〔期間T6〕
期間T6において、配線GL[1]および配線GL[2]にL電位が供給され、配線GL[3]および配線GL[4]にH電位が供給される(図23参照。)。すると、3行1列目~4行4列目の画素111が選択され、配線SLを介してそれぞれの画素111にビデオ信号が書き込まれる。
[Period T6]
In the period T6, the L potential is supplied to the wiring GL [1] and the wiring GL [2], and the H potential is supplied to the wiring GL [3] and the wiring GL [4] (see FIG. 23). Then, the pixels 111 in the third row, first column to the fourth row, fourth column are selected, and a video signal is written to each pixel 111 through the wiring SL.
期間T6では、3行奇数列の画素111に正極性のビデオ信号が書き込まれ、3行偶数列の画素111に負極性のビデオ信号が書き込まれる。また、4行奇数列の画素111に負極性のビデオ信号が書き込まれ、4行偶数列の画素111に正極性のビデオ信号が書き込まれる。また、配線COM[6]に正極性の電圧が供給され、配線COM[7]に負極性の電圧が供給される。 In the period T <b> 6, a positive video signal is written to the pixels 111 in the third row and odd columns, and a negative video signal is written to the pixels 111 in the third row and even columns. Also, a negative video signal is written to the pixels 111 in the 4th row and odd columns, and a positive video signal is written to the pixels 111 in the 4th row and even columns. Further, a positive voltage is supplied to the wiring COM [6], and a negative voltage is supplied to the wiring COM [7].
3行奇数列の画素111は、負極性の電圧が供給されている配線COM[3]と電気的に接続され、3行偶数列の画素111は、正極性の電圧が供給されている配線COM[4]と電気的に接続されている。4行奇数列の画素111は、正極性の電圧が供給されている配線COM[4]と電気的に接続され、4行偶数列の画素111は、負極性の電圧が供給されている配線COM[5]と電気的に接続されている。 The pixels 111 in the third row and odd columns are electrically connected to the wiring COM [3] to which the negative voltage is supplied, and the pixels 111 in the third row and even columns are connected to the wiring COM to which the positive voltage is supplied. [4] is electrically connected. The pixels 111 in the fourth row and odd columns are electrically connected to the wiring COM [4] to which a positive voltage is supplied, and the pixels 111 in the fourth row and even columns are connected to the wiring COM to which a negative voltage is supplied. [5] is electrically connected.
配線COM[3]、配線COM[4]、および配線COM[5]には、3行目および4行目の画素111に書き込まれるビデオ信号の極性とは反対の極性の電圧が供給されている。よって、それぞれの画素111に書き込むビデオ信号の振幅を低減することができる。 The wiring COM [3], the wiring COM [4], and the wiring COM [5] are supplied with a voltage having a polarity opposite to the polarity of the video signal written to the pixels 111 in the third and fourth rows. . Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
〔期間T7〕
期間T7において、配線GL[3]および配線GL[4]にL電位が供給され、配線GL[5]および配線GL[6]にH電位が供給される(図24参照。)。すると、5行1列目~6行4列目の画素111が選択され、配線SLを介してそれぞれの画素111にビデオ信号が書き込まれる。
[Period T7]
In the period T7, the L potential is supplied to the wiring GL [3] and the wiring GL [4], and the H potential is supplied to the wiring GL [5] and the wiring GL [6] (see FIG. 24). Then, the pixel 111 in the fifth row, first column to the sixth row, fourth column is selected, and a video signal is written to each pixel 111 through the wiring SL.
期間T7では、5行奇数列の画素111に正極性のビデオ信号が書き込まれ、5行偶数列の画素111に負極性のビデオ信号が書き込まれる。また、6行奇数列の画素111に負極性のビデオ信号が書き込まれ、6行偶数列の画素111に正極性のビデオ信号が書き込まれる。また、配線COM[8]に正極性の電圧(コモン電圧)が供給され、配線COM[9]に負極性の電圧が供給され、配線COM[1]に正極性の電圧(コモン電圧)が供給される。 In the period T7, a positive video signal is written to the pixels 111 in the fifth row and odd columns, and a negative video signal is written to the pixels 111 in the fifth row and even columns. Further, a negative video signal is written to the pixels 111 in the 6th row and odd columns, and a positive video signal is written to the pixels 111 in the 6th row and even columns. Further, a positive voltage (common voltage) is supplied to the wiring COM [8], a negative voltage is supplied to the wiring COM [9], and a positive voltage (common voltage) is supplied to the wiring COM [1]. Is done.
5行奇数列の画素111は、負極性の電圧が供給されている配線COM[5]と電気的に接続され、5行偶数列の画素111は、正極性の電圧が供給されている配線COM[6]と電気的に接続されている。6行奇数列の画素111は、正極性の電圧が供給されている配線COM[6]と電気的に接続され、6行偶数列の画素111は、負極性の電圧が供給されている配線COM[7]と電気的に接続されている。 The pixels 111 in the fifth row and odd columns are electrically connected to the wiring COM [5] to which a negative voltage is supplied, and the pixels 111 in the fifth row and even columns are connected to the wiring COM to which a positive voltage is supplied. [6] is electrically connected. The pixels 111 in the sixth row and odd columns are electrically connected to the wiring COM [6] to which a positive voltage is supplied, and the pixels 111 in the sixth row and even columns are connected to the wiring COM to which a negative voltage is supplied. [7] is electrically connected.
配線COM[5]、配線COM[6]、および配線COM[7]には、5行目および6行目の画素111に書き込まれるビデオ信号の極性とは反対の極性の電圧が供給されている。よって、それぞれの画素111に書き込むビデオ信号の振幅を低減することができる。 The wiring COM [5], the wiring COM [6], and the wiring COM [7] are supplied with a voltage having a polarity opposite to the polarity of the video signal written to the pixels 111 in the fifth and sixth rows. . Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
〔期間T8〕
期間T8において、配線GL[5]および配線GL[6]にL電位が供給され、配線GL[7]および配線GL[8]にH電位が供給される(図25参照。)。すると、7行1列目~8行4列目の画素111が選択され、配線SLを介してそれぞれの画素111にビデオ信号が書き込まれる。
[Period T8]
In the period T8, the L potential is supplied to the wiring GL [5] and the wiring GL [6], and the H potential is supplied to the wiring GL [7] and the wiring GL [8] (see FIG. 25). Then, the pixel 111 in the seventh row, first column to the eighth row, fourth column is selected, and a video signal is written to each pixel 111 via the wiring SL.
期間T8では、7行奇数列の画素111に正極性のビデオ信号が書き込まれ、7行偶数列の画素111に負極性のビデオ信号が書き込まれる。また、8行奇数列の画素111に負極性のビデオ信号が書き込まれ、8行偶数列の画素111に正極性のビデオ信号が書き込まれる。また、配線COM[2]に負極性の電圧が供給され、配線COM[3]に正極性の電圧が供給される。 In the period T8, a positive video signal is written to the pixel 111 in the seventh row and odd column, and a negative video signal is written to the pixel 111 in the seventh row and even column. Further, a negative video signal is written to the pixels 111 in the 8th row and odd columns, and a positive video signal is written to the pixels 111 in the 8th row and even columns. Further, a negative voltage is supplied to the wiring COM [2], and a positive voltage is supplied to the wiring COM [3].
7行奇数列の画素111は、負極性の電圧が供給されている配線COM[7]と電気的に接続され、7行偶数列の画素111は、正極性の電圧が供給されている配線COM[8]と電気的に接続されている。8行奇数列の画素111は、正極性の電圧が供給されている配線COM[8]と電気的に接続され、8行偶数列の画素111は、負極性の電圧が供給されている配線COM[9]と電気的に接続されている。 The pixels 111 in the 7th row and odd columns are electrically connected to the wiring COM [7] to which a negative voltage is supplied, and the pixels 111 in the 7th row and even columns are connected to the wiring COM to which a positive voltage is supplied. [8] is electrically connected. The pixels 111 in the 8th row and odd columns are electrically connected to the wiring COM [8] to which a positive voltage is supplied, and the pixels 111 in the 8th row and even columns are connected to the wiring COM to which a negative voltage is supplied. [9] is electrically connected.
配線COM[7]、配線COM[8]、および配線COM[9]には、7行目および8行目の画素111に書き込まれるビデオ信号の極性とは反対の極性の電圧が供給されている。よって、それぞれの画素111に書き込むビデオ信号の振幅を低減することができる。 The wiring COM [7], the wiring COM [8], and the wiring COM [9] are supplied with a voltage having a polarity opposite to the polarity of the video signal written to the pixels 111 in the seventh and eighth rows. . Therefore, the amplitude of the video signal written to each pixel 111 can be reduced.
このようにして、k+1フレーム目の画素111の書き換え動作を行なうことができる。なお、期間T7で配線COM[1]、配線COM[8]、および配線COM[9]に供給される電圧の極性を反転させている。この中で、配線COM[1]に供給される電圧の極性の反転は、期間T7で行わずに期間T8で行ってもよい(図27参照。)。 In this way, the rewriting operation of the pixel 111 in the (k + 1) th frame can be performed. Note that the polarity of the voltage supplied to the wiring COM [1], the wiring COM [8], and the wiring COM [9] is inverted in the period T7. Among them, the polarity of the voltage supplied to the wiring COM [1] may be reversed in the period T8 instead of the period T7 (see FIG. 27).
ある行のビデオ信号を書き換える前に、当該行に接続する配線COMに供給される電圧の極性を反転させておくことで、正確なビデオ信号の書き換えを実現することができる。 By reversing the polarity of the voltage supplied to the wiring COM connected to the row before rewriting the video signal of a certain row, accurate rewriting of the video signal can be realized.
言い換えると、g行目(gは1以上m−3以下の整数。)とg+1行目が選択されている期間に、g+3本目とg+4本目の配線COMに供給される電圧の極性を反転させておくことで、正確なビデオ信号の書き換えを実現することができる。また、1本目の配線COMに供給される電圧の極性の反転は、m−2行目またはm行目が選択されている期間に行なう。また、2本目と3本目の配線COMに供給される電圧の極性の反転は、m行目が選択されている期間に行なう。 In other words, the polarity of the voltage supplied to the (g + 3) th and (g + 4) th wiring COM is reversed during the period when the gth row (g is an integer of 1 to m-3) and the (g + 1) th row are selected. In this way, accurate video signal rewriting can be realized. Further, the polarity of the voltage supplied to the first wiring COM is inverted during the period in which the (m-2) th or mth row is selected. Further, the polarity of the voltage supplied to the second and third wirings COM is reversed during the period when the m-th row is selected.
本発明の一態様によれば、コモン電圧の極性反転を行毎に行なうため、コモン電圧の書き込み不足(反転不足)が生じ難い。 According to one embodiment of the present invention, polarity inversion of the common voltage is performed for each row, so that common voltage writing shortage (insufficient shortage) hardly occurs.
また、本発明の一態様によれば、周辺駆動回路の出力負荷を軽減することができるため、表示装置の消費電力を低減することができる。または、8K解像度以上の表示装置においても、良好な表示品位を実現できる。または、画面サイズが対角60インチ以上さらには対角120インチ以上の表示装置においても、良好な表示品位を実現できる。または、高速動作可能な表示装置を実現できる。たとえば、表示装置のフレーム周波数を120Hz以上、もしくは240Hz以上とした場合においても、良好な表示品位を実現できる。 Further, according to one embodiment of the present invention, the output load of the peripheral driver circuit can be reduced; thus, power consumption of the display device can be reduced. Alternatively, good display quality can be realized even in a display device with 8K resolution or higher. Alternatively, a good display quality can be realized even in a display device having a screen size of 60 inches diagonal or more and further 120 inches diagonal or more. Alternatively, a display device that can operate at high speed can be realized. For example, good display quality can be realized even when the frame frequency of the display device is 120 Hz or more, or 240 Hz or more.
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。 This embodiment can be implemented in appropriate combination with the structures described in the other embodiments.
(実施の形態5)
本実施の形態では、上記実施の形態に示した表示装置などに用いることができるトランジスタの一例について、図面を用いて説明する。
(Embodiment 5)
In this embodiment, an example of a transistor that can be used for the display device and the like described in the above embodiments will be described with reference to drawings.
《トランジスタの構造例》
本発明の一態様の表示装置などは、ボトムゲート型のトランジスタや、トップゲート型トランジスタなどの様々な形態のトランジスタを用いて作製することができる。例えば、プレーナ型のトランジスタを用いてもよいし、スタガ型のトランジスタを用いてもよい。よって、既存の製造ラインに合わせて、使用する半導体層の材料やトランジスタ構造を容易に置き換えることができる。
<Example of transistor structure>
The display device or the like of one embodiment of the present invention can be manufactured using various types of transistors such as a bottom-gate transistor and a top-gate transistor. For example, a planar transistor or a staggered transistor may be used. Therefore, the semiconductor layer material and the transistor structure to be used can be easily replaced in accordance with an existing production line.
〔ボトムゲート型トランジスタ〕
図28(A1)は、ボトムゲート型のトランジスタの一種であるチャネル保護型のトランジスタ310の断面図である。図28(A1)において、トランジスタ310は基板371上に形成されている。また、トランジスタ310は、基板371上に絶縁層372を介して電極322を有する。また、電極322上に絶縁層326を介して半導体層324を有する。電極322はゲート電極として機能できる。絶縁層326はゲート絶縁層として機能できる。
[Bottom gate type transistor]
FIG. 28A1 is a cross-sectional view of a channel protection transistor 310 which is a kind of bottom-gate transistor. In FIG. 28A1, the transistor 310 is formed over a substrate 371. In addition, the transistor 310 includes an electrode 322 over a substrate 371 with an insulating layer 372 interposed therebetween. In addition, the semiconductor layer 324 is provided over the electrode 322 with the insulating layer 326 interposed therebetween. The electrode 322 can function as a gate electrode. The insulating layer 326 can function as a gate insulating layer.
また、半導体層324のチャネル形成領域上に絶縁層327を有する。また、半導体層324の一部と接して、絶縁層326上に電極344aおよび電極344bを有する。電極344aは、ソース電極またはドレイン電極の一方として機能できる。電極344bは、ソース電極またはドレイン電極の他方として機能できる。電極344aの一部、および電極344bの一部は、絶縁層327上に形成される。 In addition, an insulating layer 327 is provided over the channel formation region of the semiconductor layer 324. In addition, the electrode 344 a and the electrode 344 b are provided over the insulating layer 326 in contact with part of the semiconductor layer 324. The electrode 344a can function as one of a source electrode and a drain electrode. The electrode 344b can function as the other of the source electrode and the drain electrode. Part of the electrode 344 a and part of the electrode 344 b are formed over the insulating layer 327.
絶縁層327は、チャネル保護層として機能できる。チャネル形成領域上に絶縁層327を設けることで、電極344aおよび電極344bの形成時に生じる半導体層324の露出を防ぐことができる。よって、電極344aおよび電極344bの形成時に、半導体層324のチャネル形成領域がエッチングされることを防ぐことができる。本発明の一態様によれば、電気特性の良好なトランジスタを実現することができる。 The insulating layer 327 can function as a channel protective layer. By providing the insulating layer 327 over the channel formation region, it is possible to prevent the semiconductor layer 324 from being exposed when the electrodes 344a and 344b are formed. Therefore, the channel formation region of the semiconductor layer 324 can be prevented from being etched when the electrodes 344a and 344b are formed. According to one embodiment of the present invention, a transistor with favorable electrical characteristics can be realized.
また、トランジスタ310は、電極344a、電極344bおよび絶縁層327上に絶縁層328を有し、絶縁層328の上に絶縁層329を有する。 The transistor 310 includes the insulating layer 328 over the electrode 344a, the electrode 344b, and the insulating layer 327, and the insulating layer 329 over the insulating layer 328.
半導体層324にシリコンなどの半導体を用いる場合は、半導体層324と電極344aの間、および半導体層324と電極344bの間に、n型半導体またはp型半導体として機能する層を設けることが好ましい。n型半導体またはp型半導体として機能する層は、トランジスタのソース領域またはドレイン領域として機能することができる。 In the case where a semiconductor such as silicon is used for the semiconductor layer 324, a layer functioning as an n-type semiconductor or a p-type semiconductor is preferably provided between the semiconductor layer 324 and the electrode 344a and between the semiconductor layer 324 and the electrode 344b. A layer functioning as an n-type semiconductor or a p-type semiconductor can function as a source region or a drain region of a transistor.
絶縁層329は、外部からのトランジスタへの不純物の拡散を防ぐ、または低減する機能を有する材料を用いて形成することが好ましい。なお、必要に応じて絶縁層329を省略することもできる。 The insulating layer 329 is preferably formed using a material having a function of preventing or reducing impurity diffusion from the outside to the transistor. Note that the insulating layer 329 can be omitted as necessary.
図28(A2)に示すトランジスタ311は、絶縁層329上にバックゲート電極として機能できる電極323を有する点が、トランジスタ310と異なる。電極323は、電極322と同様の材料および方法で形成することができる。 A transistor 311 illustrated in FIG. 28A2 is different from the transistor 310 in that the transistor 311 includes an electrode 323 that can function as a back gate electrode over the insulating layer 329. The electrode 323 can be formed using a material and a method similar to those of the electrode 322.
一般に、バックゲート電極は導電層で形成され、ゲート電極とバックゲート電極で半導体層のチャネル形成領域を挟むように配置される。よって、バックゲート電極は、ゲート電極と同様に機能させることができる。バックゲート電極の電位は、ゲート電極と同電位としてもよいし、接地電位(GND電位)や、任意の電位としてもよい。また、バックゲート電極の電位をゲート電極と連動させず独立して変化させることで、トランジスタのしきい値電圧を変化させることができる。 In general, the back gate electrode is formed using a conductive layer, and the channel formation region of the semiconductor layer is sandwiched between the gate electrode and the back gate electrode. Therefore, the back gate electrode can function in the same manner as the gate electrode. The potential of the back gate electrode may be the same as that of the gate electrode, or may be a ground potential (GND potential) or an arbitrary potential. In addition, the threshold voltage of the transistor can be changed by changing the potential of the back gate electrode independently of the gate electrode.
電極322および電極323は、どちらもゲート電極として機能することができる。よって、絶縁層326、絶縁層328、および絶縁層329は、それぞれがゲート絶縁層として機能することができる。なお、電極323は、絶縁層328と絶縁層329の間に設けてもよい。 Both the electrode 322 and the electrode 323 can function as gate electrodes. Therefore, each of the insulating layer 326, the insulating layer 328, and the insulating layer 329 can function as a gate insulating layer. Note that the electrode 323 may be provided between the insulating layer 328 and the insulating layer 329.
なお、電極322または電極323の一方を、「ゲート電極」という場合、他方を「バックゲート電極」という。例えば、トランジスタ311において、電極323を「ゲート電極」と言う場合、電極322を「バックゲート電極」と言う。また、電極323を「ゲート電極」として用いる場合は、トランジスタ311をトップゲート型のトランジスタの一種と考えることができる。また、電極322および電極323のどちらか一方を、「第1のゲート電極」といい、他方を「第2のゲート電極」という場合がある。 Note that when one of the electrode 322 and the electrode 323 is referred to as a “gate electrode”, the other is referred to as a “back gate electrode”. For example, in the transistor 311, when the electrode 323 is referred to as a “gate electrode”, the electrode 322 is referred to as a “back gate electrode”. In the case where the electrode 323 is used as a “gate electrode”, the transistor 311 can be regarded as a kind of top-gate transistor. In addition, either the electrode 322 or the electrode 323 may be referred to as a “first gate electrode” and the other may be referred to as a “second gate electrode”.
半導体層324を挟んで電極322および電極323を設けることで、更には、電極322および電極323を同電位とすることで、半導体層324においてキャリアの流れる領域が膜厚方向においてより大きくなるため、キャリアの移動量が増加する。この結果、トランジスタ311のオン電流が大きくなると共に、電界効果移動度が高くなる。 By providing the electrode 322 and the electrode 323 with the semiconductor layer 324 interposed therebetween, and further by setting the electrode 322 and the electrode 323 to have the same potential, a region where carriers flow in the semiconductor layer 324 becomes larger in the film thickness direction. The amount of carrier movement increases. As a result, the on-state current of the transistor 311 increases and the field effect mobility increases.
したがって、トランジスタ311は、占有面積に対して大きいオン電流を有するトランジスタである。すなわち、求められるオン電流に対して、トランジスタ311の占有面積を小さくすることができる。本発明の一態様によれば、トランジスタの占有面積を小さくすることができる。よって、本発明の一態様によれば、集積度の高い半導体装置を実現することができる。 Therefore, the transistor 311 is a transistor having a large on-state current with respect to the occupied area. That is, the area occupied by the transistor 311 can be reduced with respect to the required on-state current. According to one embodiment of the present invention, the area occupied by a transistor can be reduced. Thus, according to one embodiment of the present invention, a highly integrated semiconductor device can be realized.
また、ゲート電極とバックゲート電極は導電層で形成されるため、トランジスタの外部で生じる電界が、チャネルが形成される半導体層に作用しないようにする機能(特に静電気などに対する電界遮蔽機能)を有する。なお、バックゲート電極を半導体層よりも大きく形成し、バックゲート電極で半導体層を覆うことで、電界遮蔽機能を高めることができる。 In addition, since the gate electrode and the back gate electrode are formed using conductive layers, they have a function of preventing an electric field generated outside the transistor from acting on a semiconductor layer in which a channel is formed (particularly, an electric field shielding function against static electricity). . Note that the electric field shielding function can be improved by forming the back gate electrode larger than the semiconductor layer and covering the semiconductor layer with the back gate electrode.
ゲート電極とバックゲート電極は、それぞれが外部からの電界を遮蔽する機能を有するため、トランジスタの上方および下方に生じる荷電粒子等の電荷が半導体層のチャネル形成領域に影響しない。この結果、ストレス試験(例えば、ゲートに負の電圧を印加するNGBT(Negative Gate Bias−Temperature)ストレス試験(「NBT」または「NBTS」ともいう。)の劣化が抑制される。また、ゲート電極とバックゲート電極は、ドレイン電極から生じる電界が半導体層に作用しないように遮断することができる。よって、ドレイン電圧の変動に起因する、オン電流の立ち上がり電圧の変動を抑制することができる。なお、この効果は、ゲート電極およびバックゲート電極に電位が供給されている場合において顕著に生じる。 Since each of the gate electrode and the back gate electrode has a function of shielding an electric field from the outside, charges such as charged particles generated above and below the transistor do not affect the channel formation region of the semiconductor layer. As a result, deterioration of a stress test (for example, an NGBT (Negative Gate Bias-Temperature) stress test (also referred to as “NBT” or “NBTS”) in which a negative voltage is applied to the gate is suppressed. The back gate electrode can block the electric field generated from the drain electrode so as not to act on the semiconductor layer, and thus can suppress fluctuations in the rising voltage of the on-current due to fluctuations in the drain voltage. This effect is remarkable when a potential is supplied to the gate electrode and the back gate electrode.
また、バックゲート電極を有するトランジスタは、ゲートに正の電圧を印加するPGBT(Positive Gate Bias−Temperature)ストレス試験(「PBT」または「PBTS」ともいう。)前後におけるしきい値電圧の変動も、バックゲート電極を有さないトランジスタより小さい。 In addition, a transistor having a back gate electrode has a variation in threshold voltage before and after a PGBT (Positive Gate Bias-Temperature) stress test (also referred to as “PBT” or “PBTS”) in which a positive voltage is applied to the gate. Smaller than a transistor without a back gate electrode.
なお、NGBTおよびPGBTなどのBTストレス試験は加速試験の一種であり、長期間の使用によって起こるトランジスタの特性変化(経年変化)を短時間で評価することができる。特に、BTストレス試験前後におけるトランジスタのしきい値電圧の変動量は、信頼性を調べるための重要な指標となる。BTストレス試験前後において、しきい値電圧の変動量が少ないほど、信頼性が高いトランジスタであるといえる。 Note that a BT stress test such as NGBT and PGBT is a kind of accelerated test, and a transistor characteristic change (aging) caused by long-term use can be evaluated in a short time. In particular, the amount of change in the threshold voltage of the transistor before and after the BT stress test is an important index for examining reliability. Before and after the BT stress test, the smaller the variation amount of the threshold voltage, the higher the reliability of the transistor.
また、ゲート電極およびバックゲート電極を有し、且つ両者を同電位とすることで、しきい値電圧の変動量が低減される。このため、複数のトランジスタ間における電気特性のばらつきも同時に低減される。 In addition, since the gate electrode and the back gate electrode are provided and both have the same potential, the amount of fluctuation in the threshold voltage is reduced. For this reason, variation in electrical characteristics among a plurality of transistors is also reduced at the same time.
また、バックゲート電極側から光が入射する場合に、バックゲート電極を、遮光性を有する導電膜で形成することで、バックゲート電極側から半導体層に光が入射することを防ぐことができる。よって、半導体層の光劣化を防ぎ、トランジスタのしきい値電圧がシフトするなどの電気特性の劣化を防ぐことができる。 In addition, when light enters from the back gate electrode side, the back gate electrode is formed using a light-shielding conductive film, whereby light can be prevented from entering the semiconductor layer from the back gate electrode side. Therefore, light deterioration of the semiconductor layer can be prevented, and deterioration of electrical characteristics such as shift of the threshold voltage of the transistor can be prevented.
本発明の一態様によれば、信頼性の良好なトランジスタを実現することができる。また、信頼性の良好な半導体装置を実現することができる。 According to one embodiment of the present invention, a highly reliable transistor can be realized. In addition, a highly reliable semiconductor device can be realized.
図28(B1)に、ボトムゲート型のトランジスタの1つであるチャネル保護型のトランジスタ320の断面図を示す。トランジスタ320は、トランジスタ310とほぼ同様の構造を有しているが、絶縁層327が半導体層324を覆っている点が異なる。また、半導体層324と重なる絶縁層327の一部を選択的に除去して形成した開口部において、半導体層324と電極344aが電気的に接続している。また、半導体層324と重なる絶縁層327の一部を選択的に除去して形成した他の開口部において、半導体層324と電極344bが電気的に接続している。絶縁層327の、チャネル形成領域と重なる領域は、チャネル保護層として機能できる。 FIG. 28B1 is a cross-sectional view of a channel protection transistor 320 which is one of bottom-gate transistors. The transistor 320 has substantially the same structure as the transistor 310 except that an insulating layer 327 covers the semiconductor layer 324. In addition, the semiconductor layer 324 and the electrode 344a are electrically connected to each other in an opening formed by selectively removing a part of the insulating layer 327 overlapping with the semiconductor layer 324. The semiconductor layer 324 and the electrode 344b are electrically connected to each other in an opening formed by selectively removing part of the insulating layer 327 overlapping with the semiconductor layer 324. A region of the insulating layer 327 overlapping with a channel formation region can function as a channel protective layer.
図28(B2)に示すトランジスタ321は、絶縁層329上にバックゲート電極として機能できる電極323を有する点が、トランジスタ320と異なる。 A transistor 321 illustrated in FIG. 28B2 is different from the transistor 320 in that the transistor 321 includes an electrode 323 that can function as a back gate electrode over the insulating layer 329.
