WO2018174425A1 - Light-emitting diode including distributed bragg reflector laminate - Google Patents

Light-emitting diode including distributed bragg reflector laminate Download PDF

Info

Publication number
WO2018174425A1
WO2018174425A1 PCT/KR2018/002542 KR2018002542W WO2018174425A1 WO 2018174425 A1 WO2018174425 A1 WO 2018174425A1 KR 2018002542 W KR2018002542 W KR 2018002542W WO 2018174425 A1 WO2018174425 A1 WO 2018174425A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
bragg reflectors
conductive semiconductor
distributed bragg
Prior art date
Application number
PCT/KR2018/002542
Other languages
French (fr)
Korean (ko)
Inventor
김재권
김종규
채종현
Original Assignee
서울바이오시스주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울바이오시스주식회사 filed Critical 서울바이오시스주식회사
Publication of WO2018174425A1 publication Critical patent/WO2018174425A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Definitions

  • the present invention relates to light emitting diodes, and more particularly, to light emitting diodes having a distributed Bragg reflector stack.
  • nitrides of Group III elements such as gallium nitride (GaN) and aluminum nitride (AlN) have excellent thermal stability and have a direct transition energy band structure.
  • GaN gallium nitride
  • AlN aluminum nitride
  • blue and green light emitting diodes using indium gallium nitride (InGaN) have been used in various applications such as large-scale color flat panel display devices, traffic lights, indoor lighting, high density light sources, high resolution output systems, and optical communications.
  • a light emitting diode is generally used in a package form through a packaging process, and a lens has been used together to adjust the directing pattern of the emitted light.
  • the light emitting diode in the form of a chip scale package performing a packaging process at a chip level are being conducted.
  • Such a light emitting diode is smaller in size than a general package and does not perform a separate packaging process, thereby simplifying the process and saving time and money.
  • the light emitting diode in the form of a chip scale package generally has a flip chip-shaped electrode structure and has excellent heat dissipation characteristics.
  • the lens used to adjust the directing pattern of the emitted light is relatively large compared to the light emitting diode, thereby increasing the size of the light emitting module.
  • the directional pattern adjustment using the lens is not suitable for the light emitting diode technology trend to simplify the process.
  • the problem to be solved by the present invention is to provide a light emitting diode that can adjust the light directing pattern without using a lens.
  • Another object of the present invention is to provide a flip chip structure light emitting diode in the form of a chip scale package.
  • a light emitting diode a semiconductor laminate comprising a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer; And a plurality of distributed Bragg reflectors disposed on one side of the semiconductor stack, wherein the plurality of Distributed Bragg reflectors are stacked with different areas.
  • a light emitting diode comprising: a semiconductor laminate including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; And a stack of distribution Bragg reflectors disposed on one side of the semiconductor stack, wherein the stack of Distribution Bragg reflectors includes regions having different thicknesses, and the stack of Distribution Bragg reflectors has a thick thickness region. Has a higher reflectivity at.
  • the direction pattern of the outgoing light may be adjusted through the stacking of the distribution Bragg reflectors, and thus, the lens may be omitted.
  • FIG. 1 is a schematic cross-sectional view for describing a light emitting diode according to an embodiment of the present invention.
  • FIG. 2 is a schematic graph for explaining an emission light directing pattern of a light emitting diode according to an embodiment of the present invention.
  • 3A is a schematic plan view illustrating a light emitting diode according to still another embodiment of the present invention.
  • FIG. 3B is a schematic cross sectional view taken along cut line A-A of FIG. 3A.
  • 4 to 9 are plan views and cross-sectional views illustrating a method of manufacturing a light emitting diode according to an embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view for describing a light emitting diode according to still another embodiment of the present invention.
  • a light emitting diode a semiconductor laminate comprising a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer; And a plurality of distributed Bragg reflectors disposed on one side of the semiconductor stack, wherein the plurality of Distributed Bragg reflectors are stacked with different areas.
  • the reflectance can be adjusted according to the position, and thus the directivity pattern of the emitted light can be adjusted.
  • the plurality of distributed Bragg reflectors may have a narrower area from the semiconductor laminate. Since distributed Bragg reflectors have a narrow area in sequence, they can be manufactured relatively easily.
  • the plurality of distributed Bragg reflectors may have the same central axis. Accordingly, the directivity pattern of the emitted light can be formed symmetrically, and the amount of light emitted in the direction of the central axis of the light emitting diode can be reduced.
  • the plurality of distributed Bragg reflectors may be stacked such that one side sides are side by side. Thereby, the directivity pattern of the emitted light can be formed asymmetrically.
  • each of the distribution Bragg reflectors may exhibit a reflectance in the range of 5% to 50%. These distributed Bragg reflectors are stacked on each other resulting in higher reflectance.
  • the reflectance of the region where the distribution Bragg reflectors are most overlapped may represent a reflectance of 90% or more with respect to the light emitted from the active layer.
  • the reflectance of the region where the distribution Bragg reflectors least overlap may exhibit a reflectance of 10% or less.
  • the light emitting diode may further include a substrate positioned between the semiconductor laminate and the plurality of distributed Bragg reflectors.
  • the light emitting diode may include a lower insulating layer covering the semiconductor stack and including a first opening exposing a first conductive semiconductor layer of the semiconductor stack; And a first metal layer disposed on the lower insulating layer and electrically connected to the first conductive semiconductor layer through a first opening of the lower insulating layer.
  • the light emitting diode further includes an ohmic reflective layer disposed on the second conductive semiconductor layer and ohmic contacting the second conductive semiconductor layer, wherein the lower insulating layer has a second opening exposing the ohmic reflective layer. It may further include.
  • the light emitting diode may further include an upper insulating layer covering the first metal layer; A first bump pad and a second bump pad disposed on the upper insulating layer and electrically connected to the first conductive semiconductor layer and the second conductive semiconductor layer of the semiconductor laminate, respectively;
  • the layer may include a first opening that exposes the first metal layer, and the first bump pad may be connected to the first metal layer through the first opening.
  • the semiconductor laminate may include a plurality of light emitting cells spaced apart from each other, and the first metal layer may be configured to electrically connect neighboring light emitting cells in series to form a series array of light emitting cells. And a first pad metal layer electrically connected to the first conductivity-type semiconductor layer of the last light emitting cell disposed at the end of the series array. Accordingly, it is possible to provide a light emitting diode that can be driven at a high voltage.
  • the second pad metal layer may be electrically connected to the ohmic reflective layer on the first light emitting cell through the second opening.
  • the light emitting diode includes: an upper insulating layer covering the connection portion (s), the first and second pad metal layers, and having openings exposing upper surfaces of the first and second pad metal layers, respectively; And a first bump pad and a second bump pad connected to upper surfaces of the first pad metal layer and the second pad metal layer exposed by the openings of the upper insulating layer, respectively.
  • the first bump pad and the second bump pad can be formed at the same height.
  • the first bump pad and the second bump pad may be disposed over an upper region of two or more light emitting cells, respectively. Therefore, the first and second bump pads can be formed relatively large, so that mounting of the light emitting diode can be facilitated.
  • a light emitting diode comprising: a semiconductor laminate including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; And a stack of distribution Bragg reflectors disposed on one side of the semiconductor stack, wherein the stack of Distribution Bragg reflectors includes regions having different thicknesses, and the stack of Distribution Bragg reflectors has a thick thickness region. Has a higher reflectivity at.
  • the directing pattern of the emitted light can be controlled.
  • the stack of distributed Bragg reflectors may exhibit the highest reflectance in the center and the lowest reflectance near the edges. Accordingly, it is possible to disperse the light emitted from the light emitting diode without using a dispersing lens for dispersing the light.
  • At least a part of the light generated in the active layer may be emitted to the outside through the stack of the distribution Bragg reflectors.
  • the light emitting diode may further include a substrate disposed between the semiconductor stack and the stack of distributed Bragg reflectors.
  • the light emitting diode may further include a first bump pad and a second bump pad disposed on the semiconductor laminate and electrically connected to the first conductive semiconductor layer and the second conductive semiconductor layer, respectively. . Accordingly, a light emitting diode having a flip chip structure can be provided.
  • FIG. 1 is a schematic cross-sectional view for describing a light emitting diode according to an embodiment of the present invention.
  • the light emitting diode includes a substrate 21, a semiconductor laminate 30, a first bump pad 39a and a second bump pad 39b, and a plurality of distributed Bragg reflectors 51, 53, 55, 57, 59).
  • the substrate 21 may be, for example, a substrate capable of growing a gallium nitride based semiconductor layer.
  • the substrate 21 may include a sapphire substrate, a gallium nitride substrate, a SiC substrate, or the like, and in particular, may be a patterned sapphire substrate.
  • the substrate 21 may have a rectangular or square planar shape, but is not limited thereto.
  • the size of the substrate 21 is not particularly limited and may be variously selected.
  • the semiconductor laminate 30 includes a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer, and emits light using a combination of electrons and holes in the active layer.
  • the specific structure of the semiconductor laminate 30 is described in detail later with reference to FIG. 3.
  • first bump pads 39a and the second bump pads 39b are disposed on the semiconductor laminate 30, and the first and second bump pads 39a and 39b are respectively the first conductive semiconductor layer. And a second conductive semiconductor layer.
  • a stack of distribution Bragg reflectors 51 to 59 is disposed on the substrate 21.
  • a plurality of distributed Bragg reflectors 51 to 59 are stacked with different areas.
  • the first distributed Bragg reflector 51 closest to the substrate 21 may have the same area as the substrate 21 but may be smaller than that.
  • the first distributed Bragg reflector 51 may be disposed on the substrate 21 such that its central axis coincides with the central axis of the substrate 21.
  • the distributed Bragg reflectors 53 to 59 disposed thereon may be arranged in order with a narrower area as farther from the substrate 21 as possible.
  • the central axes of the distribution Bragg reflectors 51 to 59 may be disposed to coincide with each other.
  • the stack of distributed Bragg reflectors 51-59 is the thickest in the central region and the thinnest near the edge.
  • the distributed Bragg reflectors 51, 53, 55, 57, 59 may each reflect light generated in the active layer with a reflectance in the range of 5% to 50%.
  • these distributed Bragg reflectors 51 to 59 are stacked on each other, whereby a higher reflectance is exhibited in a region having a large number of stacked layers, that is, a thick region.
  • the central region in which all the distribution Bragg reflectors 51 to 59 are stacked may exhibit a reflectance of 90% or more with respect to the light generated in the active layer, and at the edge where only the Distribution Bragg reflectors 51 are disposed. A reflectance of 10% or less can be exhibited.
  • the distributed Bragg reflectors 51, 53, 55, 57, 59 have a structure in which a first material layer and a second material layer having different refractive indices are alternately stacked.
  • the first material layer may be SiO 2 or MgF 2
  • the second material layer may be a material layer having a higher refractive index than the first material layer.
  • the second material layer can be, for example, TiO 2 , Nb 2 O 5 or ZrO 2 .
  • the distribution Bragg reflectors 51, 53, 55, 57, 59 may all be formed of the same first and second material layers, but are not limited to this and are formed of different first and second material layers. May be
  • the first distributed Bragg reflector 51 may be formed of SiO 2 / TiO 2
  • the second distributed Bragg reflector 51 may be formed of SiO 2 / ZrO 2.
  • the reflectance of the distributed Bragg reflectors can be adjusted by adjusting the types of the first and second material layers constituting the distributed Bragg reflectors 51 to 59, the formation method, the thickness and the number of the stacked layers.
  • each of the distribution Bragg reflectors 51 to 59 are vertical, but the present invention is not limited thereto.
  • the sides of the distribution Bragg reflectors 51-59 may have an inclination angle within the range of about 20 to 70 degrees with respect to the substrate 21 surface.
  • Light generated in the active layer is generally emitted to the outside through the distribution Bragg reflectors 51 to 59.
  • light is emitted onto the semiconductor laminate 30 on the side of the first bump pad 39a and the second bump pad 39b.
  • Another reflector may be provided for reflecting toward 21).
  • the amount of emitted light can be controlled by using a stacked structure of the distributed Bragg reflectors 51 to 59. By controlling the amount of light emitted according to the position, the directing pattern of the emitted light can be adjusted.
  • the distribution Bragg reflectors 51 to 59 are disposed on the substrate 21 opposite to the semiconductor stack 30, but the Distribution Bragg reflectors 51 to 59 are semiconductor stacks. It may be disposed on the sieve 30. In this case, the light generated in the active layer will be emitted in the direction opposite to the substrate 21 through the distribution Bragg reflectors 51 to 59.
  • FIG. 2 is a schematic graph for explaining an emission light directing pattern of a light emitting diode according to an embodiment of the present invention.
  • the distribution Bragg reflectors 51 to 59 are disposed in the center region of the substrate 21 so as to have a high reflectance and a low reflectance at the edge thereof. It is possible to reduce the intensity of the light emitted and to allow more light to be emitted at a larger angle of directivity.
  • the distribution Bragg reflectors 51 to 59 can adjust the directing pattern of the emitted light, the amount of light in the central region can be reduced. Thus, there is no need to use a separate lens such as a dispersion lens used to change the directing pattern of the light emitting diode.
  • the light emitting diode may be used without a lens as a light source of the backlight, thereby reducing the backlight module of the direct type light emitting module.
  • FIG. 3A is a schematic plan view illustrating a light emitting diode according to still another embodiment of the present invention
  • FIG. 3B is a cross-sectional view taken along the cutting line A-A of FIG. 3A.
