WO2018178463A1 - Sensor de agua para detección de agua en filtros de gasóleo - Google Patents

Sensor de agua para detección de agua en filtros de gasóleo Download PDF

Info

Publication number
WO2018178463A1
WO2018178463A1 PCT/ES2018/070244 ES2018070244W WO2018178463A1 WO 2018178463 A1 WO2018178463 A1 WO 2018178463A1 ES 2018070244 W ES2018070244 W ES 2018070244W WO 2018178463 A1 WO2018178463 A1 WO 2018178463A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
electrode
water
connection
switch
Prior art date
Application number
PCT/ES2018/070244
Other languages
English (en)
French (fr)
Inventor
José Luis Landatxe Zugarramurdi
Sergio Díez García
Javier García Izaguirre
Jorge MACHÍN MINDÁN
Enrique BRETÓN CRISTOBAL
Original Assignee
Cebi Electromechanical Components Spain, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cebi Electromechanical Components Spain, S.A. filed Critical Cebi Electromechanical Components Spain, S.A.
Priority to CN201880022792.9A priority Critical patent/CN110997491B/zh
Priority to BR112019020516-0A priority patent/BR112019020516B1/pt
Priority to US16/497,652 priority patent/US11079348B2/en
Publication of WO2018178463A1 publication Critical patent/WO2018178463A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/12Auxiliary equipment particularly adapted for use with liquid-separating apparatus, e.g. control circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/265Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors for discrete levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/228Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2847Water in oils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D36/00Filter circuits or combinations of filters with other separating devices
    • B01D36/003Filters in combination with devices for the removal of liquids
    • B01D36/005Liquid level sensing means, e.g. for water in gasoil-filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity

Definitions

  • the present invention relates to the industry dedicated to diesel engine fuel filters, and more specifically to the industry dedicated to the detection of water in diesel engine fuel filters, proposing a water sensor to carry out this detection. .
  • the need to remove the water contained in it from diesel fuel is known to prevent said water from coming into contact with sensitive elements of injection systems of said engines, on which water can have a harmful effect. due to corrosion phenomena, such as oxidation and deposition of insoluble salts.
  • the use of diesel filters separates the water from the diesel.
  • the water that separates from the fuel of diesel engines is decanted and collected in a specific area for this, which, being the water denser than diesel, is usually located in the lower part of the envelope of diesel filters.
  • Water filters are available in diesel filters.
  • the present invention relates to a water sensor to detect the presence of water in diesel filters , which in addition to cash, results in a reduction of the total volume as well as the final cost of it.
  • the water sensor for detecting water in diesel filters comprises a first electrode and a second electrode; a first ground connection for connection of the first ground electrode; a second ground connection for connection of the second ground electrode; a first switch arranged in the first ground connection; and a second switch arranged in the second ground connection.
  • the water sensor object of the invention additionally comprises a first current connection for injection of a first current to the first electrode; a second connection to current for injection of a second current to the second electrode; and a current generation circuit connected to the first electrode and the second electrode by the first current connection and the second current connection, respectively.
  • the current generation circuit is configured to inject the first current into the first electrode and the second current into the second electrode, the first current and the second current being equal.
  • the water sensor is provided so that it can detect the presence of water in fuel filters, its useful life being extended and the electronic components used reduced in volume and cost. Therefore, the total volume being reduced, the water sensor also provides advantages from the point of view of its location by requiring a smaller space and offering greater flexibility for the location of other electronic and / or mechanical elements around it.
  • the current generation circuit is a current mirror.
  • the water sensor is provided with a simplified configuration in relation to the power supply or injection of the first and second electrical currents.
  • the water sensor for detecting water in diesel filters additionally comprises a controller configured to act alternatively on the first switch and the second switch so that the ground connection of the first electrode and the second electrode is alternated. Therefore, the operation of the water sensor is simplified, which provides greater reliability and a longer service life.
  • Figure 1 shows a switching bridge schematically, which is comprised in a water sensor object of the present invention.
  • the invention relates to a sensor for detecting water in diesel filters.
  • the water sensor comprises two electrodes (1.1, 1.2), a first electrode (1.1) and a second electrode (1.2). Additionally, the water sensor comprises a first connection to current (2.1) for injection of a first current to the first electrode (1.1), a second current connection (2.2) for injection of a second current to the second electrode (1.2), a first ground connection (3.1) for connection of the first ground electrode (1.1), a second ground connection (3.2) for connection of the second ground electrode (1.2), a first switch (4.1) arranged in the first ground connection (3.1) and a second switch (4.2) arranged in the second ground connection (3.2).
  • the water sensor comprises a current generation circuit (5) connected to the first electrode (1.1) and the second electrode (1.2) by the first current connection (2.1) and the second current connection (2.2), respectively .
  • the current generation circuit (5) is configured to inject the first current into the first electrode (1.1) and the second current into the second electrode (1.2), the first current and the second current being equal.
  • the current circuit is a current mirror.
  • the first current and the second current are of an equal nominal value.
  • the first current and the second current are direct current.
  • the water sensor lacks switches on the first power connection (2.1) and the second power connection (2.2). That is, by the first current connection (2.1) and the second current connection (2.2), the first electrode (1.1) and the second electrode (1.2) are directly connected to the current generation circuit (5).
  • the water sensor is configured to alternate the ground connection between the first electrode (1.1) and the second electrode (1.2).
  • the water sensor comprises a controller, not shown in Figure 1, configured to open and close the first switch (4.1) and the second switch (4.2) alternately.
  • the first switch (4.1) is closed, that is the first electrode (1.1) grounded
  • the second switch (4.2) is open, that is, the second electrode (1.2) is not grounded.
  • the first switch (4.1) is open
  • the second switch (4.2) is closed.
  • the two electrodes (1.1, 1.2) are permanently connected to the current generation circuit (5) and the current generation circuit (5) is permanently injecting the first current and the second current, however each of the two Electrodes (1.1, 1.2) receive the injection of current discontinuously or alternately. Being a measurement cycle established as an opening and closing of each of the two switches (4.1, 4.2), in any half cycle or half measurement cycle only electric current is injected from the two electrodes (1.1, 1.2) to which it has of its corresponding switch (4.1, 4.2) open.
  • electric current is injected into a medium in which the two electrodes (1.1, 1.2) are arranged from the current generation circuit (5) through the first electrode (1.1) to be the first switch (4.1) open, while the second electrode (1.2) is connected to ground or ground when the second switch (4.2) is closed.
  • electric current is injected into the medium through the second electrode (1.2) when the second switch (4.2) is open, while the first electrode (1.1) is connected to ground or ground when the first switch (4.1) is closed.
  • the anode and cathode function of the two electrodes (1.1, 1.2) is alternated in each of the phases which are repeated successively. This alternation extends the life of the water sensor.
  • the two electrodes (1.1, 1.2) and the medium form a system.
  • This procedure involves short-circuiting the current generation circuit (5) to ground or ground. Said short circuit is assumed when the nominal value of the first current and the second current of a low value are treated so that it does not produce any appreciable power dissipation through the switch (4.1, 4.2) through which it is derived to earth or ground , as well as an appreciable rise in the voltage that falls on said switch (4.1, 4.2), which may interfere with the voltage of said system and in the evaluation of the measurement or discrimination voltage that determines the presence of water.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Sensor de agua para detección de agua en filtros de gasóleo, que comprende un primer y un segundo electrodo (1.1, 1.2); una primera y una segunda conexión a tierra (3.1, 3.2) para conexión del primer electrodo (1.1) y del segundo electrodo (1.2) a tierra; un primer conmutador (4.1) dispuesto en la primera conexión a tierra (3.1); un segundo conmutador (4.2) dispuesto en la segunda conexión a tierra (3.2); una primera y una segunda conexión a corriente (2.1, 2.2) para inyección de una primera corriente al primer electrodo (1.1) y una segunda corriente al segundo electrodo (1.2); y un circuito de generación de corriente (5) conectado ai primer electrodo (1.1) y al segundo electrodo (1.2) mediante la primera conexión a corriente (2.1) y la segunda conexión a corriente (2.2) respectivamente, y configurado para inyectar la primera corriente al primer electrodo (1.1) y la segunda corriente al segundo electrodo (1.2), siendo la primera corriente y la segunda corriente iguales.