絶縁層327を設けることで、電極344aおよび電極344bの形成時に生じる半導体層324の露出を防ぐことができる。よって、電極344aおよび電極344bの形成時に半導体層324の薄膜化を防ぐことができる。 By providing the insulating layer 327, the semiconductor layer 324 can be prevented from being exposed when the electrode 344a and the electrode 344b are formed. Therefore, the semiconductor layer 324 can be prevented from being thinned when the electrodes 344a and 344b are formed.
また、トランジスタ320およびトランジスタ321は、トランジスタ310およびトランジスタ311よりも、電極344aと電極322の間の距離と、電極344bと電極322の間の距離が長くなる。よって、電極344aと電極322の間に生じる寄生容量を小さくすることができる。また、電極344bと電極322の間に生じる寄生容量を小さくすることができる。本発明の一態様によれば、電気特性の良好なトランジスタを実現できる。 Further, in the transistor 320 and the transistor 321, the distance between the electrode 344 a and the electrode 322 and the distance between the electrode 344 b and the electrode 322 are longer than those in the transistor 310 and the transistor 311. Thus, parasitic capacitance generated between the electrode 344a and the electrode 322 can be reduced. In addition, parasitic capacitance generated between the electrode 344b and the electrode 322 can be reduced. According to one embodiment of the present invention, a transistor with favorable electrical characteristics can be realized.
図28(C1)に示すトランジスタ325は、ボトムゲート型のトランジスタの1つであるチャネルエッチ型のトランジスタである。トランジスタ325は、絶縁層327を用いずに電極344aおよび電極344bを形成する。このため、電極344aおよび電極344bの形成時に露出する半導体層324の一部がエッチングされる場合がある。一方、絶縁層327を設けないため、トランジスタの生産性を高めることができる。 A transistor 325 illustrated in FIG. 28C1 is a channel-etched transistor which is one of bottom-gate transistors. In the transistor 325, the electrode 344a and the electrode 344b are formed without using the insulating layer 327. For this reason, part of the semiconductor layer 324 exposed when the electrodes 344a and 344b are formed may be etched. On the other hand, since the insulating layer 327 is not provided, the productivity of the transistor can be increased.
図28(C2)に示すトランジスタ325は、絶縁層329上にバックゲート電極として機能できる電極323を有する点が、トランジスタ320と異なる。 A transistor 325 illustrated in FIG. 28C2 is different from the transistor 320 in that the transistor 325 includes an electrode 323 that can function as a back gate electrode over the insulating layer 329.
〔トップゲート型トランジスタ〕
図29(A1)に、トップゲート型のトランジスタの一種であるトランジスタ330の断面図を示す。トランジスタ330は、絶縁層372の上に半導体層324を有し、半導体層324および絶縁層372上に、半導体層324の一部に接する電極344a、および半導体層324の一部に接する電極344bを有し、半導体層324、電極344a、および電極344b上に絶縁層326を有し、絶縁層326上に電極322を有する。
[Top gate type transistor]
FIG. 29A1 is a cross-sectional view of a transistor 330 which is a kind of top-gate transistor. The transistor 330 includes a semiconductor layer 324 over the insulating layer 372, and an electrode 344a in contact with part of the semiconductor layer 324 and an electrode 344b in contact with part of the semiconductor layer 324 over the semiconductor layer 324 and the insulating layer 372. An insulating layer 326 is provided over the semiconductor layer 324, the electrode 344a, and the electrode 344b, and an electrode 322 is provided over the insulating layer 326.
トランジスタ330は、電極322および電極344a、並びに、電極322および電極344bが重ならないため、電極322および電極344aの間に生じる寄生容量、並びに、電極322および電極344bの間に生じる寄生容量を小さくすることができる。また、電極322を形成した後に、電極322をマスクとして用いて不純物255を半導体層324に導入することで、半導体層324中に自己整合(セルフアライメント)的に不純物領域を形成することができる(図29(A3)参照)。本発明の一態様によれば、電気特性の良好なトランジスタを実現することができる。 The transistor 330 reduces the parasitic capacitance generated between the electrode 322 and the electrode 344a and the parasitic capacitance generated between the electrode 322 and the electrode 344b because the electrode 322 and the electrode 344a and the electrode 322 and the electrode 344b do not overlap with each other. be able to. Further, after the electrode 322 is formed, the impurity region can be formed in the semiconductor layer 324 in a self-alignment manner by introducing the impurity 255 into the semiconductor layer 324 using the electrode 322 as a mask ( (See FIG. 29A3). According to one embodiment of the present invention, a transistor with favorable electrical characteristics can be realized.
なお、不純物255の導入は、イオン注入装置、イオンドーピング装置またはプラズマ処理装置を用いて行うことができる。 Note that the impurity 255 can be introduced using an ion implantation apparatus, an ion doping apparatus, or a plasma treatment apparatus.
不純物255としては、例えば、第13族元素または第15族元素のうち、少なくとも一種類の元素を用いることができる。また、半導体層324に酸化物半導体を用いる場合は、不純物255として、希ガス、水素、および窒素のうち、少なくとも一種類の元素を用いることも可能である。 As the impurity 255, for example, at least one element of a Group 13 element or a Group 15 element can be used. In the case where an oxide semiconductor is used for the semiconductor layer 324, at least one element of a rare gas, hydrogen, and nitrogen can be used as the impurity 255.
図29(A2)に示すトランジスタ331は、電極323および絶縁層227を有する点がトランジスタ330と異なる。トランジスタ331は、絶縁層372の上に形成された電極323を有し、電極323上に形成された絶縁層227を有する。電極323は、バックゲート電極として機能することができる。よって、絶縁層227は、ゲート絶縁層として機能することができる。絶縁層227は、絶縁層326と同様の材料および方法により形成することができる。 A transistor 331 illustrated in FIG. 29A2 is different from the transistor 330 in that the transistor 331 includes an electrode 323 and an insulating layer 227. The transistor 331 includes the electrode 323 formed over the insulating layer 372 and the insulating layer 227 formed over the electrode 323. The electrode 323 can function as a back gate electrode. Thus, the insulating layer 227 can function as a gate insulating layer. The insulating layer 227 can be formed using a material and a method similar to those of the insulating layer 326.
トランジスタ311と同様に、トランジスタ331は、占有面積に対して大きいオン電流を有するトランジスタである。すなわち、求められるオン電流に対して、トランジスタ331の占有面積を小さくすることができる。本発明の一態様によれば、トランジスタの占有面積を小さくすることができる。よって、本発明の一態様によれば、集積度の高い半導体装置を実現することができる。 Similar to the transistor 311, the transistor 331 is a transistor having a large on-state current with respect to the occupied area. That is, the area occupied by the transistor 331 can be reduced with respect to the required on-state current. According to one embodiment of the present invention, the area occupied by a transistor can be reduced. Thus, according to one embodiment of the present invention, a highly integrated semiconductor device can be realized.
図29(B1)に例示するトランジスタ340は、トップゲート型のトランジスタの1つである。トランジスタ340は、電極344aおよび電極344bを形成した後に半導体層324を形成する点が、トランジスタ330と異なる。また、図29(B2)に例示するトランジスタ341は、電極323および絶縁層227を有する点が、トランジスタ340と異なる。トランジスタ340およびトランジスタ341において、半導体層324の一部は電極344a上に形成され、半導体層324の他の一部は電極344b上に形成される。 A transistor 340 illustrated in FIG. 29B1 is one of top-gate transistors. The transistor 340 is different from the transistor 330 in that the semiconductor layer 324 is formed after the electrodes 344a and 344b are formed. A transistor 341 illustrated in FIG. 29B2 is different from the transistor 340 in that the transistor 341 includes an electrode 323 and an insulating layer 227. In the transistor 340 and the transistor 341, part of the semiconductor layer 324 is formed over the electrode 344a, and the other part of the semiconductor layer 324 is formed over the electrode 344b.
トランジスタ311と同様に、トランジスタ341は、占有面積に対して大きいオン電流を有するトランジスタである。すなわち、求められるオン電流に対して、トランジスタ341の占有面積を小さくすることができる。本発明の一態様によれば、トランジスタの占有面積を小さくすることができる。よって、本発明の一態様によれば、集積度の高い半導体装置を実現することができる。 Similar to the transistor 311, the transistor 341 is a transistor having a large on-state current with respect to the occupied area. That is, the area occupied by the transistor 341 can be reduced with respect to the required on-state current. According to one embodiment of the present invention, the area occupied by a transistor can be reduced. Thus, according to one embodiment of the present invention, a highly integrated semiconductor device can be realized.
図30(A1)に例示するトランジスタ342は、トップゲート型のトランジスタの1つである。トランジスタ342は、絶縁層329を形成した後に電極344aおよび電極344bを形成する点がトランジスタ330やトランジスタ340と異なる。電極344aおよび電極344bは、絶縁層328および絶縁層329に形成した開口部において半導体層324と電気的に接続する。 A transistor 342 illustrated in FIG. 30A1 is one of top-gate transistors. The transistor 342 is different from the transistors 330 and 340 in that the electrode 344a and the electrode 344b are formed after the insulating layer 329 is formed. The electrodes 344 a and 344 b are electrically connected to the semiconductor layer 324 through openings formed in the insulating layers 328 and 329.
また、電極322と重ならない絶縁層326の一部を除去し、電極322と残りの絶縁層326をマスクとして用いて不純物255を半導体層324に導入することで、半導体層324中に自己整合(セルフアライメント)的に不純物領域を形成することができる(図30(A3)参照)。トランジスタ342は、絶縁層326が電極322の端部を越えて延伸する領域を有する。不純物255を半導体層324に導入する際に、半導体層324の絶縁層326を介して不純物255が導入された領域の不純物濃度は、絶縁層326を介さずに不純物255が導入された領域よりも小さくなる。よって半導体層324は、電極322と重ならない領域にLDD(Lightly Doped Drain)領域が形成される。 Further, part of the insulating layer 326 that does not overlap with the electrode 322 is removed, and the impurity 255 is introduced into the semiconductor layer 324 using the electrode 322 and the remaining insulating layer 326 as a mask, so that self-alignment in the semiconductor layer 324 ( Impurity regions can be formed in a self-aligning manner (see FIG. 30A3). The transistor 342 includes a region where the insulating layer 326 extends beyond the end portion of the electrode 322. When the impurity 255 is introduced into the semiconductor layer 324, the impurity concentration of the region into which the impurity 255 is introduced through the insulating layer 326 of the semiconductor layer 324 is higher than that in the region into which the impurity 255 is introduced without passing through the insulating layer 326. Get smaller. Therefore, in the semiconductor layer 324, an LDD (Lightly Doped Drain) region is formed in a region that does not overlap with the electrode 322.
図30(A2)に示すトランジスタ343は、電極323を有する点がトランジスタ342と異なる。トランジスタ343は、基板371の上に形成された電極323を有し、絶縁層372を介して半導体層324と重なる。電極323は、バックゲート電極として機能することができる。 A transistor 343 illustrated in FIG. 30A2 is different from the transistor 342 in that the electrode 323 is provided. The transistor 343 includes an electrode 323 formed over the substrate 371 and overlaps with the semiconductor layer 324 with the insulating layer 372 interposed therebetween. The electrode 323 can function as a back gate electrode.
また、図30(B1)に示すトランジスタ344および図30(B2)に示すトランジスタ345のように、電極322と重ならない領域の絶縁層326を全て除去してもよい。また、図30(C1)に示すトランジスタ346および図30(C2)に示すトランジスタ347のように、絶縁層326を残してもよい。 Further, as in the transistor 344 illustrated in FIG. 30B1 and the transistor 345 illustrated in FIG. 30B2, the insulating layer 326 which does not overlap with the electrode 322 may be removed. Further, the insulating layer 326 may be left as in the transistor 346 illustrated in FIG. 30C1 and the transistor 347 illustrated in FIG.
トランジスタ342乃至トランジスタ347も、電極322を形成した後に、電極322をマスクとして用いて不純物255を半導体層324に導入することで、半導体層324中に自己整合的に不純物領域を形成することができる。本発明の一態様によれば、電気特性の良好なトランジスタを実現することができる。また、本発明の一態様によれば、集積度の高い半導体装置を実現することができる。 The transistors 342 to 347 can also form an impurity region in the semiconductor layer 324 in a self-aligned manner by introducing the impurity 255 into the semiconductor layer 324 using the electrode 322 as a mask after the electrode 322 is formed. . According to one embodiment of the present invention, a transistor with favorable electrical characteristics can be realized. According to one embodiment of the present invention, a highly integrated semiconductor device can be realized.
[基板]
基板に用いる材料に大きな制限はない。目的に応じて、透光性の有無や加熱処理に耐えうる程度の耐熱性などを勘案して決定すればよい。例えばバリウムホウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板、セラミック基板、石英基板、サファイア基板などを用いることができる。また、半導体基板、可撓性基板(フレキシブル基板)、貼り合わせフィルム、基材フィルムなどを用いてもよい。
[substrate]
There is no major limitation on the material used for the substrate. Depending on the purpose, it may be determined in consideration of the presence or absence of translucency and heat resistance enough to withstand heat treatment. For example, a glass substrate such as barium borosilicate glass or alumino borosilicate glass, a ceramic substrate, a quartz substrate, a sapphire substrate, or the like can be used. Further, a semiconductor substrate, a flexible substrate (flexible substrate), a bonded film, a base film, or the like may be used.
半導体基板としては、例えば、シリコン、もしくはゲルマニウムなどを材料とした半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、もしくは酸化ガリウムを材料とした化合物半導体基板などがある。また、半導体基板は、単結晶半導体であってもよいし、多結晶半導体であってもよい。 Examples of the semiconductor substrate include a semiconductor substrate made of silicon or germanium, or a compound semiconductor substrate made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, or gallium oxide. . The semiconductor substrate may be a single crystal semiconductor or a polycrystalline semiconductor.
また、基板として、例えば、第6世代(1500mm×1850mm)、第7世代(1870mm×2200mm)、第8世代(2200mm×2400mm)、第9世代(2400mm×2800mm)、第10世代(2950mm×3400mm)等の面積が大きなガラス基板を用いることができる。これにより、大型の表示装置を作製することができる。また、基板が大型化されることで、1枚の基板からより多くの表示装置を生産でき、生産コストを削減することができる。 Further, as the substrate, for example, 6th generation (1500 mm × 1850 mm), 7th generation (1870 mm × 2200 mm), 8th generation (2200 mm × 2400 mm), 9th generation (2400 mm × 2800 mm), 10th generation (2950 mm × 3400 mm) ) And the like can be used. Thus, a large display device can be manufactured. Further, by increasing the size of the substrate, more display devices can be produced from one substrate, and the production cost can be reduced.
なお、表示装置の可撓性を高めるため、基板として可撓性基板(フレキシブル基板)、貼り合わせフィルム、基材フィルムなどを用いてもよい。 In order to increase the flexibility of the display device, a flexible substrate (flexible substrate), a bonded film, a base film, or the like may be used as the substrate.
可撓性基板、貼り合わせフィルム、基材フィルムなどの材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ABS樹脂、セルロースナノファイバーなどを用いることができる。 Examples of materials such as a flexible substrate, a laminated film, and a base film include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyacrylonitrile resins, acrylic resins, polyimide resins, and polymethyl methacrylate. Resin, polycarbonate (PC) resin, polyethersulfone (PES) resin, polyamide resin (nylon, aramid, etc.), polysiloxane resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyurethane resin, polyvinyl chloride resin, polychlorinated resin Vinylidene resin, polypropylene resin, polytetrafluoroethylene (PTFE) resin, ABS resin, cellulose nanofiber, and the like can be used.
基板として上記材料を用いることにより、軽量な表示装置を提供することができる。また、基板として上記材料を用いることにより、衝撃に強い表示装置を提供することができる。また、基板として上記材料を用いることにより、破損しにくい表示装置を提供することができる。 By using the above material as the substrate, a lightweight display device can be provided. In addition, by using the above material as the substrate, a display device that is resistant to impact can be provided. In addition, by using the above material for the substrate, a display device which is not easily damaged can be provided.
基板に用いる可撓性基板は、線膨張率が低いほど環境による変形が抑制されて好ましい。基板に用いる可撓性基板は、例えば、線膨張率が1×10−3/K以下、5×10−5/K以下、または1×10−5/K以下である材質を用いればよい。特に、アラミドは、線膨張率が低いため、可撓性基板として好適である。 The flexible substrate used for the substrate is preferably as the linear expansion coefficient is low because deformation due to the environment is suppressed. For the flexible substrate used for the substrate, for example, a material having a linear expansion coefficient of 1 × 10 −3 / K or less, 5 × 10 −5 / K or less, or 1 × 10 −5 / K or less may be used. In particular, since aramid has a low coefficient of linear expansion, it is suitable as a flexible substrate.
[導電層]
トランジスタのゲート、ソースおよびドレインのほか、表示装置を構成する各種配線および電極などの導電層に用いることのできる導電性材料としては、アルミニウム(Al)、クロム(Cr)、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)、タンタル(Ta)、ニッケル(Ni)、チタン(Ti)、モリブデン(Mo)、タングステン(W)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、マンガン(Mn)、マグネシウム(Mg)、ジルコニウム(Zr)、ベリリウム(Be)等から選ばれた金属元素、上述した金属元素を成分とする合金、または上述した金属元素を組み合わせた合金などを用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。導電性材料の形成方法は特に限定されず、蒸着法、CVD法、スパッタリング法、スピンコート法などの各種形成方法を用いることができる。
[Conductive layer]
In addition to the gate, source, and drain of the transistor, conductive materials that can be used for conductive layers such as various wirings and electrodes constituting the display device include aluminum (Al), chromium (Cr), copper (Cu), and silver. (Ag), gold (Au), platinum (Pt), tantalum (Ta), nickel (Ni), titanium (Ti), molybdenum (Mo), tungsten (W), hafnium (Hf), vanadium (V), niobium Metal elements selected from (Nb), manganese (Mn), magnesium (Mg), zirconium (Zr), beryllium (Be), alloys containing the above metal elements, or alloys combining the above metal elements Etc. can be used. Alternatively, a semiconductor typified by polycrystalline silicon containing an impurity element such as phosphorus, or silicide such as nickel silicide may be used. There is no particular limitation on the method for forming the conductive material, and various formation methods such as an evaporation method, a CVD method, a sputtering method, and a spin coating method can be used.
また、導電性材料として、Cu−X合金(Xは、Mn、Ni、Cr、Fe、Co、Mo、Ta、またはTi)を適用してもよい。Cu−X合金で形成した層は、ウエットエッチングプロセスで加工できるため、製造コストを抑制することが可能となる。また、導電性材料として、チタン、タンタル、タングステン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた一または複数の元素を含むアルミニウム合金を用いてもよい。 Further, a Cu—X alloy (X is Mn, Ni, Cr, Fe, Co, Mo, Ta, or Ti) may be applied as the conductive material. Since the layer formed of the Cu—X alloy can be processed by a wet etching process, the manufacturing cost can be suppressed. Alternatively, an aluminum alloy containing one or more elements selected from titanium, tantalum, tungsten, molybdenum, chromium, neodymium, and scandium may be used as the conductive material.
また、導電層に用いることのできる導電性材料として、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの、酸素を有する導電性材料を用いることもできる。また、窒化チタン、窒化タンタル、窒化タングステンなどの、窒素を含む導電性材料を用いることもできる。また、導電層を酸素を有する導電性材料、窒素を含む導電性材料、前述した金属元素を含む材料を適宜組み合わせた積層構造とすることもできる。 As a conductive material that can be used for the conductive layer, indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin containing titanium oxide, or the like can be used. A conductive material containing oxygen such as oxide, indium zinc oxide, or indium tin oxide to which silicon oxide is added can also be used. Alternatively, a conductive material containing nitrogen such as titanium nitride, tantalum nitride, or tungsten nitride can be used. Alternatively, the conductive layer can have a stacked structure in which a conductive material containing oxygen, a conductive material containing nitrogen, and a material containing the above metal element are combined as appropriate.
例えば、導電層をシリコンを含むアルミニウム層の単層構造、アルミニウム層上にチタン層を積層する二層構造、窒化チタン層上にチタン層を積層する二層構造、窒化チタン層上にタングステン層を積層する二層構造、窒化タンタル層上にタングステン層を積層する二層構造、チタン層と、そのチタン層上にアルミニウム層を積層し、さらにその上にチタン層を積層する三層構造としてもよい。 For example, the conductive layer is a single layer structure of an aluminum layer containing silicon, a two layer structure in which a titanium layer is stacked on an aluminum layer, a two layer structure in which a titanium layer is stacked on a titanium nitride layer, and a tungsten layer on a titanium nitride layer. A two-layer structure in which layers are stacked, a two-layer structure in which a tungsten layer is stacked on a tantalum nitride layer, or a three-layer structure in which a titanium layer and an aluminum layer are stacked on the titanium layer, and a titanium layer is further stacked on the titanium layer. .
また、上記の導電性材料で形成される導電層を複数積層して用いてもよい。例えば、導電層を前述した金属元素を含む材料と酸素を含む導電性材料を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料、酸素を含む導電性材料、および窒素を含む導電性材料を組み合わせた積層構造としてもよい。 A plurality of conductive layers formed using the above conductive materials may be stacked. For example, the conductive layer may have a stacked structure in which the above-described material containing a metal element and a conductive material containing oxygen are combined. Alternatively, a stacked structure in which the above-described material containing a metal element and a conductive material containing nitrogen are combined may be employed. Alternatively, a stacked structure of the above-described material containing a metal element, a conductive material containing oxygen, and a conductive material containing nitrogen may be employed.
例えば、導電層を、インジウムまたは亜鉛の少なくとも一方と酸素とを含む導電層上に、銅を含む導電層を積層し、さらにその上にインジウムまたは亜鉛の少なくとも一方と酸素とを含む導電層を積層する三層構造としてもよい。この場合、銅を含む導電層の側面もインジウムまたは亜鉛の少なくとも一方と酸素とを含む導電層で覆うことが好ましい。また、例えば、導電層としてインジウムまたは亜鉛の少なくとも一方と酸素とを含む導電層を複数積層して用いてもよい。 For example, a conductive layer is formed by laminating a conductive layer containing copper on a conductive layer containing at least one of indium or zinc and oxygen, and further laminating a conductive layer containing at least one of indium or zinc and oxygen on the conductive layer. It may be a three-layer structure. In this case, the side surface of the conductive layer containing copper is also preferably covered with a conductive layer containing at least one of indium or zinc and oxygen. Further, for example, a plurality of conductive layers containing oxygen and at least one of indium or zinc may be used as the conductive layer.
[絶縁層]
各絶縁層は、窒化アルミニウム、酸化アルミニウム、窒化酸化アルミニウム、酸化窒化アルミニウム、酸化マグネシウム、窒化シリコン、酸化シリコン、窒化酸化シリコン、酸化窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、酸化タンタル、アルミニウムシリケートなどから選ばれた材料を、単層でまたは積層して用いる。また、酸化物材料、窒化物材料、酸化窒化物材料、窒化酸化物材料のうち、複数の材料を混合した材料を用いてもよい。
[Insulation layer]
Each insulating layer is made of aluminum nitride, aluminum oxide, aluminum nitride oxide, aluminum oxynitride, magnesium oxide, silicon nitride, silicon oxide, silicon nitride oxide, silicon oxynitride, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide A material selected from neodymium oxide, hafnium oxide, tantalum oxide, aluminum silicate, or the like is used as a single layer or a stacked layer. Alternatively, a material obtained by mixing a plurality of materials among oxide materials, nitride materials, oxynitride materials, and nitride oxide materials may be used.
なお、本明細書中において、窒化酸化物とは、酸素よりも窒素の含有量が多い化合物をいう。また、酸化窒化物とは、窒素よりも酸素の含有量が多い化合物をいう。なお、各元素の含有量は、例えば、ラザフォード後方散乱法(RBS:Rutherford Backscattering Spectrometry)等を用いて測定することができる。 Note that in this specification, a nitrided oxide refers to a compound having a higher nitrogen content than oxygen. Further, oxynitride refers to a compound having a higher oxygen content than nitrogen. In addition, content of each element can be measured using Rutherford backscattering method (RBS: Rutherford Backscattering Spectrometry) etc., for example.
特に絶縁層372および絶縁層329は、不純物が透過しにくい絶縁性材料を用いて形成することが好ましい。例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁材料を、単層で、または積層で用いればよい。不純物が透過しにくい絶縁性材料の一例として、酸化アルミニウム、窒化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、酸化タンタル、窒化シリコンなどを挙げることができる。 In particular, the insulating layer 372 and the insulating layer 329 are preferably formed using an insulating material which does not easily transmit impurities. For example, an insulating material including boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, lanthanum, neodymium, hafnium or tantalum, in a single layer, or What is necessary is just to use it by lamination | stacking. Examples of insulating materials that are difficult to transmit impurities include aluminum oxide, aluminum nitride, aluminum oxynitride, aluminum nitride oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, tantalum oxide, Examples thereof include silicon nitride.
絶縁層372に不純物が透過しにくい絶縁性材料を用いることで、基板371側からの不純物の拡散を抑制し、トランジスタの信頼性を高めることができる。絶縁層329に不純物が透過しにくい絶縁性材料を用いることで、絶縁層329よりも上側からの不純物の拡散を抑制し、トランジスタの信頼性を高めることができる。 By using an insulating material that does not easily transmit impurities for the insulating layer 372, diffusion of impurities from the substrate 371 side can be suppressed and the reliability of the transistor can be improved. By using an insulating material that does not easily transmit impurities for the insulating layer 329, diffusion of impurities from above the insulating layer 329 can be suppressed, and the reliability of the transistor can be improved.
また、絶縁層として平坦化層として機能できる絶縁層を用いてもよい。平坦化層として機能できる絶縁層としては、ポリイミド、アクリル樹脂、ベンゾシクロブテン樹脂、ポリアミド、エポキシ樹脂等の、耐熱性を有する有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(low−k材料)、シロキサン樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)等を用いることができる。なお、これらの材料で形成される絶縁層を複数積層してもよい。 Alternatively, an insulating layer that can function as a planarization layer may be used as the insulating layer. As the insulating layer that can function as a planarization layer, a heat-resistant organic material such as polyimide, acrylic resin, benzocyclobutene resin, polyamide, or epoxy resin can be used. In addition to the organic material, a low dielectric constant material (low-k material), a siloxane resin, PSG (phosphorus glass), BPSG (phosphorus boron glass), or the like can be used. Note that a plurality of insulating layers formed using these materials may be stacked.
なお、シロキサン樹脂とは、シロキサン系材料を出発材料として形成されたSi−O−Si結合を含む樹脂に相当する。シロキサン樹脂は置換基としては有機基(例えばアルキル基やアリール基)やフルオロ基を用いても良い。また、有機基はフルオロ基を有していても良い。 Note that the siloxane resin corresponds to a resin including a Si—O—Si bond formed using a siloxane-based material as a starting material. In the siloxane resin, an organic group (for example, an alkyl group or an aryl group) or a fluoro group may be used as a substituent. The organic group may have a fluoro group.
