WO2018174496A1 - 랜덤 액세스 백오프 파라미터를 조정하는 방법 및 장치 - Google Patents

랜덤 액세스 백오프 파라미터를 조정하는 방법 및 장치 Download PDF

Info

Publication number
WO2018174496A1
WO2018174496A1 PCT/KR2018/003177 KR2018003177W WO2018174496A1 WO 2018174496 A1 WO2018174496 A1 WO 2018174496A1 KR 2018003177 W KR2018003177 W KR 2018003177W WO 2018174496 A1 WO2018174496 A1 WO 2018174496A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
terminal
backoff
priority
backoff parameter
Prior art date
Application number
PCT/KR2018/003177
Other languages
English (en)
French (fr)
Inventor
이영대
이선영
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020207004619A priority Critical patent/KR102125539B1/ko
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201880002578.7A priority patent/CN109417824A/zh
Priority to JP2018568802A priority patent/JP2020510324A/ja
Priority to RU2018142890A priority patent/RU2018142890A/ru
Priority to US16/307,405 priority patent/US10542470B2/en
Priority to AU2018238979A priority patent/AU2018238979A1/en
Priority to BR112018076665A priority patent/BR112018076665A2/pt
Priority to KR1020187026309A priority patent/KR102104595B1/ko
Priority to MX2018014666A priority patent/MX2018014666A/es
Priority to SG11201810654VA priority patent/SG11201810654VA/en
Priority to EP18771755.8A priority patent/EP3606267B1/en
Publication of WO2018174496A1 publication Critical patent/WO2018174496A1/ko
Priority to US16/717,534 priority patent/US11057804B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0077Transmission or use of information for re-establishing the radio link of access information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • H04W74/0875Non-scheduled access, e.g. ALOHA using a dedicated channel for access with assigned priorities based access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for a terminal to adjust a random access backoff parameter and a device supporting the same.
  • a 5G communication system or a pre-5G communication system is called a system after a 4G network (beyond 4G network) or after a long term evolution (LTE) system (post LTE).
  • the existing backoff mechanism may be applied in all cases.
  • the base station cannot identify the priority of random access transmission, existing backoff mechanisms can delay prioritized accesses with non-prioritized accesses.
  • the terminal may transmit a measurement report or a handover complete message through a contention based random access procedure.
  • the measurement report or handover complete message may be delayed due to back off. Accordingly, there is a need to propose a method for adjusting a random access backoff parameter by a terminal and an apparatus supporting the same.
  • a method for adjusting a random access backoff parameter by a terminal in a wireless communication system includes receiving priority information; While performing a handover, initiating a random access procedure; Receiving from the base station a random access response comprising a backoff indicator; And adjusting a random access backoff parameter indicated by the backoff indicator based on the priority information.
  • a terminal for adjusting a random access backoff parameter in a wireless communication system includes a memory; Transceiver; And a processor connecting the memory and the transceiver, wherein the processor controls the transceiver to receive priority information and initiates a random access procedure while performing a handover. Control the transceiver to receive a random access response from a base station including a backoff indicator, and adjust the random access backoff parameter indicated by the backoff indicator based on the priority information. (adjust)
  • the UE may adjust the random access backoff parameter.
  • FIG. 1 shows a structure of an LTE system.
  • FIG. 2 shows an air interface protocol of an LTE system for a control plane.
  • FIG 3 shows an air interface protocol of an LTE system for a user plane.
  • 5 shows the air interface protocol of a 5G system for the user plane.
  • FIG. 8 illustrates a procedure of adjusting a random access backoff parameter according to an embodiment of the present invention.
  • FIG 9 illustrates a procedure of skipping random access backoff according to an embodiment of the present invention.
  • FIG. 10 illustrates a procedure of adjusting a random access backoff parameter according to an embodiment of the present invention.
  • FIG. 11 is a block diagram illustrating a method of adjusting a random access backoff parameter by a terminal according to an embodiment of the present invention.
  • FIG. 12 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented by wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA), and the like.
  • IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e.
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is part of evolved UMTS (E-UMTS) using evolved-UMTS terrestrial radio access (E-UTRA), which employs OFDMA in downlink and SC in uplink -FDMA is adopted.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • 5G communication system is the evolution of LTE-A.
  • FIG. 1 shows a structure of an LTE system.
  • Communication networks are widely deployed to provide various communication services such as IMS and Voice over internet protocol (VoIP) over packet data.
  • VoIP Voice over internet protocol
  • an LTE system structure includes one or more UEs 10, an evolved-UMTS terrestrial radio access network (E-UTRAN), and an evolved packet core (EPC).
  • the terminal 10 is a communication device moved by a user.
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), and a wireless device.
  • MS mobile station
  • UT user terminal
  • SS subscriber station
  • wireless device a wireless device.
  • the E-UTRAN may include one or more evolved node-eB (eNB) 20, and a plurality of terminals may exist in one cell.
  • the eNB 20 provides an end point of a control plane and a user plane to the terminal.
  • the eNB 20 generally refers to a fixed station communicating with the terminal 10, and may be referred to in other terms such as a base station (BS), a base transceiver system (BTS), an access point, and the like.
  • BS base station
  • BTS base transceiver system
  • One eNB 20 may be arranged per cell. There may be one or more cells within the coverage of the eNB 20.
  • One cell may be configured to have one of bandwidths such as 1.25, 2.5, 5, 10, and 20 MHz to provide downlink (DL) or uplink (UL) transmission service to various terminals. In this case, different cells may be configured to provide different bandwidths.
  • DL means communication from the eNB 20 to the terminal 10
  • UL means communication from the terminal 10 to the eNB 20.
  • the transmitter may be part of the eNB 20 and the receiver may be part of the terminal 10.
  • the transmitter may be part of the terminal 10 and the receiver may be part of the eNB 20.
  • the EPC may include a mobility management entity (MME) that serves as a control plane, and a system architecture evolution (SAE) gateway (S-GW) that serves as a user plane.
  • MME mobility management entity
  • SAE system architecture evolution gateway
  • S-GW gateway
  • the MME / S-GW 30 may be located at the end of the network and is connected to an external network.
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information may be mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint.
  • the MME / S-GW 30 provides the terminal 10 with the endpoint of the session and the mobility management function.
  • the EPC may further include a packet data network (PDN) -gateway (GW).
  • PDN-GW is a gateway with PDN as an endpoint.
  • the MME includes non-access stratum (NAS) signaling to the eNB 20, NAS signaling security, access stratum (AS) security control, inter CN (node network) signaling for mobility between 3GPP access networks, idle mode terminal reachability ( Control and execution of paging retransmission), tracking area list management (for terminals in idle mode and active mode), P-GW and S-GW selection, MME selection for handover with MME change, 2G or 3G 3GPP access Bearer management, including roaming, authentication, and dedicated bearer settings, SGSN (serving GPRS support node) for handover to the network, public warning system (ETWS) and commercial mobile alarm system (PWS) It provides various functions such as CMAS) and message transmission support.
  • NAS non-access stratum
  • AS access stratum
  • inter CN node network
  • MME selection for handover with MME change
  • 2G or 3G 3GPP access Bearer management including roaming, authentication, and dedicated bearer settings
  • SGSN serving GPRS support no
  • S-GW hosts can be based on per-user packet filtering (eg, through deep packet inspection), legal blocking, terminal IP (Internet protocol) address assignment, transport level packing marking in DL, UL / DL service level charging, gating and It provides various functions of class enforcement, DL class enforcement based on APN-AMBR.
  • MME / S-GW 30 is simply represented as a "gateway", which may include both MME and S-GW.
  • An interface for user traffic transmission or control traffic transmission may be used.
  • the terminal 10 and the eNB 20 may be connected by the Uu interface.
  • the eNBs 20 may be interconnected by an X2 interface. Neighboring eNBs 20 may have a mesh network structure by the X2 interface.
  • the eNBs 20 may be connected with the EPC by the S1 interface.
  • the eNBs 20 may be connected to the EPC by the S1-MME interface and may be connected to the S-GW by the S1-U interface.
  • the S1 interface supports a many-to-many-relation between eNB 20 and MME / S-GW 30.
  • the eNB 20 may select for the gateway 30, routing to the gateway 30 during radio resource control (RRC) activation, scheduling and transmission of paging messages, scheduling channel information (BCH), and the like.
  • RRC radio resource control
  • BCH scheduling channel information
  • the gateway 30 may perform paging initiation, LTE idle state management, user plane encryption, SAE bearer control, and encryption and integrity protection functions of NAS signaling in the EPC.
  • FIG. 2 shows an air interface protocol of an LTE system for a control plane.
  • 3 shows an air interface protocol of an LTE system for a user plane.
  • the layer of the air interface protocol between the UE and the E-UTRAN is based on the lower three layers of the open system interconnection (OSI) model, which is well known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). Hierarchical).
  • the air interface protocol between the UE and the E-UTRAN may be horizontally divided into a physical layer, a data link layer, and a network layer, and vertically a protocol stack for transmitting control signals.
  • Layers of the radio interface protocol may exist in pairs in the UE and the E-UTRAN, which may be responsible for data transmission of the Uu interface.
  • the physical layer belongs to L1.
  • the physical layer provides an information transmission service to a higher layer through a physical channel.
  • the physical layer is connected to a higher layer of a media access control (MAC) layer through a transport channel.
  • Physical channels are mapped to transport channels.
  • Data may be transmitted between the MAC layer and the physical layer through a transport channel.
  • Data between different physical layers, that is, between the physical layer of the transmitter and the physical layer of the receiver may be transmitted using radio resources through a physical channel.
  • the physical layer may be modulated using an orthogonal frequency division multiplexing (OFDM) scheme, and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the physical layer uses several physical control channels.
  • a physical downlink control channel (PDCCH) reports resource allocation of a paging channel (PCH) and a downlink shared channel (DL-SCH), and hybrid automatic repeat request (HARQ) information related to the DL-SCH to the UE.
  • the PDCCH may carry an uplink grant to report to the UE regarding resource allocation of uplink transmission.
  • the physical control format indicator channel (PCFICH) informs the UE of the number of OFDM symbols used for the PDCCH and is transmitted every subframe.
  • a physical hybrid ARQ indicator channel (PHICH) carries a HARQ ACK (non-acknowledgement) / NACK (non-acknowledgement) signal for UL-SCH transmission.
  • a physical uplink control channel (PUCCH) carries UL control information such as HARQ ACK / NACK, a scheduling request, and a CQI for downlink transmission.
  • the physical uplink shared channel (PUSCH) carries an uplink shared channel (UL-SCH).
  • the physical channel includes a plurality of subframes in the time domain and a plurality of subcarriers in the frequency domain.
  • One subframe consists of a plurality of symbols in the time domain.
  • One subframe consists of a plurality of resource blocks (RBs).
  • One resource block is composed of a plurality of symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific symbols of the corresponding subframe for the PDCCH.
  • the first symbol of the subframe may be used for the PDCCH.
  • the PDCCH may carry dynamically allocated resources, such as a physical resource block (PRB) and modulation and coding schemes (MCS).
  • a transmission time interval (TTI) which is a unit time at which data is transmitted, may be equal to the length of one subframe.
  • One subframe may have a length of 1 ms.
  • a DL transport channel for transmitting data from a network to a UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a DL-SCH for transmitting user traffic or control signals. And the like.
  • BCH broadcast channel
  • PCH paging channel
  • DL-SCH supports dynamic link adaptation and dynamic / semi-static resource allocation by varying HARQ, modulation, coding and transmit power.
  • the DL-SCH may enable the use of broadcast and beamforming throughout the cell.
  • System information carries one or more system information blocks. All system information blocks can be transmitted in the same period. Traffic or control signals of a multimedia broadcast / multicast service (MBMS) are transmitted through a multicast channel (MCH).
  • MCH multicast channel
  • the UL transport channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message, a UL-SCH for transmitting user traffic or a control signal, and the like.
  • the UL-SCH can support dynamic link adaptation due to HARQ and transmit power and potential changes in modulation and coding.
  • the UL-SCH may enable the use of beamforming.
  • RACH is generally used for initial connection to a cell.
  • the MAC layer belonging to L2 provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the MAC layer provides a mapping function from a plurality of logical channels to a plurality of transport channels.
  • the MAC layer also provides a logical channel multiplexing function by mapping from multiple logical channels to a single transport channel.
  • the MAC sublayer provides data transfer services on logical channels.
  • the logical channel may be divided into a control channel for information transmission in the control plane and a traffic channel for information transmission in the user plane according to the type of information to be transmitted. That is, a set of logical channel types is defined for other data transfer services provided by the MAC layer.
  • the logical channel is located above the transport channel and mapped to the transport channel.
  • the control channel is used only for conveying information in the control plane.
  • the control channel provided by the MAC layer includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and a dedicated control channel (DCCH).
  • BCCH is a downlink channel for broadcasting system control information.
  • PCCH is a downlink channel used for transmitting paging information and paging a terminal whose cell-level location is not known to the network.
  • CCCH is used by the terminal when there is no RRC connection with the network.
  • MCCH is a one-to-many downlink channel used to transmit MBMS control information from the network to the terminal.
  • DCCH is a one-to-one bidirectional channel used by the terminal for transmitting dedicated control information between the terminal and the network in an RRC connection state.
  • the traffic channel is used only for conveying information in the user plane.
  • the traffic channel provided by the MAC layer includes a dedicated traffic channel (DTCH) and a multicast traffic channel (MTCH).
  • DTCH is used for transmission of user information of one UE in a one-to-one channel and may exist in both uplink and downlink.
  • MTCH is a one-to-many downlink channel for transmitting traffic data from the network to the terminal.
  • the uplink connection between the logical channel and the transport channel includes a DCCH that can be mapped to the UL-SCH, a DTCH that can be mapped to the UL-SCH, and a CCCH that can be mapped to the UL-SCH.
  • the downlink connection between the logical channel and the transport channel is a BCCH that can be mapped to a BCH or DL-SCH, a PCCH that can be mapped to a PCH, a DCCH that can be mapped to a DL-SCH, a DTCH that can be mapped to a DL-SCH, MCCH that can be mapped to MCH and MTCH that can be mapped to MCH.
  • the RLC layer belongs to L2.
  • the function of the RLC layer includes adjusting the size of the data by segmentation / concatenation of the data received from the upper layer in the radio section such that the lower layer is suitable for transmitting data.
  • the RLC layer is divided into three modes: transparent mode (TM), unacknowledged mode (UM) and acknowledged mode (AM). Provides three modes of operation.
  • TM transparent mode
  • UM unacknowledged mode
  • AM acknowledged mode
  • AM RLC provides retransmission through automatic repeat request (ARQ) for reliable data transmission.
  • ARQ automatic repeat request
  • the function of the RLC layer may be implemented as a functional block inside the MAC layer, in which case the RLC layer may not exist.
  • the packet data convergence protocol (PDCP) layer belongs to L2.
  • the PDCP layer introduces an IP packet, such as IPv4 or IPv6, over a relatively low bandwidth air interface to provide header compression that reduces unnecessary control information so that the transmitted data is transmitted efficiently. Header compression improves transmission efficiency in the wireless section by transmitting only the information necessary for the header of the data.
  • the PDCP layer provides security. Security functions include encryption to prevent third party inspection and integrity protection to prevent third party data manipulation.
  • the radio resource control (RRC) layer belongs to L3.
  • the RRC layer at the bottom of L3 is defined only in the control plane.
  • the RRC layer serves to control radio resources between the terminal and the network.
  • the UE and the network exchange RRC messages through the RRC layer.
  • the RRC layer is responsible for the control of logical channels, transport channels and physical channels in connection with the configuration, re-configuration and release of RBs.
  • RB is a logical path provided by L1 and L2 for data transmission between the terminal and the network. That is, RB means a service provided by L2 for data transmission between the UE and the E-UTRAN. Setting up an RB means defining the characteristics of the radio protocol layer and channel to provide a particular service, and determining each specific parameter and method of operation.
  • RBs may be classified into two types: signaling RBs (SRBs) and data RBs (DRBs).
  • SRBs signaling RBs
  • DRBs data RBs
  • the non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • the RLC and MAC layers may perform functions such as scheduling, ARQ and HARQ.
  • the RRC layer (ended at the eNB at the network side) may perform functions such as broadcast, paging, RRC connection management, RB control, mobility function, and UE measurement report / control.
  • the NAS control protocol (terminated at the gateway's MME at the network side) may perform functions such as SAE bearer management, authentication, LTE_IDLE mobility handling, paging initiation at LTE_IDLE, and security control for signaling between the terminal and the gateway.
  • the RLC and MAC layer may perform the same function as the function in the control plane.
  • the PDCP layer may perform user plane functions such as header compression, integrity protection and encryption.
  • EPC Evolved Packet Core
  • MME mobility management entity
  • S-GW serving gateway
  • P-GW packet data network gateway
  • 5G core network or NextGen core network
  • functions, reference points, protocols, etc. are defined for each network function (NF). That is, 5G core network does not define functions, reference points, protocols, etc. for each entity.
  • the 5G system structure includes one or more UEs 10, a Next Generation-Radio Access Network (NG-RAN), and a Next Generation Core (NGC).
  • NG-RAN Next Generation-Radio Access Network
  • NNC Next Generation Core
  • the NG-RAN may include one or more gNBs 40, and a plurality of terminals may exist in one cell.
  • the gNB 40 provides the terminal with the control plane and the end point of the user plane.
  • the gNB 40 generally refers to a fixed station communicating with the terminal 10 and may be referred to as other terms such as a base station (BS), a base transceiver system (BTS), an access point, and the like.
  • BS base station
  • BTS base transceiver system
  • One gNB 40 may be arranged per cell. There may be one or more cells within coverage of the gNB 40.
  • the NGC may include an Access and Mobility Function (AMF) and a Session Management Function (SMF) that are responsible for the functions of the control plane.
  • AMF Access and Mobility Function
  • SMF Session Management Function
  • the AMF may be responsible for the mobility management function
  • the SMF may be responsible for the session management function.
  • the NGC may include a user plane function (UPF) that is responsible for the function of the user plane.
  • UPF user plane function
  • Terminal 10 and gNB 40 may be connected by an NG3 interface.
  • the gNBs 40 may be interconnected by Xn interface.
  • Neighboring gNBs 40 may have a mesh network structure with an Xn interface.
  • the gNBs 40 may be connected to the NGC by the NG interface.
  • the gNBs 40 may be connected to the AMF by the NG-C interface and may be connected to the UPF by the NG-U interface.
  • the NG interface supports a many-to-many-relation between gNB 40 and MME / UPF 50.
  • the gNB host may determine functions for radio resource management, IP header compression and encryption of user data stream, and routing to AMF from information provided by the terminal. Selection of an AMF at UE attachment when no routing to an AMF can be determined from the information provided by the UE, Routing of User Plane data to one or more UPFs towards UPF (s)), Scheduling and transmission of paging messages (originated from the AMF), transmission and scheduling of system broadcast information (derived from AMF or O & M) Scheduling and transmission of system broadcast information (originated from the AMF or O & M), or setting up and measuring measurement reports for scheduling and mobility (Me It can perform functions such as asurement and measurement reporting configuration for mobility and scheduling.
  • Access and Mobility Function (AMF) hosts can be used for NAS signaling termination, NAS signaling security, AS Security control, and inter CN node signaling for mobility between 3GPP access networks.
  • node signaling for mobility between 3GPP access networks IDLE mode UE reachability (including control and execution of paging retransmission), UE in ACTIVE mode and IDLE mode Tracking Area list management (for UE in idle and active mode), AMF selection for handovers with AMF change, Access Authentication, Or perform key functions such as access authorization including check of roaming rights.
  • a user plane function (UPF) host is an anchor point for Intra- / Inter-RAT mobility (when applicable), an external PDU session point for the interconnection to the data network (if applicable).
  • (External PDU session point of interconnect to Data Network) Packet routing & forwarding, Packet inspection and User plane part of Policy rule enforcement, Traffic usage reporting ( Traffic usage reporting, Uplink classifier to support routing traffic flows to a data network, Branching point to support multi- homed PDU session, QoS handling for the user plane, e.g.
  • packet filtering gating, QoS handling for user plane, eg packet filtering, gating, UL / DL rate enforcement, uplink traffic verification (SDF to QoS flow mapping), transport level packet marking in downlink and uplink It can perform main functions such as packet marking in the uplink and downlink, or downlink packet buffering and downlink data notification triggering.
  • QoS handling for user plane eg packet filtering, gating, UL / DL rate enforcement, uplink traffic verification (SDF to QoS flow mapping), transport level packet marking in downlink and uplink
  • SDF to QoS flow mapping uplink traffic verification
  • transport level packet marking in downlink and uplink It can perform main functions such as packet marking in the uplink and downlink, or downlink packet buffering and downlink data notification triggering.
  • the Session Management Function (SMF) host is responsible for session management, UE IP address allocation and management, selection and control of UP functions, and traffic to the appropriate destinations.
  • Configure traffic steering at UPF to route traffic to proper destination, control part of policy enforcement and QoS, or downlink data notification Can perform key functions such as
  • 5 shows the air interface protocol of a 5G system for the user plane.
  • the air interface protocol of the 5G system for the user plane may include a new layer called Service Data Adaptation Protocol (SDAP) as compared to the LTE system.
  • SDAP Service Data Adaptation Protocol
  • the main services and functions of the SDAP layer are the mapping between the Quality of Service flow (QoS) and data radio bearer (DRB), and the QoS flow ID (QFI) marking in both DL and UL packets.
  • QoS Quality of Service flow
  • DRB data radio bearer
  • QFI QoS flow ID marking in both DL and UL packets.
  • a single protocol entity in SDAP may be configured for each individual PDU session except for dual connectivity (DC), in which two entities may be configured.
  • Random access is used for the terminal to obtain uplink synchronization with the base station or receive uplink radio resources.
  • the terminal acquires downlink synchronization with the initial cell and receives system information. From the system information, a set of available random access preambles and information about radio resources used for transmission of the random access preambles are obtained.
  • the radio resource used for transmission of the random access preamble may be specified as a combination of a radio frame and / or at least one or more subframes.
  • the terminal transmits a random access preamble randomly selected from the set of random access preambles, and the base station receiving the random access preamble sends a TA (timing alignment) value for uplink synchronization to the terminal through a random access response. As a result, the terminal acquires uplink synchronization.
  • TA timing alignment
  • the base station allocates a designated random access preamble to a specific terminal, and the terminal performs non-contention random access with the corresponding random access preamble. That is, in the process of selecting a random access preamble, a contention-based random access using a randomly selected one by a terminal within a specific set and a non-competitive random access using a random access preamble allocated by a base station only to a specific terminal There can be.
  • Non-competitive random access may be used when requested by a procedure for handover or a command of a base station.
  • the terminal randomly selects one random access preamble from a set of random access preambles indicated by system information or a handover command.
  • a radio resource capable of transmitting the random access preamble is selected to transmit the selected random access preamble.
  • the radio resource may be a specific subframe, which may be to select a physical random access channel (PRACH).
  • PRACH physical random access channel
  • the terminal After the random access preamble transmission, the terminal attempts to receive a random access response in the random access response receiving window indicated by the system information or the handover command, and accordingly receives a random access response (S620).
  • the random access response is transmitted in a MAC PDU format, and the MAC PDU may be transmitted in a physical downlink shared channel (PDSCH).
  • the physical downlink control channel (PDCCH) is also delivered in order for the terminal to properly receive the information delivered to the PDSCH. That is, the PDCCH includes information of a terminal receiving the PDSCH, frequency and time information of radio resources of the PDSCH, a transmission format of the PDSCH, and the like.
  • the random access response may include a random access preamble identifier (ID), an UL grant (uplink radio resource), a temporary C-RNTI (Temporary Cell-Radio Network Temporary Identifier), and a time alignment command (TAC). Since one random access response may include random access response information for one or more terminals, a random access preamble identifier may be included to indicate to which terminal the included UL Grant, temporary C-RNTI, and TAC are valid.
  • the random access preamble identifier may be an identifier for the random access preamble received by the base station.
  • the TAC may be included as information for the UE to adjust uplink synchronization.
  • the random access response may be indicated by a random access identifier on the PDCCH, that is, a random access-radio network temporary identifier (RA-RNTI).
  • RA-RNTI random access-radio network temporary identifier
  • the terminal When receiving the random access response valid to the terminal, the terminal processes the information included in the random access response, and performs the scheduled transmission to the base station (S630). That is, the terminal applies the TAC and stores the temporary C-RNTI. In addition, by using the UL Grant, data or newly generated data stored in the buffer of the terminal is transmitted to the base station. In this case, information that can identify the terminal should be included. This is because, in the contention-based random access procedure, the base station cannot determine which terminals perform random access, and thus it is necessary to identify the terminal in order to resolve the collision.
  • the terminal There are two methods for including the information identifying the terminal. If the UE already has a valid cell identifier assigned in the cell before performing random access, the UE transmits its cell identifier through the UL Grant. On the other hand, if a valid cell identifier has not been allocated before the random access procedure, the terminal transmits its own unique identifier (eg, S-TMSI or Random ID). In general, the unique identifier is longer than the cell identifier. If the terminal transmits data through the UL Grant, it initiates a timer (contention resolution timer) for conflict resolution.
  • a timer contention resolution timer
  • the terminal After receiving the random access response, the terminal transmits data including its identifier through the allocated UL Grant, and waits for an instruction of the base station to resolve the collision (S640). That is, it attempts to receive a PDCCH to receive a specific message.
  • Two methods may be proposed as a method of receiving a PDCCH.
  • its identifier transmitted through the UL Grant is a cell identifier
  • it may attempt to receive the PDCCH using its cell identifier. In this case, if the PDCCH is received through its cell identifier before the conflict resolution timer expires, the UE determines that the random access has been normally performed and terminates the random access.
  • the terminal may determine that the random access is normally performed and may terminate the random access.
  • contention-free random access may be terminated by the terminal receiving a random access response.
  • Non-competition based random access may be initiated by request, such as handover and / or command of a base station. However, in the above two cases, contention based random access may also be performed.
  • the terminal is assigned a designated random access preamble with no possibility of collision from the base station.
  • the allocation of the random access preamble may be performed through the handover command and the PDCCH command (S710).
  • the UE After receiving the random access preamble designated for the UE, the UE transmits the corresponding random access preamble to the base station (S720).
  • the base station When the base station receives the random access preamble, the base station transmits a random access response to the terminal in response (S730).
  • the procedure related to the random access response may refer to S620 of FIG. 6 described above.
  • the backoff parameter value of the terminal may be set by the indication of the BI field of the backoff indicator subheader. Table 1 below shows the backoff parameter values. Otherwise, the backoff parameter value of the terminal may be set to 0 ms.
  • a random backoff time according to a uniform distribution between 0 and the backoff parameter value may be selected.
  • the random access transmission can then be delayed by the backoff time.
  • the terminal when the terminal performs a random access procedure, when the terminal receives a backoff indicator (BI) from any random access response message, the terminal may store the BI. If the random access response message is not received, the terminal can apply the backoff. Or, if contention resolution is not solved, the terminal may apply a backoff.
  • the existing backoff mechanism may be applied in all cases. Therefore, in a congestion situation, all random access attempts may be delayed due to back off. That is, because the base station cannot identify the priority of the random access transmission, the existing backoff mechanism can delay prioritized accesses with non-prioritized accesses. .
  • the terminal may transmit a measurement report or a handover complete message through a contention based random access procedure.
  • the measurement report or handover complete message may be delayed due to back off.
  • handover or SCell addition may be delayed, and thus, the call may be disconnected or performance may be degraded.
  • the UE RRC may perform an access barring mechanism.
  • the access prohibition mechanism may be at least one of an access class barring (ACB), an ACB skip, an extended access barring (EAB), or an application specific congestion control for data communication (ACDC).
  • the UE RRC may instruct UE L2 to send an RRC connection request message.
  • the UE MAC may then initiate a random access procedure to send the RRC message.
  • the terminal may store the BI.
  • the terminal can apply the backoff. Or, if contention resolution is not solved, the terminal may apply a backoff. Whenever the terminal performs random access, the existing backoff mechanism may be applied in all cases. Therefore, for some state transitions, the terminal must perform both an access prohibition mechanism and a random access backoff. Therefore, even if a particular connection request is prioritized in the access prohibition mechanism, due to random access backoff, the connection request may still be delayed and may be de-prioritized.
  • the base station may signal the priority information (priority information) to the terminal.
  • the priority information may be information for adjusting a random access backoff parameter.
  • the priority information may include at least one of a threshold value of priority, a list of priorities, and a list of access categories.
  • the priority corresponds to at least one of logical channel priority, priority of an access category, ProSe Per Packet Priority (PPPP), QoS Class Identifier (QCI), QoS level, or QoS flow ID. can do.
  • the priority may be associated with a specific logical channel.
  • the priority information may include a scaling factor.
  • the scaling factor may be a value between 0.1 and 0.9.
  • the UE may construct a MAC PDU consisting of RLC PDUs from one or more logical channels (The UE may construct a MAC PDU consisting of RLC PDU (s) from one or more logical channels).
  • the terminal may initiate or trigger a random access procedure for transmission of the MAC PDU composed of the RLC PDU from one or more logical channels.
  • the terminal does not apply random access backoff while performing the random access procedure or the terminal performs the random access procedure.
  • the backoff parameter value can be set to 0 ms. Or, in this case, if a value of the highest priority of the logical channel is listed in the priority information, the terminal does not apply random access backoff while performing the random access procedure, or the terminal does not apply the back during the random access procedure. You can set the off parameter value to 0 ms.
  • the terminal does not apply random access backoff while performing the random access procedure, or the terminal is random
  • the backoff parameter value can be set to 0 ms during the access procedure.
  • the terminal may set the back off parameter value to a value obtained by multiplying the received backoff parameter by the scaling factor during the random access procedure.
  • the terminal may initiate or trigger a random access procedure for the transmission of the MAC PDU composed of RLC PDUs from one or more logical channels, and may receive a backoff parameter.
  • the terminal applies a random access backoff while performing the random access procedure, or the terminal is configured to receive the backoff parameter received during the random access procedure.
  • the value can be set as the backoff parameter value.
  • the terminal applies a random access backoff while performing a random access procedure, or the terminal receives a backoff received during the random access procedure.
  • the parameter value can be set as the backoff parameter value.
  • the terminal applies a random access backoff while performing the random access procedure, or the terminal is configured to receive the backoff parameter received during the random access procedure.
  • the value can be set as the backoff parameter value.
  • FIG. 8 illustrates a procedure of adjusting a random access backoff parameter according to an embodiment of the present invention.
  • the terminal may receive priority information from the base station.
  • the priority information may be information for adjusting a random access backoff parameter.
  • the priority information may be received through a random access response message.
  • priority information may be received by the MAC layer of the terminal.
  • the priority information may be received via an RRC message such as system information.
  • the priority information may be received by the RRC layer of the terminal.
  • the RRC layer of the terminal may provide priority information to the MAC layer of the terminal.
  • the priority information may include at least one of a threshold value of priority, a list of priorities, and a list of access categories.
  • the priority corresponds to at least one of logical channel priority, priority of an access category, ProSe Per Packet Priority (PPPP), QoS Class Identifier (QCI), QoS level, or QoS flow ID. can do.
  • the priority may be associated with a specific logical channel.
  • the priority information may include a scaling factor.
  • the scaling factor may be a value between 0.1 and 0.9.
  • the terminal may initiate or trigger a random access procedure.
  • the random access procedure may be initiated or triggered for transmission of a MAC PDU composed of RLC PDUs from one or more logical channels.
  • the terminal may transmit the random access preamble to the base station.
  • the terminal may receive a random access response including the BI from the base station.
  • step S840 the terminal may determine whether to adjust the random access backoff parameter value indicated by the BI. Adjusting the backoff parameter value to 0 ms may mean skipping of the random access backoff.
  • the terminal In the random access procedure, if the value of the highest priority of the logical channel is equal to or greater than the threshold value of the priority, the terminal does not apply random access backoff while performing the random access procedure, or the terminal does not use the random access procedure.
  • the backoff parameter value may be set to 0 ms. Otherwise, the terminal may apply the random access backoff while performing the random access procedure, or the terminal may set the value of the backoff parameter received during the random access procedure as the backoff parameter value.
  • the terminal does not apply a random access backoff while performing the random access procedure, or the terminal performs a back during the random access procedure. You can set the off parameter value to 0 ms. Otherwise, the terminal may apply the random access backoff while performing the random access procedure, or the terminal may set the value of the backoff parameter received during the random access procedure as the backoff parameter value.
  • the terminal does not apply random access backoff while performing the random access procedure, or the terminal is random
  • the backoff parameter value can be set to 0 ms during the access procedure. Otherwise, the terminal may apply the random access backoff while performing the random access procedure, or the terminal may set the value of the backoff parameter received during the random access procedure as the backoff parameter value.
  • the terminal does not apply random access backoff while performing the random access procedure, or the terminal does not apply a backoff parameter value during the random access procedure. Can be set to 0ms. Otherwise, the terminal may apply the random access backoff while performing the random access procedure, or the terminal may set the value of the backoff parameter received during the random access procedure as the backoff parameter value.
  • a procedure for the UE to adjust the random access backoff parameter value may be proposed as shown in Table 2.
  • the UE shall: 1> if a downlink assignment for this TTI has been received on the PDCCH for the RA-RNTI and the received TB is successfully decoded, the MAC entity shall regardless of the possible occurrence of a measurement gap or a Sidelink Discovery Gap for Transmission or a Sidelink Discovery Gap for Reception: 2> if the Random Access Response contains a Backoff Indicator subheader and if the value of the highest priority of the logical channel is lower than the threshold or not listed in the priority information, or if the access category associated with the logical channel is not listed in the priority information : 3> set the backoff parameter value to the value of the BI field of the Backoff Indica tor subheader2> else
  • the MAC entity shall: 2> based on the backoff parameter, select a random backoff time according to a uniform distribution between 0 and the Backoff Parameter Value; 2> delay the subsequent Random Access transmission by the backoff time (Alternatively, if the value of the highest priority of the logical channel is higher than or equal to the threshold or listed in the priority information, or if the access category associated with the logical channel is listed in the priority information, the UE shall skip the backoff so that UE shall not delay the subsequent Random Access transmission, instead of delaying the subsequent Random Access transmission) ; 1> if the Contention Resolution is cons idered not successful the MAC entity shall: 2> flush the HARQ buffer used for transmission of the MAC PDU in the Msg3 buffer; 2> if the notification of power
  • the terminal may transmit a random access preamble to the base station based on the adjusted random access backoff parameter value, and may receive a random access response from the base station.
  • a random access response includes a random access preamble identifier (RAPID) corresponding to the transmitted random access preamble
  • the terminal may transmit message 3 to the base station according to the procedure of Table 3.
  • the MAC entity shall: 2> consider this Random Access Response reception successful and apply the following actions for the serving cell where the Random Access Preamble was transmitted: 3> process the received Timing Advance Command; 3> indicate the preambleInitialReceivedTargetPower and the amount of power ramping applied to the latest preamble transmission to lower layers (ie, (PREAMBLE_TRANSMISSION_COUNTER-1) * powerRampingStep); 3> process the received UL grant value and indicate it to the lower layers; 2> if ra-PreambleIndex was explicitly signaled and it was not 000000 (ie, not selected by MAC): 3> consider the Random Access procedure successfully completed.2> else, if the Random Access Preamble was selected by the MAC entity: 3> set the Temporary C-RNTI to the value received in the Random Access Response message no later than at the time of the f ir
  • the random access backoff may be applied only to random access attempts having a low priority or a specific purpose according to the network setting. That is, while the terminal performs random access having a high priority (for example, SRB) or a specific purpose (for example, handover), the terminal may omit random access backoff or set a random access backoff parameter. You can adjust it to a small value. Therefore, it is possible to prevent delays of high priority access or handover.
  • a high priority for example, SRB
  • a specific purpose for example, handover
  • FIG 9 illustrates a procedure of skipping random access backoff according to an embodiment of the present invention.
  • the UE when the UE initiates a procedure for access to a cell, the UE passes an access barring check of an upper layer. pass), and when the terminal initiates the random access procedure as a result of the access prohibition check, the terminal does not apply the random access backoff while performing the random access procedure, or the terminal performs the backoff parameter value during the random access procedure. Can be set to 0ms.
  • the procedure for access to the cell may be an RRC procedure.
  • the RRC procedure may include an RRC Connection Establishment procedure, an RRC Connection Reestablishment procedure, an RRC Connection Resume procedure, or an RRC Connection Activation procedure. procedure).
  • the terminal may receive access barring information from the cell.
  • the access prohibition information may be an access control parameter.
  • the access prohibition information may be ac-BarringInfo.
  • the access prohibition information may be received through system information.
  • the system information may be SIB2.
  • the UE may initiate an RRC procedure for access to the cell.
  • the RRC procedure may be an RRC connection establishment procedure, an RRC connection reestablishment procedure, an RRC connection resumption procedure, or an RRC connection activation procedure.
  • step S920 in the RRC procedure, the terminal may check whether access to the cell is prohibited based on the received access prohibition information. Whether access to the cell is prohibited may be checked according to the procedure of Table 4.
  • the UE shall: 1> if SystemInformationBlockType2 includes "AC barring parameter": 2> if the UE has one or more Access Classes, as stored on the USIM, with a value in the range 11..15, which is valid for the UE to use, and NOTE: ACs 12, 13, 14 are only valid for use in the home country and ACs 11, 15 are only valid for use in the HPLMN / EHPLMN.2> for at least one of these valid Access Classes the corresponding bit in the ac-BarringForSpecialAC contained in "AC barring parameter" is set to zero: 3> consider access to the cell as not barred; 2> else: 3> draw a random number 'rand' uniformly distributed in the range: 0 ⁇ rand ⁇ 1; 3> if 'rand' is lower than the value indicated by ac-BarringFactor included in "AC barring parameter”: 4> consider access to the cell as not barred; 3> else: 4> consider access to the cell as barred; 1>
  • the terminal may initiate establishment, reestablishment, resumption or activation of the RRC connection.
  • the UE RRC may instruct the UE MAC to initiate a random access procedure. That is, if the terminal considers that access to the cell is not prohibited, the RRC layer of the terminal may instruct the MAC layer of the terminal to initiate a random access procedure.
  • step S930 the UE RRC may instruct the UE MAC to skip random access backoff in the random access procedure.
  • Step S930 may be omitted. That is, if the terminal considers that access to the cell is not prohibited, the RRC layer of the terminal may instruct the MAC layer of the terminal to skip random access backoff in the random access procedure.
  • step S940 the terminal may transmit a random access preamble to the base station, and in step S950, the terminal may receive a random access response including the BI from the base station.
  • the UE may skip random access backoff in the random access procedure. Specifically, in the random access procedure, if the terminal considers that access to the cell is not prohibited as a result of the access prohibition check, the MAC layer of the terminal may determine not to delay subsequent random access transmission by the backoff time. Alternatively, in the random access procedure, if the RRC layer of the terminal instructs the MAC layer of the terminal to skip the random access backoff, the MAC layer of the terminal determines not to delay subsequent random access transmissions by the backoff time. Can be.
  • a procedure for the UE to skip the random access backoff may be proposed as shown in Table 5.
  • the UE shall: 1> if a downlink assignment for this TTI has been received on the PDCCH for the RA-RNTI and the received TB is successfully decoded, the MAC entity shall regardless of the possible occurrence of a measurement gap or a Sidelink Discovery Gap for Transmission or a Sidelink Discovery Gap for Reception: 2> if the Random Access Response contains a Backoff Indicator subheader and if the RRC layer does not indicate that the random access backoff is skipped (ie due to the result of the access barring check) : 3> set the backoff parameter value as indicated by the BI field of the Backoff Indicator subheader. 2> else, set the backoff parameter value to 0 ms.
  • Random Access Preamble identifier corresponding to the transmitted Random Access Preamble
  • the Random Access Response reception is considered not successful and the MAC entity shall : 2> based on the backoff parameter, select a random backoff time according to a uniform distribution between 0 and the Backoff Parameter Value; 2> delay the subsequent Random Access transmission by the backoff time (Alternatively, if the RRC layer does not indicate that the random access backoff is skipped (ie due to the result of the access barring check), the UE shall skip the backoff so that UE shall not delay the subsequent Random Access transmission, instead of delaying the subsequent Random Access transmission ) ; 1> if the Contention Resolution is considered not successful the MAC entity shall: 2> flush the HARQ buffer used for transmission of the MAC PDU in the Msg3 buffer; 2> if the notification of power ramping suspension has not been received from lower layers: 3> increment PREA
  • the terminal may transmit a random access preamble to the base station based on the adjusted random access backoff parameter value, and may receive a random access response from the base station.
  • a random access response includes a random access preamble identifier (RAPID) corresponding to the transmitted random access preamble
  • the terminal may transmit message 3 to the base station according to the procedure of Table 3.
  • FIG. 10 illustrates a procedure of adjusting a random access backoff parameter according to an embodiment of the present invention.
  • the terminal may receive backoff parameter adjustment information from the base station.
  • the backoff parameter adjustment information may be information for adjusting a random access backoff parameter.
  • the backoff parameter adjustment information may be received by the RRC layer of the terminal, and then may be transferred from the RRC layer of the terminal to the MAC layer of the terminal. Alternatively, the backoff parameter adjustment information may be received by the MAC layer of the terminal.
  • the backoff parameter adjustment information may include at least one of a threshold value of priority, a list of priorities, a list of access categories, and access barring information. .
  • the priority corresponds to at least one of logical channel priority, priority of an access category, ProSe Per Packet Priority (PPPP), QoS Class Identifier (QCI), QoS level, or QoS flow ID. can do.
  • the priority may be associated with a specific logical channel.
  • the access prohibition information may be an access control parameter.
  • the backoff parameter adjustment information may include a scaling factor.
  • the scaling factor may be a value between 0.1 and 0.9.
  • the terminal may initiate or trigger a random access procedure.
  • the random access procedure may be initiated or triggered for transmission of a MAC PDU composed of RLC PDUs from one or more logical channels.
  • the terminal may transmit the random access preamble to the base station.
  • the terminal may receive a random access response including the BI from the base station.
  • step S1040 the terminal may determine whether to adjust the random access backoff parameter value indicated by the BI. Adjusting the backoff parameter value to 0 ms may mean skipping of the random access backoff.
  • the terminal In the random access procedure, if the value of the highest priority of the logical channel is equal to or greater than the threshold value of the priority, the terminal does not apply random access backoff while performing the random access procedure, or the terminal does not use the random access procedure.
  • the backoff parameter value may be set to 0 ms. Otherwise, the terminal may apply the random access backoff while performing the random access procedure, or the terminal may set the value of the backoff parameter received during the random access procedure as the backoff parameter value.
  • the terminal does not apply a random access backoff while performing the random access procedure, or the terminal performs a back during the random access procedure. You can set the off parameter value to 0 ms. Otherwise, the terminal may apply the random access backoff while performing the random access procedure, or the terminal may set the value of the backoff parameter received during the random access procedure as the backoff parameter value.
  • the terminal does not apply random access backoff while performing the random access procedure, or the terminal is random
  • the backoff parameter value can be set to 0 ms during the access procedure. Otherwise, the terminal may apply the random access backoff while performing the random access procedure, or the terminal may set the value of the backoff parameter received during the random access procedure as the backoff parameter value.
  • the RRC layer of the terminal may instruct the MAC layer of the terminal to skip the backoff.
  • the RRC layer of the terminal may indicate the backoff skip indicator to the MAC layer of the terminal.
  • the terminal does not apply the random access backoff while performing the random access procedure, or the terminal may set the backoff parameter value to 0 ms during the random access procedure. Otherwise, the terminal may apply the random access backoff while performing the random access procedure, or the terminal may set the value of the backoff parameter received during the random access procedure as the backoff parameter value.
  • the RRC layer of the terminal may instruct the MAC layer of the terminal to skip the backoff.
  • the RRC layer of the terminal may indicate the backoff skip indicator to the MAC layer of the terminal.
  • the terminal does not apply the random access backoff while performing the random access procedure, or the terminal may set the backoff parameter value to 0 ms during the random access procedure. Otherwise, the terminal may apply the random access backoff while performing the random access procedure, or the terminal may set the value of the backoff parameter received during the random access procedure as the backoff parameter value.
  • the terminal may retransmit the random access preamble based on the adjusted backoff parameter value.
  • the random access backoff may be applied only to random access attempts having a low priority or a specific purpose according to the network setting. Therefore, it is possible to prevent delays of high priority access or handover. Furthermore, due to the random access backoff, it is possible to prevent the connection request passing the access prohibition check from being delayed.
  • FIG. 11 is a block diagram illustrating a method of adjusting a random access backoff parameter by a terminal according to an embodiment of the present invention.
  • the terminal may receive priority information.
  • the priority information may include a priority threshold value.
  • the priority information may include a priority list.
  • the priority information may include an access category list.
  • the priority information may include a priority list and a scaling factor.
  • the priority information may include an access control parameter.
  • the priority may correspond to at least one of logical channel priority, priority of access category, ProSe Per Packet Priority (PPPP), QCI, QoS level, or QoS flow ID. .
  • PPPP ProSe Per Packet Priority
  • the terminal may initiate a random access procedure while performing the handover.
  • the random access procedure may be initiated to transmit a Medium Access Control Protocol Data Unit (MAC PDU) including a Radio Link Control Protocol Data Unit (RLC PDU) from one or more logical channels.
  • MAC PDU Medium Access Control Protocol Data Unit
  • RLC PDU Radio Link Control Protocol Data Unit
  • the terminal may receive a random access response from the base station including a backoff indicator.
  • the terminal may adjust the random access backoff parameter indicated by the backoff indicator based on the priority information.
  • the random access backoff parameter may be adjusted to zero.
  • the random access backoff parameter may be adjusted to zero.
  • the random access backoff parameter may be adjusted to zero.
  • the random access backoff parameter may be adjusted to zero.
  • the random access backoff parameter may be adjusted by multiplying the scaling factor.
  • the random access backoff parameter may be adjusted to zero.
  • subsequent random access transmission in the random access procedure may be delayed.
  • the subsequent random access transmission may be a random access preamble transmitted by the terminal after receiving the random access response.
  • the subsequent random access transmission may be a random access preamble retransmitted in the random access procedure.
  • the terminal may transmit a subsequent random access preamble to the base station in the random access procedure.
  • FIG. 12 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 1200 includes a processor 1201, a memory 1202, and a transceiver 1203.
  • the memory 1202 is connected to the processor 1201 and stores various information for driving the processor 1201.
  • the transceiver 1203 is connected to the processor 1201 to transmit and / or receive a radio signal.
  • Processor 1201 implements the proposed functions, processes, and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 1201.
  • the terminal 1210 includes a processor 1211, a memory 1212, and a transceiver 1213.
  • the memory 1212 is connected to the processor 1211 and stores various information for driving the processor 1211.
  • the transceiver 1213 is connected to the processor 1211 to transmit and / or receive a radio signal.
  • Processor 1211 implements the proposed functions, processes, and / or methods. In the above-described embodiment, the operation of the terminal may be implemented by the processor 1211.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the transceiver may include baseband circuitry for processing wireless signals.
  • the above technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 단말이 랜덤 액세스 백오프 파라미터(random access backoff parameter)를 조정하는 방법 및 이를 지원하는 장치가 제공된다. 상기 방법은, 우선순위 정보(priority information)를 수신하는 단계; 핸드오버를 수행하는 동안에, 랜덤 액세스 절차(random access procedure)를 개시하는 단계; 백오프 지시자(backoff indicator)를 포함하는 랜덤 액세스 응답을 기지국으로부터 수신하는 단계; 및 상기 우선순위 정보를 기반으로, 상기 백오프 지시자에 의해 지시되는 랜덤 액세스 백오프 파라미터를 조정(adjust)하는 단계;를 포함할 수 있다.

Description

랜덤 액세스 백오프 파라미터를 조정하는 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는 단말이 랜덤 액세스 백오프 파라미터(random access backoff parameter)를 조정하는 방법 및 이를 지원하는 장치에 관한 것이다.
4G(4th-Generation) 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G(5th-Generation) 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (beyond 4G network) 통신 시스템 또는 LTE(long term evolution) 시스템 이후(post LTE) 이후의 시스템이라 불리고 있다.
한편, 단말이 랜덤 액세스를 수행할 때마다, 기존의 백오프 메커니즘은 모든 경우에 적용될 수 있다. 따라서, 기지국이 랜덤 액세스 전송의 우선순위를 식별할 수 없기 때문에, 기존의 백오프 메커니즘은 비-우선화된 액세스(non-prioritized accesses)와 함께 우선화된 액세스(prioritized accesses)를 지연시킬 수 있다. 예를 들어, 단말이 핸드오버를 수행하는 경우, 단말은 경쟁 기반 랜덤 액세스 절차(contention based random access procedure)를 통해 측정 보고(measurement report) 또는 핸드오버 완료(handover complete) 메시지를 전송할 수 있다. 하지만, 혼잡 상태에서, 측정 보고 또는 핸드오버 완료 메시지는 백오프로 인해 지연 될 수 있다. 따라서, 단말이 랜덤 액세스 백오프 파라미터(random access backoff parameter)를 조정하는 방법 및 이를 지원하는 장치가 제안될 필요가 있다.
일 실시 예에 있어서, 무선 통신 시스템에서 단말이 랜덤 액세스 백오프 파라미터(random access backoff parameter)를 조정하는 방법이 제공된다. 상기 방법은, 우선순위 정보(priority information)를 수신하는 단계; 핸드오버를 수행하는 동안에, 랜덤 액세스 절차(random access procedure)를 개시하는 단계; 백오프 지시자(backoff indicator)를 포함하는 랜덤 액세스 응답을 기지국으로부터 수신하는 단계; 및 상기 우선순위 정보를 기반으로, 상기 백오프 지시자에 의해 지시되는 랜덤 액세스 백오프 파라미터를 조정(adjust)하는 단계;를 포함할 수 있다.
다른 실시 예에 있어서, 무선 통신 시스템에서 랜덤 액세스 백오프 파라미터(random access backoff parameter)를 조정하는 단말이 제공된다. 상기 단말은, 메모리; 송수신기; 및 상기 메모리와 상기 송수신기를 연결하는 프로세서를 포함하되, 상기 프로세서는 상기 송수신기가 우선순위 정보(priority information)를 수신하도록 제어하고, 핸드오버를 수행하는 동안에, 랜덤 액세스 절차(random access procedure)를 개시하고, 상기 송수신기가 백오프 지시자(backoff indicator)를 포함하는 랜덤 액세스 응답을 기지국으로부터 수신하도록 제어하고, 및 상기 우선순위 정보를 기반으로, 상기 백오프 지시자에 의해 지시되는 랜덤 액세스 백오프 파라미터를 조정(adjust)할 수 있다.
단말이 랜덤 액세스 백오프 파라미터를 조정할 수 있다.
도 1은 LTE 시스템의 구조를 나타낸다.
도 2는 제어 평면에 대한 LTE 시스템의 무선 인터페이스 프로토콜을 나타낸다.
도 3은 사용자 평면에 대한 LTE 시스템의 무선 인터페이스 프로토콜을 나타낸다.
도 4는 5G 시스템의 구조를 나타낸다.
도 5는 사용자 평면에 대한 5G 시스템의 무선 인터페이스 프로토콜을 나타낸다.
도 6은 경쟁기반 랜덤 액세스 절차를 나타낸다.
도 7은 비경쟁기반 랜덤 액세스 절차를 나타낸다.
도 8은 본 발명의 일 실시 예에 따라, 랜덤 액세스 백오프 파라미터를 조정하는 절차를 나타낸다.
도 9는 본 발명의 일 실시 예에 따라, 랜덤 액세스 백오프를 스킵하는 절차를 나타낸다.
도 10은 본 발명의 일 실시 예에 따라, 랜덤 액세스 백오프 파라미터를 조정하는 절차를 나타낸다.
도 11은 본 발명의 일 실시 예에 따라, 단말이 랜덤 액세스 백오프 파라미터를 조정하는 방법을 나타내는 블록도이다.
도 12는 본 발명의 실시 예가 구현되는 무선 통신 시스템의 블록도이다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다. 5G 통신 시스템은 LTE-A의 진화이다.
설명을 명확하게 하기 위해, LTE-A/5G를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 LTE 시스템의 구조를 나타낸다. 통신 네트워크는 IMS 및 패킷 데이터를 통한 인터넷 전화(Voice over internet protocol: VoIP)와 같은 다양한 통신 서비스들을 제공하기 위하여 넓게 설치된다.
도 1을 참조하면, LTE 시스템 구조는 하나 이상의 단말(UE; 10), E-UTRAN(evolved-UMTS terrestrial radio access network) 및 EPC(evolved packet core)를 포함한다. 단말(10)은 사용자에 의해 움직이는 통신 장치이다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), UT(user terminal), SS(subscriber station), 무선기기(wireless device) 등 다른 용어로 불릴 수 있다.
E-UTRAN은 하나 이상의 eNB(evolved node-B; 20)를 포함할 수 있고, 하나의 셀에 복수의 단말이 존재할 수 있다. eNB(20)는 제어 평면(control plane)과 사용자 평면(user plane)의 끝 지점을 단말에게 제공한다. eNB(20)는 일반적으로 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, BS(base station), BTS(base transceiver system), 액세스 포인트(access point) 등 다른 용어로 불릴 수 있다. 하나의 eNB(20)는 셀마다 배치될 수 있다. eNB(20)의 커버리지 내에 하나 이상의 셀이 존재할 수 있다. 하나의 셀은 1.25, 2.5, 5, 10 및 20 MHz 등의 대역폭 중 하나를 가지도록 설정되어 여러 단말에게 하향링크(DL; downlink) 또는 상향링크(UL; uplink) 전송 서비스를 제공할 수 있다. 이때 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
이하에서, DL은 eNB(20)에서 단말(10)로의 통신을 의미하며, UL은 단말(10)에서 eNB(20)으로의 통신을 의미한다. DL에서 송신기는 eNB(20)의 일부이고, 수신기는 단말(10)의 일부일 수 있다. UL에서 송신기는 단말(10)의 일부이고, 수신기는 eNB(20)의 일부일 수 있다.
EPC는 제어 평면의 기능을 담당하는 MME(mobility management entity), 사용자 평면의 기능을 담당하는 S-GW(system architecture evolution (SAE) gateway)를 포함할 수 있다. MME/S-GW(30)은 네트워크의 끝에 위치할 수 있으며, 외부 네트워크와 연결된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지며, 이러한 정보는 주로 단말의 이동성 관리에 사용될 수 있다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이다. MME/S-GW(30)은 세션의 종단점과 이동성 관리 기능을 단말(10)에 제공한다. EPC는 PDN(packet data network)-GW(gateway)를 더 포함할 수 있다. PDN-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
MME는 eNB(20)로의 NAS(non-access stratum) 시그널링, NAS 시그널링 보안, AS(access stratum) 보안 제어, 3GPP 액세스 네트워크 간의 이동성을 위한 inter CN(core network) 노드 시그널링, 아이들 모드 단말 도달 가능성(페이징 재전송의 제어 및 실행 포함), 트래킹 영역 리스트 관리(아이들 모드 및 활성화 모드인 단말을 위해), P-GW 및 S-GW 선택, MME 변경과 함께 핸드오버를 위한 MME 선택, 2G 또는 3G 3GPP 액세스 네트워크로의 핸드오버를 위한 SGSN(serving GPRS support node) 선택, 로밍, 인증, 전용 베이러 설정을 포함한 베어러 관리 기능, PWS(public warning system: 지진/쓰나미 경보 시스템(ETWS) 및 상용 모바일 경보 시스템(CMAS) 포함) 메시지 전송 지원 등의 다양한 기능을 제공한다. S-GW 호스트는 사용자 별 기반 패킷 필터링(예를 들면, 심층 패킷 검사를 통해), 합법적 차단, 단말 IP(internet protocol) 주소 할당, DL에서 전송 레벨 패킹 마킹, UL/DL 서비스 레벨 과금, 게이팅 및 등급 강제, APN-AMBR에 기반한 DL 등급 강제의 갖가지 기능을 제공한다. 명확성을 위해 MME/S-GW(30)은 "게이트웨이"로 단순히 표현하며, 이는 MME 및 S-GW를 모두 포함할 수 있다.
사용자 트래픽 전송 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 단말(10) 및 eNB(20)은 Uu 인터페이스에 의해 연결될 수 있다. eNB(20)들은 X2 인터페이스에 의해 상호간 연결될 수 있다. 이웃한 eNB(20)들은 X2 인터페이스에 의한 망형 네트워크 구조를 가질 수 있다. eNB(20)들은 S1 인터페이스에 의해 EPC와 연결될 수 있다. eNB(20)들은 S1-MME 인터페이스에 의해 EPC와 연결될 수 있으며, S1-U 인터페이스에 의해 S-GW와 연결될 수 있다. S1 인터페이스는 eNB(20)와 MME/S-GW(30) 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다.
eNB(20)은 게이트웨이(30)에 대한 선택, RRC(radio resource control) 활성(activation) 동안 게이트웨이(30)로의 라우팅(routing), 페이징 메시지의 스케줄링 및 전송, BCH(broadcast channel) 정보의 스케줄링 및 전송, UL 및 DL에서 단말(10)들로의 자원의 동적 할당, eNB 측정의 설정(configuration) 및 제공(provisioning), 무선 베어러 제어, RAC(radio admission control) 및 LTE 활성 상태에서 연결 이동성 제어 기능을 수행할 수 있다. 상기 언급처럼 게이트웨이(30)는 EPC에서 페이징 개시, LTE 아이들 상태 관리, 사용자 평면의 암호화, SAE 베어러 제어 및 NAS 시그널링의 암호화와 무결성 보호 기능을 수행할 수 있다.
도 2는 제어 평면에 대한 LTE 시스템의 무선 인터페이스 프로토콜을 나타낸다. 도 3은 사용자 평면에 대한 LTE 시스템의 무선 인터페이스 프로토콜을 나타낸다.
단말과 E-UTRAN 간의 무선 인터페이스 프로토콜의 계층은 통신 시스템에서 널리 알려진 OSI(open system interconnection) 모델의 하위 3개 계층을 바탕으로 L1(제1 계층), L2(제2 계층) 및 L3(제3 계층)으로 구분된다. 단말과 E-UTRAN 간의 무선 인터페이스 프로토콜은 수평적으로 물리 계층, 데이터 링크 계층(data link layer) 및 네트워크 계층(network layer)으로 구분될 수 있고, 수직적으로는 제어 신호 전송을 위한 프로토콜 스택(protocol stack)인 제어 평면(control plane)과 데이터 정보 전송을 위한 프로토콜 스택인 사용자 평면(user plane)으로 구분될 수 있다. 무선 인터페이스 프로토콜의 계층은 단말과 E-UTRAN에서 쌍(pair)으로 존재할 수 있고, 이는 Uu 인터페이스의 데이터 전송을 담당할 수 있다.
물리 계층(PHY; physical layer)은 L1에 속한다. 물리 계층은 물리 채널을 통해 상위 계층에 정보 전송 서비스를 제공한다. 물리 계층은 상위 계층인 MAC(media access control) 계층과 전송 채널(transport channel)을 통해 연결된다. 물리 채널은 전송 채널에 맵핑 된다. 전송 채널을 통해 MAC 계층과 물리 계층 사이로 데이터가 전송될 수 있다. 서로 다른 물리 계층 사이, 즉 송신기의 물리 계층과 수신기의 물리 계층 간에 데이터는 물리 채널을 통해 무선 자원을 이용하여 전송될 수 있다. 물리 계층은 OFDM(orthogonal frequency division multiplexing) 방식을 이용하여 변조될 수 있고, 시간과 주파수를 무선 자원으로 활용한다.
물리 계층은 몇몇의 물리 제어 채널(physical control channel)을 사용한다. PDCCH(physical downlink control channel)은 PCH(paging channel) 및 DL-SCH(downlink shared channel)의 자원 할당, DL-SCH와 관련되는 HARQ(hybrid automatic repeat request) 정보에 대하여 단말에 보고한다. PDCCH는 상향링크 전송의 자원 할당에 관하여 단말에 보고하기 위해 상향링크 그랜트를 나를 수 있다. PCFICH(physical control format indicator channel)은 PDCCH를 위해 사용되는 OFDM 심벌의 개수를 단말에 알려주며, 모든 서브프레임마다 전송된다. PHICH(physical hybrid ARQ indicator channel)은 UL-SCH 전송에 대한 HARQ ACK(acknowledgement)/NACK(non-acknowledgement) 신호를 나른다. PUCCH(physical uplink control channel)은 하향링크 전송을 위한 HARQ ACK/NACK, 스케줄링 요청 및 CQI와 같은 UL 제어 정보를 나른다. PUSCH(physical uplink shared channel)은 UL-SCH(uplink shared channel)를 나른다.
물리 채널은 시간 영역에서 복수의 서브프레임(subframe)들과 주파수 영역에서 복수의 부반송파(subcarrier)들로 구성된다. 하나의 서브프레임은 시간 영역에서 복수의 심벌들로 구성된다. 하나의 서브프레임은 복수의 자원 블록(RB; resource block)들로 구성된다. 하나의 자원 블록은 복수의 심벌들과 복수의 부반송파들로 구성된다. 또한, 각 서브프레임은 PDCCH를 위하여 해당 서브프레임의 특정 심벌들의 특정 부반송파들을 이용할 수 있다. 예를 들어, 서브프레임의 첫 번째 심벌이 PDCCH를 위하여 사용될 수 있다. PDCCH는 PRB(physical resource block) 및 MCS(modulation and coding schemes)와 같이 동적으로 할당된 자원을 나를 수 있다. 데이터가 전송되는 단위 시간인 TTI(transmission time interval)는 1개의 서브프레임의 길이와 동일할 수 있다. 서브프레임 하나의 길이는 1ms일 수 있다.
전송채널은 채널이 공유되는지 아닌지에 따라 공통 전송 채널 및 전용 전송 채널로 분류된다. 네트워크에서 단말로 데이터를 전송하는 DL 전송 채널(DL transport channel)은 시스템 정보를 전송하는 BCH(broadcast channel), 페이징 메시지를 전송하는 PCH(paging channel), 사용자 트래픽 또는 제어 신호를 전송하는 DL-SCH 등을 포함한다. DL-SCH는 HARQ, 변조, 코딩 및 전송 전력의 변화에 의한 동적 링크 적응 및 동적/반정적 자원 할당을 지원한다. 또한, DL-SCH는 셀 전체에 브로드캐스트 및 빔포밍의 사용을 가능하게 할 수 있다. 시스템 정보는 하나 이상의 시스템 정보 블록들을 나른다. 모든 시스템 정보 블록들은 같은 주기로 전송될 수 있다. MBMS(multimedia broadcast/multicast service)의 트래픽 또는 제어 신호는 MCH(multicast channel)를 통해 전송된다.
단말에서 네트워크로 데이터를 전송하는 UL 전송 채널은 초기 제어 메시지(initial control message)를 전송하는 RACH(random access channel), 사용자 트래픽 또는 제어 신호를 전송하는 UL-SCH 등을 포함한다. UL-SCH는 HARQ 및 전송 전력 및 잠재적인 변조 및 코딩의 변화에 의한 동적 링크 적응을 지원할 수 있다. 또한, UL-SCH는 빔포밍의 사용을 가능하게 할 수 있다. RACH는 일반적으로 셀로의 초기 접속에 사용된다.
L2에 속하는 MAC 계층은 논리 채널(logical channel)을 통해 상위 계층인 RLC(radio link control) 계층에게 서비스를 제공한다. MAC 계층은 복수의 논리 채널에서 복수의 전송 채널로의 맵핑 기능을 제공한다. 또한, MAC 계층은 복수의 논리 채널에서 단수의 전송 채널로의 맵핑에 의한 논리 채널 다중화 기능을 제공한다. MAC 부 계층은 논리 채널상의 데이터 전송 서비스를 제공한다.
논리 채널은 전송되는 정보의 종류에 따라, 제어 평면의 정보 전달을 위한 제어 채널과 사용자 평면의 정보 전달을 위한 트래픽 채널로 나눌 수 있다. 즉, 논리 채널 타입의 집합은 MAC 계층에 의해 제공되는 다른 데이터 전송 서비스를 위해 정의된다. 논리채널은 전송 채널의 상위에 위치하고 전송채널에 맵핑 된다.
제어 채널은 제어 평면의 정보 전달만을 위해 사용된다. MAC 계층에 의하여 제공되는 제어 채널은 BCCH(broadcast control channel), PCCH(paging control channel), CCCH(common control channel), MCCH(multicast control channel) 및 DCCH(dedicated control channel)을 포함한다. BCCH는 시스템 제어 정보를 방송하기 위한 하향링크 채널이다. PCCH는 페이징 정보의 전송 및 셀 단위의 위치가 네트워크에 알려지지 않은 단말을 페이징 하기 위해 사용되는 하향링크 채널이다. CCCH는 네트워크와 RRC 연결을 갖지 않을 때 단말에 의해 사용된다. MCCH는 네트워크로부터 단말에게 MBMS 제어 정보를 전송하는데 사용되는 일대다 하향링크 채널이다. DCCH는 RRC 연결 상태에서 단말과 네트워크간에 전용 제어 정보 전송을 위해 단말에 의해 사용되는 일대일 양방향 채널이다.
트래픽 채널은 사용자 평면의 정보 전달만을 위해 사용된다. MAC 계층에 의하여 제공되는 트래픽 채널은 DTCH(dedicated traffic channel) 및 MTCH(multicast traffic channel)을 포함한다. DTCH는 일대일 채널로 하나의 단말의 사용자 정보의 전송을 위해 사용되며, 상향링크 및 하향링크 모두에 존재할 수 있다. MTCH는 네트워크로부터 단말에게 트래픽 데이터를 전송하기 위한 일대다 하향링크 채널이다.
논리 채널과 전송 채널간의 상향링크 연결은 UL-SCH에 맵핑 될 수 있는 DCCH, UL-SCH에 맵핑 될 수 있는 DTCH 및 UL-SCH에 맵핑 될 수 있는 CCCH를 포함한다. 논리 채널과 전송 채널간의 하향링크 연결은 BCH 또는 DL-SCH에 맵핑 될 수 있는 BCCH, PCH에 맵핑 될 수 있는 PCCH, DL-SCH에 맵핑 될 수 있는 DCCH, DL-SCH에 맵핑 될 수 있는 DTCH, MCH에 맵핑 될 수 있는 MCCH 및 MCH에 맵핑 될 수 있는 MTCH를 포함한다.
RLC 계층은 L2에 속한다. RLC 계층의 기능은 하위 계층이 데이터를 전송하기에 적합하도록 무선 섹션에서 상위 계층으로부터 수신된 데이터의 분할/연접에 의한 데이터의 크기 조정을 포함한다. 무선 베어러(RB; radio bearer)가 요구하는 다양한 QoS를 보장하기 위해, RLC 계층은 투명 모드(TM; transparent mode), 비 확인 모드(UM; unacknowledged mode) 및 확인 모드(AM; acknowledged mode)의 세 가지의 동작 모드를 제공한다. AM RLC는 신뢰성 있는 데이터 전송을 위해 ARQ(automatic repeat request)를 통해 재전송 기능을 제공한다. 한편, RLC 계층의 기능은 MAC 계층 내부의 기능 블록으로 구현될 수 있으며, 이때 RLC 계층은 존재하지 않을 수도 있다.
PDCP(packet data convergence protocol) 계층은 L2에 속한다. PDCP 계층은 상대적으로 대역폭이 작은 무선 인터페이스 상에서 IPv4 또는 IPv6와 같은 IP 패킷을 도입하여 전송되는 데이터가 효율적으로 전송되도록 불필요한 제어 정보를 줄이는 헤더 압축 기능을 제공한다. 헤더 압축은 데이터의 헤더에 필요한 정보만을 전송함으로써 무선 섹션에서 전송 효율을 높인다. 게다가, PDCP 계층은 보안 기능을 제공한다. 보안기능은 제3자의 검사를 방지하는 암호화 및 제3자의 데이터 조작을 방지하는 무결성 보호를 포함한다.
RRC(radio resource control) 계층은 L3에 속한다. L3의 가장 하단 부분에 위치하는 RRC 계층은 오직 제어 평면에서만 정의된다. RRC 계층은 단말과 네트워크 간의 무선 자원을 제어하는 역할을 수행한다. 이를 위해 단말과 네트워크는 RRC 계층을 통해 RRC 메시지를 교환한다. RRC 계층은 RB들의 구성(configuration), 재구성(re-configuration) 및 해제(release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 L1 및 L2에 의해 제공되는 논리적 경로이다. 즉, RB는 단말과 E-UTRAN 간의 데이터 전송을 위해 L2에 의해 제공되는 서비스를 의미한다. RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 결정함을 의미한다. RB는 SRB(signaling RB)와 DRB(data RB) 두 가지로 구분될 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
도 2를 참조하면, RLC 및 MAC 계층(네트워크 측에서 eNB에서 종료)은 스케줄링, ARQ 및 HARQ와 같은 기능을 수행할 수 있다. RRC 계층(네트워크 측에서 eNB에서 종료)은 방송, 페이징, RRC 연결 관리, RB 제어, 이동성 기능 및 단말 측정 보고/제어와 같은 기능을 수행할 수 있다. NAS 제어 프로토콜(네트워크 측에서 게이트웨이의 MME에서 종료)은 SAE 베어러 관리, 인증, LTE_IDLE 이동성 핸들링, LTE_IDLE에서 페이징 개시 및 단말과 게이트웨이 간의 시그널링을 위한 보안 제어와 같은 기능을 수행할 수 있다.
도 3을 참조하면, RLC 및 MAC 계층(네트워크 측에서 eNB에서 종료)은 제어 평면에서의 기능과 동일한 기능을 수행할 수 있다. PDCP 계층(네트워크 측에서 eNB에서 종료)은 헤더 압축, 무결성 보호 및 암호화와 같은 사용자 평면 기능을 수행할 수 있다.
이하, 5G 네트워크 구조에 대하여 설명한다.
도 4는 5G 시스템의 구조를 나타낸다.
기존 EPS(Evolved Packet System)의 코어 네트워크 구조인 EPC(Evolved Packet Core)의 경우, MME(Mobility Management Entity), S-GW(Serving Gateway), P-GW(Packet Data Network Gateway) 등 엔티티(entity) 별로 기능, 참조점(reference point), 프로토콜 등이 정의되어 있다.
반면, 5G 코어 네트워크(또는, NextGen 코어 네트워크)의 경우, 네트워크 기능(NF; Network Function) 별로 기능, 참조점, 프로토콜 등이 정의되어 있다. 즉, 5G 코어 네트워크는 엔티티 별로 기능, 참조점, 프로토콜 등이 정의되지 않는다.
도 4를 참조하면, 5G 시스템 구조는 하나 이상의 단말(UE; 10), NG-RAN(Next Generation-Radio Access Network) 및 NGC(Next Generation Core)를 포함한다.
NG-RAN은 하나 이상의 gNB(40)를 포함할 수 있고, 하나의 셀에 복수의 단말이 존재할 수 있다. gNB(40)는 제어 평면(control plane)과 사용자 평면(user plane)의 끝 지점을 단말에게 제공한다. gNB(40)는 일반적으로 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, BS(base station), BTS(base transceiver system), 액세스 포인트(access point) 등 다른 용어로 불릴 수 있다. 하나의 gNB(40)는 셀마다 배치될 수 있다. gNB(40)의 커버리지 내에 하나 이상의 셀이 존재할 수 있다.
NGC는 제어 평면의 기능을 담당하는 AMF(Access and Mobility Function) 및 SMF(Session Management Function)를 포함할 수 있다. AMF는 이동성 관리 기능을 담당할 수 있고, SMF는 세션 관리 기능을 담당할 수 있다. NGC는 사용자 평면의 기능을 담당하는 UPF(User Plane Function)를 포함할 수 있다.
사용자 트래픽 전송 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 단말(10) 및 gNB(40)은 NG3 인터페이스에 의해 연결될 수 있다. gNB(40)들은 Xn 인터페이스에 의해 상호간 연결될 수 있다. 이웃한 gNB(40)들은 Xn 인터페이스에 의한 망형 네트워크 구조를 가질 수 있다. gNB(40)들은 NG 인터페이스에 의해 NGC와 연결될 수 있다. gNB(40)들은 NG-C 인터페이스에 의해 AMF와 연결될 수 있으며, NG-U 인터페이스에 의해 UPF와 연결될 수 있다. NG 인터페이스는 gNB(40)와 MME/UPF(50) 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다.
gNB 호스트는 무선 자원 관리에 대한 기능 (Functions for Radio Resource Management), IP 헤더 압축 및 사용자 데이터 스트림의 암호화 (IP header compression and encryption of user data stream), AMF로의 라우팅이 단말에 의해 제공된 정보로부터 결정될 수 없을 때 단말 부착에서 AMF의 선택 (Selection of an AMF at UE attachment when no routing to an AMF can be determined from the information provided by the UE), 하나 이상의 UPF를 향한 사용자 평면 데이터의 라우팅 (Routing of User Plane data towards UPF(s)), (AMF로부터 유래된) 페이징 메시지의 전송 및 스케줄링 (Scheduling and transmission of paging messages (originated from the AMF)), (AMF 또는 O&M으로부터 유래된) 시스템 방송 정보의 전송 및 스케줄링 (Scheduling and transmission of system broadcast information (originated from the AMF or O&M)), 또는 스케줄링 및 이동성에 대한 측정 보고 설정 및 측정 (Measurement and measurement reporting configuration for mobility and scheduling)과 같은 기능을 수행할 수 있다.
AMF(Access and Mobility Function) 호스트는 NAS 시그널링 종료 (NAS signalling termination), NAS 시그널링 보안 (NAS signalling security), AS 보안 제어 (AS Security control), 3GPP 액세스 네트워크 간의 이동성을 위한 인터 CN 노드 시그널링 (Inter CN node signalling for mobility between 3GPP access networks), (페이징 재전송의 실행 및 제어를 포함하는) IDLE 모드 단말 도달 가능성 (Idle mode UE Reachability (including control and execution of paging retransmission)), ACTIVE 모드 및 IDLE 모드에 있는 단말에 대한 트래킹 영역 리스트 관리 (Tracking Area list management (for UE in idle and active mode)), AMF 변경을 수반하는 핸드오버에 대한 AMF 선택 (AMF selection for handovers with AMF change), 액세스 인증 (Access Authentication), 또는 로밍 권한의 확인을 포함하는 액세스 승인 (Access Authorization including check of roaming rights)과 같은 주요 기능을 수행할 수 있다.
UPF(User Plane Function) 호스트는 (적용 가능한 경우) 인트라/인터-RAT 이동성을 위한 앵커 포인트 (Anchor point for Intra-/Inter-RAT mobility (when applicable)), 데이터 네트워크로 상호 연결의 외부 PDU 세션 포인트 (External PDU session point of interconnect to Data Network), 패킷 라우팅 및 포워딩 (Packet routing & forwarding), 패킷 검사 및 정책 규칙 적용의 사용자 평면 파트 (Packet inspection and User plane part of Policy rule enforcement), 트래픽 사용 보고 (Traffic usage reporting), 데이터 네트워크로 트래픽 흐름을 라우팅하는 것을 지원하는 업 링크 분류자 (Uplink classifier to support routing traffic flows to a data network), 멀티 홈 PDU 세션을 지원하는 브랜칭 포인트(Branching point to support multi-homed PDU session), 사용자 평면에 대한 QoS 핸들링, 예를 들어, 패킷 필터링, 게이팅, UL/DL 요금 집행 (QoS handling for user plane, e.g. packet filtering, gating, UL/DL rate enforcement), 상향링크 트래픽 확인 (SDF에서 QoS 흐름 매핑으로) (Uplink Traffic verification (SDF to QoS flow mapping)), 하향링크 및 상향링크에서의 전송 레벨 패킷 마킹 (Transport level packet marking in the uplink and downlink), 또는 하향링크 패킷 버퍼링 및 하향링크 데이터 통지 트리거링 (Downlink packet buffering and downlink data notification triggering)과 같은 주요 기능을 수행할 수 있다.
SMF(Session Management Function) 호스트는 세션 관리 (Session Management), UE IP 주소 할당 및 관리 (UE IP address allocation and management), UP 기능의 선택 및 제어 (Selection and control of UP function), 트래픽을 적절한 대상으로 라우트하기 위해 UPF에서 트래픽 조정을 구성 (Configures traffic steering at UPF to route traffic to proper destination), QoS 및 정책 집행의 일부를 제어 (Control part of policy enforcement and QoS), 또는 하향링크 데이터 통지 (Downlink Data Notification)와 같은 주요 기능을 수행할 수 있다.
도 5는 사용자 평면에 대한 5G 시스템의 무선 인터페이스 프로토콜을 나타낸다.
도 5를 참조하면, 사용자 평면에 대한 5G 시스템의 무선 인터페이스 프로토콜은 LTE 시스템과 비교하여 SDAP(Service Data Adaptation Protocol)라는 새로운 계층을 포함할 수 있다. SDAP 계층의 주요 서비스 및 기능은 QoS 플로우(Quality of Service flow)와 DRB(data radio bearer) 사이의 맵핑, DL 및 UL 패킷 모두에서 QFI(QoS flow ID) 마킹이다. SDAP의 싱글 프로토콜 엔티티는 두 개의 엔티티가 설정(configure)될 수 있는 DC(dual connectivity)를 제외하고, 각각의 개별 PDU 세션에 대하여 설정될 수 있다.
이하, 랜덤 액세스(random access)에 대하여 설명한다.
랜덤 액세스는 단말이 기지국과 상향링크 동기를 얻거나 상향링크 무선자원을 할당 받기 위해 사용된다. 전원이 켜진 후, 단말은 초기 셀과의 하향링크 동기를 획득하고 시스템 정보를 수신한다. 그리고 상기 시스템 정보로부터 사용 가능한 랜덤 액세스 프리앰블(random access preamble)의 집합과 랜덤 액세스 프리앰블의 전송에 사용되는 무선 자원에 관한 정보를 얻는다. 랜덤 액세스 프리앰블의 전송에 사용되는 무선 자원은 무선 프레임 및/또는 적어도 하나 이상의 서브프레임들의 조합으로 특정될 수 있다. 단말은 랜덤 액세스 프리앰블의 집합으로부터 임의로 선택한 랜덤 액세스 프리앰블을 전송하고, 상기 랜덤 액세스 프리앰블을 수신한 기지국은 상향링크 동기를 위한 TA(timing alignment) 값을 랜덤 액세스 응답을 통해 단말로 보낸다. 이로써 단말은 상향링크 동기를 획득하는 것이다.
즉, 기지국은 특정 단말에게 지정된 랜덤 접속 프리앰블(dedicated random access preamble)을 할당하고, 단말은 해당 랜덤 접속 프리앰블로 비경쟁 랜덤 액세스(non-contention random access)를 수행한다. 즉, 랜덤 액세스 프리앰블을 선택하는 과정에서, 특정한 집합 안에서 단말이 임의로 하나를 선택하여 사용하는 경쟁 기반 랜덤 액세스(contention based random access)와 기지국이 특정 단말에게만 할당해준 랜덤 액세스 프리앰블을 사용하는 비경쟁 랜덤 액세스가 있을 수 있다. 비경쟁 랜덤 액세스는 핸드오버를 위한 절차나 기지국의 명령에 의해 요청되는 경우에 사용될 수 있다.
도 6은 경쟁기반 랜덤 액세스 절차를 나타낸다.
도 6을 참조하면, 단말은 시스템 정보 또는 핸드오버 명령(handover command)를 통해 지시된 랜덤 액세스 프리앰블의 집합에서 임의로(randomly) 하나의 랜덤 액세스 프리앰블을 선택한다. 그리고 랜덤 액세스 프리앰블을 전송할 수 있는 무선 자원을 선택하여 선택된 랜덤 액세스 프리앰블을 전송한다(S610). 상기 무선 자원은 특정 서브 프레임일 수 있으며, 이는 PRACH(Physical Random Access Channel)을 선택하는 것일 수 있다.
단말은 랜덤 액세스 프리앰블 전송 후에, 시스템 정보 또는 핸드오버 명령을 통해 지시된 랜덤 액세스 응답 수신 윈도우 내에, 랜덤 액세스 응답 수신을 시도하고, 이에 따라 랜덤 액세스 응답을 수신한다(S620). 랜덤 액세스 응답은 MAC PDU 포맷으로 전송되며, 상기 MAC PDU는 PDSCH(Physical Downlink Shared Channel)로 전달될 수 있다. 또한 PDSCH로 전달되는 정보를 단말이 적절하게 수신하기 위해 PDCCH(Physical Downlink Control Channel)도 함께 전달된다. 즉, PDCCH는 상기 PDSCH를 수신하는 단말의 정보와, 상기 PDSCH의 무선자원의 주파수 그리고 시간 정보, 그리고 상기 PDSCH의 전송 형식 등이 포함되어 있다. 일단 단말이 자신에게 전달되는 PDCCH의 수신에 성공하면, 상기 PDCCH의 정보를 기반으로 PDSCH로 전송되는 랜덤 액세스 응답을 적절히 수신한다.
랜덤 액세스 응답에는 랜덤 액세스 프리앰블 식별자(ID), UL Grant (상향링크 무선자원), 임시 C-RNTI (Temporary Cell - Radio Network Temporary Identifier) 그리고 TAC(Time Alignment Command) 이 포함될 수 있다. 하나의 랜덤 액세스 응답에는 하나 이상의 단말들을 위한 랜덤 액세스 응답 정보가 포함될 수 있기 때문에, 랜덤 액세스 프리앰블 식별자는 포함된 UL Grant, 임시 C-RNTI 그리고 TAC가 어느 단말에게 유효한지를 알려주기 위하여 포함될 수 있다. 랜덤 액세스 프리앰블 식별자는 기지국이 수신한 랜덤 액세스 프리앰블에 대한 식별자일 수 있다. TAC는 단말이 상향 링크 동기를 조정하기 위한 정보로서 포함될 수 있다. 랜덤 액세스 응답은 PDCCH상의 랜덤 액세스 식별자, 즉 RA-RNTI(Random Access - Radio Network Temporary Identifier)에 의해 지시될 수 있다.
자신에게 유효한 랜덤 액세스 응답을 수신하면, 단말은 랜덤 액세스 응답에 포함된 정보를 처리하고, 기지국에게 스케줄링된 전송을 수행한다(S630). 즉, 단말은 TAC을 적용시키고, 임시 C-RNTI를 저장한다. 또한, UL Grant를 이용하여, 단말의 버퍼에 저장된 데이터 또는 새롭게 생성된 데이터를 기지국으로 전송한다. 이 경우 단말을 식별할 수 있는 정보가 포함되어야 한다. 이는 경쟁 기반 랜덤 접속 과정에서는 기지국이 어떤 단말들이 랜덤 액세스를 수행하는지 판단할 수 없어, 이후 충돌 해결을 하기 위해 단말을 식별할 필요가 있기 때문이다.
단말을 식별할 수 있는 정보를 포함시키는 방법으로는 두 가지 방법이 존재한다. 단말이 랜덤 액세스 수행이전에 이미 해당 셀에서 할당 받은 유효한 셀 식별자를 가지고 있었다면, 단말은 상기 UL Grant를 통해 자신의 셀 식별자 전송한다. 반면에, 만약 랜덤 접속 과정 이전에 유효한 셀 식별자를 할당 받지 못하였다면, 단말은 자신의 고유 식별자 (예를 들면, S-TMSI 또는 Random ID)를 포함하여 전송한다. 일반적으로 상기의 고유 식별자는 셀 식별자보다 길다. 단말은 상기 UL Grant를 통해 데이터를 전송하였다면, 충돌 해결을 위한 타이머(contention resolution timer)를 개시 한다.
단말은 랜덤 액세스 응답을 수신하여 할당 받은 UL Grant를 통해 자신의 식별자를 포함한 데이터를 전송한 이후, 충돌 해결을 위해 기지국의 지시를 기다린다(S640). 즉, 특정 메시지를 수신하기 위해 PDCCH의 수신을 시도한다. PDCCH를 수신하는 방법으로 두 가지가 제안될 수 있다. 앞서 언급한 바와 같이 UL Grant를 통해 전송된 자신의 식별자가 셀 식별자인 경우, 자신의 셀 식별자를 이용하여 PDCCH의 수신을 시도할 수 있다. 이 경우 충돌 해결 타이머가 만료되기 전에 자신의 셀 식별자를 통해 PDCCH를 수신하면, 단말은 정상적으로 랜덤 액세스가 수행되었다고 판단하고 랜덤 액세스를 종료한다. UL Grant를 통해 전송된 식별자가 고유 식별자인 경우, 랜덤 액세스 응답에 포함된 임시 C-RNTI를 이용하여 PDCCH의 수신을 시도한다. 이 경우, 충돌 해결 타이머가 만료되기 전에 임시 셀 식별자를 통해 PDCCH를 수신하였다면, PDCCH가 지시하는 PDSCH이 전달하는 데이터를 확인한다. 자신의 고유 식별자가 데이터에 포함되어 있다면, 단말은 정상적으로 랜덤 액세스가 수행되었다고 판단하고 랜덤 액세스를 종료할 수 있다.
도 7은 비경쟁기반 랜덤 액세스 절차를 나타낸다.
경쟁기반 랜덤 액세스와 달리, 비경쟁 기반 랜덤 액세스는 단말이 랜덤 액세스 응답을 수신함으로써 종료될 수 있다.
비경쟁 기반 랜덤 액세스는, 핸드오버 및/또는 기지국의 명령과 같이 요청에 의하여 개시될 수 있다. 다만, 전술한 두 경우에서 경쟁 기반 랜덤 액세스 역시 수행될 수 있다.
단말은 기지국으로부터 충돌의 가능성이 없는 지정된 랜덤 액세스 프리앰블을 할당 받는다. 랜덤 액세스 프리앰블을 할당 받는 것은 핸드오버 명령과 PDCCH 명령을 통하여 수행될 수 있다(S710).
단말은 자신을 위하여 지정된 랜덤 액세스 프리앰블을 할당 받은 후에, 해당하는 랜덤 액세스 프리앰블을 기지국으로 전송한다(S720).
기지국은 랜덤 액세스 프리앰블을 수신하면 이에 대한 응답으로 랜덤 액세스 응답을 단말에게 전송한다(S730). 랜덤 액세스 응답과 관련된 절차는 전술한 도 6의 S620을 참조할 수 있다.
이하, 랜덤 액세스 백오프(random access backoff)에 대하여 설명한다.
만약 랜덤 액세스 응답이 백오프 지시자 서브헤더(backoff indicator subheader)를 포함하면, 백오프 지시자 서브헤더의 BI 필드의 지시에 의해 단말의 백오프 파라미터 값이 설정될 수 있다. 하기 표 1는 백오프 파라미터 값을 나타낸다. 그렇지 않으면, 단말의 백오프 파라미터 값은 0ms로 설정될 수 있다.
인덱스 (Index) 백오프 파라미터 값 (ms)
0 0
1 10
2 20
3 30
4 40
5 60
6 80
7 120
8 160
9 240
10 320
11 480
12 960
13 Reserved
14 Reserved
15 Reserved
만약 랜덤 액세스 절차에서 랜덤 액세스 프리앰블이 단말의 백오프 파라미터를 기반으로 하는 MAC에 의해 선택되면, 0과 백오프 파라미터 값 사이의 균일한 분포에 따른 랜덤 백오프 시간이 선택될 수 있다. 따라서, 이후 랜덤 액세스 전송은 백오프 시간만큼 지연될 수 있다.
한편, 단말이 랜덤 액세스 절차를 수행하는 경우, 단말이 임의의 랜덤 액세스 응답 메시지로부터 BI(backoff indicator)를 수신하면, 단말은 BI를 저장할 수 있다. 만약 랜덤 액세스 응답 메시지가 수신되지 않으면, 단말은 백오프를 적용할 수 있다. 또는, 만약 경쟁 해소가 해결되지 않으면, 단말은 백오프를 적용할 수 있다. 단말이 랜덤 액세스를 수행할 때마다, 기존의 백오프 메커니즘은 모든 경우에 적용될 수 있다. 그러므로, 혼잡 상황에서, 모든 랜덤 액세스 시도는 백 오프로 인해 지연될 수 있다. 즉, 기지국이 랜덤 액세스 전송의 우선순위를 식별할 수 없기 때문에, 기존의 백오프 메커니즘은 비-우선화된 액세스(non-prioritized accesses)와 함께 우선화된 액세스(prioritized accesses)를 지연시킬 수 있다. 예를 들어, 단말이 핸드오버를 수행하는 경우, 단말은 경쟁 기반 랜덤 액세스 절차(contention based random access procedure)를 통해 측정 보고(measurement report) 또는 핸드오버 완료(handover complete) 메시지를 전송할 수 있다. 하지만, 혼잡 상태에서, 측정 보고 또는 핸드오버 완료 메시지는 백오프로 인해 지연 될 수 있다. 이로 인해, 핸드오버 또는 SCell 추가(addition)가 지연될 수 있고, 결국 통화가 끊어 지거나 성능이 저하될 수 있다.
한편, RRC 연결 확립 절차(RRC connection establishment procedure)가 개시되는 경우, UE RRC는 액세스 금지 메커니즘(access barring mechanism)을 수행할 수 있다. 예를 들어, 액세스 금지 매커니즘은 ACB(access class barring), ACB skip, EAB(extended access barring) 또는 ACDC(Application specific Congestion control for Data Communication) 중 적어도 어느 하나일 수 있다. 만약 UE RRC가 액세스 금지 체크(access barring check)를 통과(pass)하면, UE RRC는 RRC 연결 요청 메시지를 전송하도록 UE L2에게 지시할 수 있다. 그러면, UE MAC은 RRC 메시지를 전송하기 위해 랜덤 액세스 절차를 개시할 수 있다. 단말이 랜덤 액세스 절차를 수행하는 경우, 단말이 임의의 랜덤 액세스 응답 메시지로부터 BI(backoff indicator)를 수신하면, 단말은 BI를 저장할 수 있다. 만약 랜덤 액세스 응답 메시지가 수신되지 않으면, 단말은 백오프를 적용할 수 있다. 또는, 만약 경쟁 해소가 해결되지 않으면, 단말은 백오프를 적용할 수 있다. 단말이 랜덤 액세스를 수행할 때마다, 기존의 백오프 메커니즘은 모든 경우에 적용될 수 있다. 따라서, 몇몇 상태 천이(some state transitions)에 대하여, 단말은 액세스 금지 메커니즘 및 랜덤 액세스 백오프를 모두 수행하여야만 한다. 그러므로, 특정 연결 요청이 액세스 금지 메커니즘에서 우선화(prioritized) 되었다고 하더라도, 랜덤 액세스 백오프로 인하여, 상기 연결 요청은 여전히 지연될 수 있고, 비-우선화(de-prioritized)될 수 있다.
따라서, 랜덤 액세스 백오프 파라미터를 조정하는 방법 및 이를 지원하는 장치가 제안될 필요가 있다. 이하, 본 발명의 일 실시 예에 따라, 랜덤 액세스 백오프 파라미터를 조정하는 방법에 대하여 설명한다.
기지국은 우선순위 정보(priority information)를 단말에게 시그널링할 수 있다. 상기 우선순위 정보는 랜덤 액세스 백오프 파라미터를 조정하기 위한 정보일 수 있다. 상기 우선순위 정보는 우선순위의 임계 값(threshold value), 우선순위의 리스트, 또는 액세스 카테고리의 리스트(list of access categories) 중 적어도 어느 하나를 포함할 수 있다. 상기 우선순위는 논리 채널 우선순위(logical channel priority), 액세스 카테고리의 우선순위, PPPP(ProSe Per Packet Priority), QCI(QoS Class Identifier), QoS 레벨(level) 또는 QoS 플로우 ID 중 적어도 어느 하나에 해당할 수 있다. 상기 우선순위는 특정 논리 채널과 연관될 수 있다. 부가적으로, 상기 우선순위 정보는 스케일링 팩터(scaling factor)를 포함할 수 있다. 예를 들어, 상기 스케일링 팩터는 0.1 내지 0.9 사이의 값일 수 있다.
단말은 하나 이상의 논리 채널로부터의 RLC PDU로 구성된 MAC PDU를 구성할 수 있다(The UE may construct a MAC PDU consisting of RLC PDU(s) from one or more logical channels).
단말은 하나 이상의 논리 채널들로부터의 RLC PDU로 구성된 MAC PDU의 전송을 위한 랜덤 액세스 절차를 개시하거나 트리거할 수 있다. 이 경우, 논리 채널의 최고 우선순위(highest priority)의 값이 상기 우선순위의 임계 값 이상이면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하지 않거나, 단말은 랜덤 액세스 절차를 수행하는 동안 백오프 파라미터 값을 0ms로 설정(set)할 수 있다. 또는, 이 경우, 논리 채널의 최고 우선순위의 값이 상기 우선순위 정보에 열거되면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하지 않거나, 단말은 랜덤 액세스 절차를 수행하는 동안 백오프 파라미터 값을 0ms로 설정할 수 있다. 또는, 이 경우, 논리 채널과 연관된 액세스 카테고리(access category associated with the logical channel)가 상기 우선순위 정보에 열거되면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하지 않거나, 단말은 랜덤 액세스 절차를 수행하는 동안 백오프 파라미터 값을 0ms로 설정할 수 있다. 대안적으로, 단말은 랜덤 액세스 절차를 수행하는 동안 백 오프 파라미터 값을 '수신된 백오프 파라미터에 스케일링 팩터를 곱한 값'으로 설정할 수 있다.
단말은 하나 이상의 논리 채널들로부터의 RLC PDU로 구성된 MAC PDU의 전송을 위한 랜덤 액세스 절차를 개시하거나 트리거할 수 있고, 백오프 파라미터를 수신할 수 있다. 이 경우, 논리 채널의 최고 우선순위의 값이 상기 우선순위의 임계 값 미만이면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하거나, 단말은 랜덤 액세스 절차 동안에 수신된 백오프 파라미터의 값을 백오프 파라미터 값으로 설정할 수 있다. 또는, 이 경우, 논리 채널의 최고 우선순위의 값이 상기 우선순위 정보에 열거되지 않으면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하거나, 단말은 랜덤 액세스 절차 동안에 수신된 백오프 파라미터의 값을 백오프 파라미터 값으로 설정할 수 있다. 또는, 이 경우, 논리 채널과 연관된 액세스 카테고리가 상기 우선순위 정보에 열거되지 않으면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하거나, 단말은 랜덤 액세스 절차 동안에 수신된 백오프 파라미터의 값을 백오프 파라미터 값으로 설정할 수 있다.
도 8은 본 발명의 일 실시 예에 따라, 랜덤 액세스 백오프 파라미터를 조정하는 절차를 나타낸다.
도 8을 참조하면, 단계 S810에서, 단말은 우선순위 정보를 기지국으로부터 수신할 수 있다. 상기 우선순위 정보는 랜덤 액세스 백오프 파라미터를 조정하기 위한 정보일 수 있다. 상기 우선순위 정보는 랜덤 액세스 응답 메시지를 통해 수신될 수 있다. 도 8에 도시하지는 않았지만, 이 경우, 우선순위 정보는 단말의 MAC 계층에 의해 수신될 수 있다. 대안적으로, 상기 우선순위 정보는 시스템 정보와 같은 RRC 메시지를 통해 수신될 수 있다. 이 경우, 우선순위 정보는 단말의 RRC 계층에 의해 수신될 수 있다. 단말의 RRC 계층은 우선순위 정보를 단말의 MAC 계층에게 제공할 수 있다.
상기 우선순위 정보는 우선순위의 임계 값(threshold value), 우선순위의 리스트, 또는 액세스 카테고리의 리스트(list of access categories) 중 적어도 어느 하나를 포함할 수 있다. 상기 우선순위는 논리 채널 우선순위(logical channel priority), 액세스 카테고리의 우선순위, PPPP(ProSe Per Packet Priority), QCI(QoS Class Identifier), QoS 레벨(level) 또는 QoS 플로우 ID 중 적어도 어느 하나에 해당할 수 있다. 상기 우선순위는 특정 논리 채널과 연관될 수 있다. 부가적으로, 상기 우선순위 정보는 스케일링 팩터(scaling factor)를 포함할 수 있다. 예를 들어, 상기 스케일링 팩터는 0.1 내지 0.9 사이의 값일 수 있다.
단계 S820에서, 단말은 랜덤 액세스 절차를 개시(initiate) 또는 트리거(trigger)할 수 있다. 상기 랜덤 액세스 절차는 하나 이상의 논리 채널들로부터의 RLC PDU로 구성된 MAC PDU의 전송을 위해 개시되거나 트리거될 수 있다. 단말은 랜덤 액세스 프리앰블을 기지국에게 전송할 수 있다.
단계 S830에서, 단말은 BI를 포함하는 랜덤 액세스 응답을 기지국으로부터 수신할 수 있다.
단계 S840에서, 단말은 BI에 의해 지시되는 랜덤 액세스 백오프 파라미터 값을 조정할지 여부를 결정할 수 있다. 백오프 파라미터 값을 0ms로 조정하는 것은 랜덤 액세스 백오프의 스킵을 의미할 수 있다.
랜덤 액세스 절차에서, 논리 채널의 최고 우선순위(highest priority)의 값이 상기 우선순위의 임계 값 이상이면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하지 않거나, 단말은 랜덤 액세스 절차를 수행하는 동안 백오프 파라미터 값을 0ms로 설정(set)할 수 있다. 그렇지 않으면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하거나, 단말은 랜덤 액세스 절차 동안에 수신된 백오프 파라미터의 값을 백오프 파라미터 값으로 설정할 수 있다.
랜덤 액세스 절차에서, 논리 채널의 최고 우선순위의 값이 상기 우선순위 정보에 열거되면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하지 않거나, 단말은 랜덤 액세스 절차를 수행하는 동안 백오프 파라미터 값을 0ms로 설정할 수 있다. 그렇지 않으면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하거나, 단말은 랜덤 액세스 절차 동안에 수신된 백오프 파라미터의 값을 백오프 파라미터 값으로 설정할 수 있다.
랜덤 액세스 절차에서, 논리 채널과 연관된 액세스 카테고리(access category associated with the logical channel)가 상기 우선순위 정보에 열거되면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하지 않거나, 단말은 랜덤 액세스 절차를 수행하는 동안 백오프 파라미터 값을 0ms로 설정할 수 있다. 그렇지 않으면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하거나, 단말은 랜덤 액세스 절차 동안에 수신된 백오프 파라미터의 값을 백오프 파라미터 값으로 설정할 수 있다.
랜덤 액세스 절차가 특정 목적(예를 들어, 핸드오버)을 위해 수행되면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하지 않거나, 단말은 랜덤 액세스 절차를 수행하는 동안 백오프 파라미터 값을 0ms로 설정할 수 있다. 그렇지 않으면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하거나, 단말은 랜덤 액세스 절차 동안에 수신된 백오프 파라미터의 값을 백오프 파라미터 값으로 설정할 수 있다.
본 발명의 일 실시 예에 따라, 단말이 랜덤 액세스 백오프 파라미터 값을 조정하는 절차는 표 2와 같이 제안될 수 있다.
In details, if the random access procedure is triggered for transmission of MAC PDU consisting of RLC PDUs from one or more logical channels e.g. due to scheduling request for transmission of the MAC PDU or due to any MAC procedure e.g. Buffer Statue Reporting for transmission of the MAC PDU, the UE shall:1> if a downlink assignment for this TTI has been received on the PDCCH for the RA-RNTI and the received TB is successfully decoded, the MAC entity shall regardless of the possible occurrence of a measurement gap or a Sidelink Discovery Gap for Transmission or a Sidelink Discovery Gap for Reception:2> if the Random Access Response contains a Backoff Indicator subheader and if the value of the highest priority of the logical channel is lower than the threshold or not listed in the priority information, or if the access category associated with the logical channel is not listed in the priority information:3> set the backoff parameter value to the value of the BI field of the Backoff Indicator subheader2> else if the scaling factor is not received from gNB3> set the backoff parameter value to 0 ms;2> else if the scaling factor is received from gNB3> set the backoff parameter value to 'the value of the BI field of the Backoff Indicator subheader multiplied by the scaling factor.1> if no Random Access Response is received within the RA Response window, or if none of all received Random Access Responses contains a Random Access Preamble identifier (RAPID) corresponding to the transmitted Random Access Preamble, the Random Access Response reception is considered not successful and the MAC entity shall:2> based on the backoff parameter, select a random backoff time according to a uniform distribution between 0 and the Backoff Parameter Value;2> delay the subsequent Random Access transmission by the backoff time (Alternatively, if the value of the highest priority of the logical channel is higher than or equal to the threshold or listed in the priority information, or if the access category associated with the logical channel is listed in the priority information, the UE shall skip the backoff so that UE shall not delay the subsequent Random Access transmission, instead of delaying the subsequent Random Access transmission);1> if the Contention Resolution is considered not successful the MAC entity shall:2> flush the HARQ buffer used for transmission of the MAC PDU in the Msg3 buffer;2> if the notification of power ramping suspension has not been received from lower layers:3> increment PREAMBLE_TRANSMISSION_COUNTER by 1; 2> if the UE is an NB-IoT UE, a BL UE or a UE in enhanced coverage:3> if PREAMBLE_TRANSMISSION_COUNTER = preambleTransMax-CE + 1:4> indicate a Random Access problem to upper layers.4> if NB-IoT:5> consider the Random Access procedure unsuccessfully completed;2> else:3> if PREAMBLE_TRANSMISSION_COUNTER = preambleTransMax + 1:4> indicate a Random Access problem to upper layers.2> based on the backoff parameter, select a random backoff time according to a uniform distribution between 0 and the Backoff Parameter Value;2> delay the subsequent Random Access transmission by the backoff time (Alternatively, if the value of the highest priority of the logical channel is higher than or equal to the threshold or listed in the priority information, or if the access category associated with the logical channel is listed in the priority information, the UE shall skip the backoff so that UE shall not delay the subsequent Random Access transmission, instead of delaying the subsequent Random Access transmission);2> proceed to the selection of a Random Access Resource.
이후, 단말은 조정된 랜덤 액세스 백오프 파라미터 값을 기반으로 랜덤 액세스 프리앰블을 기지국에게 전송할 수 있고, 랜덤 액세스 응답을 기지국으로부터 수신할 수 있다. 랜덤 액세스 절차에서, 랜덤 액세스 응답이 전송된 랜덤 액세스 프리앰블에 대응하는 RAPID(Random Access Preamble identifier)를 포함하면, 단말은 표 3의 절차에 따라 메시지 3을 기지국에게 전송할 수 있다.
1> if the Random Access Response contains a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble, the MAC entity shall:2> consider this Random Access Response reception successful and apply the following actions for the serving cell where the Random Access Preamble was transmitted:3> process the received Timing Advance Command;3> indicate the preambleInitialReceivedTargetPower and the amount of power ramping applied to the latest preamble transmission to lower layers (i.e., (PREAMBLE_TRANSMISSION_COUNTER - 1) * powerRampingStep);3> process the received UL grant value and indicate it to the lower layers;2> if ra-PreambleIndex was explicitly signalled and it was not 000000 (i.e., not selected by MAC):3> consider the Random Access procedure successfully completed.2> else, if the Random Access Preamble was selected by the MAC entity:3> set the Temporary C-RNTI to the value received in the Random Access Response message no later than at the time of the first transmission corresponding to the UL grant provided in the Random Access Response message;3> if this is the first successfully received Random Access Response within this Random Access procedure:4> if the transmission is not being made for the CCCH logical channel, indicate to the Multiplexing and assembly entity to include a C-RNTI MAC control element in the subsequent uplink transmission;4> obtain the MAC PDU to transmit from the "Multiplexing and assembly" entity and store it in the Msg3 buffer.
본 발명의 일 실시 예에 따르면, 랜덤 액세스 백오프는 네트워크 설정에 따라 낮은 우선순위 또는 특정 목적을 가지는 랜덤 액세스 시도에만 적용될 수 있다. 즉, 단말이 높은 우선순위(예를 들어, SRB) 또는 특정 목적(예를 들어, 핸드오버)을 가지는 랜덤 액세스를 수행하는 동안에, 단말은 랜덤 액세스 백오프를 생략하거나, 랜덤 액세스 백오프 파라미터를 작은 값으로 조정할 수 있다. 따라서, 우선순위가 높은 액세스 또는 핸드오버 등이 지연되는 것을 방지할 수 있다.
도 9는 본 발명의 일 실시 예에 따라, 랜덤 액세스 백오프를 스킵하는 절차를 나타낸다.
본 발명의 일 실시 예에 따르면, 단말이 셀로의 액세스를 위한 절차(procedure for access to a cell)를 개시할 때, 단말이 상위 계층(upper layer)의 액세스 금지 체크(access barring check)를 통과(pass)하고, 단말이 액세스 금지 체크의 결과로서 랜덤 액세스 절차를 개시하면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하지 않거나, 단말은 랜덤 액세스 절차를 수행하는 동안 백오프 파라미터 값을 0ms로 설정(set)할 수 있다. 상기 셀로의 액세스를 위한 절차는 RRC 절차일 수 있다. 예를 들어, 상기 RRC 절차는 RRC 연결 확립 절차(RRC Connection Establishment procedure), RRC 연결 재확립 절차(RRC Connection Reestablishment procedure), RRC 연결 재개 절차(RRC Connection Resume procedure) 또는 RRC 연결 활성 절차(RRC Connection Activation procedure)일 수 있다.
도 9를 참조하면, 단계 S910에서, 단말은 액세스 금지 정보(access barring information)를 셀로부터 수신할 수 있다. 상기 액세스 금지 정보는 액세스 컨트롤 파라미터일 수 있다. 예를 들어, 상기 액세스 금지 정보는 ac-BarringInfo일 수 있다. 상기 액세스 금지 정보는 시스템 정보를 통해 수신될 수 있다. 상기 시스템 정보는 SIB2일 수 있다. 그리고, 단말은 셀로의 액세스(access to the cell)를 위한 RRC 절차를 개시할 수 있다. 상기 RRC 절차는 RRC 연결 확립 절차, RRC 연결 재확립 절차, RRC 연결 재개 절차 또는 RRC 연결 활성 절차일 수 있다.
단계 S920에서, 상기 RRC 절차에서, 단말은 수신된 액세스 금지 정보를 기반으로 셀로의 액세스가 금지되는지 여부를 체크할 수 있다. 셀로의 액세스가 금지되는지 여부는 표 4의 절차에 따라 체크될 수 있다.
The UE shall:1> if SystemInformationBlockType2 includes "AC barring parameter":2> if the UE has one or more Access Classes, as stored on the USIM, with a value in the range 11..15, which is valid for the UE to use, andNOTE: ACs 12, 13, 14 are only valid for use in the home country and ACs 11, 15 are only valid for use in the HPLMN/ EHPLMN.2> for at least one of these valid Access Classes the corresponding bit in the ac-BarringForSpecialAC contained in "AC barring parameter" is set to zero:3> consider access to the cell as not barred;2> else:3> draw a random number 'rand' uniformly distributed in the range: 0 ≤ rand < 1;3> if 'rand' is lower than the value indicated by ac-BarringFactor included in "AC barring parameter":4> consider access to the cell as not barred;3> else:4> consider access to the cell as barred;1> else:2> consider access to the cell as not barred;1> if access to the cell is barred and both timers T302 and "Tbarring" are not running:2> draw a random number 'rand' that is uniformly distributed in the range 0 ≤ rand < 1;2> start timer "Tbarring" with the timer value calculated as follows, using the ac-BarringTime included in "AC barring parameter": "Tbarring" = (0.7+ 0.6 * rand) * ac-BarringTime;
상기 표 4의 액세스 금지 체크의 결과에 따라, 단말이 셀로의 액세스가 금지되지 않는 것으로 간주하면, 단말은 RRC 연결의 확립, 재확립, 재개 또는 활성을 개시할 수 있다. 또한, UE RRC는 랜덤 액세스 절차를 개시하도록 UE MAC에게 지시할 수 있다. 즉, 단말이 셀로의 액세스가 금지되지 않는 것으로 간주하면, 상기 단말의 RRC 계층은 랜덤 액세스 절차를 개시하도록 상기 단말의 MAC 계층에게 지시할 수 있다.
부가적으로, 단계 S930에서, UE RRC는 상기 랜덤 액세스 절차에서 랜덤 액세스 백오프를 스킵하도록 UE MAC에게 지시할 수 있다. 상기 단계 S930은 생략될 수도 있다. 즉, 단말이 셀로의 액세스가 금지되지 않는 것으로 간주하면, 상기 단말의 RRC 계층은 상기 랜덤 액세스 절차에서 랜덤 액세스 백오프를 스킵하도록 상기 단말의 MAC 계층에게 지시할 수 있다.
단계 S940에서, 단말은 랜덤 액세스 프리앰블을 기지국에게 전송할 수 있고, 단계 S950에서, 단말은 BI를 포함하는 랜덤 액세스 응답을 기지국으로부터 수신할 수 있다.
단계 S960에서, 단말은 상기 랜덤 액세스 절차에서 랜덤 액세스 백오프를 스킵할 수 있다. 구체적으로, 상기 랜덤 액세스 절차에서, 단말이 액세스 금지 체크의 결과로서 셀로의 액세스가 금지되지 않는다고 간주하면, 단말의 MAC 계층은 백오프 시간에 의해 후속하는 랜덤 액세스 전송을 지연시키지 않도록 결정할 수 있다. 대안적으로, 상기 랜덤 액세스 절차에서, 단말의 RRC 계층이 랜덤 액세스 백오프를 스킵하도록 단말의 MAC 계층에게 지시하면, 단말의 MAC 계층은 백오프 시간에 의해 후속하는 랜덤 액세스 전송을 지연시키지 않도록 결정할 수 있다.
본 발명의 일 실시 예에 따라, 단말이 랜덤 액세스 백오프를 스킵하는 절차는 표 5와 같이 제안될 수 있다.
In details, during the random access procedure, the UE shall:1> if a downlink assignment for this TTI has been received on the PDCCH for the RA-RNTI and the received TB is successfully decoded, the MAC entity shall regardless of the possible occurrence of a measurement gap or a Sidelink Discovery Gap for Transmission or a Sidelink Discovery Gap for Reception:2> if the Random Access Response contains a Backoff Indicator subheader and if the RRC layer does not indicate that the random access backoff is skipped (i.e. due to the result of the access barring check):3> set the backoff parameter value as indicated by the BI field of the Backoff Indicator subheader.2> else, set the backoff parameter value to 0 ms.1> if no Random Access Response is received within the RA Response window, or if none of all received Random Access Responses contains a Random Access Preamble identifier (RAPID) corresponding to the transmitted Random Access Preamble, the Random Access Response reception is considered not successful and the MAC entity shall:2> based on the backoff parameter, select a random backoff time according to a uniform distribution between 0 and the Backoff Parameter Value;2> delay the subsequent Random Access transmission by the backoff time (Alternatively, if the RRC layer does not indicate that the random access backoff is skipped (i.e. due to the result of the access barring check), the UE shall skip the backoff so that UE shall not delay the subsequent Random Access transmission, instead of delaying the subsequent Random Access transmission);1> if the Contention Resolution is considered not successful the MAC entity shall:2> flush the HARQ buffer used for transmission of the MAC PDU in the Msg3 buffer;2> if the notification of power ramping suspension has not been received from lower layers:3> increment PREAMBLE_TRANSMISSION_COUNTER by 1; 2> if the UE is an NB-IoT UE, a BL UE or a UE in enhanced coverage:3> if PREAMBLE_TRANSMISSION_COUNTER = preambleTransMax-CE + 1:4> indicate a Random Access problem to upper layers.4> if NB-IoT:5> consider the Random Access procedure unsuccessfully completed;2> else:3> if PREAMBLE_TRANSMISSION_COUNTER = preambleTransMax + 1:4> indicate a Random Access problem to upper layers.2> based on the backoff parameter, select a random backoff time according to a uniform distribution between 0 and the Backoff Parameter Value;2> delay the subsequent Random Access transmission by the backoff time (Alternatively, if the RRC layer does not indicate that the random access backoff is skipped (i.e. due to the result of the access barring check), the UE shall skip the backoff so that UE shall not delay the subsequent Random Access transmission, instead of delaying the subsequent Random Access transmission);2> proceed to the selection of a Random Access Resource.
이후, 단말은 조정된 랜덤 액세스 백오프 파라미터 값을 기반으로 랜덤 액세스 프리앰블을 기지국에게 전송할 수 있고, 랜덤 액세스 응답을 기지국으로부터 수신할 수 있다. 랜덤 액세스 절차에서, 랜덤 액세스 응답이 전송된 랜덤 액세스 프리앰블에 대응하는 RAPID(Random Access Preamble identifier)를 포함하면, 단말은 표 3의 절차에 따라 메시지 3을 기지국에게 전송할 수 있다.
본 발명의 일 실시 예에 따르면, 랜덤 액세스 백오프로 인하여, 액세스 금지 체크를 통과한 연결 요청이 지연되는 것을 방지할 수 있다.
도 10은 본 발명의 일 실시 예에 따라, 랜덤 액세스 백오프 파라미터를 조정하는 절차를 나타낸다.
도 10을 참조하면, 단계 S1010에서, 단말은 백오프 파라미터 조정 정보(backoff parameter adjustment information)를 기지국으로부터 수신할 수 있다. 상기 백오프 파라미터 조정 정보는 랜덤 액세스 백오프 파라미터를 조정하기 위한 정보일 수 있다. 상기 백오프 파라미터 조정 정보는 단말의 RRC 계층에 의해 수신될 수 있고, 이후 단말의 RRC 계층으로부터 단말의 MAC 계층에게 전달될 수 있다. 대안적으로, 상기 백오프 파라미터 조정 정보는 단말의 MAC 계층에 의해 수신될 수 있다.
상기 백오프 파라미터 조정 정보는 우선순위의 임계 값(threshold value), 우선순위의 리스트, 액세스 카테고리의 리스트(list of access categories) 또는 액세스 금지 정보(access barring information) 중 적어도 어느 하나를 포함할 수 있다. 상기 우선순위는 논리 채널 우선순위(logical channel priority), 액세스 카테고리의 우선순위, PPPP(ProSe Per Packet Priority), QCI(QoS Class Identifier), QoS 레벨(level) 또는 QoS 플로우 ID 중 적어도 어느 하나에 해당할 수 있다. 상기 우선순위는 특정 논리 채널과 연관될 수 있다. 상기 액세스 금지 정보는 액세스 컨트롤 파라미터일 수 있다. 부가적으로, 상기 백오프 파라미터 조정 정보는 스케일링 팩터(scaling factor)를 포함할 수 있다. 예를 들어, 상기 스케일링 팩터는 0.1 내지 0.9 사이의 값일 수 있다.
단계 S1020에서, 단말은 랜덤 액세스 절차를 개시(initiate) 또는 트리거(trigger)할 수 있다. 상기 랜덤 액세스 절차는 하나 이상의 논리 채널들로부터의 RLC PDU로 구성된 MAC PDU의 전송을 위해 개시되거나 트리거될 수 있다. 단말은 랜덤 액세스 프리앰블을 기지국에게 전송할 수 있다.
단계 S1030에서, 단말은 BI를 포함하는 랜덤 액세스 응답을 기지국으로부터 수신할 수 있다.
단계 S1040에서, 단말은 BI에 의해 지시되는 랜덤 액세스 백오프 파라미터 값을 조정할지 여부를 결정할 수 있다. 백오프 파라미터 값을 0ms로 조정하는 것은 랜덤 액세스 백오프의 스킵을 의미할 수 있다.
랜덤 액세스 절차에서, 논리 채널의 최고 우선순위(highest priority)의 값이 상기 우선순위의 임계 값 이상이면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하지 않거나, 단말은 랜덤 액세스 절차를 수행하는 동안 백오프 파라미터 값을 0ms로 설정(set)할 수 있다. 그렇지 않으면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하거나, 단말은 랜덤 액세스 절차 동안에 수신된 백오프 파라미터의 값을 백오프 파라미터 값으로 설정할 수 있다.
랜덤 액세스 절차에서, 논리 채널의 최고 우선순위의 값이 상기 우선순위 정보에 열거되면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하지 않거나, 단말은 랜덤 액세스 절차를 수행하는 동안 백오프 파라미터 값을 0ms로 설정할 수 있다. 그렇지 않으면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하거나, 단말은 랜덤 액세스 절차 동안에 수신된 백오프 파라미터의 값을 백오프 파라미터 값으로 설정할 수 있다.
랜덤 액세스 절차에서, 논리 채널과 연관된 액세스 카테고리(access category associated with the logical channel)가 상기 우선순위 정보에 열거되면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하지 않거나, 단말은 랜덤 액세스 절차를 수행하는 동안 백오프 파라미터 값을 0ms로 설정할 수 있다. 그렇지 않으면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하거나, 단말은 랜덤 액세스 절차 동안에 수신된 백오프 파라미터의 값을 백오프 파라미터 값으로 설정할 수 있다.
단말의 RRC 계층이 랜덤 액세스 절차가 핸드오버 목적을 위해 수행된다고 판단하면, 단말의 RRC 계층은 백오프를 스킵하도록 단말의 MAC 계층에게 지시할 수 있다. 예를 들어, 단말의 RRC 계층은 백오프 스킵 지시자를 단말의 MAC 계층에게 지시할 수 있다. 이 경우, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하지 않거나, 단말은 랜덤 액세스 절차를 수행하는 동안 백오프 파라미터 값을 0ms로 설정할 수 있다. 그렇지 않으면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하거나, 단말은 랜덤 액세스 절차 동안에 수신된 백오프 파라미터의 값을 백오프 파라미터 값으로 설정할 수 있다.
단말의 RRC 계층이 셀로의 액세스가 금지되지 않는 것으로 간주하면, 단말의 RRC 계층은 백오프를 스킵하도록 단말의 MAC 계층에게 지시할 수 있다. 예를 들어, 단말의 RRC 계층은 백오프 스킵 지시자를 단말의 MAC 계층에게 지시할 수 있다. 이 경우, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하지 않거나, 단말은 랜덤 액세스 절차를 수행하는 동안 백오프 파라미터 값을 0ms로 설정할 수 있다. 그렇지 않으면, 단말은 랜덤 액세스 절차를 수행하는 동안 랜덤 액세스 백오프를 적용하거나, 단말은 랜덤 액세스 절차 동안에 수신된 백오프 파라미터의 값을 백오프 파라미터 값으로 설정할 수 있다.
이후, 단말은 조정된 백오프 파라미터 값을 기반으로 랜덤 액세스 프리앰블을 재 전송할 수 있다.
본 발명의 일 실시 예에 따르면, 랜덤 액세스 백오프는 네트워크 설정에 따라 낮은 우선순위 또는 특정 목적을 가지는 랜덤 액세스 시도에만 적용될 수 있다. 따라서, 우선순위가 높은 액세스 또는 핸드오버 등이 지연되는 것을 방지할 수 있다. 나아가, 랜덤 액세스 백오프로 인하여, 액세스 금지 체크를 통과한 연결 요청이 지연되는 것을 방지할 수 있다.
도 11은 본 발명의 일 실시 예에 따라, 단말이 랜덤 액세스 백오프 파라미터를 조정하는 방법을 나타내는 블록도이다.
도 11을 참조하면, 단계 S1110에서, 단말은 우선순위 정보(priority information)를 수신할 수 있다. 상기 우선순위 정보는 우선순위 임계 값(priority threshold value)을 포함할 수 있다. 상기 우선순위 정보는 우선순위 리스트(priority list)를 포함할 수 있다. 상기 우선순위 정보는 액세스 카테고리 리스트(access category list)를 포함할 수 있다. 상기 우선순위 정보는 우선순위 리스트(priority list) 및 스케일링 팩터(scaling factor)를 포함할 수 있다. 상기 우선순위 정보는 액세스 컨트롤 파라미터(access control parameter)를 포함할 수 있다.
상기 우선순위는 논리 채널 우선순위(logical channel priority), 액세스 카테고리의 우선순위(priority of access category), PPPP(ProSe Per Packet Priority), QCI, QoS 레벨 또는 QoS 플로우 ID 중 적어도 어느 하나에 대응할 수 있다.
단계 S1120에서, 단말은 핸드오버를 수행하는 동안에, 랜덤 액세스 절차(random access procedure)를 개시할 수 있다. 상기 랜덤 액세스 절차는 하나 이상의 논리 채널(logical channel)로부터의 RLC PDU(Radio Link Control Protocol Data Unit)를 포함하는 MAC PDU(Medium Access Control Protocol Data Unit)를 전송하기 위해 개시될 수 있다.
단계 S1130에서, 단말은 백오프 지시자(backoff indicator)를 포함하는 랜덤 액세스 응답을 기지국으로부터 수신할 수 있다.
단계 S1140에서, 단말은 상기 우선순위 정보를 기반으로, 상기 백오프 지시자에 의해 지시되는 랜덤 액세스 백오프 파라미터를 조정할 수 있다. 상기 랜덤 액세스 백오프 파라미터는 영으로 조정될 수 있다.
논리 채널의 가장 높은 우선순위의 값이 상기 우선순위 임계 값 이상이면, 상기 랜덤 액세스 백오프 파라미터는 영으로 조정될 수 있다.
논리 채널의 가장 높은 우선순위의 값이 상기 우선순위 리스트에 포함되면, 상기 랜덤 액세스 백오프 파라미터는 영으로 조정될 수 있다.
논리 채널과 연관된 액세스 카테고리가 상기 액세스 카테고리 리스트에 포함되면, 상기 랜덤 액세스 백오프 파라미터는 영으로 조정될 수 있다.
논리 채널의 가장 높은 우선순위의 값이 상기 우선순위 리스트에 포함되면, 상기 랜덤 액세스 백오프 파라미터는 상기 스케일링 팩터를 곱함으로써 조정될 수 있다.
상기 단말이 상기 액세스 컨트롤 파라미터를 기반으로 셀로의 액세스가 금지되지 않는다고 결정하면, 상기 랜덤 액세스 백오프 파라미터는 영으로 조정될 수 있다.
상기 조정된 랜덤 액세스 백오프 파라미터에 의해, 상기 랜덤 액세스 절차에서 후속하는 랜덤 액세스 전송(subsequent random access transmission)은 지연될 수 있다. 상기 후속하는 랜덤 액세스 전송은 상기 랜덤 액세스 응답을 수신한 이후에 상기 단말에 의해 전송되는 랜덤 액세스 프리앰블일 수 있다. 예를 들어, 상기 후속하는 랜덤 액세스 전송은 상기 랜덤 액세스 절차에서 재 전송되는 랜덤 액세스 프리앰블일 수 있다.
부가적으로, 상기 조정된 랜덤 액세스 백오프 파라미터를 기반으로, 단말은 상기 랜덤 액세스 절차에서 후속하는 랜덤 액세스 프리앰블(subsequent random access preamble)을 상기 기지국에게 전송할 수 있다.
도 12는 본 발명의 실시 예가 구현되는 무선 통신 시스템의 블록도이다.
기지국(1200)은 프로세서(processor, 1201), 메모리(memory, 1202) 및 송수신기(transceiver, 1203)를 포함한다. 메모리(1202)는 프로세서(1201)와 연결되어, 프로세서(1201)를 구동하기 위한 다양한 정보를 저장한다. 송수신기(1203)는 프로세서(1201)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(1201)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 기지국의 동작은 프로세서(1201)에 의해 구현될 수 있다.
단말(1210)은 프로세서(1211), 메모리(1212) 및 송수신기(1213)를 포함한다. 메모리(1212)는 프로세서(1211)와 연결되어, 프로세서(1211)를 구동하기 위한 다양한 정보를 저장한다. 송수신기(1213)는 프로세서(1211)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(1211)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 단말의 동작은 프로세서(1211)에 의해 구현될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래시 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 송수신기는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시 예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 일례들에 기초하여 본 명세서에 따른 다양한 기법들이 도면과 도면 부호를 통해 설명되었다. 설명의 편의를 위해, 각 기법들은 특정한 순서에 따라 다수의 단계나 블록들을 설명하였으나, 이러한 단계나 블록의 구체적 순서는 청구항에 기재된 발명을 제한하는 것이 아니며, 각 단계나 블록은 다른 순서로 구현되거나, 또 다른 단계나 블록들과 동시에 수행되는 것이 가능하다. 또한, 통상의 기술자라면 간 단계나 블록이 한정적으로 기술된 것이나 아니며, 발명의 보호 범위에 영향을 주지 않는 범위 내에서 적어도 하나의 다른 단계들이 추가되거나 삭제되는 것이 가능하다는 것을 알 수 있을 것이다.
상술한 실시 예는 다양한 일례를 포함한다. 통상의 기술자라면 발명의 모든 가능한 일례의 조합이 설명될 수 없다는 점을 알 것이고, 또한 본 명세서의 기술로부터 다양한 조합이 파생될 수 있다는 점을 알 것이다. 따라서 발명의 보호범위는, 이하 청구항에 기재된 범위를 벗어나지 않는 범위 내에서, 상세한 설명에 기재된 다양한 일례를 조합하여 판단해야 할 것이다.

Claims (16)

  1. 무선 통신 시스템에서 단말이 랜덤 액세스 백오프 파라미터(random access backoff parameter)를 조정하는 방법에 있어서,
    우선순위 정보(priority information)를 수신하는 단계;
    핸드오버를 수행하는 동안에, 랜덤 액세스 절차(random access procedure)를 개시하는 단계;
    백오프 지시자(backoff indicator)를 포함하는 랜덤 액세스 응답을 기지국으로부터 수신하는 단계; 및
    상기 우선순위 정보를 기반으로, 상기 백오프 지시자에 의해 지시되는 상기 랜덤 액세스 백오프 파라미터를 조정(adjust)하는 단계;를 포함하는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서,
    상기 랜덤 액세스 백오프 파라미터는 영으로 조정되는 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서,
    상기 랜덤 액세스 절차는 하나 이상의 논리 채널(logical channel)로부터의 RLC PDU(Radio Link Control Protocol Data Unit)를 포함하는 MAC PDU(Medium Access Control Protocol Data Unit)를 전송하기 위해 개시되는 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서,
    상기 우선순위 정보는 우선순위 임계 값(priority threshold value)을 포함하는 것을 특징으로 하는 방법.
  5. 제 4 항에 있어서,
    논리 채널의 가장 높은 우선순위의 값이 상기 우선순위 임계 값 이상이면, 상기 랜덤 액세스 백오프 파라미터는 영으로 조정되는 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서,
    상기 우선순위 정보는 우선순위 리스트(priority list)를 포함하는 것을 특징으로 하는 방법.
  7. 제 6 항에 있어서,
    논리 채널의 가장 높은 우선순위의 값이 상기 우선순위 리스트에 포함되면, 상기 랜덤 액세스 백오프 파라미터는 영으로 조정되는 것을 특징으로 하는 방법.
  8. 제 1 항에 있어서,
    상기 우선순위 정보는 액세스 카테고리 리스트(access category list)를 포함하는 것을 특징으로 하는 방법.
  9. 제 8 항에 있어서,
    논리 채널과 연관된 액세스 카테고리가 상기 액세스 카테고리 리스트에 포함되면, 상기 랜덤 액세스 백오프 파라미터는 영으로 조정되는 것을 특징으로 하는 방법.
  10. 제 1 항에 있어서,
    상기 우선순위 정보는 우선순위 리스트(priority list) 및 스케일링 팩터(scaling factor)를 포함하는 것을 특징으로 하는 방법.
  11. 제 10 항에 있어서,
    논리 채널의 가장 높은 우선순위의 값이 상기 우선순위 리스트에 포함되면, 상기 랜덤 액세스 백오프 파라미터는 상기 스케일링 팩터를 곱함으로써 조정되는 것을 특징으로 하는 방법.
  12. 제 1 항에 있어서,
    상기 우선순위는 논리 채널 우선순위(logical channel priority), 액세스 카테고리의 우선순위(priority of access category), PPPP(ProSe Per Packet Priority), QCI, QoS 레벨 또는 QoS 플로우 ID 중 적어도 어느 하나에 대응하는 것을 특징으로 하는 방법.
  13. 제 1 항에 있어서,
    상기 우선순위 정보는 액세스 컨트롤 파라미터(access control parameter)를 포함하는 것을 특징으로 하는 방법.
  14. 제 13 항에 있어서,
    상기 단말이 상기 액세스 컨트롤 파라미터를 기반으로 셀로의 액세스가 금지되지 않는다고 결정하면, 상기 랜덤 액세스 백오프 파라미터는 영으로 조정되는 것을 특징으로 하는 방법.
  15. 제 1 항에 있어서,
    상기 조정된 랜덤 액세스 백오프 파라미터를 기반으로, 상기 랜덤 액세스 절차에서 후속하는 랜덤 액세스 프리앰블(subsequent random access preamble)을 상기 기지국에게 전송하는 단계;를 더 포함하는 것을 특징으로 하는 방법.
  16. 무선 통신 시스템에서 랜덤 액세스 백오프 파라미터(random access backoff parameter)를 조정하는 단말에 있어서,
    메모리; 송수신기; 및 상기 메모리와 상기 송수신기를 연결하는 프로세서를 포함하되, 상기 프로세서는
    상기 송수신기가 우선순위 정보(priority information)를 수신하도록 제어하고,
    핸드오버를 수행하는 동안에, 랜덤 액세스 절차(random access procedure)를 개시하고,
    상기 송수신기가 백오프 지시자(backoff indicator)를 포함하는 랜덤 액세스 응답을 기지국으로부터 수신하도록 제어하고, 및
    상기 우선순위 정보를 기반으로, 상기 백오프 지시자에 의해 지시되는 상기 랜덤 액세스 백오프 파라미터를 조정(adjust)하는 것을 특징으로 하는 단말.
PCT/KR2018/003177 2017-03-22 2018-03-19 랜덤 액세스 백오프 파라미터를 조정하는 방법 및 장치 WO2018174496A1 (ko)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AU2018238979A AU2018238979A1 (en) 2017-03-22 2018-03-19 Method and device for adjusting random access backoff parameter
CN201880002578.7A CN109417824A (zh) 2017-03-22 2018-03-19 用于调节随机接入退避参数的方法和装置
JP2018568802A JP2020510324A (ja) 2017-03-22 2018-03-19 ランダムアクセスバックオフパラメータを調整する方法及び装置
RU2018142890A RU2018142890A (ru) 2017-03-22 2018-03-19 Способ и устройство для регулировки параметра отсрочки произвольного доступа
US16/307,405 US10542470B2 (en) 2017-03-22 2018-03-19 Method and device for adjusting random access backoff parameter
KR1020207004619A KR102125539B1 (ko) 2017-03-22 2018-03-19 랜덤 액세스 백오프 파라미터를 조정하는 방법 및 장치
BR112018076665A BR112018076665A2 (pt) 2017-03-22 2018-03-19 método e dispositivo para ajuste do parâmetro de acesso aleatório de backoff
SG11201810654VA SG11201810654VA (en) 2017-03-22 2018-03-19 Method and device for adjusting random access backoff parameter
MX2018014666A MX2018014666A (es) 2017-03-22 2018-03-19 Metodo y dispositivo para ajustar el parametro de retraso de acceso aleatorio.
KR1020187026309A KR102104595B1 (ko) 2017-03-22 2018-03-19 랜덤 액세스 백오프 파라미터를 조정하는 방법 및 장치
EP18771755.8A EP3606267B1 (en) 2017-03-22 2018-03-19 Method and device for adjusting random access backoff parameter
US16/717,534 US11057804B2 (en) 2017-03-22 2019-12-17 Method and device for adjusting random access backoff parameter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762475161P 2017-03-22 2017-03-22
US201762475165P 2017-03-22 2017-03-22
US62/475,165 2017-03-22
US62/475,161 2017-03-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/307,405 A-371-Of-International US10542470B2 (en) 2017-03-22 2018-03-19 Method and device for adjusting random access backoff parameter
US16/717,534 Continuation US11057804B2 (en) 2017-03-22 2019-12-17 Method and device for adjusting random access backoff parameter

Publications (1)

Publication Number Publication Date
WO2018174496A1 true WO2018174496A1 (ko) 2018-09-27

Family

ID=63585565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003177 WO2018174496A1 (ko) 2017-03-22 2018-03-19 랜덤 액세스 백오프 파라미터를 조정하는 방법 및 장치

Country Status (11)

Country Link
US (2) US10542470B2 (ko)
EP (1) EP3606267B1 (ko)
JP (1) JP2020510324A (ko)
KR (2) KR102104595B1 (ko)
CN (1) CN109417824A (ko)
AU (1) AU2018238979A1 (ko)
BR (1) BR112018076665A2 (ko)
MX (1) MX2018014666A (ko)
RU (1) RU2018142890A (ko)
SG (1) SG11201810654VA (ko)
WO (1) WO2018174496A1 (ko)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201810654VA (en) * 2017-03-22 2018-12-28 Lg Electronics Inc Method and device for adjusting random access backoff parameter
US20180317264A1 (en) 2017-04-26 2018-11-01 Samsung Electronics Co., Ltd. Method and apparatus for performing random access procedure
CN109548080B (zh) * 2017-08-11 2023-05-16 夏普株式会社 用于媒体接入控制层组包的相关方法、用户设备和基站
US10887903B2 (en) 2017-10-26 2021-01-05 Ofinno, Llc Wireless device processes with bandwidth part switching
KR20200135790A (ko) * 2018-03-22 2020-12-03 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 랜덤 접속을 위한 방법 및 단말기
CN109890085B (zh) * 2019-03-04 2023-07-07 南京邮电大学 一种分优先级机器类通信随机接入退避参数确定方法
US11412549B2 (en) * 2019-03-27 2022-08-09 Mediatek Singapore Pte. Ltd. Broadcast and group-based handover in NR-based LEO-NTN
WO2021217466A1 (en) * 2020-04-28 2021-11-04 Nokia Shanghai Bell Co., Ltd. Transmitting reports of random access procedure
CN111542067B (zh) * 2020-05-09 2022-11-29 中通服咨询设计研究院有限公司 一种5g网络中基于业务类型的干扰退避方法
WO2022083880A1 (en) * 2020-10-23 2022-04-28 Nokia Technologies Oy Priority classes for random access procedures according to network slice and access category
WO2022236594A1 (en) * 2021-05-10 2022-11-17 Apple Inc. Access control
CN113225722B (zh) * 2021-07-08 2021-12-10 深圳市汇顶科技股份有限公司 数据传输方法、系统、芯片、电子设备及存储介质
DE102022206396A1 (de) 2022-06-24 2024-01-04 Continental Automotive Technologies GmbH System, Verfahren, Benutzergerät und Basisstation zum Ausführen einer Weiterreichung in einem drahtlosen Netz
DE102022206394A1 (de) * 2022-06-24 2024-01-04 Continental Automotive Technologies GmbH System, Verfahren, Benutzergerät und Basisstation zum Ausführen einer Weiterreichung in einem drahtlosen Netz
CN117715229A (zh) * 2022-09-05 2024-03-15 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000029041A (ko) * 1998-10-14 2000-05-25 루센트 테크놀러지스 인크 통신 시스템에서 랜덤 백오프 근거의 억세스 우선 순위를위한 방법과 장치
WO2011136558A2 (ko) * 2010-04-28 2011-11-03 엘지전자 주식회사 무선 통신 시스템에서 랜덤접속 절차를 수행하는 방법 및 장치
JP2012094976A (ja) * 2010-10-25 2012-05-17 Mitsubishi Electric Corp 無線通信システムおよび無線制御方法
US9408236B2 (en) * 2010-07-25 2016-08-02 Lg Electronics Inc. Method for distributing random access, method for distributing and performing random access, and device therefor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6567416B1 (en) 1997-10-14 2003-05-20 Lucent Technologies Inc. Method for access control in a multiple access system for communications networks
US7729696B2 (en) * 2005-05-26 2010-06-01 Motorola, Inc. Method and apparatus for accessing a wireless communication network
CN102132621B (zh) * 2009-11-10 2015-08-26 高通股份有限公司 用于促成随机接入规程期间的用户装备退避的方法和装置
MY164719A (en) * 2010-02-12 2018-01-30 Interdigital Patent Holdings Inc Method and apparatus for optimizing uplink random access channel transmission
WO2012015206A2 (ko) 2010-07-25 2012-02-02 엘지전자 주식회사 임의접속을 분산하는 방법 및 임의접속을 분산하여 수행하는 방법과 이를 위한 장치
EP2945452A1 (en) * 2010-08-13 2015-11-18 Interdigital Patent Holdings, Inc. In-device interference mitigation
US9402255B2 (en) * 2010-09-30 2016-07-26 Panasonic Intellectual Property Corporation Of America Timing advance configuration for multiple uplink component carriers
WO2012177029A2 (ko) * 2011-06-19 2012-12-27 엘지전자 주식회사 M2m 환경을 지원하는 무선접속시스템에서 비정상 정전 상황을 보고하기 위한 임의접속과정 수행방법
KR20130124198A (ko) * 2012-05-04 2013-11-13 한국전자통신연구원 우선순위가 높은 단말의 접속을 위한 기지국 제어 방법 및 이를 지원하는 기지국
US9532385B2 (en) 2012-10-23 2016-12-27 Lg Electronics Inc. Method and apparatus for performing backoff in wireless communication system
CN105340326B (zh) * 2013-06-16 2019-10-11 Lg电子株式会社 在无线通信系统中执行接入控制的方法和装置
WO2016186542A1 (en) * 2015-05-20 2016-11-24 Telefonaktiebolaget Lm Ericsson (Publ) Methods for a random access procedure, and user terminal, network node, computer programs and computer program products
US9826513B2 (en) * 2015-10-05 2017-11-21 Intel IP Corporation Uplink requests for communication resources
CN109644494B (zh) * 2016-06-15 2022-08-12 康维达无线有限责任公司 一种用于下一代网络中的随机接入过程的装置
WO2018151539A1 (ko) * 2017-02-16 2018-08-23 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 기지국과 단말 간 신호 송수신 방법 및 이를 지원하는 장치
SG11201810654VA (en) * 2017-03-22 2018-12-28 Lg Electronics Inc Method and device for adjusting random access backoff parameter
US20180317264A1 (en) * 2017-04-26 2018-11-01 Samsung Electronics Co., Ltd. Method and apparatus for performing random access procedure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000029041A (ko) * 1998-10-14 2000-05-25 루센트 테크놀러지스 인크 통신 시스템에서 랜덤 백오프 근거의 억세스 우선 순위를위한 방법과 장치
WO2011136558A2 (ko) * 2010-04-28 2011-11-03 엘지전자 주식회사 무선 통신 시스템에서 랜덤접속 절차를 수행하는 방법 및 장치
US9408236B2 (en) * 2010-07-25 2016-08-02 Lg Electronics Inc. Method for distributing random access, method for distributing and performing random access, and device therefor
JP2012094976A (ja) * 2010-10-25 2012-05-17 Mitsubishi Electric Corp 無線通信システムおよび無線制御方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3GPP; TSG RAN; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) Protocol Specification (Release 14", 3GPP TS 36.321 V14.1.0, 30 December 2016 (2016-12-30), XP055508941 *
See also references of EP3606267A4 *

Also Published As

Publication number Publication date
BR112018076665A2 (pt) 2019-11-26
US10542470B2 (en) 2020-01-21
CN109417824A (zh) 2019-03-01
EP3606267B1 (en) 2021-10-27
EP3606267A1 (en) 2020-02-05
SG11201810654VA (en) 2018-12-28
KR102125539B1 (ko) 2020-06-23
KR20180135889A (ko) 2018-12-21
EP3606267A4 (en) 2021-01-06
KR20200019797A (ko) 2020-02-24
RU2018142890A (ru) 2021-04-22
JP2020510324A (ja) 2020-04-02
US20200128456A1 (en) 2020-04-23
KR102104595B1 (ko) 2020-04-24
AU2018238979A1 (en) 2018-12-13
MX2018014666A (es) 2019-04-29
US20190098540A1 (en) 2019-03-28
US11057804B2 (en) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2018174496A1 (ko) 랜덤 액세스 백오프 파라미터를 조정하는 방법 및 장치
WO2018143656A1 (ko) 시스템 정보를 요청하는 방법 및 장치
JP6181866B2 (ja) 無線通信システムにおけるアクセス制御を実行するための方法および装置
WO2017052144A1 (en) Method for performing random access procedure in enhanced coverage mode in a wireless communication system and device therefor
EP3560273A1 (en) Method and apparatus for performing edt
WO2017191994A1 (ko) 무선 통신 시스템에서 osi 블록을 수신하는 방법 및 장치
US20210105813A1 (en) Apparatus and method for performing a random access procedure
WO2018128463A1 (ko) 단말이 데이터를 송수신하는 방법 및 장치
WO2017191919A1 (ko) Rach-less 핸드오버에서 상향링크 파워를 제어하는 방법 및 장치
WO2017131431A1 (en) Method for processing an uplink grant of which a resource size is zero in wireless communication system and a device therefor
WO2016144082A1 (en) Method for operating a fast random access procedure in a wireless communication system and a device therefor
WO2016144084A1 (en) Method for operating a fast random access procedure in a wireless communication system and a device therefor
CN110771210B (zh) 用于处置系统信息请求的失败的方法和设备
WO2018143608A1 (ko) 시스템 정보 블록 요청 방법 및 이를 지원하는 장치
WO2017052154A1 (ko) 우선되는 서비스가 전송되는 방법 및 장치
WO2019083245A1 (en) METHOD FOR REALIZING A RANDOM ACCESS PROCEDURE IN BANDWIDTH PART (BWP) OPERATION IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREOF
WO2018236108A1 (en) METHOD FOR REQUESTING UPLINK RESOURCE IN WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREFOR
WO2018169319A1 (ko) 시스템 정보 블록의 유효성을 판단하는 방법 및 이를 지원하는 장치
WO2019031797A1 (en) METHOD FOR REALIZING A RANDOM ACCESS PROCEDURE IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREFOR
WO2019013597A1 (ko) Acb 관련 파라미터를 업데이트하는 방법 및 장치
WO2016111580A1 (ko) Scptm 수신을 위한 rrc 연결 확립 방법 및 장치
WO2018203723A1 (en) Method and apparatus for managing a bearer configuration of a relay user equipment
WO2019031820A1 (en) METHOD AND APPARATUS FOR MANAGING FAILURE OF EARLY DATA TRANSMISSION IN A WIRELESS COMMUNICATION SYSTEM
WO2018009030A1 (ko) 단말의 이동성을 기반으로 트래킹 영역을 변경하는 방법 및 장치
WO2018174533A1 (ko) 공공 경고 시스템을 수행하는 방법 및 이를 지원하는 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187026309

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187026309

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771755

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018238979

Country of ref document: AU

Date of ref document: 20180319

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018568802

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018076665

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018771755

Country of ref document: EP

Effective date: 20191022

ENP Entry into the national phase

Ref document number: 112018076665

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181220