Description

DESCRIPCION
SENSOR DE AGUA PARA DETECCIÓN DE AGUA EN FILTROS DE GASÓLEO Sector de la técnica
La presente invención está relacionada con la industria dedicada a los filtros de combustible de motores diésel, y más concretamente con la industria dedicada a la detección de agua en los filtros de combustible de motores diésel, proponiendo un sensor de agua para llevar a cabo esta detección.
Estado de la técnica
En la actualidad es conocida la necesidad de eliminar del combustible de motores diésel el agua contenida en él para evitar que dicho agua llegue a entrar en contacto con elementos sensibles de sistemas de inyección de dichos motores, sobre los cuales el agua puede tener un efecto dañino debido a fenómenos de corrosión, tales como oxidación y deposición de sales insolubles. Mediante el empleo de filtros de gasóleo se separa el agua del gasóleo. El agua que se separa del combustible de los motores diésel se decanta y recoge en una zona determinada para ello, la cual, por ser el agua más densa que el gasóleo, suele ubicarse en la parte inferior de la envolvente de los filtros de gasóleo. En los filtros de gasóleo se disponen sensores de agua. Mediante estos sensores, cuando el agua decantada alcanza un nivel máximo predeterminado en la parte inferior de la envolvente de los filtros de gasóleo, se emite una señal de advertencia. La señal de advertencia indica la necesidad de llevar a cabo una extracción del agua recogida antes de causar daños en los motores. Para la detección del agua, estos sensores incluyen dos electrodos metálicos dispuestos en correspondencia con la citada parte inferior de la envolvente.
Es conocido detectar en la zona de decantación de agua la acumulación de agua separada del gasóleo en los filtros de gasóleo empleando complejos sensores de agua, mientras se alarga en el tiempo la efectividad en dicha detección al inyectar corriente eléctrica a los electrodos de forma no continua o intermitente.
Es conocido a través del documento ES2530691 B1 alternar la inyección de corriente eléctrica en uno y otro electrodo, es decir alternar la función de ánodo y cátodo entre los dos electrodos, a fin de compensar y reducir los fenómenos de corrosión generados en cada uno de los electrodos como consecuencia de la circulación de corriente por éstos. Para ello, es conocido emplear un puente de conmutación que incluye una estructura en "H" con cuatro conmutadores actuables de dos en dos mediante señales de control. Esta solución, sin embargo, supone una multiplicidad de componentes electrónicos, lo cual deriva en un funcionamiento complejo, además de una dificultad a la hora de miniaturizar los sensores de agua para su colocación en espacios cada vez más reducidos. Asimismo, el coste de los sensores de agua resulta elevado como consecuencia de la multiplicidad de dichos conmutadores o interruptores.
Se hace por tanto necesario un sensor de agua para detectar la presencia de agua en los filtros de gasóleo que resulte efectivo frente a los fenómenos de corrosión, además de suponer una reducción en el coste y en el volumen del mismo. Objeto de la Invención
Con la finalidad de cumplir este objetivo y solucionar los problemas técnicos comentados hasta el momento, además de aportar ventajas adicionales que se pueden derivar más adelante, la presente invención se refiere a un sensor de agua para detectar la presencia de agua en los filtros de gasóleo, que además de efectivo, resulta en una reducción del volumen total así como del coste final del mismo.
