WO2022027285A1 - 太阳能空调和热水器无需光电传感器的光电和光热一体化追踪系统 - Google Patents

太阳能空调和热水器无需光电传感器的光电和光热一体化追踪系统 Download PDF

Info

Publication number
WO2022027285A1
WO2022027285A1 PCT/CN2020/106999 CN2020106999W WO2022027285A1 WO 2022027285 A1 WO2022027285 A1 WO 2022027285A1 CN 2020106999 W CN2020106999 W CN 2020106999W WO 2022027285 A1 WO2022027285 A1 WO 2022027285A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
circular
platform
fixed
polygonal
Prior art date
Application number
PCT/CN2020/106999
Other languages
English (en)
French (fr)
Inventor
李�杰
Original Assignee
李�杰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李�杰 filed Critical 李�杰
Priority to PCT/CN2020/106999 priority Critical patent/WO2022027285A1/zh
Publication of WO2022027285A1 publication Critical patent/WO2022027285A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the invention relates to the field of photothermal cooling and heating, in particular to a photoelectric and photothermal integrated tracking system that does not require photoelectric sensors for solar air conditioners and water heaters.
  • solar air conditioners and water heaters on the market use photoelectric and photothermal technologies for cooling and heating, while photoelectric and photothermal technologies that use photovoltaic panels and collectors to collect solar energy are photovoltaic power generation technologies that use fixed brackets. It is impossible to chase the sun, so the photovoltaic panels and collectors can only receive solar radiation from the east or west side, so the solar radiation received by the photovoltaic panels and collectors is very limited, resulting in power generation and heat collection. The efficiency is low, and the current two-dimensional induction tracking technology using photoelectric sensors is complicated and expensive. Although the tracking accuracy is high, the self-consumption power is also large, so the technology is cost-effective and difficult to use in low-cost solar air conditioners and solar energy.
  • the solar air conditioner and water heater provided by the present invention do not need a photoelectric sensor and a photoelectric integrated tracking system, so that the above technical problems can be solved.
  • Photoelectric and photothermal integrated tracking system for solar air conditioners and water heaters without photoelectric sensors including track devices, solar angle controllers, split or integrated collectors for solar air conditioners or solar water heaters, and the tracking system is divided into 1 dimension or 2
  • the track device includes a base, a track, a bracket, a pulley, and a turntable.
  • a circular track is installed on a circular base fixed on the foundation.
  • the sectional shape of the track is divided into two types: L-shaped or polygonal, and a circular groove is embedded on both sides of each track.
  • the opening part of the groove member is narrow at the top and wide at the bottom.
  • a ring-shaped groove member embedded on the upper wall of the base of the L-shaped section.
  • a beam or chain is sagging and fixed respectively.
  • the lower end of the beam or chain has a circular or polygonal member. Insert the beam or chain into the grooves on both sides of the track, and the circular or polygonal members are buckled in the groove.
  • one end with a circular or polygonal member is buckled in the groove of the upper wall of the track, and the other end is directly fixed or fixed on the shaft of the pulley through a chain , a turntable is fixedly installed at the center of the circular or triangular bracket, the two ends of the S beam are fixed on the turntable and the circular or triangular bracket, and a polygonal frame is fixed above the circular or triangular bracket.
  • P T-shaped joists are fixedly installed on the periphery of the polygonal frame.
  • One side of the T-shaped joists is installed with a component with a hinge device, and the other side corresponding to the component with the hinge device is installed with H sets of driving devices, and the rest
  • a U-shaped frame is fixedly installed at the top of the T-shaped joist, and a polygonal or circular platform is placed on the T-shaped joist and the driving device.
  • the rest of the frame In the frame at the bottom of the platform, one is hinged with the T-shaped joist to form a hinged device, and the rest of the frame It is placed in the U-shaped frame of the T-shaped joist, and the top of the driving device is bolted to the platform.
  • R groups of large hollow tubes are installed horizontally on the polygonal or circular platform.
  • the first type is a photoelectric system; the second is a photothermal system, and the second is a photoelectric and photothermal integrated system.
  • the bottom of the photovoltaic panel or split collector or concentrator is fixedly installed with R Group small hollow tubes, respectively insert the R group small hollow tubes into the R group large hollow tubes of the platform, and fix the horizontal bolts on the polygonal or circular platform.
  • One of the integrated heat collecting vacuum tubes is inclined with the platform, and the other is There are two different installation methods parallel to the platform.
  • the inclined installation to the platform is to remove the fixed support rod of the thermal insulation barrel in the current installation mode of the integrated solar water heater fixed bracket and fix its support on the platform; and
  • the platform is installed in parallel, the collector vacuum tube is L-shaped, and the collector vacuum tube is horizontal through the bracket It is fixed on the platform, the other short end is connected to the bottom of the thermal insulation barrel, the support frame of the thermal insulation barrel is fixed on the platform, and the brackets of the two different modes of heat collecting vacuum tubes are fixedly installed on the platform and installed on both sides of the thermal insulation barrel.
  • the fixing bracket of the photovoltaic panel, the parallel platform of the photovoltaic panel is fixed on the bracket, the concentrating heat collector is mainly composed of a polygonal concentrating plate, a bracket, and a vacuum heat collecting tube.
  • the polygonal concentrator is divided into two different types: plane type or curved surface type. It has two different ways of direct or indirect connection with the bracket.
  • the bracket is tilted and fixed as a whole, and the indirect connection is through the intelligent electric column and the bracket.
  • the intelligent electric column is fixedly installed around the bracket.
  • the column is mainly composed of a shaft and a hollow tube. On the tube, the hollow tube is fixed on the shaft and rotates together with the shaft.
  • the turntable is a rotatable column, which is divided into two different modes: 1+1 and 1+N according to whether the support is self-rotating or non-rotating.
  • the turntable of the mode is a self-rotating mode, which is an intelligent electric column.
  • the column is mainly composed of a shaft and a hollow tube.
  • the hollow tube is fixed on the shaft and rotates with the shaft and cannot move up and down.
  • S beams are installed on the column.
  • the turntable in the 1+N mode is a non-rotating mode.
  • the structure and installation method of the turntable are the same as those in the 1+1 mode, except that there is no drive motor and mechanical transmission mechanism in the base, but an additional gear is added on the shaft.
  • the gears are fixedly installed on the shaft of the turntable, the gears of the N turntables are linked together by a closed chain, one end of the chain is linked with the mechanical transmission mechanism, and the N turntables are jointly driven by the driving motor through the mechanical transmission mechanism to rotate at the same time, 1+
  • the turntable in 1 mode can drive a circular or triangular bracket to rotate alone, while in 1+N mode, N circular or triangular brackets are jointly driven by the drive motor and the chain transmission mechanism to rotate together.
  • the intelligent electric column is mainly composed of a polygonal or circular nut, a threaded shaft, and a T-shaped hollow tube.
  • the T-shaped hollow tube is fixed on the nut to form a whole, and the nut moves up and down along the shaft.
  • the cylinder of the intelligent electric column is fixed on the base, and its drive will be carried out by the combination of the motor and mechanical transmission mechanism fixed in the base.
  • the 1 latitude tracking mode can only adjust the azimuth, and its 1
  • the structure of the +1 or 1+N two types of track units is the same as that of the 2-latitude tracking mode above, but the polygon or circular platform is directly fixed on the polygon or circular frame, without drive units and T-joists ,
  • a stepped frame is installed on the platform, the photovoltaic panel of the photovoltaic system or the split collector or the concentrating collector or the collector of the integrated solar water heater is inclined to the ground and is fixedly installed on the platform and the stepped frame with a fixed bracket
  • the angle adjustment of the solar air conditioner or the solar water heater is to adjust the angle of the polygonal or circular platform, which will be controlled by the solar angle controller installed with the embedded angle sensor.
  • the solar angle controller It is an intelligent control device that uses time to control the angle of polygon or circular platform to change. It mainly includes main chip, angle sensor, GPS satellite positioning or electronic compass, clock chip, Bluetooth, motor-driven module, main chip By reading the real-time clock and angle values, the angle of the polygon or circular platform can be controlled according to different time periods. After the solar angle controller is powered on, the clock chip will automatically use GPS or Bluetooth to calibrate the time. Or the working principle of the angle adjustment of the circular platform is that the solar angle controller and the polygon platform are installed on the same horizontal plane. When the time reaches the preset time, the controller receives an adjustment through GPS satellite positioning or electronic compass positioning.
  • the angle signal is controlled by the motor control module to make the angle detection module rotate, so that the polygon or circular platform can complete the horizontal or tilting action.
  • the intelligent electric column will complete the horizontal or extension with the rotation of the motor.
  • the method of multiple adjustment of the inclination angle is to use the input method, and the angle value of each new adjustment is ⁇ in the morning period -J* ⁇ /F; in the noon period, the inclination angle is fixed, and in the afternoon period, it is ⁇ + ⁇ /F, and the calculated inclination angle value to be adjusted each time is pre-calculated together with the corresponding analog voltage value or adjustment time. It is input into the storage module of the controller.
  • the specific implementation is that when the angle sensor is in the horizontal position and the angle is 0°, the output terminal Vo outputs an analog voltage of A volt.
  • the hinged device is composed of a base plate. It is composed of a polygonal vertical plate of block C. One end of the vertical plate with a circular arc has a hole, and the other end is welded and fixed on the bottom plate.
  • 1-dimensional or 2-dimensional tracking photothermal or photoelectric and photothermal integrated systems the adjustment of the azimuth and inclination of the photoelectric and photothermal systems will be timed and controlled by a solar angle controller.
  • the solar angle control The device is based on time timing, by controlling the intelligent electric column or driving the motor intelligently.
  • the adjustment sequence is that the azimuth angle is adjusted first, and the inclination angle is behind.
  • the adjustment of the azimuth angle is controlled by the solar angle controller according to the signal output by the GPS or electronic compass module to control it to rotate eastward or westward, and the adjustment of the inclination angle is: Input method, the input method is that the inclination angle value to be adjusted calculated by the arithmetic mean method of the maximum inclination angle is input into the storage module of the controller together with the corresponding adjustment time in advance, and the maximum inclination angle refers to the In the morning or afternoon, the maximum inclination angle that can be formed by a polygonal or circular platform is the method of arithmetic averaging according to the number of adjustments.
  • the multiple adjustment refers to the adjustment of the azimuth angle every E minutes in the morning or afternoon, and the inclination angle is adjusted F times within E minutes.
  • the angle value of the maximum inclination angle ⁇ of the polygonal or circular platform is divided into F times according to the arithmetic average, and the angle value of each adjustment is ⁇ /F.
  • the angle value of each new adjustment is ⁇ -J* ⁇ /F, J is an integer number series value, the minimum value is 1, and the maximum value is F; in the afternoon period, the angle value of each new adjustment is ⁇ + ⁇ /F, ⁇ is the angle value at the previous moment of adjustment.
  • the 1-dimensional tracking solar angle controller without drive device is installed horizontally, and the inclination angle is Fixed and unchanged, the number of azimuth adjustment is the sum of all adjustment times in one day, calculated at every interval of D minutes.
  • the 1-latitude or 2-latitude tracking technology provided by the present invention does not require the tracking technology of photoelectric sensors, and at the moment when the conversion rate of photoelectricity and photothermal is difficult to greatly improve, the efficiency of power generation and heat collection is improved, and the tracking technology integrating photoelectricity and photothermal is adopted. , improve the cooling and heating efficiency of solar air conditioners and water heaters, and solve the technical problems that need to be solved urgently in the solar air conditioners and water heaters industry.
  • Figure 1 is a 1+1 model plan top view of a split type solar water heater: symbol 1 is a quadrilateral platform, symbol 2 is a T-shaped joist with a U-shaped frame, symbol 3 is a T-shaped joist, symbol 4 is a quadrilateral frame, symbol 5 It is a circular or triangular bracket, the symbol 6 is a pulley, the symbol 7 is a track with a groove member, the symbol 8 is an S beam, the symbol 9 is a turntable, and the symbol 10 is a driving device;
  • Figure 2 is a split 1+1 Mode front view
  • Figure 3 is a plan view of the split 1+N mode: the symbol 11 is a chain, the symbol 12 is a drive motor, and the symbol 13 is a gear;
  • Figure 4 is a split 1+N mode front view.
  • Figure 5 is a plan view of the 1+1 mode of the integrated solar water heater with photovoltaic power generation: the symbol 14 is a heat collector, the symbol 15 is a heat preservation bucket, the symbol 16 is a photovoltaic panel, and the symbol 17 is the fixing bracket of the photovoltaic panel;
  • Fig. 6 is an integrated front view;
  • Fig. 7 is a track of L-shaped cross-section: symbol 18 is a groove member, and
  • Fig. 8 is a track of polygonal cross-section.
  • 1 and 2 are split solar air conditioners and water heaters 1+1 mode, when the polygonal or circular platform 1 is in a horizontal state, one side of the four-sided beam is hinged with the T-shaped joist 3 to form a hinged device, and the other corresponding to it.
  • One side is supported on the T-beam 2 with a U-shaped frame and is bolted to the drive device 10 at the same time, the drive device 10 and the T-beams 2 and 3 are fixed on the quadrilateral frame 4, and the frame 4 is fixed on the circular support 5.
  • the bracket 5 is fixed on the pulley 6, the beams or chains on both sides of the axis of the pulley 6 hang down into the groove member 20 in the track 7, and the polygonal or circular member at the lower end of the beam or the chain is buckled in the groove member 20.
  • the pulley 6 moves, and the bracket 5 and the turntable 9 are respectively connected at both ends of the S beam 8, thereby forming a 2-dimensional tracking photothermal system.
  • 3 and 4 are the 1+N mode of the split solar air conditioner and water heater, a gear 13 is fixedly installed on the turntable 9, a closed-loop chain is linked with N gears, and the other end is fixed on the gear of the drive motor 12, N
  • the turntables 9 of the group will rotate together with the drive motor 12 through the gear transmission mechanisms 11 and 13, thereby forming a drive motor to drive N groups of polygonal or circular platforms 1 to rotate simultaneously.
  • the adjustment of the angle is three or more times in a day.
  • the adjustment time period of the 2-dimensional tracking is divided into three time periods: morning, noon, and afternoon.
  • Three adjustments in one day, polygonal or circular platform, in the morning period is a surface. Facing east, the inclination angle is the largest, and at noon, it is horizontal; in the afternoon, it faces west, and the inclination angle is the largest.
  • the inclination angle is adjusted F times within E minutes, the angle value of the maximum inclination angle ⁇ of the polygon or circular platform in the input method is divided into F times according to the arithmetic mean, and the angle value of each adjustment is ⁇ /F,
  • the orientation of the photovoltaic panels in the three time periods is the same as that of the three adjustments within one day.
  • the angle value of each new adjustment is ⁇ -J* ⁇ /F, J is an integer number series value, and the minimum value is 1, the maximum value is F; in the afternoon period, the newly adjusted angle value is ⁇ + ⁇ /F, ⁇ is the angle value at the previous moment of adjustment, each time the azimuth angle is adjusted, the inclination angle has returned to the initial position.
  • the position of the 1-dimensional tracking solar angle controller without drive device is installed horizontally, the inclination is fixed, and the number of azimuth adjustment is the sum of all adjustment times in one day, calculated at every interval of D minutes.
  • the polygon or circular platform 1 first adjusts the azimuth angle of the polygon or circular platform 1 at a predetermined time, and the azimuth angle is determined by the electronic compass module method.
  • the solar angle controller will obtain the azimuth angle of the sun facing east according to the signal output by the electronic compass module or the pre-input azimuth angle, the solar angle controller will control the rotation of the turntable 9, and drive the pulley 6 of the circular bracket through the S beams If movement occurs, the azimuth angle of the polygon or circular platform 1 is adjusted in place, and the inclination angle is adjusted after the azimuth angle is adjusted in place.
  • the adjustment adopts the arithmetic average method of the maximum inclination angle.
  • the adjustment method of the azimuth angle refers to sections 0012 ⁇ 0013.
  • the photovoltaic panel 1 and the frame 5 are rotated from the east in the morning to the west in the afternoon. After the adjustment, the system automatically returns to its position. to the original state.
  • the adjustment method of the azimuth and inclination is the same as that of the 1+1 mode.
  • the signal obtained by the angle sensor controls the rotation of the driving motor 12, and drives the turntable 9 to rotate through the gear transmission mechanism, so that the azimuth angle of the polygon or circular platform 1 is adjusted.
  • the solar angle controller will start the N
  • the driving device 10 of the group adjusts the inclination of the polygonal or circular platform 1 in the same manner as in the 1+1 mode. In this mode, thermal collectors and photovoltaic devices can be installed separately in N groups of tracks.
  • the azimuth adjustment method of the integrated solar water heater bracket assembly is the same as that of the split solar water heater 1+1 mode.
  • the angle adjustment of the integrated solar air conditioner and water heater 1+N mode is also the same as that of the split type, refer to paragraphs 0012 ⁇ 0015.
  • the solar air conditioner and water heater of the present invention do not need a photoelectric sensor and a photoelectric and photothermal integrated tracking system, and provides a tracking technology that does not require a photoelectric sensor for 1 latitude or 2 latitudes, which is different from the known fixed bracket technology and inductive tracking technology. It is a new type of non-inductive tracking technology with simple technology, low cost and small self-loss power. At the moment when the conversion rate of photoelectric and photothermal is difficult to greatly improve, the efficiency of power generation and heat collection is improved.
  • the integrated tracking technology improves the cooling and heating efficiency of solar air conditioners and water heaters, and solves the technical problems that need to be solved urgently in the solar air conditioner and water heater industry, that is, photoelectric and photothermal systems can not only track the sun, but also have practical Value and integration of technical problems, the photovoltaic power generation efficiency and photothermal collection efficiency of the present invention are increased by about 60% on average compared with the current fixed installation mode, which has good economic and ecological benefits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太阳能空调和热水器无需光电传感器的光电和光热一体化追踪系统,分别采用轨道装置、多边形或圆形平台(1)、固定或活动的支架的不同组合体,构建成一个非感应式的1维度或2维度追踪的光热或光电和光热一体化的系统,方位角和倾角的调节采用时间计时,利用太阳能角度控制器来进行控制,发电和集热的效率增加了60%左右。

Description

太阳能空调和热水器无需光电传感器的光电和光热一体化追踪系统 技术领域
本发明涉及光热制冷制热领域,具体为太阳能空调和热水器无需光电传感器的光电和光热一体化追踪系统。
背景技术
目前市场上的太阳能空调和热水器,都是采用光电和光热技术进行制冷和制热,而采用光伏板和集热器采集太阳能的光电和光热技术都是采用固定支架的光伏发电技术,由于不能够追日,所以导致光伏板和集热器其只能接受东面或西面一面的太阳辐射,由此光伏板和集热器所接受到的太阳辐射很有限,导致发电及集热的效率低下,而目前采用光电传感器的二维度感应追踪技术,由于技术繁杂、成本高昂,虽然追踪精度高,但自损耗电量也大,所以该技术的性价比低,很难在低廉的太阳能空调和太阳能热水器市场上应用。在太阳能空调和热水器市场上,为了提高性价比,矮子里面挑高子,宁可牺牲了追踪精度,也要采用低成本的固定支架技术,这就是目前全世界太阳能空调和太阳能热水器产品当中,都是采用固定支架技术的最主要原因。而要提高太阳能空调和太阳能热水器的发电和集热的效率主要有两种方式,一是大幅度提高光电转换率和集热管的导热性能,但以目前的技术短期内还很能实现,二是改变光伏板和集热器的角度,包括方位角和倾角,达到追日的目的,以便接受更多的太阳辐射,所以在光电转换率和集热管的导热性能难以大幅度提高的当下,提供一种为市场所接受、能够广泛推广应用的太阳能追踪技术,就是当下太阳能空调和太阳能热水器领域内所遇到的亟待解决的技术难题。
技术问题
目前太阳能空调和热水器的光电和光热系统都是采用无法追日的固定支架技术,由于制热和制冷的效率低下,难以满足负荷的需求,能否采用光电和光热一体化的追踪技术去提高太阳能空调和热水器的制热和制冷的效率,是太阳能空调和热水器行业内所遇到的亟待解决的技术难题。
技术解决方案
针对上述缺陷,本发明提供的太阳能空调和热水器无需光电传感器的光电和光热一体化追踪系统,使得上述的技术难题得到了解决。
为实现上述目的,本发明的技术方案为如下。
太阳能空调和热水器无需光电传感器的光电和光热一体化追踪系统,包含轨道装置、太阳能角度控制器、太阳能空调或太阳能热水器的分体式或一体式的集热器、追踪系统分为1维度或2维度追踪两种不同的模式,这两种类型当中又分为1+1和1+N两种不同的类型,在2纬度追踪模式的轨道装置包含了基座、轨道、支架、滑轮、转盘,在一个固定于地基上的圆形基座上安装有圆形状的轨道,轨道的截断面形状分为L型或多边形两种,在每条轨道两侧各预埋有一条圆环状的凹槽构件,凹槽构件开口部是上窄下宽,在L型截断面基座的上壁上也预埋有一条圆环状的凹槽构件,共有三条,而多边形截断面的基座只有两条凹槽形构件,轨道上安装有一个圆形或三角形的支架,圆形支架下安装有X个滑轮,而三角形支架的各个角处各安装有一个滑轮,每个滑轮的轴在滑轮的两侧分别下垂固定安装有根梁或链条,梁或链条的下端带有个圆形或多边形的构件,把梁或链条分别插入轨道两侧的凹槽内,其圆形或多边形构件卡扣在凹槽内随着滑轮移动,在L型截断面轨道上的滑轮,带有圆形或多边形构件的一端是扣在轨道上壁的凹槽内,另一端是直接固定或通过链条固定在滑轮的轴上,在圆形或三角形支架的中心处固定安装有一个转盘,S条梁两端分别固定在转盘和圆形或三角形支架上,在圆形或三角形支架的上方固定安装有一个多边形的框架,在多边形框架的周边上固定安装有P根T型的托梁,T型托梁中有一边安装有铰接装置的构件,与安装有铰接装置构件相对应的另一边安装有H套驱动装置,其余的T型托梁顶端固定安装一个U型的框,一个多边形或圆形平台架在T型托梁和驱动装置上,平台底部的边框中,一条与T型托梁铰接形成铰接装置,其余的边框托放在T型托梁的U型框内,驱动装置的顶端与平台是螺栓固定连接,多边形或圆形平台上水平安装有R组大空心管,多边形或圆形平台安装的系统有三种不同的类型,第一种都是光电系统;第二种是光热系统,第二种是光电和光热一体化系统,光伏板或分体式集热器或聚光集热器底部固定安装有R组小空心管,分别把R组小空心管插入平台的R组大空心管内,水平状螺栓固定安装在多边形或圆形平台上,一体式的集热真空管一种是与平台倾斜,另一种是与平台平行的两种不同的安装方式,与平台倾斜的安装,就是在目前一体式太阳能热水器固定支架安装模式当中,把保温桶的固定支撑杆去掉,把其支座固定在平台上;与平台平行的安装,集热真空管是L型状,集热真空管通过支架是水平状固定在平台上,短的另一端连接在保温桶的底部,保温桶的支撑架固定在平台上,两种不同模式集热真空管的支架都是固定安装在平台上,在保温桶两侧安装光伏板的固定支架,光伏板平行平台固定在支架上,所述聚光集热器主要由多边形聚光板、支架、真空集热管所构成,支架底板和聚光板都涂有反光材料,真空集热管架在支架底板的上方,其两端固定在支架上,多边形聚光板分为平面型或曲面型两种不同类型,其与支架有直接或间接连接两种不同方式,直接连接是多边形聚光板与支架倾斜固定连接为一体,间接连接是通过智能电动柱与支架连为一体,智能电动柱在支架四周各固定安装一根,其柱体主要由轴、空心管所构成,多边形聚光板固定在空心管上,空心管固定在轴上随轴一起转动,所述转盘是一根可转动的柱,根据支柱是自转还是非自转分为1+1和1+N两种不同的模式,1+1模式的转盘是自转模式,其是一根智能电动柱,其柱体主要由轴、空心管所构成,空心管固定在轴上随轴一起旋转而不能上下移动,柱体上安装有S根梁,所述1+N模式的转盘为非自转模式,转盘的结构及安装方式与1+1模式的相同,只是机座中没有驱动电机和机械传动机构,却在轴上多增加了一个齿轮,齿轮固定安装在转盘的轴上,N个转盘的齿轮通过一根闭合的链条链接为一体,链条的一端与机械传动机构链接,由驱动电机通过机械传动机构共同驱动N个转盘同时转动,1+1模式的转盘能够独自带动一个圆形或三角形的支架转动,而1+N模式则由驱动电机与链传动机构共同驱动N个圆形或三角形支架一同转动,所述驱动装置是一种可升降的智能电动柱,其柱体主要由多边形或圆形的螺母、带有螺纹的轴、T型空心管所构成,T型空心管固定在螺母上形成一体,螺母沿着轴上下移动,上述所有的智能电动柱的柱体固定在机座上,其的驱动将采用固定在机座内的电机和机械传动机构的组合体来进行,所述的1纬度追踪模式只能调节方位角,其1+1或1+N两种类型的轨道装置的结构与上述2纬度追踪模式的相同,但多边形或圆形的平台是直接固定安装在多边形或圆形框架上,无驱动装置和T型托梁,在平台上安装有阶梯型框架,光电系统的光伏板或分体式集热器或聚光集热器或一体式太阳能热水器的集热器与地面倾斜采用固定支架固定安装在平台和阶梯型框架上,太阳能空调或太阳能热水器的角度调节,是调节多边形或圆形平台的角度,将由安装有嵌入式的角度传感器的太阳能角度控制器,来进行控制,所述太阳能角度控制器,是利用时间计时来控制多边形或圆形平台的角度发生改变的一种智能控制装置,其主要有主芯片、角度传感器、GPS卫星定位或电子指南针、时钟芯片、蓝牙、电机驱动的模块,主芯片通过读取实时的时钟及角度数值,根据不同的时间段来控制多边形或圆形平台角度的变化,时钟芯片在太阳能角度控制器接通电源后,将自动采用GPS或蓝牙进行时间的校对,多边形或圆形平台角度调节的工作原理为,太阳能角度控制器与多边形平台安装在同一个水平面上,当时间到达预设的时刻时,控制器通过GPS卫星定位或电子指南针的定位,接受到一个调节角度的信号,则通过控制电机控制模块来使角度检测模块做出转动动作,以使得多边形或圆形平台完成水平或倾斜动作,此时的智能电动柱将随着电机的转动完成水平或伸或缩的运动,推动多边形或圆形平台转动到预定位置的同时,角度传感器输出的模拟量经过模拟数字转换器转换后送入主控制器,主控制器再根据此输入来判定多边形或圆形平台是否已经转动到预定的角度,并据此来控制电机的控制模块,由此完成一次角度的调节,倾角多次调节的方式是采用输入法,每次新调节的角度值,在上午时段为ψ-J*ψ/F;正午时段,倾角固定不变,在下午时段为γ+ψ/F,把计算出每次所需调节的倾角角度值跟与其相对应的模拟电压值或调节时刻一起预先输入到控制器的储存模块当中,具体的实施方式为,当角度传感器处于水平位置角度为0°时,输出端Vo输出的为A伏的模拟电压,当角度传感器与水平面成最大倾角的角度值ψ时,此时输出的是B伏的模拟电压,当角度传感器在0°~ψ或ψ~180°的区间变化时,输出端Vo输出的电压将从A伏依此变化到B伏或B伏依此变化到A伏的模拟电压信号,因此通过测定角度传感器输出端Vo电压的大小,就可以确定多边形或圆形平台与水平面间的夹角,所述铰接装置的构件是由1块底板和C块的多边形竖板所构成,竖板带有圆弧的一端带有孔洞,另外一端焊接固定在底板上,所述铰接装置的构件,C=2时候,是螺栓固定连接,当C>2时候,是铰接连接形成一个铰接装置,其特征在于:不需要光电传感装置,分别采用轨道装置、多边形或圆形平台、固定或活动的支架的不同组合体,构建成一个非感应式的1维度或2维度追踪的光热或光电和光热一体化的系统,光电和光热系统的方位角和倾角的调节将采用时间计时,采用太阳能角度控制器来进行控制,所述太阳能角度控制器是根据时间的计时,通过控制智能电动柱或驱动电机智能驱动多边形或圆形平台方位角水平朝东或朝西方向移动或倾角从东面到西面进行转动,由此调节多边形或圆形平台的方位角或倾角跟随时间的变化而发生改变的方法,调节的顺序为方位角调节在先,倾角在后,所述方位角的调节由太阳能角度控制器根据GPS或电子指南针模块输出的信号控制其朝东或朝西转动,所述倾角的调节为输入法,所述输入法是采用最大倾角算术平均法计算得出的所需调节的倾角角度值跟与其相对应的调节时刻一起预先输入到控制器的储存模块当中,所述最大倾角是指在上午或下午的时段内,多边形或圆形平台所能够形成的最大倾角,按调节的次数进行算术平均的方法,所述时间计时是一日之内三次或多次,2维度追踪的调节时间段分为上午、正午、下午三个时段,一日之内的三次调节,多边形或圆形平台,在上午时段是面朝东面,倾角最大,正午时段,是水平状;下午时段,是面朝西面,倾角最大,所述的多次调节,是指在上午或下午两个时段内,每间隔E分钟进行一次方位角的调节,在E分钟内倾角调节F次,所述输入法当中的多边形或圆形平台的最大倾角ψ的角度值按算术平均分成F次,每次调节的角度值为ψ/F,三个时间段内光伏板的朝向与1日之内三次调节的相同,在上午时段,每次新调节的角度值为ψ-J*ψ/F,J是整数的数字系列值,最小值为1,最大值为F;在下午时段,每次新调节的角度值为γ+ψ/F,γ是调节前一时刻的角度值,每次方位角进行调节时,倾角都已经归位到初始的位置,无驱动装置的1维度追踪的太阳能角度控制器水平安装,倾角是固定不变,方位角调节的次数,是一日之内所有调节时间的总和,按每间隔D分钟计算所得。
有益效果
本发明提供的1纬度或2纬度无需光电传感器的追踪技术,在光电和光热的转换率难以大幅度提高的当下,提高了发电和集热的效率,采用光电和光热一体化的追踪技术,提高了太阳能空调和热水器的制冷制热的效率,解决了太阳能空调和热水器行业内所亟待解决的技术难题。
附图说明
图1为分体式太阳能热水器的1+1模式平面俯视图:符号1为四边形平台,符号2为带U型框架的T型托梁,符号3是T型托梁,符号4为四边形框架,符号5为圆形或三角形支架,符号6为滑轮,符号7为带有凹槽构件的轨道,符号8为S根梁,符号9为转盘,符号10为驱动装置;图2为分体式的1+1模式正视图,图3为分体式的1+N模式平面俯视图:符号11为链条,符号12为驱动电机,符号13为齿轮;图4为分体式的1+N模式正视图。图5为带有光伏发电的一体式太阳能热水器的1+1模式的平面俯视图:符号14是集热器,符号15是保温桶,符号16是光伏板,符号17为光伏板的固定支架;图6为一体式的正视图;图7为L型截面的轨道:符号18为凹槽构件,图8为多边形截面的轨道。
本发明的最佳实施方式
参阅图1和2是分体式太阳能空调和热水器1+1模式,多边形或圆形平台1呈现水平状态时其四边梁中的一边是与T型托梁3铰接形成铰接装置,与其相对应的另一边托在带有U型框架的T型梁2上同时与驱动装置10螺栓固定连接,驱动装置10和T型梁2和3固定在四边形框架4上,框架4固定在圆形支架5上,支架5固定在滑轮6上,滑轮6轴上两边的梁或链条下垂到轨道7中的凹槽构件20内,梁或链条下端的多边形或圆形构件卡扣于凹槽构件20内,随着滑轮6移动,在S条梁8两端分别连接支架5和转盘9,由此形成一个2维度追踪的光热系统。
参阅图3和4是分体式太阳能空调和热水器1+N模式,转盘9上固定安装有一个齿轮13,一条闭环链条,链接有N个齿轮,其另一端固定在驱动电机12的齿轮上,N组的转盘9将通过齿轮传动机构11和13随着驱动电机12一起转动,由此形成了一个由一台驱动电机带动N组多边形或圆形平台1同时转动。
参阅图5和6是带光伏板的一体式太阳能空调和太阳能热水器1+1模式,轨道装置的安装与分体式太阳能热水器1+1模式的相同,把一体式原有的支架,在去掉保温桶的支撑杆后,直接固定在多边形或圆形平台1上,在保温桶15的两侧安装光伏板固定支架17,然后在支架17上固定安装光伏板16并平行于多边形或圆形平台1,由此形成一个2维度追踪的光电和光热系统。
本发明的实施方式
角度的调节是一日之内三次或多次,2维度追踪的调节时间段分为上午、正午、下午三个时段,一日之内的三次调节,多边形或圆形平台,在上午时段是面朝东面,倾角最大,正午时段,是水平状;下午时段,是面朝西面,倾角最大,所述的多次调节,是指在上午或下午两个时段内,每间隔E分钟进行一次方位角的调节,在E分钟内倾角调节F次,所述输入法当中的多边形或圆形平台的最大倾角ψ的角度值按算术平均分成F次,每次调节的角度值为ψ/F,三个时间段内光伏板的朝向与1日之内三次调节的相同,在上午时段,每次新调节的角度值为ψ-J*ψ/F,J是整数的数字系列值,最小值为1,最大值为F;在下午时段,每次新调节的角度值为γ+ψ/F,γ是调节前一时刻的角度值,每次方位角进行调节时,倾角都已经归位到初始的位置,无驱动装置的1维度追踪的太阳能角度控制器水平安装,倾角是固定不变,方位角调节的次数,是一日之内所有调节时间的总和,按每间隔D分钟计算所得。
在分体式太阳能空调和热水器1+1模式当中,安装完成后,多边形或圆形平台1在预定时刻,首先调节多边形或圆形平台1的方位角,方位角采用电子指南针模块法来确定方位角,太阳能角度控制器将根据电子指南针模块输出的信号或预先输入的方位角,得出太阳朝东的方位角,由太阳能角度控制器控制转盘9转动,通过S条梁带动圆形支架的滑轮6发生移动,则多边形或圆形平台1的方位角调整到位,方位角调整到位后再进行倾角的调节,调节采用最大倾角算术平均法,具体的调节方式参照0012段。
在1+1模式的1维度追踪系统当中,方位角的调节方式参照0012~0013段,光伏板1及框架5由上午的东面转动到下午的西面,调节结束后,系统又自动归位到原有的状态。
在分体式太阳能空调和热水器1+N模式当中,安装完成后,方位角和倾角的调节方式与1+1模式的相一致,调节方式具体为,在调节的预定的时间,太阳能角度控制器依据角度传感器得出的信号,控制驱动电机12转动,通过齿轮传动机构带动转盘9发生转动,由此多边形或圆形平台1的方位角得到调节,方位角调节到位后,太阳能角度控制器将启动N组的驱动装置10对多边形或圆形平台1的倾角进行调节,调节的方式与1+1模式相同。这种模式可以在N组轨道当中分别安装集热装置和光电装置。
在带光伏板的一体式太阳能空调和太阳能热水器1+1模式当中,一体式太阳能热水器支架组合体的方位角调节方式与分体式太阳能热水器1+1模式的相同。一体式太阳能空调和热水器1+N模式的角度调节也与分体式的相同,参照0012~0015段。
工业实用性
本发明的太阳能空调和热水器无需光电传感器的光电和光热一体化追踪系统,提供的1纬度或2纬度无需光电传感器的追踪技术,是有别于公知的固定支架技术和感应式追踪技术的一种新型非感应式追踪技术,其技术简单、成本低、自损电量小,在光电和光热的转换率难以大幅度提高的当下,提高了发电和集热的效率,采用光电和光热一体化的追踪技术,提高了太阳能空调和热水器的制冷制热的效率,解决了太阳能空调和热水器行业内所亟待解决的技术难题,即,光电和光热系统不仅能够追日,而且还要具有实用价值及一体化的技术难题,本发明光电的发电效率和光热的集热效率比目前固定安装模式的平均多增加60%左右,具有很好的经济效益和生态效益。

Claims (3)

  1. 太阳能空调和热水器无需光电传感器的光电和光热一体化追踪系统,包含轨道装置、太阳能角度控制器、太阳能空调或太阳能热水器的分体式或一体式的集热器、追踪系统分为1维度或2维度追踪两种不同的模式,这两种类型当中又分为1+1和1+N两种不同的类型,在2纬度追踪模式的轨道装置包含了基座、轨道、支架、滑轮、转盘,在一个固定于地基上的圆形基座上安装有圆形状的轨道,轨道的截断面形状分为L型或多边形两种,在每条轨道两侧各预埋有一条圆环状的凹槽构件,凹槽构件开口部是上窄下宽,在L型截断面基座的上壁上也预埋有一条圆环状的凹槽构件,共有三条,而多边形截断面的基座只有两条凹槽形构件,轨道上安装有一个圆形或三角形的支架,圆形支架下安装有X个滑轮,而三角形支架的各个角处各安装有一个滑轮,每个滑轮的轴在滑轮的两侧分别下垂固定安装有根梁或链条,梁或链条的下端带有个圆形或多边形的构件,把梁或链条分别插入轨道两侧的凹槽内,其圆形或多边形构件卡扣在凹槽内随着滑轮移动,在L型截断面轨道上的滑轮,带有圆形或多边形构件的一端是扣在轨道上壁的凹槽内,另一端是直接固定或通过链条固定在滑轮的轴上,在圆形或三角形支架的中心处固定安装有一个转盘,S条梁两端分别固定在转盘和圆形或三角形支架上,在圆形或三角形支架的上方固定安装有一个多边形的框架,在多边形框架的周边上固定安装有P根T型的托梁,T型托梁中有一边安装有铰接装置的构件,与安装有铰接装置构件相对应的另一边安装有H套驱动装置,其余的T型托梁顶端固定安装一个U型的框,一个多边形或圆形平台架在T型托梁和驱动装置上,平台底部的边框中,一条与T型托梁铰接形成铰接装置,其余的边框托放在T型托梁的U型框内,驱动装置的顶端与平台是螺栓固定连接,多边形或圆形平台上水平安装有R组大空心管,多边形或圆形平台安装的系统有三种不同的类型,第一种都是光电系统;第二种是光热系统,第二种是光电和光热一体化系统,光伏板或分体式集热器或聚光集热器底部固定安装有R组小空心管,分别把R组小空心管插入平台的R组大空心管内,水平状螺栓固定安装在多边形或圆形平台上,一体式的集热真空管一种是与平台倾斜,另一种是与平台平行的两种不同的安装方式,与平台倾斜的安装,就是在目前一体式太阳能热水器固定支架安装模式当中,把保温桶的固定支撑杆去掉,把其支座固定在平台上;与平台平行的安装,集热真空管是L型状,集热真空管通过支架是水平状固定在平台上,短的另一端连接在保温桶的底部,保温桶的支撑架固定在平台上,两种不同模式集热真空管的支架都是固定安装在平台上,在保温桶两侧安装光伏板的固定支架,光伏板平行平台固定在支架上,所述聚光集热器主要由多边形聚光板、支架、真空集热管所构成,支架底板和聚光板都涂有反光材料,真空集热管架在支架底板的上方,其两端固定在支架上,多边形聚光板分为平面型或曲面型两种不同类型,其与支架有直接或间接连接两种不同方式,直接连接是多边形聚光板与支架倾斜固定连接为一体,间接连接是通过智能电动柱与支架连为一体,智能电动柱在支架四周各固定安装一根,其柱体主要由轴、空心管所构成,多边形聚光板固定在空心管上,空心管固定在轴上随轴一起转动,所述转盘是一根可转动的柱,根据支柱是自转还是非自转分为1+1和1+N两种不同的模式,1+1模式的转盘是自转模式,其是一根智能电动柱,其柱体主要由轴、空心管所构成,空心管固定在轴上随轴一起旋转而不能上下移动,柱体上安装有S根梁,所述1+N模式的转盘为非自转模式,转盘的结构及安装方式与1+1模式的相同,只是机座中没有驱动电机和机械传动机构,却在轴上多增加了一个齿轮,齿轮固定安装在转盘的轴上,N个转盘的齿轮通过一根闭合的链条链接为一体,链条的一端与机械传动机构链接,由驱动电机通过机械传动机构共同驱动N个转盘同时转动,1+1模式的转盘能够独自带动一个圆形或三角形的支架转动,而1+N模式则由驱动电机与链传动机构共同驱动N个圆形或三角形支架一同转动,所述驱动装置是一种可升降的智能电动柱,其柱体主要由多边形或圆形的螺母、带有螺纹的轴、T型空心管所构成,T型空心管固定在螺母上形成一体,螺母沿着轴上下移动,上述所有的智能电动柱的柱体固定在机座上,其的驱动将采用固定在机座内的电机和机械传动机构的组合体来进行,所述的1纬度追踪模式只能调节方位角,其1+1或1+N两种类型的轨道装置的结构与上述2纬度追踪模式的相同,但多边形或圆形的平台是直接固定安装在多边形或圆形框架上,无驱动装置和T型托梁,在平台上安装有阶梯型框架,光电系统的光伏板或分体式集热器或聚光集热器或一体式太阳能热水器的集热器与地面倾斜采用固定支架固定安装在平台和阶梯型框架上,太阳能空调或太阳能热水器的角度调节,是调节多边形或圆形平台的角度,将由安装有嵌入式的角度传感器的太阳能角度控制器,来进行控制,所述太阳能角度控制器,是利用时间计时来控制多边形或圆形平台的角度发生改变的一种智能控制装置,其主要有主芯片、角度传感器、GPS卫星定位或电子指南针、时钟芯片、蓝牙、电机驱动的模块,主芯片通过读取实时的时钟及角度数值,根据不同的时间段来控制多边形或圆形平台角度的变化,时钟芯片在太阳能角度控制器接通电源后,将自动采用GPS或蓝牙进行时间的校对,多边形或圆形平台角度调节的工作原理为,太阳能角度控制器与多边形平台安装在同一个水平面上,当时间到达预设的时刻时,控制器通过GPS卫星定位或电子指南针的定位,接受到一个调节角度的信号,则通过控制电机控制模块来使角度检测模块做出转动动作,以使得多边形或圆形平台完成水平或倾斜动作,此时的智能电动柱将随着电机的转动完成水平或伸或缩的运动,推动多边形或圆形平台转动到预定位置的同时,角度传感器输出的模拟量经过模拟数字转换器转换后送入主控制器,主控制器再根据此输入来判定多边形或圆形平台是否已经转动到预定的角度,并据此来控制电机的控制模块,由此完成一次角度的调节,倾角多次调节的方式是采用输入法,每次新调节的角度值,在上午时段为ψ-J*ψ/F;正午时段,倾角固定不变,在下午时段为γ+ψ/F,把计算出每次所需调节的倾角角度值跟与其相对应的模拟电压值或调节时刻一起预先输入到控制器的储存模块当中,具体的实施方式为,当角度传感器处于水平位置角度为0°时,输出端Vo输出的为A伏的模拟电压,当角度传感器与水平面成最大倾角的角度值ψ时,此时输出的是B伏的模拟电压,当角度传感器在0°~ψ或ψ~180°的区间变化时,输出端Vo输出的电压将从A伏依此变化到B伏或B伏依此变化到A伏的模拟电压信号,因此通过测定角度传感器输出端Vo电压的大小,就可以确定多边形或圆形平台与水平面间的夹角,所述铰接装置的构件是由1块底板和C块的多边形竖板所构成,竖板带有圆弧的一端带有孔洞,另外一端焊接固定在底板上,所述铰接装置的构件,C=2时候,是螺栓固定连接,当C>2时候,是铰接连接形成一个铰接装置,其特征在于:不需要光电传感装置,分别采用轨道装置、多边形或圆形平台、固定或活动的支架的不同组合体,构建成一个非感应式的1维度或2维度追踪的光热或光电和光热一体化的系统,光电和光热系统的方位角和倾角的调节将采用时间计时,采用太阳能角度控制器来进行控制。
  2. 根据权利要求1所述的太阳能空调和热水器无需光电传感器的光电和光热一体化追踪系统,其特征在于:所述太阳能角度控制器是根据时间的计时,通过控制智能电动柱或驱动电机智能驱动多边形或圆形平台方位角水平朝东或朝西方向移动或倾角从东面到西面进行转动,由此调节多边形或圆形平台的方位角或倾角跟随时间的变化而发生改变的方法,调节的顺序为方位角调节在先,倾角在后,所述方位角的调节由太阳能角度控制器根据GPS或电子指南针模块输出的信号控制其朝东或朝西转动,所述倾角的调节为输入法,所述输入法是采用最大倾角算术平均法计算得出的所需调节的倾角角度值跟与其相对应的调节时刻一起预先输入到控制器的储存模块当中,所述最大倾角是指在上午或下午的时段内,多边形或圆形平台所能够形成的最大倾角,按调节的次数进行算术平均的方法。
  3. 根据权利要求2所述的太阳能空调和热水器无需光电传感器的光电和光热一体化追踪系统,其特征在于:所述时间计时是一日之内三次或多次,2维度追踪的调节时间段分为上午、正午、下午三个时段,一日之内的三次调节,多边形或圆形平台,在上午时段是面朝东面,倾角最大,正午时段,是水平状;下午时段,是面朝西面,倾角最大,所述的多次调节,是指在上午或下午两个时段内,每间隔E分钟进行一次方位角的调节,在E分钟内倾角调节F次,所述输入法当中的多边形或圆形平台的最大倾角ψ的角度值按算术平均分成F次,每次调节的角度值为ψ/F,三个时间段内光伏板的朝向与1日之内三次调节的相同,在上午时段,每次新调节的角度值为ψ-J*ψ/F,J是整数的数字系列值,最小值为1,最大值为F;在下午时段,每次新调节的角度值为γ+ψ/F,γ是调节前一时刻的角度值,每次方位角进行调节时,倾角都已经归位到初始的位置,无驱动装置的1维度追踪的太阳能角度控制器水平安装,倾角是固定不变,方位角调节的次数,是一日之内所有调节时间的总和,按每间隔D分钟计算所得。
PCT/CN2020/106999 2020-08-05 2020-08-05 太阳能空调和热水器无需光电传感器的光电和光热一体化追踪系统 WO2022027285A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106999 WO2022027285A1 (zh) 2020-08-05 2020-08-05 太阳能空调和热水器无需光电传感器的光电和光热一体化追踪系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106999 WO2022027285A1 (zh) 2020-08-05 2020-08-05 太阳能空调和热水器无需光电传感器的光电和光热一体化追踪系统

Publications (1)

Publication Number Publication Date
WO2022027285A1 true WO2022027285A1 (zh) 2022-02-10

Family

ID=80119574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106999 WO2022027285A1 (zh) 2020-08-05 2020-08-05 太阳能空调和热水器无需光电传感器的光电和光热一体化追踪系统

Country Status (1)

Country Link
WO (1) WO2022027285A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188965A (en) * 1981-05-18 1982-11-20 Takehisa Tomotsune Sun tracking device for solar heat collector
KR20110106972A (ko) * 2010-03-24 2011-09-30 최주엽 이동형 태양추적장치 및 그 태양추적방법
CN102411377A (zh) * 2011-12-31 2012-04-11 天津职业技术师范大学 太阳自动追踪装置及其追踪方法
CN102954786A (zh) * 2011-08-21 2013-03-06 赫斯默(上海)电子科技有限公司 一种倾角传感器
CN104156003A (zh) * 2014-09-04 2014-11-19 武汉易辰科技有限公司 一种新型定日镜控制方法
CN105157254A (zh) * 2015-10-28 2015-12-16 北京无极合一新能源科技有限公司 适用太阳能聚光系统的跟踪传动机构
CN108847816A (zh) * 2018-07-10 2018-11-20 佛山市程显科技有限公司 一种便于调节的太阳能光伏电站
CN209283152U (zh) * 2018-11-28 2019-08-20 湖南馨雅林工程技术有限公司 一种用于可调角度的光伏阵列支架
CN111023593A (zh) * 2019-12-30 2020-04-17 扬州驿丰诚信息科技有限公司 一种便于调节角度且安装稳定的太阳能组件

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188965A (en) * 1981-05-18 1982-11-20 Takehisa Tomotsune Sun tracking device for solar heat collector
KR20110106972A (ko) * 2010-03-24 2011-09-30 최주엽 이동형 태양추적장치 및 그 태양추적방법
CN102954786A (zh) * 2011-08-21 2013-03-06 赫斯默(上海)电子科技有限公司 一种倾角传感器
CN102411377A (zh) * 2011-12-31 2012-04-11 天津职业技术师范大学 太阳自动追踪装置及其追踪方法
CN104156003A (zh) * 2014-09-04 2014-11-19 武汉易辰科技有限公司 一种新型定日镜控制方法
CN105157254A (zh) * 2015-10-28 2015-12-16 北京无极合一新能源科技有限公司 适用太阳能聚光系统的跟踪传动机构
CN108847816A (zh) * 2018-07-10 2018-11-20 佛山市程显科技有限公司 一种便于调节的太阳能光伏电站
CN209283152U (zh) * 2018-11-28 2019-08-20 湖南馨雅林工程技术有限公司 一种用于可调角度的光伏阵列支架
CN111023593A (zh) * 2019-12-30 2020-04-17 扬州驿丰诚信息科技有限公司 一种便于调节角度且安装稳定的太阳能组件

Similar Documents

Publication Publication Date Title
Yao et al. A multipurpose dual-axis solar tracker with two tracking strategies
EP2128540A1 (en) Two-axis hydraulic solar tracker
CN105958930A (zh) 一种智慧型太阳跟踪器控制系统及其跟踪支架
WO2022027281A1 (zh) 通信基站无需光电传感器的光伏发电追踪系统
JP2023550679A (ja) 追跡型のソーラー及び風力-太陽光ハイブリッドの街路灯
US20210194417A1 (en) Elevated dual-axis photovoltaic solar tracking assembly
KR101175662B1 (ko) 태양 추적식 태양광 발전장치
CN106357211A (zh) 一种新型发电效率高的光伏发电系统
CN112394749B (zh) 基于追踪控制与现场数据采集的太阳能光伏运维控制系统
CN101614446A (zh) 无轴式太阳能滚动跟踪系统
CN101650083B (zh) 一种定时追光的平板太阳能集热器
WO2022027267A1 (zh) 太阳能房无需光电传感器的光电和光热一体化追踪系统
CN111750320A (zh) 一种追日型的风光互补路灯
WO2022027285A1 (zh) 太阳能空调和热水器无需光电传感器的光电和光热一体化追踪系统
CN111878943A (zh) 太阳能空调和太阳能热水器的非感应式追踪系统
CN108988762B (zh) 一种跟踪式光伏支架控制系统及其控制方法
Song et al. A photovoltaic solar tracking system with bidirectional sliding axle for building integration
WO2022027272A1 (zh) 一种追日型的风光互补发电系统
CN111750545A (zh) 轨道型非感应式追踪的光电和光热一体化系统
CN212457241U (zh) 一种追日型的太阳能空调和热水器一体化装置
CN111880578A (zh) 一种无需光电传感器的光电和光热的追踪系统
CN212538330U (zh) 一种追日型的太阳能房光电和光热一体化装置
WO2022027278A1 (zh) 轨道式无需光电传感器的光电和光热一体化追踪系统
CN212431366U (zh) 一种追日型的轨道式光电和光热一体化装置
CN111828916A (zh) 非感应式追踪的太阳能路灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948249

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20948249

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/09/2023)