WO2018177357A1 - 混合动力汽车的整车控制方法和动力系统 - Google Patents

混合动力汽车的整车控制方法和动力系统 Download PDF

Info

Publication number
WO2018177357A1
WO2018177357A1 PCT/CN2018/081043 CN2018081043W WO2018177357A1 WO 2018177357 A1 WO2018177357 A1 WO 2018177357A1 CN 2018081043 W CN2018081043 W CN 2018081043W WO 2018177357 A1 WO2018177357 A1 WO 2018177357A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
motor
hybrid vehicle
engine
vehicle
Prior art date
Application number
PCT/CN2018/081043
Other languages
English (en)
French (fr)
Inventor
李凯琦
李玲凯
许伯良
林晋琛
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2018177357A1 publication Critical patent/WO2018177357A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to the technical field of automobile control, in particular to a vehicle control method and a power system of a hybrid vehicle.
  • the vehicle controller in a hybrid vehicle is a core component of a hybrid vehicle control system. After collecting various signals and making corresponding judgments, the vehicle controller controls each component to perform corresponding operations to realize control of the entire vehicle.
  • the vehicle in order to ensure the safety of the whole vehicle, when the vehicle controller fails, the vehicle is powered off by turning off the generator and cutting off the busbar high voltage system, so that the vehicle cannot be driven.
  • the above method makes the vehicle only stop in the place to wait for rescue when the vehicle controller fails, and the safety is low.
  • the object of the present invention is to solve at least one of the technical problems in the related art to some extent.
  • the first object of the present invention is to provide a vehicle control method for a hybrid vehicle, which can still control the safety of the hybrid vehicle when the VCU (Vehicle Control Unit) and the BMS fail. To the target location, the safety of the whole vehicle is guaranteed.
  • VCU Vehicle Control Unit
  • a second object of the present invention is to provide a computer readable storage medium.
  • a third object of the present invention is to provide a power system for a hybrid vehicle.
  • the first aspect of the present invention provides a vehicle control method for a hybrid vehicle, including: after a body control module (BCM) detects a start signal of the hybrid vehicle, respectively Sending start request information to a Vehicle Control Unit (VCU), a Motor Control Unit (MCU), and an Engine Control Module (ECM); the BCM, the MCU, and the ECM
  • VCU Vehicle Control Unit
  • MCU Motor Control Unit
  • ECM Engine Control Module
  • the backup module TCU, the battery management module BMS, and the The sub motor controller sends a self-test command; the backup module receives the self-test result information fed back by the TCU, the BMS, and the sub-motor controller, and determines, according to the self-test result information, that the hybrid vehicle meets the start condition, and
  • the hybrid vehicle is controlled to travel in a pure fuel mode or a series mode or a hybrid mode.
  • the vehicle control method for the hybrid vehicle transmits the start request information to the vehicle controller VCU, the motor control module MCU, and the engine control module ECM after detecting the start signal of the hybrid vehicle through the body control module BCM. Then, when one of the BCM, the MCU, and the ECM is provided with the backup module, the backup module does not receive the feedback information generated by the VCU based on the startup request information within the preset time to the transmission control module TCU and the battery management module BMS respectively.
  • the sub motor controller sends a self-test command, and receives the self-test result information fed back by the TCU, the BMS, and the sub-motor controller, and finally determines the hybrid vehicle to meet the start condition according to the self-test result information, and detects that the BMS fails, and controls the mixing.
  • Power cars travel in pure fuel mode or in series or hybrid mode.
  • the hybrid vehicle can still be driven to control the hybrid vehicle to safely travel to the target location, thereby ensuring the safety of the vehicle.
  • a second aspect of the present invention provides a computer readable storage medium having instructions stored therein, when the instructions are executed, the hybrid vehicle performs the first aspect embodiment Vehicle control method.
  • a second aspect of the present invention provides a power system of a hybrid vehicle, comprising: an engine that outputs power to a wheel of the hybrid vehicle through a clutch; and a power motor for the power motor Driving a driving force to a wheel of the hybrid vehicle; a power battery for supplying power to the power motor; a DC-DC converter; a secondary motor connected to the engine, the secondary motor respectively
  • the power motor, the DC-DC converter and a power battery are connected, and the sub-motor performs power generation under the driving of the engine to charge the power battery, supply power to the power motor, and At least one of a DC-DC converter power supply; a body control module BCM, a vehicle controller VCU, a motor control module MCU, and an engine control module ECM, wherein the vehicle body control module BCM is configured to detect a start signal of the hybrid vehicle Afterwards, sending start request information to the vehicle controller VCU, the motor control module MCU, and the engine control module ECM, respectively; the BCM, the When
  • the backup module is further configured to receive the TCU and the BMS. And self-test result information fed back by the auxiliary motor controller, and determining, according to the self-test result information, that the hybrid vehicle meets a starting condition, and detecting that the BMS is invalid, controlling the hybrid vehicle to adopt a pure fuel mode or a series connection Mode or hybrid mode.
  • the power system of the hybrid vehicle transmits the start request information to the vehicle controller VCU, the motor control module MCU, and the engine control module ECM after detecting the start signal of the hybrid vehicle through the body control module BCM, and then sends the start request information to the vehicle controller VCU, the motor control module MCU, and the engine control module ECM, respectively.
  • the backup module When a backup module is set in one of the BCM, the MCU, and the ECM, the backup module does not receive the feedback information generated by the VCU based on the startup request information within a preset time to the transmission control module TCU, the battery management module BMS, and the vice
  • the motor controller sends a self-test command, and receives the self-test result information fed back by the TCU, the BMS, and the sub-motor controller, and finally controls the hybrid vehicle according to the self-test result information to determine that the hybrid vehicle meets the start-up condition and detects that the BMS is invalid. Drive in pure fuel mode or in series or hybrid mode.
  • the hybrid vehicle can still be driven to control the hybrid vehicle to safely travel to the target location, thereby ensuring the safety of the vehicle.
  • FIG. 1 is a flow chart of a vehicle control method for a hybrid vehicle according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of vehicle controller control according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a normal operation mode of a VCU according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of ECM control after VCU failure according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a series mode in which a TCU fails and a secondary motor controller is normal, in accordance with one embodiment of the present invention
  • FIG. 6 is a schematic diagram of a pure fuel mode when a TCU is normal and a secondary motor controller fails in accordance with one embodiment of the present invention
  • FIG. 7 is a schematic diagram of a normal mode of a TCU and a normal hybrid mode of a secondary motor controller according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a VCU failure mode of operation according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of a power system of a hybrid vehicle according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural view of a power system of a hybrid vehicle according to an embodiment of the present invention.
  • FIG. 11 is a block schematic diagram of a power system of a hybrid vehicle in accordance with one embodiment of the present invention.
  • Figure 12 is a schematic illustration of a transmission structure between an engine and a corresponding wheel in accordance with one embodiment of the present invention
  • Figure 13 is a schematic illustration of a transmission structure between an engine and a corresponding wheel in accordance with another embodiment of the present invention.
  • FIG. 14 is a schematic structural view of a power system of a hybrid vehicle according to another embodiment of the present invention.
  • FIG. 1 is a flow chart of a vehicle control method for a hybrid vehicle in accordance with one embodiment of the present invention.
  • the vehicle controller in a hybrid vehicle is a core component of a hybrid vehicle control system.
  • the following details are specifically described below with reference to FIG. 2 and FIG. 3:
  • the vehicle controller is capable of collecting signals from the accelerator pedal input, signals from the brake pedal input, and other component signals.
  • the vehicle controller can make corresponding judgments according to the above signals, control the BMS, MCU, ECM and BCM through the CAN network bus to perform corresponding operations, and realize management, scheduling, analysis and calculation of network information.
  • FIG. 3 is a schematic diagram of a normal operation mode of a VCU in the prior art according to an embodiment of the present invention. As shown in Figure 3:
  • Step 1 The BCM detects that the driver has a start operation, that is, after the BCM detects the start signal of the hybrid vehicle, the start request information is separately sent to the VCU, the MCU, and the ECM.
  • Step 2 After receiving the start request information, the VCU sends a self-test command to the TCU, the BMS, and the secondary motor controller.
  • Step 3 After the self-test is performed by the TCU, the BMS, and the sub-motor controller according to the self-test command, the self-test result information is sent to the VCU.
  • the secondary motor can be a BSG.
  • Step 4 When the VCU can meet the start condition according to the self-test result, the VCU can send a start request signal to the MCU and send a start request signal to the ECM.
  • Step 5 After the MCU receives the startup request information sent by the BCM, the MCU and the ECM pair the code.
  • Step 6 When the MCU and ECM pair code succeeds, the MCU and the ECM respectively send a “start enable” signal to the VCU.
  • Step 7 The VCU sends a start command to the BCM.
  • the VCU implements the vehicle control and controls the start of the hybrid vehicle.
  • the VCU can perform corresponding energy management for different configurations of the vehicle, and realize the vehicle drive control, energy optimization control, brake feedback control and network management control.
  • the vehicle controller fails, the hybrid vehicle is prohibited from powering up by turning off the generator and cutting off the busbar high voltage system, so that the hybrid vehicle cannot travel.
  • the vehicle controller of the hybrid vehicle is mode selection and torque distribution. Once the vehicle controller fails, the entire vehicle cannot perform effective mode selection and torque distribution, and the engine and motor can no longer perform normal operation. drive.
  • the hybrid vehicle is directly prohibited from being powered on, and the generator is turned off and the busbar high voltage system is cut off.
  • Hybrid vehicles can only be parked in place for rescue, and cannot guarantee the safety of the vehicle.
  • the present invention provides a vehicle control method for a hybrid vehicle, which can still drive the entire vehicle when the VCU fails, control the hybrid vehicle to safely travel to the target location, and ensure the safety of the vehicle. details as follows:
  • the vehicle control method of the hybrid vehicle includes the following steps:
  • Step 101 After detecting the start signal of the hybrid vehicle, the vehicle body control module BCM sends start request information to the vehicle controller VCU, the motor control module MCU, and the engine control module ECM, respectively.
  • the driver can start the vehicle by means of a vehicle key, pressing an ON button on the vehicle, and the like.
  • the BCM can detect the start operation of the driver and send a start request to the VCU, the MCU, and the ECM, respectively.
  • the BCM detects that the driver has a startup operation, and sends start request information to the VCU, the MCU, and the ECM, respectively.
  • Step 102 When a backup module is set in one of the BCM, the MCU, and the ECM, if the backup module does not receive the feedback information generated by the VCU based on the startup request information within a preset time, the backup module respectively controls the TCU and the battery.
  • the management module BMS and the secondary motor controller send a self-test command.
  • one of the BCM, the MCU, and the ECM can be selected according to the actual application requirement, and the module having the backup function, that is, the backup module, can be set therein.
  • the VCU sends the generated feedback information to the BCM, the MCU, and the ECM at the same time.
  • the backup module needs to separately send to the transmission control module TCU, the battery management module BMS, and the secondary motor controller. Self-test command.
  • the preset time can be selected according to the actual application needs. Generally, the preset time is the maximum allowable time interval that the VCU responds and can send feedback information to the ECM and the MCU after the BCM sends a start request in the normal working mode of the VCU.
  • the ECM when the VCU fails, the ECM temporarily activates the vehicle control assistance function as a backup module to integrate the various modules.
  • 4 is a schematic diagram of ECM control after VCU failure according to an embodiment of the present invention.
  • the ECM is capable of acquiring signals from the accelerator pedal input, signals from the brake pedal input, and other component signals.
  • the ECM can also make corresponding judgments according to the above signals, and control the BMS, MCU, ECM and BCM through the CAN network bus to perform corresponding operations.
  • the BCM and the MCU can also be used as a backup module in real time for the above control process.
  • the backup module stops working.
  • the secondary motor can be a BSG.
  • Step 103 The backup module receives the self-test result information fed back by the TCU, the BMS, and the sub-motor controller, and determines, according to the self-test result information, that the hybrid vehicle meets the start condition, and detects that the BMS fails, controls the hybrid vehicle to adopt the pure fuel mode or Drive in series mode or in mixed mode.
  • the process of the MCU and the ECM pairing code may be that the MCU sends a code request command carrying the first data to the ECM, and the MCU receives the code response command of the second data carrying the ECM feedback, and if the second data is determined according to the second data, If the code is successful, a code success instruction is sent to the ECM.
  • the pair code refers to the MCU sending a code request command carrying the first data to the ECM, and the MCU receives the code response command carrying the second data fed back by the ECM. If the code is successfully determined according to the second data, the code is sent to the ECM. Successful instruction.
  • the backup module detects that the ECM and the MCU have failed to match the code, it determines that the hybrid vehicle does not meet the start condition and prohibits the hybrid vehicle from starting.
  • the BMS failure includes the BMS itself failure and/or the power battery failure.
  • the backup module recognizes that the TCU is invalid according to the self-test result information and the sub-motor controller fails, it is judged that the hybrid vehicle does not satisfy the starting condition, and the hybrid vehicle is prohibited from starting.
  • the control engine drives the sub-motor to generate electricity to supply power to the power motor, and drives the wheel of the hybrid vehicle through the power motor to The hybrid vehicle is driven in series mode, as shown in FIG.
  • the backup module recognizes that the TCU is normal and the secondary motor controller fails according to the self-test result information, the wheel of the hybrid vehicle is driven by the engine to drive the hybrid vehicle in the pure fuel mode, as shown in FIG. 6 . .
  • the engine drives the wheels of the hybrid vehicle to drive the hybrid vehicle in a pure fuel mode, as shown in FIG. .
  • the engine drives the wheel of the hybrid vehicle, and controls the engine to drive the secondary motor to generate power to supply power to the power motor.
  • the wheel of the hybrid vehicle is driven by a power motor to drive the hybrid vehicle in a hybrid mode, as shown in FIG.
  • the vehicle control method for the hybrid vehicle transmits the start request information to the vehicle controller VCU, the motor control module MCU, and the engine control module ECM after detecting the start signal of the hybrid vehicle through the body control module BCM. Then, when a backup module is set in one of the BCM, the MCU, and the ECM, the backup module does not receive the feedback information generated by the VCU based on the startup request information within a preset time, respectively, to the transmission control module TCU and the battery management module BMS.
  • the sub motor controller sends a self-test command, and receives the self-test result information fed back by the TCU, the BMS, and the sub-motor controller, and finally determines the hybrid vehicle to meet the start condition according to the self-test result information, and detects that the BMS fails, and controls the mixing.
  • Power cars travel in pure fuel mode or in series or hybrid mode.
  • the hybrid vehicle can still be driven to control the hybrid vehicle to safely travel to the target location, thereby ensuring the safety of the vehicle.
  • FIG. 8 is a schematic diagram of a VCU failure mode of operation, in accordance with one embodiment of the present invention. As shown in Figure 8:
  • Step 1 The BCM detects that the driver has a start operation, that is, after the BCM detects the start signal of the hybrid vehicle, the start request information is separately sent to the VCU, the MCU, and the ECM.
  • Step 2 The ECM, as the backup module, does not receive the feedback information sent by the VCU within the preset time, and sends a self-test command to the TCU, the BMS, and the BSG controller respectively.
  • Step 3 After the self-test is performed by the TCU, the BMS, and the BSG controller according to the self-test command, the self-test result information is sent to the VCU.
  • Step 4 After the MCU receives the start request information sent by the BCM, the MCU and the ECM pair the code.
  • Step 5 The code is successful in the MCU and the ECM, and the self-test result meets the start condition ECM sends a “start enable” to the BCM.
  • the hybrid vehicle can still be driven to control the hybrid vehicle to safely travel to the target location, thereby ensuring the safety of the vehicle.
  • the present invention also proposes a power system of a hybrid vehicle.
  • FIG. 9 is a schematic structural view of a power system of a hybrid vehicle according to an embodiment of the present invention.
  • the power system of the hybrid vehicle includes an engine 1, a power motor 2, a power battery 3, a DC-DC converter 4, and a sub-motor 5.
  • the engine 1 outputs power to the wheels 7 of the hybrid vehicle through the clutch 6, and the power motor 2 is used to output the driving force to the wheels 7 of the hybrid vehicle.
  • the power system of the embodiment of the present invention can provide power for the hybrid vehicle to normally travel through the engine 1 and/or the power motor 2.
  • the power source of the power system may be the engine 1 and the power motor 2, that is, any one of the engine 1 and the power motor 2 may separately output power to the wheel 7, or the engine 1 and The power motor 2 can simultaneously output power to the wheels 7.
  • the power battery 3 is used to supply power to the power motor 2; the sub motor 5 is connected to the engine 1, for example, the sub motor 5 can be connected to the engine 1 through the train wheel end of the engine 1.
  • the sub-motors 5 are respectively connected to the power motor 2, the DC-DC converter 4, and the power battery 3, and the sub-motor 5 performs power generation by the engine 1 to charge the power battery 3, supply power to the power motor 2, and supply DC- At least one of the DC converter 4 power supply.
  • the engine 1 can drive the secondary motor 5 to generate electricity, and the electric energy generated by the secondary motor 5 can be supplied to at least one of the power battery 3, the power motor 2, and the DC-DC converter 4.
  • the engine 1 can drive the sub-motor 5 to generate electricity while outputting power to the wheel 7, or can separately drive the sub-motor 5 to generate electricity.
  • the power motor 2 and the sub-motor 5 respectively serve as a drive motor and a generator in a one-to-one correspondence. Since the sub-motor 5 has a high power generation and power generation efficiency at a low speed, the power demand of the low-speed travel can be satisfied, and the whole can be maintained. The vehicle's low-speed electric balance maintains the low-speed ride of the vehicle and improves the dynamic performance of the vehicle.
  • the secondary motor 5 may be a BSG (Belt-driven Starter Generator) motor.
  • the sub-motor 5 belongs to a high-voltage motor.
  • the power generation voltage of the sub-motor 5 is equivalent to the voltage of the power battery 3, so that the electric energy generated by the sub-motor 5 can directly charge the power battery 3 without voltage conversion, and can also directly Powering the power motor 2 and/or the DC-DC converter 4 can also directly supply power to either or both of the power motor 2 and the DC-DC converter 4.
  • the sub-motor 5 is also a high-efficiency generator. For example, when the sub-motor 5 is driven by the engine 1 at an idle speed, the power generation efficiency of 97% or more can be achieved.
  • the sub-motor 5 can be used to start the engine 1, that is, the sub-motor 5 can have a function of starting the engine 1, for example, when the engine 1 is started, the sub-motor 5 can drive the crankshaft of the engine 1. In order to bring the piston of the engine 1 to the ignition position, the starting of the engine 1 is achieved, whereby the sub-motor 5 can realize the function of the starter in the related art.
  • both the engine 1 and the power motor 2 can be used to drive the wheels 7 of the hybrid vehicle.
  • the engine 1 and the power motor 2 collectively drive the same wheel of the hybrid vehicle, such as a pair of front wheels 71 (including the left front wheel and the right front wheel).
  • the engine 1 and the power motor 2 jointly drive a pair of front wheels 71, the driving force of the power system is output to a pair of front wheels 71, and the entire vehicle can be driven by two drives.
  • the power system of the hybrid vehicle further includes a differential 8, a final drive 9, and a transmission 90, wherein the engine 1 passes the clutch 6.