  • the light emitting diode includes a substrate 21, a semiconductor laminate 30, an ohmic reflective layer 31, a lower insulating layer 33, a first pad metal layer 35a, and a second pad metal layer. 35b, connecting portions 35ab, an upper insulating layer 37, a first bump pad 39a and a second bump pad 39b, and a stack of distributed Bragg reflectors 51 to 59.
  • the semiconductor laminate 30 may include a first conductive semiconductor layer 23, an active layer 25, and a second conductive semiconductor layer 27, and may be separated into a plurality of light emitting cells C1 to C7. .
  • the substrate 21 is not particularly limited as long as it is a substrate capable of growing a gallium nitride semiconductor layer.
  • Examples of the substrate 21 may include a sapphire substrate, a gallium nitride substrate, a SiC substrate, and the like, and may be a patterned sapphire substrate.
  • the substrate 21 may have a rectangular or square outer shape as shown in the plan view of FIG. 3A, but is not necessarily limited thereto.
  • the size of the substrate 21 is not particularly limited and may be variously selected.
  • the semiconductor laminate 30 may be separated into a plurality of light emitting cells C1 to C7.
  • the plurality of light emitting cells C1 to C7 are spaced apart from each other on the substrate 21. Although seven light emitting cells C1 to C7 are shown in the present embodiment, the number of light emitting cells can be adjusted.
  • the semiconductor laminate 30 is described as being separated into a plurality of light emitting cells C1 to C7, but may be a single light emitting cell that is not separated.
  • the light emitting cells C1 to C7 each include a first conductivity type semiconductor layer 23.
  • the first conductivity type semiconductor layer 23 is disposed on the substrate 21.
  • the first conductivity-type semiconductor layer 23 is a layer grown on the substrate 21 and may be a gallium nitride-based semiconductor layer doped with impurities such as Si.
  • the active layer 25 and the second conductive semiconductor layer 27 are disposed on the first conductive semiconductor layer 23.
  • the active layer 25 is disposed between the first conductive semiconductor layer 23 and the second conductive semiconductor layer 27.
  • the active layer 25 and the second conductive semiconductor layer 27 may have an area smaller than that of the first conductive semiconductor layer 23.
  • the active layer 25 and the second conductive semiconductor layer 27 may be located on the first conductive semiconductor layer 23 in a mesa form by mesa etching.
  • the edges of 27 may be spaced apart from each other. That is, a part of the upper surface of the first conductivity type semiconductor layer 23 is exposed to the outside of the mesa.
  • the active layer 25 is spaced farther from the edge of the substrate 21 than the first conductive semiconductor layer 23, and thus, the active layer 25 may be prevented from being damaged in the substrate separation process by the laser.
  • the edge of the first conductive semiconductor layer 23, the active layer 25, and the second conductive semiconductor layer 27 are formed.
  • the edge of) may be located on the same slope. Therefore, the top surface of the first conductivity-type semiconductor layer 23 may not be exposed in the light emitting cells facing each other. Accordingly, the light emitting area of the light emitting cells C1 to C7 can be secured.
  • the active layer 25 may have a single quantum well structure or a multiple quantum well structure.
  • the composition and thickness of the well layer in the active layer 25 determines the wavelength of the light produced. In particular, it is possible to provide an active layer that generates ultraviolet light, blue light or green light by adjusting the composition of the well layer.
  • the second conductivity-type semiconductor layer 27 may be a gallium nitride-based semiconductor layer doped with p-type impurities, for example, Mg.
  • Each of the first conductive semiconductor layer 23 and the second conductive semiconductor layer 27 may be a single layer, but is not limited thereto, and may be a multilayer or a superlattice layer.
  • the first conductive semiconductor layer 23, the active layer 25, and the second conductive semiconductor layer 27 may be formed using a known method such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE). It may be formed and grown on the substrate 21 within.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • the light emitting cells C1 to C7 have through holes 30a through the second conductive semiconductor layer 27 and the active layer 23 to expose the first conductive semiconductor layer 23.
  • the through holes 30a are surrounded by the second conductivity type semiconductor layer 27 and the active layer 25.
  • the through holes 30a may be disposed in the central area of the light emitting cells C1 to C7 and may have an elongated shape.
  • the present invention is not limited thereto, and a plurality of through holes may be formed in each light emitting cell.
  • the ohmic reflective layer 31 is disposed on the second conductive semiconductor layer 27 and electrically connected to the second conductive semiconductor layer 27.
  • the ohmic reflective layer 31 may be disposed over almost the entire area of the second conductive semiconductor layer 27 in the upper region of the second conductive semiconductor layer 27.
  • the ohmic reflective layer 31 may cover 80% or more of the upper region of the second conductivity-type semiconductor layer 27 and more than 90%.
  • the ohmic reflective layer 31 may include a reflective metal layer, and thus may reflect light generated in the active layer 25 and traveling to the ohmic reflective layer 31 toward the substrate 21.
  • the ohmic reflective layer 31 may be formed of a single reflective metal layer, but is not limited thereto.
  • the ohmic reflective layer 31 may include an ohmic layer and a reflective layer.
  • a metal layer such as Ni or a transparent oxide layer such as indium tin oxide (ITO) may be used, and a reflective metal layer such as Ag or Al may be used as the reflective layer.
  • the lower insulating layer 33 covers the light emitting cells C1 to C7 and the ohmic reflective layer 31.
  • the lower insulating layer 33 may cover not only the upper surfaces of the light emitting cells C1 to C7 but also the side surfaces of the light emitting cells C1 to C7 along the periphery thereof, and the substrates around the light emitting cells C1 to C7 ( 21) can be partially covered.
  • the lower insulating layer 33 particularly covers the cell isolation region ISO between the light emitting cells C1 to C7, and further partially covers the first conductivity-type semiconductor layer 23 exposed in the through holes 30a. Can be covered with
  • the lower insulating layer 33 has first openings 33a exposing the first conductivity type semiconductor layer and second openings 33b exposing the ohmic reflective layers 31.
  • the first opening 33a may expose the first conductivity-type semiconductor layer 23 in the through hole 30a and may expose the upper surface of the substrate 21 along the edge of the substrate 21.
  • the second opening 33b is positioned above the ohmic reflective layer 31 to expose the ohmic reflective layer 31.
  • the position and shape of the second openings 33b may be variously modified to arrange and electrically connect the light emitting cells C1 to C7.
  • one second opening 33b is disposed on each light emitting cell in FIG. 1, a plurality of second openings 33b may be disposed on each light emitting cell.
  • the lower insulating layer 33 may be formed of a single layer such as a silicon oxide film or a silicon nitride film.
  • the lower insulating layer 33 may be formed of multiple layers, and in particular, may have a laminated structure in which a first material layer having a first refractive index and a second material layer having a second refractive index are alternately stacked.
  • the lower insulating layer 33 may be a distributed Bragg reflector having a high reflectance in a specific wavelength band through the stacked structure.
  • the first material layer may be SiO 2 or MgF 2
  • the second material layer may be a material layer having a higher refractive index than the first material layer.
  • the second material layer can be, for example, TiO 2 , Nb 2 O 5 or ZrO 2 .
  • the first material layer may be formed of an SiO 2 layer, and the second material layer may be formed of a ZrO 2 layer, thereby improving the moisture resistance of the lower insulating layer 33.
  • the first pad metal layer 35a, the second pad metal layer 35b, and the connecting portions 35ab are disposed on the lower insulating layer 33.
  • the second pad metal layer 35a is positioned on the first light emitting cell C1
  • the first pad metal layer 35b is positioned on the last light emitting cell, that is, the seventh light emitting cell C7.
  • the connection parts 35ab are positioned over two neighboring light emitting cells, and electrically connect the light emitting cells C1 to C7 in series. Accordingly, seven light emitting cells C1 to C7 are connected in series by the connecting parts 35ab to form a series array.
  • the first light emitting cell C1 is located at the first end of the serial array
  • the last light emitting cell, the seventh light emitting cell C7 is located at the end of the series array.
  • the first pad metal layer 35a is in the upper region of the last light emitting cell C7 and further, in the upper region of the second conductive semiconductor layer 27 of the last light emitting cell C7. It can be located within.
  • the first pad metal layer 35a is also electrically connected to the first conductive semiconductor layer 23 of the last light emitting cell C7 through the first opening 33a of the lower insulating layer 33.
  • the first pad metal layer 35a may directly contact the first conductive semiconductor layer 23 through the first opening 33a.
  • the second pad metal layer 35b may be located within the upper region of the first light emitting cell C1 and further, in the upper region of the second conductive semiconductor layer 27 of the first light emitting cell C1. have.
  • the second pad metal layer 35b is electrically connected to the ohmic reflective layer 31 on the first light emitting cell C1 through the second opening 33b of the lower insulating layer 33.
  • the second pad metal layer 35b may directly contact the ohmic reflective layer 31 through the second opening 33b.
  • the second pad metal layer 35b may be surrounded by the connecting portion 35ab, so that a boundary area surrounding the second pad metal layer 35b is formed between the second pad metal layer 35b and the connecting portion 35ab. Can be formed. This boundary region exposes the lower insulating layer 33.
  • connection parts 35ab electrically connect neighboring light emitting cells.
  • Each connecting portion 35ab is electrically connected to the first conductive semiconductor layer 23 of one light emitting cell, and the ohmic reflective layer 31 of the neighboring light emitting cell, and thus, the second conductive semiconductor layer 27.
  • These light emitting cells are connected in series by electrically connecting the same.
  • each of the connection parts 35ab may be electrically connected to the first conductive semiconductor layer 23 exposed through the first opening 33a of the lower insulating layer 33, and the second opening 33b may be electrically connected to each other. It can be electrically connected to the ohmic reflective layer 31 exposed through.
  • the connection parts 35ab may directly contact the first conductivity-type semiconductor layer 23 and the ohmic reflective layer 31.
  • connection part 35ab passes through a cell isolation region ISO between the light emitting cells.
  • Each connection part 35ab may pass through only one edge upper region of the edges of the first conductivity-type semiconductor layer 23. Accordingly, the area of the connection portion 35ab positioned above the cell isolation region ISO may be reduced. Further, all of the remaining portions except for the portion of the connection portion 35ab passing through the cell separation region ISO are connected to the upper portion of the light emitting cells region to connect neighboring light emitting cells.
  • the light emitting cells C1 to C7 may each have a rectangular shape as shown in FIG. 3A, and thus have four edges.
  • connection part 35ab passes through an upper edge region of only one of the edges of one light emitting cell, and may be spaced apart from an upper region of the remaining edges of the light emitting cell.
  • the connection parts 35ab may cover two or more sides of the light emitting cell, and may cover cell separation regions around four sides of the light emitting cell.
  • first pad metal layer 35a, the second pad metal layer 35b, and the connecting portions 35ab may be formed together with the same material in the same process after the lower insulating layer 33 is formed, and thus are located at the same level. can do.
  • first pad metal layer 35a, the second pad metal layer 35b, and the connecting portions 35ab may include portions positioned on the lower insulating layer 33, respectively.
  • the first and second pad metal layers 35a and 35b and the connection part 35ab may include a reflective layer such as an Al layer, and the reflective layer may be formed on an adhesive layer such as Ti, Cr, or Ni.
  • a protective layer having a single layer or a composite layer structure such as Ni, Cr, Au, or the like may be formed on the reflective layer.
  • the first and second pad metal layers 35a and 35b and the connecting portions 35ab may have, for example, a multilayer structure of Cr / Al / Ni / Ti / Ni / Ti / Au / Ti.
  • the upper insulating layer 37 covers the first and second pad metal layers 35a and 35b and the connecting portions 35ab. In addition, the upper insulating layer 37 may cover the edge of the lower insulating layer 33 along the circumference of the light emitting cells C1 to C7. However, the upper insulating layer 37 may expose the upper surface of the substrate 21 along the edge of the substrate 21.
  • the shortest distance from the edge of the upper insulating layer 37 to the connections 35ab may be about 15 um or more to prevent moisture from penetrating and damaging the connections 35ab.
  • the upper insulating layer 37 has a first opening 37a exposing the first pad metal layer 35a and a second opening 37b exposing the second pad metal layer 35b.
  • the first opening 37a and the second opening 37b are disposed in the last light emitting cell C7 and the upper region of the first light emitting cell C1, respectively. Except for the first and second openings 37a and 37b, all other regions of the light emitting cells C1 to C7 may be covered with the upper insulating layer 37. Therefore, both the top and side surfaces of the connecting portions 35ab may be covered with the upper insulating layer 37 and sealed.
  • the second openings 37b of the upper insulating layer 37 may be spaced apart laterally so as not to overlap the second openings 33b of the lower insulating layer 33. Accordingly, even if the solder penetrates through the second opening 37b of the upper insulating layer 37, it is possible to prevent the solder from diffusing into the second opening 33b of the lower insulating layer 33, thereby preventing ohmic caused by the solder. Contamination of the reflective layer 31 can be prevented.
  • the present invention is not limited thereto, and the second opening 37b of the upper insulating layer 37 may be disposed to overlap the second opening 33b of the lower insulating layer 33.
  • the upper insulating layer 37 may be formed of a single layer of SiO 2 or Si 3 N 4 , but is not limited thereto.
  • the upper insulating layer 37 may have a multilayer structure in which a first material layer having a first refractive index and a second material layer having a second refractive index are alternately stacked similarly to the lower insulating layer 33.
  • the first material layer may be SiO 2 or MgF 2
  • the second material layer may be a material layer having a higher refractive index than the first material layer.