また、絶縁層などの表面にCMP処理を行なってもよい。CMP処理を行うことにより、試料表面の凹凸を低減し、この後形成される絶縁層や導電層の被覆性を高めることができる。 Further, a CMP process may be performed on the surface of the insulating layer or the like. By performing the CMP treatment, unevenness on the surface of the sample can be reduced, and the coverage of the insulating layer and the conductive layer to be formed thereafter can be improved.
[半導体層]
トランジスタの半導体層に用いる半導体材料としては、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。
[Semiconductor layer]
As a semiconductor material used for the semiconductor layer of the transistor, any of an amorphous semiconductor and a crystalline semiconductor (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor having part of a crystalline region) can be used. Good.
また、例えば、トランジスタの半導体層に用いる半導体材料として、シリコンや、ゲルマニウム等を用いることができる。また、炭化シリコン、ガリウム砒素、金属酸化物、窒化物半導体などの化合物半導体や、有機半導体などを用いることができる。 For example, silicon, germanium, or the like can be used as a semiconductor material used for a semiconductor layer of the transistor. Alternatively, a compound semiconductor such as silicon carbide, gallium arsenide, metal oxide, or nitride semiconductor, or an organic semiconductor can be used.
例えば、トランジスタに用いる半導体材料として、非晶質シリコン(アモルファスシリコン)を用いることができる。特に、非晶質シリコンは、量産性に優れ、大きな面積の基板に設けることも容易である。なお、一般に、トランジスタに用いる非晶質シリコンは水素を多く含む。このため、水素を多く含む非晶質シリコンを「水素化アモルファスシリコン」または「a−Si:H」と言う場合がある。また、アモルファスシリコンは、多結晶シリコンよりも低温で形成できるため、作製工程中の最高温度を下げることができる。よって、基板、導電層、および絶縁層などに、耐熱性の低い材料を用いることができる。 For example, amorphous silicon (amorphous silicon) can be used as a semiconductor material used for the transistor. In particular, amorphous silicon is excellent in mass productivity and can be easily provided on a substrate having a large area. Note that in general, amorphous silicon used for a transistor contains a large amount of hydrogen. For this reason, amorphous silicon containing a large amount of hydrogen may be referred to as “hydrogenated amorphous silicon” or “a-Si: H”. In addition, since amorphous silicon can be formed at a lower temperature than polycrystalline silicon, the maximum temperature during the manufacturing process can be lowered. Therefore, a material having low heat resistance can be used for the substrate, the conductive layer, the insulating layer, and the like.
また、トランジスタに用いる半導体材料として、微結晶シリコン、多結晶シリコン、単結晶シリコンなどの結晶性を有するシリコンを用いることもできる。特に、多結晶シリコンは、単結晶シリコンに比べて低温で形成でき、且つアモルファスシリコンに比べて高い電界効果移動度と高い信頼性を備える。 Further, as a semiconductor material used for the transistor, silicon having crystallinity such as microcrystalline silicon, polycrystalline silicon, or single crystal silicon can be used. In particular, polycrystalline silicon can be formed at a lower temperature than single crystal silicon, and has higher field effect mobility and higher reliability than amorphous silicon.
また、トランジスタに用いる半導体材料として、金属酸化物の一種である酸化物半導体を用いることができる。代表的には、インジウムを含む酸化物半導体などを用いることができる。酸化物半導体は、アモルファスシリコンよりも高い電界効果移動度と高い信頼性が実現できる。また、酸化物半導体は量産性に優れ、大きな面積の基板に設けることも容易である。 As a semiconductor material used for the transistor, an oxide semiconductor which is a kind of metal oxide can be used. Typically, an oxide semiconductor containing indium can be used. An oxide semiconductor can realize higher field-effect mobility and higher reliability than amorphous silicon. An oxide semiconductor is excellent in mass productivity and can be easily provided over a large substrate.
また、金属酸化物の一種である酸化物半導体はシリコンよりもバンドギャップが広く、キャリア密度が低いため、トランジスタの半導体層に用いることが好ましい。トランジスタの半導体層に酸化物半導体を用いると、トランジスタのオフ状態におけるソースとドレインの間に流れる電流を低減できるため好ましい。 An oxide semiconductor which is a kind of metal oxide has a wider band gap and lower carrier density than silicon, and thus is preferably used for a semiconductor layer of a transistor. An oxide semiconductor is preferably used for the semiconductor layer of the transistor because current flowing between the source and the drain in the off state of the transistor can be reduced.
金属酸化物の一種である酸化物半導体は、エネルギーギャップが2eV以上であることが好ましく、2.5eV以上であることがより好ましく。3eV以上であることがさらに好ましい。このように、エネルギーギャップの広い酸化物半導体を用いることで、トランジスタのオフ電流を低減することができる。 An oxide semiconductor that is a kind of metal oxide preferably has an energy gap of 2 eV or more, and more preferably 2.5 eV or more. More preferably, it is 3 eV or more. In this manner, off-state current of a transistor can be reduced by using an oxide semiconductor with a wide energy gap.
金属酸化物の一種である酸化物半導体は、例えば少なくともインジウム、亜鉛およびM(アルミニウム、チタン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、セリウム、スズ、ネオジムまたはハフニウム等の金属)を含むIn−M−Zn系酸化物で表記される材料を含むことが好ましい。また、該酸化物半導体を用いたトランジスタの電気特性のばらつきを減らすため、それらと共に、スタビライザーを含むことが好ましい。 An oxide semiconductor which is a kind of metal oxide includes, for example, at least indium, zinc, and M (a metal such as aluminum, titanium, gallium, germanium, yttrium, zirconium, lanthanum, cerium, tin, neodymium, or hafnium). It is preferable to include a material represented by —Zn-based oxide. In addition, in order to reduce variation in electrical characteristics of the transistor including the oxide semiconductor, a stabilizer is preferably included together with the transistor.
スタビライザーとしては、上記Mで記載の金属を含め、例えば、ガリウム、スズ、ハフニウム、アルミニウム、またはジルコニウム等がある。また、他のスタビライザーとしては、ランタノイドである、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム等がある。 Examples of the stabilizer include the metals described in M above, and examples include gallium, tin, hafnium, aluminum, and zirconium. Other stabilizers include lanthanoids such as lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
半導体層を構成する金属酸化物として、例えば、In−Ga−Zn系酸化物、In−Al−Zn系酸化物、In−Sn−Zn系酸化物、In−Hf−Zn系酸化物、In−La−Zn系酸化物、In−Ce−Zn系酸化物、In−Pr−Zn系酸化物、In−Nd−Zn系酸化物、In−Sm−Zn系酸化物、In−Eu−Zn系酸化物、In−Gd−Zn系酸化物、In−Tb−Zn系酸化物、In−Dy−Zn系酸化物、In−Ho−Zn系酸化物、In−Er−Zn系酸化物、In−Tm−Zn系酸化物、In−Yb−Zn系酸化物、In−Lu−Zn系酸化物、In−Sn−Ga−Zn系酸化物、In−Hf−Ga−Zn系酸化物、In−Al−Ga−Zn系酸化物、In−Sn−Al−Zn系酸化物、In−Sn−Hf−Zn系酸化物、In−Hf−Al−Zn系酸化物を用いることができる。 As a metal oxide forming the semiconductor layer, for example, an In—Ga—Zn-based oxide, an In—Al—Zn-based oxide, an In—Sn—Zn-based oxide, an In—Hf—Zn-based oxide, an In— La-Zn oxide, In-Ce-Zn oxide, In-Pr-Zn oxide, In-Nd-Zn oxide, In-Sm-Zn oxide, In-Eu-Zn oxide In-Gd-Zn-based oxide, In-Tb-Zn-based oxide, In-Dy-Zn-based oxide, In-Ho-Zn-based oxide, In-Er-Zn-based oxide, In-Tm -Zn oxide, In-Yb-Zn oxide, In-Lu-Zn oxide, In-Sn-Ga-Zn oxide, In-Hf-Ga-Zn oxide, In-Al- Ga-Zn oxide, In-Sn-Al-Zn oxide, In-Sn-Hf-Zn acid Things, can be used In-Hf-Al-Zn-based oxide.
なお、ここで、In−Ga−Zn系酸化物とは、InとGaとZnを主成分として有する酸化物という意味であり、InとGaとZnの比率は問わない。また、InとGaとZn以外の金属元素が入っていてもよい。 Note that here, an In—Ga—Zn-based oxide means an oxide containing In, Ga, and Zn as its main components, and there is no limitation on the ratio of In, Ga, and Zn. Moreover, metal elements other than In, Ga, and Zn may be contained.
なお、トランジスタの半導体層に用いることができる金属酸化物については、他の実施の形態で詳細に説明する。 Note that a metal oxide that can be used for a semiconductor layer of a transistor will be described in detail in another embodiment.
[各層の形成方法]
絶縁層、半導体層、電極や配線を形成するための導電層などは、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、真空蒸着法、パルスレーザ堆積(PLD:Pulse Laser Deposition)法、原子層成膜(ALD:Atomic Layer Deposition)法などを用いて形成することができる。CVD法としては、プラズマ化学気相堆積(PECVD:Plasma Enhanced CVD)法や、熱CVD法でもよい。熱CVD法の例として、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法を用いてもよい。
[Method for forming each layer]
Insulating layers, semiconductor layers, conductive layers for forming electrodes and wirings are formed by sputtering, chemical vapor deposition (CVD), vacuum vapor deposition, pulse laser deposition (PLD), or pulse laser deposition (PLD). In addition, it can be formed by using an atomic layer deposition (ALD) method or the like. The CVD method may be a plasma enhanced chemical vapor deposition (PECVD) method or a thermal CVD method. As an example of the thermal CVD method, a metal organic chemical vapor deposition (MOCVD) method may be used.
また、表示装置を構成する絶縁層、半導体層、電極や配線を形成するための導電層などは、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、スリットコート、ロールコート、カーテンコート、ナイフコート等の方法により形成してもよい。 In addition, insulating layers, semiconductor layers, conductive layers for forming electrodes and wiring, etc. that constitute display devices include spin coating, dip, spray coating, ink jet, dispensing, screen printing, offset printing, slit coating, roll coating, You may form by methods, such as a curtain coat and a knife coat.
PECVD法は、比較的低温で高品質の膜が得られる。MOCVD法、ALD法、または熱CVD法などの、成膜時にプラズマを用いない成膜方法を用いると、被形成面にダメージが生じにくい。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない成膜方法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。 The PECVD method can obtain a high quality film at a relatively low temperature. When a film formation method that does not use plasma at the time of film formation, such as an MOCVD method, an ALD method, or a thermal CVD method, damage to the formation surface is unlikely to occur. For example, a wiring, an electrode, an element (a transistor, a capacitor, or the like) included in the semiconductor device may be charged up by receiving electric charge from plasma. At this time, a wiring, an electrode, an element, or the like included in the semiconductor device may be destroyed by the accumulated charge. On the other hand, in the case of a film formation method that does not use plasma, such plasma damage does not occur, so that the yield of semiconductor devices can be increased. In addition, since plasma damage during film formation does not occur, a film with few defects can be obtained.
CVD法およびALD法は、ターゲットなどから放出される粒子が堆積する成膜方法とは異なり、被処理物の表面における反応により膜が形成される成膜方法である。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。 The CVD method and the ALD method are film forming methods in which a film is formed by a reaction on the surface of an object to be processed, unlike a film forming method in which particles emitted from a target or the like are deposited. Therefore, it is a film forming method that is not easily affected by the shape of the object to be processed and has good step coverage. In particular, the ALD method has excellent step coverage and excellent thickness uniformity, and thus is suitable for covering the surface of an opening having a high aspect ratio. However, since the ALD method has a relatively low film formation rate, it may be preferable to use it in combination with another film formation method such as a CVD method with a high film formation rate.
CVD法およびALD法は、原料ガスの流量比によって、得られる膜の組成を制御することができる。例えば、CVD法およびALD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。また、例えば、CVD法およびALD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送や圧力調整に掛かる時間の分、成膜に掛かる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。 In the CVD method and the ALD method, the composition of the obtained film can be controlled by the flow rate ratio of the source gases. For example, in the CVD method and the ALD method, a film having an arbitrary composition can be formed depending on the flow rate ratio of the source gases. Further, for example, in the CVD method and the ALD method, a film whose composition is continuously changed can be formed by changing the flow rate ratio of the source gas while forming the film. When film formation is performed while changing the flow rate ratio of the source gas, the time required for film formation can be shortened by the time required for conveyance and pressure adjustment compared to the case where film formation is performed using a plurality of film formation chambers. it can. Therefore, the productivity of the semiconductor device may be increased.
表示装置を構成する層(薄膜)を加工する際には、フォトリソグラフィ法等を用いて加工することができる。または、遮蔽マスクを用いた成膜方法により、島状の層を形成してもよい。または、ナノインプリント法、サンドブラスト法、リフトオフ法などにより層を加工してもよい。フォトリソグラフィ法としては、加工したい層(薄膜)上にレジストマスクを形成して、レジストマスクをマスクとして用いて、当該層(薄膜)の一部を選択的に除去し、その後レジストマスクを除去する方法と、感光性を有する層を成膜した後に、露光、現像を行って、当該層を所望の形状に加工する方法と、がある。 When a layer (thin film) included in the display device is processed, the layer can be processed using a photolithography method or the like. Alternatively, the island-shaped layer may be formed by a film formation method using a shielding mask. Alternatively, the layer may be processed by a nanoimprint method, a sand blast method, a lift-off method, or the like. As a photolithography method, a resist mask is formed over a layer (thin film) to be processed, a part of the layer (thin film) is selectively removed using the resist mask as a mask, and then the resist mask is removed. And a method of forming a layer having photosensitivity and then performing exposure and development to process the layer into a desired shape.
フォトリソグラフィ法において光を用いる場合、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外光やKrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外光(EUV:Extreme Ultra−violet)やX線を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。 When light is used in the photolithography method, light used for exposure can be, for example, i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or light obtained by mixing these. In addition, ultraviolet light, KrF laser light, ArF laser light, or the like can be used. Further, exposure may be performed by an immersion exposure technique. Further, extreme ultraviolet light (EUV: Extreme-violet) or X-rays may be used as light used for exposure. Further, an electron beam can be used instead of the light used for exposure. It is preferable to use extreme ultraviolet light, X-rays, or an electron beam because extremely fine processing is possible. Note that a photomask is not necessary when exposure is performed by scanning a beam such as an electron beam.
層(薄膜)の除去(エッチング)には、ドライエッチング法、ウエットエッチング法、サンドブラスト法などを用いることができる。また、これらのエッチング方法を組み合わせて用いてもよい。 For removal (etching) of the layer (thin film), a dry etching method, a wet etching method, a sand blasting method, or the like can be used. Moreover, you may use combining these etching methods.
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。 This embodiment can be implemented in appropriate combination with the structures described in the other embodiments.
(実施の形態6)
本実施の形態では、トランジスタの半導体層に用いることができる金属酸化物について説明する。
(Embodiment 6)
In this embodiment, a metal oxide that can be used for a semiconductor layer of a transistor will be described.
<金属酸化物の構成>
本項では、本発明の一態様で開示されるトランジスタなどの半導体装置に用いることができる金属酸化物の一態様である、CAC−OS(Cloud−Aligned Composite−Oxide Semiconductor)、またはCAC(Cloud−Aligned Composite)−metal oxideの構成について説明する。
<Composition of metal oxide>
In this section, one of the metal oxides that can be used for a semiconductor device such as a transistor disclosed in one embodiment of the present invention, which is a CAC-OS (Cloud-Aligned Composite-Oxide Semiconductor), or CAC (Cloud-) The configuration of (Aligned Composite) -metal oxide will be described.
なお、本明細書等において、CAC、及びCAAC(c−axis aligned crystal)と記載する場合がある。この場合、CACは機能、または材料の構成の一例を表し、CAACは構造の一例を表す。 In addition, in this specification etc., it may describe as CAC and CAAC (c-axis aligned crystal). In this case, CAC represents an example of a function or material configuration, and CAAC represents an example of a structure.
CAC−OSまたはCAC−metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OSまたはCAC−metal oxideを、トランジスタの活性層に用いる場合、導電性の機能は、キャリアとなる電子(またはホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OSまたはCAC−metal oxideに付与することができる。CAC−OSまたはCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。 CAC-OS or CAC-metal oxide has a conductive function in part of a material and an insulating function in part of the material, and the whole material has a function as a semiconductor. Note that in the case where CAC-OS or CAC-metal oxide is used for an active layer of a transistor, the conductive function is a function of flowing electrons (or holes) serving as carriers, and the insulating function is an electron serving as carriers. It is a function that does not flow. A function of switching (a function of turning on / off) can be imparted to CAC-OS or CAC-metal oxide by causing the conductive function and the insulating function to act complementarily. In CAC-OS or CAC-metal oxide, by separating each function, both functions can be maximized.
従って、CAC−OSまたはCAC−metal oxideは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。 Therefore, the CAC-OS or the CAC-metal oxide has a conductive region and an insulating region. The conductive region has the above-described conductive function, and the insulating region has the above-described insulating function. In the material, the conductive region and the insulating region may be separated at the nanoparticle level. In addition, the conductive region and the insulating region may be unevenly distributed in the material, respectively. In addition, the conductive region may be observed with the periphery blurred and connected in a cloud shape.
なお、CAC−OSまたはCAC−metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。 Note that in CAC-OS or CAC-metal oxide, the conductive region and the insulating region are each dispersed in a material with a size of 0.5 nm to 10 nm, preferably 0.5 nm to 3 nm. There is.
また、CAC−OSまたはCAC−metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OSまたはCAC−metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OSまたはCAC−metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。 Further, CAC-OS or CAC-metal oxide is composed of components having different band gaps. For example, CAC-OS or CAC-metal oxide includes a component having a wide gap caused by an insulating region and a component having a narrow gap caused by a conductive region. In the case of the configuration, when the carrier flows, the carrier mainly flows in the component having the narrow gap. In addition, the component having a narrow gap acts in a complementary manner to the component having a wide gap, and the carrier flows through the component having the wide gap in conjunction with the component having the narrow gap. Therefore, when the CAC-OS or the CAC-metal oxide is used for a channel formation region of a transistor, high current driving force, that is, high on-state current and high field-effect mobility can be obtained in the on-state of the transistor.
すなわち、CAC−OSまたはCAC−metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。 That is, CAC-OS or CAC-metal oxide can also be called a matrix composite material (metal matrix composite) or a metal matrix composite material (metal matrix composite).
<金属酸化物の構造>
本項では、本発明の一態様で開示されるトランジスタなどの半導体装置に用いることができる金属酸化物の構造について説明する。
<Structure of metal oxide>
In this section, a structure of a metal oxide that can be used for a semiconductor device such as a transistor disclosed in one embodiment of the present invention will be described.
金属酸化物は、単結晶材料からなる金属酸化物と、非単結晶材料からなる金属酸化物と、に分けられる。単結晶材料は、単結晶構造を有する。また、非単結晶材料は、非晶質構造、微結晶構造、または多結晶構造のいずれか一つまたは複数を有する。 Metal oxides are classified into metal oxides made of a single crystal material and metal oxides made of a non-single crystal material. The single crystal material has a single crystal structure. The non-single-crystal material has one or more of an amorphous structure, a microcrystalline structure, and a polycrystalline structure.
また、非単結晶材料の1つとして、半結晶性材料(Semi−crystalline material)と呼称される材料が挙げられる。半結晶性材料とは、単結晶構造と非晶質構造との中間構造を有する。 Moreover, as one of the non-single crystal materials, a material called a semi-crystalline material can be given. The semi-crystalline material has an intermediate structure between a single crystal structure and an amorphous structure.
金属酸化物の単結晶は、中心に金属原子が存在する酸素の多面体が特定の規則性をもって連結する構造である。具体的には、InGaZnOの単結晶は、中心にIn原子が存在する酸素の八面体と、中心にGaまたはZnが存在する酸素の三方両錐体とが特定の規則性を持って連結することで、層状の結晶構造を有する。 A single crystal of a metal oxide has a structure in which oxygen polyhedrons having a metal atom at the center are connected with specific regularity. Specifically, in a single crystal of InGaZnO 4 , an oxygen octahedron having an In atom at the center and a trigonal bipyramid of oxygen having Ga or Zn at the center are connected with a specific regularity. Thus, it has a layered crystal structure.
一方、半結晶性材料は、中心に金属原子が存在する酸素の多面体を複数有し、該多面体が特定の規則性を持たずに、互いに連結する構造を有する。半結晶性材料が有する多面体は、単結晶構造が有する多面体が著しく壊れた、単結晶では観察されない多面体である。なお、半結晶性材料は、単結晶構造が有する多面体や、単結晶構造が有する多面体が規則性を持って連結する領域などの単結晶構造の一部を有する場合もある。 On the other hand, the semi-crystalline material has a plurality of oxygen polyhedrons in which a metal atom is present at the center, and the polyhedrons are connected to each other without having a specific regularity. The polyhedron that the semicrystalline material has is a polyhedron that is not observed in the single crystal, in which the polyhedron of the single crystal structure is significantly broken. Note that the semicrystalline material may have a part of a single crystal structure such as a polyhedron that the single crystal structure has or a region where the polyhedrons that the single crystal structure has have regularity.
半結晶性材料は、多面体が特定の規則性を持たずに、互いに連結することで、いわゆる非晶質材料と比較して、構造が安定である。 The semi-crystalline material has a stable structure as compared with a so-called amorphous material by connecting polyhedrons to each other without having a specific regularity.
例えば、金属酸化物が、酸化物半導体である場合、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS(c−axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、および非晶質酸化物半導体などがある。 For example, when the metal oxide is an oxide semiconductor, the metal oxide is divided into a single crystal oxide semiconductor and a non-single-crystal oxide semiconductor. As the non-single-crystal oxide semiconductor, for example, a CAAC-OS (c-axis aligned crystal oxide semiconductor), a polycrystalline oxide semiconductor, an nc-OS (nanocrystalline oxide semiconductor), a pseudo-amorphous oxide semiconductor (a-like oxide semiconductor) OS: amorphous-like oxide semiconductor) and amorphous oxide semiconductor.
また、例えば、半結晶性酸化物半導体としては、CAAC構造を有し、かつCAC構成(以下、CAAC/CACともいう)である酸化物半導体がある。 For example, as a semicrystalline oxide semiconductor, an oxide semiconductor having a CAAC structure and a CAC structure (hereinafter also referred to as CAAC / CAC) is given.
CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有したCAAC構造である酸化物半導体である。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。 The CAAC-OS is an oxide semiconductor that has a c-axis orientation and a CAAC structure in which a plurality of nanocrystals are connected in the ab plane direction and have a strain. Note that the strain refers to a portion where the orientation of the lattice arrangement changes between a region where the lattice arrangement is aligned and a region where another lattice arrangement is aligned in a region where a plurality of nanocrystals are connected.
ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、および七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。 Nanocrystals are based on hexagons, but are not limited to regular hexagons and may be non-regular hexagons. In addition, there may be a lattice arrangement such as a pentagon and a heptagon in the distortion. Note that in the CAAC-OS, a clear crystal grain boundary (also referred to as a grain boundary) cannot be confirmed even in the vicinity of strain. That is, it can be seen that the formation of crystal grain boundaries is suppressed by the distortion of the lattice arrangement. This is because the CAAC-OS can tolerate distortion due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to substitution of metal elements. This is probably because of this.
また、CAAC−OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mの一部がインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムの一部が元素Mと置換した場合、(In,M)層と表すこともできる。 The CAAC-OS includes a layered crystal in which a layer containing indium and oxygen (hereinafter referred to as In layer) and a layer including elements M, zinc, and oxygen (hereinafter referred to as (M, Zn) layers) are stacked. There is a tendency to have a structure (also called a layered structure). Note that indium and the element M can be replaced with each other, and when a part of the element M in the (M, Zn) layer is replaced with indium, it can also be expressed as an (In, M, Zn) layer. Further, when a part of indium in the In layer is replaced with the element M, it can also be expressed as an (In, M) layer.
CAAC−OSは結晶性の高い酸化物半導体である。一方、CAAC−OSは、明確な結晶粒界を確認することはできないため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSは、物理的性質が安定する。そのため、CAAC−OSは熱に強く、信頼性が高い。 The CAAC-OS is an oxide semiconductor with high crystallinity. On the other hand, since CAAC-OS cannot confirm a clear crystal grain boundary, it can be said that a decrease in electron mobility due to the crystal grain boundary hardly occurs. In addition, since the crystallinity of an oxide semiconductor may be deteriorated due to entry of impurities, generation of defects, or the like, the CAAC-OS can be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, the physical properties of the CAAC-OS are stable. Therefore, the CAAC-OS is resistant to heat and has high reliability.
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有した構造である酸化物半導体である。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。 The nc-OS is an oxide semiconductor having a structure in which atomic arrangement is periodic in a very small region (e.g., a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm). In addition, the nc-OS has no regularity in crystal orientation between different nanocrystals. Therefore, orientation is not seen in the whole film. Therefore, the nc-OS may not be distinguished from an a-like OS or an amorphous oxide semiconductor depending on an analysis method.
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造である酸化物半導体である。a−like OSは、鬆または低密度領域を有する。即ち、a−like OSは、nc−OSおよびCAAC−OSと比べて、結晶性が低い。 The a-like OS is an oxide semiconductor having a structure between the nc-OS and the amorphous oxide semiconductor. The a-like OS has a void or a low density region. That is, the a-like OS has lower crystallinity than the nc-OS and the CAAC-OS.
酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。 Oxide semiconductors have various structures and different properties. The oxide semiconductor of one embodiment of the present invention may include two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, an nc-OS, and a CAAC-OS.
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。 This embodiment can be implemented in appropriate combination with the structures described in the other embodiments.
(実施の形態7)
本実施の形態では、上記実施の形態に示した表示装置等に用いることができるトランジスタの一例について、図面を用いて説明する。特に、OSトランジスタに用いることが好ましいトランジスタ構造の一例について説明する。
(Embodiment 7)
In this embodiment, an example of a transistor that can be used for the display device and the like described in the above embodiments will be described with reference to drawings. In particular, an example of a transistor structure which is preferably used for an OS transistor will be described.