  • the transmission 9, the final drive 9 and the differential 8 output power to the first wheel of the hybrid vehicle, for example, a pair of front wheels 71, and the power motor 2 outputs the driving force to the hybrid through the final drive 9 and the differential 8.
  • the first wheel of the automobile is, for example, a pair of front wheels 71.
  • the clutch 6 and the transmission 90 can be integrated.
  • the sub-motor 5 further includes a first controller 51
  • the power motor 2 further includes a second controller 21, and the sub-motor 5 passes the first control.
  • the unit 51 is connected to the power battery 3 and the DC-DC converter 4, respectively, and is connected to the power motor 2 through the first controller 51 and the second controller 21.
  • the first controller 51 is connected to the second controller 21, the power battery 3, and the DC-DC converter 4, respectively, and the first controller 51 may have an AC-DC conversion unit, and the secondary motor 5 generates AC power when generating electricity.
  • the AC-DC conversion unit converts the alternating current generated by the high-voltage motor 2 into a high-voltage direct current such as 600V high-voltage direct current to realize at least one of charging the power battery 3, supplying power to the power motor 2, and supplying power to the DC-DC converter 4. .
  • the second controller 21 may have a DC-AC conversion unit, the first controller 51 may convert the alternating current generated by the secondary motor 5 into high-voltage direct current, and the DC-AC conversion unit may further convert the high-voltage direct current generated by the first controller 51. It is converted to alternating current to supply power to the power motor 2.
  • the sub-motor 5 when the sub-motor 5 performs power generation, the sub-motor 5 can charge the power battery 3 through the first controller 51 and/or supply power to the DC-DC converter 4. That is, the sub motor 5 can realize either or both of charging the power battery 3 and supplying power to the DC-DC converter 4 through the first controller 51. Further, the sub motor 5 can also supply power to the power motor 2 through the first controller 51 and the second controller 21.
  • the DC-DC converter 4 is also connected to the power battery 3.
  • the DC-DC converter 4 is also connected to the power motor 2 via a second controller 21.
  • the first controller 51 has a first DC terminal DC1
  • the second controller 21 has a second DC terminal DC2
  • the DC-DC converter 4 has a third DC terminal DC3.
  • the third DC terminal DC3 of the DC-DC converter 4 can be connected to the first DC terminal DC1 of the first controller 51 to perform DC-DC on the high voltage DC power output by the first controller 51 through the first DC terminal DC1. Transform.
  • the third DC terminal DC3 of the DC-DC converter 4 can also be connected to the power battery 3, and the first DC terminal DC1 of the first controller 51 can be connected to the power battery 3 to pass the first controller 51.
  • the first DC terminal DC1 outputs high voltage direct current to the power battery 3 to charge the power battery 3.
  • the third DC terminal DC3 of the DC-DC converter 4 can also be connected to the second DC terminal DC2 of the second controller 21, and the first DC terminal DC1 of the first controller 51 can be connected to the second controller.
  • the second DC terminal DC2 of 21 is connected such that the first controller 51 outputs high voltage direct current to the second controller 21 through the first DC terminal DC1 to supply power to the power motor 2.
  • the DC-DC converter 4 is also respectively connected to the first electric device 10 and the low-voltage battery 20 in the hybrid vehicle to supply power to the first electric device 10 and the low-voltage battery 20, and the low-voltage battery 20 It is also connected to the first electrical device 10.
  • the DC-DC converter 4 further has a fourth DC terminal DC4, and the DC-DC converter 4 can pass the high voltage DC power and/or the sub motor 5 output from the power battery 3 through the first
  • the high voltage direct current outputted by the controller 51 is converted into low voltage direct current, and the low voltage direct current is output through the fourth direct current terminal DC4. That is, the DC-DC converter 4 can convert any one or both of the high-voltage direct current output from the power battery 3 and the high-voltage direct current output from the sub-motor 5 through the first controller 51 into low-voltage direct current, and pass the fourth direct current.
  • the terminal DC4 outputs the low voltage direct current.
  • the fourth DC terminal DC4 of the DC-DC converter 4 can be connected to the first electrical device 10 to supply power to the first electrical device 10, wherein the first electrical device 10 can be a low-voltage electrical device, including but not Limited to car lights, radios, etc.
  • the fourth DC terminal DC4 of the DC-DC converter 4 can also be coupled to the low voltage battery 20 to charge the low voltage battery 20.
  • the low voltage battery 20 is connected to the first electrical device 10 to supply power to the first electrical device 10.
  • the low voltage battery 20 can be the first electrical device. 10 power supply, thus ensuring the low-voltage power consumption of the whole vehicle, ensuring that the whole vehicle can be driven in pure fuel mode and improve the mileage of the whole vehicle.
  • the third DC terminal DC3 of the DC-DC converter 4 is connected to the first controller 51
  • the fourth DC terminal DC4 of the DC-DC converter 4 is connected to the first electrical device 10 and the low voltage battery 20, respectively, when the power motor 2.
  • the sub-motor 5 can generate power to supply power to the first electric device 10 and/or charge the low-voltage battery 20 through the first controller 51 and the DC-DC converter 4. In order to make the hybrid car run in pure fuel mode.
  • the first controller 51 can convert the alternating current generated by the secondary motor 5 into high-voltage direct current, and the DC-DC converter 4 can perform the first control.
  • the high voltage direct current converted by the unit 50 is converted to low voltage direct current to supply power to the first electrical device 10 and/or to charge the low voltage battery 20. That is, either or both of powering the first electrical device 10 and charging the low voltage battery 20 are achieved.
  • the sub motor 5 and the DC-DC converter 4 have a separate power supply path.
  • the power motor 2, the second controller 21, and the power battery 3 fail, the electric drive cannot be realized.
  • the sub motor 5 and the DC are passed.
  • the separate power supply channel of the DC converter 4 can ensure the low-voltage power consumption of the whole vehicle, ensuring that the whole vehicle can be driven in pure fuel mode and improve the mileage of the whole vehicle.
  • the first controller 51, the second controller 21 and the power battery 3 are also respectively connected to the second electrical device 30 in the hybrid vehicle.
  • the first DC terminal DC1 of the first controller 51 can be connected to the second electrical device 30, and when the secondary motor 5 performs power generation, the secondary motor 5 can pass through the first controller. 51 directly supplies power to the second electrical device 30.
  • the AC-DC conversion unit of the first controller 51 can also convert the alternating current generated by the sub-motor 5 into high-voltage direct current and directly supply power to the second electric device 30.
  • the power battery 3 can also be coupled to the second electrical device 30 to power the second electrical device 30. That is to say, the high voltage direct current output from the power battery 3 can be directly supplied to the second electric device 30.
  • the second electrical device 30 can be a high-voltage electrical device, and can include, but is not limited to, an air conditioner compressor, a PTC (Positive Temperature Coefficient) heater, and the like.
  • power generation by the sub-motor 5 makes it possible to charge the power battery 3, or supply power to the power motor 2, or supply power to the first electric device 10 and the second electric device 30.
  • the power battery 3 can supply power to the power motor 2 through the second controller 21, or supply power to the second electric device 30, and can also supply power to the first electric device 10 and/or the low-voltage battery 20 through the DC-DC converter 4. This enriches the power supply mode of the whole vehicle, meets the power demand of the whole vehicle under different working conditions, and improves the performance of the whole vehicle.
  • the low voltage may refer to a voltage of 12V (volts) or 24V
  • the high voltage may refer to a voltage of 600V, but is not limited thereto.
  • the engine can be prevented from participating in driving at a low speed, and the clutch is not used, the clutch wear or the slip is reduced, the feeling of frustration is reduced, and the comfort is improved, and At low speeds, the engine can be operated in an economical area, and only power generation is not driven, fuel consumption is reduced, engine noise is reduced, low-speed electric balance and low-speed smoothness of the vehicle are maintained, and overall vehicle performance is improved.
  • the secondary motor can directly charge the power battery, and can also supply power for low-voltage devices such as low-voltage batteries, first electrical equipment, etc., and can also be used as a starter.
  • FIG. 12 A specific embodiment of the power system of the hybrid vehicle will be described in detail below with reference to FIG. 12, which is applicable to a power system in which the engine 1 and the power motor 2 jointly drive the same wheel, that is, a two-wheel drive hybrid vehicle.
  • this embodiment mainly describes a specific transmission structure between the engine 1, the power motor 2 and the wheel 7, in particular, the structure of the transmission 90 in Fig. 10, and the rest is basically the same as the embodiment of Figs. 9 and 11. The same, no longer detailed in the details here.
  • the plurality of input shafts, the plurality of output shafts, and the motor power shaft 931 in the following embodiments, and the respective gears on the respective shafts, the shifting members, and the like may be used to constitute the transmission 90 in FIG.
  • the power system of the hybrid vehicle mainly includes an engine 1, a power motor 2, a power battery 3, a DC-DC converter 4, a sub-motor 5, and a plurality of An input shaft (eg, a first input shaft 911, a second input shaft 912), a plurality of output shafts (eg, a first output shaft 921, a second output shaft 922), and a motor power shaft 931 and associated gears on each shaft and Blocking element (eg, synchronizer).
  • An input shaft eg, a first input shaft 911, a second input shaft 912
  • output shafts eg, a first output shaft 921, a second output shaft 922
  • a motor power shaft 931 and associated gears on each shaft and Blocking element eg, synchronizer
  • the engine 1 outputs power to the wheels 7 of the hybrid vehicle through a clutch 6, such as the dual clutch 2d in the example of FIG.
  • a clutch 6 such as the dual clutch 2d in the example of FIG.
  • the engine 1 is disposed to selectively engage at least one of the plurality of input shafts through the dual clutch 2d.
  • the engine 1 when the engine 1 transmits power to the input shaft, the engine 1 can selectively engage with one of the plurality of input shafts to transmit power, or the engine 1 can also selectively couple two or two of the plurality of input shafts More than one input shaft is simultaneously engaged to transmit power.
  • the plurality of input shafts may include two input shafts of the first input shaft 911 and the second input shaft 912, and the second input shaft 912 may be coaxially sleeved on the first input shaft 911.
  • the engine 1 is selectively engageable with one of the first input shaft 911 and the second input shaft 912 through the dual clutch 2d to transmit power.
  • the engine 1 can also be simultaneously engaged with the first input shaft 911 and the second input shaft 912 to transmit power.
  • the engine 1 can also be disconnected from the first input shaft 911 and the second input shaft 912 at the same time.
  • the plurality of output shafts may include two output shafts, a first output shaft 921 and a second output shaft 922, and the first output shaft 921 and the second output shaft 922 are respectively disposed in parallel with the first input shaft 911.
  • each of the input shafts is provided with a gear driving gear, that is, each of the first input shaft 911 and the second input shaft 912 is provided with a gear driving gear
  • each of the output shafts is provided with A gear driven gear, that is, each output shaft of the first output shaft 921 and the second output shaft 922 is provided with a gear driven gear
  • the gear driven gear meshes with the gear driving gear correspondingly, thereby forming Many pairs of gear pairs with different speed ratios.
  • a six-speed transmission may be employed between the input shaft and the output shaft, that is, having a first gear pair, a second gear pair, a third gear pair, a fourth gear pair, a fifth gear pair, and six Block gear pair.
  • the present invention is not limited thereto, and those skilled in the art can adaptively increase or decrease the number of gear gear pairs according to the transmission requirements, and are not limited to the six gears shown in the embodiment of the present invention. transmission.
  • the motor power shaft 931 is disposed to be coupled with one of a plurality of output shafts (eg, the first output shaft 921 and the second output shaft 922) through the motor power shaft 931 and the output shaft.
  • One of the linkages is such that power can be transferred between the motor power shaft 931 and the one of the output shafts.
  • the power output through the output shaft (such as the power from the output of the engine 1) may be output to the motor power shaft 931, or the power via the motor power shaft 931 (such as the power output from the power motor 2) may be output to the output shaft. .
  • Coupled can be understood as a plurality of components (for example, two) associated motions. Taking two components as an example, when one of the components moves, the other component also moves.
  • the linkage of the gear to the shaft may be understood to mean that the shaft that is interlocked with the gear as it rotates will also rotate, or that the gear that is associated therewith will also rotate as the shaft rotates.
  • the linkage between the shaft and the shaft can be understood as the other shaft that is linked to and rotates when one of the shafts rotates.
  • linkage of a gear and a gear can be understood as the fact that the other gear that is interlocked with one of the gears will also rotate when it rotates.
  • the power motor 2 is disposed to be coupled with the motor power shaft 931.
  • the power motor 2 can output the generated power to the motor power shaft 931, thereby outputting the driving force to the wheels 7 of the hybrid vehicle through the motor power shaft 931.
  • the motor power shaft 931 may be the motor shaft of the power motor 2 itself.
  • the motor power shaft 931 and the motor shaft of the power motor 2 can also be two separate shafts.
  • the output portion 221 is differentially rotatable relative to the one of the output shafts (eg, the second output shaft 922), in other words, the output portion 221 and the output shaft can be different.
  • the rotation speed rotates independently.
  • the output portion 221 is configured to selectively engage the one of the output shafts to rotate in synchronization with the output shaft, in other words, the output portion 221 is capable of differential or synchronous rotation with respect to the output shaft. In short, the output portion 221 is engageable with respect to the one of the output shafts for synchronous rotation, and of course, can also be turned to rotate at a differential speed.
  • the output portion 221 may be disposed on the one of the output shafts in an empty manner, but is not limited thereto.
  • the output portion 221 is vacant on the second output shaft 922, that is, the output portion 221 and the second output shaft 922 can be differentially rotated at different rotational speeds.
  • the output portion 221 can be rotated in synchronization with the one of the output shafts.
  • the synchronization of the output portion 221 and the output shaft can be realized when necessary by adding a corresponding synchronizer.
  • the synchronizer may be an output portion synchronizer 221c, and the output portion synchronizer 221c is provided to synchronize the one of the output portion 221 and the output shaft.
  • the power motor 2 is used to output a driving force to the wheels 7 of the hybrid vehicle, and the engine 1 and the power motor 2 collectively drive the same wheel of the hybrid vehicle.
  • the differential 75 of the vehicle may be disposed between a pair of front wheels 71 or between a pair of rear wheels 72, in some examples of the invention, when the power motor 2 drives a pair of front wheels 71
  • the differential 75 can be located between the pair of front wheels 71.
  • the function of the differential 75 is to roll the left and right driving wheels at different angular velocities when the vehicle is turning or driving on an uneven road surface to ensure a pure rolling motion between the driving wheels on both sides and the ground.
  • a final drive driven gear 74 provided with a final drive 9 on the differential 75 may be disposed on the housing of the differential 75.
  • the main reducer driven gear 74 may be a bevel gear, but is not limited thereto.
  • the power battery 3 is used to supply power to the power motor 2; the secondary motor 5 is connected to the engine 1, and the secondary motor 5 is also coupled to the power motor 2, the DC-DC converter 4, and the power battery, respectively. 3 is connected, and the sub-motor 5 realizes at least one of charging the power battery 3, supplying power to the power motor 2, and supplying power to the DC-DC converter 4 when power is generated by the engine 1.
  • FIG. 13 is also applicable to a power system in which the engine 1 and the power motor 2 jointly drive the same wheel, that is, a two-wheel drive hybrid vehicle.
  • this embodiment mainly describes a specific transmission structure between the engine 1, the power motor 2 and the wheel 7, in particular, the structure of the transmission 90 in Fig. 10, and the rest is basically the same as the embodiment of Figs. 9 and 11. The same, no longer detailed in the details here.
  • the plurality of input shafts, the plurality of output shafts, and the motor power shaft 931 in the following embodiments, and the respective gears on the respective shafts, the shifting members, and the like may be used to constitute the transmission 90 in FIG.
  • the power system of the hybrid vehicle mainly includes an engine 1, a power motor 2, a power battery 3, a DC-DC converter 4, a sub-motor 5, and a plurality of An input shaft (eg, a first input shaft 911, a second input shaft 912), a plurality of output shafts (eg, a first output shaft 921, a second output shaft 922), and a motor power shaft 931 and associated gears on each shaft and Blocking element (eg, synchronizer).
  • An input shaft eg, a first input shaft 911, a second input shaft 912
  • output shafts eg, a first output shaft 921, a second output shaft 922
  • a motor power shaft 931 and associated gears on each shaft and Blocking element eg, synchronizer
  • the engine 1 outputs power to the wheels 7 of the hybrid vehicle through a clutch 6, such as the dual clutch 2d in the example of FIG.
  • a clutch 6 such as the dual clutch 2d in the example of FIG.
  • the engine 1 is disposed to selectively engage at least one of the plurality of input shafts through the dual clutch 2d.
  • the engine 1 when the engine 1 transmits power to the input shaft, the engine 1 can selectively engage with one of the plurality of input shafts to transmit power, or the engine 1 can also selectively couple two or two of the plurality of input shafts More than one input shaft is simultaneously engaged to transmit power.
  • the plurality of input shafts may include two input shafts of the first input shaft 911 and the second input shaft 912 , and the second input shaft 912 is coaxially sleeved on the first input shaft 911 , the engine 1 is capable of selectively engaging one of the first input shaft 911 and the second input shaft 912 through the dual clutch 2d to transmit power.
  • the engine 1 can also be simultaneously engaged with the first input shaft 911 and the second input shaft 912 to transmit power.
  • the engine 1 can also be disconnected from the first input shaft 911 and the second input shaft 912 at the same time.
  • the plurality of output shafts may include two output shafts of a first output shaft 921 and a second output shaft 922, and the first output shaft 921 and the second output shaft 922 are disposed in parallel with the first input shaft 911.
  • each of the input shafts is provided with a gear driving gear, that is, each of the first input shaft 911 and the second input shaft 912 is provided with a gear driving gear
  • each of the output shafts is provided with A gear driven gear, that is, each output shaft of the first output shaft 921 and the second output shaft 922 is provided with a gear driven gear
  • the gear driven gear meshes with the gear driving gear correspondingly, thereby forming Many pairs of gear pairs with different speed ratios.
  • a six-speed transmission may be employed between the input shaft and the output shaft, that is, having a first gear pair, a second gear pair, a third gear pair, a fourth gear pair, a fifth gear pair, and six Block gear pair.
  • the present invention is not limited thereto, and those skilled in the art can adaptively increase or decrease the number of gear gear pairs according to the transmission requirements, and are not limited to the six gears shown in the embodiment of the present invention. transmission.
  • one of the output shafts (for example, the first output shaft 921 and the second output shaft 922) is provided with at least one reverse output gear 81, and the output shaft is further provided with a reverse gear output.
  • the reverse synchronizer of the gear 81 (for example, the five-speed synchronizer 5c, the six-speed synchronizer 6c), in other words, the reverse synchronizer synchronizes the corresponding reverse output gear 81 and the output shaft, thereby synchronizing the output shaft with the reverse gear
  • the synchronized reverse output gear 81 can be rotated in synchronism, and the reverse power can be output from the output shaft.
  • the reverse output gear 81 is one, and the one reverse output gear 81 can be sleeved on the second output shaft 922.
  • the present invention is not limited thereto.
  • the reverse output gear 81 may also be two, and the two reverse output gears 81 are simultaneously vacant on the second output shaft 922.
  • the reverse output gear 81 can also be three or more.
  • the reverse shaft 89 is disposed in linkage with one of the input shafts (eg, the first input shaft 911 and the second input shaft 912) and also with at least one reverse output gear 81, for example, via the one of the input shafts
  • the power can be transmitted to the reverse output gear 81 through the reverse shaft 89, so that the reverse power can be output from the reverse output gear 81.
  • the reverse output gear 81 is vacant on the second output shaft 922, and the reverse shaft 89 is interlocked with the first input shaft 911, for example, the reverse power output of the engine 1 can pass.