El sensor de agua para detección de agua en filtros de gasóleo comprende un primer electrodo y un segundo electrodo; una primera conexión a tierra para conexión del primer electrodo a tierra; una segunda conexión a tierra para conexión del segundo electrodo a tierra; un primer conmutador dispuesto en la primera conexión a tierra; y un segundo conmutador dispuesto en la segunda conexión a tierra.
El sensor de agua objeto de la invención adicionalmente comprende una primera conexión a corriente para inyección de una primera corriente al primer electrodo; una segunda conexión a corriente para inyección de una segunda corriente al segundo electrodo; y un circuito de generación de corriente conectado al primer electrodo y al segundo electrodo mediante la primera conexión a corriente y la segunda conexión a corriente, respectivamente. El circuito de generación de corriente está configurado para inyectar la primera corriente al primer electrodo y la segunda corriente al segundo electrodo, siendo la primera corriente y la segunda corriente iguales.
De esta manera se proporciona el sensor de agua de manera que puede detectar la presencia de agua en filtros de combustible, siendo su vida útil alargada y los componentes electrónicos empleados reducidos en volumen y coste. Por tanto, siendo reducido el volumen total, el sensor de agua proporciona ventajas también desde el punto de vista de su ubicación al requerir un espacio menor y ofrecer mayor flexibilidad para la ubicación de otros elementos electrónicos y/o mecánicos a su alrededor.
El circuito de generación de corriente es un espejo de corriente. De esta manera se proporciona el sensor de agua con una configuración simplificada en lo referente a la alimentación eléctrica o inyección de la primera y la segunda corrientes eléctricas. El sensor de agua para detección de agua en filtros de gasóleo adicionalmente comprende un controlador configurado para actuar alternativamente en el primer conmutador y el segundo conmutador de forma que se alterna la conexión a tierra del primer electrodo y el segundo electrodo. Se simplifica, por tanto, el funcionamiento del sensor de agua lo cual reporta mayor fiabilidad y una mayor vida útil.
Descripción de las figuras
La figura 1 muestra un puente de conmutación de forma esquemática, el cual es comprendido en un sensor de agua objeto de la presente invención.
Descripción detallada de la invención
La invención se refiere a un sensor de para detección de agua en filtros de gasóleo. El sensor de agua comprende dos electrodos (1.1 , 1.2), un primer electrodo (1.1 ) y un segundo electrodo (1.2). Adicionalmente, el sensor de agua comprende una primera conexión a corriente (2.1 ) para inyección de una primera corriente al primer electrodo (1.1), una segunda conexión a corriente (2.2) para inyección de una segunda corriente al segundo electrodo (1.2), una primera conexión a tierra (3.1 ) para conexión del primer electrodo (1.1) a tierra, una segunda conexión a tierra (3.2) para conexión del segundo electrodo (1.2) a tierra, un primer conmutador (4.1 ) dispuesto en la primera conexión a tierra (3.1 ) y un segundo conmutador (4.2) dispuesto en la segunda conexión a tierra (3.2).
Adicionalmente, el sensor de agua comprende un circuito de generación de corriente (5) conectado al primer electrodo (1.1 ) y al segundo electrodo (1.2) mediante la primera conexión a corriente (2.1 ) y la segunda conexión a corriente (2.2), respectivamente. El circuito de generación de corriente (5) está configurado de forma que inyecta la primera corriente al primer electrodo (1.1 ) y la segunda corriente al segundo electrodo (1.2), siendo la primera corriente y la segunda corriente iguales. De acuerdo con esto, el circuito de corriente es un espejo de corriente. Así, la primera corriente y la segunda corriente son de un valor nominal igual. Preferentemente, la primera corriente y la segunda corriente son de corriente continua.
El sensor de agua carece de conmutadores en la primera conexión a corriente (2.1 ) y en la segunda conexión a corriente (2.2). Es decir, mediante la primera conexión a corriente (2.1) y la segunda conexión a corriente (2.2), el primer electrodo (1.1) y el segundo electrodo (1.2) respectivamente están directamente conectados al circuito de generación de corriente (5).
El sensor de agua está configurado para alternar la conexión a tierra entre el primer electrodo (1.1 ) y el segundo electrodo (1.2). Para esto, el sensor de agua comprende un controlador, no mostrado en la figura 1 , configurado para abrir y cerrar el primer conmutador (4.1 ) y el segundo conmutador (4.2) de manera alternada. Cuando el primer conmutador (4.1 ) se encuentra cerrado, es decir el primer electrodo (1.1 ) conectado a tierra, el segundo conmutador (4.2) se encuentra abierto, es decir el segundo electrodo (1.2) no se encuentra conectado a tierra. Así, cuando el primer conmutador (4.1 ) se encuentra abierto, el segundo conmutador (4.2) se encuentra cerrado.
Los dos electrodos (1.1 , 1.2) están permanentemente conectados al circuito de generación de corriente (5) y el circuito de generación de corriente (5) está permanentemente inyectando la primera corriente y la segunda corriente, sin embargo cada uno de los dos electrodos (1.1 , 1.2) recibe la inyección de corriente de manera discontinua o alternada. Siendo un ciclo de medida establecido como una apertura y un cierre de cada uno de los dos conmutadores (4.1 , 4.2), en cualquier semiciclo o medio ciclo de medida sólo se inyecta corriente eléctrica de los dos electrodos (1.1 , 1.2) al que dispone de su correspondiente conmutador (4.1 , 4.2) abierto.
De acuerdo con esto, en una primera fase se inyecta corriente eléctrica a un medio en el que se encuentran dispuestos los dos electrodos (1.1 , 1.2) desde el circuito de generación de corriente (5) a través del primer electrodo (1.1 ) al estar el primer conmutador (4.1 ) abierto, mientras que el segundo electrodo (1.2) está conectado a tierra o masa al estar el segundo conmutador (4.2) cerrado. En una segunda fase se inyecta corriente eléctrica al medio a través del segundo electrodo (1.2) al estar el segundo conmutador (4.2) abierto, mientras que el primer electrodo (1.1 ) está conectado a tierra o masa al estar el primer conmutador (4.1 ) cerrado. De esta forma, la función de ánodo y cátodo de los dos electrodos (1.1 , 1.2) se va alternando en cada una de las fases las cuales se repiten de manera sucesiva. Esta alternancia alarga la vida útil del sensor de agua.
Estando el sensor de agua instalado en el filtro de gasóleo, y los dos electrodos (1.1 , 1.2) sumergidos en el medio almacenado en una zona de decantación de agua de dicho filtro, los dos electrodos (1.1 , 1.2) y el medio forman un sistema. Este procedimiento conlleva cortocircuitar el circuito de generación de corriente (5) a tierra o masa. Dicho cortocircuito es asumido al tratarse el valor nominal de la primera corriente y la segunda corriente de un valor bajo de forma que no produce ninguna disipación de potencia apreciable a través del conmutador (4.1 , 4.2) a través del cual se deriva a tierra o masa, así como tampoco una elevación apreciable de la tensión que cae en dicho conmutador (4.1 , 4.2), que pueda interferir en la tensión del citado sistema y en la evaluación de la tensión de medida o discriminación que determina la presencia de agua.
El hecho de que siempre esté fluyendo corriente eléctrica puede asimismo resultar ventajoso desde el punto de vista de eliminación de transitorios de conmutación no deseados, así como de una reducción de las perturbaciones eléctricas radiadas al ambiente.

Claims

REIVINDICACIONES
1. - Sensor de agua para detección de agua en fiitros de gasóleo, que comprende:
- un primer electrodo (1.1 ) y un segundo electrodo (1.2);
- una primera conexión a tierra (3.1) para conexión del primer electrodo (1.1) a tierra;
- una segunda conexión a tierra (3.2) para conexión del segundo electrodo (1.2) a tierra;
- un primer conmutador (4.1 ) dispuesto en la primera conexión a tierra (3.1);
- un segundo conmutador (4.2) dispuesto en la segunda conexión a tierra (3.2);
caracterizado por que adicionalmente comprende:
- una primera conexión a corriente (2.1 ) para inyección de una primera corriente al primer electrodo (1.1);
- una segunda conexión a corriente (2.2) para inyección de una segunda corriente al segundo electrodo (1.2); y
- un circuito de generación de corriente (5) conectado al primer electrodo (1.1 ) y al segundo electrodo (1.2) mediante la primera conexión a corriente (2.1 ) y la segunda conexión a corriente (2.2) respectivamente;
donde el circuito de generación de corriente (5) está configurado para inyectar la primera corriente al primer electrodo (1.1 ) y la segunda corriente al segundo electrodo (1.2), siendo la primera corriente y la segunda corriente iguales.
2. - Sensor de agua según la reivindicación 1 , caracterizado por que el circuito de generación de corriente (5) es un espejo de corriente.
3.- Sensor de agua según la reivindicación 1 o 2, caracterizado por que adicionalmente comprende un controlador configurado para actuar alternativamente en el primer conmutador (4.1) y el segundo conmutador (4.2) de forma que se alterna la conexión a tierra del primer electrodo (1.1 ) y el segundo electrodo (1.2).
PCT/ES2018/070244 2017-03-30 2018-03-27 Sensor de agua para detección de agua en filtros de gasóleo WO2018178463A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880022792.9A CN110997491B (zh) 2017-03-30 2018-03-27 用于检测瓦斯油过滤器中水的水传感器
BR112019020516-0A BR112019020516B1 (pt) 2017-03-30 2018-03-27 Sensor de água para detecção de água em filtros de gasóleo
US16/497,652 US11079348B2 (en) 2017-03-30 2018-03-27 Water sensor for detecting water in gas oil filters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201700330A ES2684611B1 (es) 2017-03-30 2017-03-30 Sensor de agua para detección de agua en filtros de gasóleo
ESP201700330 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018178463A1 true WO2018178463A1 (es) 2018-10-04

Family

ID=63674303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070244 WO2018178463A1 (es) 2017-03-30 2018-03-27 Sensor de agua para detección de agua en filtros de gasóleo

Country Status (4)

Country Link
US (1) US11079348B2 (es)
CN (1) CN110997491B (es)
ES (1) ES2684611B1 (es)
WO (1) WO2018178463A1 (es)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090320587A1 (en) * 2005-07-11 2009-12-31 Siemens Milltronics Process Instruments, Inc. Capacitive level sensor with a Plurality of Segments Comprising Each a Capacitor and a Circuit
US20130031963A1 (en) * 2011-08-05 2013-02-07 Ritchie Jr James A Water in fuel sensor
ES2530691A1 (es) * 2015-02-02 2015-03-04 Zertan Sa Método de medida de la presencia de agua en filtros de gasóleo y sensor de agua para efectuar dicho método
WO2016016172A1 (de) * 2014-07-29 2016-02-04 Mann+Hummel Gmbh Wasserabscheideelement mit wasserdetektionselektroden
US20160041021A1 (en) * 2013-06-19 2016-02-11 Sumitomo Riko Company Limited Capacitive liquid level detection device
ES2597165A1 (es) * 2016-04-11 2017-01-16 Cebi Electromechanical Components Spain, S.A. Método de detección de agua en filtros de gasóleo y sensor de agua para aplicación de dicho método