<トランジスタの構成例>
〔構成例1〕
まず、トランジスタの構造の一例として、トランジスタ500aについて、図31(A)(B)、(C)を用いて説明する。図31(A)はトランジスタ500aの上面図である。図31(B)は、図31(A)に示す一点鎖線X1−X2間における切断面の断面図に相当し、図31(C)は、図31(A)に示す一点鎖線Y1−Y2間における切断面の断面図に相当する。なお、図面をわかり易くするため、図31(A)ではトランジスタ500aの構成要素の一部(ゲート絶縁層としての機能を有する絶縁層等)を省略して図示している。なお、以下において、一点鎖線X1−X2方向をチャネル長方向、一点鎖線Y1−Y2方向をチャネル幅方向と呼称する場合がある。なお、トランジスタの上面図においては、以降の図面においても図31(A)と同様に、構成要素の一部を省略して図示する場合がある。
<Example of transistor structure>
[Configuration example 1]
First, as an example of a transistor structure, a transistor 500a will be described with reference to FIGS. FIG. 31A is a top view of the transistor 500a. 31B corresponds to a cross-sectional view of a cross-sectional surface taken along the dashed-dotted line X1-X2 in FIG. 31A, and FIG. 31C is between the dashed-dotted line Y1-Y2 shown in FIG. This corresponds to a cross-sectional view of the cut surface in FIG. Note that for easy understanding of the drawing, some components (such as an insulating layer functioning as a gate insulating layer) of the transistor 500a are omitted in FIG. In the following description, the alternate long and short dash line X1-X2 direction may be referred to as a channel length direction, and the alternate long and short dash line Y1-Y2 direction may be referred to as a channel width direction. Note that in the top view of the transistor, some components may be omitted in the following drawings as in FIG. 31A.
トランジスタ500aは、絶縁層524上の導電層521と、絶縁層524上および導電層521上の絶縁層511と、絶縁層511上の半導体層531と、半導体層531上および絶縁層511上の導電層522aと、半導体層531上および絶縁層511上の導電層522bと、半導体層531上、導電層522a上、および導電層522b上の絶縁層512と、絶縁層512上の導電層523と、を有する。 The transistor 500a includes a conductive layer 521 over the insulating layer 524, an insulating layer 511 over the insulating layer 524 and the conductive layer 521, a semiconductor layer 531 over the insulating layer 511, and a conductive layer over the semiconductor layer 531 and the insulating layer 511. A layer 522a, a conductive layer 522b over the semiconductor layer 531 and the insulating layer 511, an insulating layer 512 over the semiconductor layer 531, the conductive layer 522a, and the conductive layer 522b, a conductive layer 523 over the insulating layer 512, Have
なお、絶縁層524は、基板であってもよい。絶縁層524を基板とする場合、当該基板は上記実施の形態に示した基板371と同様の材料を含む基板とすることができる。 Note that the insulating layer 524 may be a substrate. In the case where the insulating layer 524 is used as a substrate, the substrate can be a substrate including a material similar to that of the substrate 371 described in the above embodiment.
また、導電層521および導電層523として、例えば上記実施の形態に示した電極322と同様の材料を含むことができる。絶縁層511として、例えば上記実施の形態に示した絶縁層326と同様の材料を含むことができる。導電層522aおよび導電層522bとして、例えば上記実施の形態に示した電極344aおよび電極344bと同様の材料を含むことができる。絶縁層512として、上記実施の形態に示した絶縁層328と同様の材料を含むことができる。 For the conductive layer 521 and the conductive layer 523, for example, a material similar to that of the electrode 322 described in the above embodiment can be included. As the insulating layer 511, for example, a material similar to that of the insulating layer 326 described in the above embodiment can be included. For example, the conductive layer 522a and the conductive layer 522b can include a material similar to that of the electrode 344a and the electrode 344b described in the above embodiment. The insulating layer 512 can include a material similar to that of the insulating layer 328 described in the above embodiment.
また、半導体層531として、例えば上記実施の形態に示した半導体層324と同様の材料を含むことができる。本実施の形態では、半導体層531が金属酸化物を含む半導体層であるとして説明を行う。 For example, the semiconductor layer 531 can include a material similar to that of the semiconductor layer 324 described in the above embodiment. In this embodiment, the semiconductor layer 531 is described as a semiconductor layer containing a metal oxide.
絶縁層511および絶縁層512は、開口部535を有する。導電層523は、開口部535を介して、導電層521と電気的に接続される。 The insulating layer 511 and the insulating layer 512 have an opening 535. The conductive layer 523 is electrically connected to the conductive layer 521 through the opening 535.
ここで、絶縁層511は、トランジスタ500aの第1のゲート絶縁層としての機能を有し、絶縁層512は、トランジスタ500aの第2のゲート絶縁層としての機能を有する。また、トランジスタ500aにおいて、導電層521は、第1のゲートとしての機能を有し、導電層522aは、ソースまたはドレインの一方としての機能を有し、導電層522bは、ソースまたはドレインの他方としての機能を有する。また、トランジスタ500aにおいて、導電層523は、第2のゲートとしての機能を有する。 Here, the insulating layer 511 functions as a first gate insulating layer of the transistor 500a, and the insulating layer 512 functions as a second gate insulating layer of the transistor 500a. In the transistor 500a, the conductive layer 521 functions as a first gate, the conductive layer 522a functions as one of a source and a drain, and the conductive layer 522b serves as the other of the source and the drain. It has the function of. In the transistor 500a, the conductive layer 523 functions as a second gate.
なお、トランジスタ500aは、いわゆるチャネルエッチ型のトランジスタであり、デュアルゲート構造である。 Note that the transistor 500a is a so-called channel etch transistor and has a dual-gate structure.
また、トランジスタ500aは、導電層523を設けない構成にすることもできる。この場合、トランジスタ500aは、いわゆるチャネルエッチ型のトランジスタであり、ボトムゲート構造である。 The transistor 500a can be formed without the conductive layer 523. In this case, the transistor 500a is a so-called channel etch type transistor and has a bottom gate structure.
図31(B)、(C)に示すように、半導体層531は、導電層521、および導電層523と対向するように位置し、2つのゲートの機能を有する導電層に挟まれている。導電層523のチャネル長方向の長さ、および導電層523のチャネル幅方向の長さは、半導体層531のチャネル長方向の長さ、および半導体層531のチャネル幅方向の長さよりもそれぞれ長く、半導体層531の全体は、絶縁層512を介して導電層523に覆われている。 As shown in FIGS. 31B and 31C, the semiconductor layer 531 is positioned so as to face the conductive layer 521 and the conductive layer 523, and is sandwiched between conductive layers having functions of two gates. The length of the conductive layer 523 in the channel length direction and the length of the conductive layer 523 in the channel width direction are longer than the length of the semiconductor layer 531 in the channel length direction and the length of the semiconductor layer 531 in the channel width direction, respectively. The entire semiconductor layer 531 is covered with the conductive layer 523 with the insulating layer 512 interposed therebetween.
別言すると、導電層521および導電層523は、絶縁層511および絶縁層512に設けられる開口部535において接続され、かつ半導体層531の側端部よりも外側に位置する領域を有する。 In other words, the conductive layer 521 and the conductive layer 523 have a region which is connected to the opening 535 provided in the insulating layer 511 and the insulating layer 512 and located outside the side end portion of the semiconductor layer 531.
このような構成を有することで、トランジスタ500aに含まれる半導体層531を、導電層521および導電層523の電界によって電気的に囲むことができる。トランジスタ500aのように、第1のゲートおよび第2のゲートの電界によって、チャネル形成領域が形成される半導体層を、電気的に囲むトランジスタのデバイス構造をsurrounded channel(s−channel)構造と呼ぶことができる。 With such a structure, the semiconductor layer 531 included in the transistor 500a can be electrically surrounded by the electric fields of the conductive layer 521 and the conductive layer 523. A device structure of a transistor that electrically surrounds a semiconductor layer in which a channel formation region is formed by an electric field of a first gate and a second gate as in the transistor 500a is referred to as a surround channel (s-channel) structure. Can do.
トランジスタ500aは、s−channel構造を有するため、第1のゲートの機能を有する導電層521によってチャネルを誘起させるための電界を効果的に半導体層531に印加することができるため、トランジスタ500aの電流駆動能力が向上し、高いオン電流特性を得ることが可能となる。また、オン電流を高くすることが可能であるため、トランジスタ500aを微細化することが可能となる。 Since the transistor 500a has an s-channel structure, an electric field for inducing a channel by the conductive layer 521 having the function of the first gate can be effectively applied to the semiconductor layer 531, so that the current of the transistor 500a The driving capability is improved and high on-current characteristics can be obtained. Further, since the on-state current can be increased, the transistor 500a can be miniaturized.
また、トランジスタ500aは、第1のゲートの機能を有する導電層521および第2のゲートの機能を有する導電層523によって、半導体層531が囲まれた構造を有するため、トランジスタ500aの機械的強度を高めることができる。 Further, since the transistor 500a has a structure in which the semiconductor layer 531 is surrounded by the conductive layer 521 having a first gate function and the conductive layer 523 having a second gate function, the mechanical strength of the transistor 500a is increased. Can be increased.
s−channel構造であるトランジスタ500aは電界効果移動度が高く、かつ駆動能力が高いので、トランジスタ500aを駆動回路、代表的には走査線駆動回路に用いることで、額縁幅の狭い(狭額縁ともいう)表示装置を提供することができる。 Since the transistor 500a having an s-channel structure has high field-effect mobility and high driving capability, the transistor 500a is used in a driver circuit, typically a scan line driver circuit. A display device can be provided.
〔構成例2〕
次に、トランジスタの構造の一例として、トランジスタ500bについて、図32(A)、(B)、(C)を用いて説明する。図32(A)はトランジスタ500bの上面図である。図32(B)は、図32(A)に示す一点鎖線X1−X2間における切断面の断面図に相当し、図32(C)は、図32(A)に示す一点鎖線Y1−Y2間における切断面の断面図に相当する。
[Configuration example 2]
Next, as an example of the structure of the transistor, the transistor 500b will be described with reference to FIGS. FIG. 32A is a top view of the transistor 500b. 32B corresponds to a cross-sectional view of a cross section taken along the dashed-dotted line X1-X2 in FIG. 32A, and FIG. 32C is between the dashed-dotted line Y1-Y2 shown in FIG. This corresponds to a cross-sectional view of the cut surface in FIG.
トランジスタ500bは、半導体層531、導電層522a、導電層522b、および絶縁層512が積層構造である点において、トランジスタ500aと異なる。 The transistor 500b is different from the transistor 500a in that the semiconductor layer 531, the conductive layer 522a, the conductive layer 522b, and the insulating layer 512 have a stacked structure.
絶縁層512は、半導体層531上、導電層522a上、および導電層522b上の絶縁層512aと、絶縁層512aの上の絶縁層512bを有する。絶縁層512は、半導体層531に酸素を供給する機能を有する。すなわち、絶縁層512は、酸素を有する。また、絶縁層512aは、酸素を透過することのできる絶縁層である。なお、絶縁層512aは、後に形成する絶縁層512bを形成する際の、半導体層531へのダメージ緩和膜としても機能する。 The insulating layer 512 includes the insulating layer 512a over the semiconductor layer 531, the conductive layer 522a, and the conductive layer 522b, and the insulating layer 512b over the insulating layer 512a. The insulating layer 512 has a function of supplying oxygen to the semiconductor layer 531. That is, the insulating layer 512 includes oxygen. The insulating layer 512a is an insulating layer that can transmit oxygen. Note that the insulating layer 512a also functions as a damage reducing film for the semiconductor layer 531 when the insulating layer 512b to be formed later is formed.
絶縁層512aとしては、厚さが5nm以上150nm以下、好ましくは5nm以上50nm以下の酸化シリコン、酸化窒化シリコン等を用いることができる。 As the insulating layer 512a, silicon oxide, silicon oxynitride, or the like with a thickness of 5 nm to 150 nm, preferably 5 nm to 50 nm can be used.
また、絶縁層512aは、欠陥量が少ないことが好ましく、代表的には、ESR測定により、シリコンのダングリングボンドに由来するg=2.001に現れる信号のスピン密度が3×1017spins/cm以下であることが好ましい。これは、絶縁層512aに含まれる欠陥密度が多いと、該欠陥に酸素が結合してしまい、絶縁層512aにおける酸素の透過性が減少してしまうためである。 The insulating layer 512a preferably has a small amount of defects. Typically, the ESR measurement shows that the spin density of a signal appearing at g = 2.001 derived from a dangling bond of silicon is 3 × 10 17 spins / It is preferable that it is cm 3 or less. This is because when the density of defects included in the insulating layer 512a is large, oxygen is bonded to the defects and oxygen permeability in the insulating layer 512a is reduced.
なお、絶縁層512aにおいては、外部から絶縁層512aに入った酸素が全て絶縁層512aの外部に移動せず、絶縁層512aにとどまる酸素もある。また、絶縁層512aに酸素が入ると共に、絶縁層512aに含まれる酸素が絶縁層512aの外部へ移動することで、絶縁層512aにおいて酸素の移動が生じる場合もある。絶縁層512aとして酸素を透過することができる酸化物絶縁層を形成すると、絶縁層512a上に設けられる、絶縁層512bから脱離する酸素を、絶縁層512aを介して半導体層531に移動させることができる。 Note that in the insulating layer 512a, some oxygen that enters the insulating layer 512a from the outside does not move to the outside of the insulating layer 512a but remains in the insulating layer 512a. Further, oxygen enters the insulating layer 512a and oxygen contained in the insulating layer 512a moves to the outside of the insulating layer 512a, so that oxygen may move in the insulating layer 512a. When an oxide insulating layer that can transmit oxygen is formed as the insulating layer 512a, oxygen released from the insulating layer 512b provided over the insulating layer 512a is transferred to the semiconductor layer 531 through the insulating layer 512a. Can do.
また、絶縁層512aは、窒素酸化物に起因する準位密度が低い酸化物絶縁層を用いて形成することができる。なお、当該窒素酸化物に起因する準位密度は、金属酸化物の価電子帯の上端のエネルギーと金属酸化物の伝導帯の下端のエネルギーの間に形成され得る場合がある。上記酸化物絶縁層として、窒素酸化物の放出量が少ない酸化窒化シリコン膜、または窒素酸化物の放出量が少ない酸化窒化アルミニウム膜等を用いることができる。 The insulating layer 512a can be formed using an oxide insulating layer having a low level density due to nitrogen oxides. Note that the level density attributed to the nitrogen oxide may be formed between the energy at the upper end of the valence band of the metal oxide and the energy at the lower end of the conduction band of the metal oxide. As the oxide insulating layer, a silicon oxynitride film with a low emission amount of nitrogen oxide, an aluminum oxynitride film with a low emission amount of nitrogen oxide, or the like can be used.
なお、窒素酸化物の放出量の少ない酸化窒化シリコン膜は、昇温脱離ガス分析法(TDS:Thermal Desorption Spectroscopy)において、窒素酸化物の放出量よりアンモニアの放出量が多い膜であり、代表的にはアンモニアの放出量が1×1018/cm以上5×1019/cm以下である。なお、アンモニアの放出量は、膜の表面温度が50℃以上650℃以下、好ましくは50℃以上550℃以下の加熱処理による放出量とする。 Note that a silicon oxynitride film with a small amount of released nitrogen oxide is a film having a larger amount of released ammonia than a released amount of nitrogen oxide in a thermal desorption gas analysis (TDS) method. Specifically, the released amount of ammonia is 1 × 10 18 / cm 3 or more and 5 × 10 19 / cm 3 or less. Note that the amount of ammonia released is the amount released by heat treatment at a film surface temperature of 50 ° C. to 650 ° C., preferably 50 ° C. to 550 ° C.
窒素酸化物(NO、xは0よりも大きく2以下、好ましくは1以上2以下)、代表的にはNOまたはNOは、絶縁層512a等に準位を形成する。当該準位は、半導体層531のエネルギーギャップ内に位置する。そのため、窒素酸化物が、絶縁層512aおよび半導体層531の界面に拡散すると、当該準位が絶縁層512a側において電子をトラップする場合がある。この結果、トラップされた電子が、絶縁層512aおよび半導体層531界面近傍に留まるため、トランジスタのしきい値電圧をプラス方向にシフトさせてしまう。 Nitrogen oxide (NO x , x is larger than 0 and 2 or less, preferably 1 or more and 2 or less), typically NO 2 or NO forms a level in the insulating layer 512a or the like. The level is located in the energy gap of the semiconductor layer 531. Therefore, when nitrogen oxide diffuses to the interface between the insulating layer 512a and the semiconductor layer 531, the level may trap electrons on the insulating layer 512a side. As a result, trapped electrons remain in the vicinity of the interface between the insulating layer 512a and the semiconductor layer 531, and the threshold voltage of the transistor is shifted in the positive direction.
また、窒素酸化物は、加熱処理においてアンモニアおよび酸素と反応する。絶縁層512dに含まれる窒素酸化物は、加熱処理において、絶縁層512bに含まれるアンモニアと反応するため、絶縁層512aに含まれる窒素酸化物が低減される。このため、絶縁層512aおよび半導体層531の界面において、電子がトラップされにくい。 Nitrogen oxide reacts with ammonia and oxygen in heat treatment. Since nitrogen oxide contained in the insulating layer 512d reacts with ammonia contained in the insulating layer 512b in the heat treatment, nitrogen oxide contained in the insulating layer 512a is reduced. Therefore, electrons are not easily trapped at the interface between the insulating layer 512a and the semiconductor layer 531.
絶縁層512aとして、上記酸化物絶縁層を用いることで、トランジスタのしきい値電圧のシフトを低減することが可能であり、トランジスタの電気特性の変動を低減することができる。 By using the oxide insulating layer as the insulating layer 512a, a shift in threshold voltage of the transistor can be reduced, and fluctuation in electric characteristics of the transistor can be reduced.
また、上記酸化物絶縁層は、SIMSで測定される窒素濃度が6×1020atoms/cm以下である。 The oxide insulating layer has a nitrogen concentration of 6 × 10 20 atoms / cm 3 or less as measured by SIMS.
基板温度が220℃以上350℃以下であり、シランおよび一酸化二窒素を用いたPECVD法を用いて、上記酸化物絶縁層を形成することで、緻密であり、かつ硬度の高い膜を形成することができる。 By forming the oxide insulating layer using a PECVD method using silane and dinitrogen monoxide with a substrate temperature of 220 ° C. or higher and 350 ° C. or lower, a dense and high hardness film is formed. be able to.
絶縁層512bは、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁層である。上記の酸化物絶縁層は、加熱により酸素の一部が脱離する。なお、TDSにおいて、上記の酸化物絶縁層は、酸素の放出量が1.0×1019atoms/cm以上、好ましくは3.0×1020atoms/cm以上の領域を有する。また、上記の酸素の放出量は、TDSにおける加熱処理の温度が50℃以上650℃以下、または50℃以上550℃以下の範囲での総量である。また、上記の酸素の放出量は、TDSにおける酸素原子に換算しての総量である。 The insulating layer 512b is an oxide insulating layer containing more oxygen than oxygen that satisfies the stoichiometric composition. Part of oxygen is released from the oxide insulating layer by heating. Note that in TDS, the above oxide insulating layer has a region where the amount of released oxygen is 1.0 × 10 19 atoms / cm 3 or more, preferably 3.0 × 10 20 atoms / cm 3 or more. The amount of released oxygen is the total amount when the temperature of the heat treatment in TDS is 50 ° C. or higher and 650 ° C. or lower, or 50 ° C. or higher and 550 ° C. or lower. The amount of released oxygen is the total amount in terms of oxygen atoms in TDS.
絶縁層512bとしては、厚さが30nm以上500nm以下、好ましくは50nm以上400nm以下の、酸化シリコン、酸化窒化シリコン等を用いることができる。 As the insulating layer 512b, silicon oxide, silicon oxynitride, or the like with a thickness of 30 nm to 500 nm, preferably 50 nm to 400 nm can be used.
また、絶縁層512bは、欠陥量が少ないことが好ましく、代表的には、ESR測定により、シリコンのダングリングボンドに由来するg=2.001に現れる信号のスピン密度が1.5×1018spins/cm未満、さらには1×1018spins/cm以下であることが好ましい。なお、絶縁層512bは、絶縁層512aと比較して半導体層531から離れているため、絶縁層512aより、欠陥密度が多くともよい。 The insulating layer 512b preferably has a small amount of defects. Typically, the ESR measurement shows that the spin density of a signal appearing at g = 2.001 derived from dangling bonds in silicon is 1.5 × 10 18. It is preferably less than spins / cm 3 and more preferably 1 × 10 18 spins / cm 3 or less. Note that since the insulating layer 512b is farther from the semiconductor layer 531 than the insulating layer 512a, the defect density may be higher than that of the insulating layer 512a.
また、絶縁層512は、同種の材料の絶縁層を用いることができるため、絶縁層512aと絶縁層512bの界面が明確に確認できない場合がある。したがって、本実施の形態においては、絶縁層512aと絶縁層512bの界面は、破線で図示している。なお、本実施の形態においては、絶縁層512aと絶縁層512bの2層構造について説明したが、これに限定されず、例えば、絶縁層512aの単層構造、あるいは3層以上の積層構造としてもよい。 In addition, since the insulating layer 512 can be formed using the same kind of insulating layer, an interface between the insulating layer 512a and the insulating layer 512b may not be clearly confirmed. Therefore, in this embodiment, the interface between the insulating layer 512a and the insulating layer 512b is illustrated by a broken line. Note that although a two-layer structure of the insulating layer 512a and the insulating layer 512b has been described in this embodiment mode, the present invention is not limited thereto, and for example, a single-layer structure of the insulating layer 512a or a stacked structure of three or more layers may be used. Good.
トランジスタ500bにおいて、半導体層531は、絶縁層511上の半導体層531_1と、半導体層531_1上の半導体層531_2と、を有する。なお、半導体層531_1および半導体層531_2は、それぞれ同じ元素を有する。例えば、半導体層531_1および半導体層531_2は、上述の半導体層531が有する元素を、それぞれ独立に有することが好ましい。 In the transistor 500b, the semiconductor layer 531 includes a semiconductor layer 531_1 over the insulating layer 511 and a semiconductor layer 531_2 over the semiconductor layer 531_1. Note that the semiconductor layer 531_1 and the semiconductor layer 531_2 each have the same element. For example, the semiconductor layer 531_1 and the semiconductor layer 531_2 preferably each independently include the element included in the semiconductor layer 531 described above.
また、半導体層531_1および半導体層531_2は、それぞれ独立に、Inの原子数比がMの原子数比より多い領域を有すると好ましい。一例としては、半導体層531_1および半導体層531_2のIn、M、およびZnの原子数の比を、In:M:Zn=4:2:3近傍とすると好ましい。ここで、近傍とは、Inが4の場合、Mが1.5以上2.5以下であり、かつZnが2以上4以下を含む。または、半導体層531_1および半導体層531_2のIn、M、およびZnの原子数の比を、In:M:Zn=5:1:6近傍とすると好ましい。このように、半導体層531_1および半導体層531_2を概略同じ組成とすることで、同じスパッタリングターゲットを用いて形成できるため、製造コストを抑制することが可能である。また、同じスパッタリングターゲットを用いる場合、同一チャンバーにて真空中で連続して半導体層531_1および半導体層531_2を成膜することができるため、半導体層531_1と半導体層531_2との界面に不純物が取り込まれるのを抑制することができる。 The semiconductor layer 531_1 and the semiconductor layer 531_2 preferably each independently have a region in which the atomic ratio of In is larger than the atomic ratio of M. As an example, the ratio of the number of In, M, and Zn atoms in the semiconductor layer 531_1 and the semiconductor layer 531_2 is preferably in the vicinity of In: M: Zn = 4: 2: 3. Here, in the vicinity, when In is 4, M is 1.5 or more and 2.5 or less, and Zn is 2 or more and 4 or less. Alternatively, the ratio of the number of In, M, and Zn atoms in the semiconductor layer 531_1 and the semiconductor layer 531_2 is preferably in the vicinity of In: M: Zn = 5: 1: 6. In this manner, when the semiconductor layer 531_1 and the semiconductor layer 531_2 have substantially the same composition, the same sputtering target can be used, so that manufacturing cost can be reduced. In the case where the same sputtering target is used, the semiconductor layer 531_1 and the semiconductor layer 531_2 can be formed continuously in a vacuum in the same chamber; thus, impurities are incorporated into the interface between the semiconductor layer 531_1 and the semiconductor layer 531_2. Can be suppressed.
ここで、半導体層531_1は、半導体層531_2よりも結晶性が低い領域を有していてもよい。なお、半導体層531_1および半導体層531_2の結晶性としては、例えば、X線回折(XRD:X−Ray Diffraction)を用いて分析する、あるいは、透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いて分析することで解析できる。 Here, the semiconductor layer 531_1 may have a region with lower crystallinity than the semiconductor layer 531_2. Note that the crystallinity of the semiconductor layer 531_1 and the semiconductor layer 531_2 is analyzed using, for example, X-ray diffraction (XRD: X-Ray Diffraction), or using a transmission electron microscope (TEM). It can be analyzed by analyzing.
半導体層531_1の結晶性が低い領域が過剰酸素の拡散経路となり、半導体層531_1よりも結晶性の高い半導体層531_2にも過剰酸素を拡散させることができる。このように、結晶構造が異なる半導体層の積層構造とし、結晶性の低い領域を過剰酸素の拡散経路とすることで、信頼性の高いトランジスタを提供することができる。 A region with low crystallinity of the semiconductor layer 531_1 serves as an excess oxygen diffusion path, and excess oxygen can be diffused into the semiconductor layer 531_2 with higher crystallinity than the semiconductor layer 531_1. In this manner, a highly reliable transistor can be provided by using a stacked structure of semiconductor layers having different crystal structures and using a region with low crystallinity as an excess oxygen diffusion path.
また、半導体層531_2が、半導体層531_1より結晶性が高い領域を有することにより、半導体層531に混入しうる不純物を抑制することができる。特に、半導体層531_2の結晶性を高めることで、導電層522aおよび導電層522bを加工する際のダメージを抑制することができる。半導体層531の表面、すなわち半導体層531_2の表面は、導電層522aおよび導電層522bの加工の際のエッチャントまたはエッチングガスに曝される。しかしながら、半導体層531_2は、結晶性が高い領域を有する場合、結晶性が低い半導体層531_1と比較してエッチング耐性に優れる。したがって、半導体層531_2は、エッチングストッパーとしての機能を有する。 In addition, since the semiconductor layer 531_2 includes a region having higher crystallinity than the semiconductor layer 531_1, impurities that can be mixed into the semiconductor layer 531 can be suppressed. In particular, by increasing the crystallinity of the semiconductor layer 531_2, damage when the conductive layers 522a and 522b are processed can be suppressed. The surface of the semiconductor layer 531, that is, the surface of the semiconductor layer 531 </ b> _ <b> 2 is exposed to an etchant or an etching gas when the conductive layers 522 a and 522 b are processed. However, when the semiconductor layer 531_2 has a region with high crystallinity, the semiconductor layer 531_2 has excellent etching resistance as compared with the semiconductor layer 531_1 with low crystallinity. Therefore, the semiconductor layer 531_2 functions as an etching stopper.
また、半導体層531_1は、半導体層531_2よりも結晶性が低い領域を有することで、キャリア密度が高くなる場合がある。 In addition, since the semiconductor layer 531_1 includes a region having lower crystallinity than the semiconductor layer 531_2, the carrier density may be increased.