  • the first input shaft 911 and the reverse shaft 89 are output to the reverse output gear 81.
  • the motor power shaft 931 will be described in detail below.
  • the motor power shaft 931 is provided with a motor power shaft first gear 31 and a motor power shaft second gear 32.
  • the motor power shaft first gear 31 is meshable with the final drive driven gear 74 to transmit the driving force to the wheels 7 of the hybrid vehicle.
  • the motor power shaft second gear 32 is disposed in linkage with one of the gear driven gears.
  • the power outputted by the power source may be on the motor power shaft.
  • the second gear 32 and the gear driven gear associated therewith are transmitted, and at this time, the motor power shaft second gear 32 is interlocked with the gear driven gear.
  • the motor power shaft second gear 32 is interlocked with the second gear driven gear 2b, and the motor power shaft second gear 32 and the second gear driven gear 2b can be directly meshed or indirectly transmitted through the intermediate transmission member.
  • a motor power shaft synchronizer 33c is further disposed on the motor power shaft 931, and the motor power shaft synchronizer 33c is located between the motor power shaft first gear 31 and the motor power shaft second gear 32, and the motor power shaft synchronizer 33c can be selected.
  • the motor power shaft first gear 31 or the motor power shaft second gear 32 is engaged with the motor power shaft 3.
  • the clutch sleeve of the motor power shaft synchronizer 33c is moved to the left to engage the motor power shaft second gear 32, and to the right to engage the motor power shaft first gear 31.
  • the power motor 2 is disposed to be interlocked with the motor power shaft 931.
  • the power motor 2 can output the generated power to the motor power shaft 931, thereby outputting the driving force to the wheels 7 of the hybrid vehicle through the motor power shaft 931.
  • the power motor 2 can directly transmit the generated power directly from the motor power shaft first gear 31 through the motor power shaft synchronizer 33c.
  • the output of the first gear 31 of the motor power shaft can shorten the transmission chain, reduce the intermediate transmission components, and improve the transmission efficiency.
  • the motor power shaft 931 is also fixedly disposed with a motor power shaft third gear 33, and the power motor 2 is disposed to directly mesh or indirectly transmit with the motor power shaft third gear 33.
  • the motor shaft of the power motor 2 is provided with a first motor gear 511, and the first motor gear 511 is driven by the intermediate gear 512 and the motor power shaft third gear 33.
  • the power motor 2 and the motor power shaft 931 can also be coaxially connected.
  • the power motor 2 is used to output a driving force to the wheels 7 of the hybrid vehicle, and the engine 1 and the power motor 2 collectively drive the same wheel of the hybrid vehicle.
  • the differential 75 of the vehicle may be disposed between a pair of front wheels 71 or between a pair of rear wheels 72, in some examples of the invention, when the power motor 2 drives a pair of front wheels 71
  • the differential 75 can be located between the pair of front wheels 71.
  • the function of the differential 75 is to roll the left and right driving wheels at different angular velocities when the vehicle is turning or driving on an uneven road surface to ensure a pure rolling motion between the driving wheels on both sides and the ground.
  • a final drive driven gear 74 provided with a final drive 8 on the differential 75 may be disposed on the housing of the differential 75.
  • the main reducer driven gear 74 may be a bevel gear, but is not limited thereto.
  • first output shaft output gear 211 is fixedly disposed on the first output shaft 921, the first output shaft output gear 211 rotates synchronously with the first output shaft 921, and the first output shaft output gear 211 and the final drive driven gear 74 The transmission is engaged so that power via the first output shaft 921 can be transmitted from the first output shaft output gear 211 to the final drive driven gear 74 and the differential 75.
  • the second output shaft 922 is fixedly disposed with a second output shaft output gear 212, the second output shaft output gear 212 rotates synchronously with the second output shaft 922, and the second output shaft output gear 212 and the final drive driven gear
  • the meshing drive 74 is such that power through the second output shaft 922 can be transmitted from the second output shaft output gear 212 to the final drive driven gear 74 and the differential 75.
  • the motor power shaft first gear 31 can be used to output power through the motor power shaft 931, and thus the motor power shaft first gear 31 is also meshed with the final drive driven gear 74.
  • the power battery 3 is used to supply power to the power motor 2; the secondary motor 5 is connected to the engine 1, and the secondary motor 5 is also coupled to the power motor 2, the DC-DC converter 4, and the power battery, respectively. 3 is connected, and the sub-motor 5 realizes at least one of charging the power battery 3, supplying power to the power motor 2, and supplying power to the DC-DC converter 4 when power is generated by the engine 1.
  • the engine 1 outputs power to the mixing through the clutch 6.
  • the wheel 7 of the power car is used to output the driving force to the wheel 7 of the hybrid car. That is,
  • the power system of the embodiment of the present invention can provide the hybrid vehicle with normal driving through the engine 1 and/or the power motor 2
  • the power source of the power system may be the engine 1 and the power motor 2,
  • either of the engine 1 and the power motor 2 can separately output power to the wheels 7, or the engine
  • the power motor 2 can simultaneously output power to the wheel 7.
  • the power battery 3 is used to supply power to the power motor 2; the sub motor 5 is connected to the engine 1, for example, the sub motor 5 can be connected to the engine 1 through the train wheel end of the engine 1.
  • the sub-motors 5 are respectively connected to the power motor 2, the DC-DC converter 4, and the power battery 3, and the sub-motor 5 performs power generation by the engine 1 to charge the power battery 3, supply power to the power motor 2, and supply DC- At least one of the DC converter 4 power supply.
  • the engine 1 can drive the secondary motor 5 to generate electricity, and the electric energy generated by the secondary motor 5 can be supplied to at least one of the power battery 3, the power motor 2, and the DC-DC converter 4.
  • the engine 1 can drive the sub-motor 5 to generate electricity while outputting power to the wheel 7, or can separately drive the sub-motor 5 to generate electricity.
  • the power motor 2 and the sub-motor 5 respectively serve as a drive motor and a generator, and the sub-motor 5 has a high power generation and power generation efficiency at a low speed, thereby meeting the power demand of the low-speed travel, and maintaining the low speed of the whole vehicle.
  • the electric balance maintains the low speed smoothness of the whole vehicle and improves the dynamic performance of the whole vehicle.
  • the secondary motor 5 may be a BSG (Belt-driven Starter Generator) motor.
  • the sub-motor 5 belongs to a high-voltage motor.
  • the power generation voltage of the sub-motor 5 is equivalent to the voltage of the power battery 3, so that the electric energy generated by the sub-motor 5 can directly charge the power battery 3 without voltage conversion, and can also directly Power motor 2 and/or DC-DC converter 4 are powered.
  • the sub-motor 5 is also a high-efficiency generator. For example, when the sub-motor 5 is driven by the engine 1 at an idle speed, the power generation efficiency of 97% or more can be achieved.
  • the sub-motor 5 can be used to start the engine 1, that is, the sub-motor 5 can have a function of starting the engine 1, for example, when the engine 1 is started, the sub-motor 5 can drive the crankshaft of the engine 1. In order to bring the piston of the engine 1 to the ignition position, the starting of the engine 1 is achieved, whereby the sub-motor 5 can realize the function of the starter in the related art.
  • both the engine 1 and the power motor 2 can be used to drive the wheels 7 of the hybrid vehicle.
  • the engine 1 can drive a first wheel of a hybrid vehicle such as a pair of front wheels 71 (including a left front wheel and a right front wheel), and the power motor 2 can drive a force to a second wheel of the hybrid vehicle.
  • a pair of rear wheels 72 (including a left rear wheel and a right rear wheel).
  • the driving force of the power system is output to the pair of front wheels 71 and the pair of rear wheels 72, respectively, and the entire vehicle can be driven by four wheels. Drive mode.
  • the power system of the hybrid vehicle further includes a first transmission 91 and a second transmission 92, wherein the engine 1 passes the clutch 6 and the first transmission 91 outputs power to a first wheel of the hybrid vehicle, such as a pair of front wheels 71, and the power motor 2 outputs a driving force to the second wheel of the hybrid vehicle, such as a pair of rear wheels 72, through the second transmission 92.
  • the clutch 6 and the first transmission 91 can be integrally arranged.
  • the sub-motor 5 further includes a first controller 51
  • the power motor 2 further includes a second controller 21, and the sub-motor 5 passes the first control.
  • the unit 51 is connected to the power battery 3 and the DC-DC converter 4, respectively, and is connected to the power motor 2 through the first controller 51 and the second controller 21.
  • the first controller 51 is connected to the second controller 21, the power battery 3, and the DC-DC converter 4, respectively, and the first controller 51 may have an AC-DC conversion unit, and the secondary motor 5 generates AC power when generating electricity.
  • the AC-DC conversion unit converts the alternating current generated by the high-voltage motor 2 into a high-voltage direct current such as 600V high-voltage direct current to realize at least one of charging the power battery 3, supplying power to the power motor 2, and supplying power to the DC-DC converter 4. .
  • the second controller 21 may have a DC-AC conversion unit
  • the first controller 51 may convert the alternating current generated by the secondary motor 5 into high-voltage direct current
  • the DC-AC conversion unit may further convert the first controller 51.
  • the high voltage direct current is converted into alternating current to supply power to the power motor 2.
  • the sub-motor 5 when the sub-motor 5 performs power generation, the sub-motor 5 can charge the power battery 3 through the first controller 51 and/or supply power to the DC-DC converter 4. Further, the sub motor 5 can also supply power to the power motor 2 through the first controller 51 and the second controller 21.
  • the DC-DC converter 4 is also connected to the power battery 3.
  • the DC-DC converter 4 is also connected to the power motor 2 via a second controller 21.
  • the first controller 51 has a first DC terminal DC1
  • the second controller 21 has a second DC terminal DC2
  • the DC-DC converter 4 has a third DC terminal DC3.
  • the third DC terminal DC3 of the DC-DC converter 4 can be connected to the first DC terminal DC1 of the first controller 51 to perform DC-DC on the high voltage DC power output by the first controller 51 through the first DC terminal DC1. Transform.
  • the third DC terminal DC3 of the DC-DC converter 4 can also be connected to the power battery 3, and the first DC terminal DC1 of the first controller 51 can be connected to the power battery 3 to pass the first controller 51.
  • the first DC terminal DC1 outputs high voltage direct current to the power battery 3 to charge the power battery 3.
  • the third DC terminal DC3 of the DC-DC converter 4 can also be connected to the second DC terminal DC2 of the second controller 21, and the first DC terminal DC1 of the first controller 51 can be connected to the second controller.
  • the second DC terminal DC2 of 21 is connected such that the first controller 51 outputs high voltage direct current to the second controller 21 through the first DC terminal DC1 to supply power to the power motor 2.
  • the DC-DC converter 4 is also respectively connected to the first electric device 10 and the low-voltage battery 20 in the hybrid vehicle to supply power to the first electric device 10 and the low-voltage battery 20, and the low-voltage battery 20 It is also connected to the first electrical device 10.
  • the DC-DC converter 4 further has a fourth DC terminal DC4, and the DC-DC converter 4 can pass the high voltage DC power and/or the sub motor 5 output from the power battery 3 through the first
  • the high voltage direct current outputted by the controller 51 is converted into low voltage direct current, and the low voltage direct current is output through the fourth direct current terminal DC4.
  • the fourth DC terminal DC4 of the DC-DC converter 4 can be connected to the first electrical device 10 to supply power to the first electrical device 10, wherein the first electrical device 10 can be a low-voltage electrical device, including but not Limited to car lights, radios, etc.
  • the fourth DC terminal DC4 of the DC-DC converter 4 can also be coupled to the low voltage battery 20 to charge the low voltage battery 20.
  • the low voltage battery 20 is connected to the first electrical device 10 to supply power to the first electrical device 10.
  • the low voltage battery 20 can be the first electrical device. 10 power supply, thus ensuring the low-voltage power consumption of the whole vehicle, ensuring that the whole vehicle can be driven in pure fuel mode and improve the mileage of the whole vehicle.
  • the third DC terminal DC3 of the DC-DC converter 4 is connected to the first controller 51
  • the fourth DC terminal DC4 of the DC-DC converter 4 is connected to the first electrical device 10 and the low voltage battery 20, respectively, when the power motor 2.
  • the sub-motor 5 can generate power to supply power to the first electric device 10 and/or charge the low-voltage battery 20 through the first controller 51 and the DC-DC converter 4. In order to make the hybrid car run in pure fuel mode.
  • the first controller 51 can convert the alternating current generated by the secondary motor 5 into high-voltage direct current, and the DC-DC converter 4 can perform the first control.
  • the high voltage direct current converted by the unit 50 is converted to low voltage direct current to supply power to the first electrical device 10 and/or to charge the low voltage battery 20.
  • the sub motor 5 and the DC-DC converter 4 have a separate power supply path.
  • the power motor 2, the second controller 21, and the power battery 3 fail, the electric drive cannot be realized.
  • the sub motor 5 and the DC are passed.
  • the separate power supply channel of the DC converter 4 can ensure the low-voltage power consumption of the whole vehicle, ensuring that the whole vehicle can be driven in pure fuel mode and improve the mileage of the whole vehicle.
  • the first controller 51, the second controller 21 and the power battery 3 are also respectively connected to the second electrical device 30 in the hybrid vehicle.
  • the first DC terminal DC1 of the first controller 51 can be connected to the second electrical device 30, and when the secondary motor 5 performs power generation, the secondary motor 5 can pass through the first controller. 51 directly supplies power to the second electrical device 30.
  • the AC-DC conversion unit of the first controller 51 can also convert the alternating current generated by the secondary motor 5 into high-voltage direct current and directly supply power to the second electrical device 30.
  • the power battery 3 can also be coupled to the second electrical device 30 to power the second electrical device 30. That is to say, the high voltage direct current output from the power battery 3 can be directly supplied to the second electric device 30.
  • the second electrical device 30 can be a high-voltage electrical device, and can include, but is not limited to, an air conditioner compressor, a PTC (Positive Temperature Coefficient) heater, and the like.
  • power generation by the sub-motor 5 makes it possible to charge the power battery 3, or supply power to the power motor 2, or supply power to the first electric device 10 and the second electric device 30.
  • the power battery 3 can supply power to the power motor 2 through the second controller 21, or supply power to the second electric device 30, and can also supply power to the first electric device 10 and/or the low-voltage battery 20 through the DC-DC converter 4. This enriches the power supply mode of the whole vehicle, meets the power demand of the whole vehicle under different working conditions, and improves the performance of the whole vehicle.
  • the low voltage may refer to a voltage of 12V (volts) or 24V
  • the high voltage may refer to a voltage of 600V, but is not limited thereto.
  • the engine can be prevented from participating in driving at a low speed, and the clutch is not used, the clutch wear or the slip is reduced, the feeling of frustration is reduced, and the comfort is improved, and At low speeds, the engine can be operated in an economical area, and only power generation is not driven, fuel consumption is reduced, engine noise is reduced, low-speed electric balance and low-speed smoothness of the vehicle are maintained, and overall vehicle performance is improved.
  • the secondary motor can directly charge the power battery, and can also supply power for low-voltage devices such as low-voltage batteries, first electrical equipment, etc., and can also be used as a starter.
  • the vehicle body control module BCM the vehicle controller VCU, the motor control module MCU, and the engine control module ECM.
  • the body control module BCM is configured to send start request information to the vehicle controller VCU, the motor control module MCU, and the engine control module ECM, respectively, after detecting the start signal of the hybrid vehicle.
  • the backup module When a backup module is set in one of the BCM, the MCU, and the ECM, the backup module is configured to determine whether the feedback information generated by the VCU based on the startup request information is received within a preset time, and the VCU is not received based on the preset time. When the feedback information generated by the request information is activated, a self-test command is transmitted to the transmission control module TCU, the battery management module BMS, and the sub-motor controller, respectively.
  • the backup module receives the self-test result information fed back by the TCU, the BMS, and the sub-motor controller, and determines that the hybrid vehicle meets the start-up condition according to the self-test result information, and detects that the BMS fails, and controls the hybrid vehicle to adopt the pure fuel mode or the series connection. Mode or hybrid mode.
  • the VCU simultaneously transmits the generated feedback information to the BCM, MCU, and ECM.
  • the backup module if the backup module receives the feedback information generated by the VCU within a preset time, the backup operation is stopped.
  • the secondary motor 5 may be a BSG (Belt-driven Starter Generator) motor.
  • the sub-motor 5 belongs to a high-voltage motor.
  • the power generation voltage of the sub-motor 5 is equivalent to the voltage of the power battery 3, so that the electric energy generated by the sub-motor 5 can directly charge the power battery 3 without voltage conversion, and can directly power the power.
  • the motor 2 and/or the DC-DC converter 4 are powered.
  • the sub-motor 5 is also a high-efficiency generator. For example, when the sub-motor 5 is driven by the engine 1 at an idle speed, the power generation efficiency of 97% or more can be achieved.
  • the backup module is further configured to: if the detection fails to identify the ECM and the MCU, determine that the hybrid vehicle does not satisfy the startup condition, and prohibit the hybrid vehicle from starting.
  • the backup module is further configured to: if the TCU fails and the sub motor controller is normal according to the self-test result information, control the engine 1 to drive the sub-motor 5 to generate power to power the motor 2 Power is supplied to drive the wheels of the hybrid vehicle through the power motor 2 to cause the hybrid vehicle to travel in series mode.
  • the backup module is further configured to: if the TCU fails and the secondary motor controller fails according to the self-test result information, determine that the hybrid vehicle does not satisfy the starting condition, and prohibit the hybrid vehicle from starting.
  • the backup module is further configured to: if the TCU is normal according to the self-test result information and the secondary motor controller fails, drive the wheel of the hybrid vehicle through the engine 1 to make the hybrid vehicle use pure fuel Mode driving.
  • the backup module is further configured to: if the TCU is normal according to the self-test result information and the sub-motor controller is normal, drive the wheel of the hybrid vehicle through the engine to make the hybrid vehicle pure Fuel mode.
  • the backup module is further configured to: if the TCU is normal according to the self-test result information and the sub-motor controller is normal, drive the wheel of the hybrid vehicle through the engine 1 and control the engine 1 to drive the sub-motor 5 Power generation is performed to supply power to the power motor 2, and the wheels of the hybrid vehicle are driven by the power motor 2 to drive the hybrid vehicle in a hybrid mode.
  • the power system of the hybrid vehicle transmits the start request information to the vehicle controller VCU, the motor control module MCU, and the engine control module ECM after detecting the start signal of the hybrid vehicle through the body control module BCM, and then sends the start request information to the vehicle controller VCU, the motor control module MCU, and the engine control module ECM, respectively.
  • the backup module When a backup module is set in one of the BCM, the MCU, and the ECM, the backup module does not receive the feedback information generated by the VCU based on the startup request information within a preset time to the transmission control module TCU, the battery management module BMS, and the vice
  • the motor controller sends a self-test command, and receives the self-test result information fed back by the TCU, the BMS, and the sub-motor controller, and finally controls the hybrid vehicle according to the self-test result information to determine that the hybrid vehicle meets the start-up condition and detects that the BMS is invalid. Drive in pure fuel mode or in series or hybrid mode.
  • the hybrid vehicle can still be driven to control the hybrid vehicle to safely travel to the target location, thereby ensuring the safety of the vehicle.
  • the present invention also provides a computer readable storage medium having instructions stored therein, and when the instructions are executed, the hybrid vehicle executes the vehicle control method of the above-described embodiment of the present invention.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种混合动力汽车的整车控制方法,包括:车身控制模块BCM检测到混合动力汽车的启动信号后,分别向整车控制器VCU、电机控制模块MCU和发动机控制模块ECM发送启动请求信息;BCM、MCU和ECM中的一个里面设置有备份模块时,备份模块在预设时间内没有收到VCU基于启动请求信息所生成的反馈信息时分别向变速箱控制模块TCU、电池管理模块BMS和副电机控制器发送自检命令;备份模块根据接收到的TCU、BMS和副电机控制器反馈的自检结果信息判断混合动力汽车满足启动条件且检测获知BMS失效时,控制混合动力汽车以纯燃油模式或者串联模式或者混联模式行驶。还涉及一种混合动力汽车的动力系统。该整车控制方法在VCU和BMS失效时,仍能够控制混合动力汽车安全跛行至目标地点,保证了整车安全性。