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101150309B (zh) * 2007-10-31 2010-12-08 启攀微电子(上海)有限公司 一种自适应电容触摸传感控制电路
JP5508302B2 (ja) * 2011-01-21 2014-05-28 株式会社キーエンス 除電器
CN204422154U (zh) * 2015-01-26 2015-06-24 马林 一种漏水检测模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090320587A1 (en) * 2005-07-11 2009-12-31 Siemens Milltronics Process Instruments, Inc. Capacitive level sensor with a Plurality of Segments Comprising Each a Capacitor and a Circuit
US20130031963A1 (en) * 2011-08-05 2013-02-07 Ritchie Jr James A Water in fuel sensor
US20160041021A1 (en) * 2013-06-19 2016-02-11 Sumitomo Riko Company Limited Capacitive liquid level detection device
WO2016016172A1 (de) * 2014-07-29 2016-02-04 Mann+Hummel Gmbh Wasserabscheideelement mit wasserdetektionselektroden
ES2530691A1 (es) * 2015-02-02 2015-03-04 Zertan Sa Método de medida de la presencia de agua en filtros de gasóleo y sensor de agua para efectuar dicho método
ES2597165A1 (es) * 2016-04-11 2017-01-16 Cebi Electromechanical Components Spain, S.A. Método de detección de agua en filtros de gasóleo y sensor de agua para aplicación de dicho método

Also Published As

Publication number Publication date
CN110997491B (zh) 2023-05-12
US11079348B2 (en) 2021-08-03
US20200271607A1 (en) 2020-08-27
ES2684611A1 (es) 2018-10-03
CN110997491A (zh) 2020-04-10
ES2684611B1 (es) 2019-06-21
BR112019020516A2 (pt) 2020-05-05

Similar Documents

Publication Publication Date Title
ES2602809T3 (es) Dispositivo de control de accionamiento de motor de corriente alterna
ES2381628T3 (es) Acondicionador de energía y sistema de generación de energía fotovoltaica solar
ES2699714T3 (es) Procedimiento de conmutación de una fase de convertidor electrónico de corriente con transistores IGBT con conducción inversa
ES2350175T3 (es) Unidad de sensor de batería.
ES2664387T3 (es) Conmutador con bornes de conexión de barra conductora con montaje fijo en ambos lados
ES2581664T3 (es) Procedimiento para la detección de una posición de conmutación de un dispositivo de conmutación
ES2555875T3 (es) Mediciones de la corriente diferencial para determinar una corriente de iones en presencia de una corriente de fugas
ES2623720T3 (es) Línea de suministro de potencia modular autoaislada
JP6305520B2 (ja) 充填レベル測定装置
ES2684611B1 (es) Sensor de agua para detección de agua en filtros de gasóleo
KR20140020478A (ko) 물고임 감지 장치가 구비된 배터리팩 어셈블리 및 물고임 감지 방법
ES2390148A1 (es) Procedimiento y dispositivo para medir la resistencia de aislamiento eléctrico de una fuente de tensión continua.
KR102529912B1 (ko) 배터리 시스템의 수분 유입 감지 장치 및 방법, 그리고 차량 시스템
ES2880467T3 (es) Procedimiento para controlar el funcionamiento de un sensor para la detección de partículas, programa informático, medio de almacenamiento electrónico y aparato de control electrónico
WO2013126345A1 (en) Battery fluid level sensor
ES2792925T3 (es) Dispositivo de distribución de energía con sistema de control de conducción de protección y método
WO2016124800A1 (es) Método de medida de la presencia de agua en filtros de gasóleo y sensor de agua para efectuar dicho método
ES2834025T3 (es) Dispositivo de reconocimiento de un sistema de tensión eléctrica
ES2597165B1 (es) Método de detección de agua en filtros de gasóleo y sensor de agua para aplicación de dicho método
US20120091947A1 (en) Supply unit and a method for supplying an electrically operated device
BR112019020516B1 (pt) Sensor de água para detecção de água em filtros de gasóleo
ES2790839T3 (es) Dispositivo de medición de cantidad eléctrica
ES2213242T3 (es) Un dispositivo para detectar averias en una linea electrica de un vehiculo, en particular un vehiculo comercial.
ES2908868T3 (es) Dispositivo y procedimiento para verificar la presencia de una tensión eléctrica
CN218646403U (zh) 非接触式液体检测防干烧传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019020516

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 18778244

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112019020516

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190930