また、半導体層531_1のキャリア密度が高くなると、半導体層531_1の伝導帯に対してフェルミ準位が相対的に高くなる場合がある。これにより、半導体層531_1の伝導帯の下端が低くなり、半導体層531_1の伝導帯下端と、ゲート絶縁層(ここでは、絶縁層511)中に形成されうるトラップ準位とのエネルギー差が大きくなる場合がある。該エネルギー差が大きくなることにより、ゲート絶縁層中にトラップされる電荷が少なくなり、トランジスタのしきい値電圧の変動を小さくできる場合がある。また、半導体層531_1のキャリア密度が高くなると、半導体層531の電界効果移動度を高めることができる。 Further, when the carrier density of the semiconductor layer 531_1 is increased, the Fermi level may be relatively higher than the conduction band of the semiconductor layer 531_1. Accordingly, the lower end of the conduction band of the semiconductor layer 531_1 is lowered, and the energy difference between the lower end of the conduction band of the semiconductor layer 531_1 and the trap level that can be formed in the gate insulating layer (here, the insulating layer 511) is increased. There is a case. When the energy difference is increased, the charge trapped in the gate insulating layer is reduced, and the variation in threshold voltage of the transistor may be reduced in some cases. Further, when the carrier density of the semiconductor layer 531_1 is increased, the field-effect mobility of the semiconductor layer 531 can be increased.
なお、トランジスタ500bにおいては、半導体層531を2層の積層構造にする例を示したが、これに限定されず、3層以上積層する構成にしてもよい。 Note that although an example in which the semiconductor layer 531 has a two-layer structure is shown in the transistor 500b, the present invention is not limited to this, and a structure in which three or more layers are stacked may be employed.
トランジスタ500bが有する導電層522aは、導電層522a_1と、導電層522a_1上の導電層522a_2と、導電層522a_2上の導電層522a_3と、を有する。また、トランジスタ500bが有する導電層522bは、導電層522b_1と、導電層522b_1上の導電層522b_2と、導電層522b_2上の導電層522b_3と、を有する。 The conductive layer 522a included in the transistor 500b includes a conductive layer 522a_1, a conductive layer 522a_2 over the conductive layer 522a_1, and a conductive layer 522a_3 over the conductive layer 522a_2. The conductive layer 522b included in the transistor 500b includes a conductive layer 522b_1, a conductive layer 522b_2 over the conductive layer 522b_1, and a conductive layer 522b_3 over the conductive layer 522b_2.
例えば、導電層522a_1、導電層522b_1、導電層522a_3、および導電層522b_3としては、チタン、タングステン、タンタル、モリブデン、インジウム、ガリウム、錫、および亜鉛の中から選ばれるいずれか一つまたは複数を有することが好ましい。また、導電層522a_2および導電層522b_2としては、銅、アルミニウム、および銀の中から選ばれるいずれか一つまたは複数を有することが好ましい。 For example, the conductive layer 522a_1, the conductive layer 522b_1, the conductive layer 522a_3, and the conductive layer 522b_3 include one or more selected from titanium, tungsten, tantalum, molybdenum, indium, gallium, tin, and zinc. It is preferable. The conductive layer 522a_2 and the conductive layer 522b_2 preferably include any one or more selected from copper, aluminum, and silver.
より具体的には、導電層522a_1、導電層522b_1、導電層522a_3、および導電層522b_3にIn−Sn酸化物またはIn−Zn酸化物を用い、導電層522a_2および導電層522b_2に銅を用いることができる。 More specifically, an In—Sn oxide or an In—Zn oxide is used for the conductive layer 522a_1, the conductive layer 522b_1, the conductive layer 522a_3, and the conductive layer 522b_3, and copper is used for the conductive layer 522a_2 and the conductive layer 522b_2. it can.
また、導電層522a_1の端部は、導電層522a_2の端部よりも外側に位置する領域を有し、導電層522a_3は、導電層522a_2の上面および側面を覆い、かつ導電層522a_1と接する領域を有する。また、導電層522b_1の端部は、導電層522b_2の端部よりも外側に位置する領域を有し、導電層522b_3は、導電層522b_2の上面および側面を覆い、かつ導電層522b_1と接する領域を有する。 In addition, the end portion of the conductive layer 522a_1 has a region located outside the end portion of the conductive layer 522a_2, and the conductive layer 522a_3 covers a top surface and side surfaces of the conductive layer 522a_2 and is in contact with the conductive layer 522a_1. Have. In addition, an end portion of the conductive layer 522b_1 has a region located outside the end portion of the conductive layer 522b_2, and the conductive layer 522b_3 covers a top surface and a side surface of the conductive layer 522b_2 and is in contact with the conductive layer 522b_1. Have.
上記構成とすることで、導電層522aおよび導電層522bの配線抵抗を低くし、かつ半導体層531への銅の拡散を抑制できるため好ましい。 The above structure is preferable because the wiring resistance of the conductive layers 522a and 522b can be reduced and the diffusion of copper into the semiconductor layer 531 can be suppressed.
〔構成例3〕
次に、トランジスタの構造の一例として、トランジスタ500cについて、図33(A)、(B)、(C)を用いて説明する。図33(A)はトランジスタ500cの上面図である。図33(B)は、図33(A)に示す一点鎖線X1−X2間における切断面の断面図に相当し、図33(C)は、図33(A)に示す一点鎖線Y1−Y2間における切断面の断面図に相当する。
[Configuration example 3]
Next, as an example of the structure of the transistor, a transistor 500c will be described with reference to FIGS. FIG. 33A is a top view of the transistor 500c. 33B corresponds to a cross-sectional view of a cross section taken along the dashed-dotted line X1-X2 in FIG. 33A, and FIG. 33C is between the dashed-dotted line Y1-Y2 shown in FIG. This corresponds to a cross-sectional view of the cut surface in FIG.
トランジスタ500cは、絶縁層524上の導電層521と、導電層521上および絶縁層524上の絶縁層511と、絶縁層511上の半導体層531と、半導体層531上および絶縁層511上の絶縁層516と、半導体層531上および絶縁層516上の導電層522aと、半導体層531上および絶縁層516上の導電層522bと、絶縁層516、導電層522a、および導電層522b上の絶縁層512と、絶縁層512上の導電層523と、を有する。 The transistor 500c includes a conductive layer 521 over the insulating layer 524, an insulating layer 511 over the conductive layer 521 and the insulating layer 524, a semiconductor layer 531 over the insulating layer 511, and an insulating layer over the semiconductor layer 531 and the insulating layer 511. Layer 516, conductive layer 522a over semiconductor layer 531 and insulating layer 516, conductive layer 522b over semiconductor layer 531 and insulating layer 516, and insulating layer over insulating layer 516, conductive layer 522a, and conductive layer 522b 512 and a conductive layer 523 over the insulating layer 512.
絶縁層511、絶縁層516、および絶縁層512は、開口部535を有する。トランジスタ500cの第1のゲートとしての機能を有する導電層521は、開口部535を介して、トランジスタ500cの第2のゲートとしての機能を有する導電層523と電気的に接続される。また、絶縁層516は、開口部538aおよび開口部538bを有する。トランジスタ500cのソースまたはドレインの一方としての機能を有する導電層522aは、開口部538aを介して、半導体層531と電気的に接続される。トランジスタ500cのソースまたはドレインの他方としての機能を有する導電層522bは、開口部538bを介して、半導体層531と電気的に接続される。 The insulating layer 511, the insulating layer 516, and the insulating layer 512 have an opening 535. The conductive layer 521 having a function as the first gate of the transistor 500c is electrically connected to the conductive layer 523 having a function as the second gate of the transistor 500c through the opening 535. The insulating layer 516 includes an opening 538a and an opening 538b. The conductive layer 522a functioning as one of the source and the drain of the transistor 500c is electrically connected to the semiconductor layer 531 through the opening 538a. The conductive layer 522b functioning as the other of the source and the drain of the transistor 500c is electrically connected to the semiconductor layer 531 through the opening 538b.
絶縁層516は、トランジスタ500cのチャネル保護層としての機能を有する。絶縁層516を有しない場合、エッチング法等により導電層522aおよび導電層522bを形成する際に、半導体層531のチャネル形成領域にダメージが与えられる場合がある。これにより、トランジスタの電気特性が不安定となる場合がある。絶縁層516を形成し、開口部538aおよび開口部538bを設けた後に導電層を成膜し、当該導電層をエッチング法等により加工して導電層522aおよび導電層522bを形成することにより、半導体層531のチャネル形成領域へのダメージを抑制することができる。これにより、トランジスタの電気特性を安定化させ、信頼性の高いトランジスタを実現できる。 The insulating layer 516 functions as a channel protective layer of the transistor 500c. In the case where the insulating layer 516 is not provided, the channel formation region of the semiconductor layer 531 may be damaged when the conductive layer 522a and the conductive layer 522b are formed by an etching method or the like. As a result, the electrical characteristics of the transistor may become unstable. A semiconductor layer is formed by forming an insulating layer 516, forming an opening 538a and an opening 538b, forming a conductive layer, and processing the conductive layer by an etching method or the like to form the conductive layer 522a and the conductive layer 522b. Damage to the channel formation region of the layer 531 can be suppressed. Thereby, the electrical characteristics of the transistor can be stabilized and a highly reliable transistor can be realized.
絶縁層516は、例えば絶縁層512と同様の材料を含むことができる。 The insulating layer 516 can include a material similar to that of the insulating layer 512, for example.
絶縁層516は、過剰酸素領域を有することが好ましい、絶縁層516が過剰酸素領域を有することで、半導体層531のチャネル形成領域に酸素を供給することができる。よって、当該チャネル形成領域に形成される酸素欠損を過剰酸素により補填することができるため、信頼性の高い表示装置を提供することができる。 The insulating layer 516 preferably has an excess oxygen region. When the insulating layer 516 has an excess oxygen region, oxygen can be supplied to the channel formation region of the semiconductor layer 531. Accordingly, oxygen vacancies formed in the channel formation region can be filled with excess oxygen; thus, a highly reliable display device can be provided.
また、開口部538aおよび開口部538bの形成後、半導体層531に不純物元素を添加することが好ましい。具体的には、酸素欠損を形成する元素、または酸素欠損と結合する元素を添加すると好ましい。これにより、詳細は後述するが、半導体層531の、導電層522aと重なる領域(ソース領域またはドレイン領域の一方)、および導電層522bと重なる領域(ソース領域またはドレイン領域の他方)の導電性を高くすることができる。これにより、トランジスタ500cの電流駆動能力が向上し、高いオン電流特性を得ることが可能となる。 In addition, an impurity element is preferably added to the semiconductor layer 531 after the opening 538a and the opening 538b are formed. Specifically, an element that forms oxygen vacancies or an element that bonds with oxygen vacancies is preferably added. Accordingly, although described in detail later, the conductivity of the semiconductor layer 531 in the region overlapping with the conductive layer 522a (one of the source region or the drain region) and the region overlapping with the conductive layer 522b (the other of the source region or the drain region) are increased. Can be high. Accordingly, the current driving capability of the transistor 500c is improved, and high on-current characteristics can be obtained.
なお、トランジスタ500cは、いわゆるチャネル保護型のトランジスタであり、デュアルゲート構造である。 Note that the transistor 500c is a so-called channel protection transistor and has a dual-gate structure.
トランジスタ500cは、トランジスタ500aおよびトランジスタ500bと同様にs−channel構造をとる。このような構成を有することで、トランジスタ500cに含まれる半導体層531を、導電層521および導電層523の電界によって電気的に取り囲むことができる。 The transistor 500c has an s-channel structure similarly to the transistors 500a and 500b. With such a structure, the semiconductor layer 531 included in the transistor 500c can be electrically surrounded by the electric fields of the conductive layer 521 and the conductive layer 523.
トランジスタ500cは、s−channel構造を有するため、導電層521または導電層523によってチャネルを誘起させるための電界を効果的に半導体層531に印加することができる。これにより、トランジスタ500fの電流駆動能力が向上し、高いオン電流特性を得ることが可能となる。また、オン電流を高くすることが可能であるため、トランジスタ500cを微細化することが可能となる。また、トランジスタ500cは、導電層521、および導電層523によって、半導体層531が取り囲まれた構造を有するため、トランジスタ500fの機械的強度を高めることができる。 Since the transistor 500c has an s-channel structure, an electric field for inducing a channel by the conductive layer 521 or the conductive layer 523 can be effectively applied to the semiconductor layer 531. Accordingly, the current driving capability of the transistor 500f is improved, and high on-current characteristics can be obtained. In addition, since the on-state current can be increased, the transistor 500c can be miniaturized. Further, since the transistor 500c has a structure in which the semiconductor layer 531 is surrounded by the conductive layer 521 and the conductive layer 523, the mechanical strength of the transistor 500f can be increased.
なお、トランジスタ500cは、導電層523を設けない構成にすることもできる。この場合、トランジスタ500cは、いわゆるチャネル保護型のトランジスタであり、ボトムゲート構造である。 Note that the transistor 500c can be formed without the conductive layer 523. In this case, the transistor 500c is a so-called channel protection transistor and has a bottom gate structure.
〔構成例4〕
次に、トランジスタの構造の一例について、図34(A)、(B)、(C)、(D)を用いて説明する。
[Configuration example 4]
Next, an example of the structure of the transistor will be described with reference to FIGS. 34 (A), (B), (C), and (D).
図34(A)、(B)はトランジスタ500dの断面図であり、図34(C)、(D)はトランジスタ500eの断面図である。なお、トランジスタ500dは、先に示すトランジスタ500bの変形例であり、トランジスタ500eは、先に示すトランジスタ500cの変形例である。したがって、図34(A)、(B)、(C)、(D)において、トランジスタ500bおよびトランジスタ500cと同様の機能を有する部分については、同様の符号を付し、詳細な説明を省略する。 34A and 34B are cross-sectional views of the transistor 500d, and FIGS. 34C and 34D are cross-sectional views of the transistor 500e. Note that the transistor 500d is a modification of the transistor 500b described above, and the transistor 500e is a modification of the transistor 500c described above. Accordingly, in FIGS. 34A, 34B, 34C, and 34D, portions having functions similar to those of the transistor 500b and the transistor 500c are denoted by the same reference numerals, and detailed description thereof is omitted.
なお、図34(A)はトランジスタ500dのチャネル長方向の断面図であり、図34(B)はトランジスタ500dのチャネル幅方向の断面図である。また、図34(C)はトランジスタ500eのチャネル長方向の断面図であり、図34(D)はトランジスタ500eのチャネル幅方向の断面図である。 Note that FIG. 34A is a cross-sectional view in the channel length direction of the transistor 500d, and FIG. 34B is a cross-sectional view in the channel width direction of the transistor 500d. FIG. 34C is a cross-sectional view of the transistor 500e in the channel length direction, and FIG. 34D is a cross-sectional view of the transistor 500e in the channel width direction.
図34(A)、(B)に示すトランジスタ500dは、トランジスタ500bと比較し、導電層523、および開口部535が設けられない。また、トランジスタ500dは、トランジスタ500bと比較し、絶縁層512、導電層522a、および導電層522bの構成が異なる。 A transistor 500d illustrated in FIGS. 34A and 34B is not provided with the conductive layer 523 and the opening 535 as compared with the transistor 500b. The transistor 500d is different from the transistor 500b in the structures of the insulating layer 512, the conductive layer 522a, and the conductive layer 522b.
トランジスタ500dにおいて、絶縁層512は、絶縁層512cと、絶縁層512c上の絶縁層512dとを有する。絶縁層512cとしては、半導体層531に酸素を供給する機能と、不純物(代表的には、水、水素等)の入り込みを抑制する機能と、を有する。絶縁層512cとしては、酸化アルミニウム膜、酸化窒化アルミニウム膜、または窒化酸化アルミニウム膜を用いることができる。特に、絶縁層512cとしては、反応性スパッタリング法によって形成される酸化アルミニウム膜であることが好ましい。なお、反応性スパッタリング法で酸化アルミニウム膜を形成する方法の一例としては、以下に示す方法が挙げられる。 In the transistor 500d, the insulating layer 512 includes an insulating layer 512c and an insulating layer 512d over the insulating layer 512c. The insulating layer 512c has a function of supplying oxygen to the semiconductor layer 531 and a function of suppressing entry of impurities (typically, water, hydrogen, and the like). As the insulating layer 512c, an aluminum oxide film, an aluminum oxynitride film, or an aluminum nitride oxide film can be used. In particular, the insulating layer 512c is preferably an aluminum oxide film formed by a reactive sputtering method. In addition, as an example of a method for forming an aluminum oxide film by a reactive sputtering method, the following method can be given.
まず、スパッタリングチャンバー内に、不活性ガス(代表的にはArガス)と、酸素ガスと、を混合したガスを導入する。続けて、スパッタリングチャンバーに配置されたアルミニウムターゲットに電圧を印加することで、酸化アルミニウム膜を成膜することができる。なお、アルミニウムターゲットに電圧を印加する電源としては、DC電源、AC電源、またはRF電源が挙げられる。特に、DC電源を用いると生産性が向上するため好ましい。 First, a mixed gas of an inert gas (typically Ar gas) and oxygen gas is introduced into the sputtering chamber. Subsequently, an aluminum oxide film can be formed by applying a voltage to the aluminum target disposed in the sputtering chamber. In addition, as a power supply which applies a voltage to an aluminum target, DC power supply, AC power supply, or RF power supply is mentioned. In particular, use of a DC power source is preferable because productivity is improved.
絶縁層512dは、不純物(代表的には水、水素等)の入り込みを抑制する機能を有する。絶縁層512dとしては、窒化シリコン膜、窒化酸化シリコン膜、酸化窒化シリコン膜を用いることができる。特に、絶縁層512dとしては、PECVD法によって形成される窒化シリコン膜が好ましい。PECVD法によって形成される窒化シリコン膜は、高い膜密度を得られやすいため好ましい。なお、PECVD法によって形成される窒化シリコン膜は、膜中の水素濃度が高い場合がある。 The insulating layer 512d has a function of suppressing entry of impurities (typically water, hydrogen, and the like). As the insulating layer 512d, a silicon nitride film, a silicon nitride oxide film, or a silicon oxynitride film can be used. In particular, the insulating layer 512d is preferably a silicon nitride film formed by PECVD. A silicon nitride film formed by PECVD is preferable because a high film density can be easily obtained. Note that a silicon nitride film formed by PECVD may have a high hydrogen concentration in the film.
トランジスタ500dにおいては、絶縁層512dの下層には絶縁層512cが配置されているため、絶縁層512dに含まれる水素は、半導体層531側に拡散しない、または拡散し難い。 In the transistor 500d, since the insulating layer 512c is disposed below the insulating layer 512d, hydrogen contained in the insulating layer 512d does not diffuse or hardly diffuses to the semiconductor layer 531 side.
なお、トランジスタ500dは、トランジスタ500bとは異なり、シングルゲートのトランジスタである。シングルゲートのトランジスタとすることで、マスク枚数を低減できるため、生産性を高めることができる。 Note that the transistor 500d is a single-gate transistor, unlike the transistor 500b. By using a single gate transistor, the number of masks can be reduced, so that productivity can be increased.
図34(C)、(D)に示すトランジスタ500eは、トランジスタ500cと比較し、絶縁層516、および絶縁層512の構成が異なる。具体的には、トランジスタ500eは、絶縁層516の代わりに絶縁層516aを有し、絶縁層512の代わりに絶縁層512dを有する。 A transistor 500e illustrated in FIGS. 34C and 34D is different in structure of the insulating layer 516 and the insulating layer 512 from the transistor 500c. Specifically, the transistor 500e includes an insulating layer 516a instead of the insulating layer 516, and includes an insulating layer 512d instead of the insulating layer 512.
絶縁層516aは、絶縁層512cと同様の機能を有する。 The insulating layer 516a has a function similar to that of the insulating layer 512c.
トランジスタ500d、およびトランジスタ500eの構造とすることで、大きな設備投資を行わずに、既存の生産ラインを用いて製造することができる。例えば、水素化アモルファスシリコンの製造工場を、酸化物半導体の製造工場に簡易的に置き換えることが可能となる。 With the structure of the transistor 500d and the transistor 500e, the structure can be manufactured using an existing production line without much capital investment. For example, a hydrogenated amorphous silicon manufacturing plant can be easily replaced with an oxide semiconductor manufacturing plant.
〔構成例5〕
次に、トランジスタの構造の一例として、トランジスタ500fについて、図35(A)、(B)、(C)を用いて説明する。図35(A)はトランジスタ500fの上面図である。図35(B)は、図35(A)に示す一点鎖線X1−X2間における切断面の断面図に相当し、図35(C)は、図35(A)に示す一点鎖線Y1−Y2間における切断面の断面図に相当する。
[Configuration example 5]
Next, as an example of the structure of the transistor, a transistor 500f will be described with reference to FIGS. FIG. 35A is a top view of the transistor 500f. 35B corresponds to a cross-sectional view of a cross section taken along the dashed-dotted line X1-X2 in FIG. 35A, and FIG. 35C is between the dashed-dotted line Y1-Y2 shown in FIG. This corresponds to a cross-sectional view of the cut surface in FIG.
図35(A)、(B)、(C)に示すトランジスタ500fは、絶縁層524上の導電層521と、導電層521上および絶縁層524上の絶縁層511と、絶縁層511上の半導体層531と、半導体層531上の絶縁層512と、絶縁層512上の導電層523と、絶縁層511上、半導体層531上、および導電層523上の絶縁層515を有する。なお、半導体層531は、導電層523と重なるチャネル形成領域531iと、絶縁層515と接するソース領域531sと、絶縁層515と接するドレイン領域531dと、を有する。 35A, 35B, and 35C includes a conductive layer 521 over the insulating layer 524, an insulating layer 511 over the conductive layer 521 and the insulating layer 524, and a semiconductor over the insulating layer 511. The insulating layer 512 over the semiconductor layer 531, the conductive layer 523 over the insulating layer 512, and the insulating layer 515 over the insulating layer 511, the semiconductor layer 531, and the conductive layer 523 are included. Note that the semiconductor layer 531 includes a channel formation region 531 i overlapping with the conductive layer 523, a source region 531 s in contact with the insulating layer 515, and a drain region 531 d in contact with the insulating layer 515.
また、絶縁層515は、窒素または水素を有する。絶縁層515と、ソース領域531sおよびドレイン領域531dと、が接することで、絶縁層515中の窒素または水素がソース領域531sおよびドレイン領域531d中に添加される。ソース領域531sおよびドレイン領域531dは、窒素または水素が添加されることで、キャリア密度が高くなる。 The insulating layer 515 includes nitrogen or hydrogen. When the insulating layer 515 is in contact with the source region 531s and the drain region 531d, nitrogen or hydrogen in the insulating layer 515 is added to the source region 531s and the drain region 531d. In the source region 531 s and the drain region 531 d, the carrier density is increased by adding nitrogen or hydrogen.
また、トランジスタ500fは、絶縁層515に設けられた開口部536aを介してソース領域531sに電気的に接続される導電層522aを有してもよい。また、トランジスタ500fは、絶縁層515に設けられた開口部536bを介してドレイン領域531dに電気的に接続される導電層522bを有してもよい。 The transistor 500f may include a conductive layer 522a electrically connected to the source region 531s through an opening 536a provided in the insulating layer 515. The transistor 500f may include a conductive layer 522b electrically connected to the drain region 531d through an opening 536b provided in the insulating layer 515.
絶縁層511は、第1のゲート絶縁層としての機能を有し、絶縁層512は、第2のゲート絶縁層としての機能を有する。また、絶縁層515は保護絶縁層としての機能を有する。 The insulating layer 511 functions as a first gate insulating layer, and the insulating layer 512 functions as a second gate insulating layer. The insulating layer 515 functions as a protective insulating layer.
また、絶縁層512は、過剰酸素領域を有する。絶縁層512が過剰酸素領域を有することで、半導体層531が有するチャネル形成領域531i中に過剰酸素を供給することができる。よって、チャネル形成領域531iに形成されうる酸素欠損を過剰酸素により補填することができるため、信頼性の高い表示装置を提供することができる。 The insulating layer 512 has an excess oxygen region. When the insulating layer 512 includes the excess oxygen region, excess oxygen can be supplied to the channel formation region 531 i included in the semiconductor layer 531. Accordingly, oxygen vacancies that can be formed in the channel formation region 531i can be filled with excess oxygen; thus, a highly reliable display device can be provided.
なお、半導体層531中に過剰酸素を供給させるためには、半導体層531の下方に形成される絶縁層511に過剰酸素を供給してもよい。この場合、絶縁層511中に含まれる過剰酸素は、半導体層531が有するソース領域531s、およびドレイン領域531dにも供給されうる。ソース領域531s、およびドレイン領域531d中に過剰酸素が供給されると、ソース領域531s、およびドレイン領域531dの抵抗が高くなる場合がある。 Note that in order to supply excess oxygen into the semiconductor layer 531, excess oxygen may be supplied to the insulating layer 511 formed below the semiconductor layer 531. In this case, excess oxygen contained in the insulating layer 511 can be supplied to the source region 531s and the drain region 531d included in the semiconductor layer 531. When excess oxygen is supplied into the source region 531s and the drain region 531d, the resistance of the source region 531s and the drain region 531d may increase.
一方で、半導体層531の上方に形成される絶縁層512に過剰酸素を有する構成とすることで、チャネル形成領域531iにのみ選択的に過剰酸素を供給させることが可能となる。あるいは、チャネル形成領域531i、ソース領域531s、およびドレイン領域531dに過剰酸素を供給させたのち、ソース領域531sおよびトレイン領域531dのキャリア密度を選択的に高めることで、ソース領域531s、およびドレイン領域531dの抵抗が高くなることを抑制することができる。 On the other hand, with the structure in which excess oxygen is included in the insulating layer 512 formed over the semiconductor layer 531, excess oxygen can be selectively supplied only to the channel formation region 531i. Alternatively, after excess oxygen is supplied to the channel formation region 531i, the source region 531s, and the drain region 531d, the carrier density of the source region 531s and the train region 531d is selectively increased, so that the source region 531s and the drain region 531d are increased. It is possible to suppress the increase in resistance.
また、半導体層531が有するソース領域531sおよびドレイン領域531dは、それぞれ、酸素欠損を形成する元素、または酸素欠損と結合する元素を有すると好ましい。当該酸素欠損を形成する元素、または酸素欠損と結合する元素としては、代表的には水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、チタン、希ガス等が挙げられる。また、希ガス元素の代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、およびキセノン等がある。上記酸素欠損を形成する元素が、絶縁層515中に1つまたは複数含まれる場合、絶縁層515からソース領域531s、およびドレイン領域531dに拡散する、および/または不純物添加処理によりソース領域531s、およびドレイン領域531d中に添加される。 The source region 531s and the drain region 531d included in the semiconductor layer 531 each preferably include an element that forms oxygen vacancies or an element that bonds to oxygen vacancies. As an element that forms oxygen vacancies or an element that combines with oxygen vacancies, typically, hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, titanium, a rare gas, or the like can be given. Typical examples of rare gas elements include helium, neon, argon, krypton, and xenon. In the case where one or more elements that form oxygen vacancies are included in the insulating layer 515, they diffuse from the insulating layer 515 into the source region 531s and the drain region 531d, and / or the source region 531s is formed by impurity addition treatment, and It is added into the drain region 531d.