Description

混合动力汽车的整车控制方法和动力系统
本申请要求于2017年03月31日提交中国专利局、申请号为201710210962.3、发明名称为“混合动力汽车的整车控制方法和动力系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及汽车控制技术领域,尤其涉及一种混合动力汽车的整车控制方法和动力系统。
背景技术
通常,混合动力汽车中的整车控制器是混合动力汽车整车控制系统的核心部件。整车控制器通过采集各种信号,并做出相应的判断后,控制各个部件进行相应操作,实现对整车进行控制。
相关技术中,为了保证整车的安全性,在整车控制器失效时,通过关掉发电机以及切断母线高压系统,禁止车辆上电,以使车辆无法行驶。然而,上述方式使得在整车控制器失效时,车辆只能停在原地等待救援,安全性低。
发明内容
本发明的目的旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的第一个目的在于提出一种混合动力汽车的整车控制方法,该方法在VCU(Vehicle Control Unit,整车控制器)和BMS失效时,仍能够控制混合动力汽车安全跛行至目标地点,保证了整车安全性。
本发明的第二个目的在于提出一种计算机可读存储介质。
本发明的第三个目的在于提出一种混合动力汽车的动力系统。
为达上述目的,本发明第一方面实施例提出了一种混合动力汽车的整车控制方法,包括:车身控制模块(Body Control Module,BCM)检测到所述混合动力汽车的启动信号后,分别向整车控制器(Vehicle Control Unit,VCU)、电机控制单元(MCU,Motor Control Unit)和发动机控制模块(Engine Control Module,ECM)发送启动请求信息;所述BCM、所述MCU和所述ECM中的其中一个设置有备份模块时,所述备份模块若在预设时间内没有收到VCU基于所述启动请求信息所生成的反馈信息,则分别向变速箱控制模块TCU、电池管理模块BMS和副电机控制器发送自检命令;所述备份模块接收TCU、BMS和所述 副电机控制器反馈的自检结果信息,并根据所述自检结果信息判断所述混合动力汽车满足启动条件、且检测获知BMS失效时,控制所述混合动力汽车以纯燃油模式或者串联模式或者混联模式行驶。
本发明实施例的混合动力汽车的整车控制方法,通过车身控制模块BCM检测到混合动力汽车的启动信号后,分别向整车控制器VCU、电机控制模块MCU和发动机控制模块ECM发送启动请求信息,然后BCM、MCU和ECM中的其中一个设置有备份模块时,备份模块在预设时间内没有收到VCU基于启动请求信息所生成的反馈信息时分别向变速箱控制模块TCU、电池管理模块BMS和副电机控制器发送自检命令,并接收TCU、BMS和副电机控制器反馈的自检结果信息,最后根据自检结果信息判断混合动力汽车满足启动条件、且检测获知BMS失效时,控制混合动力汽车以纯燃油模式或者串联模式或者混联模式行驶。由此,在VCU和BMS失效时,仍能够使得混合动力汽车行驶,控制混合动力汽车安全跛行至目标地点,保证了整车安全性。
为达上述目的,本发明第二方面实施例提出了一种计算机可读存储介质,具有存储于其中的指令,当所述指令被执行时,所述混合动力汽车执行第一方面实施例所述的整车控制方法。
为达上述目的,本发明第二方面实施例提出了一种混合动力汽车的动力系统,包括:发动机,发动机通过离合器将动力输出到所述混合动力汽车的车轮;动力电机,所述动力电机用于输出驱动力至所述混合动力汽车的车轮;动力电池,所述动力电池用于给所述动力电机供电;DC-DC变换器;与所述发动机相连的副电机,所述副电机分别与所述动力电机、所述DC-DC变换器和动力电池相连,所述副电机在所述发动机的带动下进行发电时以实现给所述动力电池充电、给所述动力电机供电、给所述DC-DC变换器供电中的至少一个;车身控制模块BCM、整车控制器VCU、电机控制模块MCU和发动机控制模块ECM,其中,车身控制模块BCM用于检测到所述混合动力汽车的启动信号后,分别向所述整车控制器VCU、电机控制模块MCU和发动机控制模块ECM发送启动请求信息;所述BCM、所述MCU和所述ECM中的一个里面设置有备份模块时,所述备份模块用于判断在预设时间内是否收到VCU基于所述启动请求信息所生成的反馈信息,并在预设时间内没有收到VCU基于所述启动请求信息所生成的反馈信息时,则分别向变速箱控制模块TCU、电池管理模块BMS和副电机控制器发送自检命令;所述备份模块还用于接收TCU、BMS和所述副电机控制器反馈的自检结果信息,并根据所述自检结果信息判断所述混合动力汽车满足启动条件、且检测获知BMS失效时,控制所述混合动力汽车以纯燃油模式或者串联模式或者混联模式行驶。
本发明实施例的混合动力汽车的动力系统,通过车身控制模块BCM检测到混合动力汽车的启动信号后,分别向整车控制器VCU、电机控制模块MCU和发动机控制模块ECM发送启动请求信息,然后BCM、MCU和ECM中的一个里面设置有备份模块时,备份模块在预设时间内没有收到VCU基于启动请求信息所生成的反馈信息时分别向变速箱控制模块TCU、电池管理模块BMS和副电机控制器发送自检命令,并接收TCU、BMS和副电机控制器反馈的自检结果信息,最后根据自检结果信息判断混合动力汽车满足启动条件、且检测获知BMS失效时,控制混合动力汽车以纯燃油模式或者串联模式或者混联模式行驶。由此,在VCU和BMS失效时,仍能够使得混合动力汽车行驶,控制混合动力汽车安全跛行至目标地点,保证了整车安全性。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的混合动力汽车的整车控制方法的流程图;
图2是根据本发明一个实施例的整车控制器控制的示意图;
图3是根据本发明一个实施例的VCU正常时工作模式的示意图;
图4是根据本发明一个实施例的VCU失效后ECM控制的示意图;
图5是根据本发明一个实施例的TCU失效且副电机控制器正常时串联模式的示意图;
图6是根据本发明一个实施例的TCU正常且副电机控制器失效时纯燃油模式的示意图;
图7是根据本发明一个实施例的TCU正常且副电机控制器正常时混联模式的示意图;
图8是根据本发明一个实施例的VCU失效时工作模式的示意图;
图9是根据本发明一个实施例的混合动力汽车的动力系统的结构示意图。
图10是根据本发明一个实施例的混合动力汽车的动力系统的结构示意图;
图11是根据本发明一个实施例的混合动力汽车的动力系统的方框示意图;
图12是根据本发明一个实施例的发动机与对应车轮之间的传动结构的示意图;
图13是根据本发明另一个实施例的发动机与对应车轮之间的传动结构的示意图;
图14是根据本发明另一个实施例的混合动力汽车的动力系统的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图描述本发明实施例的混合动力汽车的整车控制方法和动力系统。
图1是根据本发明一个实施例的混合动力汽车的整车控制方法的流程图。
通常,混合动力汽车中的整车控制器是混合动力汽车整车控制系统的核心部件。为了本领域人员更加清楚整车控制器作为核心部件的具体控制过程,下面结合图2和图3具体说明如下:
图2是根据本发明一个实施例的整车控制器控制的示意图。如图2所示,整车控制器能够采集加速踏板输入的信号、制动踏板输入的信号、以及其他部件信号。整车控制器并可以根据上述信号做出相应的判断后,通过CAN网络总线控制BMS、MCU、ECM和BCM等进行相应操作,以及实现对网络信息进行管理、调度、分析和计算。
更具体地,图3是根据本发明一个实施例现有技术中VCU正常时工作模式的示意图。如图3所示:
步骤1、BCM检测到驾驶员有启动操作,即BCM检测到混合动力汽车的启动信号后,将启动请求信息分别发送给VCU、MCU和ECM。
步骤2、VCU收到启动请求信息后,分别向TCU、BMS和副电机控制器发送自检命令。
步骤3、TCU、BMS和副电机控制器根据自检命令进行自检后,将自检结果信息发送给VCU。在本发明的一个实施例中,副电机可以为BSG。
步骤4、VCU能够根据上述自检结果满足启动条件时,能够向MCU发启动请求信号和向ECM发启动请求信号。
步骤5、在MCU接收BCM发送的启动请求信息后,MCU和ECM对码。
步骤6、在MCU和ECM对码成功时,MCU和ECM分别将“启动允许”信号发给VCU。
步骤7、VCU将启动命令发给BCM。
由此,通过上述描述能够更加清楚了解VCU如何实现整车控制,控制混合动力汽车启动。
另外,VCU能够针对车型的不同配置,进行相应的能量管理,实现整车的驱动控制、能量优化控制、制动回馈控制和网络管理控制。当整车控制器失效时,通过关掉发电机及切断母线高压系统,禁止混合动力汽车上电,以使混合动力汽车无法行驶。
可以理解的是,混合动力汽车整车控制器的一个重要功能就是模式选择和扭矩分配,一旦整车控制器失效,整车无法进行有效的模式选择和扭矩分配,发动机和电机无法再进行正常的驱动。
因此,按照上述处理方式是直接禁止混合动力汽车上电,并关掉发电机及切断母线高压系统。混合动力汽车只能停在原地等待救援,不能够保证整车安全性。
为了避免上述问题,本发明提出一种混合动力汽车的整车控制方法,能够在VCU失效时,仍能够使得整车行驶,控制混合动力汽车安全跛行至目标地点,保证了整车安全性。具体如下:
如图1所示,该混合动力汽车的整车控制方法包括以下步骤:
步骤101,车身控制模块BCM检测到混合动力汽车的启动信号后,分别向整车控制器VCU、电机控制模块MCU和发动机控制模块ECM发送启动请求信息。
应当理解的是,驾驶员可以通过车辆钥匙、按压车辆上的ON键等方式启动车辆。在驾驶员通过上述任一种方式启动车辆后,BCM能够检测到驾驶员的启动操作,并分别向VCU、MCU和ECM发送启动请求。
需要说明的是,无论在VCU正常时工作模式中,还是在VCU失效时工作模式中,BCM检测到驾驶员有启动操作,都分别向VCU、MCU和ECM发送启动请求信息。
步骤102,BCM、MCU和ECM中的一个里面设置有备份模块时,备份模块若在预设时间内没有收到VCU基于启动请求信息所生成的反馈信息,则分别向变速箱控制模块TCU、电池管理模块BMS和副电机控制器发送自检命令。
具体地,可以根据实际应用需要选择BCM、MCU和ECM中一个都可以里面设置有具有备份功能的模块,即备份模块。
需要说明的是,在VCU正常时工作模式下BCM发送启动请求信息后,VCU将所生成的反馈信息同时发送给BCM、MCU和ECM。
具体地,当备份模块若在预设时间内没有收到VCU基于启动请求信息所生成的反馈信息(即VCU失效),需要分别向变速箱控制模块TCU、电池管理模块BMS和副电机控制器发送自检命令。
其中,预设时间可以根据实际应用需要进行选择设置。一般,预设时间是在VCU正常时工作模式下BCM发送启动请求后,VCU响应并能够发送给ECM和MCU反馈信息的最长允许时间间隔。
作为一种示例,在VCU失效时,ECM作为备份模块临时启用整车控制辅助功能,整合各个模块。图4是根据本发明一个实施例的VCU失效后ECM控制的示意图。
如图4所示,ECM能够采集加速踏板输入的信号、制动踏板输入的信号、以及其他部件信号。ECM并可以根据上述信号做出相应的判断后,通过CAN网络总线控制BMS、MCU、ECM和BCM等进行相应操作。
需要说明的是,BCM和MCU也可以作为备份模块实时上述控制过程。
需要说明的是,备份模块若在预设时间内接收到VCU所生成的反馈信息,备份模块停止工作。
在本发明的一个实施例中,副电机可以为BSG。
步骤103,备份模块接收TCU、BMS和副电机控制器反馈的自检结果信息,并根据自检结果信息判断混合动力汽车满足启动条件、且检测获知BMS失效时,控制混合动力汽车以纯燃油模式或者串联模式或者混联模式行驶。
作为一种示例,MCU和ECM对码的过程可以是MCU向ECM发送携带第一数据的对码请求指令,MCU接收ECM反馈的携带第二数据的对码响应指令,若根据第二数据确定对码成功,则向ECM发送对码成功指令。其中对码是指MCU向ECM发送携带第一数据的对码请求指令,MCU接收ECM反馈的携带第二数据的对码响应指令,若根据第二数据确定对码成功,则向ECM发送对码成功指令。
需要说明的是,备份模块若检测获知ECM与MCU对码失败,则判断混合动力汽车不满足启动条件,并禁止混合动力汽车启动。
需要说明的是,本实施例中,BMS失效包括BMS本身故障和/或动力电池故障。
需要说明的是,备份模块若根据自检结果信息识别到TCU失效且副电机控制器失效,则判断混合动力汽车不满足启动条件,并禁止混合动力汽车启动。
具体地,根据自检结果信息判断混合动力汽车满足启动条件、且检测获知BMS失效时,控制混合动力汽车以纯燃油模式或者串联模式或者混联模式行驶有很多种,举例说明如下:
第一种示例,备份模块若根据自检结果信息识别到TCU失效且副电机控制器正常,则控制发动机带动副电机进行发电,以给动力电机供电,通过动力电机驱动混合动力汽车的车轮,以使混合动力汽车以串联模式行驶,具体如图5所示。
第二种示例,备份模块若根据自检结果信息识别到TCU正常且副电机控制器失效,则通过发动机驱动混合动力汽车的车轮,以使混合动力汽车以纯燃油模式行驶,具体如图6所示。
第三种示例,备份模块若根据自检结果信息识别到TCU正常且副电机控制器正常,则通过发动机驱动混合动力汽车的车轮,以使混合动力汽车以纯燃油模式行驶,具体如图6所示。
第四种示例,备份模块若根据自检结果信息识别到TCU正常且副电机控制器正常,则通过发动机驱动混合动力汽车的车轮,并控制发动机带动副电机进行发电,以给动力电机供电,同时通过动力电机驱动混合动力汽车的车轮,以使混合动力汽车以混联模式行驶,具体如图7所示。
本发明实施例的混合动力汽车的整车控制方法,通过车身控制模块BCM检测到混合动力汽车的启动信号后,分别向整车控制器VCU、电机控制模块MCU和发动机控制模块ECM发送启动请求信息,然后BCM、MCU和ECM中的一个里面设置有备份模块时,备份模块在预设时间内没有收到VCU基于启动请求信息所生成的反馈信息时分别向变速箱控制模块TCU、电池管理模块BMS和副电机控制器发送自检命令,并接收TCU、BMS和副电机控制器反馈的自检结果信息,最后根据自检结果信息判断混合动力汽车满足启动条件、且检测获知BMS失效时,控制混合动力汽车以纯燃油模式或者串联模式或者混联模式行驶。由此,在VCU和BMS失效时,仍能够使得混合动力汽车行驶,控制混合动力汽车安全跛行至目标地点,保证了整车安全性。
为了本领域人员更加清楚在VCU失效时如何进行各种操作控制,下面结合图8具体描述如下:
图8是根据本发明一个实施例的VCU失效时工作模式的示意图。如图8所示:
步骤1、BCM检测到驾驶员有启动操作,即BCM检测到混合动力汽车的启动信号后,将启动请求信息分别发送给VCU、MCU和ECM。
步骤2、ECM作为备份模块在预设时间内没有收到VCU发送的反馈信息,则分别向TCU、BMS和BSG控制器发送自检命令。
步骤3、TCU、BMS和BSG控制器根据自检命令进行自检后,将自检结果信息发送给VCU。
步骤4、在MCU接收BCM发送的启动请求信息后,MCU和ECM对码。
步骤5、在MCU和ECM对码成功且自检结果满足启动条件ECM发“启动允许”给BCM。
由此,在VCU和BMS失效时,仍能够使得混合动力汽车行驶,控制混合动力汽车安全跛行至目标地点,保证了整车安全性。
为了实现上述实施例,本发明还提出一种混合动力汽车的动力系统。
图9是根据本发明一个实施例的混合动力汽车的动力系统的结构示意图。
如图9所示,该混合动力汽车的动力系统包括:发动机1、动力电机2、动力电池3、DC-DC变换器4和副电机5。
结合图9至图11所示,结合图9至图11所示,发动机1通过离合器6将动力输出到混合动力汽车的车轮7;动力电机2用于输出驱动力至混合动力汽车的车轮7。也就是说,本发明实施例的动力系统可通过发动机1和/或动力电机2为混合动力汽车正常行驶提供动力。在本发明的一些实施例中,动力系统的动力源可以是发动机1和动力电机2,也就是说,发动机1和动力电机2中的任一个可单独输出动力至车轮7,或者,发动机1和动力电机2可同时输出动力至车轮7。
动力电池3用于给动力电机2供电;副电机5与发动机1相连,例如,副电机5可通过发动机1的轮系端与发动机1相连。副电机5分别与动力电机2、DC-DC变换器4和动力电池3相连,副电机5在发动机1的带动下进行发电时以实现给动力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。换言之,发动机1可带动副电机5发电,副电机5产生的电能可提供至动力电池3、动力电机2和DC-DC变换器4中的至少一个。应当理解的是,发动机1可在输出动力到车轮7的同时带动副电机5发电,也可在单独带动副电机5发电。
由此,动力电机2和副电机5分别一一对应充当驱动电机和发电机,由于低速时副电机5具有较高的发电功率和发电效率,从而可以满足低速行驶的用电需求,可以维持整车低速电平衡,维持整车低速平顺性,提升整车的动力性能。
在一些实施例中,副电机5可为BSG(Belt-driven Starter Generator,皮带传动启动/发电一体化电机)电机。需要说明的是,副电机5属于高压电机,例如副电机5的发电电压与动力电池3的电压相当,从而副电机5产生的电能可以不经过电压变换直接给动力电池3充电,还可直接给动力电机2和/或DC-DC变换器4供电即还可直接给动力电机2和DC-DC变换器4的任意一个或两个供电。并且副电机5也属于高效发电机,例如在发动机1怠速转速下带动副电机5发电即可实现97%以上的发电效率。
