WO2018176870A1 - 一种基于热加工图的筒形件热强旋形/性一体化控制方法 - Google Patents

一种基于热加工图的筒形件热强旋形/性一体化控制方法 Download PDF

Info

Publication number
WO2018176870A1
WO2018176870A1 PCT/CN2017/112819 CN2017112819W WO2018176870A1 WO 2018176870 A1 WO2018176870 A1 WO 2018176870A1 CN 2017112819 W CN2017112819 W CN 2017112819W WO 2018176870 A1 WO2018176870 A1 WO 2018176870A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming
spinning
strain
rate
energy
Prior art date
Application number
PCT/CN2017/112819
Other languages
English (en)
French (fr)
Inventor
夏琴香
朱宁远
程秀全
肖刚锋
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US16/498,449 priority Critical patent/US11358202B2/en
Priority to JP2019553195A priority patent/JP2020521636A/ja
Publication of WO2018176870A1 publication Critical patent/WO2018176870A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/30Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/14Spinning
    • B21D22/16Spinning over shaping mandrels or formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/18Performing tests at high or low temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0071Creep
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0226High temperature; Heating means

Definitions

  • the invention relates to a thermal processing drawing and belongs to the field of thermoplastic forming of metallic materials.
  • it relates to a method for controlling the thermal rotation/sexual integration of a cylindrical member based on a thermal processing map.
  • the microstructure is a determining factor in the material properties. Therefore, the evolution of microstructure during hot spinning is the key to determining product performance.
  • conventional methods were used to study the microstructure and texture of metallographic microscope (OM), X-ray diffraction (XRD) and backscattered electron diffraction (EBSD).
  • OM metallographic microscope
  • XRD X-ray diffraction
  • EBSD backscattered electron diffraction
  • Shape/sexual integration control is an important development direction of plastic forming technology.
  • the current focus is on the optimization of process parameters for macroscopic forming quality and spinning defect control.
  • the research on the evolution mechanism of microstructure is also based on the above experimental methods. It only stays in the analysis of the microstructure after forming, and does not coordinate the macroscopic forming quality with the microscopic tissue evolution, and does not evolve the physics in the organization. Based on the mechanism, a specific shape/sexual integration control method is proposed.
  • the object of the present invention is to overcome the above-mentioned shortcomings and deficiencies of the prior art, and to provide a heat-spinning/sexual integrated control method for a cylindrical member based on a thermal processing map. Blind testing and material waste are avoided, and the performance potential of the material is fully exploited.
  • both the macroscopic flow of the material during the processing and the microscopic structural evolution of the material during deformation are considered, and the cylindrical member having both high dimensional accuracy and good structural properties is obtained.
  • a method for controlling the thermal rotation/sexual integration of a cylindrical member based on a thermal processing map comprising the following steps:
  • Step (1) according to different temperature, strain rate and strain of dynamic recrystallization in the thermoplastic forming process of different metal materials, the high temperature mechanical properties of the metal material are tested under the conditions of dynamic recrystallization temperature, strain rate and strain;
  • Step (2) Interpolating the relationship between the flow stress and strain obtained under the limited test temperature and strain rate sample points;
  • Step (3) Based on the power dissipation and rheological instability criterion in the thermoplastic forming process, based on the relationship between the flow stress and strain obtained by the extended high temperature mechanical property test, the power dissipation diagrams under different strains are constructed respectively.
  • Step (4) Combine the power dissipation map with the rheological instability diagram to obtain a thermal processing map of the material; according to the distribution of the power dissipation rate factor ⁇ and the rheological instability criterion, the analysis obtains the rheological instability The potential dangerous forming conditions of the standard and the forming conditions of the power dissipation rate factor ⁇ which are favorable for thermoplastic forming under the conditions of safe forming;
  • Step (5) Finally, the material obtained according to the hot working diagram is favorable for the temperature and strain rate of the thermoplastic forming, determining the parameters of the hot spinning forming process, performing the hot spinning forming of the cylindrical member, and obtaining the cylinder satisfying the dimensional accuracy and the structural performance requirement. Shaped pieces.
  • the metal material in the above step (1) is a medium-low stacking fault metal or alloy which is susceptible to dynamic recrystallization during the thermoplastic forming process; the high temperature mechanical property test temperature in the step (1) is 50 ° C below the dynamic recrystallization temperature of the material. Up to 50 ° C above the thermoplastic forming temperature.
  • the thermal processing map described in the above step (5) is a thermal processing map based on a dynamic material model.
  • the strain rate of the high temperature mechanical property test in the above step (1) is 0.01/s-10/s according to the strong spinning strain rate distribution of the cylindrical member; the high temperature mechanical property test in the step (1) ensures the strain amount is 0.6 or more.
  • step (2) The interpolation described in the above step (2) is calculated to expand the number of temperature and strain rate test samples.
  • the strain rate sensitivity coefficient m in the rheological instability criterion of the above step (3) is the rheological stress ⁇ corresponding variable rate
  • the partial derivative which determines the energy G dissipated by the plastic deformation and the distribution of the energy J dissipated by the evolution of the microstructure;
  • the work P of the external force per unit volume of material during the processing of the material that is, the total energy obtained by the material, the stress ⁇ and the strain rate Multiplied by, which will be converted into the energy G consumed by the plastic deformation of the material and the energy J consumed by the microstructure evolution;
  • the ideal energy dissipation system considers that the plastic deformation is equal to the energy consumed by the microstructure evolution, but usually the material is in a state of nonlinear energy dissipation; to describe the energy distribution relationship, the flow stress ⁇ corresponds to the variable rate.
  • the partial derivative, ie the strain rate sensitivity coefficient m, describes its distribution ratio:
  • the dangerous forming condition in the above step (4) is a condition satisfying the rheological instability criterion based on the irreversible thermodynamic extreme value principle of the large plastic deformation described by the strain rate sensitivity coefficient m;
  • the rheological instability criterion is constructed by using the function of variable rate sensitivity coefficient m and strain rate:
  • the hot-stretch forming temperature in the above step (5) should be controlled in the range of ⁇ 25 °C which is favorable for the thermoplastic forming temperature obtained in the hot working drawing.
  • the hot-spin forming strain rate in the above step (5) is achieved by controlling the forming angle of the rotary wheel, the feed ratio of the rotary wheel, the spindle rotational speed, the thinning rate, and/or the wall thickness of the blank;
  • the determination of the parameters of the hot spinning forming process is based on the strain rate of the strong spinning deformation zone of the cylindrical part. Forming angle ⁇ ⁇ with the rotary wheel, wall thickness t 0 of the blank before spinning, wall thickness t f of the workpiece after spinning, wall thickness reduction rate The relationship between the feed rate v 0 is calculated and obtained;
  • ⁇ ⁇ is the forming angle of the rotating wheel
  • t 0 is the wall thickness of the blank before spinning
  • t f is the wall thickness of the workpiece after spinning
  • t ⁇ f is the difference between the outer surface of the blank before spinning and the outer surface of the workpiece after spinning
  • v 0 is the flow velocity of the forming zone before the spinning wheel (relative to the rotating wheel), in the reverse forming, v 0 is equal to the feed rate, and the feed ratio f and the spindle speed n
  • v 0 f ⁇ n.
  • the dynamic recrystallization condition of the above step (1) means that in the medium-low stacking fault metal material described in the step (1), the dislocation density reaches a critical value in the thermoplastic forming process at the grain boundary and the high dislocation density.
  • the re-crystallized nucleus with extremely low dislocation density is formed at the stress concentration and grows. To distinguish the recrystallization during heat treatment, the evolution of this structure is called dynamic recrystallization.
  • the determination of the dynamic recrystallization temperature and strain rate of metal materials is mainly affected by many factors such as the material state, chemical composition and forming mode of the material.
  • the strain rate the forming method is generally considered.
  • the hot-spinning forming is performed, and the strain rate is generally in the range of 0.01/s to 10/s, and the dynamic recrystallization temperature at different strain rates can be referred to in the heat treatment process.
  • the crystallization temperature, but the exact recrystallization temperature is mainly obtained by experiment.
  • the present invention has the following advantages and effects:
  • the technical solution adopted by the invention can realize the integrated control of shape/sex of hot strong spin forming from the physical mechanism level;
  • the technical solution adopted by the invention can obtain a cylindrical member having high dimensional accuracy and good tissue performance at the same time;
  • the technical solution adopted by the invention can obtain dangerous forming conditions for thermoplastic forming of metal materials, avoiding forming defects and reducing.
  • the thin-walled tubular parts of the difficult-to-deformed metal not only have high-precision external dimensions, but also have fine grain structure with fine uniformity and no rheological instability, so that they have good mechanical properties and realize difficult-to-deform metal cylinders. Integrated control of dimensional accuracy and tissue performance of the part.
  • Figure 1 is a formula for calculating the strain rate of a strong spinning deformation zone of a cylindrical member.
  • Figure 2 is the energy composition during the thermoplastic forming process.
  • Figure 3 is a strain rate sensitivity coefficient expression.
  • Figure 4 shows the ideal linear and nonlinear energy dissipation distribution.
  • Figure 5 is a power dissipation rate factor expression.
  • Figure 6 is a criterion for determining the rheological instability based on the principle of irreversible thermodynamics of large plastic deformation.
  • Figure 7 is a flow chart of an embodiment of the present invention.
  • Fig. 8 is a schematic view showing the parts of the cylindrical member obtained by the hot spinning of the present invention.
  • Figure 9 is a graph of a high temperature plane strain compression test specimen of the present invention.
  • Figure 10 is a schematic view showing the loading of the high temperature plane strain compression test of the present invention.
  • Figure 11 is a graph showing the hot loading curve of the high temperature mechanical property test of the present invention.
  • Figure 12 is a calculation formula of the high temperature plane strain compression flow stress strain of the present invention.
  • Figure 13 is a graph showing the relationship between flow stress and strain obtained by high temperature plane strain compression of the present invention.
  • Figure 14 is a graph showing the power dissipation obtained by the present invention.
  • Figure 15 is a graph showing the rheological instability of the present invention.
  • Figure 16 is a thermal processing diagram based on a dynamic material model obtained in the present invention.
  • Figure 17 is a thermoprocessing diagram and a metallographic phase of the Haynes 230 nickel-based superalloy of the present invention at a strain of 1; wherein: Figure 17a is a hot working diagram of the Haynes 230 nickel-based superalloy of the present invention when the strain is 1; and Figure 17b is a high temperature of the Haynes 230 nickel base of the present invention.
  • Figure 17a is a hot working diagram of the Haynes 230 nickel-based superalloy of the present invention when the strain is 1
  • Figure 17b is a high temperature of the Haynes 230 nickel base of the present invention.
  • One of the metal phases when the alloy strain is 1
  • Fig. 17c is the metallographic phase when the Haynes 230 nickel-based superalloy of the present invention has a strain of 1
  • Fig. 17d is the metallographic phase 3 when the strain of the Haynes 230 nickel-base superalloy of the present invention is 1.
  • Figure 18 is a schematic view of a hot-strong rotary forming tubular blank of the present invention.
  • Figure 19 is a schematic view of the three-rotation counter-rotational pitch spinning of the present invention.
  • Figure 20 is a thermogravimetric metallurgical structure of the Haynes 230 nickel-based superalloy of the present invention.
  • Figure 21 is a graph showing the high temperature uniaxial tensile test of the present invention.
  • the strong spinning deformation zone strain rate determines the range of strain rates in the high temperature mechanical properties test.
  • the forming angle ⁇ ⁇ of the rotary forming in the spin forming the wall thickness t 0 of the blank before spinning, the wall thickness t f of the workpiece after spinning, the difference between the outer surface of the blank before spinning and the outer surface of the workpiece after spinning
  • the distance t ⁇ f of the inner surface of the workpiece is the wall thickness reduction rate
  • the present invention employs a thermal processing map based on a dynamic material model.
  • the work done by the external force on the unit volume of material per unit time during the processing that is, the total energy obtained by the material.
  • the relationship between the work (energy) performed by the external force described in the thermal processing map based on the dynamic material model and the energy consumed by the plastic deformation of the material is shown in FIG.
  • the total energy P obtained by the material can be expressed as stress ⁇ and strain rate
  • the strain rate sensitivity coefficient m is determined as shown in FIG.
  • the power dissipation rate factor ⁇ as shown in FIG. 5 is used to describe the proportion of the dissipated energy of the microstructure evolution during the thermoplastic forming process.
  • the deformation and instability of materials mainly include: local plastic flow, formation of adiabatic shear band, void nucleation around hard spots, and grain boundary wedge cracking.
  • the rheological instability criterion based on the principle of irreversible thermodynamics of large plastic deformation as shown in Fig. 6 is used to determine the rheological instability criterion.
  • the stability criterion is established, indicating the temperature T and strain rate at this temperature. There is a risk of instability under the conditions.
  • FIG. 1 The flow chart of the method for implementing the heat-spinning/sexual integration control method of the cylindrical member based on the hot-process drawing of the present invention is shown in FIG.
  • the material is a nickel-based superalloy of the name Haynes 230, which is a Ni-Cr-W-Mo solid solution strengthened low stacking fault high temperature alloy.
  • This embodiment uses a high temperature plane strain compression test to test the high temperature mechanical properties.
  • the sample was processed into a 10 ⁇ 15 ⁇ 20 mm 3 rectangular parallelepiped sample as shown in Fig. 9 by wire cutting, and the loading mode during the test was as shown in Fig. 10.
  • Haynes230 nickel-base superalloy is about 1000 °C, so determine the high temperature mechanical properties of the temperature is 950 ° C -1200 ° C, every 50 ° C select a level, a total of six levels; Strain rate of strong spinning deformation zone Calculating the formula, the strain rate is obtained in the range of 0.01/s-10/s, so the strain rate of the design test is four levels of 0.01/s, 0.1/s, 1/s, and 10/s.
  • the test adopts the single factor test design method. A total of 24 sets of tests are carried out on the Gleeble-3500 thermal simulator. During the test, the sample is first heated at 10 °C/s to a temperature greater than 50 °C, and kept for 3 minutes. The sample is evenly heated, and then cooled to 5 °C / s to the test temperature, held for 5min, and then subjected to plane strain high temperature compression. During the compression process, the test machine controls the sample temperature to ensure isothermal compression, and the compression to the true strain is 1 After the sample is quenched by water cooling, the deformed structure is retained as much as possible, and the microstructure of the sample is conveniently studied. The thermal loading curve is shown in FIG.
  • the true stress ⁇ is the product of the force F of the anvil than the width w of the anvil and the length b of the sample, that is, the loading force F and the anvil.
  • the ratio of the contact area of the head to the sample w ⁇ b is calculated as shown in Fig. 12, and the strain coefficient A and the stress coefficient B are 0.866.
  • the obtained rheological stress-strain relationship is shown in Fig. 13.
  • the region satisfying the rheological instability determination criterion shown in FIG. 6 is represented by gray, and the heat-processed pattern of the Haynes 230 alloy as shown in FIG. 16 at the strain can be obtained simply and intuitively.
  • the gray area in the figure is the rheological instability zone, which is the plastic forming danger zone; the area with the larger value of the power dissipation rate factor ⁇ is a safe zone favorable for thermoplastic forming.
  • the plastic forming danger zone for the Haynes 230 nickel-base superalloy is: T ⁇ 1025°C and 1050 ° C ⁇ T ⁇ 1200 ° C, a safe zone for plastic forming is T>1050 °C.
  • the hot spinning temperature is 1100 °C
  • the spindle speed is 100r/min
  • the forming angle of the rotor is 20°
  • the feed ratio is 0.6mm/r
  • the thinning rate is 26%, 28%, 25%, respectively.
  • Ball spin forming the strain rate of the strong spinning deformation zone of the cylindrical member shown in Figure 1.
  • the calculation formula shows that the strain rate is 0.13/s-0.165/s, which is in the safe zone of the plastic forming of Haynes230 nickel-base superalloy.
  • High-efficiency and energy-saving electromagnetic induction heating is adopted in the spinning process, and real-time feedback control is performed by infrared thermometer and temperature control system to ensure that the temperature of the spinning zone billet is between 1075 ° C and 1125 ° C.
  • the straightness e straight and the elliptical e ellipse are used as indicators for evaluating the dimensional accuracy.
  • the wall thickness deviation Stable spinning stage cylindrical member wall thickness and the maximum difference between the minimum value; linear straightness at a distance e between the minimum distance of two parallel lines in the plane is an arbitrary fixed length plain cylindrical test member; ellipticity e
  • the ellipse is the difference between the maximum and minimum outer diameters of the cross section of the cylinder during the stable spinning phase. Measuring the wall thickness deviation of the spinning part It is 0.107mm, the straightness e is straight 0.17mm, and the ellipticity ellipse is 0.20mm, which meets the requirements of parts.
  • the metallographic structure observation, mechanical property test and microhardness measurement were carried out as indicators for evaluating the microstructure of the spinner.
  • the test was performed in the steady rotation stage of the spinning part (15 mm from the mouth), and the metallurgical structure was performed on the MJ-42 optical microscope by inlaying, grinding and polishing after etching for 3 minutes with a solution of HCl:HNO 3 of 3:1.
  • a fine uniform equiaxed completely recrystallized structure as shown in Fig. 20 was obtained, and the average crystal grain diameter was refined from 19.2 ⁇ m before spinning to 4.23 ⁇ m.
  • the specimens observed by the metallographic structure were subjected to microhardness measurement on a HVS-1000Z microhardness tester.
  • the average hardness of the pre-rotation billet was 191.14 HV, and the average hardness after spinning was increased to 315.74 HV.
  • the uniaxial tensile mechanical properties of the spinning element were tested.
  • the yield strength increased from 480 MPa to 1110 MPa at the time of the blank, and the tensile strength was basically unchanged, and was maintained at about 1200 MPa.
  • the material is 304 stainless steel, which is one of the most commonly used Cr-Ni stainless steels.
  • This embodiment uses a high temperature uniaxial tensile test to test the high temperature mechanical properties.
  • the sample was processed by wire cutting into a high temperature uniaxial tensile test specimen as shown in FIG.
  • the test adopts the single factor test design method. A total of 20 sets of tests are carried out on the Gleeble-3500 thermal simulation test machine. The resistance heating method is adopted during the test. The heat loading curve is shown in Figure 11, firstly pulled at 10 °C/s. The deformation section is heated to a temperature greater than the test temperature of 50 ° C, kept for 3 min to make the sample evenly heated, and then cooled to 5 ° C / s to the test temperature, heat preservation for 5 min, and then uniaxial tensile test, until the sample is broken The sample is quenched in a water-cooled manner.
  • the gray area in the figure is the rheological instability zone, which is the plastic forming danger zone; the area with the larger value of the power dissipation rate factor ⁇ is a safe zone favorable for thermoplastic forming.
  • the safety zone is favorable for plastic forming, and hot spinning is performed.
  • the tube blank of the relevant size is directly purchased for hot-spinning.
  • the wall thickness of the billet in the hot spinning forming is reduced from 5mm to 2mm, and the thinning rate is 60%.
  • the hot spinning temperature is 1050 ° C
  • the spindle rotation speed is 100 r / min
  • the rotor forming angle is 20 °
  • the feed ratio is 0.4 mm / r
  • the thinning rate is 26%, 28%, 25%, respectively.
  • Spin forming the strain rate of the strong spinning deformation zone of the cylindrical part shown in Figure 1
  • the calculation formula shows that the strain rate is 0.088/s-0.11/s in the safe zone of 304 stainless steel plastic forming.
  • High-efficiency and energy-saving electromagnetic induction heating is adopted in the spinning process, and real-time feedback control is performed by infrared thermometer and temperature control system to ensure that the temperature of the spinning zone billet is between 1025 ° C and 1075 ° C.
  • Measuring the wall thickness deviation of the spinning part after spin forming The straightness e straight and the elliptical e ellipse are used as indicators for evaluating the dimensional accuracy. Measuring the wall thickness deviation ⁇ t spinning member is 0.102mm, e straightness of straight 0.11mm, ellipsoid ellipticity e to 0.13mm, parts that meet the requirements.
  • the metallographic structure observation and mechanical property test were carried out as an index for evaluating the microstructure and properties of the spinning parts.
  • the test was performed in the steady rotation stage of the spinning part (15 mm from the mouth), and the metallurgical structure was performed on the MJ-42 optical microscope by inlaying, grinding and polishing after etching for 3 minutes with a solution of HCl:HNO 3 of 3:1. Observed, a fine uniform, fibrous structure was obtained, and the average crystal grain diameter was refined from 13.03 ⁇ m before spinning to 2.26 ⁇ m.
  • the uniaxial tensile mechanical properties of the spinner were tested. The yield strength increased from 269 MPa to 560 MPa at the blank, the tensile strength increased from 705 MPa to 846 MPa, and the elongation remained at about 40%.
  • cylindrical member having excellent dimensional accuracy and excellent structural properties is obtained by the hot-form rotary/sexual integrated control method of the cylindrical member based on the hot-process drawing of the present invention.
  • the present invention can be preferably implemented.

Abstract

一种基于热加工图的筒形件热强旋形/性一体化控制方法,在难变形金属热塑性成形过程中,在发生动态再结晶的温度及应变速率范围内进行金属材料高温力学性能试验;基于热塑性成形过程中功率的耗散及流变失稳判断准则,在高温力学性能试验获得流变应力应变关系的基础上,分别构建不同应变下的功率耗散图和流变失稳图;将功率耗散图与流变失稳图进行组合,获得材料热加工图;根据功率耗散率因子η的分布及流变失稳判据,分析获得满足流变失稳准则的潜在危险成形条件及安全成形条件下、功率耗散率因子η较大的有利于热塑性成形的成形条件;最后根据热加工图获得的材料有利于热塑性成形的温度及应变速率,进行筒形件热强旋成形。

Description

一种基于热加工图的筒形件热强旋形/性一体化控制方法 技术领域
本发明涉及热加工图,属于金属材料的热塑性成形领域。尤其涉及一种基于热加工图的筒形件热强旋形/性一体化控制方法。
背景技术
在传统塑性成形对尺寸精度要求的基础上,提出实现成形零件优越的组织性能,是当前塑性成形技术的特点及发展趋势。随着航空航天、国防军工、舰船等高精尖技术的发展,对同时具有较高尺寸精度和良好高温性能的筒形件的应用越来越广泛。但该类合金在室温下变形抗力大、塑性差,常温下进行塑性成形极为困难。具有点加载连续局部成形特点的热强旋成形是目前获得该类难变形金属筒形件的最有效方法之一。在热强旋过程中,由于热力耦合作用,其成形机理复杂,如何控制成形温度及各工艺参数之间的配合,是获得同时具有较高尺寸精度和良好高温性能筒形件的关键。
除材料化学组成外,微观组织形态是材料性能的决定因素。因此,在热强旋过程中微观组织的演变是决定产品性能的关键。为研究热强旋成形过程中微观组织的演变机制,常规方法采用金相显微镜(OM)、X射线衍射(XRD)、背散射电子衍射(EBSD)等对组织及织构进行实验研究。但由于实验手段的局限性,无法实现微观组织的动态观察,凭经验又很难进行预测以及控制,具有一定的盲目性、耗时费力。
形/性一体化控制是塑性成形技术的一个重要的发展方向。在旋压成形方面,目前主要关注于对宏观成形质量、旋压缺陷控制方面的工艺参数优化研 究,对于微观组织演变机理的研究也均是采用上述实验方法,仅停留在对成形后的微观组织进行分析,没有将宏观的成形质量与微观的组织演变进行协同研究,且没有在组织演变物理机制的基础上提出具体的形/性一体化控制方法。
发明内容
本发明的目的在于克服上述现有技术的缺点和不足,提供一种基于热加工图的筒形件热强旋形/性一体化控制方法。避免了盲目地试验和材料的浪费,充分挖掘了材料的性能潜力。本发明技术方案中,既考虑加工过程中材料的宏观流动,又考虑材料变形时微观的组织演变,获得同时具有较高尺寸精度和良好组织性能的筒形件。
本发明通过下述技术方案实现:
一种基于热加工图的筒形件热强旋形/性一体化控制方法,包括如下步骤:
步骤(1):根据不同金属材料热塑性成形过程中发生动态再结晶的温度、应变速率及应变的不同,在发生动态再结晶的温度、应变速率及应变条件下进行金属材料高温力学性能试验;
步骤(2):对有限的试验温度、应变速率样本点数下获得的流变应力应变关系进行插值计算;
步骤(3):基于热塑性成形过程中功率的耗散及流变失稳判断准则,在扩展的高温力学性能试验获得流变应力应变关系的基础上,分别构建不同应变下的功率耗散图和流变失稳图;
步骤(4):将功率耗散图与流变失稳图进行组合,获得材料的热加工图;根据功率耗散率因子η的分布及流变失稳判据,分析获得满足流变失稳准则的潜在危险成形条件及安全成形条件下、功率耗散率因子η的有利于热塑性成形的成形条件;
步骤(5):最后根据热加工图获得的材料有利于热塑性成形的温度及应变速率,确定热强旋成形工艺参数,进行筒形件热强旋成形,获得满足尺寸精度及组织性能要求的筒形件。
上述步骤(1)所述金属材料为在热塑性成形过程中易发生动态再结晶的中低层错能金属或合金;步骤(1)所述高温力学性能试验温度在材料动态再结晶温度以下50℃与至热塑性成形温度以上50℃范围内。
上述步骤(5)所述热加工图为基于动态材料模型的热加工图。
上述步骤(1)所述高温力学性能试验应变速率按筒形件强力旋压应变速率分布范围取0.01/s-10/s;步骤(1)所述高温力学性能试验保证应变量为0.6以上。
上述步骤(2)所述插值计算为对温度及应变速率试验样本数进行扩展。
上述步骤(3)所述流变失稳准则中应变速率敏感系数m为流变应力σ对应变速率
Figure PCTCN2017112819-appb-000001
的偏导,其决定塑性变形所耗散的能量G与微观组织演变所耗散的能量J的分配;
材料在加工过程中单位时间内外力对单位体积材料所做的功P,即材料所获得的总能量,可由应力σ与应变速率
Figure PCTCN2017112819-appb-000002
相乘获得,其将转变为材料发生塑性变形所消耗的能量G及微观组织演变所消耗的能量J;
Figure PCTCN2017112819-appb-000003
理想能量耗散系统认为塑性变形与微观组织演变所消耗的能量相等,但通常材料处于非线性能量耗散状态;为描述能量分配关系,采用流变应力σ对应变速率
Figure PCTCN2017112819-appb-000004
的偏导,即应变速率敏感系数m描述其分配比:
Figure PCTCN2017112819-appb-000005
上述步骤(4)所述危险成形条件是满足由应变速率敏感系数m描述的基于大塑性变形不可逆热力学极值原理的流变失稳准则的条件;
基于大塑性变形不可逆热力学极值原理,采用变速率敏感系数m及应变速率的函数构建流变失稳准则:
Figure PCTCN2017112819-appb-000006
有利于热塑性成形的条件是描述微观组织演变所耗散的能量J占比的功率耗散率因子η较大的成形条件;处于理想线性能量耗散系统时微观组织演变耗散的能量最大,Jmax=P/2,因此根据材料获得的总能量P与耗散能的关系,可采用应变速率敏感系数m的函数描述功率耗散率因子η,以描述微观组织演变所耗散能量J的占比:
Figure PCTCN2017112819-appb-000007
上述步骤(5)所述热强旋成形温度应控制在热加工图所得有利于热塑性成形温度±25℃范围。
上述步骤(5)所述热强旋成形应变速率是通过控制旋轮成形角、旋轮进给比、主轴转速、减薄率和/或坯料壁厚实现;
热强旋成形工艺参数的确定是根据筒形件强力旋压变形区应变速率
Figure PCTCN2017112819-appb-000008
与旋轮成形角αρ、旋压前坯料壁厚t0、旋压后的工件壁厚tf、壁厚减薄率
Figure PCTCN2017112819-appb-000009
进给速度v0的关系计算获得;
Figure PCTCN2017112819-appb-000010
其中αρ为旋轮成形角;t0为旋压前坯料壁厚;tf为旋压后的工件壁厚;tθf为旋压前坯料外表面与旋压后工件外表面之间不同θ层至工件内表面的距离;
Figure PCTCN2017112819-appb-000011
为壁厚减薄率;v0为旋轮前为成形区质点的流动速度(相对于旋轮),在反旋成形中,v0等于进给速度,其与进给比f和主轴转速n的关系为v0=f·n。
上述步骤(1)的动态再结晶条件是指:在步骤(1)所述的中低层错能金属材料中,在热塑性成形过程中易因位错密度达到临界值而在晶界及高位错密度的应力集中处形成位错密度极低的再结晶晶核并长大,为区别在热处理过程中的再结晶,将这种组织演变过程称为动态再结晶。
金属材料动态再结晶温度和应变速率的确定主要受材料的组织状态、化学组成、成形方式等诸多因素影响。对于应变速率一般考虑成形方式,本发明中为热强旋成形,其应变速率一般在0.01/s~10/s范围内,而在不同应变速率下的动态再结晶温度可参考热处理过程中的再结晶温度,但准确的再结晶温度主要依靠试验获得。
本发明相对于现有技术,具有如下的优点及效果:
1、本发明所采用技术方案,可以从物理机制层面实现热强旋成形的形/性一体化控制;
2、本发明所采用技术方案,可以得到同时具有较高尺寸精度和良好组织性能的筒形件;
3、本发明所采用技术方案,可以得到金属材料热塑性成形的危险成形条件,避免成形缺陷及减小。
可见,本发明针对难变形金属薄壁筒形零件不仅具有高精度外形尺寸,还具有细小均匀、无流变失稳现象的微观晶粒组织,使其具有良好的机械性能,实现难变形金属筒形件的尺寸精度与组织性能的一体化控制。
附图说明
图1是筒形件强力旋压变形区应变速率计算公式。
图2是热塑性成形过程中能量组成。
图3是应变速率敏感系数表达式。
图4是理想线性与非线性能量耗散分配。
图5是功率耗散率因子表达式。
图6是基于大塑性变形不可逆热力学极值原理的流变失稳判断准则。
图7是本发明实施的流程图。
图8是本发明热强旋所得筒形件零件示意图。
图9是本发明高温平面应变压缩试验试样图。
图10是本发明高温平面应变压缩试验加载示意图。
图11是本发明高温力学性能试验热加载曲线图。
图12是本发明高温平面应变压缩流变应力应变计算公式。
图13是本发明高温平面应变压缩所得流变应力应变关系。
图14是本发明所得功率耗散图。
图15是本发明所得流变失稳图。
图16是本发明所得基于动态材料模型热加工图。
图17是本发明Haynes230镍基高温合金应变为1时热加工图及金相;其中:图17a是本发明Haynes230镍基高温合金应变为1时热加工图;图17b是本发明Haynes230镍基高温合金应变为1时金相之一;图17c是本发明Haynes230镍基高温合金应变为1时金相之二;图17d是本发明Haynes230镍基高温合金应变为1时金相之三。
图18是本发明热强旋成形筒形件坯料示意图。
图19是本发明三旋轮反旋错距旋压成形示意图。
图20是本发明Haynes230镍基高温合金热强旋金相组织。
图21是本发明高温单向拉伸试样图。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明,但是本发明要求保护 的范围并不局限于实施例表述的范围。
根据如图1所示筒形件强力旋压变形区应变速率
Figure PCTCN2017112819-appb-000012
计算公式确定高温力学性能试验中应变速率的范围。根据旋压成形中旋轮成形角αρ、旋压前坯料壁厚t0、旋压后的工件壁厚tf、旋压前坯料外表面与旋压后工件外表面之间不同θ层至工件内表面的距离tθf、为壁厚减薄率
Figure PCTCN2017112819-appb-000013
、进给速度v0,其中进给速度v0与进给比f和主轴转速n的关系为v0=f·n,确定筒形件强力旋压变形区应变速率
Figure PCTCN2017112819-appb-000014
在0.01/s-10/s范围内,通常在0.05/s-5/s内。因此,可确定高温力学性能试验的应变速率可在0.01/s-10/s范围内选取。
本发明采用基于动态材料模型热加工图。材料在加工过程中单位时间内外力对单位体积材料所做的功P,即材料所获得的总能量。按照基于动态材料模型热加工图所述外力所做的功(能量)与材料发生塑性变形所消耗的能量之间的关系如图2所示。材料所获得的总能量P,可表示为应力σ与应变速率
Figure PCTCN2017112819-appb-000015
的乘积,包括耗散量G,即塑性变形所消耗的能量和耗散协量J,即微观组织演变时所消耗的能量两部分组成,其中耗散量G与耗散协量J的分配由如图3所示的应变速率敏感系数m决定。
当材料处于理想线性能量耗散状态时,应变速率敏感系数m=1,如图4(a)所示,此时耗散协量为最大值Jmax=P/2。通常材料处于如图4(b)所示非线性能量耗散状态。因此采用如图5所示的功率耗散率因子η描述热塑性成形过程中,微观组织演变耗散能量所占比例。
热塑性成形过程中,材料变形失稳现象主要有:局部塑性流动、绝热剪切带形成、硬质点周围空洞形核、晶界楔形开裂等。在基于动态材料模型热加工图中采用如图6所示的基于大塑性变形不可逆热力学极值原理的流变失稳判断准则对其进行判定。当如图6所示的包含应变速率敏感系数m及应变速 率
Figure PCTCN2017112819-appb-000016
的稳判断准则成立,即表明在此温度T及应变速率
Figure PCTCN2017112819-appb-000017
的条件下存在失稳的危险。
本发明基于热加工图的筒形件热强旋形/性一体化控制方法实施的流程图如图7所示。
实施例1
材料为牌号Haynes230的镍基高温合金,其为Ni-Cr-W-Mo固溶强化型低层错能高温合金。其中热强旋所得筒形件(如图8所示)内腔直径d=54mm,壁厚δ=2mm,长度l=500mm。
1、本实施例采用高温平面应变压缩试验进行高温力学性能试验。试样采用线切割的方式加工为如图9所示的10×15×20mm3长方体试样,试验过程中加载方式如图10所示。
2、结合文献及试验确定Haynes230镍基高温合金为1000℃左右,因此确定高温力学性能的温度为950℃-1200℃,每隔50℃选取一个水平,共六个水平;如图1所示筒形件强力旋压变形区应变速率
Figure PCTCN2017112819-appb-000018
计算公式,获得应变速率范围为0.01/s-10/s,因此设计试验的应变速率为0.01/s、0.1/s、1/s、10/s共四个水平。
3、试验采用单因素试验设计方法,在Gleeble-3500热模拟试验机上共进行24组试验,试验过程中首先以10℃/s将试样加热到大于试验所需温度50℃,保温3min以使试样均匀受热,再以5℃/s降温至试验温度、保温5min,然后进行平面应变高温压缩,压缩过程中试验机对试样温度进行控制,以保证等温压缩,压缩到真实应变量为1后采用水冷的方式对试样进行淬火,以尽量保留变形组织,便于对试样进行微观组织研究,热加载曲线如图11所示。
4、按照试验方案进行高温平面应变压缩试验,压缩过程中的真实应变ε 按照压缩前后试样的厚度h与h-Δh之比的自然对数求取,真实应力σ为砧头加载的力F比砧头宽w与试样长b之积,即加载力F与砧头与试样接触面积w·b之比,计算公式如图12所示,应变系数A与应力系数B取0.866。获得的流变应力应变关系如图13所示。
5、对试验数据进行插值计算,将有限的24组试验条件扩展为精度合理的温度与应变速率的二维平面。按照图5所示公式计算所得的功率耗散率因子η在变形温度T与应变速率
Figure PCTCN2017112819-appb-000019
构成的二维平面内的分布,并以等值线形式进行表达,即可获如图14所示的一定应变时功率耗散图;按照图6所示公式计算流变失稳判定准则的值在在温度与应变速率二维平面内的分布,获得如图15所示的一定应变时流变失稳图。并将图14、图15合并,并将满足图6所示流变失稳判定准则的区域用灰色表示,即可简洁直观地获得如图16所示Haynes230合金在该应变时的热加工图。图中灰色区域即为流变失稳区,为塑性成形危险区;功率耗散率因子η的值较大的区域即为有利于热塑性成形的安全区。
6、根据上述步骤5,获得本实施例力学性能试验中最大应变时(应变ε=1)的热加工图(如图17所示),并对流变失稳区的试样进行金相组织观测,即可确定导致流变失稳的原因。获得Haynes230镍基高温合金的塑性成形危险区为:
Figure PCTCN2017112819-appb-000020
T<1025℃及
Figure PCTCN2017112819-appb-000021
1050℃<T<1200℃,有利于塑性成形的安全区为
Figure PCTCN2017112819-appb-000022
T>1050℃。
7、根据热加工图确定的有利于塑性成形的安全区,进行热强旋成形。由于Haynes230镍基高温合金是由美国Haynes公司生产,无法获得如图18所示所需的内腔直径d=54mm、壁厚Δ=5mm的筒形件坯料。采用线切割加工的方式获得热强旋坯料,旋压过程中壁厚应由5mm减薄至2mm,减薄率为60%。 将零件加长30mm作为修边余量,按体积不变原理确定筒形件坯料的长度为L=200mm(即
Figure PCTCN2017112819-appb-000023
)。设计一个直径54mm,长度600mm的旋压芯模,安装在热强旋立式旋压机主轴上,将规格为
Figure PCTCN2017112819-appb-000024
长度为L=200mm的筒形件坯料套在芯模上。采用三旋轮反旋错距旋压成形(如图19所示),轴向错距量为a12=a23=2.5mm。
8、热强旋温度为1100℃、主轴转速为100r/min、旋轮成形角为20°、进给比为0.6mm/r,进行减薄率分别为26%、28%、25%的三道次旋压成形,由图1所示筒形件强力旋压变形区应变速率
Figure PCTCN2017112819-appb-000025
计算公式可知,应变速率为0.13/s-0.165/s,在Haynes230镍基高温合金塑性成形的安全区内。旋压过程中采用高效节能的电磁感应加热,并通过红外测温仪及温度控制系统进行实时反馈调控,保证旋压区坯料温度在1075℃-1125℃。
9、旋压成形后测量旋压件的壁厚偏差
Figure PCTCN2017112819-appb-000026
直线度e、椭圆度e作为评价其尺寸精度的指标。其中,壁厚偏差
Figure PCTCN2017112819-appb-000027
为筒形件稳定旋压阶段壁厚最大值与最小值之差;直线度e为被测筒形件固定长度范围内任意素线位于距离最小的两平行平面之间的距离;椭圆度e为筒形件稳定旋压阶段横截面的外径最大值与最小值之差。测量旋压件的壁厚偏差
Figure PCTCN2017112819-appb-000028
为0.107mm、直线度e为0.17mm、椭圆度e为0.20mm,满足零件要求。
10、旋压成形后进行金相组织观测、力学性能检测及显微硬度测量,作为评价旋压件组织性能的指标。在旋压件的稳旋阶段(离口部15mm)切取试验,通过镶嵌、磨、抛光后采用HCl:HNO3为3:1的溶液腐蚀3分钟,在MJ-42光学显微镜上进行金相组织观测,获得如图20所示细小均匀的等轴状完全再结晶组织,平均晶粒直径由旋压前的19.2μm,细化至4.23μm。利用金 相组织观测后的试样在HVS-1000Z型显微硬度计上进行显微硬度测量,旋前坯料的平均硬度为191.14HV,旋压后平均硬度增大致315.74HV。对旋压件进行单向拉伸力学性能试验,其屈服强度由坯料时的480MPa增加至1110MPa,抗拉强度基本不变,保持在1200MPa左右。
由此可知,通过本发明的基于热加工图的筒形件热强旋形/性一体化控制方法,获得了良好的尺寸精度,且组织性能优异的Haynes230镍基合金筒形件。
实施例2
材料为304不锈钢,其为一种最常用的Cr-Ni不锈钢。其中热强旋所得筒形件(如图8所示)内腔直径d=50mm,壁厚δ=2mm,长度l=500mm。
1、本实施例采用高温单向拉伸试验进行高温力学性能试验。试样采用线切割的方式加工为如图21所示的高温单向拉伸试样。
2、结合文献及试验确定304不锈钢动态再结晶温度为950℃左右,因此确定高温力学性能的温度为900℃-1100℃,每隔50℃选取一个水平,共五个水平;同样设计试验的应变速率为0.01/s、0.1/s、1/s、10/s共四个水平。
3、试验采用单因素试验设计方法,在Gleeble-3500热模拟试验机上共进行20组试验,试验过程中采用电阻加热的方式,热加载曲线如图11所示,首先以10℃/s将拉伸变形段加热到大于试验所需温度50℃,保温3min以使试样均匀受热,再以5℃/s降温至试验温度、保温5min,然后进行单向拉伸试验,直至试样断裂后采用水冷的方式对试样进行淬火。
4、对试验数据进行插值计算,将有限的20组试验条件扩展为精度合理的温度与应变速率的二维平面。按照图5所示公式计算所得的功率耗散率因子η,以等值线形式进行表达,获得类似如图14所示的一定应变时功率耗散 图;按照图6所示公式计算流变失稳判定准则的值在在温度与应变速率二维平面内的分布,获得类似如图15所示的一定应变时流变失稳图。并功率耗散图、流变失稳图合并,并将满足图6所示流变失稳判定准则的区域用灰色表示,即可简洁直观地获得类似如图16所示的热加工图。图中灰色区域即为流变失稳区,为塑性成形危险区;功率耗散率因子η的值较大的区域即为有利于热塑性成形的安全区。获得304不锈钢塑性成形危险区为:
Figure PCTCN2017112819-appb-000029
900℃<T<1000℃及
Figure PCTCN2017112819-appb-000030
1000℃<T<1100℃,有利于塑性成形的安全区为
Figure PCTCN2017112819-appb-000031
0.5、1000℃<T<1100℃。
5、根据热加工图确定的有利于塑性成形的安全区,进行热强旋成形。由于内腔直径d=50mm、壁厚Δ=5mm的304不锈钢管坯可以在市场上进行购买,因此,直接购买相关尺寸的管坯进行热强旋成形。将零件加长30mm作为修边余量,按体积不变原理确定筒形件坯料的长度为L=200mm(即
Figure PCTCN2017112819-appb-000032
设计一个直径50mm,长度600mm的旋压芯模,安装在立式热强旋成形机主轴上,将规格为
Figure PCTCN2017112819-appb-000033
长度为L=200mm的筒形件坯料套在芯模上。采用三旋轮反旋错距旋压成形(如图19所示),轴向错距量为a12=a23=2.5mm。
6、热强旋成形中坯料壁厚由5mm减薄至2mm,减薄率为60%。热强旋温度为1050℃、主轴转速为100r/min、旋轮成形角为20°、进给比为0.4mm/r,进行减薄率分别为26%、28%、25%的三道次旋压成形,由图1所示筒形件强力旋压变形区应变速率
Figure PCTCN2017112819-appb-000034
计算公式可知,应变速率为0.088/s-0.11/s,在304不锈钢塑性成形的安全区内。旋压过程中采用高效节能的电磁感应加热,并通过红外测温仪及温度控制系统进行实时反馈调控,保证旋压区坯料温度在 1025℃-1075℃。
7、旋压成形后测量旋压件的壁厚偏差
Figure PCTCN2017112819-appb-000035
直线度e、椭圆度e作为评价其尺寸精度的指标。测量旋压件的壁厚偏差ψt为0.102mm、直线度e为0.11mm、椭圆度e为0.13mm,满足零件要求。
8、旋压成形后进行金相组织观测、力学性能检测,作为评价旋压件组织性能的指标。在旋压件的稳旋阶段(离口部15mm)切取试验,通过镶嵌、磨、抛光后采用HCl:HNO3为3:1的溶液腐蚀3分钟,在MJ-42光学显微镜上进行金相组织观测,获得细小均匀、呈一定纤维状的组织,其平均晶粒直径由旋压前的13.03μm,细化至2.26μm。对旋压件进行单向拉伸力学性能试验,其屈服强度由坯料时的269MPa增加至560MPa,抗拉强度由705MPa增加至846MPa,伸长率保持在40%左右。
由此可知,通过本发明的基于热加工图的筒形件热强旋形/性一体化控制方法,获得了良好的尺寸精度,且组织性能优异的筒形件。
如上所述,便可较好地实现本发明。
本发明的实施方式并不受上述实施例的限制,其他任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于热加工图的筒形件热强旋形/性一体化控制方法,其特征在于包括如下步骤:
    步骤(1):根据不同金属材料热塑性成形过程中发生动态再结晶的温度、应变速率及应变的不同,在发生动态再结晶的温度、应变速率及应变条件下进行金属材料高温力学性能试验;
    步骤(2):对有限的试验温度、应变速率样本点数下获得的流变应力应变关系进行插值计算;
    步骤(3):基于热塑性成形过程中功率的耗散及流变失稳判断准则,在扩展的高温力学性能试验获得流变应力应变关系的基础上,分别构建不同应变下的功率耗散图和流变失稳图;
    步骤(4):将功率耗散图与流变失稳图进行组合,获得材料的热加工图;根据功率耗散率因子η的分布及流变失稳判据,分析获得满足流变失稳准则的潜在危险成形条件及安全成形条件下、功率耗散率因子η的有利于热塑性成形的成形条件;
    步骤(5):最后根据热加工图获得的材料有利于热塑性成形的温度及应变速率,确定热强旋成形工艺参数,进行筒形件热强旋成形,获得满足尺寸精度及组织性能要求的筒形件。
  2. 根据权利要求1所述基于热加工图的筒形件热强旋形/性一体化控制方法,其特征在于:步骤(1)所述金属材料为在热塑性成形过程中易发生动态再结晶的中低层错能金属或合金;步骤(1)所述高温力学性能试验温度在材料动态再结晶温度以下50℃与至热塑性成形温度以上50℃范围内。
  3. 根据权利要求1所述基于热加工图的筒形件热强旋形/性一体化控制方法,其特征在于:步骤(5)所述热加工图为基于动态材料模型的热加工图。
  4. 根据权利要求1所述基于热加工图的筒形件热强旋形/性一体化控制方法,其特征在于:步骤(1)所述高温力学性能试验应变速率按筒形件强力旋压应变速率分布范围取0.01/s-10/s;步骤(1)所述高温力学性能试验保证应变量为0.6以上。
  5. 根据权利要求1所述基于热加工图的筒形件热强旋形/性一体化控制方法,其特征在于:步骤(2)所述插值计算为对温度及应变速率试验样本数进行扩展。
  6. 根据权利要求1所述基于热加工图的筒形件热强旋形/性一体化控制方法,其特征在于:步骤(3)所述流变失稳准则中应变速率敏感系数m为流变应力σ对应变速率
    Figure PCTCN2017112819-appb-100001
    的偏导,其决定塑性变形所耗散的能量G与微观组织演变所耗散的能量J的分配;
    材料在加工过程中单位时间内外力对单位体积材料所做的功P,即材料所获得的总能量,可由应力σ与应变速率
    Figure PCTCN2017112819-appb-100002
    相乘获得,其将转变为材料发生塑性变形所消耗的能量G及微观组织演变所消耗的能量J;
    Figure PCTCN2017112819-appb-100003
    理想能量耗散系统认为塑性变形与微观组织演变所消耗的能量相等,但通常材料处于非线性能量耗散状态;为描述能量分配关系,采用流变应力σ对应变速率
    Figure PCTCN2017112819-appb-100004
    的偏导,即应变速率敏感系数m描述其分配比:
    Figure PCTCN2017112819-appb-100005
  7. 根据权利要求1所述基于热加工图的筒形件热强旋形/性一体化控制方法,其特征在于:步骤(4)所述危险成形条件是满足由应变速率敏感系数m描述的基于大塑性变形不可逆热力学极值原理的流变失稳准则的条件;
    基于大塑性变形不可逆热力学极值原理,采用变速率敏感系数m及应变速率的函数构建流变失稳准则:
    Figure PCTCN2017112819-appb-100006
    有利于热塑性成形的条件是描述微观组织演变所耗散的能量J占比的功率耗散率因子η较大的成形条件;处于理想线性能量耗散系统时微观组织演变耗散的能量最大,Jmax=P/2,因此根据材料获得的总能量P与耗散能的关系,可采用应变速率敏感系数m的函数描述功率耗散率因子η,以描述微观组织演变所耗散能量J的占比:
    Figure PCTCN2017112819-appb-100007
  8. 根据权利要求1所述基于热加工图的筒形件热强旋形/性一体化控制方法,其特征在于:步骤(5)所述热强旋成形温度应控制在热加工图所得有利于热塑性成形温度±25℃范围。
  9. 根据权利要求1所述基于热加工图的筒形件热强旋形/性一体化控制方法,其特征在于:步骤(5)所述热强旋成形应变速率是通过控制旋轮成形角、旋轮进给比、主轴转速、减薄率和/或坯料壁厚实现;
    热强旋成形工艺参数的确定是根据筒形件强力旋压变形区应变速率
    Figure PCTCN2017112819-appb-100008
    与旋轮成形角αρ、旋压前坯料壁厚t0、旋压后的工件壁厚tf、壁厚减薄率
    Figure PCTCN2017112819-appb-100009
    进给速度v0的关系计算获得;
    Figure PCTCN2017112819-appb-100010
    其中αρ为旋轮成形角;t0为旋压前坯料壁厚;tf为旋压后的工件壁厚;tθf为旋压前坯料外表面与旋压后工件外表面之间不同θ层至工件内表面的距离;
    Figure PCTCN2017112819-appb-100011
    为壁厚减薄率;v0为旋轮前为成形区质点的流动速度(相对于旋轮),在反旋成形中,v0等于进给速度,其与进给比f和主轴转速n的关系为v0=f·n。
  10. 根据权利要求1所述基于热加工图的筒形件热强旋形/性一体化控制方法,其特征在于:步骤(1)的动态再结晶条件是指:在步骤(1)所述的中低层错能金属材料中,在热塑性成形过程中易因位错密度达到临界值而在晶界及高位错密度的应力集中处形成位错密度极低的再结晶晶核并长大,为区别在热处理过程中的再结晶,将这种组织演变过程称为动态再结晶。
PCT/CN2017/112819 2017-03-28 2017-11-24 一种基于热加工图的筒形件热强旋形/性一体化控制方法 WO2018176870A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/498,449 US11358202B2 (en) 2017-03-28 2017-11-24 Integrated shape/property control method for hot power spinning of a cylindrical part based on hot processing map
JP2019553195A JP2020521636A (ja) 2017-03-28 2017-11-24 熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710190026.0A CN107121992A (zh) 2017-03-28 2017-03-28 一种基于热加工图的筒形件热强旋形/性一体化控制方法
CN201710190026.0 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018176870A1 true WO2018176870A1 (zh) 2018-10-04

Family

ID=59717322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112819 WO2018176870A1 (zh) 2017-03-28 2017-11-24 一种基于热加工图的筒形件热强旋形/性一体化控制方法

Country Status (4)

Country Link
US (1) US11358202B2 (zh)
JP (1) JP2020521636A (zh)
CN (1) CN107121992A (zh)
WO (1) WO2018176870A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700406A (zh) * 2022-03-22 2022-07-05 西北工业大学 一种大型薄壁高温合金构件的近净旋压成形工艺

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107121992A (zh) 2017-03-28 2017-09-01 华南理工大学 一种基于热加工图的筒形件热强旋形/性一体化控制方法
CN108595827A (zh) * 2018-04-20 2018-09-28 安徽工业大学 一种C-Mn-Al高强度钢热变形组织演变机制及热加工性能的确定方法
CN111366426A (zh) * 2020-01-18 2020-07-03 西安嘉业航空科技有限公司 一种预测高温耐蚀合金晶粒尺寸的方法
CN111985128B (zh) * 2020-07-20 2024-01-09 南京钢铁股份有限公司 大规格非调质钢的热加工图构建方法
CN115436186A (zh) * 2022-07-28 2022-12-06 东莞市赛测试验设备有限公司 基于弹簧试验机的拉伸测试方法及装置、电子设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578555A (en) * 1991-09-30 1996-11-26 Alcatel Alsthom Compagnie Generale D'electricite Method of monitoring the fabrication of Bi-2223 material having a high critical temperature
CN101201307A (zh) * 2006-12-13 2008-06-18 中国科学院金属研究所 一种自动绘制材料热加工图的方法
CN101579804A (zh) * 2009-06-04 2009-11-18 航天材料及工艺研究所 一种大尺寸薄壁无焊缝钛合金筒形件整体成形方法
CN105537478A (zh) * 2016-01-28 2016-05-04 西北工业大学 Gh696合金锻造工艺参数优化方法
CN105651620A (zh) * 2016-03-09 2016-06-08 中南大学 一种评估金属材料热加工性能的方法
CN107121992A (zh) * 2017-03-28 2017-09-01 华南理工大学 一种基于热加工图的筒形件热强旋形/性一体化控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5816493A (en) * 1996-04-08 1998-10-06 Texan Corporation Thermally expansible compositions methods for preparation and devices using same
JP2006247734A (ja) * 2005-03-14 2006-09-21 Japan Science & Technology Agency 中空材のねじり加工法
KR101278290B1 (ko) * 2011-10-20 2013-06-21 포항공과대학교 산학협력단 압축비틀림을 이용한 나선형 층상복합재료 제조 방법
CN103499988B (zh) * 2013-09-26 2015-08-12 常州市新创复合材料有限公司 热塑板材多层复合设备热压成型温度控制方法及装置
CN104607519B (zh) * 2014-11-28 2016-08-24 航天材料及工艺研究所 铝合金贮箱半球壳体成形方法
CN104636565B (zh) * 2015-02-17 2017-10-10 扬州大学 基于可加工性分析的镁合金一次模锻成形工艺优化方法
CN105562573B (zh) * 2015-12-29 2017-08-08 西北工业大学 置氢tc4钛合金锻造工艺参数的优化方法
CN110538914B (zh) * 2019-09-04 2020-10-30 西北工业大学 一种板材分段加热旋压成形方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578555A (en) * 1991-09-30 1996-11-26 Alcatel Alsthom Compagnie Generale D'electricite Method of monitoring the fabrication of Bi-2223 material having a high critical temperature
CN101201307A (zh) * 2006-12-13 2008-06-18 中国科学院金属研究所 一种自动绘制材料热加工图的方法
CN101579804A (zh) * 2009-06-04 2009-11-18 航天材料及工艺研究所 一种大尺寸薄壁无焊缝钛合金筒形件整体成形方法
CN105537478A (zh) * 2016-01-28 2016-05-04 西北工业大学 Gh696合金锻造工艺参数优化方法
CN105651620A (zh) * 2016-03-09 2016-06-08 中南大学 一种评估金属材料热加工性能的方法
CN107121992A (zh) * 2017-03-28 2017-09-01 华南理工大学 一种基于热加工图的筒形件热强旋形/性一体化控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700406A (zh) * 2022-03-22 2022-07-05 西北工业大学 一种大型薄壁高温合金构件的近净旋压成形工艺
CN114700406B (zh) * 2022-03-22 2023-08-15 西北工业大学 一种大型薄壁高温合金构件的近净旋压成形工艺

Also Published As

Publication number Publication date
US11358202B2 (en) 2022-06-14
US20210276067A1 (en) 2021-09-09
JP2020521636A (ja) 2020-07-27
CN107121992A (zh) 2017-09-01

Similar Documents

Publication Publication Date Title
WO2018176870A1 (zh) 一种基于热加工图的筒形件热强旋形/性一体化控制方法
Jiang et al. Hot deformation characteristics of Alloy 617B nickel-based superalloy: A study using processing map
Zhang et al. Dynamic recrystallization behavior of a γ′-hardened nickel-based superalloy during hot deformation
Zhang et al. Mechanism for the macro and micro behaviors of the Ni-based superalloy during electrically-assisted tension: Local Joule heating effect
Wen et al. Effects of initial aging time on processing map and microstructures of a nickel-based superalloy
Fan et al. Experimental investigation on hot forming–quenching integrated process of 6A02 aluminum alloy sheet
Li et al. The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy
CN101927312B (zh) Tc4钛合金锻环加工工艺
Wu et al. Experimental study and numerical simulation of dynamic recrystallization for a FGH96 superalloy during isothermal compression
Karpov et al. Radial-shear rolling of titanium alloy VT-8 bars with controlled structure for small diameter ingots (≤ 200 mm)
Fan et al. Strengthening behavior of Al–Cu–Mg alloy sheet in hot forming–quenching integrated process with cold–hot dies
Li et al. Phase transformation behavior and kinetics of high Nb–TiAl alloy during continuous cooling
Prasad et al. Hot deformation behavior of the high-entropy alloy CoCuFeMnNi
Wang et al. Hot deformation behavior of as-quenched 7005 aluminum alloy
JP2020521636A5 (zh)
Shi et al. Effect of strain rate on hot deformation characteristics of GH690 superalloy
Ullah et al. Investigating the microstructural evolution during deformation of laser additive manufactured Ti–6Al–4V at 400° C using in-situ EBSD
Qu et al. The research on the constitutive modeling and hot working characteristics of as-cast V–5Cr–5Ti alloy during hot deformation
Moaref et al. Microstructural evaluation and tribological properties of underwater friction stir processed CP-copper and its alloy
CN103409711B (zh) 一种具有细小全层片组织的TiAl基合金的制备方法
Yang et al. Optimization of ECAP—RAP process for preparing semisolid billet of 6061 aluminum alloy
Zhang et al. Microstructure evolution of AZ31B sheet deformed by electric hot temperature-controlled single point incremental forming
Pyshmintsev et al. Alloy Ti–3Al–2.5 V hot-extruded pipe metal structure and properties
Mo et al. Effects of microstructure on the deformation behavior, mechanical properties and residual stress of cold-rolled HAl77-2 aluminum brass tube
Hu et al. Hot workability and microstructural evolution of a nickel-based superalloy fabricated by laser-based directed energy deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019553195

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 30/12/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17903140

Country of ref document: EP

Kind code of ref document: A1