不純物元素が金属酸化物に添加されると、金属酸化物中の金属元素と酸素の結合が切断され、酸素欠損が形成される。または、不純物元素が金属酸化物に添加されると、金属酸化物中の金属元素と結合していた酸素が不純物元素と結合し、金属元素から酸素が脱離され、酸素欠損が形成される。これらの結果、金属酸化物においてキャリア密度が増加し、導電性が高くなる。 When the impurity element is added to the metal oxide, the bond between the metal element in the metal oxide and oxygen is cut, and oxygen vacancies are formed. Alternatively, when the impurity element is added to the metal oxide, oxygen bonded to the metal element in the metal oxide is bonded to the impurity element, oxygen is released from the metal element, and oxygen vacancies are formed. As a result, in the metal oxide, the carrier density is increased and the conductivity is increased.
また、導電層521は、第1のゲートとしての機能を有し、導電層523は、第2のゲートとしての機能を有し、導電層522aは、ソースとしての機能を有し、導電層522bは、ドレインとしての機能を有する。 The conductive layer 521 has a function as a first gate, the conductive layer 523 has a function as a second gate, the conductive layer 522a has a function as a source, and the conductive layer 522b Has a function as a drain.
また、図35(C)に示すように、絶縁層511および絶縁層512には開口部537が設けられる。また、導電層521は、開口部537を介して、導電層523と電気的に接続される。よって、導電層521と導電層523には、同じ電位が与えられる。なお、開口部537を設けずに、導電層521と、導電層523と、に異なる電位を与えてもよい。または、開口部537を設けずに、導電層521を遮光膜として用いてもよい。例えば、導電層521を遮光性の材料により形成することで、チャネル形成領域531iに照射される下方からの光を抑制することができる。 As shown in FIG. 35C, the insulating layer 511 and the insulating layer 512 are provided with an opening 537. In addition, the conductive layer 521 is electrically connected to the conductive layer 523 through the opening 537. Therefore, the same potential is applied to the conductive layer 521 and the conductive layer 523. Note that different potentials may be applied to the conductive layer 521 and the conductive layer 523 without providing the opening 537. Alternatively, the conductive layer 521 may be used as a light-blocking film without providing the opening 537. For example, when the conductive layer 521 is formed using a light-blocking material, light from below irradiated to the channel formation region 531i can be suppressed.
また、図35(B)、(C)に示すように、半導体層531は、第1のゲートとしての機能を有する導電層521と、第2のゲートとしての機能を有する導電層523のそれぞれと対向するように位置し、2つのゲートとしての機能を有する導電層に挟まれている。 As shown in FIGS. 35B and 35C, the semiconductor layer 531 includes a conductive layer 521 having a function as a first gate and a conductive layer 523 having a function as a second gate. It is located so as to face each other, and is sandwiched between conductive layers that function as two gates.
また、トランジスタ500fもトランジスタ500a、トランジスタ500b、およびトランジスタ500cと同様にs−channel構造をとる。このような構成を有することで、トランジスタ500fに含まれる半導体層531を、第1のゲートとしての機能を有する導電層521および第2のゲートとしての機能を有する導電層523の電界によって電気的に取り囲むことができる。 Similarly to the transistors 500a, 500b, and 500c, the transistor 500f has an s-channel structure. With such a structure, the semiconductor layer 531 included in the transistor 500f is electrically connected to the conductive layer 521 having a function as a first gate and the electric field of the conductive layer 523 having a function as a second gate. Can be surrounded.
トランジスタ500fは、s−channel構造を有するため、導電層521または導電層523によってチャネルを誘起させるための電界を効果的に半導体層531に印加することができる。これにより、トランジスタ500fの電流駆動能力が向上し、高いオン電流特性を得ることが可能となる。また、オン電流を高くすることが可能であるため、トランジスタ500fを微細化することが可能となる。また、トランジスタ500fは、導電層521、および導電層523によって、半導体層531が取り囲まれた構造を有するため、トランジスタ500fの機械的強度を高めることができる。 Since the transistor 500f has an s-channel structure, an electric field for inducing a channel by the conductive layer 521 or the conductive layer 523 can be effectively applied to the semiconductor layer 531. Accordingly, the current driving capability of the transistor 500f is improved, and high on-current characteristics can be obtained. Further, since the on-state current can be increased, the transistor 500f can be miniaturized. In addition, since the transistor 500f has a structure in which the semiconductor layer 531 is surrounded by the conductive layer 521 and the conductive layer 523, the mechanical strength of the transistor 500f can be increased.
なお、トランジスタ500fを、導電層523の半導体層531に対する位置、または導電層523の形成方法から、TGSA(Top Gate Self Align)型のFETと呼称してもよい。 Note that the transistor 500f may be referred to as a TGSA (Top Gate Self Align) FET because of the position of the conductive layer 523 with respect to the semiconductor layer 531 or the formation method of the conductive layer 523.
なお、トランジスタ500fにおいても、トランジスタ500bと同様に半導体層531を2層以上積層する構成にしてもよい。 Note that the transistor 500f may have a structure in which two or more semiconductor layers 531 are stacked as in the transistor 500b.
また、トランジスタ500fにおいて、絶縁層512が導電層523と重なる部分にのみ設けられているが、これに限られることなく、絶縁層512が半導体層531を覆う構成にすることもできる。また、導電層521を設けない構成にすることもできる。 In the transistor 500f, the insulating layer 512 is provided only in a portion where the insulating layer 512 overlaps with the conductive layer 523; however, the present invention is not limited to this, and the insulating layer 512 can cover the semiconductor layer 531. Alternatively, the conductive layer 521 may be omitted.
また、絶縁層512と導電層523の間に酸化アルミニウム層を設けてもよい。酸化アルミニウム層を設けることにより、絶縁層512に含まれる過剰酸素が導電層523側に拡散しにくくすることができる。 Further, an aluminum oxide layer may be provided between the insulating layer 512 and the conductive layer 523. By providing the aluminum oxide layer, excess oxygen contained in the insulating layer 512 can be hardly diffused to the conductive layer 523 side.
また、導電層523は、少なくとも絶縁層512と接する領域が、酸素が拡散しにくい材料で構成されていることが好ましい。このような材料としては、アルミニウムやモリブデンなどがある。例えば、導電層523を、絶縁層512側にアルミニウムを設け、その上にチタンを設けた2層の積層構造としてもよい。また、導電層523を、絶縁層512側にモリブデンを設け、その上にアルミニウムとチタンを設けた3層の積層構造としてもよい。 In addition, the conductive layer 523 is preferably formed of a material in which at least a region in contact with the insulating layer 512 is difficult to diffuse oxygen. Examples of such materials include aluminum and molybdenum. For example, the conductive layer 523 may have a two-layer structure in which aluminum is provided on the insulating layer 512 side and titanium is provided thereover. Alternatively, the conductive layer 523 may have a three-layer structure in which molybdenum is provided on the insulating layer 512 side and aluminum and titanium are provided thereover.
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。 This embodiment can be implemented in appropriate combination with at least part of the other embodiments described in this specification.
(実施の形態8)
本実施の形態では、液晶素子を用いた表示装置の構成例と、EL素子を用いた表示装置の構成例について説明する。図36(A)において、第1の基板4001上に設けられた表示部115を囲むようにして、シール材4005が設けられ、表示部115がシール材4005および第2の基板4006によって封止されている。
(Embodiment 8)
In this embodiment, a structure example of a display device using a liquid crystal element and a structure example of a display device using an EL element will be described. 36A, a sealant 4005 is provided so as to surround the display portion 115 provided over the first substrate 4001, and the display portion 115 is sealed with the sealant 4005 and the second substrate 4006. .
表示部115は、上記実施の形態に示した表示部110または表示部210などと同様の構成を有する。 The display portion 115 has a structure similar to that of the display portion 110 or the display portion 210 described in the above embodiment.
図36(A)では、走査線駆動回路121a、信号線駆動回路131a、信号線駆動回路132a、および共通線駆動回路141aは、それぞれがプリント基板4041上に設けられた集積回路4042を複数有する。集積回路4042は、単結晶半導体または多結晶半導体で形成されている。信号線駆動回路131aおよび信号線駆動回路132aは、上記実施の形態に示した信号線駆動回路131と同様に機能する。走査線駆動回路121aは、上記実施の形態に示した走査線駆動回路121と同様に機能する。共通線駆動回路141aは、上記実施の形態に示した共通線駆動回路141と同様に機能する。 In FIG. 36A, the scan line driver circuit 121a, the signal line driver circuit 131a, the signal line driver circuit 132a, and the common line driver circuit 141a each include a plurality of integrated circuits 4042 provided over the printed board 4041. The integrated circuit 4042 is formed using a single crystal semiconductor or a polycrystalline semiconductor. The signal line driver circuit 131a and the signal line driver circuit 132a function in the same manner as the signal line driver circuit 131 described in the above embodiment. The scan line driver circuit 121a functions in the same manner as the scan line driver circuit 121 described in the above embodiment. The common line driver circuit 141a functions similarly to the common line driver circuit 141 described in the above embodiment.
走査線駆動回路121a、共通線駆動回路141a、信号線駆動回路131a、および信号線駆動回路132aに与えられる各種信号および電位は、FPC(FPC:Flexible printed circuit)4018を介して供給される。 Various signals and potentials supplied to the scan line driver circuit 121a, the common line driver circuit 141a, the signal line driver circuit 131a, and the signal line driver circuit 132a are supplied via an FPC (FPC: Flexible printed circuit) 4018.
走査線駆動回路121aおよび共通線駆動回路141aが有する集積回路4042は、表示部115に選択信号を供給する機能を有する。信号線駆動回路131aおよび信号線駆動回路132aが有する集積回路4042は、表示部115にビデオ信号を供給する機能を有する。集積回路4042は、TAB(Tape Automated Bonding)法によって第1の基板4001上のシール材4005によって囲まれている領域とは異なる領域に実装されている。 An integrated circuit 4042 included in the scan line driver circuit 121 a and the common line driver circuit 141 a has a function of supplying a selection signal to the display portion 115. The integrated circuit 4042 included in the signal line driver circuit 131 a and the signal line driver circuit 132 a has a function of supplying a video signal to the display portion 115. The integrated circuit 4042 is mounted in a region different from the region surrounded by the sealant 4005 on the first substrate 4001 by a TAB (Tape Automated Bonding) method.
なお、集積回路4042の接続方法は、特に限定されるものではなく、ワイヤボンディング法、COG(Chip On Glass)法、TCP(Tape Carrier Package)法、COF(Chip On Film)法などを用いることができる。 Note that a connection method of the integrated circuit 4042 is not particularly limited, and a wire bonding method, a COG (Chip On Glass) method, a TCP (Tape Carrier Package) method, a COF (Chip On Film) method, or the like can be used. it can.
図36(B)は、信号線駆動回路131aおよび信号線駆動回路132aに含まれる集積回路4042をCOG法により実装する例を示している。また、上記実施の形態に示したトランジスタを用いて、駆動回路の一部または全体を表示部115と同じ基板上に一体形成して、システムオンパネルを形成することができる。 FIG. 36B illustrates an example in which the integrated circuit 4042 included in the signal line driver circuit 131a and the signal line driver circuit 132a is mounted by a COG method. Further, with the use of the transistor described in any of the above embodiments, part or the whole of a driver circuit can be formed over the same substrate as the display portion 115 to form a system-on-panel.
図36(B)では、走査線駆動回路121aおよび共通線駆動回路141aを、表示部115と同じ基板上に形成する例を示している。駆動回路を表示部115内の画素回路と同時に形成することで、部品点数を削減することができる。よって、生産性を高めることができる。 FIG. 36B illustrates an example in which the scan line driver circuit 121a and the common line driver circuit 141a are formed over the same substrate as the display portion 115. By forming the driver circuit at the same time as the pixel circuit in the display portion 115, the number of components can be reduced. Therefore, productivity can be improved.
また、図36(B)では、第1の基板4001上に設けられた表示部115と、走査線駆動回路121aおよび共通線駆動回路141aと、を囲むようにして、シール材4005が設けられている。また表示部115、走査線駆動回路121a、および共通線駆動回路141aの上に第2の基板4006が設けられている。よって、表示部115、走査線駆動回路121a、および共通線駆動回路141aは、第1の基板4001とシール材4005と第2の基板4006とによって、表示素子と共に封止されている。 In FIG. 36B, a sealant 4005 is provided so as to surround the display portion 115 provided over the first substrate 4001, the scan line driver circuit 121a, and the common line driver circuit 141a. In addition, a second substrate 4006 is provided over the display portion 115, the scan line driver circuit 121a, and the common line driver circuit 141a. Therefore, the display portion 115, the scan line driver circuit 121a, and the common line driver circuit 141a are sealed together with the display element by the first substrate 4001, the sealant 4005, and the second substrate 4006.
また図36(B)では、信号線駆動回路131aおよび信号線駆動回路132aを別途形成し、第1の基板4001に実装している例を示しているが、この構成に限定されない。走査線駆動回路を別途形成して実装しても良いし、信号線駆動回路の一部または走査線駆動回路の一部を別途形成して実装しても良い。 FIG. 36B illustrates an example in which the signal line driver circuit 131a and the signal line driver circuit 132a are separately formed and mounted on the first substrate 4001, but the present invention is not limited to this structure. The scan line driver circuit may be separately formed and then mounted, or part of the signal line driver circuit or part of the scan line driver circuit may be separately formed and then mounted.
また、表示装置は、表示素子が封止された状態にあるパネルと、該パネルにコントローラを含むIC等を実装した状態にあるモジュールとを含む場合がある。 In some cases, the display device includes a panel in which the display element is sealed, and a module in which an IC including a controller or the like is mounted on the panel.
また第1の基板上に設けられた表示部および走査線駆動回路は、トランジスタを複数有している。当該トランジスタとして、上記実施の形態で示したトランジスタを適用することができる。 The display portion and the scan line driver circuit provided over the first substrate include a plurality of transistors. The transistor described in any of the above embodiments can be used as the transistor.
周辺駆動回路が有するトランジスタと、表示部の画素回路が有するトランジスタの構造は同じであってもよく、異なっていてもよい。周辺駆動回路が有するトランジスタは、全て同じ構造であってもよく、2種類以上の構造が組み合わせて用いられていてもよい。同様に、画素回路が有するトランジスタは、全て同じ構造であってもよく、2種類以上の構造が組み合わせて用いられていてもよい。 The transistor included in the peripheral driver circuit and the transistor included in the pixel circuit in the display portion may have the same structure or different structures. The transistors included in the peripheral driver circuit may all have the same structure, or two or more structures may be used in combination. Similarly, the transistors included in the pixel circuit may all have the same structure, or two or more structures may be used in combination.
図37(A)および図37(B)は、図36(B)中でN1−N2の鎖線で示した部位の断面図である。図37(A)および図37(B)に示す表示装置は電極4015を有しており、電極4015はFPC4018が有する端子と異方性導電層4019を介して、電気的に接続されている。また、図37(A)および図37(B)では、電極4015は、絶縁層4112、絶縁層4111、および絶縁層4110に形成された開口部において配線4014と電気的に接続されている。 37A and 37B are cross-sectional views of a portion indicated by a chain line N1-N2 in FIG. 36B. The display device illustrated in FIGS. 37A and 37B includes an electrode 4015, and the electrode 4015 is electrically connected to a terminal included in the FPC 4018 through an anisotropic conductive layer 4019. In FIGS. 37A and 37B, the electrode 4015 is electrically connected to the wiring 4014 in the opening formed in the insulating layer 4112, the insulating layer 4111, and the insulating layer 4110.
電極4015は、第1の電極層4030と同じ導電層から形成され、配線4014は、トランジスタ4010、およびトランジスタ4011のソース電極およびドレイン電極と同じ導電層で形成されている。 The electrode 4015 is formed using the same conductive layer as the first electrode layer 4030, and the wiring 4014 is formed using the same conductive layer as the source electrode and the drain electrode of the transistor 4010 and the transistor 4011.
また、第1の基板4001上に設けられた表示部115と走査線駆動回路121aは、トランジスタを複数有しており、図37(A)、および図37(B)では、表示部115に含まれるトランジスタ4010、および走査線駆動回路121aに含まれるトランジスタ4011を例示している。なお、図37(A)および図37(B)では、トランジスタ4010およびトランジスタ4011としてボトムゲート型のトランジスタを例示している。 In addition, the display portion 115 and the scan line driver circuit 121a provided over the first substrate 4001 include a plurality of transistors, which are included in the display portion 115 in FIGS. 37A and 37B. The transistor 4010 and the transistor 4011 included in the scan line driver circuit 121a are illustrated. Note that FIGS. 37A and 37B illustrate bottom-gate transistors as the transistor 4010 and the transistor 4011.
図37(A)および図37(B)では、トランジスタ4010およびトランジスタ4011上に絶縁層4112が設けられている。また、図37(B)では、絶縁層4112上に隔壁4510が形成されている。 In FIGS. 37A and 37B, the insulating layer 4112 is provided over the transistors 4010 and 4011. In FIG. 37B, a partition wall 4510 is formed over the insulating layer 4112.
また、トランジスタ4010およびトランジスタ4011は、絶縁層4102上に設けられている。また、トランジスタ4010およびトランジスタ4011は、絶縁層4111上に形成された電極4017を有する。電極4017はバックゲート電極として機能することができる。 In addition, the transistor 4010 and the transistor 4011 are provided over the insulating layer 4102. In addition, the transistor 4010 and the transistor 4011 include an electrode 4017 formed over the insulating layer 4111. The electrode 4017 can function as a back gate electrode.
トランジスタ4010およびトランジスタ4011は、上記実施の形態で示したトランジスタを用いることができる。 As the transistor 4010 and the transistor 4011, any of the transistors described in the above embodiments can be used.
また、図37(A)および図37(B)に示す表示装置は、容量素子4020を有する。容量素子4020は、トランジスタ4010のゲート電極と同じ工程で形成された電極4021と、ソース電極およびドレイン電極と同じ工程で形成された電極と、を有する。それぞれの電極は、絶縁層4103を介して重なっている。 In addition, the display device illustrated in FIGS. 37A and 37B includes a capacitor 4020. The capacitor 4020 includes an electrode 4021 formed in the same step as the gate electrode of the transistor 4010 and an electrode formed in the same step as the source electrode and the drain electrode. Each electrode overlaps with the insulating layer 4103 interposed therebetween.
一般に、表示装置の画素部に設けられる容量素子の容量は、画素部に配置されるトランジスタのリーク電流等を考慮して、所定の期間の間電荷を保持できるように設定される。容量素子の容量は、トランジスタのオフ電流等を考慮して設定すればよい。 In general, the capacitance of a capacitor provided in the pixel portion of the display device is set so that charge can be held for a predetermined period in consideration of leakage current of a transistor arranged in the pixel portion. The capacity of the capacitor may be set in consideration of the off-state current of the transistor.
表示部115に設けられたトランジスタ4010は表示素子と電気的に接続する。図37(A)は、表示素子として液晶素子を用いた液晶表示装置の一例である。図37(A)において、表示素子である液晶素子4013は、第1の電極層4030、第2の電極層4031、および液晶層4008を含む。なお、液晶層4008を挟持するように配向膜として機能する絶縁層4032、絶縁層4033が設けられている。第2の電極層4031は第2の基板4006側に設けられ、第1の電極層4030と第2の電極層4031は液晶層4008を介して重畳する。 The transistor 4010 provided in the display portion 115 is electrically connected to the display element. FIG. 37A illustrates an example of a liquid crystal display device using a liquid crystal element as a display element. In FIG. 37A, a liquid crystal element 4013 which is a display element includes a first electrode layer 4030, a second electrode layer 4031, and a liquid crystal layer 4008. Note that an insulating layer 4032 and an insulating layer 4033 which function as alignment films are provided so as to sandwich the liquid crystal layer 4008. The second electrode layer 4031 is provided on the second substrate 4006 side, and the first electrode layer 4030 and the second electrode layer 4031 overlap with each other with the liquid crystal layer 4008 interposed therebetween.
またスペーサ4035は絶縁層を選択的にエッチングすることで得られる柱状のスペーサであり、第1の電極層4030と第2の電極層4031との間隔(セルギャップ)を制御するために設けられている。なお球状のスペーサを用いていても良い。 The spacer 4035 is a columnar spacer obtained by selectively etching the insulating layer, and is provided to control the distance (cell gap) between the first electrode layer 4030 and the second electrode layer 4031. Yes. A spherical spacer may be used.
また、必要に応じて、ブラックマトリクス(遮光層)、着色層(カラーフィルタ)、偏光部材、位相差部材、反射防止部材などの光学部材(光学基板)などを適宜設けてもよい。例えば、偏光基板および位相差基板による円偏光を用いてもよい。また、光源としてバックライト、サイドライトなどを用いてもよい。また、上記バックライト、およびサイドライトとして、マイクロLEDなどを用いても良い。 If necessary, an optical member (optical substrate) such as a black matrix (light-shielding layer), a colored layer (color filter), a polarizing member, a retardation member, or an antireflection member may be provided as appropriate. For example, circularly polarized light using a polarizing substrate and a retardation substrate may be used. Further, a backlight, a sidelight, or the like may be used as the light source. Further, a micro LED or the like may be used as the backlight and the sidelight.
図37(A)に示す表示装置では、基板4006と第2の電極層4031の間に、遮光層4132、着色層4131、絶縁層4133が設けられている。 In the display device illustrated in FIG. 37A, a light-blocking layer 4132, a coloring layer 4131, and an insulating layer 4133 are provided between the substrate 4006 and the second electrode layer 4031.
遮光層として用いることのできる材料としては、カーボンブラック、チタンブラック、金属、金属酸化物、複数の金属酸化物の固溶体を含む複合酸化物等が挙げられる。遮光層は、樹脂材料を含む膜であってもよいし、金属などの無機材料の薄膜であってもよい。また、遮光層に、着色層の材料を含む膜の積層膜を用いることもできる。例えば、ある色の光を透過する着色層に用いる材料を含む膜と、他の色の光を透過する着色層に用いる材料を含む膜との積層構造を用いることができる。着色層と遮光層の材料を共通化することで、装置を共通化できるほか工程を簡略化できるため好ましい。 Examples of the material that can be used for the light-shielding layer include carbon black, titanium black, metal, metal oxide, and composite oxide containing a solid solution of a plurality of metal oxides. The light shielding layer may be a film containing a resin material or a thin film of an inorganic material such as a metal. Alternatively, a stacked film of a film containing a material for the colored layer can be used for the light shielding layer. For example, a stacked structure of a film including a material used for a colored layer that transmits light of a certain color and a film including a material used for a colored layer that transmits light of another color can be used. It is preferable to use a common material for the coloring layer and the light-shielding layer because the apparatus can be shared and the process can be simplified.
着色層に用いることのできる材料としては、金属材料、樹脂材料、顔料または染料が含まれた樹脂材料などが挙げられる。遮光層および着色層の形成方法は、前述した各層の形成方法と同様に行なえばよい。例えば、インクジェット法などで行なってもよい。 Examples of materials that can be used for the colored layer include metal materials, resin materials, resin materials containing pigments or dyes, and the like. The method for forming the light shielding layer and the colored layer may be performed in the same manner as the method for forming each layer described above. For example, the ink jet method may be used.
また、図37(A)および図37(B)に示す表示装置は、絶縁層4111と絶縁層4104を有する。絶縁層4111と絶縁層4104として、不純物元素を透過しにくい絶縁層を用いる。絶縁層4111と絶縁層4104でトランジスタの半導体層を挟むことで、外部からの不純物の浸入を防ぐことができる。 In addition, the display device illustrated in FIGS. 37A and 37B includes an insulating layer 4111 and an insulating layer 4104. As the insulating layer 4111 and the insulating layer 4104, insulating layers that hardly transmit an impurity element are used. By sandwiching the semiconductor layer of the transistor between the insulating layer 4111 and the insulating layer 4104, entry of impurities from the outside can be prevented.
また、表示装置に含まれる表示素子として、エレクトロルミネッセンスを利用する発光素子(「EL素子」ともいう。)を適用することができる。EL素子は、一対の電極の間に発光性の化合物を含む層(「EL層」ともいう。)を有する。一対の電極間に、EL素子の閾値電圧よりも大きい電位差を生じさせると、EL層に陽極側から正孔が注入され、陰極側から電子が注入される。注入された電子と正孔はEL層において再結合し、EL層に含まれる発光物質が発光する。 Alternatively, a light-emitting element utilizing electroluminescence (also referred to as an “EL element”) can be used as a display element included in the display device. An EL element includes a layer containing a light-emitting compound (also referred to as an “EL layer”) between a pair of electrodes. When a potential difference larger than the threshold voltage of the EL element is generated between the pair of electrodes, holes are injected into the EL layer from the anode side and electrons are injected from the cathode side. The injected electrons and holes are recombined in the EL layer, and the light-emitting substance contained in the EL layer emits light.
また、EL素子は、発光材料が有機化合物であるか、無機化合物であるかによって区別され、一般的に、前者は有機EL素子、後者は無機EL素子と呼ばれている。 The EL element is distinguished depending on whether the light emitting material is an organic compound or an inorganic compound, and the former is generally called an organic EL element and the latter is called an inorganic EL element.
有機EL素子は、電圧を印加することにより、一方の電極から電子、他方の電極から正孔がそれぞれEL層に注入される。そして、それらキャリア(電子および正孔)が再結合することにより、発光性の有機化合物が励起状態を形成し、その励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このような発光素子は、電流励起型の発光素子と呼ばれる。 In the organic EL element, by applying a voltage, electrons from one electrode and holes from the other electrode are injected into the EL layer. Then, these carriers (electrons and holes) recombine, whereby the light-emitting organic compound forms an excited state, and emits light when the excited state returns to the ground state. Due to such a mechanism, such a light-emitting element is referred to as a current-excitation light-emitting element.
なお、EL層は、発光性の化合物以外に、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック材料、電子輸送性の高い物質、電子注入性の高い物質、またはバイポーラ性の物質(電子輸送性および正孔輸送性が高い物質)などを有していてもよい。 Note that in addition to the light-emitting compound, the EL layer includes a substance having a high hole-injecting property, a substance having a high hole-transporting property, a hole blocking material, a substance having a high electron-transporting property, a substance having a high electron-injecting property, or a bipolar layer. Material (a material having a high electron transporting property and a high hole transporting property) may be included.
EL層は、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法などの方法で形成することができる。 The EL layer can be formed by a method such as a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an ink jet method, or a coating method.
無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分類される。分散型無機EL素子は、発光材料の粒子をバインダ中に分散させた発光層を有するものであり、発光メカニズムはドナー準位とアクセプター準位を利用するドナー−アクセプター再結合型発光である。薄膜型無機EL素子は、発光層を誘電体層で挟み込み、さらにそれを電極で挟んだ構造であり、発光メカニズムは金属イオンの内殻電子遷移を利用する局在型発光である。なお、ここでは、発光素子として有機EL素子を用いて説明する。 Inorganic EL elements are classified into a dispersion-type inorganic EL element and a thin-film inorganic EL element depending on the element structure. The dispersion-type inorganic EL element has a light-emitting layer in which particles of a light-emitting material are dispersed in a binder, and the light emission mechanism is donor-acceptor recombination light emission using a donor level and an acceptor level. The thin-film inorganic EL element has a structure in which a light emitting layer is sandwiched between dielectric layers and further sandwiched between electrodes, and the light emission mechanism is localized light emission utilizing inner-shell electron transition of metal ions. Note that description is made here using an organic EL element as a light-emitting element.