另外,在本发明的一些实施例中,副电机5可用于启动发动机1,即副电机5可具有实现启动发动机1的功能,例如当启动发动机1时,副电机5可带动发动机1的曲轴转动,以使发动机1的活塞达到点火位置,从而实现发动机1的启动,由此副电机5可实现相关技术中启动机的功能。
如上所述,发动机1和动力电机2均可用于驱动混合动力汽车的车轮7。例如,如图10所示,发动机1和动力电机2共同驱动混合动力汽车的同一车轮例如一对前轮71(包括左前轮和右前轮)。换言之,当发动机1和动力电机2共同驱动一对前轮71时,动力系统的驱动力均输出至一对前轮71,整车可采用两驱的驱动方式。
进一步地,在发动机1和动力电机2共同驱动同一车轮时,结合图10所示,混合动力 汽车的动力系统还包括差速器8、主减速器9和变速器90,其中,发动机1通过离合器6、变速器9、主减速器9以及差速器8将动力输出到混合动力汽车的第一车轮例如一对前轮71,动力电机2通过主减速器9以及差速器8输出驱动力至混合动力汽车的第一车轮例如一对前轮71。其中,离合器6与变速器90可集成设置。
进一步地,在本发明的一些实施例中,如图9至图11所示,副电机5还包括第一控制器51,动力电机2还包括第二控制器21,副电机5通过第一控制器51分别连接到动力电池3和所述DC-DC变换器4,并通过第一控制器51和第二控制器21连接到动力电机2。
具体来说,第一控制器51分别与第二控制器21、动力电池3和DC-DC变换器4相连,第一控制器51可具有AC-DC变换单元,副电机5发电时可产生交流电,AC-DC变换单元可将高压电机2发电产生的交流电变换为高压直流电例如600V高压直流电,以实现给动力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。
第二控制器21可具有DC-AC变换单元,第一控制器51可将副电机5发电产生的交流电变换为高压直流电,DC-AC变换单元可再将第一控制器51变换出的高压直流电变换为交流电,以给动力电机2供电。
换言之,如图11所示,在副电机5进行发电时,副电机5可通过第一控制器51给动力电池3充电和/或给DC-DC变换器4供电。也就是说,副电机5可通过第一控制器51实现给动力电池3充电和给DC-DC变换器4供电中的任意一个或两个。此外,副电机5还可通过第一控制器51和第二控制器21给动力电机2供电。
进一步地,如图9至图11所示,DC-DC变换器4还与动力电池3相连。DC-DC变换器4还通过第二控制器21与动力电机2相连。
在一些实施例中,如图11所示,第一控制器51具有第一直流端DC1,第二控制器21具有第二直流端DC2,DC-DC变换器4具有第三直流端DC3,DC-DC变换器4的第三直流端DC3可与第一控制器51的第一直流端DC1相连,以对第一控制器51通过第一直流端DC1输出的高压直流电进行DC-DC变换。并且,DC-DC变换器4的第三直流端DC3还可与动力电池3相连,进而第一控制器51的第一直流端DC1可与动力电池3相连,以使第一控制器51通过第一直流端DC1输出高压直流电至动力电池3以给动力电池3充电。进一步地,DC-DC变换器4的第三直流端DC3还可与第二控制器21的第二直流端DC2相连,进而第一控制器51的第一直流端DC1可与第二控制器21的第二直流端DC2相连,以使第一控制器51通过第一直流端DC1输出高压直流电至第二控制器21以给动力电机2供电。
进一步地,如图11所示,DC-DC变换器4还分别与混合动力汽车中的第一电器设备 10和低压蓄电池20相连以给第一电器设备10和低压蓄电池20供电,且低压蓄电池20还与第一电器设备10相连。
在一些实施例中,如图11所示,DC-DC变换器4还具有第四直流端DC4,DC-DC变换器4可将动力电池3输出的高压直流电和/或副电机5通过第一控制器51输出的高压直流电转换为低压直流电,并通过第四直流端DC4输出该低压直流电。也就是说,DC-DC变换器4可将动力电池3输出的高压直流电和副电机5通过第一控制器51输出的高压直流电中的任意一个或两个转换为低压直流电,并通过第四直流端DC4输出该低压直流电。进一步地,DC-DC变换器4的第四直流端DC4可与第一电器设备10相连,以给第一电器设备10供电,其中,第一电器设备10可为低压用电设备,包括但不限于车灯、收音机等。DC-DC变换器4的第四直流端DC4还可与低压蓄电池20相连,以给低压蓄电池20充电。
并且,低压蓄电池20与第一电器设备10相连,以给第一电器设备10供电,特别地,在副电机5停止发电且动力电池3故障或电量不足时,低压蓄电池20可为第一电器设备10供电,从而保证整车的低压用电,确保整车可实现纯燃油模式行驶,提高整车行驶里程。
如上,DC-DC变换器4的第三直流端DC3与第一控制器51相连,DC-DC变换器4的第四直流端DC4分别与第一电器设备10和低压蓄电池20相连,当动力电机2、第二控制器21和动力电池3发生故障时,副电机5可进行发电以通过第一控制器51和DC-DC变换器4给第一电器设备10供电和/或给低压蓄电池20充电,以使混合动力汽车以纯燃油模式行驶。
换言之,当动力电机2、第二控制器21和动力电池3发生故障时,第一控制器51可将副电机5发电产生的交流电变换为高压直流电,DC-DC变换器4可将第一控制器50变换出的高压直流电变换为低压直流电,以给第一电器设备10供电和/或给低压蓄电池20充电。即以实现给第一电器设备10供电和给低压蓄电池20充电中的任意一个或两个。
由此,副电机5和DC-DC变换器4有一路单独供电通道,当动力电机2、第二控制器21和动力电池3发生故障时,无法实现电动驱动,此时通过副电机5和DC-DC变换器4的单独供电通道,可以保证整车的低压用电,确保整车可实现纯燃油模式行驶,提高整车行驶里程。
进一步结合图11的实施例,第一控制器51、第二控制器21和动力电池3还分别与混合动力汽车中的第二电器设备30相连。
在一些实施例中,如图11所示,第一控制器51的第一直流端DC1可与第二电器设备30相连,当副电机5进行发电时,副电机5可通过第一控制器51直接给第二电器设备30供电。换言之,第一控制器51的AC-DC变换单元还可将副电机5发电产生的交流电变换 为高压直流电,并直接给第二电器设备30供电。
动力电池3还可与第二电器设备30相连,以给第二电器设备30供电。即言,动力电池3输出的高压直流电可直接供给第二电器设备30。
其中,第二电器设备30可为高压电器设备,可包括但不限于空调压缩机、PTC(Positive Temperature Coefficient,正的温度系数)加热器等。
如上,通过副电机5发电,可实现为动力电池3充电、或为动力电机2供电、或为第一电器设备10和第二电器设备30供电。并且,动力电池3可通过第二控制器21为动力电机2供电,或为第二电器设备30供电,也可通过DC-DC变换器4为第一电器设备10和/或低压蓄电池20供电。由此丰富了整车供电方式,满足整车在不同工况下的用电需求,提升了整车的性能。
需要说明的是,在本发明实施例中,低压可指12V(伏)或24V的电压,高压可指600V的电压,但不限于此。
由此,本发明实施例的混合动力汽车的动力系统中,能够使发动机在低速时不参与驱动,进而不使用离合器,减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且在低速时能够使发动机工作在经济区域,只发电不驱动,减少油耗,降低发动机噪音,维持整车低速电平衡及低速平顺性,提升整车性能。而且,副电机能够直接为动力电池充电,同时也可为低压器件例如低压蓄电池、第一电器设备等供电,还可作启动机用。
下面结合图12详细描述混合动力汽车的动力系统的一个具体实施例,该实施例适用于发动机1和动力电机2共同驱动同一车轮的动力系统,即两驱混合动力汽车。需要说明的是,该实施例主要描述发动机1、动力电机2与车轮7之间的一种具体传动结构,特别是图10中变速器90的结构,其余部分与图9和图11的实施例基本相同,这里不再详细赘述。
还需要说明的是,下面实施例中的多个输入轴、多个输出轴和电机动力轴931及各轴上相关齿轮以及换挡元件等可用以构成图10中的变速器90。
在一些实施例中,如图9、图11和图12所示,混合动力汽车的动力系统主要包括发动机1、动力电机2、动力电池3、DC-DC变换器4、副电机5、多个输入轴(例如,第一输入轴911、第二输入轴912)、多个输出轴(例如,第一输出轴921、第二输出轴922)和电机动力轴931及各轴上相关齿轮以及换挡元件(如,同步器)。
如图12所示,发动机1通过离合器6例如图12示例中的双离合器2d将动力输出到混合动力汽车的车轮7。在发动机1与输入轴之间进行动力传递时,发动机1设置成通过双离合器2d可选择性地接合多个输入轴中的至少一个。换言之,在发动机1向输入轴传输动力时,发动机1能够选择性地与多个输入轴中的一个接合以传输动力,或者发动机1还能 够选择性地与多个输入轴中的两个或两个以上输入轴同时接合以传输动力。
例如,在图12的示例中,多个输入轴可以包括第一输入轴911和第二输入轴912两根输入轴,第二输入轴912可同轴地套设在第一输入轴911上,发动机1能够通过双离合器2d选择性地与第一输入轴911和第二输入轴912中的一个接合以传输动力。或者,特别地,发动机1还能与第一输入轴911和第二输入轴912同时接合以传输动力。当然,应当理解的是,发动机1还可同时与第一输入轴911和第二输入轴912断开。
多个输出轴可以包括第一输出轴921和第二输出轴922两根输出轴,第一输出轴921和第二输出轴922分别与第一输入轴911平行设置。
输入轴与输出轴之间可以通过挡位齿轮副进行传动。例如,每个输入轴上均设置有挡位主动齿轮,即言第一输入轴911和第二输入轴912中的每个输入轴上设置有挡位主动齿轮,每个输出轴上均设置有挡位从动齿轮,即言第一输出轴921和第二输出轴922中的每个输出轴上设置有挡位从动齿轮,挡位从动齿轮与挡位主动齿轮对应地啮合,从而构成多对速比不同的齿轮副。
在本发明的一些实施例中,输入轴与输出轴之间可以采用六挡传动,即具有一挡齿轮副、二挡齿轮副、三挡齿轮副、四挡齿轮副、五挡齿轮副和六挡齿轮副。但是,本发明并不限于此,对于本领域的普通技术人员而言,可以根据传动需要而适应性增加或减少挡位齿轮副的个数,并不限于本发明实施例中所示的六挡传动。
如图12所示,电机动力轴931设置成可与多个输出轴(例如,第一输出轴921、第二输出轴922)中的一个进行联动,通过电机动力轴931与输出轴中的所述一个进行联动,从而动力可在电机动力轴931与输出轴中的所述一个之间进行传递。例如,经该输出轴的动力(如来自发动机1输出的动力)可输出给电机动力轴931,或者经电机动力轴931的动力(如来自动力电机2输出的动力)也可输出给该输出轴。
需要说明的是,上述的“联动”可以理解为多个部件(例如,两个)关联运动,以两个部件联动为例,在其中一个部件运动时,另一个部件也随之运动。
例如,在本发明的一些实施例中,齿轮与轴联动可以理解为是在齿轮旋转时、与其联动的轴也将旋转,或者在该轴旋转时、与其联动的齿轮也将旋转。
又如,轴与轴联动可以理解为是在其中一根轴旋转时、与其联动的另一根轴也将旋转。
再如,齿轮与齿轮联动可以理解为是在其中一个齿轮旋转时、与其联动的另一个齿轮也将旋转。
在本发明下面有关“联动”的描述中,如果没有特殊说明,均作此理解。
类似地,动力电机2设置成能够与电机动力轴931联动,例如,动力电机2可将产生 的动力输出给电机动力轴931,从而通过电机动力轴931输出驱动力至混合动力汽车的车轮7。
需要说明一点,在本发明的描述中,电机动力轴931可以是动力电机2自身的电机轴。当然,可以理解的是,电机动力轴931与动力电机2的电机轴也可以是两个单独的轴。
在一些实施例中,如图12所示,输出部221相对输出轴中的所述一个(例如,第二输出轴922)可差速转动,换言之,输出部221与该输出轴能够以不同的转速独立旋转。
进一步,输出部221设置成可选择性地接合输出轴中的所述一个以与该输出轴同步转动,换言之,输出部221相对该输出轴能够差速转动或同步转动。简言之,输出部221相对输出轴的所述一个可接合以同步转动,当然也可断开以差速转动。
如图12所示,该输出部221可以空套设置在输出轴中的所述一个上,但不限于此。例如在图12的示例中,该输出部221空套在第二输出轴922上,即输出部221与第二输出轴922能够以不同的转速差速转动。
如上所述,输出部221可与输出轴的所述一个同步转动,例如,可以通过增设对应的同步器在需要时实现输出部221与该输出轴的同步作用。该同步器可以是输出部同步器221c,输出部同步器221c设置成用于同步输出部221和输出轴中的所述一个。
在一些实施例中,动力电机2用于输出驱动力至混合动力汽车的车轮7,发动机1和动力电机2共同驱动混合动力汽车的同一车轮。结合图12的示例,车辆的差速器75可以布置在一对前轮71之间或一对后轮72之间,在本发明的一些示例中,当动力电机2驱动的一对前轮71时,差速器75可位于一对前轮71之间。
差速器75的功用是当车辆转弯行驶或在不平路面上行驶时,使左右驱动车轮以不同的角速度滚动,以保证两侧驱动轮与地面间作纯滚动运动。差速器75上设置有主减速器9的主减速器从动齿轮74,例如主减速器从动齿轮74可以布置在差速器75的壳体上。主减速器从动齿轮74可以是锥齿轮,但不限于此。
在一些实施例中,如图9所示,动力电池3用于给动力电机2供电;副电机5与发动机1相连,副电机5还分别与动力电机2、DC-DC变换器4和动力电池3相连,副电机5在发动机1的带动下进行发电时实现给动力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。
下面再结合图13详细描述混合动力汽车的动力系统的另一个具体实施例,该实施例同样适用于发动机1和动力电机2共同驱动同一车轮的动力系统,即两驱混合动力汽车。需要说明的是,该实施例主要描述发动机1、动力电机2与车轮7之间的一种具体传动结构,特别是图10中变速器90的结构,其余部分与图9和图11的实施例基本相同,这里不再详 细赘述。
还需要说明的是,下面实施例中的多个输入轴、多个输出轴和电机动力轴931及各轴上相关齿轮以及换挡元件等可用以构成图10中的变速器90。
在一些实施例中,如图9、图11和图13所示,混合动力汽车的动力系统主要包括发动机1、动力电机2、动力电池3、DC-DC变换器4、副电机5、多个输入轴(例如,第一输入轴911、第二输入轴912)、多个输出轴(例如,第一输出轴921、第二输出轴922)和电机动力轴931及各轴上相关齿轮以及换挡元件(如,同步器)。
如图13所示,发动机1通过离合器6例如图12示例中的双离合器2d将动力输出到混合动力汽车的车轮7。在发动机1与输入轴之间进行动力传递时,发动机1设置成通过双离合器2d可选择性地接合多个输入轴中的至少一个。换言之,在发动机1向输入轴传输动力时,发动机1能够选择性地与多个输入轴中的一个接合以传输动力,或者发动机1还能够选择性地与多个输入轴中的两个或两个以上输入轴同时接合以传输动力。
例如,在图13的示例中,多个输入轴可以包括第一输入轴911和第二输入轴912两根输入轴,第二输入轴912同轴地套设在第一输入轴911上,发动机1能够通过双离合器2d选择性地与第一输入轴911和第二输入轴912中的一个接合以传输动力。或者,特别地,发动机1还能与第一输入轴911和第二输入轴912同时接合以传输动力。当然,应当理解的是,发动机1还可同时与第一输入轴911和第二输入轴912断开。
多个输出轴可以包括第一输出轴921和第二输出轴922两根输出轴,第一输出轴921和第二输出轴922与第一输入轴911平行设置。
输入轴与输出轴之间可以通过挡位齿轮副进行传动。例如,每个输入轴上均设置有挡位主动齿轮,即言第一输入轴911和第二输入轴912中的每个输入轴上设置有挡位主动齿轮,每个输出轴上均设置有挡位从动齿轮,即言第一输出轴921和第二输出轴922中的每个输出轴上设置有挡位从动齿轮,挡位从动齿轮与挡位主动齿轮对应地啮合,从而构成多对速比不同的齿轮副。
在本发明的一些实施例中,输入轴与输出轴之间可以采用六挡传动,即具有一挡齿轮副、二挡齿轮副、三挡齿轮副、四挡齿轮副、五挡齿轮副和六挡齿轮副。但是,本发明并不限于此,对于本领域的普通技术人员而言,可以根据传动需要而适应性增加或减少挡位齿轮副的个数,并不限于本发明实施例中所示的六挡传动。
如图13所示,输出轴(例如第一输出轴921和第二输出轴922)中的一个上空套设置有至少一个倒挡输出齿轮81,并且该输出轴上还设置有用于接合倒挡输出齿轮81的倒挡同步器(例如五挡同步器5c、六挡同步器6c),换言之,倒挡同步器同步对应的倒挡输出 齿轮81和该输出轴,从而使得输出轴与由倒挡同步器同步的倒挡输出齿轮81能够同步转动,进而倒挡动力能够从该输出轴输出。
在一些实施例中,如图13所示,倒挡输出齿轮81为一个,该一个倒挡输出齿轮81可以空套在第二输出轴922上。但本发明并不限于此,在另一些实施例中,倒挡输出齿轮81也可以是两个,该两个倒挡输出齿轮81同时空套在第二输出轴922上。当然,可以理解的是,倒挡输出齿轮81也可以是三个或三个以上。
