WO2018176731A1 - 主动式智能光伏支架系统 - Google Patents

主动式智能光伏支架系统 Download PDF

Info

Publication number
WO2018176731A1
WO2018176731A1 PCT/CN2017/099262 CN2017099262W WO2018176731A1 WO 2018176731 A1 WO2018176731 A1 WO 2018176731A1 CN 2017099262 W CN2017099262 W CN 2017099262W WO 2018176731 A1 WO2018176731 A1 WO 2018176731A1
Authority
WO
WIPO (PCT)
Prior art keywords
east
north
bracket
west
south
Prior art date
Application number
PCT/CN2017/099262
Other languages
English (en)
French (fr)
Inventor
赵守喆
赵延龙
罗莎
赵守航
赵杨
Original Assignee
赵守喆
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赵守喆 filed Critical 赵守喆
Publication of WO2018176731A1 publication Critical patent/WO2018176731A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the technical field of photovoltaic power station equipment, in particular to an active intelligent photovoltaic support system, and a photovoltaic power generation system including the same, which can be used for the ground, the water surface, the house, the top of the plant, the agriculture, forestry, animal husbandry and fishery culture area and the greenhouse.
  • the traditional form of photovoltaic bracket one is a fixed bracket, the tilt angle of the photovoltaic bracket is fixed at a certain angle, the bracket itself does not have any function of adjusting the tilt angle, passively accepting natural sunlight, which is characterized by low investment cost.
  • the solar light utilization rate is low, the power generation is small, and the yield is very low.
  • the second is the real-time tracking bracket, including: single-axis real-time tracking and dual-axis real-time tracking, real-time tracking through a real-time tracker device (or called a tracker device).
  • the direction of sunlight, the method is characterized by real-time tracking of the sun, driving the component to track the sun in real time.
  • the tracking system has a long working time per day, no intermittent stop system, although the solar utilization rate is high and the power generation is high, but its method
  • the investment cost is high, the structure is complex, the relative failure point, the maintenance rate is high, and the final rate of return is still very low.
  • the object of the present invention is to provide an active smart photovoltaic support system to solve the problem of lower final yield of solar power plants constructed by using existing photovoltaic supports.
  • an active intelligent photovoltaic support system comprising: a column foundation, a column, a secondary beam, a main beam, a main beam connecting device, a north-south direction driving device of the main beam, and a solar cell bracket , solar cell holder connection device, bracket east-west direction driving device and controller;
  • the pillar foundation is fixed on the installation body; the lower part of the pillar is connected with the pillar foundation; the secondary beam is connected to the top of the pillar; the main beam is connected with the secondary beam through the main beam connecting device, and the main beam is arranged in the east-west direction.
  • the north-south direction driving device drives the main beam to rotate around the rotating shaft of the main beam connecting device; the solar cell holder is connected to the main beam through the solar cell holder connecting device, and the east-west driving device drives the solar battery when the system is running.
  • the chip support rotates around the rotating shaft of the solar cell holder connecting device; the controller is used for controlling the driving operation of the main beam north-south direction driving device and the bracket east-west driving device in a time-division manner.
  • the main beam connecting device further includes a north-south rotating seat, a north-south rotating axis, and a north-south rotating arm, and the number of the column base is two, and the east-west direction is spaced.
  • the number of the columns is four, the two columns are arranged on the basis of one column in the north-south direction, and the other two columns are arranged on the basis of the other column; the secondary beams are installed between the two columns located on the same column foundation; North-south rotation seat It is fixedly connected with the secondary beam; the north-south rotating arm is connected with the main beam; the north-south rotating seat and the north-south rotating arm are hingedly connected by the north-south rotating shaft.
  • the north-south direction driving device of the main beam includes a north-south motor base, a first driving device, a first lead screw, a first lead screw bracket, a driver, and a north-south rocker arm;
  • the north-south motor base is connected to the column, the first driving device is mounted on the north-south motor seat;
  • the first screw bracket is connected to the column, the first screw is mounted on the first screw bracket; and the driver is mounted on the first lead screw
  • the first screw is used to drive the operation; the lower end of the north and south rocker arms is connected to the driver, and the upper end is connected to the main beam.
  • the solar cell holder comprises a carrier stringer and a bracket beam, and the bracket stringers are vertically spaced apart to fix the plurality of bracket beams.
  • the solar cell holder connection device comprises an east-west rotating arm, an east-west rotating shaft, an east-west rotating seat, a first bracket supporting and a second bracket supporting;
  • the bracket stringer corresponds to two east-hand rotating arms, and the east-west rotating arms are connected to the bracket longitudinal beam at intervals;
  • the lower end of the first bracket support is connected with the main beam, the upper end is connected with the east-west rotating seat, and the lower end of the second bracket supporting is
  • the main beam is connected, the upper end is connected with the east-west rotating seat; the east-west rotating arm and the east-west rotating seat are hingedly connected by the east-west rotating shaft.
  • the bracket east-west direction driving device comprises a second driving device, a second lead screw, a second lead screw bracket, a driver, a east-west tie rod and a east-west rocker arm;
  • the second driving device and the second lead screw bracket are mounted on the main beam;
  • the second lead screw is mounted on the second lead screw bracket;
  • the driver is mounted on the second lead screw, and is driven by the second lead screw, the driver and the east and west rods Connection;
  • the upper end of the east and west rocker arms is connected to the bracket stringer, and the lower end is connected to the east and west rods.
  • the active smart photovoltaic support system of the present invention as described above, further comprising a battery pack assembly, the battery pack assembly comprising at least two battery sheets; the battery sheets being mounted on the carrier beam.
  • the installation body is the ground, the water surface, the top of the house, the top of the plant, the agriculture, forestry, animal husbandry and fishery culture zone or the greenhouse.
  • the installation body is a ground
  • the pillar foundation is buried under the ground.
  • the period of time ranges from 5 minutes to 60 minutes.
  • the invention provides an active intelligent photovoltaic bracket system, which has no real-time tracker device (tracker device), and has a structure for actively adjusting the tilt angle of the east, west, north and south according to the actual time, according to the actual geographical latitude and longitude, the solar altitude angle, the azimuth angle, the weather and the In the working condition, the controller actively calculates the north-south inclination angle of the best thing of the bracket and the corresponding working time period to ensure the maximum power generation efficiency of the battery module during the working period, and adjust the east-south tilt angle to the position before the start of each working period.
  • tracker device tracker device
  • the active control of the time-phase is realized, which effectively solves the problem that the fixed bracket does not have any adjustment tilt angle and the real-time tracking bracket is passive, non-stop work, etc., effectively raising the sun.
  • the light utilization rate and the power generation efficiency of the battery simplifies the structure of the bracket, shortens the rotation time of the bracket, reduces the fault point, greatly reduces the power generation cost, and improves the final benefit.
  • FIG. 1 is a schematic diagram of an active smart photovoltaic support system according to an embodiment of the present invention
  • FIG. 2 is a schematic view of a main beam connecting device and a bracket in an east-west direction driving device according to an embodiment
  • FIG. 3 is a schematic view of a north-south direction driving device of a main beam according to an embodiment of the present invention
  • FIG. 4 is a schematic view of a solar cell sheet holder connecting device according to an embodiment of the present invention.
  • Figure 5 is a front elevational view of Figure 1;
  • Figure 6 is a side elevational view of Figure 1;
  • Figure 7 is a top plan view of Figure 1;
  • FIG. 8 is a schematic view showing the installation of a battery chip assembly according to an embodiment of the present invention.
  • FIG. 9 is a schematic view of north-south installation of a battery chip assembly according to an embodiment of the present invention.
  • Figure 10 is a schematic view showing the optimum tilt angle of the east-west direction of the battery chip assembly of the present invention.
  • Figure 11 is a schematic view showing the actual running inclination angle of the battery chip assembly in the east-west direction of the present invention.
  • FIG. 1 shows an active smart photovoltaic support system according to an embodiment of the present invention, comprising: column foundation 1, column 2, main beam 3, secondary beam 4, main beam connecting device, main beam north-south direction driving device, solar battery a film holder, a solar cell holder connection device, a bracket east-west direction driving device and a controller 24;
  • the column foundation 1 is fixed on the installation body; the lower part of the column 2 is connected with the column foundation 1; the secondary beam 4 is connected to the top of the column 2; the main beam 3 is connected to the secondary beam 4 through the main beam connecting device, and the main beam 3 is arranged in the east-west direction.
  • the north-south direction driving device drives the main beam to rotate around the main beam connecting device; the solar cell holder is connected to the main beam 3 through the solar cell holder connecting device, and the east-west driving device drives the solar cell during the system operation.
  • the bracket rotates around the rotating shaft of the solar cell holder connecting device; the controller 24 is configured to control the main beam north-south direction driving device and the bracket east-west driving device to operate actively in a time-division manner.
  • the time period ranges from 5 minutes to 60 minutes. Between minutes.
  • the main beam connecting device includes a north-south rotating seat 5, a north-south rotating shaft 6 and a north-south rotating arm 7.
  • the number of the column foundations 1 is two, and the east-west direction is spaced apart; the number of the columns 2 is For four, two columns 2 are arranged on one column foundation 1 in the north-south direction, and the other two columns 2 are placed on the other column foundation 1; the secondary beam 4 is installed between the two columns on the same column foundation 1; north and south
  • the directional rotating seat 5 is fixedly connected to the secondary beam 4;
  • the north-south rotating arm 7 is connected to the main beam;
  • the north-south rotating base 5 and the north-south rotating arm 7 are hingedly connected by the north-south rotating shaft 6.
  • the north-south direction driving device of the main beam includes a north-south motor base 14, a first driving device 9, a first lead screw 11, a first lead screw bracket 13, a driver 12, and a north-south rocker arm 8;
  • the seat 14 is connected to the column 2, the first driving device 9 is mounted on the north and south motor base 14;
  • the first screw bracket 13 is connected to the column 2,
  • the first screw rod 11 is mounted on the first screw bracket 13;
  • the driver 12 is mounted on the The first lead screw 11 is driven by the first lead screw 11;
  • the lower end of the north-south rocker arm 8 is connected to the driver 12, and the upper end is connected to the main beam 3.
  • the first driving device 9 drives the first lead screw 11, the first lead screw 11 drives the driver 12, the driver 12 drives the north-south rocker arm 8, and the north-south rocker arm 8 drives the main beam 3 to rotate around the north-south rotating shaft 6 by changing the first
  • the forward and reverse rotation of a driving device 9 realizes a north-south reciprocating motion of the main beam 3 minutes.
  • the angle of rotation in the north-south direction is the initiative
  • the latitude and longitude line of the location of the intelligent photovoltaic support system is the basis of measurement.
  • the horizontal line perpendicular to the meridian of the active intelligent photovoltaic support system is the reference zero degree, ranging from 0 to 90 degrees.
  • the solar cell holder includes a carrier rail 17 and a bracket beam 18, and a plurality of bracket beams 18 are vertically spaced apart on the bracket rail 17.
  • the solar cell holder connecting device includes an east-west rotating arm 21, an east-west rotating shaft 20, an east-west rotating seat 19, a first bracket support 15 and a second bracket support 16; each bracket longitudinal beam 17 corresponds to Two east-hand rotating arms 21, the east-west rotating arms 21 are spaced apart from the carrier rails 17; the lower ends of the first bracket supports 15 are connected to the main beam 3, the upper ends are connected to the east-west rotating seats 19, and the second bracket supports 16 The lower end is connected to the main beam 3, the upper end is connected to the east-west rotating seat 19, and the east-west rotating arm 21 and the east-west rotating seat 19 are hingedly connected by the east-west rotating shaft 20.
  • the bracket east-west direction driving device includes a second driving device 27, a second lead screw 29, a second lead screw bracket 28, a driver 12, a east-west tie rod 23 and a east-west rocker arm 22; a second driving device 27, a second
  • the lead screw bracket 28 is mounted on the main beam 3; the second lead screw 29 is mounted on the second lead screw bracket 28; the driver 12 is mounted on the second lead screw 29, and is driven by the second lead screw 29, the driver 12 and the thing
  • the tie rods 23 are connected; the upper end of the east and west rocker arms 22 is connected to the bracket rails 17, and the lower end is connected to the east and west rods 23.
  • the second driving device 27 drives the second lead screw 29, the second lead screw 29 drives the east and west rods 23, and the east and west rods 23 drive all the rocker arms 22, and finally drive all the solar cells by changing the forward and reverse rotation of the second driving device 27.
  • the sheet holder rotates around the corresponding object rotating shaft 20, rotates the seat around its corresponding thing, and performs reciprocating rotational movement of the same angle direction in the same period.
  • the angle of rotation in the east-west direction is based on the latitude and longitude line of the active smart photovoltaic support system.
  • the vertical axis of the local horizontal line of the active smart photovoltaic support is the reference zero degree, ranging from 0 to 90 degrees. It is preferably from 10 to 80 degrees.
  • the controller 24 of the present invention first divides the working time of the solar day into several working periods according to the actual geographical latitude and longitude, the solar elevation angle, the azimuth angle, the weather, the arrangement spacing of the cell components in the north-south direction, and the specific working conditions, and calculates a plurality of groups.
  • the cell assembly 26 is actually running at an inclination angle in the east-west direction and an actual running inclination angle in the north-south direction.
  • the morning BC working period is taken as an example.
  • the controller 24 simulates calculating the theoretical optimal tilt angle ⁇ of the single cell assembly 26 in the east-west direction of the BC working period.
  • the east cell assembly 26 blocks a portion of the adjacent cell assembly 26 on the west side to form a shadow.
  • the controller optimally tilts the east-west direction.
  • the angle ⁇ minus the angle weight value causing the shadow calculates the actual running inclination angle ⁇ of the plurality of sets of the cell assembly 26 in the east-west BC working period, and ensures that the adjacent cell sheet assembly 26 in the east-west direction is not blocked, and reaches the maximum. Power generation efficiency.
  • the azimuth of the sun continues to increase westward, and ⁇ continues to increase, but ⁇ gradually becomes smaller and finally approaches 0°.
  • the plurality of sets of the cell assembly 26 are equally arranged in the east-west direction, the angle weights of the shadows are directly affected. Therefore, when the plurality of sets of the cell components 26 are equally arranged in the east-west direction, the plurality of cells are in the same working condition.
  • the sheet assembly 26 actually runs at an inclination angle ⁇ in the east-west direction, and the variation law is the same, but the ⁇ angle values calculated by the controller 24 are completely different. As shown in FIG.
  • the spacing ensures that the north-south direction of the plurality of rows of the east-west direction of the cell assembly 26 is unobstructed under the whole year, and the multi-row cell is combined.
  • the maximum power generation efficiency factor of the component 26 is that when the sun is about to end in the morning AB working period range, the controller 24 actively calculates the actual running inclination angle of the BC working period of the BC working period battery module 26 in the north-south direction, and so on.
  • the controller 24 divides the time range from 5 minutes to 60 minutes, and the calculated running angle of the east-south direction of the east-south direction ranges from 0° to 12°.
  • the controller 24 always converts the actual running inclination angle in the east-west direction and the north-south direction of the next working period into a control signal when the sun is running in the last working period, and outputs it to the electric control cabinet 25 before the start of the next working period. For example, when the sun is running at the AB working time in the morning, the controller 24 converts the actual running inclination angle in the east-west direction of the BC working period and the actual running inclination angle in the north-south direction into a control signal output to the electric control cabinet 25, and the electric control cabinet 25 controls the first.
  • the driving device and/or the second driving device rotates, and the active smart photovoltaic supporting system rapidly adjusts to the actual running inclination angle in the east-west direction and the north-south direction of the next working period, and the controller 24 cuts off the controller 24 according to the measured inclination angle data.
  • the output signal, the first driving device and/or the second driving device stop working, the controller 24 immediately enters the standby state, and the active smart photovoltaic support maintains the adjusted actual running inclination for a long time until the next working period begins.
  • the controller 24 is started again, recalculating the east-west direction of the next working period and the actual running inclination angle in the north-south direction, and outputting the control signal to the electric control cabinet 25, so that the active smart photovoltaic bracket system is always in the last solar operation. Before the end of the period, adjust to the east and west of the next working period in advance. The actual operation of the dip angle to the north and south direction, to achieve active intelligent control throughout the year.
  • FIG. 1 Also shown in Fig. 1 is an electrical control cabinet 25 that outputs control signals to an electrical control cabinet 25 that controls the rotation of the first drive unit 9 and/or the second drive unit 27.
  • the battery pack assembly 26 includes at least two battery sheets; the battery sheets are mounted on the carrier cross member 18.
  • the installation body is the ground, the water surface, the top of the house, the top of the plant, the agriculture, forestry, animal husbandry and fishery area or the greenhouse.
  • the main body of the installation is the ground, the pillar foundation 1 is buried below the ground.
  • the active intelligent photovoltaic bracket system realizes the active intelligent adjustment of the east-west tilt angle and the north-south tilt angle, so that the solar panel energy can be utilized most efficiently by the solar cell module, and the utilization ratio can be increased by more than 20% compared with the fixed bracket;
  • the column foundation, the column, the main beam, the secondary beam, the north-south rotation axis, the north-south rotation seat, and the north-south rotation arm form the gantry structure of the bracket system.
  • the gantry structure will raise the bracket as a whole to realize the bracket and the ground, the water surface and the house.
  • the power mechanism consisting of driving device, lead screw, driver or east-west tie rod has simple structure, high mechanical strength, strong overload capacity and stable operation. After the drive device stops running, the screw and the drive can realize self-locking, so that the bracket is optimal. The inclination maintaining phase does not sway;
  • the investment cost of the active smart photovoltaic support is increased by about 10% compared with the fixed support, and the power generation is increased by more than 20%.
  • the active smart photovoltaic support is compared with the real-time tracking support.
  • the investment cost of the bracket is reduced by more than 10%, and the power generation is basically equal to tracking the PV brackets in real time.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

一种主动式智能光伏支架系统,其包括:立柱基础(1)、立柱(2)、次梁(4)、主梁(3)、主梁连接装置、主梁南北方向驱动装置、太阳能电池片支架、太阳能电池片支架连接装置、支架东西方向驱动装置和控制器(24);主梁(3)通过主梁连接装置与次梁(4)连接,系统运行时主梁南北方向驱动装置驱动主梁(3)绕主梁连接装置的转轴转动;太阳能电池片支架通过太阳能电池片支架连接装置与主梁(3)连接,系统运行时支架东西方向驱动装置驱动太阳能电池片支架绕太阳能电池片支架连接装置的转轴转动。主动式智能光伏支架系统实现了东西倾斜角度和南北倾斜角度的主动智能调整,使电池片组件最大效率的利用太阳光能,与固定支架相比能增加20%以上的利用率。

Description

主动式智能光伏支架系统 技术领域
本发明属于光伏电站设备技术领域,特别是涉及一种主动式智能光伏支架系统,以及包括该支架的光伏发电系统,可用于地面、水面、房屋、厂房顶部、农林牧渔养殖区、大棚。
背景技术
目前,光伏支架的传统形式:一是固定支架,光伏支架的倾斜角度固定在某角度上,支架本身不具备任何调整倾斜角度的功能,被动接受太阳光自然照射,其特点是,投资成本低,但太阳光利用率差、发电量较少、收益率很低;二是实时跟踪支架,包括:单轴实时跟踪和双轴实时跟踪,通过实时跟踪器装置(或称为追踪器装置)实时跟踪太阳光照射方向,该方法的特点是实时跟踪太阳时,驱使组件实时跟踪太阳的追踪系统每天的工作时间很长,没有间歇停歇系统,太阳光利用率虽然较高、发电量较高,但是其投资成本高、结构复杂、相对故障点、维修率高、最终收益率仍然很低。
发明内容
本发明的目的是提供一种主动式智能光伏支架系统,以解决利用现有光伏支架建设太阳能电站最终收益率较低的问题。
本发明解决上述技术问题的技术方案如下:一种主动式智能光伏支架系统,其包括:立柱基础、立柱、次梁、主梁、主梁连接装置、主梁南北方向驱动装置、太阳能电池片支架、太阳能电池片支架连接装置、支架东西方向驱动装置和控制器;
所述立柱基础固定在安装主体上;所述立柱的下部与立柱基础连接;所述次梁连接在立柱的顶部;所述主梁通过主梁连接装置与次梁连接,主梁东西方向布置,系统运行时主梁南北方向驱动装置驱动主梁绕主梁连接装置的转轴转动;所述太阳能电池片支架通过太阳能电池片支架连接装置与主梁连接,系统运行时支架东西方向驱动装置驱动太阳能电池片支架绕太阳能电池片支架连接装置的转轴转动;所述控制器用于控制主梁南北方向驱动装置和支架东西方向驱动装置分时段主动运行。
本发明如上所述的主动式智能光伏支架系统,进一步,所述主梁连接装置包括南北方向旋转座、南北方向旋转轴和南北方向旋转臂,所述立柱基础的数量为两个,东西方向间隔设置;所述立柱的数量为四个,两个立柱南北方向设置在一个立柱基础上,另外两个立柱设置在另一个立柱基础上;次梁安装在位于同一立柱基础的两个立柱之间;南北方向旋转座 与次梁固定连接;南北方向旋转臂与主梁连接;南北方向旋转座和南北方向旋转臂通过南北方向旋转轴铰接连接。
本发明如上所述的主动式智能光伏支架系统,进一步,所述主梁南北方向驱动装置包括南北电机座、第一驱动装置、第一丝杠、第一丝杠支架、驱动器和南北摇臂;所述南北电机座与立柱连接,第一驱动装置安装在南北电机座上;第一丝杠支架与立柱连接,第一丝杠安装在第一丝杠支架上;驱动器安装在第一丝杠上,利用第一丝杠驱动运行;南北摇臂的下端与驱动器连接,上端与主梁连接。
本发明如上所述的主动式智能光伏支架系统,进一步,所述太阳能电池片支架包括托架纵梁和托架横梁,所述托架纵梁上垂直间隔固定多个托架横梁。
本发明如上所述的主动式智能光伏支架系统,进一步,所述太阳能电池片支架连接装置包括东西旋转臂、东西旋转轴、东西旋转座、第一托架支撑和第二托架支撑;每个托架纵梁对应两个东西旋转臂,东西旋转臂间隔连接在托架纵梁上;第一托架支撑的下端与主梁连接,上端与东西旋转座连接,第二托架支撑的下端与主梁连接,上端与东西旋转座连接;东西旋转臂和东西旋转座之间通过东西旋转轴铰接连接。
本发明如上所述的主动式智能光伏支架系统,进一步,所述支架东西方向驱动装置包括第二驱动装置、第二丝杠、第二丝杠支架、驱动器、东西拉杆和东西摇臂;所述第二驱动装置、第二丝杠支架安装在主梁上;第二丝杠安装在第二丝杠支架上;驱动器安装在第二丝杠上,利用第二丝杠驱动运行,驱动器与东西拉杆连接;东西摇臂的上端与托架纵梁连接,下端与东西拉杆连接。
本发明如上所述的主动式智能光伏支架系统,进一步,还包括电池片组件,所述电池片组件包括至少两个电池片;所述电池片安装在托架横梁上。
本发明如上所述的主动式智能光伏支架系统,进一步,所述安装主体为地面、水面、房屋顶部、厂房顶部、农林牧渔养殖区或大棚。
本发明如上所述的主动式智能光伏支架系统,进一步,所述安装主体为地面,所述立柱基础埋入所述地面下方。
本发明如上所述的主动式智能光伏支架系统,进一步,所述时段的范围在5分钟~60分钟之间。
本发明的有益效果是:
本发明提供一种主动式智能光伏支架系统,没有实时跟踪器装置(追踪器装置),有分时段主动调整东西南北倾斜角度的结构,根据实际地理经纬度、太阳高度角、方位角、天气及具 体工况,控制器主动计算支架的最佳东西南北倾斜角度和相应的工作时间段,保证工作时段的电池片组件的最大发电效率,每个工作时段开始前提前调整东西南北倾斜角度到位,在没有实时跟踪器装置(追踪器装置)的情况下,实现分时段主动控制,有效的解决了固定支架不具备任何调整倾斜角度和实时跟踪支架长时间被动、不停歇工作等问题,有效的提升太阳光利用率和电池片发电效率,简化了支架结构,缩短支架转动时间,减少了故障点,极大降低发电成本,提高了最终收益。
附图说明
通过结合以下附图所作的详细描述,本发明的上述和/或其他方面和优点将变得更清楚和更容易理解,这些附图只是示意性的,并不限制本发明,其中:
图1为本发明一种实施例的主动式智能光伏支架系统示意图;
图2为一种实施例的主梁连接装置和支架东西方向驱动装置示意图;
图3为本发明一种实施例的主梁南北方向驱动装置示意图;
图4为本发明一种实施例的太阳能电池片支架连接装置示意图;
图5为图1的正视示意图;
图6为图1的侧视示意图;
图7为图1的俯视示意图;
图8为本发明一种实施例的电池片组件安装示意图;
图9为本实用新型一种实施例的电池片组件南北安装示意图;
图10为本实用新型电池片组件东西方向理论最佳倾斜角度示意图;
图11为本实用新型电池片组件东西方向实际运行倾角示意图。
附图中,各标号所代表的部件列表如下:
1、立柱基础,2、立柱,3、主梁,4、次梁,5、南北方向旋转座,6、南北方向旋转轴,7、南北方向旋转臂,8、南北摇臂,9、第一驱动装置,11、第一丝杠,12、驱动器,13、第一丝杠支架,14、南北电机座,15、第一托架支撑,16、第二托架支撑,17、托架纵梁,18、托架横梁,19、东西旋转座,20、东西旋转轴,21、东西旋转臂,22、东西摇臂,23、东西拉杆,24、控制器,25、电控柜,26、电池片组件,27、第二驱动装置,28、第二丝杠支架,29、第二丝杠。
具体实施方式
在下文中,将参照附图描述本发明的主动式智能光伏支架系统的实施例。
在此记载的实施例为本发明的特定的具体实施方式,用于说明本发明的构思,均是 解释性和示例性的,不应解释为对本发明实施方式及本发明范围的限制。除在此记载的实施例外,本领域技术人员还能够基于本申请权利要求书和说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括采用对在此记载的实施例的做出任何显而易见的替换和修改的技术方案。
本说明书的附图为示意图,辅助说明本发明的构思,示意性地表示各部分的形状及其相互关系。请注意,为了便于清楚地表现出本发明实施例的各部件的结构,各附图之间并未按照相同的比例绘制。相同的参考标记用于表示相同的部分。
图1示出本发明一种实施例的主动式智能光伏支架系统,其包括:立柱基础1、立柱2、主梁3、次梁4、主梁连接装置、主梁南北方向驱动装置、太阳能电池片支架、太阳能电池片支架连接装置、支架东西方向驱动装置和控制器24;
立柱基础1固定在安装主体上;立柱2的下部与立柱基础1连接;次梁4连接在立柱2的顶部;主梁3通过主梁连接装置与次梁4连接,主梁3东西方向布置,系统运行时主梁南北方向驱动装置驱动主梁绕主梁连接装置的转轴转动;太阳能电池片支架通过太阳能电池片支架连接装置与主梁3连接,系统运行时支架东西方向驱动装置驱动太阳能电池片支架绕太阳能电池片支架连接装置的转轴转动;控制器24用于控制主梁南北方向驱动装置和支架东西方向驱动装置分时段主动运行,在优选的实施例中,时段的范围在5分钟~60分钟之间。
如图2和图5所示,主梁连接装置包括南北方向旋转座5、南北方向旋转轴6和南北方向旋转臂7,立柱基础1的数量为两个,东西方向间隔设置;立柱2的数量为四个,两个立柱2南北方向设置在一个立柱基础1上,另外两个立柱2设置在另一个立柱基础1上;次梁4安装在位于同一立柱基础1的两个立柱之间;南北方向旋转座5与次梁4固定连接;南北方向旋转臂7与主梁连接;南北方向旋转座5和南北方向旋转臂7通过南北方向旋转轴6铰接连接。
如图3和图6所示,主梁南北方向驱动装置包括南北电机座14、第一驱动装置9、第一丝杠11、第一丝杠支架13、驱动器12和南北摇臂8;南北电机座14与立柱2连接,第一驱动装置9安装在南北电机座14上;第一丝杠支架13与立柱2连接,第一丝杠11安装在第一丝杠支架13上;驱动器12安装在第一丝杠11上,利用第一丝杠11驱动运行;南北摇臂8的下端与驱动器12连接,上端与主梁3连接。
第一驱动装置9驱动第一丝杠11,第一丝杠11驱动驱动器12,驱动器12驱动南北摇臂8,南北摇臂8驱动主梁3以南北方向旋转轴6为中心转动,通过改变第一驱动装置9的正反转实现主梁3分时段南北往复运动。在南北上下方向上分时段转动的角度,是以主动 式智能光伏支架系统所在地的经纬度线为测量基准依据,主动式智能光伏支架系统所在当地的于子午线垂直的水平线为基准零度,范围为0到东西各90度。
如图5和图7所示,太阳能电池片支架包括托架纵梁17和托架横梁18,托架纵梁17上垂直间隔固定多个托架横梁18。
如图4所示,太阳能电池片支架连接装置包括东西旋转臂21、东西旋转轴20、东西旋转座19、第一托架支撑15和第二托架支撑16;每个托架纵梁17对应两个东西旋转臂21,东西旋转臂21间隔连接在托架纵梁17上;第一托架支撑15的下端与主梁3连接,上端与东西旋转座19连接,第二托架支撑16的下端与主梁3连接,上端与东西旋转座19连接;东西旋转臂21和东西旋转座19之间通过东西旋转轴20铰接连接。
如图2所示,支架东西方向驱动装置包括第二驱动装置27第二丝杠29、第二丝杠支架28、驱动器12、东西拉杆23和东西摇臂22;第二驱动装置27、第二丝杠支架28安装在主梁3上;第二丝杠29安装在第二丝杠支架28上;驱动器12安装在第二丝杠29上,利用第二丝杠29驱动运行,驱动器12与东西拉杆23连接;东西摇臂22的上端与托架纵梁17连接,下端与东西拉杆23连接。
第二驱动装置27驱动第二丝杠29,第二丝杠29驱动东西拉杆23,东西拉杆23驱动所有的东西摇臂22,通过改变第二驱动装置27的正反转,最终驱动所有太阳能电池片支架以相对应的东西旋转轴20为中心,绕其相对应的东西旋转座,做分时段同步同角度方向的东西往复旋转运动。在东西方向上分时段转动的角度,是以主动式智能光伏支架系统所在地的经纬度线为测量基准依据,主动式智能光伏支架所在当地的东西水平线垂直的子午线为基准零度,范围为0到90度,优选为10到80度。
本发明控制器24先根据实际地理经纬度、太阳高度角、方位角、天气、电池片组件东西南北方向排列间距及具体工况,将太阳一天的工作时间划分为若干个工作时段,计算出多组电池片组件26东西方向实际运行倾角和南北方向实际运行倾角。如图10,上午BC工作时段为例,当太阳在上午AB工作时段运行即将结束时,控制器24模拟计算BC工作时段单个电池片组件26东西方向理论最佳倾斜角度α。实际上,由于多组电池片组件26东西方向相等排列间距,会造成东边电池片组件26遮挡西边临近的电池片组件26一部分,形成阴影,为避免遮挡发生,控制器将东西方向理论最佳倾斜角度α减去造成阴影的角度权值,如图11,计算出多组电池片组件26东西方向BC工作时段的实际运行倾角β,保证东西方向的相邻电池片组件26相不遮挡,达到最大发电效率。同理,随着上午太阳高度角变大,太阳方位角从东向西增大,α逐渐变小,β逐渐增大,到上午某个时段时,β达到最大。随 着太阳高度角继续变大达到一天中的最高位置,太阳方位角到达正南,α持续变小趋于0°,β随着α变小,也逐渐趋于0°。太阳高度角达到一天中的最高位置后,开始逐渐变小,太阳方位角也由正南向西增大,α和β开始由0°逐渐增大,到下午某个时段时,β达到最大。随着太阳高度角继续变小,太阳方位角继续向西增大,α持续增大,但β逐渐变小,最后趋于0°。因为多组电池片组件26东西方向相等排列间距,直接影响相互遮挡阴影的角度权值,所以,多组电池片组件26东西方向相等排列的间距值不同时,在同工况下,多组电池片组件26东西方向实际运行倾角β,变化规律相同,但是控制器24计算出的β角度值是完全不同的。如图9所示,当多排东西方向电池片组件26按南北方向等间距安装时,间距保证多排东西方向电池片组件26南北方向在全年工况下互不遮挡,结合多排电池片组件26最大发电效率因素,当太阳在上午AB工作时段范围运行即将结束时,控制器24主动计算出BC工作时段电池片组件26南北方向BC工作时段的实际运行倾角,以此类推。
控制器24,划分的时段范围在5分钟~60分钟之间,计算的东西南北方向实际运行倾角步进值范围在0°~12°之间。
控制器24总是当太阳在上一个工作时段运行即将结束,下一个工作时段开始前,主动将下一个工作时段东西方向和南北方向实际运行倾角转化为控制信号,并输出到电控柜25。比如,当太阳在上午AB工作时段运行即将结束时,控制器24将BC工作时段东西方向实际运行倾角和南北方向实际运行倾角转化为控制信号输出到电控柜25,电控柜25控制第一驱动装置和/或第二驱动装置转动,主动式智能光伏支架系统迅速提前调整到下一个工作时段东西方向和南北方向的实际运行倾角,控制器24根据测量到倾斜角度数据后,切断控制器24输出信号,第一驱动装置和/或第二驱动装置停止工作,控制器24立即进入待机状态,主动式智能光伏支架长时间保持调整后的实际运行倾角不动,直到下一个工作时段开始前,控制器24再次启动,重新计算下一个工作时段的东西方向和南北方向实际运行倾角,并将控制信号输出到电控柜25,如此反复循环,保持主动式智能光伏支架系统始终在上一个太阳运行时段结束前,提前调整到下一个工作时段的东西方向和南北方向实际运行倾角,实现全年分时段主动式智能控制。
在图1中还示出了电控柜25,控制器24将控制信号输出到电控柜25,电控柜25控制第一驱动装置9和/或第二驱动装置27转动。
如图8所示,还包括电池片组件26,电池片组件26包括至少两个电池片;电池片安装在托架横梁18上。
在本发明优选的主动式智能光伏支架系统实施例中,安装主体为地面、水面、房屋顶部、厂房顶部、农林牧渔养殖区或大棚。当安装主体为地面时,立柱基础1埋入地面下方。
本发明的有益效果是:
主动式智能光伏支架系统实现了东西倾斜角度和南北倾斜角度的主动智能调整,使电池片组件最大效率的利用太阳光能,与固定支架相比能增加20%以上的利用率;
立柱基础、立柱、主梁、次梁、南北方向旋转轴、南北方向旋转座、南北方向旋转臂组成支架系统的龙门式结构,龙门式结构将支架整体高架起来,实现支架与地面、水面、房屋、厂房顶部、农林牧渔养殖区等大棚的完美结合;
驱动装置、丝杠、驱动器或东西拉杆组成的动力机构,结构简单,机械强度高,承受过载能力强,运行平稳,驱动装置停止运转后,丝杠与驱动器能实现自锁,使支架在最佳倾角保持阶段不会晃动摇摆;
实现了分时段运行;相对于固定支架和实时跟踪支架,分时段运行,支架转动时间短,间歇时间长,使用寿命长,不用人工干涉,维修率低,极大降低发电成本,提高了最终收益;
在投资成本和发电量方面比较,与固定支架相比主动式智能光伏支架的投资成本增加10%左右,发电量增加20%以上;主动式智能光伏支架与实时跟踪支架相比,主动式智能光伏支架的投资成本减少10%以上,发电量基本于实时跟踪光伏支架均等。
上述披露的各技术特征并不限于已披露的与其它特征的组合,本领域技术人员还可根据发明之目的进行各技术特征之间的其它组合,以实现本发明之目的为准。

Claims (9)

  1. 一种主动式智能光伏支架系统,其特征在于,包括:立柱基础、立柱、次梁、主梁、主梁连接装置、主梁南北方向驱动装置、太阳能电池片支架、太阳能电池片支架连接装置、支架东西方向驱动装置和控制器;
    所述立柱基础固定在安装主体上;所述立柱的下部与立柱基础连接;所述次梁连接在立柱的顶部;所述主梁通过主梁连接装置与次梁连接,主梁东西方向布置,系统运行时主梁南北方向驱动装置驱动主梁绕主梁连接装置的转轴转动;所述太阳能电池片支架通过太阳能电池片支架连接装置与主梁连接,系统运行时支架东西方向驱动装置驱动太阳能电池片支架绕太阳能电池片支架连接装置的转轴转动;所述控制器用于控制主梁南北方向驱动装置和支架东西方向驱动装置分时段主动运行。
  2. 根据权利要求1所述的主动式智能光伏支架系统,其特征在于,所述主梁连接装置包括南北方向旋转座、南北方向旋转轴和南北方向旋转臂,所述立柱基础的数量为两个,东西方向间隔设置;所述立柱的数量为四个,两个立柱南北方向设置在一个立柱基础上,另外两个立柱设置在另一个立柱基础上;次梁安装在位于同一立柱基础的两个立柱之间;南北方向旋转座与次梁固定连接;南北方向旋转臂与主梁连接;南北方向旋转座和南北方向旋转臂通过南北方向旋转轴铰接连接。
  3. 根据权利要求2所述的主动式智能光伏支架系统,其特征在于,所述主梁南北方向驱动装置包括南北电机座、第一驱动装置、第一丝杠、第一丝杠支架、驱动器和南北摇臂;所述南北电机座与立柱连接,第一驱动装置安装在南北电机座上;第一丝杠支架与立柱连接,第一丝杠安装在第一丝杠支架上;驱动器安装在第一丝杠上,利用第一丝杠驱动运行;南北摇臂的下端与驱动器连接,上端与主梁连接。
  4. 根据权利要求1所述的主动式智能光伏支架系统,其特征在于,所述太阳能电池片支架包括托架纵梁和托架横梁,所述托架纵梁上垂直间隔固定多个托架横梁。
  5. 根据权利要求4所述的主动式智能光伏支架系统,其特征在于,所述太阳能电池片支架连接装置包括东西旋转臂、东西旋转轴、东西旋转座、第一托架支撑和第二托架支撑;每个托架纵梁对应两个东西旋转臂,东西旋转臂间隔连接在托架纵梁上;第一托架支撑的下端与主梁连接,上端与东西旋转座连接,第二托架支撑的下端与主梁连接,上端与东西旋转座连接;东西旋转臂和东西旋转座之间通过东西旋转轴铰接连接。
  6. 根据权利要求5所述的主动式智能光伏支架系统,其特征在于,所述支架东西方向驱动装置包括第二驱动装置、第二丝杠、第二丝杠支架、驱动器、东西拉杆和东西摇臂;所述第二驱动装置、第二丝杠支架安装在主梁上;第二丝杠安装在第二丝杠支架上;驱动器安装在 第二丝杠上,利用第二丝杠驱动运行,驱动器与东西拉杆连接;东西摇臂的上端与托架纵梁连接,下端与东西拉杆连接。
  7. 根据权利要求4-6任一项所述的主动式智能光伏支架系统,其特征在于,还包括电池片组件,所述电池片组件包括至少两个电池片;所述电池片安装在托架横梁上。
  8. 根据权利要求1所述的主动式智能光伏支架系统,其特征在于,所述安装主体为地面、水面、房屋顶部、厂房顶部、农林牧渔养殖区或大棚,所述安装主体为地面时,立柱基础埋入地面下方。
  9. 根据权利要求1所述的主动式智能光伏支架系统,其特征在于,所述时段的范围在5分钟~60分钟之间。
PCT/CN2017/099262 2017-03-31 2017-08-28 主动式智能光伏支架系统 WO2018176731A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710207105.8A CN106877803B (zh) 2017-03-31 2017-03-31 主动式智能光伏支架系统
CN201710207105.8 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018176731A1 true WO2018176731A1 (zh) 2018-10-04

Family

ID=59159717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099262 WO2018176731A1 (zh) 2017-03-31 2017-08-28 主动式智能光伏支架系统

Country Status (2)

Country Link
CN (1) CN106877803B (zh)
WO (1) WO2018176731A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106877803B (zh) * 2017-03-31 2024-02-09 赵守喆 主动式智能光伏支架系统
CN109787545B (zh) * 2019-01-24 2020-04-24 徐州工业职业技术学院 基于物联网智能光伏追日系统及系统控制方法
CN110011606A (zh) * 2019-04-17 2019-07-12 北京绿源加维能源技术有限公司 一种联动式水平双轴光伏追日系统
CN110289805A (zh) * 2019-06-27 2019-09-27 赵守喆 用于光伏发电系统主动跟踪支架的智能控制系统及智能控制方法
WO2022027282A1 (zh) * 2020-08-05 2022-02-10 李�杰 斜坡面上无需光电传感器的光伏发电追踪系统
CN113625785A (zh) * 2021-09-08 2021-11-09 阳光新能源开发有限公司 一种光伏跟踪方法、装置、跟踪控制器及光伏跟踪系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2154449A2 (en) * 2008-08-04 2010-02-17 Get S.R.L. A solar and /or a wind tracker plant
US20100175741A1 (en) * 2009-01-13 2010-07-15 John Danhakl Dual Axis Sun-Tracking Solar Panel Array
CN103336533A (zh) * 2013-06-07 2013-10-02 上海大学 框架式双轴太阳能跟踪系统
CN104836520A (zh) * 2015-06-02 2015-08-12 赵守喆 分时段跟踪的数控光伏支架系统
CN105468025A (zh) * 2014-09-05 2016-04-06 浙江同景新能源集团有限公司 光伏双轴联动跟踪系统
CN205373114U (zh) * 2015-12-31 2016-07-06 王超霞 一种双轴联动调节太阳能支架系统
CN106877803A (zh) * 2017-03-31 2017-06-20 赵守喆 主动式智能光伏支架系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4651469B2 (ja) * 2005-07-08 2011-03-16 シャープ株式会社 太陽光発電装置設置治具、太陽光発電装置設置方法および追尾駆動型太陽光発電装置
EP2108900A1 (en) * 2008-04-07 2009-10-14 Costantino Ferdinado Ponziano C.E.M. S.r.l. Sun follower
CN201417395Y (zh) * 2008-06-03 2010-03-03 吴宣瑚 一种弓形对日跟踪追日机
CN205792415U (zh) * 2016-06-24 2016-12-07 上海西屋开关有限公司 太阳能光伏发电装置南北方向调节结构
CN206620088U (zh) * 2017-03-31 2017-11-07 赵守喆 主动式智能光伏支架系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2154449A2 (en) * 2008-08-04 2010-02-17 Get S.R.L. A solar and /or a wind tracker plant
US20100175741A1 (en) * 2009-01-13 2010-07-15 John Danhakl Dual Axis Sun-Tracking Solar Panel Array
CN103336533A (zh) * 2013-06-07 2013-10-02 上海大学 框架式双轴太阳能跟踪系统
CN105468025A (zh) * 2014-09-05 2016-04-06 浙江同景新能源集团有限公司 光伏双轴联动跟踪系统
CN104836520A (zh) * 2015-06-02 2015-08-12 赵守喆 分时段跟踪的数控光伏支架系统
CN205373114U (zh) * 2015-12-31 2016-07-06 王超霞 一种双轴联动调节太阳能支架系统
CN106877803A (zh) * 2017-03-31 2017-06-20 赵守喆 主动式智能光伏支架系统

Also Published As

Publication number Publication date
CN106877803A (zh) 2017-06-20
CN106877803B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
WO2018176731A1 (zh) 主动式智能光伏支架系统
AU2019383977B2 (en) Staged stowage of solar trackers and methods thereof
KR100968402B1 (ko) 슬라이딩형 태양광 추적 집광장치
CN101521478B (zh) 一种太阳能自动跟踪系统
JP2020534805A (ja) 農業施設に設置可能な太陽光発電プラント
CN102715041B (zh) 一种日光温室智能补光方法和装置
CN109209758B (zh) 风光一体化发电装置及其使用方法
CN206620088U (zh) 主动式智能光伏支架系统
CN103441705A (zh) 一种光伏追日系统及其控制方法
CN103760910A (zh) 回旋式太阳能单轴跟踪系统
CN202424582U (zh) 一种太阳能光伏电池
CN102355162A (zh) 一种主动均衡接收太阳辐射量的聚光光伏发电系统
CN110868149A (zh) 一种具有智能追光、主动避风功能的自适应光伏支架
GB2503944A (en) A sun Tracking Solar Panel Array
CN203552066U (zh) 一种太阳能回旋式单轴跟踪结构
CN105656422B (zh) 一种gzg-ht光伏自动跟踪系统
CN219780074U (zh) 一种追光光伏发电单元及光伏发电系统
CN203445836U (zh) 一种光伏追日系统
CN203812093U (zh) 利用二维倾角传感器的太阳能跟踪支架
CN203070103U (zh) 一种简化双轴联动型太阳能光伏发电系统
CN206249106U (zh) 双轴跟踪式光伏或光热支架
CN205407658U (zh) 一种新型光伏发电装置
CN208737312U (zh) 一种用于光伏组件双面发电的主动智能跟踪支架系统
CN102986477B (zh) 一种农业大棚的复合利用方法
BG67499B1 (bg) Активно следяща система за разположение на соларни панели

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903405

Country of ref document: EP

Kind code of ref document: A1