WO2018176892A1 - 一种薄煤层综合开采与瓦斯治理网络一体协同控制系统及方法 - Google Patents

一种薄煤层综合开采与瓦斯治理网络一体协同控制系统及方法 Download PDF

Info

Publication number
WO2018176892A1
WO2018176892A1 PCT/CN2017/114230 CN2017114230W WO2018176892A1 WO 2018176892 A1 WO2018176892 A1 WO 2018176892A1 CN 2017114230 W CN2017114230 W CN 2017114230W WO 2018176892 A1 WO2018176892 A1 WO 2018176892A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
mining
filling
integrated
return air
Prior art date
Application number
PCT/CN2017/114230
Other languages
English (en)
French (fr)
Inventor
林柏泉
刘统
王正
刘厅
杨威
李贺
黄展博
王皓
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2018176892A1 publication Critical patent/WO2018176892A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/18Methods of underground mining; Layouts therefor for brown or hard coal
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings
    • E21F15/02Supporting means, e.g. shuttering, for filling-up materials
    • E21F15/04Stowing mats; Goaf wire netting; Partition walls
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F7/00Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose

Definitions

  • the invention provides an integrated collaborative control system and method for thin coal seam comprehensive mining and gas control network, and is especially suitable for comprehensive efficient and safe mining of the first thin coal seam in deep coal seam group.
  • Mining protective layer can significantly reduce the protruding danger of adjacent protected layer. It is the preferred measure for coal seam group mining. Under normal circumstances, thin coal seams have low risk of protrusion. Therefore, many thin or very thin coal seams have poor mining conditions but are in deep mines. When mining, it is often selected to be preferentially mined, so that the mining platform can be depressurized with lower risk, so that the pre-pressure relief of adjacent upper and lower overlying coal strata can be achieved within the influence of thin coal seam mining, and the adjacent pressure relief can be reduced. The outstanding danger of coal seams ensures the safe mining of deep high coal seams.
  • the thin coal seam is thinner and affected by the existing conditions, the thickness varies greatly, and even the local area is sharpened.
  • the mining process requires cutting a large amount of rock.
  • the working face often requires coal and rock mining. This requires the shearer to be able to
  • the realization of coal and rock mining due to the hard texture of the roof, requires the rock crushing capacity of the coal mining machine and the ability to ship rocks, the supporting power is large, the wear resistance and stability are good; the thickness of the coal seam is small, the installed size must be small and convenient. Flexible; the thin coal seam mining face has a slower propulsion speed and low mining efficiency.
  • the object of the present invention is to overcome the deficiencies in the prior art and to provide a safe, efficient and economical green thin protective layer mining system and method.
  • An integrated collaborative control system for thin coal seam comprehensive mining and gas control network comprising a coal mining device, a downhole vermiculite washing and processing chamber, a filling pump and a ventilation system;
  • the coal mining device coals on the working surface to form a goaf, and transports the collected coal to the downhole stone washing and processing chamber;
  • the downhole vermiculite washing and processing chamber is used for crushing, washing and separating the coal to form medium coal and vermiculite; and transporting the medium coal with the mine transportation system through the main well to the coal bunker; crushing the vermiculite Forming a filling material to be transported to the filling pump;
  • the filling pump is used for mixing the filling raw materials and the dry mixed filling materials produced on the ground by a certain ratio.
  • Forming a filling material adding water and stirring uniformly, and feeding to a filling die on one side of the gob to fill the filling wall; forming a goaf side return airway between the filling wall and the coal wall to be mined; a main air inlet lane and an auxiliary air inlet lane are disposed on both sides of the working surface; a return air duct is connected to the gob side return air duct, and the return air duct is connected with the return air shaft, and the return air shaft is connected To the ground; the main air inlet lane, the auxiliary air inlet lane, the goaf side return air lane, the return air lane and the return air shaft constitute the ventilation system.
  • the coal mining machine adopts the MG500/1120-WD type fully mechanized double drum electric traction shearer.
  • the dry mixed filling material produced on the ground is the third grade or higher bulk fly ash, cement and admixture of the mine self-provided power plant.
  • the initial arrangement position of the filling pump is within a range of 300 meters from the working surface.
  • the height of the installation lane of the filling pump is not less than 2.65 m.
  • An integrated collaborative control method for thin coal seam comprehensive mining and gas control network comprising the steps of:
  • the filling pump mixes the filling raw materials and the dry mixed filling materials produced on the ground in a certain ratio to form a filling material, and uniformly mixes with water, and conveys them to a filling mold on the inner side of the gob to fill the filling wall. Forming a goaf side return air passage between the filling wall and the coal wall to be mined;
  • the wall is buried in the goaf, the top plate is guided by the high-level diversion hole and the bottom floor is drilled and guided, and the diversion channel is used to guide the gas in the stope; the wind current Inflow from the main inlet and auxiliary air inlets, from the gob side return air passage, and then to the ground through the return air passage and the return air well to form an advantageous flow passage for one of the three lanes.
  • the coal mining machine optimizes the mining mode according to the ratio of the thickness of the coal rock layer to specifically:
  • the coal mining machine is used to break the rock; when the thickness of the rock layer accounts for 1/3 or more of the mining height, the rock layer is broken first by drilling and blasting the pre-cracking method. Cutting with shearer; when loose blasting pre-cracking, when the thickness of the rock is 1/3 ⁇ 2/3 of the mining height, the drilling adopts a single-row hole arrangement; when the thickness of the rock is greater than 2/3 of the mining height, the drilling Double row spacing is used.