倒挡轴89设置成与输入轴(例如第一输入轴911和第二输入轴912)中的一个联动且还与至少一个倒挡输出齿轮81联动,例如,经输入轴中的所述一个上的动力可以通过倒挡轴89而传递给倒挡输出齿轮81,从而倒挡动力能够从倒挡输出齿轮81输出。在本发明的示例中,倒挡输出齿轮81均是空套在第二输出轴922上的,并且倒挡轴89是与第一输入轴911联动的,例如发动机1输出的倒挡动力可通过第一输入轴911、倒挡轴89后输出给倒挡输出齿轮81。
下面对电机动力轴931进行详细描述。电机动力轴931上空套设置有电机动力轴第一齿轮31、电机动力轴第二齿轮32。电机动力轴第一齿轮31可与主减速器从动齿轮74啮合传动,以传输驱动力至混合动力汽车的车轮7。
电机动力轴第二齿轮32设置成与其中一个挡位从动齿轮联动,在具有根据本发明实施例的动力系统的混合动力汽车处于某些工况时,动力源输出的动力可以在电机动力轴第二齿轮32以及与其联动的挡位从动齿轮之间进行传递,此时电机动力轴第二齿轮32与该挡位从动齿轮联动。例如,电机动力轴第二齿轮32与二挡从动齿轮2b联动,电机动力轴第二齿轮32与二挡从动齿轮2b可以直接啮合或通过中间传动部件间接传动。
进一步,电机动力轴931上还设置有电机动力轴同步器33c,电机动力轴同步器33c位于电机动力轴第一齿轮31与电机动力轴第二齿轮32之间,电机动力轴同步器33c可以选择性地将电机动力轴第一齿轮31或电机动力轴第二齿轮32与电机动力轴3接合。例如在图13的示例中,电机动力轴同步器33c的接合套向左移动可接合电机动力轴第二齿轮32、向右移动则可接合电机动力轴第一齿轮31。
类似地,动力电机2设置成能够与电机动力轴931联动,例如,动力电机2可将产生的动力输出给电机动力轴931,从而通过电机动力轴931输出驱动力至混合动力汽车的车轮7。
对于电机动力轴第一齿轮31而言,由于其与主减速器从动齿轮74啮合,因此动力电机2可通过电机动力轴同步器33c接合电机动力轴第一齿轮31而将产生的动力直接从电机动力轴第一齿轮31输出,这样可以缩短传动链,减少中间传动部件,提高传动效率。
其次对电机动力轴931与动力电机2的传动方式结合具体实施例进行详细说明。
在一些实施例中,如图13所示,电机动力轴931上还固定设置有电机动力轴第三齿轮33,动力电机2设置成与电机动力轴第三齿轮33直接啮合传动或间接传动。
进一步,动力电机2的电机轴上设置有第一电机齿轮511,第一电机齿轮511通过中间齿轮512与电机动力轴第三齿轮33传动。又如,动力电机2与电机动力轴931也可以同轴相连。
在一些实施例中,动力电机2用于输出驱动力至混合动力汽车的车轮7,发动机1和动力电机2共同驱动混合动力汽车的同一车轮。结合图13的示例,车辆的差速器75可以布置在一对前轮71之间或一对后轮72之间,在本发明的一些示例中,当动力电机2驱动的一对前轮71时,差速器75可位于一对前轮71之间。
差速器75的功用是当车辆转弯行驶或在不平路面上行驶时,使左右驱动车轮以不同的角速度滚动,以保证两侧驱动轮与地面间作纯滚动运动。差速器75上设置有主减速器8的主减速器从动齿轮74,例如主减速器从动齿轮74可以布置在差速器75的壳体上。主减速器从动齿轮74可以是锥齿轮,但不限于此。
进一步,第一输出轴921上固定设置有第一输出轴输出齿轮211,第一输出轴输出齿轮211随第一输出轴921同步转动,第一输出轴输出齿轮211与主减速器从动齿轮74啮合传动,从而经第一输出轴921的动力能够从第一输出轴输出齿轮211传递至主减速器从动齿轮74以及差速器75。
类似地,第二输出轴922上固定设置有第二输出轴输出齿轮212,第二输出轴输出齿轮212随第二输出轴922同步转动,第二输出轴输出齿轮212与主减速器从动齿轮74啮合传动,从而经第二输出轴922的动力能够从第二输出轴输出齿轮212传递至主减速器从动齿轮74以及差速器75。
类似地,电机动力轴第一齿轮31可用于输出经电机动力轴931的动力,因此电机动力轴第一齿轮31同样与主减速器从动齿轮74啮合传动。
在一些实施例中,如图9所示,动力电池3用于给动力电机2供电;副电机5与发动机1相连,副电机5还分别与动力电机2、DC-DC变换器4和动力电池3相连,副电机5在发动机1的带动下进行发电时实现给动力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。
更具体地,结合图9、图11和图14所示,发动机1通过离合器6将动力输出到混合
动力汽车的车轮7;动力电机2用于输出驱动力至混合动力汽车的车轮7。也就是说,
本发明实施例的动力系统可通过发动机1和/或动力电机2为混合动力汽车正常行驶提
供动力。在本发明的一些实施例中,动力系统的动力源可以是发动机1和动力电机2,
也就是说,发动机1和动力电机2中的任一个可单独输出动力至车轮7,或者,发动机
1和动力电机2可同时输出动力至车轮7。
动力电池3用于给动力电机2供电;副电机5与发动机1相连,例如,副电机5可通过发动机1的轮系端与发动机1相连。副电机5分别与动力电机2、DC-DC变换器4和动力电池3相连,副电机5在发动机1的带动下进行发电时以实现给动力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。换言之,发动机1可带动副电机5发电,副电机5产生的电能可提供至动力电池3、动力电机2和DC-DC变换器4中的至少一个。应当理解的是,发动机1可在输出动力到车轮7的同时带动副电机5发电,也可在单独带动副电机5发电。
由此,动力电机2和副电机5分别对应充当驱动电机和发电机,由于低速时副电机5具有较高的发电功率和发电效率,从而可以满足低速行驶的用电需求,可以维持整车低速电平衡,维持整车低速平顺性,提升整车的动力性能。
在一些实施例中,副电机5可为BSG(Belt-driven Starter Generator,皮带传动启动/发电一体化电机)电机。需要说明的是,副电机5属于高压电机,例如副电机5的发电电压与动力电池3的电压相当,从而副电机5产生的电能可以不经过电压变换直接给动力电池3充电,还可直接给动力电机2和/或DC-DC变换器4供电。并且副电机5也属于高效发电机,例如在发动机1怠速转速下带动副电机5发电即可实现97%以上的发电效率。
另外,在本发明的一些实施例中,副电机5可用于启动发动机1,即副电机5可具有实现启动发动机1的功能,例如当启动发动机1时,副电机5可带动发动机1的曲轴转动,以使发动机1的活塞达到点火位置,从而实现发动机1的启动,由此副电机5可实现相关技术中启动机的功能。
如上所述,发动机1和动力电机2均可用于驱动混合动力汽车的车轮7。例如,如图14所示,发动机1可驱动混合动力汽车的第一车轮例如一对前轮71(包括左前轮和右前轮),动力电机2可驱动力至混合动力汽车的第二车轮例如一对后轮72(包括左后轮和右后轮)。换言之,当发动机1驱动一对前轮71且动力电机2驱动一对后轮72时,动力系统的驱动力分别输出至一对前轮71和一对后轮72,整车可采用四驱的驱动方式。
进一步地,在发动机1驱动第一车轮且动力电机2驱动第二车轮时,结合图14所示,混合动力汽车的动力系统还包括第一变速器91和第二变速器92,其中,发动机1通过离合器6和第一变速器91将动力输出到混合动力汽车的第一车轮例如一对前轮71,动力电机2通过第二变速器92输出驱动力至混合动力汽车的第二车轮例如一对后轮72。其中, 离合器6与第一变速器91可集成设置。
进一步地,在本发明的一些实施例中,如图9至图11所示,副电机5还包括第一控制器51,动力电机2还包括第二控制器21,副电机5通过第一控制器51分别连接到动力电池3和所述DC-DC变换器4,并通过第一控制器51和第二控制器21连接到动力电机2。
具体来说,第一控制器51分别与第二控制器21、动力电池3和DC-DC变换器4相连,第一控制器51可具有AC-DC变换单元,副电机5发电时可产生交流电,AC-DC变换单元可将高压电机2发电产生的交流电变换为高压直流电例如600V高压直流电,以实现给动力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。
类似地,第二控制器21可具有DC-AC变换单元,第一控制器51可将副电机5发电产生的交流电变换为高压直流电,DC-AC变换单元可再将第一控制器51变换出的高压直流电变换为交流电,以给动力电机2供电。
换言之,如图11所示,在副电机5进行发电时,副电机5可通过第一控制器51给动力电池3充电和/或给DC-DC变换器4供电。此外,副电机5还可通过第一控制器51和第二控制器21给动力电机2供电。
进一步地,如图9、图11和图14所示,DC-DC变换器4还与动力电池3相连。DC-DC变换器4还通过第二控制器21与动力电机2相连。
在一些实施例中,如图11所示,第一控制器51具有第一直流端DC1,第二控制器21具有第二直流端DC2,DC-DC变换器4具有第三直流端DC3,DC-DC变换器4的第三直流端DC3可与第一控制器51的第一直流端DC1相连,以对第一控制器51通过第一直流端DC1输出的高压直流电进行DC-DC变换。并且,DC-DC变换器4的第三直流端DC3还可与动力电池3相连,进而第一控制器51的第一直流端DC1可与动力电池3相连,以使第一控制器51通过第一直流端DC1输出高压直流电至动力电池3以给动力电池3充电。进一步地,DC-DC变换器4的第三直流端DC3还可与第二控制器21的第二直流端DC2相连,进而第一控制器51的第一直流端DC1可与第二控制器21的第二直流端DC2相连,以使第一控制器51通过第一直流端DC1输出高压直流电至第二控制器21以给动力电机2供电。
进一步地,如图11所示,DC-DC变换器4还分别与混合动力汽车中的第一电器设备10和低压蓄电池20相连以给第一电器设备10和低压蓄电池20供电,且低压蓄电池20还与第一电器设备10相连。
在一些实施例中,如图11所示,DC-DC变换器4还具有第四直流端DC4,DC-DC变换器4可将动力电池3输出的高压直流电和/或副电机5通过第一控制器51输出的高压 直流电转换为低压直流电,并通过第四直流端DC4输出该低压直流电。进一步地,DC-DC变换器4的第四直流端DC4可与第一电器设备10相连,以给第一电器设备10供电,其中,第一电器设备10可为低压用电设备,包括但不限于车灯、收音机等。DC-DC变换器4的第四直流端DC4还可与低压蓄电池20相连,以给低压蓄电池20充电。
并且,低压蓄电池20与第一电器设备10相连,以给第一电器设备10供电,特别地,在副电机5停止发电且动力电池3故障或电量不足时,低压蓄电池20可为第一电器设备10供电,从而保证整车的低压用电,确保整车可实现纯燃油模式行驶,提高整车行驶里程。
如上,DC-DC变换器4的第三直流端DC3与第一控制器51相连,DC-DC变换器4的第四直流端DC4分别与第一电器设备10和低压蓄电池20相连,当动力电机2、第二控制器21和动力电池3发生故障时,副电机5可进行发电以通过第一控制器51和DC-DC变换器4给第一电器设备10供电和/或给低压蓄电池20充电,以使混合动力汽车以纯燃油模式行驶。
换言之,当动力电机2、第二控制器21和动力电池3发生故障时,第一控制器51可将副电机5发电产生的交流电变换为高压直流电,DC-DC变换器4可将第一控制器50变换出的高压直流电变换为低压直流电,以给第一电器设备10供电和/或给低压蓄电池20充电。
由此,副电机5和DC-DC变换器4有一路单独供电通道,当动力电机2、第二控制器21和动力电池3发生故障时,无法实现电动驱动,此时通过副电机5和DC-DC变换器4的单独供电通道,可以保证整车的低压用电,确保整车可实现纯燃油模式行驶,提高整车行驶里程。
进一步结合图11的实施例,第一控制器51、第二控制器21和动力电池3还分别与混合动力汽车中的第二电器设备30相连。
在一些实施例中,如图11所示,第一控制器51的第一直流端DC1可与第二电器设备30相连,当副电机5进行发电时,副电机5可通过第一控制器51直接给第二电器设备30供电。换言之,第一控制器51的AC-DC变换单元还可将副电机5发电产生的交流电变换为高压直流电,并直接给第二电器设备30供电。
类似地,动力电池3还可与第二电器设备30相连,以给第二电器设备30供电。即言,动力电池3输出的高压直流电可直接供给第二电器设备30。
其中,第二电器设备30可为高压电器设备,可包括但不限于空调压缩机、PTC(Positive Temperature Coefficient,正的温度系数)加热器等。
如上,通过副电机5发电,可实现为动力电池3充电、或为动力电机2供电、或为第一电器设备10和第二电器设备30供电。并且,动力电池3可通过第二控制器21为动力电 机2供电,或为第二电器设备30供电,也可通过DC-DC变换器4为第一电器设备10和/或低压蓄电池20供电。由此丰富了整车供电方式,满足整车在不同工况下的用电需求,提升了整车的性能。
需要说明的是,在本发明实施例中,低压可指12V(伏)或24V的电压,高压可指600V的电压,但不限于此。
由此,本发明实施例的混合动力汽车的动力系统中,能够使发动机在低速时不参与驱动,进而不使用离合器,减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且在低速时能够使发动机工作在经济区域,只发电不驱动,减少油耗,降低发动机噪音,维持整车低速电平衡及低速平顺性,提升整车性能。而且,副电机能够直接为动力电池充电,同时也可为低压器件例如低压蓄电池、第一电器设备等供电,还可作启动机用。
具体地,车身控制模块BCM、整车控制器VCU、电机控制模块MCU和发动机控制模块ECM。
其中,车身控制模块BCM用于检测到混合动力汽车的启动信号后,分别向整车控制器VCU、电机控制模块MCU和发动机控制模块ECM发送启动请求信息。
BCM、MCU和ECM中的一个里面设置有备份模块时,备份模块用于判断在预设时间内是否收到VCU基于启动请求信息所生成的反馈信息,并在预设时间内没有收到VCU基于启动请求信息所生成的反馈信息时,则分别向变速箱控制模块TCU、电池管理模块BMS和副电机控制器发送自检命令。
备份模块接收TCU、BMS和副电机控制器反馈的自检结果信息,并根据自检结果信息判断所述混合动力汽车满足启动条件、且检测获知BMS失效时,控制混合动力汽车以纯燃油模式或者串联模式或者混联模式行驶。
在本发明的一个实施例中,VCU将所生成的反馈信息同时发送给BCM、MCU和ECM。
在本发明的一个实施例中,备份模块若在预设时间内接收到VCU所生成的反馈信息,停止备份工作。
在本发明的一个实施例中,副电机5可为BSG(Belt-driven Starter Generator,皮带传动启动/发电一体化电机)电机。需要说明的是,副电机5属于高压电机,例如副电机5的发电电压与动力电池3的电压相当,从而副电机5产生的电能可不经过电压变换直接给动力电池3充电,还可直接给动力电机2和/或DC-DC变换器4供电。并且副电机5也属于高效发电机,例如在发动机1怠速转速下带动副电机5发电即可实现97%以上的发电效率。
在本发明的一个实施例中,备份模块还用于,若检测获知ECM与MCU对码失败,则判断混合动力汽车不满足启动条件,并禁止混合动力汽车启动。
在本发明的一个实施例中,备份模块还用于,若根据自检结果信息识别到TCU失效且所述副电机控制器正常,则控制发动机1带动副电机5进行发电,以给动力电机2供电,通过动力电机2驱动混合动力汽车的车轮,以使混合动力汽车以串联模式行驶。
在本发明的一个实施例中,备份模块还用于,若根据自检结果信息识别到TCU失效且副电机控制器失效,则判断混合动力汽车不满足启动条件,并禁止混合动力汽车启动。
在本发明的一个实施例中,备份模块还用于,若根据自检结果信息识别到TCU正常且副电机控制器失效,则通过发动机1驱动混合动力汽车的车轮,以使混合动力汽车以纯燃油模式行驶。
在本发明的一个实施例中,备份模块还用于,若根据自检结果信息识别到TCU正常且所述副电机控制器正常,则通过发动机驱动混合动力汽车的车轮,以使混合动力汽车以纯燃油模式行驶。
在本发明的一个实施例中,备份模块还用于,若根据自检结果信息识别到TCU正常且副电机控制器正常,则通过发动机1驱动混合动力汽车的车轮,并控制发动机1带动副电机5进行发电,以给动力电机2供电,同时通过动力电机2驱动混合动力汽车的车轮,以使混合动力汽车以混联模式行驶。
要说明的是,前述对混合动力汽车的整车控制方法实施例的解释说明也适用于本实施例的混合动力汽车的动力系统,此处不再赘述。
本发明实施例的混合动力汽车的动力系统,通过车身控制模块BCM检测到混合动力汽车的启动信号后,分别向整车控制器VCU、电机控制模块MCU和发动机控制模块ECM发送启动请求信息,然后BCM、MCU和ECM中的一个里面设置有备份模块时,备份模块在预设时间内没有收到VCU基于启动请求信息所生成的反馈信息时分别向变速箱控制模块TCU、电池管理模块BMS和副电机控制器发送自检命令,并接收TCU、BMS和副电机控制器反馈的自检结果信息,最后根据自检结果信息判断混合动力汽车满足启动条件、且检测获知BMS失效时,控制混合动力汽车以纯燃油模式或者串联模式或者混联模式行驶。由此,在VCU和BMS失效时,仍能够使得混合动力汽车行驶,控制混合动力汽车安全跛行至目标地点,保证了整车安全性。
为了实现上述实施例,本发明还提出一种计算机可读存储介质,具有存储于其中的指令,当指令被执行时,混合动力汽车执行本发明上述实施例的整车控制方法。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制, 本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (23)