発光素子は発光を取り出すために少なくとも一対の電極の一方が透明であればよい。そして、基板上にトランジスタおよび発光素子を形成し、当該基板とは逆側の面から発光を取り出す上面射出(トップエミッション)構造や、基板側の面から発光を取り出す下面射出(ボトムエミッション)構造や、両面から発光を取り出す両面射出(デュアルエミッション)構造の発光素子があり、どの射出構造の発光素子も適用することができる。 In order to extract light emitted from the light-emitting element, at least one of the pair of electrodes may be transparent. Then, a transistor and a light emitting element are formed over the substrate, and a top emission structure that extracts light from a surface opposite to the substrate, a bottom emission structure that extracts light from a surface on the substrate side, There is a light emitting element having a dual emission structure in which light emission is extracted from both sides, and any light emitting element having an emission structure can be applied.
図37(B)は、表示素子として発光素子を用いた発光表示装置(「EL表示装置」ともいう。)の一例である。表示素子である発光素子4513は、表示部115に設けられたトランジスタ4010と電気的に接続している。なお発光素子4513の構成は、第1の電極層4030、発光層4511、第2の電極層4031の積層構造であるが、この構成に限定されない。発光素子4513から取り出す光の方向などに合わせて、発光素子4513の構成は適宜変えることができる。 FIG. 37B illustrates an example of a light-emitting display device (also referred to as an “EL display device”) using a light-emitting element as a display element. A light-emitting element 4513 which is a display element is electrically connected to a transistor 4010 provided in the display portion 115. Note that the structure of the light-emitting element 4513 is a stacked structure of the first electrode layer 4030, the light-emitting layer 4511, and the second electrode layer 4031; however, the structure is not limited to this structure. The structure of the light-emitting element 4513 can be changed as appropriate depending on the direction in which light is extracted from the light-emitting element 4513, or the like.
隔壁4510は、有機絶縁材料、または無機絶縁材料を用いて形成する。特に感光性の樹脂材料を用い、第1の電極層4030上に開口部を形成し、その開口部の側面が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。 A partition wall 4510 is formed using an organic insulating material or an inorganic insulating material. In particular, it is preferable to use a photosensitive resin material and form an opening on the first electrode layer 4030 so that the side surface of the opening is an inclined surface formed with a continuous curvature.
発光層4511は、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。 The light emitting layer 4511 may be composed of a single layer or a plurality of layers stacked.
発光素子4513の発光色は、発光層4511を構成する材料によって、白、赤、緑、青、シアン、マゼンタ、または黄などに変化させることができる。 The light emission color of the light emitting element 4513 can be changed to white, red, green, blue, cyan, magenta, yellow, or the like depending on the material forming the light emitting layer 4511.
カラー表示を実現する方法としては、発光色が白色の発光素子4513と着色層を組み合わせて行う方法と、画素毎に発光色の異なる発光素子4513を設ける方法がある。前者の方法は後者の方法よりも生産性が高い。一方、後者の方法では画素毎に発光層4511を作り分ける必要があるため、前者の方法よりも生産性が劣る。ただし、後者の方法では、前者の方法よりも色純度の高い発光色を得ることができる。後者の方法に加えて、発光素子4513にマイクロキャビティ構造を付与することにより色純度をさらに高めることができる。 As a method for realizing color display, there are a method in which a light emitting element 4513 having a white emission color and a colored layer are combined, and a method in which a light emitting element 4513 having a different emission color is provided for each pixel. The former method is more productive than the latter method. On the other hand, in the latter method, since it is necessary to make a light emitting layer 4511 for each pixel, productivity is inferior to the former method. However, in the latter method, it is possible to obtain an emission color with higher color purity than in the former method. In addition to the latter method, the color purity can be further increased by providing the light-emitting element 4513 with a microcavity structure.
なお、発光層4511は、量子ドットなどの無機化合物を有していてもよい。例えば、量子ドットを発光層に用いることで、発光材料として機能させることもできる。 Note that the light-emitting layer 4511 may include an inorganic compound such as a quantum dot. For example, a quantum dot can be used for a light emitting layer to function as a light emitting material.
発光素子4513に酸素、水素、水分、二酸化炭素等が侵入しないように、第2の電極層4031および隔壁4510上に保護層を形成してもよい。保護層としては、窒化シリコン、窒化酸化シリコン、酸化アルミニウム、窒化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、DLC(Diamond Like Carbon)などを形成することができる。また、第1の基板4001、第2の基板4006、およびシール材4005によって封止された空間には充填材4514が設けられ密封されている。このように、外気に曝されないように気密性が高く、脱ガスの少ない保護フィルム(貼り合わせフィルム、紫外線硬化樹脂フィルム等)やカバー材でパッケージング(封入)することが好ましい。 A protective layer may be formed over the second electrode layer 4031 and the partition wall 4510 so that oxygen, hydrogen, moisture, carbon dioxide, or the like does not enter the light-emitting element 4513. As the protective layer, silicon nitride, silicon nitride oxide, aluminum oxide, aluminum nitride, aluminum oxynitride, aluminum nitride oxide, DLC (Diamond Like Carbon), or the like can be formed. In addition, a filler 4514 is provided and sealed in a space sealed by the first substrate 4001, the second substrate 4006, and the sealant 4005. As described above, it is preferable to package (enclose) the protective film with a protective film (bonded film, ultraviolet curable resin film, or the like) or a cover material that has high hermeticity and little degassing so as not to be exposed to the outside air.
充填材4514としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹脂または熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル樹脂、ポリイミド、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEVA(エチレンビニルアセテート)などを用いることができる。また、充填材4514に乾燥剤が含まれていてもよい。 As the filler 4514, an ultraviolet curable resin or a thermosetting resin can be used in addition to an inert gas such as nitrogen or argon. PVC (polyvinyl chloride), acrylic resin, polyimide, epoxy resin, silicone resin, PVB ( Polyvinyl butyral) or EVA (ethylene vinyl acetate) can be used. Further, the filler 4514 may contain a desiccant.
シール材4005には、ガラスフリットなどのガラス材料や、二液混合型の樹脂などの常温で硬化する硬化樹脂、光硬化性の樹脂、熱硬化性の樹脂などの樹脂材料を用いることができる。また、シール材4005に乾燥剤が含まれていてもよい。 As the sealant 4005, a glass material such as glass frit, or a resin material such as a two-component mixed resin, a curable resin that cures at normal temperature, a photocurable resin, or a thermosetting resin can be used. Further, the sealing material 4005 may contain a desiccant.
また、必要であれば、発光素子の射出面に偏光板、または円偏光板(楕円偏光板を含む)、位相差板(λ/4板、λ/2板)、カラーフィルタなどの光学フィルムを適宜設けてもよい。また、偏光板または円偏光板に反射防止膜を設けてもよい。例えば、表面の凹凸により反射光を拡散し、映り込みを低減できるアンチグレア処理を施すことができる。 Further, if necessary, an optical film such as a polarizing plate, a circularly polarizing plate (including an elliptical polarizing plate), a retardation plate (λ / 4 plate, λ / 2 plate), a color filter, or the like is provided on the emission surface of the light emitting element. You may provide suitably. Further, an antireflection film may be provided on the polarizing plate or the circularly polarizing plate. For example, anti-glare treatment can be performed that diffuses reflected light due to surface irregularities and reduces reflection.
また、発光素子をマイクロキャビティ構造とすることで、色純度の高い光を取り出すことができる。また、マイクロキャビティ構造とカラーフィルタを組み合わせることで、映り込みが低減し、表示画像の視認性を高めることができる。 In addition, when the light-emitting element has a microcavity structure, light with high color purity can be extracted. Further, by combining the microcavity structure and the color filter, the reflection can be reduced and the visibility of the display image can be improved.
表示素子に電圧を印加する第1の電極層および第2の電極層(画素電極層、共通電極層、対向電極層などともいう)においては、取り出す光の方向、電極層が設けられる場所、および電極層のパターン構造によって透光性、反射性を選択すればよい。 In the first electrode layer and the second electrode layer (also referred to as a pixel electrode layer, a common electrode layer, a counter electrode layer, and the like) that apply a voltage to the display element, a direction of light to be extracted, a place where the electrode layer is provided, and What is necessary is just to select translucency and reflectivity by the pattern structure of an electrode layer.
第1の電極層4030、第2の電極層4031は、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、インジウム錫酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電性材料を用いることができる。 The first electrode layer 4030 and the second electrode layer 4031 include indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide, and indium containing titanium oxide. A light-transmitting conductive material such as tin oxide, indium zinc oxide, or indium tin oxide to which silicon oxide is added can be used.
また、第1の電極層4030、第2の電極層4031はタングステン(W)、モリブデン(Mo)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)、チタン(Ti)、白金(Pt)、アルミニウム(Al)、銅(Cu)、銀(Ag)などの金属、またはその合金、もしくはその金属窒化物から一種以上を用いて形成することができる。 The first electrode layer 4030 and the second electrode layer 4031 are tungsten (W), molybdenum (Mo), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), and tantalum (Ta). , Chromium (Cr), cobalt (Co), nickel (Ni), titanium (Ti), platinum (Pt), aluminum (Al), copper (Cu), silver (Ag) and other metals, or alloys thereof, or One or more metal nitrides can be used.
また、第1の電極層4030、第2の電極層4031として、導電性高分子(導電性ポリマーともいう)を含む導電性組成物を用いて形成することができる。導電性高分子としては、いわゆるπ電子共役系導電性高分子を用いることができる。例えば、ポリアニリン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリチオフェン若しくはその誘導体、または、アニリン、ピロールおよびチオフェンの2種以上からなる共重合体若しくはその誘導体などがあげられる。 Alternatively, the first electrode layer 4030 and the second electrode layer 4031 can be formed using a conductive composition including a conductive high molecule (also referred to as a conductive polymer). As the conductive polymer, a so-called π-electron conjugated conductive polymer can be used. For example, polyaniline or a derivative thereof, polypyrrole or a derivative thereof, polythiophene or a derivative thereof, a copolymer of two or more of aniline, pyrrole, and thiophene or a derivative thereof can be given.
また、トランジスタは静電気などにより破壊されやすいため、駆動回路保護用の保護回路を設けることが好ましい。保護回路は、非線形素子を用いて構成することが好ましい。 In addition, since the transistor is easily broken by static electricity or the like, it is preferable to provide a protective circuit for protecting the driving circuit. The protection circuit is preferably configured using a non-linear element.
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。 This embodiment can be implemented in appropriate combination with the structures described in the other embodiments.
(実施の形態9)
本実施の形態では、本発明の一態様の表示システムを適用可能な電子機器について、図38乃至図39を用いて説明する。
(Embodiment 9)
In this embodiment, electronic devices to which the display system of one embodiment of the present invention can be applied will be described with reference to FIGS.
図38および図39を用いて電子機器の一例について説明する。本発明の一態様によれば、大型化および/または高精細化された表示装置であっても、良好な表示品位、高い視認性を実現できる。そのため、テレビジョン装置、デジタルサイネージ、携帯型の電子機器、装着型の電子機器(ウェアラブル機器)、および電子書籍端末、などに好適に用いることができる。また、VR(Virtual Reality)機器やAR(Augmented Reality)機器などにも用いることができる。 An example of an electronic device will be described with reference to FIGS. According to one embodiment of the present invention, good display quality and high visibility can be realized even with a display device that is large and / or high definition. Therefore, it can be suitably used for a television device, digital signage, a portable electronic device, a wearable electronic device (wearable device), an electronic book terminal, and the like. It can also be used for VR (Virtual Reality) devices and AR (Augmented Reality) devices.
本発明の一態様の表示システムを用いた電子機器は、二次電池を有していてもよく、非接触電力伝送を用いて、二次電池を充電することができると好ましい。 An electronic device using the display system of one embodiment of the present invention may include a secondary battery, and it is preferable that the secondary battery can be charged using non-contact power transmission.
二次電池としては、例えば、ゲル状電解質を用いるリチウムポリマー電池(リチウムイオンポリマー電池)等のリチウムイオン二次電池、ニッケル水素電池、ニカド電池、有機ラジカル電池、鉛蓄電池、空気二次電池、ニッケル亜鉛電池、銀亜鉛電池などが挙げられる。 Secondary batteries include, for example, lithium ion secondary batteries such as lithium polymer batteries (lithium ion polymer batteries) using gel electrolyte, nickel metal hydride batteries, nickel-cadmium batteries, organic radical batteries, lead storage batteries, air secondary batteries, nickel A zinc battery, a silver zinc battery, etc. are mentioned.
本発明の一態様の表示システムを用いた電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像や情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。 An electronic device using the display system of one embodiment of the present invention may include an antenna. By receiving a signal with an antenna, video, information, and the like can be displayed on the display unit. In the case where the electronic device has an antenna and a secondary battery, the antenna may be used for non-contact power transmission.
本発明の一態様の表示システムを用いた電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。 An electronic device using the display system of one embodiment of the present invention includes a sensor (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness , Electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, smell, or infrared measurement function).
本発明の一態様の表示システムを用いた電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。 An electronic device using the display system of one embodiment of the present invention can have a variety of functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, a function for executing various software (programs), and wireless communication A function, a function of reading a program or data recorded on a recording medium, and the like can be provided.
本発明の一態様の表示システムを用いることにより、電子機器の表示品位などを高めることができる。 By using the display system of one embodiment of the present invention, display quality or the like of an electronic device can be improved.
さらに、複数の表示部を有する電子機器においては、一つの表示部を主として画像情報を表示し、別の一つの表示部を主として文字情報を表示する機能、または複数の表示部に視差を考慮した画像を表示することで立体的な画像を表示する機能等を有することができる。さらに、受像部を有する電子機器においては、静止画または動画を撮影する機能、撮影した画像を自動または手動で補正する機能、撮影した画像を記録媒体(外部または電子機器に内蔵)に保存する機能、撮影した画像を表示部に表示する機能等を有することができる。なお、本発明の一態様の電子機器が有する機能はこれらに限定されず、様々な機能を有することができる。 Further, in an electronic apparatus having a plurality of display units, a function that displays image information mainly on one display unit and mainly displays character information on another display unit, or parallax is considered in the plurality of display units. By displaying an image, a function of displaying a stereoscopic image can be provided. Furthermore, in an electronic device having an image receiving unit, a function for capturing a still image or a moving image, a function for automatically or manually correcting the captured image, and a function for saving the captured image in a recording medium (externally or incorporated in the electronic device) A function of displaying the photographed image on the display portion can be provided. Note that the functions of the electronic device of one embodiment of the present invention are not limited thereto, and the electronic device can have various functions.
図38(A)に、本発明の一態様の表示システムを用いたテレビジョン装置1810を示す。テレビジョン装置1810は、表示部1811、筐体1812、スピーカ1813等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。 FIG. 38A illustrates a television device 1810 using the display system of one embodiment of the present invention. A television device 1810 includes a display portion 1811, a housing 1812, a speaker 1813, and the like. Furthermore, an LED lamp, operation keys (including a power switch or an operation switch), a connection terminal, various sensors, a microphone, and the like can be provided.
またテレビジョン装置1810は、リモコン操作機1814により、操作することができる。 The television device 1810 can be operated by a remote controller 1814.
テレビジョン装置1810が受信できる放送電波としては、地上波、または衛星から送信される電波などが挙げられる。また放送電波として、アナログ放送、デジタル放送などがあり、また映像および音声、または音声のみの放送などがある。例えばUHF帯(約300MHz~3GHz)またはVHF帯(30MHz~300MHz)のうちの特定の周波数帯域で送信される放送電波を受信することができる。また例えば、複数の周波数帯域で受信した複数のデータを用いることで、転送レートを高くすることができ、より多くの情報を得ることができる。これによりフルハイビジョンを超える解像度を有する映像を、表示部1831に表示させることができる。例えば、4K、8K、16K、またはそれ以上の解像度を有する映像を表示させることができる。 Examples of broadcast radio waves that can be received by the television device 1810 include ground waves or radio waves transmitted from satellites. As broadcast radio waves, there are analog broadcasts, digital broadcasts, etc., and video and audio, or audio-only broadcasts. For example, broadcast radio waves transmitted in a specific frequency band in the UHF band (about 300 MHz to 3 GHz) or the VHF band (30 MHz to 300 MHz) can be received. In addition, for example, by using a plurality of data received in a plurality of frequency bands, the transfer rate can be increased and more information can be obtained. Accordingly, an image having a resolution exceeding full high-definition can be displayed on the display unit 1831. For example, an image having a resolution of 4K, 8K, 16K, or higher can be displayed.
また、インターネットやLAN(Local Area Network)、Wi−Fi(登録商標)などのコンピュータネットワークを介したデータ伝送技術により送信された放送のデータを用いて、表示部1831に表示する画像を生成する構成としてもよい。このとき、テレビジョン装置1810にチューナを有さなくてもよい。 A configuration for generating an image to be displayed on the display unit 1831 using broadcast data transmitted by a data transmission technique via a computer network such as the Internet, a LAN (Local Area Network), or Wi-Fi (registered trademark). It is good. At this time, the television device 1810 may not have a tuner.
図38(B)は、本発明の一態様の表示システムを用いたデジタルサイネージ1820を示している。デジタルサイネージ1820は円柱状の柱1822に取り付けられている。デジタルサイネージ1820は、表示部1821を有する。 FIG. 38B illustrates a digital signage 1820 using the display system of one embodiment of the present invention. The digital signage 1820 is attached to a cylindrical column 1822. The digital signage 1820 has a display portion 1821.
表示部1821が広いほど、一度に提供できる情報量を増やすことができる。また、表示部1821が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。 As the display portion 1821 is wider, the amount of information that can be provided at a time can be increased. Moreover, the wider the display portion 1821 is, the easier it is to be noticed by humans. For example, the advertising effect of advertisement can be enhanced.
表示部1821にタッチパネルを用いることで、表示部1821に画像または動画を表示するだけでなく、使用者が直感的に操作することができるため好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。 It is preferable to use a touch panel for the display portion 1821 because not only an image or a moving image can be displayed on the display portion 1821 but also a user can operate intuitively. In addition, when it is used for providing information such as route information or traffic information, usability can be improved by an intuitive operation.
図38(C)は本発明の一態様の表示システムを用いたノート型のパーソナルコンピュータ1830を示している。パーソナルコンピュータ1830は、表示部1831、筐体1832、タッチパッド1833、接続ポート1834等を有する。 FIG. 38C illustrates a laptop personal computer 1830 using the display system of one embodiment of the present invention. The personal computer 1830 includes a display portion 1831, a housing 1832, a touch pad 1833, a connection port 1834, and the like.
タッチパッド1833は、ポインティングデバイスや、ペンタブレット等の入力手段として機能し、指やスタイラス等で操作することができる。 The touch pad 1833 functions as an input unit such as a pointing device or a pen tablet, and can be operated with a finger, a stylus, or the like.
また、タッチパッド1833には表示素子が組み込まれている。図38(C)に示すように、タッチパッド1833の表面に入力キー1835を表示することで、タッチパッド1833をキーボードとして使用することができる。このとき、入力キー1835に触れた際に、振動により触感を実現するため、振動モジュールがタッチパッド1833に組み込まれていてもよい。 In addition, a display element is incorporated in the touch pad 1833. As shown in FIG. 38C, by displaying the input key 1835 on the surface of the touch pad 1833, the touch pad 1833 can be used as a keyboard. At this time, when the input key 1835 is touched, a vibration module may be incorporated in the touch pad 1833 in order to realize tactile sensation by vibration.
図38(D)に本発明の一態様の表示システムを用いた携帯情報端末の一例を示す。図38(D)に示す携帯情報端末1840は、筐体1841、表示部1842、操作ボタン1843、外部接続ポート1844、スピーカ1845、マイク1846、カメラ1847等を有する。 FIG. 38D illustrates an example of a portable information terminal using the display system of one embodiment of the present invention. A portable information terminal 1840 illustrated in FIG. 38D includes a housing 1841, a display portion 1842, operation buttons 1843, an external connection port 1844, a speaker 1845, a microphone 1846, a camera 1847, and the like.
携帯情報端末1840は、表示部1842にタッチセンサを備える。電話を掛ける、或いは文字を入力するなどのあらゆる操作は、指やスタイラスなどで表示部1842に触れることで行うことができる。 The portable information terminal 1840 includes a touch sensor in the display unit 1842. Any operation such as making a call or inputting characters can be performed by touching the display portion 1842 with a finger, a stylus, or the like.
また、操作ボタン1843の操作により、電源のON、OFF動作や、表示部1842に表示される画像の種類を切り替えることができる。例えば、メール作成画面から、メインメニュー画面に切り替えることができる。 Further, by operating the operation button 1843, the power ON / OFF operation and the type of image displayed on the display unit 1842 can be switched. For example, the mail creation screen can be switched to the main menu screen.
また、携帯情報端末1840の内部に、ジャイロセンサまたは加速度センサ等の検出装置を設けることで、携帯情報端末1840の向き(縦か横か)を判断して、表示部1842の画面表示の向きを自動的に切り替えるようにすることができる。また、画面表示の向きの切り替えは、表示部1842を触れること、操作ボタン1843の操作、またはマイク1846を用いた音声入力等により行うこともできる。 Further, by providing a detection device such as a gyro sensor or an acceleration sensor inside the portable information terminal 1840, the orientation (portrait or landscape) of the portable information terminal 1840 is determined, and the screen display orientation of the display unit 1842 is determined. It can be switched automatically. The screen display direction can also be switched by touching the display portion 1842, operating the operation buttons 1843, or inputting voice using the microphone 1846.
携帯情報端末1840は、例えば、電話機、手帳または情報閲覧装置等から選ばれた一つまたは複数の機能を有する。具体的には、スマートフォンとして用いることができる。携帯情報端末1840は、例えば、移動電話、電子メール、文章閲覧および作成、音楽再生、動画再生、インターネット通信、ゲームなどの種々のアプリケーションを実行することができる。 The portable information terminal 1840 has one or more functions selected from, for example, a telephone, a notebook, an information browsing device, or the like. Specifically, it can be used as a smartphone. The portable information terminal 1840 can execute various applications such as mobile phone, electronic mail, text browsing and creation, music playback, video playback, Internet communication, and games.
図38(E)、(F)に、本発明の一態様の表示システムを用いた携帯情報端末1850の一例を示す。携帯情報端末1850は、筐体1851、筐体1852、表示部1853、表示部1854、およびヒンジ部1855等を有する。 FIGS. 38E and 38F illustrate an example of a portable information terminal 1850 using the display system of one embodiment of the present invention. The portable information terminal 1850 includes a housing 1851, a housing 1852, a display portion 1853, a display portion 1854, a hinge portion 1855, and the like.
筐体1851と筐体1852は、ヒンジ部1855で連結されている。携帯情報端末1850は、図38(E)に示すように折り畳んだ状態から、図38(F)に示すように筐体1851と筐体1852を開くことができる。 The housing 1851 and the housing 1852 are connected by a hinge portion 1855. The portable information terminal 1850 can open the housing 1851 and the housing 1852 as illustrated in FIG. 38F from the folded state as illustrated in FIG.
例えば表示部1853および表示部1854に、文書情報を表示することが可能であり、電子書籍端末としても用いることができる。また、表示部1853および表示部1854に静止画像や動画像を表示することもできる。 For example, document information can be displayed on the display portion 1853 and the display portion 1854 and can also be used as an electronic book terminal. In addition, a still image or a moving image can be displayed on the display portion 1853 and the display portion 1854.
このように、携帯情報端末1850は、持ち運ぶ際には折り畳んだ状態にできるため、汎用性に優れる。 Thus, since the portable information terminal 1850 can be folded when being carried, it is excellent in versatility.
なお、筐体1851および筐体1852には、電源ボタン、操作ボタン、外部接続ポート、スピーカ、マイク等を有していてもよい。 Note that the housing 1851 and the housing 1852 may include a power button, an operation button, an external connection port, a speaker, a microphone, and the like.
図39(A)に、ファインダー1861を取り付けた状態の、本発明の一態様の表示システムを用いたカメラ1860の外観を示す。 FIG. 39A illustrates an appearance of a camera 1860 using the display system of one embodiment of the present invention with the viewfinder 1861 attached.
カメラ1860は、筐体1869、表示部1862、操作ボタン1863、シャッターボタン1864等を有する。またカメラ1860には、着脱可能なレンズ1865が取り付けられている。 The camera 1860 includes a housing 1869, a display portion 1862, operation buttons 1863, a shutter button 1864, and the like. In addition, a detachable lens 1865 is attached to the camera 1860.
ここではカメラ1860として、レンズ1865を筐体1869から取り外して交換することが可能な構成としたが、レンズ1865と筐体が一体となっていてもよい。 Although the lens 1865 can be removed from the housing 1869 and replaced as the camera 1860 here, the lens 1865 and the housing may be integrated.
カメラ1860は、シャッターボタン1864を押すことにより、撮像することができる。また、表示部1862はタッチパネルとしての機能を有し、表示部1862をタッチすることにより撮像することも可能である。 The camera 1860 can capture an image by pressing a shutter button 1864. Further, the display portion 1862 has a function as a touch panel, and can be imaged by touching the display portion 1862.
カメラ1860の筐体1869は、電極を有するマウントを有し、ファインダー1861のほか、ストロボ装置等を接続することができる。 A housing 1869 of the camera 1860 includes a mount having electrodes, and can connect a stroboscopic device or the like in addition to the finder 1861.
ファインダー1861は、筐体1866、表示部1867、ボタン1868等を有する。ファインダー1861に本発明の一態様の表示システムを用いてもよい。 The viewfinder 1861 includes a housing 1866, a display portion 1867, a button 1868, and the like. The display system of one embodiment of the present invention may be used for the viewfinder 1861.
筐体1866は、カメラ1860のマウントと係合するマウントを有しており、ファインダー1861をカメラ1860に取り付けることができる。また当該マウントには電極を有し、当該電極を介してカメラ1860から受信した映像等を表示部1867に表示させることができる。 The housing 1866 has a mount that engages with the mount of the camera 1860, and the finder 1861 can be attached to the camera 1860. Further, the mount includes an electrode, and an image received from the camera 1860 through the electrode can be displayed on the display portion 1867.
ボタン1868は、電源ボタンとしての機能を有する。ボタン1868により、表示部1867の表示のオン・オフを切り替えることができる。 The button 1868 has a function as a power button. A button 1868 can switch on / off the display of the display portion 1867.
カメラ1860の表示部1862、及びファインダー1861の表示部1867に、本発明の一態様の表示装置を適用することができる。 The display device of one embodiment of the present invention can be applied to the display portion 1862 of the camera 1860 and the display portion 1867 of the viewfinder 1861.