  • the present invention proposes an integrated collaborative control system and method for thin coal seam comprehensive mining and gas control network, which combines thin protective layer mining, vermiculite treatment, roadside filling and gas storage comprehensive treatment technology, network integration and coordinated control .
  • the high-efficiency mining of coal and rock mining face is realized, and the coal gangue is collected in the underground to carry out high-efficiency separation.
  • the roadside filling of the protective layer working face is completed. Raw materials are provided, and finally the roadside filling is built on the goaf to form an advantageous gas channel, which provides conditions for the comprehensive diversion control of the gas in the protective layer.
  • the invention combines the high-efficiency mining of the thin protective layer coal rock with the high-efficiency separation and the separation of the coal shovel after the mining, the separation of the gangue filling and the comprehensive control of the gas in the retaining roadway and the mining roadway, and the efficient mining is the roadside filling and gas storage.
  • governance provides conditions, and gas control in turn provides guarantees for efficient and safe mining, making mining of thin protective layers safe Efficient, economical and green, forming a network integrated collaborative control system and method, with good application prospects and promotion value.
  • FIG. 1 is a perspective view showing the integrated mining of a thin protective layer of the present invention.
  • FIG. 2 is a schematic view of mining and roadside filling of a thin protective layer of the present invention.
  • FIG. 3 is a schematic perspective view of a gas guiding and drilling arrangement of the gob side return air passage of the present invention.
  • the integrated coal mine integrated mining and gas control network integrated collaborative control system of the present invention comprises a coal bunker 1, a main well 2 , an auxiliary well 3 , a downhole vermiculite washing and processing bin 5 , a coal mining device and a filling pump 15 . And a ventilation system.
  • the coal mining device includes a coal mining machine, the coal mining machine 17 works on the working surface 8, the coal mining forms a goaf 9; the coal mining collected by the coal mining machine is transported to the underground stone cleaning and processing chamber 5, and the vermiculite washing and treatment is started.
  • the silo 5 crushes, washes and separates the falling coal to form medium coal and vermiculite; wherein, the medium coal is transported to the surface coal bunker 1 with the mine transport system via the main well 2, and the vermiculite is formed after the crushing of the underground rubble washing and processing chamber 5
  • the gangue particle filling material with a diameter of less than 25mm is transported to the position of the filling pump 15; the dry mixed filling material is produced by the special production line on the ground, and is transported to the underground pumping station by bag or special container, and the raw material is filled and the well is transported by the auxiliary shaft 3.
  • the other raw materials are mixed to form a filling material;
  • the filling material mainly includes the fly ash, the cement and the admixture of the third grade or higher in the mine self-provided power plant, except for the gangue particles formed by the pulverization;
  • the filling material is uniformly stirred by adding water in the filling pump 15
  • the filling pipeline 4 is sent to the filling mold 19 for filling, and the filling material is solidified in the filling mold 19 on the side of the goaf 9 to form the filling wall 10, and the filling wall and the coal wall to be mined (unexploited)
  • the goaf side return air duct 11 is formed in the middle, as shown in Fig. 2.
  • the main air inlet lane 7 and the auxiliary air inlet lane 6 are provided on both sides of the entire working surface 8; the wind flow flows from the main air inlet lane 7 and the auxiliary air inlet lane 6, and flows out from the gob side return air duct 11 to form a side three.
  • the superior flow passage of the lane; the return air passage 12 is connected with the gob side return air passage 11, the return air passage 12 is connected with the return air shaft 13, and the return air well 13 leads to the ground; the main air inlet lane 7 and the auxiliary air inlet lane 6.
  • the gob side return air duct 11, the return air duct 12 and the return air shaft 13 constitute a ventilation system.
  • FIG. 2 is a schematic view of the thin protective layer working face mining and roadside filling of the present invention, wherein the hydraulic support 20 supports the top plate above the working surface 8, the shearer 17 and the scraper conveyor 18 are connected, and the scraper conveyor 18 and the transfer machine 16 are connected.
  • the transfer machine 16 is connected to the belt 14, and the belt 14 is connected to the vermiculite washing treatment chamber 5.
  • the shearer 17 adopts the MG500/1120-WD fully mechanized double-drum electric traction shearer with high power, high strength, strong wear resistance, low mining height and direct rock breaking; the hydraulic support 20 is inclined along the working surface 8 Arranged in a straight line to support the working surface 8.
  • FIG. 3 is a three-dimensional schematic diagram of a gas guiding diversion drilling arrangement of the gob side return air passage of the present invention, in the gob side return air passage 11 through the filling wall 10 to the goaf area horizontally constructing the wall body buried pipe 21, upward
  • the high-level guide hole 22 for construction of the roof at a certain angle is driven into the fracture zone of the overlying adjacent layer 24, and the bottom plate is drilled at a certain angle to penetrate the hole 23 through the lower layer.
  • Near coal seam 25 is a three-dimensional schematic diagram of a gas guiding diversion drilling arrangement of the gob side return air passage of the present invention, in the gob side return air passage 11 through the filling wall 10 to the goaf area horizontally constructing the wall body buried pipe 21, upward
  • the high-level guide hole 22 for construction of the roof at a certain angle is driven into the fracture zone of the overlying adjacent layer 24, and the bottom plate is drilled at a certain angle to penetrate the hole 23 through the lower layer.
  • the integrated control system and method for integrated thin coal seam comprehensive mining and gas control network of the invention comprises the following steps:
  • the thickness of the thin protective layer is 0.5m, the length of the mining is 150m, the planned mining height is 1.8m, the coal mining is required for mining, and the coal mining and mining working face 8 is coal mining by comprehensive mechanized coal mining method.
  • the rock cutting is difficult, the coal seam
  • the mining efficiency is low; a large amount of vermiculite is produced during the coal mining process, the transportation burden of the mine is increased, and the treatment is difficult; the mining gas and the pressure relief gas are poured into the recovery space, and the gas problem is serious.
  • the equipment selection of the shearer is first carried out.
  • MG500/1120-WD fully mechanized double-drum electric traction shearer with high power, high strength, strong wear resistance, low mining height and direct rock breaking in the thin protective layer coal rock mining face 8
  • the support 20 supports the working surface 8 in a straight line along the inclined direction of the working surface 8, and the shearer 17 end obliquely cuts the knife into two-way coal cutting, and optimizes the mining method according to the thickness ratio of the coal rock layer for efficient coal mining.
  • the thickness of the rock layer at different locations is different for the height of the mining height.
  • the shearer 17 is used to break the rock; the thickness of the rock layer accounts for 1 of the mining height.
  • the thick and complete rock formation is broken by drilling loose blasting pre-cracking, and then shearing is performed by the shearer 17.
  • loose blasting pre-cracking when the thickness of the rock layer is 1/3 ⁇ 2/3 of the mining height, the drilling adopts a single-row hole arrangement; when the thickness of the rock layer is greater than 2/3 of the mining height, the drilling adopts a double-row spacing arrangement.
  • the cut coal is transported to the transfer machine 16 of the machine lane by the scraper conveyor 18, and then transported to the downhole stone washing and processing chamber 5 through the belt 14; after the crushed coal is crushed, washed and separated, the medium coal and vermiculite are formed,
  • the coal transportation system with the mine is transported to the surface coal bunker 1 through the main well 2, and the vermiculite is crushed to form a waste material with a diameter less than 25 mm.
  • the raw material is transported by the belt 14 to the position of the filling pump 15; the special production line of the ground is produced according to the design mix ratio. Dry-filled filling materials are shipped to the downhole pumping station in bags or special containers.
  • the original materials are mixed with other raw materials transported by the auxiliary shafts 3 in the wells.
  • the filling materials are mainly in addition to the crushed meteorite particles.
  • the cement is made of bulk Portland cement, and the quality should meet the requirements of GB175-1999 " Portland cement, ordinary Portland cement”.
  • stone is gravel, the quality must meet the requirements of GB/T14685-2001 "Cobble and gravel for construction", the maximum particle size is 25mm, the water content is less than 1%, and the stone powder content is small.
  • fly ash is used in the second-level or more bulk fly ash of power plant. The quality must meet the requirements of GB1596-91 "Fly ash for cement and concrete”.
  • the radioactivity should meet the requirements of GB6566-2001 "Limits of radionuclides for building materials". Requirements.
  • the admixture is ordered from a professional admixture manufacturer with an amount of 0.5% to 1.2% of the mass of the cement.
  • the filling material is tested by the pumping characteristic of the paste filling material, which realizes the optimal ratio of the filling material and the optimal water content, ensures the quality of the filling of the paste, and the pumping distance of the material can reach 500m, which satisfies It is necessary to fill the roadside in the actual production of the mine.
  • the compressive strength test value of the filling material after solidification molding is 1 ⁇ 7MPa, 12 ⁇ 16MPa after 3 days, and the strength value after 28th is more than 30MPa, which has good early strength and pressure resistance. Meet the strength requirements.
  • the filling pump 15 is uniformly stirred by water and then sent to the filling mold 19 through the filling pipeline 4 for filling.
  • the filling material is solidified in the filling mold 19 to form the filling wall 10, and the gob side return air passage 11 is formed to form the filling side pump;
  • the initial arrangement position of 15 should be controlled within a range of 300 meters from the working surface 8.
  • the height of the roadway installed in the filling pump 15 is not less than 2.65m.
  • the filling pump 15 should be placed flat and the temporary stockyard must be protected against moisture.
  • the ventilation system adopts Y-type ventilation mode, and the airflow flows from the main air inlet lane 7 and the auxiliary air inlet lane 6, and flows out from the air intake side return air passage 11 to form an advantageous flow passage of one three lanes, and the gas passage of the roadway and the working surface.
  • the airside return airway 11 is efficiently exhausted, and flows back to the ground through the return air passage 12 and the return air well 13 to form an advantageous flow passage for one of the three lanes, which changes the gas flow field.
  • the ventilation of the roadway has been improved, and the problem of over-limitation of gas in the upper corner has been solved, and the 8-watt high-efficiency drainage control of the working face of the thin protective layer is formed;
  • the formation of the goaf side return air passage 11 provides a favorable place for the gas diversion control of the goaf area 9 and the 24 and 25 gas-rich fissure areas of the upper and lower overlying rock strata, and the goaf in the gob side return air duct 11
  • Internal construction wall buried pipe 21 upwardly constructing the roof high-level diversion borehole 22 at a certain angle and downwardly constructing the bottom plate through-layer diversion borehole 23 at a certain angle, respectively, the gas and overlying in the mined-out area 9 of the mining layer
  • Pressure relief treatment has laid the foundation for safe and orderly layer-by-layer mining of deep coal seams.
  • the thin protective layer coal rock is combined with the coal mining and vermiculite treatment of the mining face and the gas control of the thin protective layer coal rock mining face, and simultaneously solves the coal mining and meteorite It is difficult to deal with the gas management of the first thin coal seam, and it forms an efficient, safe and integrated mining of the thin protective layer working face.
  • the system combines thin protective layer mining, vermiculite treatment, roadside filling and gas storage comprehensive treatment technology.
  • the network is integrated and coordinated to make the mining of thin protective layer safe, efficient and economic green.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

一种薄煤层综合开采与瓦斯治理网络一体协同控制系统及方法,通过优化采煤机选型和开采方法进行煤岩同采工作面高效开采,并在井下建立煤矸洗选系统(5)将采出煤矸进行高效分离,在提高煤质、减轻矿井运输负担的同时为保护层工作面的巷旁充填提供了原材料,最后巷旁充填在采空侧构建形成优势瓦斯通道,为保护层采场瓦斯的综合导流治理提供了条件。将煤岩高效同采、采后煤矸井下高效分离、分离后矸石充填利用构筑留巷及留巷内采场瓦斯综合治理相结合联系,使得薄保护层的开采变得安全高效、经济绿色,形成网络一体化协同控制系统和方法。

Description

一种薄煤层综合开采与瓦斯治理网络一体协同控制系统及方法 技术领域
本发明提出一种薄煤层综合开采与瓦斯治理网络一体协同控制系统及方法,尤其适用于深井煤层群首采薄煤层的综合高效安全开采。
背景技术
开采保护层能显著降低邻近被保护层的突出危险性,是煤层群开采的首选措施,一般情况下,薄煤层突出危险性小,因此许多薄或极薄煤层虽然开采条件差,但在深部矿井开采时,却往往被选择优先开采,从而以较低危险性实现采场采动卸压,使得在薄煤层采动影响范围内实现邻近上、下覆煤岩层的预先卸压,降低邻近卸压煤层的突出危险性,保证深部高突煤层的安全开采。
由于薄煤层煤层较薄,且受赋存条件影响,厚度变化较大,局部区域甚至出现尖灭,开采过程需要切割大量岩石,工作面往往需要煤岩同采,这就要求采煤机必须能够实现煤岩同采,由于顶板质地坚硬,因此需要采煤机的破岩能力和装运岩石的能力强、配套功率大、耐磨性和稳定性好;煤层厚度较小使得装机尺寸必须小,方便灵活;薄煤层开采工作面推进速度较慢,开采效率低下,亟需对深部复杂薄煤层开采技术和装备进行研究,对采煤机、运输机、转载机以及液压支架重新进行选型选择,开发出适合深部复杂薄煤层开采的成套技术和装备,从而实现深井复杂薄煤层的综合机械化安全高效开采;同时开采出的大量岩石,严重影响矿井产煤的煤质,且大量矸石的提升增加了矿井的运输和提升负担,增加了提升运输成本,不利于矿井的高效经济开采;而深部煤层群首采薄煤层开采后,保护层采动瓦斯和下覆被保护层卸压瓦斯会大量涌入回采空间,巷道风排能力不足,传统通风方式适应性降低,瓦斯问题严重威胁工作面的生产安全,亟需针对性的措施强化瓦斯治理。因此如何实现薄煤层综合机械化高效、绿色和安全开采成为深井煤层群开采的重要难题。
发明内容
发明目的:本发明的目的是克服已有技术中存在的不足之处,提供一种安全高效、经济绿色的薄保护层开采系统及方法。
技术方案:
一种薄煤层综合开采与瓦斯治理网络一体协同控制系统,包括采煤装置、井下矸石洗选处理仓、充填泵以及通风系统;
所述采煤装置在工作面上采煤形成采空区,并将采集的落煤运输至所述井下矸石洗选处理仓;
所述井下矸石洗选处理仓用于对落煤进行破碎、洗选和分离形成中煤和矸石;并将所述中煤随矿井运输系统经主井运送至煤仓;将所述矸石进行粉碎形成充填原料运输至充填泵;
所述充填泵用于对所述充填原料以及地面生产的干混充填材料按一定配比混合 形成充填材料并加水搅拌均匀,并输送至采空区一侧的充填模进行充填形成充填墙体;所述充填墙体与待采煤层煤壁之间构筑形成采空侧回风巷;在所述工作面两侧设有主要进风巷和辅助进风巷;与所述采空侧回风巷连接有回风巷,所述回风巷与回风井连通,所述回风井通向地面;所述主要进风巷、辅助进风巷、采空侧回风巷、回风巷与回风井构成所述通风系统。
所述采煤机采用MG500/1120-WD型综采双滚筒电牵引采煤机。
所述地面生产的干混充填材料为矿自备电厂三级以上散装粉煤灰、水泥和外加剂。
所述充填泵的初次布置位置为与所述工作面距离300米的范围内。
所述充填泵的安装巷道高度不小于2.65m。
一种薄煤层综合开采与瓦斯治理网络一体协同控制方法,包括步骤:
(1)分析薄煤层开采中可能遇到的赋存不稳定、煤层厚度变化大、局部存在尖灭情况,对采煤机进行设备选型;选用液压支架沿工作面倾斜方向成直线排列对工作面进行支护;
(2)所述采煤机端头斜切进刀双向割煤,根据煤岩层厚度比值优化开采方式进行采煤;
(3)所述采煤机采集的落煤运输至井下矸石洗选处理仓;所述井下矸石洗选处理仓(5)对落煤进行破碎、洗选和分离后,形成中煤和矸石;
(4)所述中煤随矿井运输系统经主井运送至煤仓,矸石经粉碎后形成直径小于25mm矸石颗粒充填原料运输至至充填泵处;
(5)所述充填泵将所述充填原料以及地面生产的干混充填材料按一定配比混合形成充填材料并加水搅拌均匀,并输送至采空区内侧的充填模进行充填形成充填墙体,在充填墙体与待采煤层煤壁之间构筑形成采空侧回风巷;
(6)在采空侧回风巷内向采空区内施工墙体埋管,向上施工顶板高位导流钻孔和向下施工底板穿层导流钻孔,导流抽采采场瓦斯;风流从所述主要进风巷和辅助进风巷流入,从采空侧回风巷流出,然后经回风巷、回风井流向地面,形成一面三巷的优势流动通道。
所述采煤机根据煤岩层厚度比值优化开采方式进行采煤具体为:
岩层厚度占采高的1/3以下时,采用所述采煤机破岩;岩层厚度占采高的1/3及以上时,通过打钻松动爆破预裂的方式,先将岩层破碎,再采用采煤机进行切割;松动爆破预裂时,岩层厚度为采高的1/3~2/3时,钻孔采用单排孔布置方式;岩层厚度大于采高的2/3时,钻孔采用双排间隔布置方式。
有益效果:本发明提出一种薄煤层综合开采与瓦斯治理网络一体协同控制系统及方法,将薄保护层开采、矸石处理、巷旁充填和留巷瓦斯综合治理技术相互结合,网络一体,协同控制。实现了煤岩同采工作面高效开采,并通过在井下建立煤矸洗选系统将采出煤矸进行高效分离,在提高煤质、减轻矿井运输负担的同时为保护层工作面的巷旁充填提供了原材料,最后巷旁充填在采空侧构建形成优势瓦斯通道,为保护层采场瓦斯的综合导流治理提供了条件。本发明将薄保护层煤岩高效同采、采后煤矸井下高效分离、分离后矸石充填利用构筑留巷及留巷内展开采场瓦斯综合治理相结合联系,高效开采为巷旁充填和瓦斯治理提供条件,瓦斯治理又反过来为高效安全开采提供保证,使得薄保护层的开采变得安全 高效、经济绿色,形成网络一体化协同控制系统和方法,具有良好的应用前景和推广价值。
附图说明
图1是本发明的薄保护层综合开采立体示意图。
图2是本发明的薄保护层工作面开采与巷旁充填示意图。
图3是本发明的采空侧回风巷瓦斯导流钻孔布置立体示意图。
图中:1-煤仓,2-主井,3-副井,4-充填管路,5-井下矸石洗选处理仓,6-辅助进风巷,7-主要进风巷,8-工作面,9-采空区,10-充填墙体,11-侧回风巷,12-回风巷,13-回风井,14-皮带,15-充填管路泵,16-转载机,17-采煤机,18-刮板运输机,19-充填模板,20-液压支架,21-墙体埋管,22-顶板高位导流钻孔,23-底板穿层导流钻孔,24-上覆邻近层,25-下覆邻近煤层,26-顶板高位导流钻孔施工方向,27-顶板高位导流钻孔内瓦斯流动方向,28-底板穿层导流钻孔施工方向,29-底板穿层导流钻孔内瓦斯流动方向。
具体实施方式
下面结合附图对本发明作更进一一步的说明。
图1是本发明的薄保护层综合开采立体示意图。如图1所示,本发明的薄煤层综合开采与瓦斯治理网络一体化协同控制系统包括煤仓1、主井2、副井3、井下矸石洗选处理仓5、采煤装置、充填泵15以及通风系统。采煤装置包括采煤机,采煤机17在工作面8上工作,采煤形成采空区9;采煤机采集的落煤运输至井下矸石洗选处理仓5,开下矸石洗选处理仓5对落煤进行破碎、洗选和分离形成中煤和矸石;其中,中煤随矿井运输系统经主井2运送至地面煤仓1,矸石在井下矸石洗选处理仓5经粉碎后形成直径小于25mm矸石颗粒充填原料运输至至充填泵15位置处;由地面专门生产线生产出干混充填材料,以袋装或专用集装箱散装运至井下泵站,充填原料与井上经副井3输送的其他原材料混合形成充填材料;其中充填材料除了经粉碎形成的矸石颗粒外主要还有矿自备电厂三级以上散装粉煤灰、水泥和外加剂等;充填材料在充填泵15中加水搅拌均匀后经充填管路4送至充填模19内进行充填,充填材料在采空区9一侧的充填模19内凝固形成充填墙体10,充填墙体与待采(未开采)煤层煤壁之间构筑形成了采空侧回风巷11,如图2所示。在整个工作面8的两侧设有主要进风巷7和辅助进风巷6;风流从主要进风巷7和辅助进风巷6流入,从采空侧回风巷11流出,形成一面三巷的优势流动通道;与采空侧回风巷11连接有回风巷12,回风巷12与回风井13连通,回风井13通向地面;主要进风巷7、辅助进风巷6、采空侧回风巷11、回风巷12与回风井13构成通风系统。
图2是本发明的薄保护层工作面开采与巷旁充填示意图,其中液压支架20支撑工作面8上方的顶板,采煤机17和刮板运输机18相连,刮板运输机18和转载机16相连,转载机16和皮带14相连,皮带14和矸石洗选处理仓5相连。所述采煤机17采用大功率、高强度、强耐磨、低采高、直接破岩的MG500/1120-WD型综采双滚筒电牵引采煤机;液压支架20沿工作面8倾斜方向成直线排列,对工作面8进行支护。
图3是本发明的采空侧回风巷瓦斯导流钻孔布置立体示意图,在采空侧回风巷11内穿过充填墙体10向采空区内水平施工墙体埋管21,向上以一定角度施工顶板高位导流钻孔22打入上覆邻近层24的裂隙带内,向下以一定角度施工底板穿层导流钻孔23穿过下覆邻 近煤层25。
本发明的一种薄煤层综合开采与瓦斯治理网络一体协同控制系统及方法,步骤包括:
薄保护层煤厚为平均煤厚0.5m,采长150m,计划采高1.8m,需煤岩同采,煤岩同采工作面8采用综合机械化采煤法采煤,岩石切割难度大,煤层开采效率低;采煤过程中产出大量矸石,矿井运输负担加重,处理困难;采动瓦斯和卸压瓦斯大量涌入回采空间,瓦斯问题严重。
对薄保护层工作面8开采,在综合分析薄煤层开采中可能遇到的赋存不稳定、煤层厚度变化较大、局部存在尖灭等情况的基础上,首先对采煤机进行设备选型,在薄保护层煤岩同采工作面8内采用大功率、高强度、强耐磨、低采高、直接破岩的MG500/1120-WD型综采双滚筒电牵引采煤机,选用液压支架20沿工作面8倾斜方向成直线排列对工作面8进行支护,采煤机17端头斜切进刀双向割煤,根据煤岩层厚度比值优化开采方式进行高效采煤。由于煤层较薄且厚度变化较大,因此不同位置岩层厚度对采高的占比不同,岩层厚度占采高的1/3以下时,采用采煤机17破岩;岩层厚度占采高的1/3及以上时,通过打钻松动爆破预裂的方式,将较厚及完整的岩层破碎,再采用采煤机17进行切割。松动爆破预裂时,岩层厚度为采高的1/3~2/3时,钻孔采用单排孔布置方式;岩层厚度大于采高的2/3时,钻孔采用双排间隔布置方式。
割落的煤采用刮板运输机18运输至机巷的转载机16,接着通过皮带14运输至井下矸石洗选处理仓5;落煤经破碎、洗选和分离后,形成中煤和矸石,中煤随矿井运输系统经主井2运送至地面煤仓1,矸石经粉碎后形成直径小于25mm矸石颗粒充填原料输送经皮带14运输至至充填泵15位置处;由地面专门生产线按设计配合比生产出干混充填材料,以袋装或专用集装箱散装运至井下泵站,充填原始材料与井上经副井3输送的其他原材料按一定配比混合,其中充填材料除了经粉碎形成的矸石颗粒外主要还有矿自备电厂三级以上散装粉煤灰、水泥和外加剂等,其中,水泥采用散装普通硅酸盐水泥,质量应符合GB175-1999《硅酸盐水泥、普通硅酸盐水泥》的要求;石子为碎石,质量必须符合GB/T14685-2001《建筑用卵石、碎石》的要求,最大粒径25mm,含水率小于1%,石粉含量小于3%;粉煤灰采用电厂二级以上散装粉煤灰,质量必须符合GB1596-91《用于水泥和混凝土的粉煤灰》的要求,放射性应符合GB6566-2001《建筑材料放射性核素限量》的要求。外加剂是向专业的外加剂生产厂订购,掺量为水泥质量的0.5%~1.2%。经试验测试,该充填材料通过膏体充填料泵送特性试验,实现了充填材料的最佳配比及最优含水量,保证了膏体充填料的质量,材料泵送距离可达500m,满足矿井实际生产中巷旁充填作业需要。通过强度测试实验,充填材料凝固成型1大后其抗压强度测试值为4~7MPa,3天后为12~16MPa,28大后强度值均大于30MPa,具有良好的早强性和抗压性,满足强度要求。在充填泵15中加水搅拌均匀后经充填管路4送至充填模19内进行充填,充填材料在充填模19内凝固形成充填墙体10,构筑形成了采空侧回风巷11;充填泵15的初次布置位置应控制与工作面8距离300米的范围内。充填泵15安装巷道高度不小于2.65m。充填泵15摆放要平整,临时料场必须具有防潮措施。
通风系统采用Y型通风方式,风流从主要进风巷7和辅助进风巷6流入,从采空侧回风巷11流出,形成一面三巷的优势流动通道,巷道和工作面的瓦斯经采空侧回风巷11高效排出,经回风巷12、回风井13流向地面,形成一面三巷的优势流动通道,改变了瓦斯流场,优 化了巷道通风,同时解决了上隅角瓦斯超限的问题,形成对薄保护层工作面8瓦斯高效引排治理;
采空侧回风巷11的形成为对采空区9及上下覆煤岩层24、25瓦斯富集裂隙区的瓦斯导流治理提供了有利场所,在采空侧回风巷11内向采空区内施工墙体埋管21、向上以一定角度施工顶板高位导流钻孔22和向下以一定角度施工底板穿层导流钻孔23,分别对开采层采空区9内的瓦斯、上覆邻近层24岩石裂隙内瓦斯和下覆邻近煤层25裂隙内瓦斯进行导流抽采,在对薄煤层工作面8采场瓦斯的综合导流治理的同时实现对下覆邻近煤层25瓦斯预先导流卸压治理,为深井煤层群的安全有序逐层开采打下了基础。通过在采空侧构筑充填墙体将薄保护层煤岩同采工作面煤岩开采及矸石处理与薄保护层煤岩同采工作面的瓦斯治理结合起来,同时解决了煤岩同采、矸石处理和首采薄煤层瓦斯治理难的问题,形成对薄保护层工作面的高效安全一体化综合开采。
本系统将薄保护层开采、矸石处理、巷旁充填和留巷瓦斯综合治理技术相互结合,网络一体,协同控制,使得薄保护层的开采变得安全高效、经济绿色。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

  1. 一种薄煤层综合开采与瓦斯治理网络一体协同控制系统,其特征在于:包括采煤装置、井下矸石洗选处理仓(5)、充填泵(15)以及通风系统;
    所述采煤装置在工作面(8)上采煤形成采空区(9),并将采集的落煤运输至所述井下矸石洗选处理仓(5);
    所述井下矸石洗选处理仓(5)用于对落煤进行破碎、洗选和分离形成中煤和矸石;并将所述中煤随矿井运输系统经主井(2)运送至煤仓(1);将所述矸石进行粉碎形成充填原料运输至充填泵(15);
    所述充填泵(15)用于对所述充填原料以及地面生产的干混充填材料按一定配比混合形成充填材料并加水搅拌均匀,并输送至采空区(9)一侧的充填模(19)进行充填形成充填墙体(10);所述充填墙体(10)与待采煤层煤壁之间构筑形成采空侧回风巷(11);在所述工作面(8)两侧设有主要进风巷(7)和辅助进风巷(6);与所述采空侧回风巷(11)连接有回风巷(12),所述回风巷(12)与回风井(13)连通,所述回风井(13)通向地面;所述主要进风巷(7)、辅助进风巷(6)、采空侧回风巷(11)、回风巷(12)与回风井(13)构成所述通风系统。
  2. 根据权利要求1所述的薄煤层综合开采与瓦斯治理网络一体协同控制系统,其特征在于:所述采煤机(17)采用MG500/1120-WD型综采双滚筒电牵引采煤机。
  3. 根据权利要求1所述的薄煤层综合开采与瓦斯治理网络一体协同控制系统,其特征在于:所述地面生产的干混充填材料为矿自备电厂三级以上散装粉煤灰、水泥和外加剂。
  4. 根据权利要求1所述的薄煤层综合开采与瓦斯治理网络一体协同控制系统,其特征在于:所述充填泵(15)的初次布置位置为与所述工作面(8)距离300米的范围内。
  5. 根据权利要求1所述的薄煤层综合开采与瓦斯治理网络一体协同控制系统,其特征在于:所述充填泵(15)的安装巷道高度不小于2.65m。
  6. 一种基于权利要求1~5任一权利要求的薄煤层综合开采与瓦斯治理网络一体协同控制系统的薄煤层综合开采与瓦斯治理网络一体协同控制方法,其特征在于:包括步骤:
    (1)分析薄煤层开采中可能遇到的赋存不稳定、煤层厚度变化大、局部存在尖灭情况,对采煤机进行设备选型;选用液压支架(20)沿工作面(8)倾斜方向成直线排列对工作面(8)进行支护;
    (2)所述采煤机(17)端头斜切进刀双向割煤,根据煤岩层厚度比值优化开采方式进行采煤;
    (3)所述采煤机采集的落煤运输至井下矸石洗选处理仓(5);所述井下矸石洗选处理仓(5)对落煤进行破碎、洗选和分离后,形成中煤和矸石;
    (4)所述中煤随矿井运输系统经主井(2)运送至煤仓(1),矸石经粉碎后形成直径小于25mm矸石颗粒充填原料运输至充填泵(15)处;
    (5)所述充填泵(15)将所述充填原料以及地面生产的干混充填材料按一定配比混合形成充填材料并加水搅拌均匀,并输送至采空区(9)内侧的充填模(19)进行充填形成充填墙体(10),在充填墙体(10)与待采煤层煤壁之间构筑形成采空侧回风巷(11);
    (6)在所述采空侧回风巷(11)内向采空区内施工墙体埋管(21),向上施工顶板高位导流钻孔(22)和向下施工底板穿层导流钻孔(23),导流抽采采场瓦斯;所述主要进风巷(7)和辅助进风巷(6)与所述采空侧回风巷(11)形成一面三巷的优势流动通道。
  7. 根据权利要求6所述的薄煤层综合开采与瓦斯治理网络一体协同控制方法,其特征 在于:所述采煤机(17)根据煤岩层厚度比值优化开采方式进行采煤具体为:
    岩层厚度占采高的1/3以下时,采用所述采煤机(17)破岩;岩层厚度占采高的1/3及以上时,通过打钻松动爆破预裂的方式,先将岩层破碎,再采用采煤机(17)进行切割;松动爆破预裂时,岩层厚度为采高的1/3~2/3时,钻孔采用单排孔布置方式;岩层厚度大于采高的2/3时,钻孔采用双排间隔布置方式。
PCT/CN2017/114230 2017-03-31 2017-12-01 一种薄煤层综合开采与瓦斯治理网络一体协同控制系统及方法 WO2018176892A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710211293.1 2017-03-31
CN201710211293.1A CN106761754A (zh) 2017-03-31 2017-03-31 一种薄煤层综合开采与瓦斯治理网络一体协同控制系统及方法

Publications (1)

Publication Number Publication Date
WO2018176892A1 true WO2018176892A1 (zh) 2018-10-04

Family

ID=58965646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114230 WO2018176892A1 (zh) 2017-03-31 2017-12-01 一种薄煤层综合开采与瓦斯治理网络一体协同控制系统及方法

Country Status (2)

Country Link
CN (1) CN106761754A (zh)
WO (1) WO2018176892A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106761754A (zh) * 2017-03-31 2017-05-31 中国矿业大学 一种薄煤层综合开采与瓦斯治理网络一体协同控制系统及方法
CN108331573B (zh) * 2017-12-22 2021-03-26 神华宁夏煤业集团有限责任公司 采煤区的废弃油井治理方法
CN108533223B (zh) * 2018-02-12 2020-09-11 太原理工大学 一种井下采空区残留煤层气抽采利用系统
CN109209380B (zh) * 2018-09-30 2020-10-30 中国矿业大学 一种矿山采选充控开采设计方法
CN109209379B (zh) * 2018-09-30 2020-04-24 中国矿业大学 一种矿山采选充+x开采方法
CN109403974A (zh) * 2018-09-30 2019-03-01 中国矿业大学 一种矿山采选卸抽充绿色开采设计方法
CN109372512B (zh) * 2018-11-20 2019-09-24 中国矿业大学 一种煤矸与瓦斯资源化分布式高效利用方法
CN110850053B (zh) * 2019-05-16 2022-03-25 山东天勤矿山机械设备有限公司 煤炭智能开采三维地质力学模型试验系统
CN112985133B (zh) * 2021-03-05 2022-06-14 太原理工大学 一种倾斜式重力热管分期治理矸石山深部积温的方法
CN113338930B (zh) * 2021-05-27 2022-06-07 山东科技大学 一种近距离煤层群首采面初采期防瓦斯超限的开采方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0184720A1 (en) * 1984-11-28 1986-06-18 Potash Corporation Of Saskatchewan Mining Limited Underground mining method for mineral deposits
CN1483921A (zh) * 2002-09-18 2004-03-24 杨新兴 洞穴填充式采煤方法
CN102444401A (zh) * 2011-11-28 2012-05-09 袁树来 薄煤层炮采工作面充填采煤方法及相关设备
CN103982137A (zh) * 2014-05-19 2014-08-13 中国矿业大学 一种煤矿井下水力压裂钻孔方位角设计方法
CN105221179A (zh) * 2015-10-21 2016-01-06 太原理工大学 一种高瓦斯矿井y型通风方法
CN106401586A (zh) * 2016-06-24 2017-02-15 中国矿业大学 一种煤岩同采工作面的煤岩分选与利用方法
CN106761754A (zh) * 2017-03-31 2017-05-31 中国矿业大学 一种薄煤层综合开采与瓦斯治理网络一体协同控制系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978172A (en) * 1989-10-26 1990-12-18 Resource Enterprises, Inc. Gob methane drainage system
CN100462523C (zh) * 2007-06-29 2009-02-18 淮南矿业(集团)有限责任公司 沿空留巷y型通风采空区顶板卸压瓦斯抽采的方法
CN101251028A (zh) * 2008-04-03 2008-08-27 淮南矿业(集团)有限责任公司 高瓦斯煤层群开采沿空留巷y型通风卸压瓦斯抽采方法
CN102865102A (zh) * 2012-09-26 2013-01-09 山西焦煤集团有限责任公司 自流砼凸凹自联接充填方法
CN103758559B (zh) * 2014-01-09 2016-07-27 中国矿业大学 沿空留巷y型通风高位回风巷钻孔抽采瓦斯方法
CN105464700B (zh) * 2015-12-14 2017-12-26 中国矿业大学 综采‑充填混合开采工作面充填段长度确定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0184720A1 (en) * 1984-11-28 1986-06-18 Potash Corporation Of Saskatchewan Mining Limited Underground mining method for mineral deposits
CN1483921A (zh) * 2002-09-18 2004-03-24 杨新兴 洞穴填充式采煤方法
CN102444401A (zh) * 2011-11-28 2012-05-09 袁树来 薄煤层炮采工作面充填采煤方法及相关设备
CN103982137A (zh) * 2014-05-19 2014-08-13 中国矿业大学 一种煤矿井下水力压裂钻孔方位角设计方法
CN105221179A (zh) * 2015-10-21 2016-01-06 太原理工大学 一种高瓦斯矿井y型通风方法
CN106401586A (zh) * 2016-06-24 2017-02-15 中国矿业大学 一种煤岩同采工作面的煤岩分选与利用方法
CN106761754A (zh) * 2017-03-31 2017-05-31 中国矿业大学 一种薄煤层综合开采与瓦斯治理网络一体协同控制系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHU, XUECHAO ET AL.: "(non-official translation) Study on the application of underground crushing-dry-separation-filling combined systematic technology", METAL MINE, no. 11, 30 November 2012 (2012-11-30), pages 60 - 62, ISSN: 1001-1250 *

Also Published As

Publication number Publication date
CN106761754A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018176892A1 (zh) 一种薄煤层综合开采与瓦斯治理网络一体协同控制系统及方法
CN110656937B (zh) 一种流态化煤气同采系统及其同采方法
CN112360462B (zh) 短壁综采矸石充填注浆的开采工艺
WO2021068691A1 (zh) 一种煤矿强弱强全采全充方法
WO2020062432A1 (zh) 近距离煤层群井下采选充协同开采方法
CN101008316B (zh) 磷石膏胶结嗣后充填采矿法及其制浆工艺
CN108915765B (zh) 一种地下全尾砂-废石膏体充填系统及充填方法
CN104763434B (zh) 一种无煤柱双巷掘进方法
CN102230396A (zh) 煤矿采空区随采随充充填方法
CA2986062C (en) Fully mechanized mining-filling mixed mining working face filling section length determination method
CN102392644A (zh) 中厚以下煤层的条带式流体膨胀充填开采方法
WO2019085052A1 (zh) 一种充填采煤回收遗留煤柱并控制隔水关键层稳定的方法
CN101915100B (zh) 煤矿井下黄土充填采煤方法
CN106522948A (zh) 一种短壁矸石胶结连采连充采煤法
CN106894817A (zh) 一种机械化上向分层楔合混合充填采矿法
CN110030031A (zh) 一种长壁回收房柱式采空区遗留煤柱的方法
CN109882239B (zh) 一种露天端帮压煤放射式充填开采方法
CN108757023A (zh) 一种利用矸石条带充填开采置换煤柱的方法
CN112814732A (zh) 一种废石与尾砂混合料浆制备与泵送充填装置
CN114472462B (zh) 一种井下-井上联动煤矸石处置系统及处置方法
CN103147792A (zh) 进路式采煤充填法
CN201982137U (zh) 以矸石为骨料混凝土充填材料的井下制备装置
CN105971605A (zh) 一种井下矿山无废开采方法
CN109577988A (zh) 一种金属矿山盲斜竖井井筒平行施工方法
CN112267885A (zh) 一种两步骤分条回采嗣后废石胶结充填的开采方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903581

Country of ref document: EP

Kind code of ref document: A1