  1. 一种混合动力汽车的整车控制方法,其特征在于,包括以下步骤:
    车身控制模块BCM检测到所述混合动力汽车的启动信号后,分别向整车控制器VCU、电机控制模块MCU和发动机控制模块ECM发送启动请求信息;
    所述BCM、所述MCU和所述ECM中的一个设置有备份模块时,所述备份模块若在预设时间内没有收到VCU基于所述启动请求信息所生成的反馈信息,则分别向变速箱控制模块TCU、电池管理模块BMS和副电机控制器发送自检命令;
    所述备份模块接收TCU、BMS和所述副电机控制器反馈的自检结果信息,并根据所述自检结果信息判断所述混合动力汽车满足启动条件、且检测获知BMS失效时,控制所述混合动力汽车以纯燃油模式或者串联模式或者混联模式行驶。
  2. 如权利要求1所述的方法,其特征在于,所述VCU将所生成的反馈信息同时发送给所述BCM、所述MCU和所述ECM。
  3. 如权利要求1或2所述的方法,其特征在于,所述备份模块若在所述预设时间内接收到所述VCU所生成的反馈信息,所述备份模块停止工作。
  4. 如权利要求1-3任意一项所述的方法,其特征在于,所述副电机为BSG电机。
  5. 如权利要求1-4任意一项所述的方法,其特征在于,还包括:
    所述备份模块若检测获知ECM与MCU对码失败,则判断所述混合动力汽车不满足启动条件,并禁止所述混合动力汽车启动。
  6. 如权利要求1-5任意一项所述的方法,其特征在于,所述备份模块若根据所述自检结果信息识别所述TCU失效且所述副电机控制器正常,则控制发动机带动副电机进行发电,以给动力电机供电,通过所述动力电机驱动所述混合动力汽车的车轮,以使所述混合动力汽车以串联模式行驶。
  7. 如权利要求1-6任意一项所述的方法,其特征在于,还包括:所述备份模块若根据所述自检结果信息识别所述TCU失效且所述副电机控制器失效,则判断所述混合动力汽车不满足启动条件,并禁止所述混合动力汽车启动。
  8. 如权利要求1-7任意一项所述的方法,其特征在于,所述备份模块若根据所述自检结果信息识别所述TCU正常且所述副电机控制器失效,则通过发动机驱动所述混合动力汽车的车轮,以使所述混合动力汽车以纯燃油模式行驶。
  9. 如权利要求1-8任意一项所述的方法,其特征在于,所述备份模块若根据所述自检结果信息识别所述TCU正常且所述副电机控制器正常,则通过发动机驱动所述混合动力汽车的车轮,以使所述混合动力汽车以纯燃油模式行驶。
  10. 如权利要求1-9任意一项所述的方法,其特征在于,所述备份模块若根据所述自检结果信息识别所述TCU正常且所述副电机控制器正常,则通过发动机驱动所述混合动力汽车的车轮,并控制所述发动机带动所述副电机进行发电,以给动力电机供电,同时通过所述动力电机驱动所述混合动力汽车的车轮,以使所述混合动力汽车以混联模式行驶。
  11. 一种计算机可读存储介质,其特征在于,具有存储于其中的指令,当所述指令被执行时,所述混合动力汽车执行如权利要求1-10中任一项所述的整车控制方法。
  12. 一种混合动力汽车的动力系统,其特征在于,包括:
    发动机,所述发动机通过离合器将动力输出到所述混合动力汽车的车轮;
    动力电机,所述动力电机用于输出驱动力至所述混合动力汽车的车轮;
    动力电池,所述动力电池用于给所述动力电机供电;
    DC-DC变换器;
    与所述发动机相连的副电机,所述副电机分别与所述动力电机、所述DC-DC变换器和动力电池相连,所述副电机在所述发动机的带动下进行发电时至少实现以下一种:给所述动力电池充电、给所述动力电机供电和给所述DC-DC变换器供电;
    车身控制模块BCM、整车控制器VCU、电机控制模块MCU和发动机控制模块ECM,其中,所述BCM用于检测到所述混合动力汽车的启动信号后,分别向所述VCU、电机控制模块MCU和ECM发送启动请求信息;
    所述BCM、所述MCU和所述ECM中的一个设置有备份模块时,所述备份模块用于判断在预设时间内是否收到VCU基于所述启动请求信息所生成的反馈信息,并在预设时间内没有收到VCU基于所述启动请求信息所生成的反馈信息时,则分别向变速箱控制模块TCU、电池管理模块BMS和副电机控制器发送自检命令;
    所述备份模块还用于接收TCU、BMS和所述副电机控制器反馈的自检结果信息,并根据所述自检结果信息判断所述混合动力汽车满足启动条件、且检测获知BMS失效时,控制所述混合动力汽车以纯燃油模式或者串联模式或者混联模式行驶。
  13. 如权利要求12所述的系统,其特征在于,所述VCU将所生成的反馈信息同时发送给所述BCM、所述MCU和所述ECM。
  14. 如权利要求12或13所述的系统,其特征在于,所述备份模块若在所述预设时间内接收到所述VCU所生成的反馈信息,停止工作。
  15. 如权利要求12-14任意一项所述的系统,其特征在于,所述副电机为BSG电机。
  16. 如权利要求12-15任意一项所述的系统,其特征在于,所述备份模块还用于,若检测获知ECM与MCU对码失败,则判断所述混合动力汽车不满足启动条件,并禁止所述 混合动力汽车启动。
  17. 如权利要求12-16任意一项所述的系统,其特征在于,所述备份模块还用于,若根据所述自检结果信息识别到所述TCU失效且所述副电机控制器正常,则控制发动机带动副电机进行发电,以给动力电机供电,通过所述动力电机驱动所述混合动力汽车的车轮,以使所述混合动力汽车以串联模式行驶。
  18. 如权利要求12所述的系统,其特征在于,所述备份模块还用于,若根据所述自检结果信息识别到所述TCU失效且所述副电机控制器失效,则判断所述混合动力汽车不满足启动条件,并禁止所述混合动力汽车启动。
  19. 如权利要求12所述的系统,其特征在于,所述备份模块还用于,若根据所述自检结果信息识别到所述TCU正常且所述副电机控制器失效,则通过发动机驱动所述混合动力汽车的车轮,以使所述混合动力汽车以纯燃油模式行驶。
  20. 如权利要求12-19任意一项所述的系统,其特征在于,所述备份模块还用于,若根据所述自检结果信息识别到所述TCU正常且所述副电机控制器正常,则通过发动机驱动所述混合动力汽车的车轮,以使所述混合动力汽车以纯燃油模式行驶。
  21. 如权利要求12-20任意一项所述的系统,其特征在于,所述备份模块还用于,若根据所述自检结果信息识别到所述TCU正常且所述副电机控制器正常,则通过发动机驱动所述混合动力汽车的车轮,并控制发动机带动副电机进行发电,以给动力电机供电,同时通过所述动力电机驱动所述混合动力汽车的车轮,以使所述混合动力汽车以混联模式行驶。
  22. 如权利要求12-21任意一项任意一项所述的系统,其特征在于,所述发动机和所述动力电机共同驱动所述混合动力汽车的同一车轮。
  23. 如权利要求12-21任意一项所述的系统,其特征在于,所述混合动力汽车的车轮包括第一车轮和第二车轮;
    发动机通过离合器将动力输出到所述混合动力汽车的第一车轮;
    所述动力电机用于输出驱动力至所述混合动力汽车的第二车轮。
PCT/CN2018/081043 2017-03-31 2018-03-29 混合动力汽车的整车控制方法和动力系统 WO2018177357A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710210962.3A CN108656925B (zh) 2017-03-31 2017-03-31 混合动力汽车的整车控制方法和动力系统
CN201710210962.3 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018177357A1 true WO2018177357A1 (zh) 2018-10-04

Family

ID=63674243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081043 WO2018177357A1 (zh) 2017-03-31 2018-03-29 混合动力汽车的整车控制方法和动力系统

Country Status (2)

Country Link
CN (1) CN108656925B (zh)
WO (1) WO2018177357A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110154766A (zh) * 2019-06-04 2019-08-23 厦门金龙汽车新能源科技有限公司 电动车辆的高压下电控制系统、方法及其电动车辆
CN110834541A (zh) * 2019-11-15 2020-02-25 上海元城汽车技术有限公司 安全监控方法及相关装置
CN112356671A (zh) * 2020-11-27 2021-02-12 武汉格罗夫氢能汽车有限公司 一种氢能汽车的驱动模式能量流图显示装置及其应用
CN112564213A (zh) * 2020-11-30 2021-03-26 武汉格罗夫氢能汽车有限公司 一种氢燃料电池汽车用燃电混动系统的智能12v充电方法
CN113619562A (zh) * 2021-08-23 2021-11-09 同济大学 一种混合动力汽车模式切换工况下瞬态冲击抑制方法
CN114666377A (zh) * 2021-04-16 2022-06-24 长城汽车股份有限公司 车辆的远程控制方法、装置和车辆

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108674405B (zh) * 2017-03-31 2020-04-24 比亚迪股份有限公司 混合动力汽车的整车控制方法和动力系统
CN111775928B (zh) * 2020-06-11 2024-04-02 吉泰车辆技术(苏州)有限公司 混动车辆的跛行控制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101734140A (zh) * 2009-12-16 2010-06-16 海博瑞德(北京)汽车技术有限公司 油电四驱混合动力汽车动力系统及其控制方法
CN101927764A (zh) * 2010-08-19 2010-12-29 浙江吉利汽车研究院有限公司 混合动力汽车的双hcu整车控制系统
DE102010017863A1 (de) * 2010-04-22 2011-10-27 Daimler Ag Verfahren zur Fehlererkennung in einem Hybridantriebsstrang
CN104071153A (zh) * 2013-03-25 2014-10-01 北汽福田汽车股份有限公司 一种混合动力汽车的启动控制方法
CN104192142A (zh) * 2014-08-15 2014-12-10 潍柴动力股份有限公司 一种混合动力车辆发动机启停控制方法和系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202357849U (zh) * 2011-11-28 2012-08-01 浙江吉利汽车研究院有限公司 一种混合动力驱动装置
CN102673372B (zh) * 2012-01-04 2015-04-15 河南科技大学 Isg并联式混合动力汽车动力总成系统及控制方法
CN102897165B (zh) * 2012-11-05 2015-07-15 北京经纬恒润科技有限公司 一种混合动力综合控制器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101734140A (zh) * 2009-12-16 2010-06-16 海博瑞德(北京)汽车技术有限公司 油电四驱混合动力汽车动力系统及其控制方法
DE102010017863A1 (de) * 2010-04-22 2011-10-27 Daimler Ag Verfahren zur Fehlererkennung in einem Hybridantriebsstrang
CN101927764A (zh) * 2010-08-19 2010-12-29 浙江吉利汽车研究院有限公司 混合动力汽车的双hcu整车控制系统
CN104071153A (zh) * 2013-03-25 2014-10-01 北汽福田汽车股份有限公司 一种混合动力汽车的启动控制方法
CN104192142A (zh) * 2014-08-15 2014-12-10 潍柴动力股份有限公司 一种混合动力车辆发动机启停控制方法和系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110154766A (zh) * 2019-06-04 2019-08-23 厦门金龙汽车新能源科技有限公司 电动车辆的高压下电控制系统、方法及其电动车辆
CN110834541A (zh) * 2019-11-15 2020-02-25 上海元城汽车技术有限公司 安全监控方法及相关装置
CN110834541B (zh) * 2019-11-15 2022-02-08 上海元城汽车技术有限公司 安全监控方法及相关装置
CN112356671A (zh) * 2020-11-27 2021-02-12 武汉格罗夫氢能汽车有限公司 一种氢能汽车的驱动模式能量流图显示装置及其应用
CN112564213A (zh) * 2020-11-30 2021-03-26 武汉格罗夫氢能汽车有限公司 一种氢燃料电池汽车用燃电混动系统的智能12v充电方法
CN114666377A (zh) * 2021-04-16 2022-06-24 长城汽车股份有限公司 车辆的远程控制方法、装置和车辆
CN113619562A (zh) * 2021-08-23 2021-11-09 同济大学 一种混合动力汽车模式切换工况下瞬态冲击抑制方法
CN113619562B (zh) * 2021-08-23 2024-04-23 同济大学 一种混合动力汽车模式切换工况下瞬态冲击抑制方法

Also Published As

Publication number Publication date
CN108656925B (zh) 2020-10-23
CN108656925A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
WO2018177357A1 (zh) 混合动力汽车的整车控制方法和动力系统
WO2018177358A1 (zh) 混合动力汽车及其动力系统和发电控制方法
WO2018177361A1 (zh) 混合动力汽车的动力系统和发电控制方法及混合动力汽车
CN102991331B (zh) 插电式混合动力电动车辆
EP0744314B1 (en) Hybrid vehicle and its control method
EP1201485A1 (en) HEV charger/generator unit
WO2018177360A1 (zh) 混合动力汽车的整车控制方法和动力系统
CN109572663B (zh) 混合动力汽车及其发动机的控制方法、装置
EP2810806A1 (en) Drive apparatus for hybrid vehicle
WO2012056862A1 (ja) ハイブリッド車輌の制御装置及び制御方法
CN108656924B (zh) 混合动力汽车的动力系统和发电控制方法及混合动力汽车
US8527114B2 (en) Silent key start climate control demand
CN105452037A (zh) 用于混合动力车辆的控制设备和控制方法
CN105636847A (zh) 混合动力车辆的控制装置
CN104010873A (zh) 车辆的控制系统
CN108656926B (zh) 混合动力汽车的整车控制方法和动力系统
CN105172571A (zh) 一种混合动力汽车驱动系统及其驱动方法
JP2006327315A (ja) 車両の駆動制御装置
CN113580907B (zh) 电动动力传递系统及控制方法
CN108657172B (zh) 混合动力汽车的整车控制方法和动力系统
CN108674405B (zh) 混合动力汽车的整车控制方法和动力系统
CN108656920B (zh) 混合动力汽车的整车控制方法和动力系统
CN108656922B (zh) 混合动力汽车及其动力系统和发电控制方法
CN113353058A (zh) 混合动力汽车的车辆行驶控制系统及车辆行驶控制方法
JP2006298283A (ja) 車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776110

Country of ref document: EP

Kind code of ref document: A1