なお、図39(A)では、カメラ1860とファインダー1861とを別の電子機器とし、これらを脱着可能な構成としたが、カメラ1860の筐体1869に、本発明の一態様の表示装置を備えるファインダーが内蔵されていてもよい。 Note that in FIG. 39A, the camera 1860 and the viewfinder 1861 are separate electronic devices and can be attached and detached. However, the housing 1869 of the camera 1860 includes the display device of one embodiment of the present invention. A finder may be built in.
図39(B)には、本発明の一態様の表示システムを用いたヘッドマウントディスプレイ1870の外観を示している。 FIG. 39B illustrates the appearance of a head mounted display 1870 using the display system of one embodiment of the present invention.
ヘッドマウントディスプレイ1870は、装着部1871、レンズ1872、本体1873、表示部1874、ケーブル1875等を有している。また装着部1871には、バッテリ1876が内蔵されている。 The head mounted display 1870 includes a mounting portion 1871, a lens 1872, a main body 1873, a display portion 1874, a cable 1875, and the like. In addition, a battery 1876 is built in the mounting portion 1871.
ケーブル1875は、バッテリ1876から本体1873に電力を供給する。本体1873は無線受信機等を備え、受信した画像データ等の映像情報を表示部1874に表示させることができる。また、本体1873に設けられたカメラで使用者の眼球やまぶたの動きを捉え、その情報をもとに使用者の視線の座標を算出することにより、使用者の視線を入力手段として用いることができる。 The cable 1875 supplies power from the battery 1876 to the main body 1873. The main body 1873 includes a wireless receiver and the like, and can display video information such as received image data on the display portion 1874. In addition, it is possible to use the user's line of sight as an input unit by capturing the movement of the user's eyeball or eyelid with a camera provided in the main body 1873 and calculating the coordinates of the user's line of sight based on the information. it can.
また、装着部1871には、使用者に触れる位置に複数の電極が設けられていてもよい。本体1873は使用者の眼球の動きに伴って電極に流れる電流を検知することにより、使用者の視線を認識する機能を有していてもよい。また、当該電極に流れる電流を検知することにより、使用者の脈拍をモニタする機能を有していてもよい。また、装着部1871には、温度センサ、圧力センサ、加速度センサ等の各種センサを有していてもよく、使用者の生体情報を表示部1874に表示する機能を有していてもよい。また、使用者の頭部の動きなどを検出し、表示部1874に表示する映像をその動きに合わせて変化させてもよい。 In addition, the mounting portion 1871 may be provided with a plurality of electrodes at a position where the user touches the user. The main body 1873 may have a function of recognizing the user's line of sight by detecting a current flowing through the electrode in accordance with the movement of the user's eyeball. Moreover, you may have a function which monitors a user's pulse by detecting the electric current which flows into the said electrode. The mounting portion 1871 may have various sensors such as a temperature sensor, a pressure sensor, and an acceleration sensor, and may have a function of displaying the user's biological information on the display portion 1874. Further, the movement of the user's head or the like may be detected, and the video displayed on the display unit 1874 may be changed in accordance with the movement.
図39(C)、(D)には、本発明の一態様の表示システムを用いたヘッドマウントディスプレイ1880の外観を示している。 FIGS. 39C and 39D illustrate the appearance of a head mounted display 1880 using the display system of one embodiment of the present invention.
ヘッドマウントディスプレイ1880は、筐体1881、2つの表示部1882、操作ボタン1883、及びバンド状の固定具1884を有する。 The head mounted display 1880 includes a housing 1881, two display portions 1882, operation buttons 1883, and a band-shaped fixture 1884.
ヘッドマウントディスプレイ1880は、上記ヘッドマウントディスプレイ1870が有する機能に加え、2つの表示部を備える。 The head mounted display 1880 includes two display units in addition to the functions of the head mounted display 1870.
2つの表示部1882を有することで、使用者は片方の目につき1つの表示部を見ることができる。これにより、視差を用いた3次元表示等を行う際であっても、高い解像度の映像を表示することができる。また、表示部1882は使用者の目を概略中心とした円弧状に湾曲している。これにより、使用者の目から表示部の表示面までの距離が一定となるため、使用者はより自然な映像を見ることができる。また、表示部からの光の輝度や色度が見る角度によって変化してしまうような場合であっても、表示部の表示面の法線方向に使用者の目が位置するため、実質的にその影響を無視することができる。そのため、より現実感のある映像を表示することができる。 By having two display portions 1882, the user can see one display portion for each eye. Thereby, even when performing three-dimensional display using parallax or the like, a high-resolution video can be displayed. In addition, the display unit 1882 is curved in an arc shape with the user's eyes roughly at the center. Thereby, since the distance from the user's eyes to the display surface of the display unit is constant, the user can see a more natural image. Even if the luminance and chromaticity of the light from the display unit changes depending on the viewing angle, the user's eyes are positioned in the normal direction of the display surface of the display unit, The effect can be ignored. Therefore, a more realistic image can be displayed.
操作ボタン1883は、電源ボタンなどとしての機能を有する。また操作ボタン1883の他にボタンを有していてもよい。 The operation button 1883 has a function as a power button or the like. In addition to the operation buttons 1883, buttons may be provided.
また、図39(E)に示すように、表示部1882と使用者の目の位置との間に、レンズ1885を有していてもよい。レンズ1885により、使用者は表示部1882を拡大してみることができるため、より臨場感が高まる。このとき、図39(E)に示すように、視度調節のためにレンズの位置を変化させるダイヤル1886を有していてもよい。 In addition, as shown in FIG. 39E, a lens 1885 may be provided between the display portion 1882 and the position of the user's eyes. The lens 1885 allows the user to enlarge the display portion 1882, so that a sense of reality is further enhanced. At this time, as shown in FIG. 39E, a dial 1886 for changing the position of the lens for diopter adjustment may be provided.
表示部1882に、本発明の一態様の表示装置を適用することができる。本発明の一態様の表示装置は、極めて精細度が高いため、図39(E)のようにレンズ1885を用いて拡大したとしても、使用者に画素が視認されることなく、より現実感の高い映像を表示することができる。 The display device of one embodiment of the present invention can be applied to the display portion 1882. Since the display device of one embodiment of the present invention has extremely high definition, even if the display device is enlarged using the lens 1885 as illustrated in FIG. 39E, the pixel is not visually recognized by the user and more realistic. High video can be displayed.
図39(F)に、本発明の一態様の表示システムを用いたテレビジョン装置の一例を示す。テレビジョン装置1890は、筐体1891に表示部1892が組み込まれている。ここでは、スタンド1893により筐体1891を支持した構成を示している。 FIG. 39F illustrates an example of a television device using the display system of one embodiment of the present invention. In the television device 1890, a display portion 1892 is incorporated in a housing 1891. Here, a structure in which the housing 1891 is supported by a stand 1893 is shown.
図39(F)に示すテレビジョン装置1890の操作は、筐体1891が備える操作スイッチや、別体のリモコン操作機1894により行うことができる。または、表示部1892にタッチセンサを備えていてもよく、指等で表示部1892に触れることで操作してもよい。リモコン操作機1894は、当該リモコン操作機1894から出力する情報を表示する表示部を有していてもよい。リモコン操作機1894が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部1892に表示される映像を操作することができる。 Operation of the television device 1890 illustrated in FIG. 39F can be performed with an operation switch included in the housing 1891 or a separate remote controller 1894. Alternatively, the display portion 1892 may be provided with a touch sensor, and may be operated by touching the display portion 1892 with a finger or the like. The remote controller 1894 may include a display unit that displays information output from the remote controller 1894. Channels and volume can be operated with an operation key or a touch panel included in the remote controller 1894, and an image displayed on the display portion 1892 can be operated.
なお、テレビジョン装置1890は、受信機及びモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。 Note that the television set 1890 is provided with a receiver, a modem, and the like. A general television broadcast can be received by the receiver. In addition, by connecting to a wired or wireless communication network via a modem, information communication is performed in one direction (from the sender to the receiver) or in two directions (between the sender and the receiver or between the receivers). It is also possible.
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。 This embodiment can be implemented in appropriate combination with the structures described in the other embodiments.
100  表示装置
110  表示部
111、112  画素
121  走査線駆動回路
131、132  信号線駆動回路
141  共通線駆動回路
227、326、327、328、329  絶縁層
255  不純物
310、311、320、321  トランジスタ
322、323  電極
324  半導体層
325  トランジスタ
DESCRIPTION OF SYMBOLS 100 Display apparatus 110 Display part 111, 112 Pixel 121 Scan line drive circuit 131, 132 Signal line drive circuit 141 Common line drive circuit 227, 326, 327, 328, 329 Insulating layer 255 Impurity 310, 311, 320, 321 Transistor 322, 323 Electrode 324 Semiconductor layer 325 Transistor

Claims (17)

  1.  m行n列(mおよびnは、それぞれ2以上の整数)に配置された複数の画素と、
     m行の走査線と、n列のビデオ信号線と、m+1本の共通線と、を含み、
     前記m+1本の共通線は、前記m行の走査線と略平行な方向に延在し、
     前記複数の画素のそれぞれは、トランジスタと、表示素子と、を含み、
     x行j列目(xは1以上m−1以下の整数、jは1以上n以下の整数)の前記画素は、
     x行目の前記走査線、j列目の前記ビデオ信号線、およびx本目の前記共通線と電気的に接続され、
     x行j+1列目の前記画素は、
     前記x行目の前記走査線、j+1列目の前記ビデオ信号線、およびx+1本目の前記共通線と電気的に接続され、
     m行j列目の前記画素は、
     m行目の前記走査線、j列目の前記ビデオ信号線、およびm本目の前記共通線と電気的に接続され、
     m行j+1列目の前記画素は、
     前記m行目の前記走査線、j+1列目の前記ビデオ信号線、およびm+1本目の前記共通線と電気的に接続されることを特徴とする表示装置。
    a plurality of pixels arranged in m rows and n columns (m and n are each an integer of 2 or more);
    m rows of scanning lines, n columns of video signal lines, and m + 1 common lines,
    The m + 1 common lines extend in a direction substantially parallel to the m rows of scanning lines,
    Each of the plurality of pixels includes a transistor and a display element,
    The pixel in the x-th row and the j-th column (x is an integer of 1 to m-1 and j is an integer of 1 to n)
    electrically connected to the scan line in the x-th row, the video signal line in the j-th column, and the x-th common line;
    The pixel in the x row, j + 1 column is
    Electrically connected to the scanning line of the x-th row, the video signal line of the (j + 1) th column, and the x + 1-th common line;
    The pixel in the m-th row and the j-th column is
    electrically connected to the m-th scanning line, the j-th column video signal line, and the m-th common line;
    The pixel in the m-th row j + 1-th column is
    A display device, wherein the display device is electrically connected to the m-th scanning line, the j + 1-th column video signal line, and the m + 1-th common line.
  2.  m行n列(mおよびnは、それぞれ2以上の整数)に配置された複数の画素と、
     m行の走査線と、n列のビデオ信号線と、m+1本の共通線と、を含み、
     前記m+1本の共通線は、前記m行の走査線と略平行な方向に延在し、
     前記複数の画素のそれぞれは、トランジスタと、表示素子と、を含み、
     x行j列目(xは1以上m−1以下の整数、jは1以上n以下の整数)の前記画素は、
     x行目の前記走査線、j列目の前記ビデオ信号線、およびx+1本目の前記共通線と電気的に接続され、
     x行j+1列目の前記画素は、
     前記x行目の前記走査線、j+1列目の前記ビデオ信号線、およびx本目の前記共通線と電気的に接続され、
     m行j列目の前記画素は、
     m行目の前記走査線、j列目の前記ビデオ信号線、およびm+1本目の前記共通線と電気的に接続され、
     m行j+1列目の前記画素は、
     前記m行目の前記走査線、j+1列目の前記ビデオ信号線、およびm本目の前記共通線と電気的に接続されることを特徴とする表示装置。
    a plurality of pixels arranged in m rows and n columns (m and n are each an integer of 2 or more);
    m rows of scanning lines, n columns of video signal lines, and m + 1 common lines,
    The m + 1 common lines extend in a direction substantially parallel to the m rows of scanning lines,
    Each of the plurality of pixels includes a transistor and a display element,
    The pixel in the x-th row and the j-th column (x is an integer of 1 to m-1 and j is an integer of 1 to n)
    electrically connected to the scanning line in the x-th row, the video signal line in the j-th column, and the x + 1-th common line;
    The pixel in the x row, j + 1 column is
    Electrically connected to the scanning line of the x-th row, the video signal line of the (j + 1) th column, and the x-th common line;
    The pixel in the m-th row and the j-th column is
    electrically connected to the scanning line in the m-th row, the video signal line in the j-th column, and the m + 1-th common line;
    The pixel in the m-th row j + 1-th column is
    The display device is electrically connected to the m-th scanning line, the (j + 1) -th column video signal line, and the m-th common line.
  3.  m行n列(mおよびnは、それぞれ4以上の整数)に配置された複数の画素と、
     m行の走査線と、
     n本の第1ビデオ信号線と、n本の第2ビデオ信号線と、
     m+1本の共通線と、を含み、
     前記m+1本の共通線は、前記m行の走査線と略平行な方向に延在し、
     前記複数の画素のそれぞれは、トランジスタと、表示素子と、を含み、
     x行j列目(xは1以上m−2以下の整数、jは1以上n以下の整数)の前記画素は、
     x行目の前記走査線、j本目の前記第1ビデオ信号線、およびx本目の前記共通線と電気的に接続され、
     x+1行j列目の前記画素は、
     x+1行目の前記走査線、j本目の前記第2ビデオ信号線、およびx+1本目の前記共通線と電気的に接続され、
     x行j+1列目の前記画素は、
     x行目の前記走査線、j+1本目の前記第1ビデオ信号線、およびx+1本目の前記共通線と電気的に接続され、
     x+1行j+1列目の前記画素は、
     x+1行目の前記走査線、j+1本目の前記第2ビデオ信号線、およびx+2本目の前記共通線と電気的に接続され、
     m−1行j列目の前記画素は、
     m−1行目の前記走査線、j本目の前記第1ビデオ信号線、およびm−1本目の前記共通線と電気的に接続され、
     m行j列目の前記画素は、
     m行目の前記走査線、j本目の前記第2ビデオ信号線、およびm本目の前記共通線と電気的に接続され、
     m−1行j+1列目の前記画素は、
     m−1行目の前記走査線、j+1本目の前記第1ビデオ信号線、およびm本目の前記共通線と電気的に接続され、
     m行j+1列目の前記画素は、
     m行目の前記走査線、j+1本目の前記第2ビデオ信号線、およびm+1本目の前記共通線と電気的に接続されることを特徴とする表示装置。
    a plurality of pixels arranged in m rows and n columns (m and n are each an integer of 4 or more);
    m rows of scanning lines;
    n first video signal lines, n second video signal lines,
    m + 1 common lines, and
    The m + 1 common lines extend in a direction substantially parallel to the m rows of scanning lines,
    Each of the plurality of pixels includes a transistor and a display element,
    The pixel in the x-th row and the j-th column (x is an integer from 1 to m-2, j is an integer from 1 to n)
    electrically connected to the scan line in the x-th row, the first video signal line in the j-th row, and the common line in the x-th row;
    The pixel in the (x + 1) th row and jth column is
    electrically connected to the scan line of the x + 1th row, the jth second video signal line, and the x + 1th common line;
    The pixel in the x row, j + 1 column is
    electrically connected to the scanning line in the x-th row, the j + 1-th first video signal line, and the x + 1-th common line;
    The pixel in the x + 1 row j + 1 column is
    electrically connected to the scan line in the (x + 1) th row, the second video signal line in the (j + 1) th row, and the common line in the (x + 2) th row,
    The pixel in the (m−1) th row and jth column is
    electrically connected to the (m-1) th scanning line, the jth first video signal line, and the (m-1) th common line;
    The pixel in the m-th row and the j-th column is
    electrically connected to the m-th scanning line, the j-th second video signal line, and the m-th common line;
    The pixel in the (m−1) th row j + 1th column is
    electrically connected to the (m-1) th scanning line, the (j + 1) th first video signal line, and the mth common line;
    The pixel in the m-th row j + 1-th column is
    A display device, wherein the display device is electrically connected to the m-th scanning line, the j + 1-th second video signal line, and the m + 1-th common line.
  4.  m行n列(mおよびnは、それぞれ4以上の整数)に配置された複数の画素と、
     m行の走査線と、
     n本の第1ビデオ信号線と、n本の第2ビデオ信号線と、
     m+1本の共通線と、を含み、
     前記m+1本の共通線は、前記m行の走査線と略平行な方向に延在し、
     前記複数の画素のそれぞれは、トランジスタと、表示素子と、を含み、
     x行j列目(xは1以上m−2以下の整数、jは1以上n以下の整数)の前記画素は、
     x行目の前記走査線、j本目の前記第1ビデオ信号線、およびx+1本目の前記共通線と電気的に接続され、
     x+1行j列目の前記画素は、
     x+1行目の前記走査線、j本目の前記第2ビデオ信号線、およびx+2本目の前記共通線と電気的に接続され、
     x行j+1列目の前記画素は、
     x行目の前記走査線、j+1本目の前記第1ビデオ信号線、およびx本目の前記共通線と電気的に接続され、
     x+1行j+1列目の前記画素は、
     x+1行目の前記走査線、j+1本目の前記第2ビデオ信号線、およびx+1本目の前記共通線と電気的に接続され、
     m−1行j列目の前記画素は、
     m−1行目の前記走査線、j本目の前記第1ビデオ信号線、およびm本目の前記共通線と電気的に接続され、
     m行j列目の前記画素は、
     m行目の前記走査線、j本目の前記第2ビデオ信号線、およびm+1本目の前記共通線と電気的に接続され、
     m−1行j+1列目の前記画素は、
     m−1行目の前記走査線、j+1本目の前記第1ビデオ信号線、およびm−1本目の前記共通線と電気的に接続され、
     m行j+1列目の前記画素は、
     m行目の前記走査線、j+1本目の前記第2ビデオ信号線、およびm本目の前記共通線と電気的に接続されることを特徴とする表示装置。
    a plurality of pixels arranged in m rows and n columns (m and n are each an integer of 4 or more);
    m rows of scanning lines;
    n first video signal lines, n second video signal lines,
    m + 1 common lines, and
    The m + 1 common lines extend in a direction substantially parallel to the m rows of scanning lines,
    Each of the plurality of pixels includes a transistor and a display element,
    The pixel in the x-th row and the j-th column (x is an integer from 1 to m-2, j is an integer from 1 to n)
    electrically connected to the scan line in the x-th row, the first video signal line in the j-th row, and the common line in the x + 1-th row,
    The pixel in the (x + 1) th row and jth column is
    electrically connected to the scan line in the x + 1th row, the jth second video signal line, and the x + 2 common line;
    The pixel in the x row, j + 1 column is
    electrically connected to the scanning line in the x-th row, the first video signal line in the (j + 1) th row, and the common line in the xth row,
    The pixel in the x + 1 row j + 1 column is
    electrically connected to the scan line in the x + 1th row, the j + 1th second video signal line, and the x + 1th common line;
    The pixel in the (m−1) th row and jth column is
    electrically connected to the (m-1) th scanning line, the jth first video signal line, and the mth common line;
    The pixel in the m-th row and the j-th column is
    electrically connected to the m-th scanning line, the j-th second video signal line, and the m + 1-th common line;
    The pixel in the (m−1) th row j + 1th column is
    electrically connected to the (m-1) th scanning line, the (j + 1) th first video signal line, and the (m-1) th common line,
    The pixel in the m-th row j + 1-th column is
    A display device, wherein the display device is electrically connected to the m-th scanning line, the j + 1-th second video signal line, and the m-th common line.
  5.  請求項1乃至請求項4のいずれか一項において、
     前記表示素子は、液晶素子であることを特徴とする表示装置。
    In any one of Claims 1 thru | or 4,
    The display device, wherein the display element is a liquid crystal element.
  6.  請求項1乃至請求項4のいずれか一項において、
     前記トランジスタは、チャネルが形成される半導体層がシリコンまたは金属酸化物を含むことを特徴とする表示装置。
    In any one of Claims 1 thru | or 4,
    In the transistor, a semiconductor layer in which a channel is formed contains silicon or a metal oxide.
  7.  請求項1乃至請求項4のいずれか一項において、
     前記表示装置は、8K解像度以上の解像度を有することを特徴とする表示装置。
    In any one of Claims 1 thru | or 4,
    The display device has a resolution of 8K or higher.
  8.  請求項1乃至請求項4のいずれか一項において、
     対角60インチ以上の表示部を有することを特徴とする表示装置。
    In any one of Claims 1 thru | or 4,
    A display device having a display portion having a diagonal of 60 inches or more.
  9.  請求項1乃至請求項4のいずれか一項において、
     前記表示装置のフレーム周波数は240Hz以上であることを特徴とする表示装置。
    In any one of Claims 1 thru | or 4,
    A display device having a frame frequency of 240 Hz or more.
  10.  請求項1または請求項2に記載の表示装置の駆動方法であって、
     p行目(pは1以上m−2以下の整数)の前記画素が選択されている期間に、
     p+2本目の前記共通線に供給される電圧の極性を反転させることを特徴とする表示装置の駆動方法。
    A driving method of a display device according to claim 1 or 2,
    During the period when the pixel in the p-th row (p is an integer of 1 to m-2) is selected,
    A method for driving a display device, characterized by inverting the polarity of a voltage supplied to the p + 2 common line.
  11.  請求項10において、
     m−1行目の前記画素が選択されている期間に、
     1本目の前記共通線に供給される電圧の極性を反転させることを特徴とする表示装置の駆動方法。
    In claim 10,
    During the period when the pixel in the (m-1) th row is selected,
    A display device driving method, wherein the polarity of a voltage supplied to the first common line is inverted.
  12.  請求項10において、
     m行目の前記画素が選択されている期間に、
     1本目の前記共通線に供給される電圧の極性を反転させることを特徴とする表示装置の駆動方法。
    In claim 10,
    During the period when the pixel in the m-th row is selected,
    A display device driving method, wherein the polarity of a voltage supplied to the first common line is inverted.
  13.  請求項10において、
     m行目の前記画素が選択されている期間に、
     2本目の前記共通線に供給される電圧の極性を反転させることを特徴とする表示装置の駆動方法。
    In claim 10,
    During the period when the pixel in the m-th row is selected,
    A display device driving method, wherein the polarity of a voltage supplied to the second common line is inverted.
  14.  請求項3または請求項4に記載の表示装置の駆動方法であって、
     p行目(pは1以上m−3以下の整数)の前記画素が選択されている期間に、
     p+2本目の前記共通線に供給される電圧の極性と、p+3本目の前記共通線に供給される電圧の極性を、それぞれ反転させることを特徴とする表示装置の駆動方法。
    A driving method of a display device according to claim 3 or claim 4,
    During the period when the pixel in the p-th row (p is an integer of 1 to m-3) is selected,
    A driving method of a display device, wherein the polarity of the voltage supplied to the p + 2 common line and the polarity of the voltage supplied to the p + 3 common line are inverted.
  15.  請求項14において、
     m−2行目の前記画素が選択されている期間に、
     1本目の前記共通線に供給される電圧の極性を反転させることを特徴とする表示装置の駆動方法。
    In claim 14,
    During the period in which the pixel in the (m-2) th row is selected,
    A display device driving method, wherein the polarity of a voltage supplied to the first common line is inverted.
  16.  請求項14において、
     m行目の前記画素が選択されている期間に、
     1本目の前記共通線に供給される電圧の極性を反転させることを特徴とする表示装置の駆動方法。
    In claim 14,
    During the period when the pixel in the m-th row is selected,
    A display device driving method, wherein the polarity of a voltage supplied to the first common line is inverted.
  17.  請求項14において、
     m行目の前記画素が選択されている期間に、
     2本目の前記共通線に供給される電圧の極性と、3本目の前記共通線に供給される電圧の極性を、それぞれ反転させることを特徴とする表示装置の駆動方法。
    In claim 14,
    During the period when the pixel in the m-th row is selected,
    A driving method of a display device, wherein the polarity of the voltage supplied to the second common line and the polarity of the voltage supplied to the third common line are inverted.
PCT/IB2018/051793 2017-03-27 2018-03-19 Display device and method for driving display device WO2018178798A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017060672 2017-03-27
JP2017-060672 2017-03-27
JP2017-074354 2017-04-04
JP2017074354 2017-04-04

Publications (1)

Publication Number Publication Date
WO2018178798A1 true WO2018178798A1 (en) 2018-10-04

Family

ID=63677461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/051793 WO2018178798A1 (en) 2017-03-27 2018-03-19 Display device and method for driving display device

Country Status (1)

Country Link
WO (1) WO2018178798A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181927A (en) * 1993-12-24 1995-07-21 Sharp Corp Image display device
JP2002055325A (en) * 2000-07-27 2002-02-20 Samsung Electronics Co Ltd Liquid crystal display device using swing common electrode and its driving method
JP2008164848A (en) * 2006-12-27 2008-07-17 Lg Display Co Ltd Liquid crystal display device
JP2015087562A (en) * 2013-10-31 2015-05-07 京セラディスプレイ株式会社 Liquid crystal display device
JP2016206543A (en) * 2015-04-27 2016-12-08 日本放送協会 Multi-split driving display and display device
WO2017033596A1 (en) * 2015-08-25 2017-03-02 シャープ株式会社 Image correction device, liquid crystal display device, and image correction method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181927A (en) * 1993-12-24 1995-07-21 Sharp Corp Image display device
JP2002055325A (en) * 2000-07-27 2002-02-20 Samsung Electronics Co Ltd Liquid crystal display device using swing common electrode and its driving method
JP2008164848A (en) * 2006-12-27 2008-07-17 Lg Display Co Ltd Liquid crystal display device
JP2015087562A (en) * 2013-10-31 2015-05-07 京セラディスプレイ株式会社 Liquid crystal display device
JP2016206543A (en) * 2015-04-27 2016-12-08 日本放送協会 Multi-split driving display and display device
WO2017033596A1 (en) * 2015-08-25 2017-03-02 シャープ株式会社 Image correction device, liquid crystal display device, and image correction method

Similar Documents

Publication Publication Date Title
US11640807B2 (en) Display device
JP7463445B2 (en) Display device
JP7341204B2 (en) semiconductor equipment
US11271098B2 (en) Semiconductor device and method for manufacturing the same
CN101826521B (en) Semiconductor device
JP6904769B2 (en) Display device
KR20240034717A (en) Display device, display module, and electronic device
TW201711205A (en) Semiconductor device and display device including semiconductor device
JP2016027649A (en) Semiconductor device and display device having semiconductor device
US11537019B2 (en) Composite oxide semiconductor, semiconductor device using the composite oxide semiconductor, and display device including the semiconductor device
TW201133786A (en) Semiconductor device and method for manufacturing semiconductor device
JP2018151630A (en) Display system
KR102567675B1 (en) Image processing method
JP2022126638A (en) Display device and compound oxide semiconductor
JP2024022615A (en) Semiconductor device
JP6965065B2 (en) Display device
WO2017085598A1 (en) Semiconductor device and electronic device
TW201928924A (en) Display device and method for operating same
WO2018178798A1 (en) Display device and method for driving display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP