WO2022027282A1 - 斜坡面上无需光电传感器的光伏发电追踪系统 - Google Patents

斜坡面上无需光电传感器的光伏发电追踪系统 Download PDF

Info

Publication number
WO2022027282A1
WO2022027282A1 PCT/CN2020/106987 CN2020106987W WO2022027282A1 WO 2022027282 A1 WO2022027282 A1 WO 2022027282A1 CN 2020106987 W CN2020106987 W CN 2020106987W WO 2022027282 A1 WO2022027282 A1 WO 2022027282A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
circular
adjustment
shaped
time
Prior art date
Application number
PCT/CN2020/106987
Other languages
English (en)
French (fr)
Inventor
李�杰
Original Assignee
李�杰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李�杰 filed Critical 李�杰
Priority to PCT/CN2020/106987 priority Critical patent/WO2022027282A1/zh
Publication of WO2022027282A1 publication Critical patent/WO2022027282A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the field of new energy, in particular to a photovoltaic power generation tracking system that does not require a photoelectric sensor on a slope surface.
  • the distributed photovoltaic power generation installed on the slope surface on the market adopts fixed support technology that cannot catch up with the sun. Due to the low power generation, the development demand of its market has been affected. At the moment when the photoelectric conversion rate is difficult to be greatly improved, how to Improving the efficiency of photovoltaic power generation on slopes is an urgent technical problem encountered in the industry.
  • the present invention provided by the present invention proposes a photovoltaic power generation tracking system that does not require a photoelectric sensor on a slope surface, so that the above technical problems can be solved.
  • a photovoltaic power generation tracking system that does not require photoelectric sensors on slopes, including track devices, solar angle controllers, and photovoltaic panels.
  • the tracking system is divided into two different modes: 1-dimensional or 2-dimensional tracking, and these two types are divided into 1+ There are two different types of 1 and 1+N.
  • the track device In the 2-latitude tracking mode, the track device includes a base, a track, a bracket, a pulley, and a turntable.
  • two roof trusses are used as a group, and Y T-shaped pillars are used. It is fixed on the roof truss, and a steel structure platform is constructed on the T-shaped pillars. J circular-shaped rails are fixedly installed on the platform.
  • a ring-shaped groove member is pre-embedded.
  • the opening of the groove member is narrow at the top and wide at the bottom.
  • the base of the polygonal section has only two groove-shaped members, a circular or triangular bracket is installed on the track, X pulleys are installed under the circular bracket, and a pulley is installed at each corner of the triangular bracket.
  • the shaft of each pulley is fixedly installed with a beam or chain on both sides of the pulley.
  • the lower end of the beam or chain is provided with a circular or polygonal member.
  • the circular or polygonal member is snapped in the groove and moves with the pulley.
  • one end with the circular or polygonal member is buckled in the groove on the upper wall of the track, and the other end is directly It is fixed or fixed on the shaft of the pulley by a chain, and a turntable is fixedly installed at the center of the circular or triangular bracket, and the ends of the S beams are respectively fixed on the turntable and the circular or triangular bracket.
  • a polygonal frame is fixedly installed above, and P T-shaped joists are fixedly installed on the periphery of the polygonal frame.
  • One side of the T-shaped joists has a component with a hinged device installed, and the other component corresponding to the hinged device component is installed.
  • H sets of driving devices installed on one side, and a U-shaped frame is fixed on the top of the rest of the T-shaped joists.
  • a polygonal or circular platform is placed on the T-shaped joists and the driving device.
  • the joists are hinged to form a hinged device, and the rest of the frame is placed in the U-shaped frame of the T-shaped joist.
  • the top of the driving device is bolted to the platform.
  • the turntable is a rotatable column, which is divided into two different modes: 1+1 and 1+N according to whether the support is self-rotating or non-rotating, and the turntable in the 1+1 mode is a self-rotating mode.
  • the turntable of the mode is non-rotating mode.
  • the structure and installation method of the turntable are the same as those of the 1+1 mode, except that there is no driving motor and mechanical transmission mechanism in the base, but an additional gear is added to the shaft, and the gear is fixedly installed on the turntable.
  • the gears of the N turntables are linked together by a closed chain, and one end of the chain is connected to the mechanical transmission.
  • Mechanism link, the drive motor jointly drives N turntables to rotate at the same time through the mechanical transmission mechanism.
  • the turntable in 1+1 mode can drive a circular or triangular bracket to rotate alone, while in 1+N mode, the drive motor and the chain transmission mechanism work together. N circular or triangular brackets are driven to rotate together.
  • the driving device is an intelligent electric column that can be lifted and lowered.
  • the column is mainly composed of polygonal or circular nuts, threaded shafts, and T-shaped hollow tubes.
  • the T-shaped hollow tube is fixed on the nut to form an integral body, and the nut moves up and down along the shaft.
  • the cylinders of all the above-mentioned intelligent electric columns are fixed on the base, and their drive will be driven by the motor and mechanical transmission mechanism fixed in the base.
  • the 1-latitude tracking mode can only adjust the azimuth angle, and the structure of the 1+1 or 1+N two types of orbital devices is the same as that of the above-mentioned 2-latitude tracking mode, but the polygon or circular platform It is directly fixed on the polygonal or circular frame, without drive device and T-shaped joist, and a stepped frame is installed on the platform.
  • the adjustment of the angle of the photovoltaic panel will be replaced by adjusting the inclination of the polygon or circular platform, and will be controlled by a solar angle controller equipped with an embedded angle sensor, which uses time to control the polygon or the angle sensor.
  • An intelligent control device that changes the angle of the circular platform.
  • the main chip reads the real-time clock and angle by reading Numerical value, according to different time periods to control the change of the angle of the polygon or circular platform.
  • the clock chip After the solar angle controller is powered on, the clock chip will automatically use GPS or Bluetooth to calibrate the time and adjust the angle of the polygon or circular platform.
  • the principle is that the solar angle controller and the polygon platform are installed on the same level.
  • the controller receives a signal for adjusting the angle through GPS satellite positioning or electronic compass positioning, and then controls the motor by controlling the motor.
  • the module to make the angle detection module rotate so that the polygon or circular platform can complete the horizontal or tilting action.
  • the intelligent electric column will complete the horizontal or stretching or shrinking movement with the rotation of the motor, and push the polygon or circle.
  • the analog output from the angle sensor is converted by the analog-to-digital converter and sent to the main controller.
  • the main controller determines whether the polygon or circular platform has rotated to the predetermined angle according to this input. And according to this, the control module of the motor is controlled, thereby completing the adjustment of the angle once.
  • the method of adjusting the inclination angle multiple times is to use the input method.
  • the angle value of each new adjustment is ⁇ -J* ⁇ /F in the morning period; noon During the period, the inclination angle is fixed. In the afternoon period, it is ⁇ + ⁇ /F.
  • the calculated inclination angle value to be adjusted each time is input into the storage module of the controller together with the corresponding analog voltage value or adjustment time.
  • the specific implementation is that when the angle sensor is in the horizontal position When the angle is set to 0°, the output terminal Vo outputs an analog voltage of A volts. When the angle sensor and the horizontal plane form the angle value ⁇ of the maximum inclination angle, the analog voltage of B volts is output at this time.
  • the components of the hinge device are composed of a bottom plate and a C-block polygonal vertical plate.
  • the arc end of the vertical plate has a The other end of the hole is welded and fixed on the bottom plate.
  • C>2 they are hinged to form a hinge device. It is characterized in that: no photoelectric sensor is required.
  • the device uses different combinations of orbital devices, polygonal or circular platforms, fixed or movable brackets to construct a 1-dimensional or 2-dimensional non-inductive tracking photovoltaic power generation system; the adjustment of the azimuth and inclination of the solar panel will be adopted.
  • Time timing is controlled by a solar angle controller.
  • the solar angle controller is a timing according to time, and intelligently drives the polygon or circular platform azimuth by controlling the intelligent electric column or driving motor to move horizontally in the east or west direction or The inclination angle is rotated from the east to the west, thereby adjusting the azimuth angle of the polygon or circular platform or the method of changing the inclination angle with the change of time.
  • the angle adjustment is controlled by the solar angle controller according to the signal output by the GPS or electronic compass module to control it to rotate eastward or westward.
  • the adjustment of the inclination angle is an input method, which is calculated by the arithmetic average method of the maximum inclination angle.
  • the inclination angle value that needs to be adjusted is input into the storage module of the controller together with the corresponding adjustment time.
  • the angle value of the maximum inclination angle ⁇ of the polygon or circular platform in the input method is divided into F according to the arithmetic mean times, the angle value of each adjustment is ⁇ /F, and the orientation of the photovoltaic panels in the three time periods is the same as that of the three adjustments within 1 day.
  • the angle value of each new adjustment is ⁇ -J* ⁇ / F, J are integer number series values, the minimum value is 1, and the maximum value is F; in the afternoon period, the angle value of each new adjustment is ⁇ + ⁇ /F, and ⁇ is the angle value at the previous moment of adjustment.
  • Azimuth proceed When adjusting, the inclination angle has been returned to the initial position.
  • the 1-dimensional tracking solar angle controller without drive device is installed horizontally.
  • the inclination angle is fixed and the number of azimuth adjustment is the sum of all adjustment times in one day , calculated at intervals of D minutes.
  • the photovoltaic power generation tracking system without photoelectric sensors on the slope surface of the present invention proposes a tracking technology that does not require photoelectric sensors at 1 latitude or 2 latitudes, so that the photovoltaic power generation can achieve the purpose of tracking the sun on the slope surface, and improve the photovoltaic power generation on the slope surface.
  • the high power generation efficiency solves the urgent technical problem of photovoltaic power generation on the slope, that is, the photovoltaic power generation on the slope must not only be able to catch up with the sun, but also have practical value.
  • Figure 1 is a top plan view of the 1+1 mode: symbol 1 is a photovoltaic panel support, symbol 2 is a T-shaped joist with a U-shaped frame, symbol 3 is a T-shaped joist, symbol 4 is a polygonal frame, and symbol 5 is a circle Shape bracket, symbol 6 is a pulley, symbol 7 is a track with a groove member, symbol 8 is an S beam, symbol 9 is a turntable, symbol 10 is a driving device;
  • Figure 2 is a 1+1 mode front view: symbol 11 is The T-pillar of the steel structure platform, the symbol 12 is the roof truss;
  • Figure 3 is the top view of the 1+N mode: the symbol 13 is the gear, the symbol 14 is the chain, and the symbol 15 is the drive motor;
  • Figure 4 is the front view of the 1+N mode, the figure 5 is the track of L-shaped section: the symbol 16 is the groove member, FIG. 6 is the track of the polygonal section;
  • FIG. 7 is the front view of
  • FIG. 1 and 2 it is a 2-dimensional tracking photovoltaic power generation system in 1+1 mode.
  • the photovoltaic panel support 1 When the photovoltaic panel support 1 is in a horizontal state, one side of the four-sided beam is hinged with the T-shaped joist 3 to form a hinged device, and the other three sides are supported on
  • a driving device 10 is installed on the other side corresponding to the hinged device.
  • the driving device 10 and the T-beams 2 and 3 are fixed on the polygonal frame 4, and the frame 4 is fixed on.
  • the bracket 5 On the circular bracket or the triangular bracket 5, the bracket 5 is fixed on the pulley 6, the beams or chains on both sides of the pulley 6 shaft hang down into the groove member 16 of the track 7, and the polygonal or circular member at the lower end of the beam or chain is snapped on. In the groove, with the movement of the pulley 6, the bracket 5 and the turntable 9 are respectively connected at both ends of the S beam 8.
  • the circular bracket 5 and the turntable 9 are fixed on the steel structure platform supported by the T-shaped pillar 11.
  • the T-shaped pillar 11 It is fixed on the roof truss 12, thereby forming a 2-dimensional tracking photovoltaic power generation system.
  • 3 and 4 are 2-dimensional tracking photovoltaic power generation systems in 1+N mode, a gear 13 and a closed-loop chain 14 are fixedly installed on the turntable 9, and N gears 13 are linked, the other end of which is fixed on the drive motor 15.
  • the N groups of turntables 9 will rotate together with the drive motor 15 through the gear transmission mechanisms 13 and 14, thus forming a photovoltaic power generation system in which one drive motor drives the N groups of photovoltaic panel supports 1 to rotate together.
  • FIG. 7 it is a 1D tracking photovoltaic power generation system in the 1+1 mode, which is a stepped 1D tracking without a driver that can only adjust the azimuth angle.
  • This mode uses a stepped frame 17 to be fixedly installed on the polygon Or on a circular platform 1, the platform 1 is directly fixed on the polygonal or circular frame 4, and the photovoltaic panel 1 is inclined to the ground and is mounted on the platform 1 and the stepped frame 17 by using a fixed bracket.
  • the adjustment of the angle is three or more times in a day.
  • the adjustment time period of the 2-dimensional tracking is divided into three time periods: morning, noon, and afternoon.
  • Three adjustments in one day, polygonal or circular platform, in the morning period is a surface. Facing east, the inclination angle is the largest, and at noon, it is horizontal; in the afternoon, it faces west, and the inclination angle is the largest.
  • the inclination angle is adjusted F times within E minutes, the angle value of the maximum inclination angle ⁇ of the polygon or circular platform in the input method is divided into F times according to the arithmetic mean, and the angle value of each adjustment is ⁇ /F,
  • the orientation of the photovoltaic panels in the three time periods is the same as that of the three adjustments within one day.
  • the angle value of each new adjustment is ⁇ -J* ⁇ /F, J is an integer number series value, and the minimum value is 1, the maximum value is F; in the afternoon period, the newly adjusted angle value is ⁇ + ⁇ /F, ⁇ is the angle value at the previous moment of adjustment, each time the azimuth angle is adjusted, the inclination angle has returned to the initial position.
  • the position of the 1-dimensional tracking solar angle controller without drive device is installed horizontally, the inclination is fixed, and the number of azimuth adjustment is the sum of all adjustment times in one day, calculated at every interval of D minutes.
  • the photovoltaic panel support 1 first adjusts the azimuth angle of the photovoltaic panel support 1 at a predetermined time, and the solar angle controller will be based on the signal output by the electronic compass module. , the azimuth angle of the sun facing east or west is obtained, the turntable 9 is controlled by the solar angle controller to rotate, and the pulley 6 of the circular bracket 5 is driven to move by the S beams, and the azimuth angle of the photovoltaic square bracket 1 is adjusted in place. In the noon time period, the solar angle controller drives the turntable 9 to adjust the azimuth to face the east side, and in the afternoon time period, it faces the west side. After the azimuth angle is adjusted in place, the inclination angle is adjusted. For the specific adjustment method, please refer to Section 0012.
  • the adjustment method of the azimuth and inclination is the same as that of the 1+1 mode.
  • the obtained signal controls the rotation of the drive motor 15, and drives the turntable 9 to rotate through the gear transmission mechanisms 13 and 14, so that the azimuth angle of the photovoltaic panel support 1 is adjusted.
  • the solar angle controller After the azimuth angle is adjusted in place, the solar angle controller will start the N group.
  • the inclination angle of the photovoltaic panel support 1 is adjusted by the driving device 10 in the same manner as in the 1+1 mode.
  • the adjustment method of the azimuth angle is the same as the reference section 0012.
  • the structure of the turntable 9 in the 1+N mode of the 1-dimensional tracking is the same as that of the above-mentioned 2-dimensional tracking.
  • the photovoltaic power generation tracking system without photoelectric sensors on the slope surface of the present invention by adopting the technology of orbital movement and lifting platform, proposes a non-inductive tracking technology that does not require photoelectric sensors at 1 latitude or 2 latitudes, which is different from the known
  • a new type of photovoltaic power generation tracking technology based on fixed bracket technology and inductive tracking technology. Its technology is simple, low cost, and small self-loss power. At the moment when the photoelectric conversion rate is difficult to greatly improve, it improves the power generation efficiency and solves the problem of slope surface.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种斜坡面上无需光电传感器的光伏发电追踪系统,分别采用轨道装置、多边形或圆形平台、固定或活动的支架的不同组合体,构建一个1维度或2维度非感应式追踪的光伏发电装置,能够解决目前不能追日的固定支架技术发电量低以及感应式追踪技术繁杂、成本高昂、无法应用在斜坡面上的技术难题,比采用固定支架技术的发电量平均多增加了60%左右。

Description

斜坡面上无需光电传感器的光伏发电追踪系统 技术领域
本发明涉及新能源领域,具体为斜坡面上无需光电传感器的光伏发电追踪系统。
背景技术
随着环保意识及土地资源的紧缺,投资大,占用大量土地的大型光伏发电站的建设将会逐渐减少,投资少,不占用土地的分布式光伏发电将会得到大力的推广,大量闲置的工业厂房、停车亭、公交候车亭等屋顶就是很好的分布式光伏发电场所,由于这些建筑物屋顶几乎都是斜面,目前安装的光伏发电系统采用的都是不能追日的固定支架技术,只能安装在斜坡的一面,其技术简单、成本低廉、但发电量低;而采用光电传感器的感应式追踪技术,技术繁杂、成本高昂很难应用在斜坡面上,所以这两种技术的性价比都很低,在光伏发电市场上,为了尽快回收投资成本,矮子里面挑高子,宁可牺牲了追踪精度,也要采用低成本的固定支架技术,这就是目前全世界太阳能发电产品当中,几乎都是采用固定支架技术的最主要原因。要提高光伏发电的发电效率有两种方式,一是大幅度提高光电转换率,但以目前的技术短期内还很能实现,二是改变光伏板的角度,包括方位角和倾角,所以在光电转换率难以大幅度提高的当下,提供一种为市场所接受、能够广泛推广应用的太阳能追踪技术,就是当下光伏发电领域内所遇到的亟待解决的技术难题。
技术问题
目前市场上安装在斜坡面上的分布式光伏发电都是采用无法追日的固定支架技术,由于发电量的低下,影响了其市场的发展需求,在光电转换率难以大幅度提高的当下,如何提高斜坡面上光伏发电的效率是行业内所遇到的亟待解决的技术难题。
技术解决方案
针对上述缺陷,本发明提供的本发明提出一种斜坡面上无需光电传感器的光伏发电追踪系统,使得上述的技术难题得到了解决。
为实现上述目的,本发明的技术方案为如下。
斜坡面上无需光电传感器的光伏发电追踪系统,包含轨道装置、太阳能角度控制器、光伏板,追踪系统分为1维度或2维度追踪两种不同的模式,这两种类型当中又分为1+1和1+N两种不同的类型,在2纬度追踪模式的轨道装置包含了基座、轨道、支架、滑轮、转盘,在斜面屋顶上以两个屋架为一组,采用Y根T型支柱固定在屋架上,在T型支柱上架构一个钢结构的平台,平台上固定安装有J个圆形状的轨道,轨道的截断面形状分为L型或多边形两种,在每条轨道两侧各预埋有一条圆环状的凹槽构件,凹槽构件开口部是上窄下宽,在L型截断面基座的上壁上也预埋有一条圆环状的凹槽构件,共有三条,而多边形截断面的基座只有两条凹槽形构件,轨道上安装有一个圆形或三角形的支架,圆形支架下安装有X个滑轮,而三角形支架的各个角处各安装有一个滑轮,每个滑轮的轴在滑轮的两侧分别下垂固定安装有根梁或链条,梁或链条的下端带有个圆形或多边形的构件,把梁或链条分别插入轨道两侧的凹槽内,其圆形或多边形构件卡扣在凹槽内随着滑轮移动,在L型截断面轨道上的滑轮,带有圆形或多边形构件的一端是扣在轨道上壁的凹槽内,另一端是直接固定或通过链条固定在滑轮的轴上,在圆形或三角形支架的中心处固定安装有一个转盘,S条梁两端分别固定在转盘和圆形或三角形支架上,在圆形或三角形支架的上方固定安装有一个多边形的框架,在多边形框架的周边上固定安装有P根T型的托梁,T型托梁中有一边安装有铰接装置的构件,与安装有铰接装置构件相对应的另一边安装有H套驱动装置,其余的T型托梁顶端固定安装一个U型的框,一个多边形或圆形平台架在T型托梁和驱动装置上,平台底部的边框中,一条与T型托梁铰接形成铰接装置,其余的边框托放在T型托梁的U型框内,驱动装置的顶端与平台是螺栓固定连接,光伏方正采用固定支架的模式平行固定于多边形或圆形平台上,随着多边形平台一起转动,所述转盘是一根可转动的柱,根据支柱是自转还是非自转分为1+1和1+N两种不同的模式,1+1模式的转盘是自转模式,其是一根智能电动柱,其柱体主要由轴、空心管所构成,空心管固定在轴上随轴一起旋转而不能上下移动,柱体上安装有S根梁,所述1+N模式的转盘为非自转模式,转盘的结构及安装方式与1+1模式的相同,只是机座中没有驱动电机和机械传动机构,却在轴上多增加了一个齿轮,齿轮固定安装在转盘的轴上,N个转盘的齿轮通过一根闭合的链条链接为一体,链条的一端与机械传动机构链接,由驱动电机通过机械传动机构共同驱动N个转盘同时转动,1+1模式的转盘能够独自带动一个圆形或三角形的支架转动,而1+N模式则由驱动电机与链传动机构共同驱动N个圆形或三角形支架一同转动,所述驱动装置是一种可升降的智能电动柱,其柱体主要由多边形或圆形的螺母、带有螺纹的轴、T型空心管所构成,T型空心管固定在螺母上形成一体,螺母沿着轴上下移动,上述所有的智能电动柱的柱体固定在机座上,其的驱动将采用固定在机座内的电机和机械传动机构的组合体来进行,所述的1纬度追踪模式只能调节方位角,其1+1或1+N两种类型的轨道装置的结构与上述2纬度追踪模式的相同,但多边形或圆形的平台是直接固定安装在多边形或圆形框架上,无驱动装置和T型托梁,在平台上安装有阶梯型框架,光电系统的光伏板与地面倾斜采用固定支架安装在平台和阶梯型框架上,光伏板角度的调节将通过调节多边形或圆形平台倾角来替代,将由安装有嵌入式的角度传感器的太阳能角度控制器,来进行控制,所述太阳能角度控制器,是利用时间计时来控制多边形或圆形平台的角度发生改变的一种智能控制装置,其主要有主芯片、角度传感器、GPS卫星定位或电子指南针、时钟芯片、蓝牙、电机驱动的模块,主芯片通过读取实时的时钟及角度数值,根据不同的时间段来控制多边形或圆形平台角度的变化,时钟芯片在太阳能角度控制器接通电源后,将自动采用GPS或蓝牙进行时间的校对,多边形或圆形平台角度调节的工作原理为,太阳能角度控制器与多边形平台安装在同一个水平面上,当时间到达预设的时刻时,控制器通过GPS卫星定位或电子指南针的定位,接受到一个调节角度的信号,则通过控制电机控制模块来使角度检测模块做出转动动作,以使得多边形或圆形平台完成水平或倾斜动作,此时的智能电动柱将随着电机的转动完成水平或伸或缩的运动,推动多边形或圆形平台转动到预定位置的同时,角度传感器输出的模拟量经过模拟数字转换器转换后送入主控制器,主控制器再根据此输入来判定多边形或圆形平台是否已经转动到预定的角度,并据此来控制电机的控制模块,由此完成一次角度的调节,倾角多次调节的方式是采用输入法,每次新调节的角度值,在上午时段为ψ-J*ψ/F;正午时段,倾角固定不变,在下午时段为γ+ψ/F,把计算出每次所需调节的倾角角度值跟与其相对应的模拟电压值或调节时刻一起预先输入到控制器的储存模块当中,具体的实施方式为,当角度传感器处于水平位置角度为0°时,输出端Vo输出的为A伏的模拟电压,当角度传感器与水平面成最大倾角的角度值ψ时,此时输出的是B伏的模拟电压,当角度传感器在0°~ψ或ψ~180°的区间变化时,输出端Vo输出的电压将从A伏依此变化到B伏或B伏依此变化到A伏的模拟电压信号,因此通过测定角度传感器输出端Vo电压的大小,就能够确定多边形或圆形平台与水平面间的夹角,所述铰接装置的构件是由1块底板和C块的多边形竖板所构成,竖板带有圆弧的一端带有孔洞,另外一端焊接固定在底板上,所述铰接装置的构件,C=2时候,是螺栓固定连接,当C>2时候,是铰接连接形成一个铰接装置,其特征在于:不需要光电传感装置,分别采用轨道装置、多边形或圆形平台、固定或活动的支架的不同组合体,构建一个1维度或2维度非感应式追踪的光伏发电系统;太阳能板的方位角和倾角的调节将采用时间计时,采用太阳能角度控制器来进行控制,所述太阳能角度控制器是根据时间的计时,通过控制智能电动柱或驱动电机智能驱动多边形或圆形平台方位角水平朝东或朝西方向移动或倾角从东面到西面进行转动,由此调节多边形或圆形平台的方位角或倾角跟随时间的变化而发生改变的方法,调节的顺序为方位角调节在先,倾角在后,所述方位角的调节由太阳能角度控制器根据GPS或电子指南针模块输出的信号,控制其朝东或朝西转动,所述倾角的调节为输入法,所述输入法是采用最大倾角算术平均法计算得出的所需调节的倾角角度值跟与其相对应的调节时刻一起预先输入到控制器的储存模块当中,所述最大倾角是指在上午或下午的时段内,多边形或圆形平台所能够形成的最大倾角,按调节的次数进行算术平均的方法,所述时间计时是一日之内三次或多次,2维度追踪的调节时间段分为上午、正午、下午三个时段,一日之内的三次调节,多边形或圆形平台,在上午时段是面朝东面,倾角最大,正午时段,是水平状;下午时段,是面朝西面,倾角最大,所述的多次调节,是指在上午或下午两个时段内,每间隔E分钟进行一次方位角的调节,在E分钟内倾角调节F次,所述输入法当中的多边形或圆形平台的最大倾角ψ的角度值按算术平均分成F次,每次调节的角度值为ψ/F,三个时间段内光伏板的朝向与1日之内三次调节的相同,在上午时段,每次新调节的角度值为ψ-J*ψ/F,J是整数的数字系列值,最小值为1,最大值为F;在下午时段,每次新调节的角度值为γ+ψ/F,γ是调节前一时刻的角度值,每次方位角进行调节时,倾角都已经归位到初始的位置,无驱动装置的1维度追踪的太阳能角度控制器水平安装,倾角是固定不变,方位角调节的次数,是一日之内所有调节时间的总和,按每间隔D分钟计算所得。
有益效果
本发明的斜坡面上无需光电传感器的光伏发电追踪系统,提出了1纬度或2纬度无需光电传感器的追踪技术,使得光伏发电在斜坡面上实现了追日的目的,提高了斜坡面上光伏发电的发电效率,解决了斜坡面上光伏发电所亟待解决的技术难题,即斜坡面上的光伏发电不仅要能够追日,而且还有具有实用价值。
附图说明
图1为1+1模式的平面俯视图:符号1为光伏板支架,符号2为带U型框架的T型托梁,符号3是T型托梁,符号4为多边形的框架,符号5为圆形支架,符号6为滑轮,符号7为带有凹槽构件的轨道,符号8为S根梁,符号9为转盘,符号10为驱动装置;图2为1+1模式正视图:符号11为钢结构平台的T型支柱,符号12为屋架;图3为1+N模式平面俯视图:符号13为齿轮,符号14为链条,符号15为驱动电机;图4为1+N模式正视图,图5为L型截面的轨道:符号16为凹槽构件,图6为多边形截面的轨道;图7为1纬度追踪的正视图,符号17为阶梯框架。
本发明的最佳实施方式
参阅图1和2是1+1模式的2维度追踪的光伏发电系统,光伏板支架1呈现水平状态时其四边梁中的一边是与T型托梁3铰接形成铰接装置,其余三边托在带有U型框架的T型梁2上,与带有铰接装置相对应的另一边安装有驱动装置10,驱动装置10和T型梁2和3固定在多边形的框架4上,框架4固定在圆形支架或三角形支架5上,支架5固定在滑轮6上,滑轮6轴上两边的梁或链条下垂到轨道7的凹槽构件16内,梁或链条下端的多边形或圆形构件卡扣于凹槽内,随着滑轮6移动,在S条梁8两端分别连接支架5和转盘9,圆形支架5和转盘9固定在由T型支柱11支撑的钢结构平台上,T型支柱11固定在屋架12上,由此形成一个2维度追踪的光伏发电系统。
参阅图3和4是1+N模式的2维度追踪的光伏发电系统,转盘9上固定安装有一个齿轮13,一条闭环链条14,链接有N个齿轮13,其另一端固定在驱动电机15的齿轮上,N组的转盘9将通过齿轮传动机构13和14随着驱动电机15一起转动,由此形成了一个由一台驱动电机带动N组光伏板支架1一同转动的光伏发电系统。
参阅图7是1+1模式的1维度追踪的光伏发电系统,这是阶梯型的只能调节方位角的无驱动装置的1维度追踪,这种模式是采用阶梯型的框架17固定安装在多边形或圆形的平台1上,平台1是直接固定安装在多边形或圆形框架4上,光伏板1与地面倾斜采用固定支架安装在平台1和阶梯型框架17上。
本发明的实施方式
角度的调节是一日之内三次或多次,2维度追踪的调节时间段分为上午、正午、下午三个时段,一日之内的三次调节,多边形或圆形平台,在上午时段是面朝东面,倾角最大,正午时段,是水平状;下午时段,是面朝西面,倾角最大,所述的多次调节,是指在上午或下午两个时段内,每间隔E分钟进行一次方位角的调节,在E分钟内倾角调节F次,所述输入法当中的多边形或圆形平台的最大倾角ψ的角度值按算术平均分成F次,每次调节的角度值为ψ/F,三个时间段内光伏板的朝向与1日之内三次调节的相同,在上午时段,每次新调节的角度值为ψ-J*ψ/F,J是整数的数字系列值,最小值为1,最大值为F;在下午时段,每次新调节的角度值为γ+ψ/F,γ是调节前一时刻的角度值,每次方位角进行调节时,倾角都已经归位到初始的位置,无驱动装置的1维度追踪的太阳能角度控制器水平安装,倾角是固定不变,方位角调节的次数,是一日之内所有调节时间的总和,按每间隔D分钟计算所得。
在1+1模式的2维度追踪的光伏发电系统当中,系统安装完成后,光伏板支架1在预定时刻,首先调节光伏板支架1的方位角,太阳能角度控制器将根据电子指南针模块输出的信号,得出太阳朝东或朝西的方位角,由太阳能角度控制器控制转盘9转动,通过S条梁带动圆形支架5的滑轮6发生移动,则光伏方支架1的方位角调整到位,上午及正午时间段,太阳能角度控制器驱动转盘9调节方位角面朝东侧,下午时间段则面朝西侧,方位角调整到位后再进行倾角的调节,具体调节方式参照0012段。
在1+N模式的2维度追踪的光伏发电系统当中,方位角和倾角的调节方式与1+1模式的相一致,调节方式具体为,在调节的预定的时间,太阳能角度控制器依据角度传感器得出的信号,控制驱动电机15转动,通过齿轮传动机构13和14带动转盘9发生转动,由此光伏板支架1的方位角得到调节,方位角调节到位后,太阳能角度控制器将启动N组的驱动装置10对光伏板支架1的倾角进行调节,调节的方式与1+1模式相同。
在1+1模式的1维度追踪的光伏发电系统当中,方位角的调节方式与参照0012段。1维度追踪的1+N模式的转盘9的结构与上述2纬度追踪的相同,光伏板的方位角的调节方式参照0012~0014段。
工业实用性
本发明的斜坡面上无需光电传感器的光伏发电追踪系统,通过采用轨道移动和升降平台的技术,提出了一种1纬度或2纬度无需光电传感器的非感应追踪技术,这是有别于公知的固定支架技术和感应式追踪技术的一种新型光伏发电的追踪技术,其技术简单、成本低、自损电量小,在光电转换率难以大幅度提高的当下,提高了发电效率,解决了斜坡面上分布式光伏发电领域内亟待解决的技术难题,即光伏发电不仅要能够追日而且又要具有实用价值的难题,本发明的发电效率比不具有追日功能的固定支架技术多增加了60%左右,本发明具有很好的经济效益和生态效益。

Claims (3)

  1. 斜坡面上无需光电传感器的光伏发电追踪系统,包含轨道装置、太阳能角度控制器、光伏板,追踪系统分为1维度或2维度追踪两种不同的模式,这两种类型当中又分为1+1和1+N两种不同的类型,在2纬度追踪模式的轨道装置包含了基座、轨道、支架、滑轮、转盘,在斜面屋顶上以两个屋架为一组,采用Y根T型支柱固定在屋架上,在T型支柱上架构一个钢结构的平台,平台上固定安装有J个圆形状的轨道,轨道的截断面形状分为L型或多边形两种,在每条轨道两侧各预埋有一条圆环状的凹槽构件,凹槽构件开口部是上窄下宽,在L型截断面基座的上壁上也预埋有一条圆环状的凹槽构件,共有三条,而多边形截断面的基座只有两条凹槽形构件,轨道上安装有一个圆形或三角形的支架,圆形支架下安装有X个滑轮,而三角形支架的各个角处各安装有一个滑轮,每个滑轮的轴在滑轮的两侧分别下垂固定安装有根梁或链条,梁或链条的下端带有个圆形或多边形的构件,把梁或链条分别插入轨道两侧的凹槽内,其圆形或多边形构件卡扣在凹槽内随着滑轮移动,在L型截断面轨道上的滑轮,带有圆形或多边形构件的一端是扣在轨道上壁的凹槽内,另一端是直接固定或通过链条固定在滑轮的轴上,在圆形或三角形支架的中心处固定安装有一个转盘,S条梁两端分别固定在转盘和圆形或三角形支架上,在圆形或三角形支架的上方固定安装有一个多边形的框架,在多边形框架的周边上固定安装有P根T型的托梁,T型托梁中有一边安装有铰接装置的构件,与安装有铰接装置构件相对应的另一边安装有H套驱动装置,其余的T型托梁顶端固定安装一个U型的框,一个多边形或圆形平台架在T型托梁和驱动装置上,平台底部的边框中,一条与T型托梁铰接形成铰接装置,其余的边框托放在T型托梁的U型框内,驱动装置的顶端与平台是螺栓固定连接,光伏方正采用固定支架的模式平行固定于多边形或圆形平台上,随着多边形平台一起转动,所述转盘是一根可转动的柱,根据支柱是自转还是非自转分为1+1和1+N两种不同的模式,1+1模式的转盘是自转模式,其是一根智能电动柱,其柱体主要由轴、空心管所构成,空心管固定在轴上随轴一起旋转而不能上下移动,柱体上安装有S根梁,所述1+N模式的转盘为非自转模式,转盘的结构及安装方式与1+1模式的相同,只是机座中没有驱动电机和机械传动机构,却在轴上多增加了一个齿轮,齿轮固定安装在转盘的轴上,N个转盘的齿轮通过一根闭合的链条链接为一体,链条的一端与机械传动机构链接,由驱动电机通过机械传动机构共同驱动N个转盘同时转动,1+1模式的转盘能够独自带动一个圆形或三角形的支架转动,而1+N模式则由驱动电机与链传动机构共同驱动N个圆形或三角形支架一同转动,所述驱动装置是一种可升降的智能电动柱,其柱体主要由多边形或圆形的螺母、带有螺纹的轴、T型空心管所构成,T型空心管固定在螺母上形成一体,螺母沿着轴上下移动,上述所有的智能电动柱的柱体固定在机座上,其的驱动将采用固定在机座内的电机和机械传动机构的组合体来进行,所述的1纬度追踪模式只能调节方位角,其1+1或1+N两种类型的轨道装置的结构与上述2纬度追踪模式的相同,但多边形或圆形的平台是直接固定安装在多边形或圆形框架上,无驱动装置和T型托梁,在平台上安装有阶梯型框架,光电系统的光伏板与地面倾斜采用固定支架安装在平台和阶梯型框架上,光伏板角度的调节将通过调节多边形或圆形平台倾角来替代,将由安装有嵌入式的角度传感器的太阳能角度控制器,来进行控制,所述太阳能角度控制器,是利用时间计时来控制多边形或圆形平台的角度发生改变的一种智能控制装置,其主要有主芯片、角度传感器、GPS卫星定位或电子指南针、时钟芯片、蓝牙、电机驱动的模块,主芯片通过读取实时的时钟及角度数值,根据不同的时间段来控制多边形或圆形平台角度的变化,时钟芯片在太阳能角度控制器接通电源后,将自动采用GPS或蓝牙进行时间的校对,多边形或圆形平台角度调节的工作原理为,太阳能角度控制器与多边形平台安装在同一个水平面上,当时间到达预设的时刻时,控制器通过GPS卫星定位或电子指南针的定位,接受到一个调节角度的信号,则通过控制电机控制模块来使角度检测模块做出转动动作,以使得多边形或圆形平台完成水平或倾斜动作,此时的智能电动柱将随着电机的转动完成水平或伸或缩的运动,推动多边形或圆形平台转动到预定位置的同时,角度传感器输出的模拟量经过模拟数字转换器转换后送入主控制器,主控制器再根据此输入来判定多边形或圆形平台是否已经转动到预定的角度,并据此来控制电机的控制模块,由此完成一次角度的调节,倾角多次调节的方式是采用输入法,每次新调节的角度值,在上午时段为ψ-J*ψ/F;正午时段,倾角固定不变,在下午时段为γ+ψ/F,把计算出每次所需调节的倾角角度值跟与其相对应的模拟电压值或调节时刻一起预先输入到控制器的储存模块当中,具体的实施方式为,当角度传感器处于水平位置角度为0°时,输出端Vo输出的为A伏的模拟电压,当角度传感器与水平面成最大倾角的角度值ψ时,此时输出的是B伏的模拟电压,当角度传感器在0°~ψ或ψ~180°的区间变化时,输出端Vo输出的电压将从A伏依此变化到B伏或B伏依此变化到A伏的模拟电压信号,因此通过测定角度传感器输出端Vo电压的大小,就能够确定多边形或圆形平台与水平面间的夹角,所述铰接装置的构件是由1块底板和C块的多边形竖板所构成,竖板带有圆弧的一端带有孔洞,另外一端焊接固定在底板上,所述铰接装置的构件,C=2时候,是螺栓固定连接,当C>2时候,是铰接连接形成一个铰接装置,其特征在于:不需要光电传感装置,分别采用轨道装置、多边形或圆形平台、固定或活动的支架的不同组合体,构建一个1维度或2维度非感应式追踪的光伏发电系统;太阳能板的方位角和倾角的调节将采用时间计时,采用太阳能角度控制器来进行控制。
  2. 根据权利要求1所述的斜坡面上无需光电传感器的光伏发电追踪系统,其特征在于:所述太阳能角度控制器是根据时间的计时,通过控制智能电动柱或驱动电机智能驱动多边形或圆形平台方位角水平朝东或朝西方向移动或倾角从东面到西面进行转动,由此调节多边形或圆形平台的方位角或倾角跟随时间的变化而发生改变的方法,调节的顺序为方位角调节在先,倾角在后,所述方位角的调节由太阳能角度控制器根据GPS或电子指南针模块输出的信号,控制其朝东或朝西转动,所述倾角的调节为输入法,所述输入法是采用最大倾角算术平均法计算得出的所需调节的倾角角度值跟与其相对应的调节时刻一起预先输入到控制器的储存模块当中,所述最大倾角是指在上午或下午的时段内,多边形或圆形平台所能够形成的最大倾角,按调节的次数进行算术平均的方法。
  3. 根据权利要求2所述的斜坡面上无需光电传感器的光伏发电追踪系统,其特征在于:所述时间计时是一日之内三次或多次,2维度追踪的调节时间段分为上午、正午、下午三个时段,一日之内的三次调节,多边形或圆形平台,在上午时段是面朝东面,倾角最大,正午时段,是水平状;下午时段,是面朝西面,倾角最大,所述的多次调节,是指在上午或下午两个时段内,每间隔E分钟进行一次方位角的调节,在E分钟内倾角调节F次,所述输入法当中的多边形或圆形平台的最大倾角ψ的角度值按算术平均分成F次,每次调节的角度值为ψ/F,三个时间段内光伏板的朝向与1日之内三次调节的相同,在上午时段,每次新调节的角度值为ψ-J*ψ/F,J是整数的数字系列值,最小值为1,最大值为F;在下午时段,每次新调节的角度值为γ+ψ/F,γ是调节前一时刻的角度值,每次方位角进行调节时,倾角都已经归位到初始的位置,无驱动装置的1维度追踪的太阳能角度控制器水平安装,倾角是固定不变,方位角调节的次数,是一日之内所有调节时间的总和,按每间隔D分钟计算所得。
PCT/CN2020/106987 2020-08-05 2020-08-05 斜坡面上无需光电传感器的光伏发电追踪系统 WO2022027282A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106987 WO2022027282A1 (zh) 2020-08-05 2020-08-05 斜坡面上无需光电传感器的光伏发电追踪系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106987 WO2022027282A1 (zh) 2020-08-05 2020-08-05 斜坡面上无需光电传感器的光伏发电追踪系统

Publications (1)

Publication Number Publication Date
WO2022027282A1 true WO2022027282A1 (zh) 2022-02-10

Family

ID=80119565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106987 WO2022027282A1 (zh) 2020-08-05 2020-08-05 斜坡面上无需光电传感器的光伏发电追踪系统

Country Status (1)

Country Link
WO (1) WO2022027282A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110168241A1 (en) * 2008-12-18 2011-07-14 Et Energy Company Limited Photo-Voltaic Power Generation Equipment that Can Automatically Track the Sun
CN201904743U (zh) * 2010-12-23 2011-07-20 北京科强科技有限公司 一种双自由度自动跟踪太阳能光伏发电装置
CN104038143A (zh) * 2014-03-19 2014-09-10 上海摩昆新能源科技有限公司 光伏阵列支架
CN106877803A (zh) * 2017-03-31 2017-06-20 赵守喆 主动式智能光伏支架系统
CN107040196A (zh) * 2017-05-16 2017-08-11 李�杰 一种活动的太阳能光伏支架
CN208859485U (zh) * 2018-06-10 2019-05-14 李�杰 太阳能板可转动的太阳能路灯
CN110581685A (zh) * 2018-06-10 2019-12-17 李�杰 一种活动支架的分布式光伏发电系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110168241A1 (en) * 2008-12-18 2011-07-14 Et Energy Company Limited Photo-Voltaic Power Generation Equipment that Can Automatically Track the Sun
CN201904743U (zh) * 2010-12-23 2011-07-20 北京科强科技有限公司 一种双自由度自动跟踪太阳能光伏发电装置
CN104038143A (zh) * 2014-03-19 2014-09-10 上海摩昆新能源科技有限公司 光伏阵列支架
CN106877803A (zh) * 2017-03-31 2017-06-20 赵守喆 主动式智能光伏支架系统
CN107040196A (zh) * 2017-05-16 2017-08-11 李�杰 一种活动的太阳能光伏支架
CN208859485U (zh) * 2018-06-10 2019-05-14 李�杰 太阳能板可转动的太阳能路灯
CN110581685A (zh) * 2018-06-10 2019-12-17 李�杰 一种活动支架的分布式光伏发电系统

Similar Documents

Publication Publication Date Title
WO2022027281A1 (zh) 通信基站无需光电传感器的光伏发电追踪系统
WO2014163180A1 (ja) 太陽追尾型太陽光発電システム
CN102269996A (zh) 太阳光对应装置
JP2023550679A (ja) 追跡型のソーラー及び風力-太陽光ハイブリッドの街路灯
US20210194417A1 (en) Elevated dual-axis photovoltaic solar tracking assembly
US20230268868A1 (en) Vehicle-mounted photovoltaic power generation device for large vehicles
CN201936193U (zh) 跟踪太阳的立轴回转装置
CN102981515A (zh) 一种伞式单轴跟踪光伏发电系统
CN110868149A (zh) 一种具有智能追光、主动避风功能的自适应光伏支架
CN102841607B (zh) 光伏电站能避风的太阳跟踪装置及运动控制方法
WO2022027267A1 (zh) 太阳能房无需光电传感器的光电和光热一体化追踪系统
WO2022027282A1 (zh) 斜坡面上无需光电传感器的光伏发电追踪系统
CN112394749B (zh) 基于追踪控制与现场数据采集的太阳能光伏运维控制系统
JP2013074037A (ja) 太陽追尾型太陽光発電システム
CN212435634U (zh) 一种追日型的斜坡面上的分布式光伏发电装置
CN111750545A (zh) 轨道型非感应式追踪的光电和光热一体化系统
KR101136597B1 (ko) 태양광의 고도 및 방위각이 추적되는 광 발전용 모듈
CN111756320A (zh) 斜坡面上非感应式追踪的分布式光伏发电系统
CN111878943A (zh) 太阳能空调和太阳能热水器的非感应式追踪系统
WO2022027272A1 (zh) 一种追日型的风光互补发电系统
WO2022027278A1 (zh) 轨道式无需光电传感器的光电和光热一体化追踪系统
WO2022027285A1 (zh) 太阳能空调和热水器无需光电传感器的光电和光热一体化追踪系统
CN111828916A (zh) 非感应式追踪的太阳能路灯
CN212392848U (zh) 一种追日型的监控和信号灯通用的光伏发电装置
CN212431366U (zh) 一种追日型的轨道式光电和光热一体化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948825

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20948825

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.09.2023)