  • the second material layer can be, for example, TiO 2 , Nb 2 O 5 or ZrO 2 .
  • the first material layer may be formed of a SiO 2 layer
  • the second material layer may be formed of a ZrO 2 layer. Accordingly, a light emitting diode with high moisture resistance can be provided.
  • the upper insulating layer may be a distributed Bragg reflector.
  • the first bump pad 39a is in electrical contact with the first pad metal layer 35a exposed through the first opening 37a of the upper insulating layer 37, and the second bump pad 39b is second.
  • the second pad metal layer 35b exposed through the opening 37b may be electrically connected to the second pad metal layer 35b.
  • the first bump pad 39a covers and seals all of the first openings 37a of the upper insulating layer 37, and the second bump pad 39b covers the second opening 37b of the upper insulating layer 37. Cover all and seal.
  • the first and second bump pads 39a and 39b may be disposed over the plurality of light emitting cells.
  • the first bump pad 39a is disposed over an upper region of the second, third, fifth, sixth, and seventh light emitting cells C2, C3, C5, C6, and C7.
  • the bump pad 39b is disposed over an upper region of the first, fourth, fifth, and sixth light emitting cells C1, C4, C5, and C6. Accordingly, the first and second bump pads 39a and 39b may be formed relatively large, and thus, may assist in the process of mounting the light emitting diode.
  • the first bump pads 39a and the second bump pads 39b are formed of a material suitable for bonding as portions of the light emitting diodes bonded to a submount or a printed circuit board.
  • the first and second bump pads 39a and 39b may include an Au layer or an AuSn layer.
  • the distribution Bragg reflectors 51 to 59 are disposed on the substrate 21 to face the semiconductor stack 30. Since the distribution Bragg reflectors 51 to 59 have been described with reference to FIGS. 1 and 2, the detailed description thereof will be omitted.
  • the number of the light emitting cells may be larger or smaller.
  • the light emitting diode may comprise a single light emitting cell, in which case the connection part 35ab is unnecessary.
  • FIG. 4 through 9 are schematic plan views and cross-sectional views for describing a method of manufacturing a light emitting diode according to the embodiment of FIG. 3A.
  • a represents a plan view and b represents a cross sectional view taken along the cut line A-A of each plan view.
  • the substrate 21 may be a substrate capable of growing a gallium nitride based semiconductor layer, and may be, for example, a sapphire substrate, a silicon carbide substrate, a gallium nitride (GaN) substrate, a spinel substrate, or the like.
  • the substrate 21 may be a patterned substrate, such as a patterned sapphire substrate.
  • the first conductive semiconductor layer 23 may include, for example, an n-type gallium nitride based layer, and the second conductive semiconductor layer 27 may include a p-type gallium nitride based layer.
  • the active layer 25 may be a single quantum well structure or a multi-quantum well structure, and may include a well layer and a barrier layer.
  • the well layer may be selected in its composition according to the wavelength of light required, for example AlGaN, GaN or InGaN.
  • a plurality of light emitting cells C1 to C7 are formed by patterning the semiconductor stack 30.
  • a mesa forming process for exposing the top surface of the first conductivity type semiconductor layer 23 and a cell separation process for forming the cell isolation region ISO may be performed using a photo and etching process.
  • the light emitting cells C1 to C7 are spaced apart from each other by the cell isolation region ISO, and have through holes 30a. As shown in FIG. 4B, the sidewalls of the cell isolation region ISO and the sidewalls of the through holes 30a may be inclined.
  • an upper surface of the first conductive semiconductor layer 23 of each of the light emitting cells is exposed by a mesa etching process.
  • the through holes 30a may be formed together in a mesa etching process.
  • the upper surface of the first conductive semiconductor layer 23 may be exposed in a ring shape along the circumferences of the second conductive semiconductor layer 27 and the active layer 23, but is not limited thereto.
  • the top surface of the first conductivity-type semiconductor layer 23 is exposed near the edges of the light emitting cells C1 to C7 positioned near the edge of the substrate 21.
  • the second conductivity type semiconductor layer 27, the active layer 23 and the first conductivity type semiconductor layer 23 may form a continuous inclined surface, and thus, the first conductivity type semiconductor layer 23 The top surface may not be exposed.
  • the first conductive semiconductor layer 23 of the isolated light emitting cell forms a continuous inclined surface together with the second conductive semiconductor layer 27 and the active layer 25, and the upper surface exposed near the edge is formed. You may not have it at all.
  • the top surface of the second conductivity-type semiconductor layer 27 of each light emitting cell is the highest, and the surface of the substrate 21 exposed to the cell isolation region ISO is the lowest.
  • ohmic reflective layers 31 are formed on the light emitting cells C1 to C7, respectively.
  • the ohmic reflective layer 31 may be formed using, for example, a lift off technique.
  • the ohmic reflective layer 31 may be formed of a single layer or multiple layers, and may include, for example, an ohmic layer and a reflective layer. These layers can be formed using, for example, electron-beam evaporation.
  • a preliminary insulating layer (not shown) having an opening may be formed first in the region where the ohmic reflective layer 31 is to be formed.
  • the ohmic reflective layer 31 is formed after the light emitting cells C1 to C7 are formed, but is not limited thereto.
  • the ohmic reflective layer 31 may be formed first, and the light emitting cells C1 to C7 may be formed, and a metal layer for the ohmic reflective layer 31 is deposited on the semiconductor stack 30.
  • the metal layer and the semiconductor stack 30 may be patterned together to form the ohmic reflective layer 31 and the light emitting cells C1 to C7 together.
  • a lower insulating layer 33 covering the ohmic reflective layer 31 and the light emitting cells C1 to C7 is formed.
  • the lower insulating layer 33 may be formed of a single layer such as SiO 2 or Si 3 N 4.
  • the lower insulating layer 33 may be formed by alternately stacking a first material layer and a second material layer having different refractive indices using a technique such as chemical vapor deposition (CVD).
  • the first material layer may be SiO 2 or MgF 2
  • the second material layer may be a material layer having a higher refractive index than the first material layer.
  • the second material layer can be, for example, TiO 2 , Nb 2 O 5 or ZrO 2 .
  • the first material layer can be, for example, an SiO 2 layer
  • the second material layer can be a ZrO 2 layer.
  • the ZrO 2 layer As the second material layer, the lower insulating layer 33 having high moisture resistance can be provided.
  • the preliminary insulating layer (not shown) described above may be integrated with the lower insulating layer 33. Therefore, due to the preliminary insulating layer formed around the ohmic reflective layer 31, the thickness of the lower insulating layer 33 may vary depending on the position. That is, the lower insulating layer 33 on the ohmic reflective layer 31 may be thinner than the lower insulating layer 33 around the ohmic reflective layer 31.
  • the lower insulating layer 33 may be patterned through a photolithography and an etching process. Accordingly, the lower insulating layer 33 may expose the first conductive semiconductor layer 23 in the through holes 30a. It has an opening 33a and has a second opening 33b exposing the ohmic reflective layer 31 on each light emitting cell. Further, the lower insulating layer 33 has a side surface disposed near the edge of the substrate 21.
  • a first pad metal layer 35a, a second pad metal layer 35b, and connecting portions 35ab are formed on the lower insulating layer 33.
  • the connecting parts 35ab electrically connect the first to seventh light emitting cells C1 to C7 to form a series array of light emitting cells C1 to C7.
  • the first light emitting cell C1 is positioned at the first end of the series array, and the seventh light emitting cell C7 is positioned at the end of the series array.
  • the connecting portions 35ab electrically connect the first conductive semiconductor layer 23 of one light emitting cell and the second conductive semiconductor layer 27 of the light emitting cell adjacent thereto.
  • the connecting portions 35ab may be electrically connected to the first conductive semiconductor layer 23 exposed in the through holes 30a through the first openings 33a of the lower insulating layer 33.
  • the ohmic reflective layer 31 may be electrically connected through the second openings 33b of 33.
  • the connection parts 35ab may directly contact the first conductivity-type semiconductor layer 23 and the ohmic reflective layer 31.
  • connection parts 35ab pass through the cell isolation region ISO to connect neighboring light emitting cells.
  • each connection portion 35ab is formed at the edge of only one of the edges of the first conductivity-type semiconductor layer 23 of one light emitting cell in order to reduce the influence of the morphology on the substrate 21. Pass the upper part That is, in the present embodiment, the first conductive semiconductor layer 23 of each light emitting cell has four edges, and the connecting portion 35ab passes over the upper edge of only one of these edges. It is possible to prevent the connection part 35ab from passing through the cell isolation region ISO unnecessarily for electrical connection, thereby reducing the damage of the connection part 35ab due to the influence of the morphology.
  • the connection part 35ab may cover two or more side surfaces of the light emitting cell, and may cover two or more cell separation regions ISO around the light emitting cell.
  • the first pad metal layer 35a is positioned on the last light emitting cell C7 located at the end of the series array of light emitting cells, and the second pad metal layer 35b is positioned on the first light emitting cell C1 located at the first end. do.
  • the first pad metal layer 35a may be located within the upper region of the second conductive semiconductor layer 27 of the last light emitting cell C7, and the second pad metal layer 35b may be disposed on the first light emitting cell C1. It can be located confined in the upper region.
  • the first pad metal layer 35a is electrically connected to the first conductive semiconductor layer 23 through the first opening 33a of the lower insulating layer 33 on the last light emitting cell C7.
  • the first pad metal layer 35a may directly contact the first conductive semiconductor layer 23. Therefore, the first pad metal layer 35a may include an ohmic layer that ohmic contacts the first conductive semiconductor layer 23.
  • the second pad metal layer 35b is electrically connected to the ohmic reflective layer 31 on the first light emitting cell C1 through the second opening 33b of the lower insulating layer 33.
  • the second pad metal layer 35b may directly contact the ohmic reflective layer 31.
  • the second pad metal layer 35b may be surrounded by the connection part 35ab. Accordingly, a boundary region may be formed between the second pad metal layer 35b and the connection portion 35ab, and the lower insulating layer 33 may be exposed on the boundary region.
  • the first pad metal layer 35a, the second pad metal layer 35b, and the connecting portions 35ab may be formed together in the same process using the same material.
  • the first pad metal layer 35a, the second pad metal layer 35b, and the connecting portions 35ab may include Ti, Cr, Ni, or the like as an adhesive layer, and may include Al as the metal reflective layer.
  • the first pad metal layer 35a, the second pad metal layer 35b, and the connecting portions 35ab may include a diffusion barrier layer for preventing diffusion of a metal element such as Sn and an oxidation barrier layer for preventing oxidation of the diffusion barrier layer. It may further include.
  • the diffusion barrier layer for example, Cr, Ti, Ni, Mo, TiW or W may be used, and Au may be used as the antioxidant layer.
  • an upper insulating layer 37 covering the first pad metal layer 35a, the second pad metal layer 35b, and the connecting portions 35ab is formed.
  • the upper insulating layer 31 has an opening 37a exposing the first pad metal layer 35a and an opening 37b exposing the second pad metal layer 35b.
  • a plurality of openings 37a are illustrated, but the present invention is not limited thereto, and one opening 37a may be used.
  • the opening 37b of the upper insulating layer 37 may be disposed to be laterally spaced apart from the second opening 33b of the lower insulating layer 33.
  • the opening 37b of the upper insulating layer 37 and the second opening 33b of the lower insulating layer 33 may overlap each other.
  • the upper insulating layer 37 may also cover the edge of the lower insulating layer 33 along the edge of the substrate 21, and may expose some region near the edge of the substrate 21.
  • the edge of the upper insulating layer 37 may be formed to be spaced apart from the connecting portions 35ab by at least 11 ⁇ m, and at least 15 ⁇ m.
  • the upper insulating layer 37 may be formed of a single layer of a silicon oxide film or a silicon nitride film, or may be formed of a distributed Bragg reflector having a multilayer structure.
  • the upper insulating layer 37 may also be a distributed Bragg reflector in which the first material layer and the second material layer are alternately stacked similarly to the lower insulating layer 33.
  • the first material layer may be SiO 2 or MgF 2
  • the second material layer may be a material layer having a higher refractive index than the first material layer.
  • the second material layer can be, for example, TiO 2 , Nb 2 O 5 or ZrO 2 .
  • the upper insulating layer 37 may be formed of a distributed Bragg reflector in which SiO 2 layers / ZrO 2 layers are alternately stacked.
  • the upper insulating layer 37 may also be patterned by using a photolithography and etching process, and thus openings 37a and 37b may be formed. These openings 37a and 37b may also have an offset-shaped sidewall like the openings 33a and 33b of the lower insulating layer 33.
  • a first bump pad 39a and a second bump pad 39b are formed on the upper insulating layer 37.
  • the first bump pad 39a is electrically connected to the first pad metal layer 35a through the opening 37a of the upper insulating layer 37, and the second bump pad 39b is an opening of the upper insulating layer 37. It is electrically connected to the second pad metal layer 35b through 37b.
  • the first and second bump pads 39a and 39b may be formed over the plurality of light emitting cells as shown in FIG. 9A.
  • the upper insulating layer 37 prevents an electrical short between the light emitting cells and the first and second bump pads 39a and 39b.
  • the bottom surface of the substrate 21 may be partially removed through grinding and / or lapping to reduce the thickness of the substrate 21.
  • the distribution Bragg reflectors 51 to 59 of FIG. 3A are sequentially formed on the substrate 21 to form a stack of the distribution Bragg reflectors 51 to 59, and the substrate 21 is formed in individual chip units. By dividing, light emitting diodes separated from each other are provided. In this case, the substrate 21 may be separated using a laser scribing technique.
  • the distribution Bragg reflectors 51 to 59 may be sequentially formed from the Distribution Bragg reflectors 51 close to the substrate 21 by using a photographic and etching process or a lift off technique. That is, the first distributed Bragg reflector 51 is formed, and the second distributed Bragg reflector 53, the third distributed Bragg reflector 55, the fourth distributed Bragg reflector 57 and the fifth distributed Bragg reflector 59 are formed thereon. ) Can be formed one after the other.
  • the first material layer and the second material layer are alternately stacked on the substrate 21 so as to have a reflectance of 90% or more, and then the fifth distributed Bragg reflector 59 is patterned from above, and then, By stacking the fourth distributed Bragg reflector 57, the third distributed Bragg reflector 55, and the second distributed Bragg reflector 53, the laminate of the distributed Bragg reflectors 51 to 59 may be formed.
  • the distributed Bragg reflectors 51, 53, 55, 57, 59 have a structure in which a first material layer and a second material layer having different refractive indices are alternately stacked.
  • the first material layer may be SiO 2 or MgF 2
  • the second material layer may be a material layer having a higher refractive index than the first material layer.
  • the second material layer can be, for example, TiO 2 , Nb 2 O 5 or ZrO 2 .
  • the distribution Bragg reflectors 51, 53, 55, 57, 59 may all be formed of the same first and second material layers, but are not limited to this and are formed of different first and second material layers. May be
  • the first distributed Bragg reflector 51 may be formed of SiO 2 / TiO 2
  • the second distributed Bragg reflector 51 may be formed of SiO 2 / ZrO 2.
  • side surfaces of the distribution Bragg reflectors 51 to 59 formed using an etching process or a lift off technique may have an inclination angle, and the inclination angle may be in a range of about 20 to 70 degrees with respect to the surface of the substrate 21.
  • FIG. 10 is a schematic cross-sectional view for describing a light emitting diode according to still another embodiment of the present invention.
  • the light emitting diode according to the present exemplary embodiment is generally similar to the light emitting diode described with reference to FIG. 1, except that all of the distribution Bragg reflectors 51 to 59 are disposed on one side of the substrate 21. There is.
  • the distribution Bragg reflectors 51 to 59 may be stacked such that one side surfaces thereof are side by side.
  • the light emitting diode of FIG. 1 has a symmetrical directing pattern as shown in FIG. 2, the light emitting diode according to the present embodiment has an asymmetrical shape of the directing pattern of the emitted light.
  • one side of the distribution Bragg reflectors 51 to 59 will be described as being parallel, but the position and shape of the Distribution Bragg reflectors 51 to 59 may be modified in various ways.
  • the directing pattern of the emitted light of the diode can be variously changed.

Abstract

A light-emitting diode according to an embodiment comprises: a semiconductor laminate comprising a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; and a plurality of distributed Bragg reflectors arranged on one side of the semiconductor laminate, wherein the plurality of distributed Bragg reflectors are laminated while differing in area from one another. The directional pattern of light emitted by the light-emitting diode can be adjusted by using the distributed Bragg reflectors.

Description

분포 브래그 반사기 적층체를 구비하는 발광 다이오드Light Emitting Diodes With Distributed Bragg Reflector Stacks
본 발명은 발광 다이오드에 관한 것으로, 더욱 상세하게는 분포 브래그 반사기 적층체를 구비하는 발광 다이오드에 관한 것이다.TECHNICAL FIELD The present invention relates to light emitting diodes, and more particularly, to light emitting diodes having a distributed Bragg reflector stack.
일반적으로 질화갈륨(GaN), 질화알루미늄(AlN) 등과 같은 Ⅲ족 원소의 질화물은 열적 안정성이 우수하고 직접 천이형의 에너지 밴드(band) 구조를 가지므로, 최근 가시광선 및 자외선 영역의 광원용 물질로 많은 각광을 받고 있다. 특히, 질화인듐갈륨(InGaN)을 이용한 청색 및 녹색 발광 다이오드는 대규모 천연색 평판 표시 장치, 신호등, 실내 조명, 고밀도광원, 고해상도 출력 시스템과 광통신 등 다양한 응용 분야에 활용되고 있다.In general, nitrides of Group III elements such as gallium nitride (GaN) and aluminum nitride (AlN) have excellent thermal stability and have a direct transition energy band structure. As a lot of attention. In particular, blue and green light emitting diodes using indium gallium nitride (InGaN) have been used in various applications such as large-scale color flat panel display devices, traffic lights, indoor lighting, high density light sources, high resolution output systems, and optical communications.
발광 다이오드는 일반적으로 패키징 공정을 거쳐 패키지 형태로 사용되며, 출사광의 지향 패턴을 조절하기 위해 렌즈가 함께 사용되어 왔다. A light emitting diode is generally used in a package form through a packaging process, and a lens has been used together to adjust the directing pattern of the emitted light.
최근, 발광 다이오드는 패키징 공정을 칩 레벨에서 수행하는 칩 스케일 패키지 형태의 발광 다이오드에 관한 연구가 진행중이다. 이러한 발광 다이오드는 그 크기가 일반 패키지에 비해 작고 패키징 공정을 별도로 수행하지 않기 때문에 공정을 더욱 단순화할 수 있어 시간 및 비용을 절약할 수 있다. 칩 스케일 패키지 형태의 발광 다이오드는 대체로 플립칩 형상의 전극 구조를 가지며, 방열 특성이 우수하다. Recently, researches on a light emitting diode in the form of a chip scale package performing a packaging process at a chip level are being conducted. Such a light emitting diode is smaller in size than a general package and does not perform a separate packaging process, thereby simplifying the process and saving time and money. The light emitting diode in the form of a chip scale package generally has a flip chip-shaped electrode structure and has excellent heat dissipation characteristics.
한편, 출사광의 지향 패턴을 조절하기 위해 사용되는 렌즈는 발광 다이오드에 비해 상대적으로 크기 때문에, 발광 모듈의 크기를 증가시킨다. 또한, 발광 다이오드와 별도로 렌즈를 설치하기 때문에 렌즈를 이용한 지향 패턴 조절은 공정을 단순화하려는 발광 다이오드 기술 추세에 적합하지 않다.On the other hand, the lens used to adjust the directing pattern of the emitted light is relatively large compared to the light emitting diode, thereby increasing the size of the light emitting module. In addition, since the lens is installed separately from the light emitting diode, the directional pattern adjustment using the lens is not suitable for the light emitting diode technology trend to simplify the process.
본 발명이 해결하고자 하는 과제는, 렌즈를 사용할 필요 없이 광 지향 패턴을 조절할 수 있는 발광 다이오드를 제공하는 것이다.The problem to be solved by the present invention is to provide a light emitting diode that can adjust the light directing pattern without using a lens.
본 발명이 해결하고자 하는 또 다른 과제는, 칩 스케일 패키지 형태의 플립칩 구조 발광 다이오드를 제공하는 것이다.Another object of the present invention is to provide a flip chip structure light emitting diode in the form of a chip scale package.
본 발명의 일 실시예에 따른 발광 다이오드는, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 반도체 적층체; 및 상기 반도체 적층체의 일측 상에 배치된 복수의 분포 브래그 반사기들을 포함하되, 상기 복수의 분포 브래그 반사기들은 서로 다른 면적을 가지고 적층된다.A light emitting diode according to an embodiment of the present invention, a semiconductor laminate comprising a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer; And a plurality of distributed Bragg reflectors disposed on one side of the semiconductor stack, wherein the plurality of Distributed Bragg reflectors are stacked with different areas.
본 발명의 또 다른 실시예에 따른 발광 다이오드는, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 반도체 적층체; 및 상기 반도체 적층체의 일측 상에 배치된 분포 브래그 반사기들의 적층체를 포함하되, 상기 분포 브래그 반사기들의 적층체는 두께가 서로 다른 영역들을 포함하고, 상기 분포 브래그 반사기들의 적층체는 두께가 두꺼운 영역에서 더 높은 반사율을 가진다.In accordance with still another aspect of the present invention, there is provided a light emitting diode comprising: a semiconductor laminate including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; And a stack of distribution Bragg reflectors disposed on one side of the semiconductor stack, wherein the stack of Distribution Bragg reflectors includes regions having different thicknesses, and the stack of Distribution Bragg reflectors has a thick thickness region. Has a higher reflectivity at.
본 발명의 실시예들에 따르면, 분포 브래그 반사기들의 적층을 통해 출사광의 지향 패턴을 조절할 수 있으며, 이에 따라, 렌즈를 생략할 수 있다.According to embodiments of the present invention, the direction pattern of the outgoing light may be adjusted through the stacking of the distribution Bragg reflectors, and thus, the lens may be omitted.
본 발명의 다른 장점 및 효과에 대해서는 상세한 설명을 통해 더 명확하게 될 것이다.Other advantages and effects of the present invention will become more apparent from the detailed description.
도 1은 본 발명의 일 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 단면도이다.1 is a schematic cross-sectional view for describing a light emitting diode according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 발광 다이오드의 출사광 지향 패턴을 설명하기 위한 개략적인 그래프이다.2 is a schematic graph for explaining an emission light directing pattern of a light emitting diode according to an embodiment of the present invention.
도 3a는 본 발명의 또 다른 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 평면도이다.3A is a schematic plan view illustrating a light emitting diode according to still another embodiment of the present invention.
도 3b는 도 3a의 절취선 A-A를 따라 취해진 개략적인 단면도이다.FIG. 3B is a schematic cross sectional view taken along cut line A-A of FIG. 3A.
도 4 내지 도 9는 본 발명의 일 실시예에 따른 발광 다이오드 제조 방법을 설명하기 위한 평면도들 및 단면도들이다.4 to 9 are plan views and cross-sectional views illustrating a method of manufacturing a light emitting diode according to an embodiment of the present invention.
도 10은 본 발명의 또 다른 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 단면도이다.10 is a schematic cross-sectional view for describing a light emitting diode according to still another embodiment of the present invention.
이하, 첨부한 도면들을 참조하여 본 발명의 실시예들을 상세히 설명한다. 다음에 소개되는 실시예들은 본 발명이 속하는 기술분야의 통상의 기술자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 또한, 하나의 구성요소가 다른 구성요소의 "상부에" 또는 "상에" 있다고 기재된 경우 각 부분이 다른 부분의 "바로 상부" 또는 "바로 상에" 있는 경우뿐만 아니라 각 구성요소와 다른 구성요소 사이에 또 다른 구성요소가 개재된 경우도 포함한다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention; The following embodiments are provided as examples to sufficiently convey the spirit of the present invention to those skilled in the art to which the present invention pertains. Accordingly, the present invention is not limited to the embodiments described below and may be embodied in other forms. In the drawings, the width, length, thickness, etc. of the components may be exaggerated for convenience. In addition, when one component is described as "on" or "on" another component, each component is different from each other as well as when the component is "just above" or "on" the other component. It also includes a case where another component is interposed therebetween. Like numbers refer to like elements throughout.
본 발명의 일 실시예에 따른 발광 다이오드는, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 반도체 적층체; 및 상기 반도체 적층체의 일측 상에 배치된 복수의 분포 브래그 반사기들을 포함하되, 상기 복수의 분포 브래그 반사기들은 서로 다른 면적을 가지고 적층된다.A light emitting diode according to an embodiment of the present invention, a semiconductor laminate comprising a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer; And a plurality of distributed Bragg reflectors disposed on one side of the semiconductor stack, wherein the plurality of Distributed Bragg reflectors are stacked with different areas.
서로 다른 면적을 가지는 분포 브래그 반사기들을 적층함으로써 위치에 따라 반사율을 조절할 수 있으며, 따라서, 출사광의 지향 패턴을 조절할 수 있다.By stacking the distribution Bragg reflectors having different areas, the reflectance can be adjusted according to the position, and thus the directivity pattern of the emitted light can be adjusted.
한편, 상기 복수의 분포 브래그 반사기들은 상기 반도체 적층체로부터 멀수록 좁은 면적을 가질 수 있다. 분포 브래그 반사기들이 순차적으로 좁은 면적을 갖기 때문에, 상대적으로 쉽게 제조될 수 있다.On the other hand, the plurality of distributed Bragg reflectors may have a narrower area from the semiconductor laminate. Since distributed Bragg reflectors have a narrow area in sequence, they can be manufactured relatively easily.
일 실시예에 있어서, 상기 복수의 분포 브래그 반사기들은 동일한 중심축을 가질 수 있다. 이에 따라, 출사광의 지향 패턴을 대칭적으로 형성할 수 있으며, 발광 다이오드의 중심축 방향으로 방출되는 광량을 감소시킬 수 있다.In one embodiment, the plurality of distributed Bragg reflectors may have the same central axis. Accordingly, the directivity pattern of the emitted light can be formed symmetrically, and the amount of light emitted in the direction of the central axis of the light emitting diode can be reduced.
다른 실시예에 있어서, 상기 복수의 분포 브래그 반사기들은 일측 측면들이 나란하도록 적층될 수 있다. 이에 따라, 출사광의 지향 패턴을 비대칭적으로 형성할 수 있다.In another embodiment, the plurality of distributed Bragg reflectors may be stacked such that one side sides are side by side. Thereby, the directivity pattern of the emitted light can be formed asymmetrically.
한편, 상기 분포 브래그 반사기들 각각은 5% 내지 50% 범위 내의 반사율을 나타낼 수 있다. 이들 분포 브래그 반사기들이 서로 적층됨으로써 더 높은 반사율을 나타낸다.On the other hand, each of the distribution Bragg reflectors may exhibit a reflectance in the range of 5% to 50%. These distributed Bragg reflectors are stacked on each other resulting in higher reflectance.
상기 분포 브래그 반사기들이 가장 많이 중첩된 영역의 반사율은 상기 활성층에서 방출된 광에 대해 90% 이상의 반사율을 나타낼 수 있다. 또한, 상기 분포 브래그 반사기들이 가장 적게 중첩된 영역의 반사율은 10% 이하의 반사율을 나타낼 수 있다.The reflectance of the region where the distribution Bragg reflectors are most overlapped may represent a reflectance of 90% or more with respect to the light emitted from the active layer. In addition, the reflectance of the region where the distribution Bragg reflectors least overlap, may exhibit a reflectance of 10% or less.
상기 발광 다이오드는, 상기 반도체 적층체와 상기 복수의 분포 브래그 반사기들 사이에 위치하는 기판을 더 포함할 수 있다.The light emitting diode may further include a substrate positioned between the semiconductor laminate and the plurality of distributed Bragg reflectors.
한편, 상기 발광 다이오드는, 상기 반도체 적층체를 덮되, 상기 반도체 적층체의 제1 도전형 반도체층을 노출시키는 제1 개구부를 포함하는 하부 절연층; 및 상기 하부 절연층 상에 배치되고, 상기 하부 절연층의 제1 개구부를 통해 상기 제1 도전형 반도체층에 전기적으로 접속하는 제1 금속층을 더 포함할 수 있다.The light emitting diode may include a lower insulating layer covering the semiconductor stack and including a first opening exposing a first conductive semiconductor layer of the semiconductor stack; And a first metal layer disposed on the lower insulating layer and electrically connected to the first conductive semiconductor layer through a first opening of the lower insulating layer.
나아가, 상기 발광 다이오드는, 상기 제2 도전형 반도체층 상에 배치되어 상기 제2 도전형 반도체층에 오믹 콘택하는 오믹 반사층을 더 포함하되, 상기 하부 절연층은 상기 오믹 반사층을 노출시키는 제2 개구부를 더 포함할 수 있다.Further, the light emitting diode further includes an ohmic reflective layer disposed on the second conductive semiconductor layer and ohmic contacting the second conductive semiconductor layer, wherein the lower insulating layer has a second opening exposing the ohmic reflective layer. It may further include.
또한, 상기 발광 다이오드는, 상기 제1 금속층을 덮는 상부 절연층; 상기 상부 절연층 상에 위치하며, 상기 반도체 적층체의 제1 도전형 반도체층 및 제2 도전형 반도체층에 각각 전기적으로 접속된 제1 범프 패드 및 제2 범프 패드를 더 포함하되, 상기 상부 절연층은 상기 제1 금속층을 노출시키는 제1 개구부를 포함하고, 상기 제1 범프 패드는 상기 제1 개구부를 통해 상기 제1 금속층에 접속할 수 있다.The light emitting diode may further include an upper insulating layer covering the first metal layer; A first bump pad and a second bump pad disposed on the upper insulating layer and electrically connected to the first conductive semiconductor layer and the second conductive semiconductor layer of the semiconductor laminate, respectively; The layer may include a first opening that exposes the first metal layer, and the first bump pad may be connected to the first metal layer through the first opening.
몇몇 실시예들에 있어서, 상기 반도체 적층체는 서로 이격된 복수의 발광셀들을 포함하고, 상기 제1 금속층은 이웃하는 발광셀들을 전기적으로 직렬 연결하여 발광셀들의 직렬 어레이를 형성하기 위한 연결부(들), 및 상기 직렬 어레이의 끝단에 배치된 마지막 발광셀의 제1 도전형 반도체층에 전기적으로 접속하는 제1 패드 금속층을 포함할 수 있다. 이에 따라, 고전압에서 구동될 수 있는 발광 다이오드를 제공할 수 있다.In some embodiments, the semiconductor laminate may include a plurality of light emitting cells spaced apart from each other, and the first metal layer may be configured to electrically connect neighboring light emitting cells in series to form a series array of light emitting cells. And a first pad metal layer electrically connected to the first conductivity-type semiconductor layer of the last light emitting cell disposed at the end of the series array. Accordingly, it is possible to provide a light emitting diode that can be driven at a high voltage.
한편, 상기 발광 다이오드는, 각 발광셀의 제2 도전형 반도체층 상에 배치되어 상기 제2 도전형 반도체층에 오믹 콘택하는 오믹 반사층; 및 상기 하부 절연층 상에 배치되어 상기 직렬 어레이의 첫단에 배치된 제1 발광셀의 오믹 반사층에 전기적으로 접속하는 제2 패드 금속층을 더 포함하고, 상기 하부 절연층은 각 발광셀 상의 상기 오믹 반사층을 노출시키는 제2 개구부들을 더 포함하며, 상기 제2 패드 금속층은 상기 제2 개구부를 통해 상기 제1 발광셀 상의 오믹 반사층에 전기적으로 접속될 수 있다.On the other hand, the light emitting diode, an ohmic reflective layer disposed on the second conductive semiconductor layer of each light emitting cell and ohmic contact with the second conductive semiconductor layer; And a second pad metal layer disposed on the lower insulating layer and electrically connected to the ohmic reflective layer of the first light emitting cell disposed at the first stage of the series array, wherein the lower insulating layer is the ohmic reflective layer on each light emitting cell. The second pad metal layer may be electrically connected to the ohmic reflective layer on the first light emitting cell through the second opening.
나아가, 상기 발광 다이오드는, 상기 연결부(들), 제1 및 제2 패드 금속층를 덮되, 상기 제1 및 제2 패드 금속층의 상면들을 각각 노출시키는 개구부들을 가지는 상부 절연층; 및 상기 상부 절연층의 개구부들에 의해 노출된 상기 제1 패드 금속층 및 제2 패드 금속층의 상면에 각각 접속하는 제1 범프 패드 및 제2 범프 패드를 더 포함할 수 있다. 제2 패드 금속층을 채택함으로써 제1 범프 패드 및 제2 범프 패드가 동일 높이에 형성될 수 있다.Further, the light emitting diode includes: an upper insulating layer covering the connection portion (s), the first and second pad metal layers, and having openings exposing upper surfaces of the first and second pad metal layers, respectively; And a first bump pad and a second bump pad connected to upper surfaces of the first pad metal layer and the second pad metal layer exposed by the openings of the upper insulating layer, respectively. By adopting the second pad metal layer, the first bump pad and the second bump pad can be formed at the same height.
몇몇 실시예들에 있어서, 상기 제1 범프 패드 및 제2 범프 패드는 각각 2개 이상의 발광셀들 상부 영역에 걸쳐서 배치될 수 있다. 따라서, 제1 및 제2 범프 패드들을 상대적으로 크게 형성할 수 있어 발광 다이오드의 실장이 쉬워질 수 있다.In some embodiments, the first bump pad and the second bump pad may be disposed over an upper region of two or more light emitting cells, respectively. Therefore, the first and second bump pads can be formed relatively large, so that mounting of the light emitting diode can be facilitated.
본 발명의 또 다른 실시예에 따른 발광 다이오드는, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 반도체 적층체; 및 상기 반도체 적층체의 일측 상에 배치된 분포 브래그 반사기들의 적층체를 포함하되, 상기 분포 브래그 반사기들의 적층체는 두께가 서로 다른 영역들을 포함하고, 상기 분포 브래그 반사기들의 적층체는 두께가 두꺼운 영역에서 더 높은 반사율을 가진다.In accordance with still another aspect of the present invention, there is provided a light emitting diode comprising: a semiconductor laminate including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; And a stack of distribution Bragg reflectors disposed on one side of the semiconductor stack, wherein the stack of Distribution Bragg reflectors includes regions having different thicknesses, and the stack of Distribution Bragg reflectors has a thick thickness region. Has a higher reflectivity at.
분포 브래그 반사기들의 적층체의 두께를 조절함으로써 출사광의 지향 패턴을 제어할 수 있다.By adjusting the thickness of the stack of distributed Bragg reflectors, the directing pattern of the emitted light can be controlled.
나아가, 상기 분포 브래그 반사기들의 적층체는 중앙에서 가장 높은 반사율을 나타내고, 가장자리 근처에서 가장 낮은 반사율을 나타낼 수 있다. 이에 따라, 광을 분산시키기 위한 분산 렌즈를 사용하지 않고도 발광 다이오드에서 방출되는 광을 분산시킬 수 있다.Furthermore, the stack of distributed Bragg reflectors may exhibit the highest reflectance in the center and the lowest reflectance near the edges. Accordingly, it is possible to disperse the light emitted from the light emitting diode without using a dispersing lens for dispersing the light.
한편, 상기 활성층에서 생성된 광의 적어도 일부는 상기 분포 브래그 반사기들의 적층체를 통해 외부로 방출될 수 있다.Meanwhile, at least a part of the light generated in the active layer may be emitted to the outside through the stack of the distribution Bragg reflectors.
상기 발광 다이오드는 또한, 상기 반도체 적층체와 상기 분포 브래그 반사기들의 적층체 사이에 배치된 기판을 더 포함할 수 있다.The light emitting diode may further include a substrate disposed between the semiconductor stack and the stack of distributed Bragg reflectors.
한편, 상기 발광 다이오드는, 상기 반도체 적층체 상에 배치되어 각각 상기 제1 도전형 반도체층 및 제2 도전형 반도체층에 전기적으로 접속된 제1 범프 패드 및 제2 범프 패드를 더 포함할 수 있다. 이에 따라, 플립칩 구조의 발광 다이오드를 제공할 수 있다.The light emitting diode may further include a first bump pad and a second bump pad disposed on the semiconductor laminate and electrically connected to the first conductive semiconductor layer and the second conductive semiconductor layer, respectively. . Accordingly, a light emitting diode having a flip chip structure can be provided.
이하 도면을 참조하여 구체적으로 설명한다.It will be described below in detail with reference to the drawings.
도 1은 본 발명의 일 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 단면도이다.1 is a schematic cross-sectional view for describing a light emitting diode according to an embodiment of the present invention.
도 1을 참조하면, 상기 발광 다이오드는 기판(21), 반도체 적층체(30), 제1 범프 패드(39a) 및 제2 범프 패드(39b), 및 복수의 분포 브래그 반사기들(51, 53, 55, 57, 59)의 적층체를 포함한다.Referring to FIG. 1, the light emitting diode includes a substrate 21, a semiconductor laminate 30, a first bump pad 39a and a second bump pad 39b, and a plurality of distributed Bragg reflectors 51, 53, 55, 57, 59).
기판(21)은 예컨대 질화갈륨계 반도체층을 성장시킬 수 있는 기판일 수 있다. 기판(21)은 사파이어 기판, 질화갈륨 기판, SiC 기판 등을 포함할 수 있으며, 특히, 패터닝된 사파이어 기판일 수 있다. 기판(21)은 직사각형 또는 정사각형의 평면 형상을 가질 수 있으나, 반드시 이에 한정되는 것은 아니다. 기판(21)의 크기는 특별히 한정되는 것은 아니며 다양하게 선택될 수 있다.The substrate 21 may be, for example, a substrate capable of growing a gallium nitride based semiconductor layer. The substrate 21 may include a sapphire substrate, a gallium nitride substrate, a SiC substrate, or the like, and in particular, may be a patterned sapphire substrate. The substrate 21 may have a rectangular or square planar shape, but is not limited thereto. The size of the substrate 21 is not particularly limited and may be variously selected.
반도체 적층체(30)는 제1 도전형 반도체층, 활성층, 및 제2 도전형 반도체층을 포함하며, 활성층에서 전자와 정공의 결합을 이용하여 광을 방출한다. 반도체 적층체(30)의 구체적인 구조에 대해서는 도 3을 참조하여 뒤에서 상세하게 설명된다.The semiconductor laminate 30 includes a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer, and emits light using a combination of electrons and holes in the active layer. The specific structure of the semiconductor laminate 30 is described in detail later with reference to FIG. 3.
한편, 반도체 적층체(30) 상에 제1 범프 패드(39a) 및 제2 범프 패드(39b)가 배치되며, 제1 및 제2 범프 패드들(39a, 39b)은 각각 제1 도전형 반도체층 및 제2 도전형 반도체층에 전기적으로 접속된다.Meanwhile, the first bump pads 39a and the second bump pads 39b are disposed on the semiconductor laminate 30, and the first and second bump pads 39a and 39b are respectively the first conductive semiconductor layer. And a second conductive semiconductor layer.
한편, 기판(21) 상에 분포 브래그 반사기들(51~59)의 적층체가 배치된다. 도 1에 도시한 바와 같이, 복수의 분포 브래그 반사기들(51~59)이 서로 다른 면적을 가지고 적층된다. 기판(21)에 가장 가까운 제1 분포 브래그 반사기(51)는 기판(21)과 동일한 면적을 가질 수도 있으나, 그 보다 더 작을 수도 있다. 제1 분포 브래그 반사기(51)는 그 중심축이 기판(21)의 중심축에 일치하도록 기판(21) 상에 배치될 수 있다. 또한, 그 위에 배치되는 분포 브래그 반사기들(53~59)은 기판(21)에서 멀수록 좁은 면적으로 갖고 차례로 배치될 수 있다. 또한, 도 1에 도시한 바와 같이, 분포 브래그 반사기들(51~59)의 중심축이 서로 일치하도록 배치될 수 있다.Meanwhile, a stack of distribution Bragg reflectors 51 to 59 is disposed on the substrate 21. As shown in FIG. 1, a plurality of distributed Bragg reflectors 51 to 59 are stacked with different areas. The first distributed Bragg reflector 51 closest to the substrate 21 may have the same area as the substrate 21 but may be smaller than that. The first distributed Bragg reflector 51 may be disposed on the substrate 21 such that its central axis coincides with the central axis of the substrate 21. In addition, the distributed Bragg reflectors 53 to 59 disposed thereon may be arranged in order with a narrower area as farther from the substrate 21 as possible. In addition, as illustrated in FIG. 1, the central axes of the distribution Bragg reflectors 51 to 59 may be disposed to coincide with each other.
이에 따라, 기판(21)의 중앙 영역 상에 분포 브래그 반사기들(51~59)이 모두 적층되며, 가장자리로 갈수록 적층되는 분포 브래그 반사기 개수가 감소한다. 따라서, 분포 브래그 반사기들(51~59)의 적층체는 중앙 영역에서 가장 두껍고 가장자리 근처에서 가장 얇다.Accordingly, all of the distribution Bragg reflectors 51 to 59 are stacked on the central region of the substrate 21, and the number of the distribution Bragg reflectors stacked toward the edge is reduced. Thus, the stack of distributed Bragg reflectors 51-59 is the thickest in the central region and the thinnest near the edge.
분포 브래그 반사기들(51, 53, 55, 57, 59)은 각각 활성층에서 생성되는 광을 5% 내지 50% 범위 내의 반사율로 반사할 수 있다. 또한, 이들 분포 브래그 반사기들(51~59)이 서로 적층됨으로써, 적층 수가 많은 영역, 즉 두께가 두꺼운 영역에서는 더 높은 반사율을 나타낸다. 예를 들어, 도 1에서 분포 브래그 반사기들(51~59)이 모두 적층된 중앙 영역은 활성층에서 생성된 광에 대해 90% 이상의 반사율을 나타낼 수 있으며, 분포 브래그 반사기(51)만이 배치된 가장자리에서는 10% 이하의 반사율을 나타낼 수 있다.The distributed Bragg reflectors 51, 53, 55, 57, 59 may each reflect light generated in the active layer with a reflectance in the range of 5% to 50%. In addition, these distributed Bragg reflectors 51 to 59 are stacked on each other, whereby a higher reflectance is exhibited in a region having a large number of stacked layers, that is, a thick region. For example, in FIG. 1, the central region in which all the distribution Bragg reflectors 51 to 59 are stacked may exhibit a reflectance of 90% or more with respect to the light generated in the active layer, and at the edge where only the Distribution Bragg reflectors 51 are disposed. A reflectance of 10% or less can be exhibited.
분포 브래그 반사기들(51, 53, 55, 57, 59)은 각각 굴절률이 서로 다른 제1 재료층과 제2 재료층이 교대로 적층된 구조를 가진다. 예를 들어, 제1 재료층은 SiO2 또는 MgF2일 수 있으며, 제2 재료층은 상기 제1 재료층보다 높은 굴절률을 가지는 물질층일 수 있다. 제2 재료층은 예를 들어, TiO2, Nb2O5 또는 ZrO2일 수 있다. 분포 브래그 반사기들(51, 53, 55, 57, 59)이 모두 동일한 제1 및 제2 재료층들로 형성될 수 있지만, 이에 한정되는 것은 아니며, 서로 다른 제1 및 제2 재료층들로 형성될 수도 있다. 예를 들어, 제1 분포 브래그 반사기(51)는 SiO2/TiO2로 형성되고, 제2 분포 브래그 반사기는 SiO2/ZrO2로 형성될 수도 있다.The distributed Bragg reflectors 51, 53, 55, 57, 59 have a structure in which a first material layer and a second material layer having different refractive indices are alternately stacked. For example, the first material layer may be SiO 2 or MgF 2 , and the second material layer may be a material layer having a higher refractive index than the first material layer. The second material layer can be, for example, TiO 2 , Nb 2 O 5 or ZrO 2 . The distribution Bragg reflectors 51, 53, 55, 57, 59 may all be formed of the same first and second material layers, but are not limited to this and are formed of different first and second material layers. May be For example, the first distributed Bragg reflector 51 may be formed of SiO 2 / TiO 2, and the second distributed Bragg reflector 51 may be formed of SiO 2 / ZrO 2.
분포 브래그 반사기들(51~59)을 구성하는 제1 재료층 및 제2 재료층의 종류, 형성 방법, 이들 층들의 두께 및 적층 수를 조절함으로써 분포 브래그 반사기들의 반사율을 조절할 수 있다.The reflectance of the distributed Bragg reflectors can be adjusted by adjusting the types of the first and second material layers constituting the distributed Bragg reflectors 51 to 59, the formation method, the thickness and the number of the stacked layers.
한편, 도면에서 각각의 분포 브래그 반사기들(51~59)의 측면이 수직한 것으로 도시하지만, 이에 한정되는 것은 아니다. 특히, 분포 브래그 반사기들(51~59)의 측면은 기판(21) 면에 대해 약 20 내지 70도 범위 내의 경사각을 가질 수 있다.Meanwhile, in the drawings, the side surfaces of each of the distribution Bragg reflectors 51 to 59 are vertical, but the present invention is not limited thereto. In particular, the sides of the distribution Bragg reflectors 51-59 may have an inclination angle within the range of about 20 to 70 degrees with respect to the substrate 21 surface.
활성층에서 생성된 광은 대체로 분포 브래그 반사기들(51~59)을 통해 외부로 방출된다. 기판(21) 상의 분포 브래그 반사기들(51~59)을 통해 광을 방출하기 위해, 제1 범프 패드(39a) 및 제2 범프 패드(39b)측의 반도체 적층체(30) 상에는 광을 기판(21)측으로 반사하기 위한 다른 반사기가 마련될 수 있다.Light generated in the active layer is generally emitted to the outside through the distribution Bragg reflectors 51 to 59. In order to emit light through the distribution Bragg reflectors 51 to 59 on the substrate 21, light is emitted onto the semiconductor laminate 30 on the side of the first bump pad 39a and the second bump pad 39b. Another reflector may be provided for reflecting toward 21).
본 실시예에 따르면, 분포 브래그 반사기들(51~59)의 적층 구조를 이용하여 출사광의 방출량을 제어할 수 있다. 위치에 따라 광의 방출량을 제어함으로써 출사광의 지향 패턴을 조절할 수 있다.According to the present embodiment, the amount of emitted light can be controlled by using a stacked structure of the distributed Bragg reflectors 51 to 59. By controlling the amount of light emitted according to the position, the directing pattern of the emitted light can be adjusted.
한편, 본 실시예에서, 분포 브래그 반사기들(51~59)이 반도체 적층체(30)에 대향하여 기판(21) 상에 배치된 것으로 설명하지만, 분포 브래그 반사기들(51~59)은 반도체 적층체(30) 상에 배치될 수도 있다. 이 경우, 활성층에서 생성된 광은 분포 브래그 반사기들(51~59)을 통해 기판(21) 반대 방향으로 출사될 것이다.On the other hand, in the present embodiment, it is described that the distribution Bragg reflectors 51 to 59 are disposed on the substrate 21 opposite to the semiconductor stack 30, but the Distribution Bragg reflectors 51 to 59 are semiconductor stacks. It may be disposed on the sieve 30. In this case, the light generated in the active layer will be emitted in the direction opposite to the substrate 21 through the distribution Bragg reflectors 51 to 59.
도 2는 본 발명의 일 실시예에 따른 발광 다이오드의 출사광 지향 패턴을 설명하기 위한 개략적인 그래프이다.2 is a schematic graph for explaining an emission light directing pattern of a light emitting diode according to an embodiment of the present invention.
도 2를 참조하면, 도 1에 도시한 바와 같이, 기판(21)의 중앙 영역에서 반사율이 높고 가장자리에서 반사율이 낮도록 분포 브래그 반사기들(51~59)을 배치함으로써, 발광 다이오드의 수직 방향으로 출사되는 광의 강도를 줄일 수 있으며, 더 큰 각도의 지향각으로 더 많은 광이 출사되도록 할 수 있다.Referring to FIG. 2, as shown in FIG. 1, the distribution Bragg reflectors 51 to 59 are disposed in the center region of the substrate 21 so as to have a high reflectance and a low reflectance at the edge thereof. It is possible to reduce the intensity of the light emitted and to allow more light to be emitted at a larger angle of directivity.
분포 브래그 반사기들(51~59)을 이용하여 출사광의 지향 패턴을 조절할 수 있으므로, 중앙 영역의 광량을 줄일 수 있다. 따라서, 발광 다이오드의 지향 패턴을 변경하기 위해 사용되는 분산 렌즈와 같은 별도의 렌즈를 사용할 필요 없다.Since the distribution Bragg reflectors 51 to 59 can adjust the directing pattern of the emitted light, the amount of light in the central region can be reduced. Thus, there is no need to use a separate lens such as a dispersion lens used to change the directing pattern of the light emitting diode.
또한, 상기 발광 다이오드는 백라이트의 광원으로 렌즈 없이 사용될 수 있어 직하형 발광 모듈의 백라이트 모듈을 박형화할 수 있다.In addition, the light emitting diode may be used without a lens as a light source of the backlight, thereby reducing the backlight module of the direct type light emitting module.
도 3a는 본 발명의 또 다른 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 평면도이고, 도 3b는 도 3a의 절취선 A-A를 따라 취해진 단면도이다.3A is a schematic plan view illustrating a light emitting diode according to still another embodiment of the present invention, and FIG. 3B is a cross-sectional view taken along the cutting line A-A of FIG. 3A.
도 3a 및 도 3b를 참조하면, 상기 발광 다이오드는 기판(21), 반도체 적층체(30), 오믹 반사층(31), 하부 절연층(33), 제1 패드 금속층(35a), 제2 패드 금속층(35b), 연결부들(35ab), 상부 절연층(37), 제1 범프 패드(39a) 및 제2 범프 패드(39b), 분포 브래그 반사기들(51~59)의 적층체를 포함한다. 반도체 적층체(30)는 1 도전형 반도체층(23), 활성층(25), 및 제2 도전형 반도체층(27)을 포함하며, 복수의 발광셀들(C1~C7)로 분리될 수 있다.3A and 3B, the light emitting diode includes a substrate 21, a semiconductor laminate 30, an ohmic reflective layer 31, a lower insulating layer 33, a first pad metal layer 35a, and a second pad metal layer. 35b, connecting portions 35ab, an upper insulating layer 37, a first bump pad 39a and a second bump pad 39b, and a stack of distributed Bragg reflectors 51 to 59. The semiconductor laminate 30 may include a first conductive semiconductor layer 23, an active layer 25, and a second conductive semiconductor layer 27, and may be separated into a plurality of light emitting cells C1 to C7. .
기판(21)은 질화갈륨계 반도체층을 성장시킬 수 있는 기판이면 특별히 제한되지 않는다. 기판(21)의 예로는 사파이어 기판, 질화갈륨 기판, SiC 기판 등 다양할 수 있으며, 패터닝된 사파이어 기판일 수 있다. 기판(21)은 도 3a의 평면도에서 보듯이 직사각형 또는 정사각형의 외형을 가질 수 있으나, 반드시 이에 한정되는 것은 아니다. 기판(21)의 크기는 특별히 한정되는 것은 아니며 다양하게 선택될 수 있다.The substrate 21 is not particularly limited as long as it is a substrate capable of growing a gallium nitride semiconductor layer. Examples of the substrate 21 may include a sapphire substrate, a gallium nitride substrate, a SiC substrate, and the like, and may be a patterned sapphire substrate. The substrate 21 may have a rectangular or square outer shape as shown in the plan view of FIG. 3A, but is not necessarily limited thereto. The size of the substrate 21 is not particularly limited and may be variously selected.
반도체 적층체(30)는 복수의 발광셀들(C1~C7)로 분리될 수 있다. 복수의 발광셀들(C1~C7)은 기판(21) 상에서 서로 이격되어 배치된다. 본 실시예에서 7개의 발광셀들(C1~C7)이 도시되지만, 발광셀들의 개수는 조절될 수 있다. 또한, 본 실시예에서 반도체 적층체(30)가 복수의 발광셀들(C1~C7)로 분리된 것에 대해 설명하지만, 분리되지 않은 단일의 발광셀일 수도 있다.The semiconductor laminate 30 may be separated into a plurality of light emitting cells C1 to C7. The plurality of light emitting cells C1 to C7 are spaced apart from each other on the substrate 21. Although seven light emitting cells C1 to C7 are shown in the present embodiment, the number of light emitting cells can be adjusted. In addition, in this embodiment, the semiconductor laminate 30 is described as being separated into a plurality of light emitting cells C1 to C7, but may be a single light emitting cell that is not separated.
발광셀들(C1~C7)은 각각 제1 도전형 반도체층(23)을 포함한다. 제1 도전형 반도체층(23)은 기판(21) 상에 배치된다. 제1 도전형 반도체층(23)은 기판(21) 상에서 성장된 층으로, 불순물, 예컨대 Si이 도핑된 질화갈륨계 반도체층일 수 있다.The light emitting cells C1 to C7 each include a first conductivity type semiconductor layer 23. The first conductivity type semiconductor layer 23 is disposed on the substrate 21. The first conductivity-type semiconductor layer 23 is a layer grown on the substrate 21 and may be a gallium nitride-based semiconductor layer doped with impurities such as Si.
제1 도전형 반도체층(23) 상에 활성층(25) 및 제2 도전형 반도체층(27)이 배치된다. 활성층(25)은 제1 도전형 반도체층(23)과 제2 도전형 반도체층(27) 사이에 배치된다. 활성층(25) 및 제2 도전형 반도체층(27)은 제1 도전형 반도체층(23)보다 작은 면적을 가질 수 있다. 활성층(25) 및 제2 도전형 반도체층(27)은 메사 식각에 의해 메사 형태로 제1 도전형 반도체층(23) 상에 위치할 수 있다.The active layer 25 and the second conductive semiconductor layer 27 are disposed on the first conductive semiconductor layer 23. The active layer 25 is disposed between the first conductive semiconductor layer 23 and the second conductive semiconductor layer 27. The active layer 25 and the second conductive semiconductor layer 27 may have an area smaller than that of the first conductive semiconductor layer 23. The active layer 25 and the second conductive semiconductor layer 27 may be located on the first conductive semiconductor layer 23 in a mesa form by mesa etching.
발광셀들(C1~C7)의 가장자리들 중 기판(21)의 가장자리에 인접한 가장자리들에서, 제1 도전형 반도체층(23)의 가장자리와 메사, 예컨대 활성층(25) 및 제2 도전형 반도체층(27)의 가장자리들은 서로 이격될 수 있다. 즉, 제1 도전형 반도체층(23)의 상면 일부가 메사의 외부에 노출된다. 활성층(25)은 제1 도전형 반도체층(23)보다 기판(21)의 가장자리로부터 멀리 이격되며, 따라서, 레이저에 의한 기판 분리 공정에서 활성층(25)이 손상되는 것을 방지할 수 있다.At the edges of the light emitting cells C1 to C7 adjacent to the edge of the substrate 21, the edge and mesa of the first conductivity-type semiconductor layer 23, for example, the active layer 25 and the second conductivity-type semiconductor layer The edges of 27 may be spaced apart from each other. That is, a part of the upper surface of the first conductivity type semiconductor layer 23 is exposed to the outside of the mesa. The active layer 25 is spaced farther from the edge of the substrate 21 than the first conductive semiconductor layer 23, and thus, the active layer 25 may be prevented from being damaged in the substrate separation process by the laser.
한편, 발광셀들(C1~C7)의 가장자리들 중 인접한 발광셀들과 마주보는 가장자리들에서, 제1 도전형 반도체층(23)의 가장자리와 활성층(25) 및 제2 도전형 반도체층(27)의 가장자리는 동일한 경사면 상에 위치할 수 있다. 따라서, 발광셀들이 서로 마주보는 면에서 제1 도전형 반도체층(23)의 상부면은 노출되지 않을 수 있다. 이에 따라, 발광셀들(C1~C7)의 발광 면적을 확보할 수 있다.Meanwhile, at the edges of the light emitting cells C1 to C7 facing the adjacent light emitting cells, the edge of the first conductive semiconductor layer 23, the active layer 25, and the second conductive semiconductor layer 27 are formed. The edge of) may be located on the same slope. Therefore, the top surface of the first conductivity-type semiconductor layer 23 may not be exposed in the light emitting cells facing each other. Accordingly, the light emitting area of the light emitting cells C1 to C7 can be secured.
활성층(25)은 단일 양자우물 구조 또는 다중 양자우물 구조를 가질 수 있다. 활성층(25) 내에서 우물층의 조성 및 두께는 생성되는 광의 파장을 결정한다. 특히, 우물층의 조성을 조절함으로써 자외선, 청색광 또는 녹색광을 생성하는 활성층을 제공할 수 있다.The active layer 25 may have a single quantum well structure or a multiple quantum well structure. The composition and thickness of the well layer in the active layer 25 determines the wavelength of the light produced. In particular, it is possible to provide an active layer that generates ultraviolet light, blue light or green light by adjusting the composition of the well layer.
한편, 제2 도전형 반도체층(27)은 p형 불순물, 예컨대 Mg이 도핑된 질화갈륨계 반도체층일 수 있다. 제1 도전형 반도체층(23) 및 제2 도전형 반도체층(27)은 각각 단일층일 수 있으나, 이에 한정되는 것은 아니며, 다중층일 수도 있으며, 초격자층을 포함할 수도 있다. 제1 도전형 반도체층(23), 활성층(25) 및 제2 도전형 반도체층(27)은 금속유기화학 기상 성장법(MOCVD) 또는 분자선 에피택시(MBE)와 같은 공지의 방법을 이용하여 챔버 내에서 기판(21) 상에 성장되어 형성될 수 있다.The second conductivity-type semiconductor layer 27 may be a gallium nitride-based semiconductor layer doped with p-type impurities, for example, Mg. Each of the first conductive semiconductor layer 23 and the second conductive semiconductor layer 27 may be a single layer, but is not limited thereto, and may be a multilayer or a superlattice layer. The first conductive semiconductor layer 23, the active layer 25, and the second conductive semiconductor layer 27 may be formed using a known method such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE). It may be formed and grown on the substrate 21 within.
한편, 발광셀들(C1~C7)은 각각 제2 도전형 반도체층(27) 및 활성층(23)을 관통하여 제1 도전형 반도체층(23)을 노출시키는 관통홀들(30a)을 가진다. 관통홀들(30a)은 제2 도전형 반도체층(27) 및 활성층(25)으로 둘러싸인다. 도시한 바와 같이, 관통홀들(30a)은 발광셀들(C1~C7)의 중앙 영역에 배치될 수 있으며, 기다란 형상을 가질 수 있다. 그러나 본 발명은 이에 한정되는 것은 아니며, 각 발광셀에 복수의 관통홀들이 형성될 수도 있다.On the other hand, the light emitting cells C1 to C7 have through holes 30a through the second conductive semiconductor layer 27 and the active layer 23 to expose the first conductive semiconductor layer 23. The through holes 30a are surrounded by the second conductivity type semiconductor layer 27 and the active layer 25. As shown, the through holes 30a may be disposed in the central area of the light emitting cells C1 to C7 and may have an elongated shape. However, the present invention is not limited thereto, and a plurality of through holes may be formed in each light emitting cell.
한편, 오믹 반사층(31)은 제2 도전형 반도체층(27) 상에 배치되며, 제2 도전형 반도체층(27)에 전기적으로 접속한다. 오믹 반사층(31)은 제2 도전형 반도체층(27)의 상부 영역에서 제2 도전형 반도체층(27)의 거의 전 영역에 걸쳐 배치될 수 있다. 예를 들어, 오믹 반사층(31)은 제2 도전형 반도체층(27) 상부 영역의 80% 이상, 나아가 90% 이상을 덮을 수 있다.On the other hand, the ohmic reflective layer 31 is disposed on the second conductive semiconductor layer 27 and electrically connected to the second conductive semiconductor layer 27. The ohmic reflective layer 31 may be disposed over almost the entire area of the second conductive semiconductor layer 27 in the upper region of the second conductive semiconductor layer 27. For example, the ohmic reflective layer 31 may cover 80% or more of the upper region of the second conductivity-type semiconductor layer 27 and more than 90%.
오믹 반사층(31)은 반사성을 갖는 금속층을 포함할 수 있으며, 따라서, 활성층(25)에서 생성되어 오믹 반사층(31)으로 진행하는 광을 기판(21) 측으로 반사시킬 수 있다. 예를 들어, 오믹 반사층(31)은 단일 반사 금속층으로 형성될 수 있으나, 이에 한정되는 것은 아니며, 오믹층과 반사층을 포함할 수도 있다. 오믹층으로는 Ni과 같은 금속층 또는 인디움주석산화물(ITO)과 같은 투명 산화물층이 사용될 수 있으며, 반사층으로는 Ag 또는 Al과 같이 반사율이 높은 금속층이 사용될 수 있다.The ohmic reflective layer 31 may include a reflective metal layer, and thus may reflect light generated in the active layer 25 and traveling to the ohmic reflective layer 31 toward the substrate 21. For example, the ohmic reflective layer 31 may be formed of a single reflective metal layer, but is not limited thereto. The ohmic reflective layer 31 may include an ohmic layer and a reflective layer. As the ohmic layer, a metal layer such as Ni or a transparent oxide layer such as indium tin oxide (ITO) may be used, and a reflective metal layer such as Ag or Al may be used as the reflective layer.
하부 절연층(33)은 발광셀들(C1~C7) 및 오믹 반사층(31)을 덮는다. 하부 절연층(33)은 발광셀들(C1~C7)의 상면 뿐만 아니라 그 둘레를 따라 발광셀들(C1~C7)의 측면을 덮을 수 있으며, 발광셀들(C1~C7) 주위의 기판(21)을 부분적으로 덮을 수 있다. 하부 절연층(33)은 특히 발광셀들(C1~C7) 사이의 셀 분리 영역(ISO)을 덮으며, 나아가, 관통홀들(30a) 내에 노출된 제1 도전형 반도체층(23)을 부분적으로 덮을 수 있다.The lower insulating layer 33 covers the light emitting cells C1 to C7 and the ohmic reflective layer 31. The lower insulating layer 33 may cover not only the upper surfaces of the light emitting cells C1 to C7 but also the side surfaces of the light emitting cells C1 to C7 along the periphery thereof, and the substrates around the light emitting cells C1 to C7 ( 21) can be partially covered. The lower insulating layer 33 particularly covers the cell isolation region ISO between the light emitting cells C1 to C7, and further partially covers the first conductivity-type semiconductor layer 23 exposed in the through holes 30a. Can be covered with
한편, 하부 절연층(33)은 제1 도전형 반도체층을 노출시키는 제1 개구부들(33a) 및 오믹 반사층들(31)을 노출시키는 제2 개구부들(33b)를 가진다. 제1 개구부(33a)는 관통홀(30a) 내에서 제1 도전형 반도체층(23)을 노출시키며, 또한, 기판(21)의 가장자리를 따라 기판(21)의 상부면을 노출시킬 수 있다. Meanwhile, the lower insulating layer 33 has first openings 33a exposing the first conductivity type semiconductor layer and second openings 33b exposing the ohmic reflective layers 31. The first opening 33a may expose the first conductivity-type semiconductor layer 23 in the through hole 30a and may expose the upper surface of the substrate 21 along the edge of the substrate 21.
제2 개구부(33b)는 오믹 반사층(31)의 상부에 위치하여 오믹 반사층(31)을 노출시킨다. 제2 개구부들(33b)의 위치 및 형상은 발광셀들(C1~C7)의 배치 및 전기적 연결을 위해 다양하게 변형될 수 있다. 또한, 도 1에서 각 발광셀 상에 하나의 제2 개구부(33b)가 배치된 것으로 도시하였으나, 각 발광셀 상에 복수의 제2 개구부들(33b)이 배치될 수도 있다.The second opening 33b is positioned above the ohmic reflective layer 31 to expose the ohmic reflective layer 31. The position and shape of the second openings 33b may be variously modified to arrange and electrically connect the light emitting cells C1 to C7. In addition, although one second opening 33b is disposed on each light emitting cell in FIG. 1, a plurality of second openings 33b may be disposed on each light emitting cell.
한편, 하부 절연층(33)은 실리콘 산화막 또는 실리콘 질화막과 같은 단일층으로 형성될 수 있다. 또한, 하부 절연층(33)은 다중층으로 형성될 수 있으며, 특히, 제1 굴절률을 갖는 제1 재료층과 제2 굴절률을 갖는 제2 재료층이 교대로 적층된 적층 구조를 가질 수 있다. 특히, 하부 절연층(33)은 이러한 적층 구조를 통해 특정 파장 대역에서 반사율이 높은 분포 브래그 반사기일 수 있다. 여기서, 상기 제1 재료층은 SiO2 또는 MgF2일 수 있으며, 제2 재료층은 상기 제1 재료층보다 높은 굴절률을 가지는 물질층일 수 있다. 제2 재료층은 예를 들어, TiO2, Nb2O5 또는 ZrO2일 수 있다. 특히, 제1 재료층은 SiO2층으로 형성되고, 제2 재료층은 ZrO2층으로 형성될 수 있으며, 이에 따라 하부 절연층(33)의 내습성을 향상시킬 수 있다.The lower insulating layer 33 may be formed of a single layer such as a silicon oxide film or a silicon nitride film. In addition, the lower insulating layer 33 may be formed of multiple layers, and in particular, may have a laminated structure in which a first material layer having a first refractive index and a second material layer having a second refractive index are alternately stacked. In particular, the lower insulating layer 33 may be a distributed Bragg reflector having a high reflectance in a specific wavelength band through the stacked structure. Here, the first material layer may be SiO 2 or MgF 2 , and the second material layer may be a material layer having a higher refractive index than the first material layer. The second material layer can be, for example, TiO 2 , Nb 2 O 5 or ZrO 2 . In particular, the first material layer may be formed of an SiO 2 layer, and the second material layer may be formed of a ZrO 2 layer, thereby improving the moisture resistance of the lower insulating layer 33.
한편, 제1 패드 금속층(35a), 제2 패드 금속층(35b) 및 연결부들(35ab)은 상기 하부 절연층(33) 상에 배치된다. 제2 패드 금속층(35a)은 제1 발광셀(C1) 상부에 위치하며, 제1 패드 금속층(35b)은 마지막 발광셀, 즉 제7 발광셀(C7) 상부에 위치한다. 한편, 연결부들(35ab)은 이웃하는 두 개의 발광셀들 상부에 걸쳐서 위치하며, 발광셀들(C1~C7)을 전기적으로 직렬 연결한다. 이에 따라, 연결부들(35ab)에 의해 7개의 발광셀들(C1~C7)이 직렬 연결되어 직렬 어레이가 형성된다. 여기서, 제1 발광셀(C1)은 직렬 어레이의 첫단에 위치하며, 마지막 발광셀인 제7 발광셀(C7)은 직렬 어레이의 끝단에 위치한다.Meanwhile, the first pad metal layer 35a, the second pad metal layer 35b, and the connecting portions 35ab are disposed on the lower insulating layer 33. The second pad metal layer 35a is positioned on the first light emitting cell C1, and the first pad metal layer 35b is positioned on the last light emitting cell, that is, the seventh light emitting cell C7. Meanwhile, the connection parts 35ab are positioned over two neighboring light emitting cells, and electrically connect the light emitting cells C1 to C7 in series. Accordingly, seven light emitting cells C1 to C7 are connected in series by the connecting parts 35ab to form a series array. Here, the first light emitting cell C1 is located at the first end of the serial array, and the last light emitting cell, the seventh light emitting cell C7, is located at the end of the series array.
본 발명이 반드시 이에 한정되는 것은 아니지만, 제1 패드 금속층(35a)은 마지막 발광셀(C7)의 상부 영역 내에, 나아가, 마지막 발광셀(C7)의 제2 도전형 반도체층(27)의 상부 영역 내에 한정되어 위치할 수 있다. 제1 패드 금속층(35a)은 또한, 하부 절연층(33)의 제1 개구부(33a)를 통해 마지막 발광셀(C7)의 제1 도전형 반도체층(23)에 전기적으로 접속한다. 제1 패드 금속층(35a)은 제1 개구부(33a)를 통해 직접 제1 도전형 반도체층(23)에 접촉할 수 있다.Although the present invention is not necessarily limited thereto, the first pad metal layer 35a is in the upper region of the last light emitting cell C7 and further, in the upper region of the second conductive semiconductor layer 27 of the last light emitting cell C7. It can be located within. The first pad metal layer 35a is also electrically connected to the first conductive semiconductor layer 23 of the last light emitting cell C7 through the first opening 33a of the lower insulating layer 33. The first pad metal layer 35a may directly contact the first conductive semiconductor layer 23 through the first opening 33a.
또한, 제2 패드 금속층(35b)은 제1 발광셀(C1)의 상부 영역 내에, 나아가, 제1 발광셀(C1)의 제2 도전형 반도체층(27)의 상부 영역 내에 한정되어 위치할 수 있다. 제2 패드 금속층(35b)은 하부 절연층(33)의 제2 개구부(33b)를 통해 제1 발광셀(C1) 상의 오믹 반사층(31)에 전기적으로 접속한다. 제2 패드 금속층(35b)은 제2 개구부(33b)를 통해 오믹 반사층(31)에 직접 접촉할 수 있다. In addition, the second pad metal layer 35b may be located within the upper region of the first light emitting cell C1 and further, in the upper region of the second conductive semiconductor layer 27 of the first light emitting cell C1. have. The second pad metal layer 35b is electrically connected to the ohmic reflective layer 31 on the first light emitting cell C1 through the second opening 33b of the lower insulating layer 33. The second pad metal layer 35b may directly contact the ohmic reflective layer 31 through the second opening 33b.
한편, 제2 패드 금속층(35b)은 연결부(35ab)에 의해 둘러싸일 수 있으며, 따라서, 제2 패드 금속층(35b)과 연결부(35ab) 사이에 제2 패드 금속층(35b)을 둘러싸는 경계 영역이 형성될 수 있다. 이 경계 영역은 하부 절연층(33)을 노출시킨다. On the other hand, the second pad metal layer 35b may be surrounded by the connecting portion 35ab, so that a boundary area surrounding the second pad metal layer 35b is formed between the second pad metal layer 35b and the connecting portion 35ab. Can be formed. This boundary region exposes the lower insulating layer 33.
한편, 연결부들(35ab)은 서로 이웃하는 발광셀들을 전기적으로 연결한다. 각 연결부(35ab)는 하나의 발광셀의 제1 도전형 반도체층(23)에 전기적으로 접속함과 아울러, 이웃하는 발광셀의 오믹 반사층(31), 따라서, 제2 도전형 반도체층(27)에 전기적으로 접속하여 이들 발광셀들을 직렬 연결한다. 구체적으로, 연결부들(35ab)은 각각 하부 절연층(33)의 제1 개구부(33a)를 통해 노출된 제1 도전형 반도체층(23)에 전기적으로 접속할 수 있으며, 제2 개구부(33b)를 통해 노출된 오믹 반사층(31)에 전기적으로 접속할 수 있다. 나아가, 연결부들(35ab)은 제1 도전형 반도체층(23) 및 오믹 반사층(31)에 직접 접촉할 수도 있다.Meanwhile, the connection parts 35ab electrically connect neighboring light emitting cells. Each connecting portion 35ab is electrically connected to the first conductive semiconductor layer 23 of one light emitting cell, and the ohmic reflective layer 31 of the neighboring light emitting cell, and thus, the second conductive semiconductor layer 27. These light emitting cells are connected in series by electrically connecting the same. In detail, each of the connection parts 35ab may be electrically connected to the first conductive semiconductor layer 23 exposed through the first opening 33a of the lower insulating layer 33, and the second opening 33b may be electrically connected to each other. It can be electrically connected to the ohmic reflective layer 31 exposed through. In addition, the connection parts 35ab may directly contact the first conductivity-type semiconductor layer 23 and the ohmic reflective layer 31.
각 연결부(35ab)는 발광셀들 사이의 셀 분리 영역(ISO)을 지난다. 각 연결부(35ab)는 제1 도전형 반도체층(23)의 복수의 가장자리들 중 오직 하나의 가장자리 상부 영역을 지날 수 있다. 이에 따라, 셀 분리 영역(ISO) 상부에 위치하는 연결부(35ab) 면적을 감소시킬 수 있다. 나아가, 이웃하는 발광셀들을 연결하기 위해 셀 분리 영역(ISO)을 지나는 연결부(35ab) 부분을 제외한 나머지 부분들은 모두 발광셀들 영역 상부에 한정되어 위치한다. 예를 들어, 발광셀들(C1~C7)은 각각 도 3a에 도시한 바와 같이 직사각형의 형상을 가질 수 있으며, 따라서, 네 개의 가장자리들을 가진다. 연결부(35ab)는 하나의 발광셀의 가장자리들 중 오직 하나의 가장자리 상부 영역을 지나며, 상기 발광셀의 나머지 가장자리들의 상부 영역으로부터 이격될 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 연결부들(35ab)이 해당 발광셀의 2개 이상의 측면을 덮을 수도 있고, 발광셀의 네 측면 주위의 셀 분리 영역들을 덮을 수도 있다.Each connection part 35ab passes through a cell isolation region ISO between the light emitting cells. Each connection part 35ab may pass through only one edge upper region of the edges of the first conductivity-type semiconductor layer 23. Accordingly, the area of the connection portion 35ab positioned above the cell isolation region ISO may be reduced. Further, all of the remaining portions except for the portion of the connection portion 35ab passing through the cell separation region ISO are connected to the upper portion of the light emitting cells region to connect neighboring light emitting cells. For example, the light emitting cells C1 to C7 may each have a rectangular shape as shown in FIG. 3A, and thus have four edges. The connection part 35ab passes through an upper edge region of only one of the edges of one light emitting cell, and may be spaced apart from an upper region of the remaining edges of the light emitting cell. However, the present invention is not limited thereto, and the connection parts 35ab may cover two or more sides of the light emitting cell, and may cover cell separation regions around four sides of the light emitting cell.
한편, 제1 패드 금속층(35a), 제2 패드 금속층(35b) 및 연결부들(35ab)은 하부 절연층(33)이 형성된 후에 동일 공정에서 동일 재료로 함께 형성될 수 있으며, 따라서 동일 레벨에 위치할 수 있다. 반드시 이에 한정되는 것은 아니나, 제1 패드 금속층(35a), 제2 패드 금속층(35b) 및 연결부들(35ab)은 각각 하부 절연층(33) 상에 위치하는 부분을 포함할 수 있다.Meanwhile, the first pad metal layer 35a, the second pad metal layer 35b, and the connecting portions 35ab may be formed together with the same material in the same process after the lower insulating layer 33 is formed, and thus are located at the same level. can do. Although not necessarily limited thereto, the first pad metal layer 35a, the second pad metal layer 35b, and the connecting portions 35ab may include portions positioned on the lower insulating layer 33, respectively.
제1 및 제2 패드 금속층(35a, 35b) 및 연결부(35ab)는 Al층과 같은 반사층을 포함할 수 있으며, 반사층은 Ti, Cr 또는 Ni 등의 접착층 상에 형성될 수 있다. 또한, 상기 반사층 상에 Ni, Cr, Au등의 단층 또는 복합층 구조의 보호층이 형성될 수 있다. 제1 및 제2 패드 금속층(35a, 35b) 및 연결부들(35ab)은 예컨대, Cr/Al/Ni/Ti/Ni/Ti/Au/Ti의 다층 구조를 가질 수 있다. The first and second pad metal layers 35a and 35b and the connection part 35ab may include a reflective layer such as an Al layer, and the reflective layer may be formed on an adhesive layer such as Ti, Cr, or Ni. In addition, a protective layer having a single layer or a composite layer structure such as Ni, Cr, Au, or the like may be formed on the reflective layer. The first and second pad metal layers 35a and 35b and the connecting portions 35ab may have, for example, a multilayer structure of Cr / Al / Ni / Ti / Ni / Ti / Au / Ti.
상부 절연층(37)은 제1 및 제2 패드 금속층(35a, 35b)과 연결부들(35ab)을 덮는다. 또한, 상부 절연층(37)은 발광셀들(C1~C7) 둘레를 따라 하부 절연층(33)의 가장자리를 덮을 수 있다. 다만, 상부 절연층(37)은 기판(21)의 가장자리를 따라 기판(21)의 상부면을 노출시킬 수 있다.The upper insulating layer 37 covers the first and second pad metal layers 35a and 35b and the connecting portions 35ab. In addition, the upper insulating layer 37 may cover the edge of the lower insulating layer 33 along the circumference of the light emitting cells C1 to C7. However, the upper insulating layer 37 may expose the upper surface of the substrate 21 along the edge of the substrate 21.
일 실시예에서, 상부 절연층(37)의 가장자리로부터 연결부들(35ab)까지의 최단 거리는 수분이 침투하여 연결부들(35ab)을 손상시키는 것을 방지하기 위해 대략 15um 이상일 수 있다.In one embodiment, the shortest distance from the edge of the upper insulating layer 37 to the connections 35ab may be about 15 um or more to prevent moisture from penetrating and damaging the connections 35ab.
한편, 상부 절연층(37)은 제1 패드 금속층(35a)을 노출시키는 제1 개구부(37a) 및 제2 패드 금속층(35b)을 노출시키는 제2 개구부(37b)를 가진다. 제1 개구부(37a) 및 제2 개구부(37b)는 각각 마지막 발광셀(C7)과 제1 발광셀(C1) 상부 영역에 배치된다. 이들 제1 및 제2 개구부들(37a, 37b)을 제외하면 발광셀들(C1~C7)의 다른 영역들은 모두 상부 절연층(37)으로 덮일 수 있다. 따라서, 연결부들(35ab)의 상면 및 측면은 모두 상부 절연층(37)으로 덮여 밀봉될 수 있다.Meanwhile, the upper insulating layer 37 has a first opening 37a exposing the first pad metal layer 35a and a second opening 37b exposing the second pad metal layer 35b. The first opening 37a and the second opening 37b are disposed in the last light emitting cell C7 and the upper region of the first light emitting cell C1, respectively. Except for the first and second openings 37a and 37b, all other regions of the light emitting cells C1 to C7 may be covered with the upper insulating layer 37. Therefore, both the top and side surfaces of the connecting portions 35ab may be covered with the upper insulating layer 37 and sealed.
한편, 일 실시예에 있어서, 상부 절연층(37)의 제2 개구부(37b)는 하부 절연층(33)의 제2 개구부(33b)와 중첩하지 않도록 횡방향으로 이격되어 배치될 수 있다. 이에 따라, 상부 절연층(37)의 제2 개구부(37b)를 통해 솔더가 침투하더라도 하부 절연층(33)의 제2 개구부(33b)로 솔더가 확산되는 것을 방지할 수 있어, 솔더에 의한 오믹 반사층(31)의 오염을 방지할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 상부 절연층(37)의 제2 개구부(37b)가 하부 절연층(33)의 제2 개구부(33b)와 중첩하도록 배치될 수도 있다.Meanwhile, in one embodiment, the second openings 37b of the upper insulating layer 37 may be spaced apart laterally so as not to overlap the second openings 33b of the lower insulating layer 33. Accordingly, even if the solder penetrates through the second opening 37b of the upper insulating layer 37, it is possible to prevent the solder from diffusing into the second opening 33b of the lower insulating layer 33, thereby preventing ohmic caused by the solder. Contamination of the reflective layer 31 can be prevented. However, the present invention is not limited thereto, and the second opening 37b of the upper insulating layer 37 may be disposed to overlap the second opening 33b of the lower insulating layer 33.
상부 절연층(37)은 SiO2 또는 Si3N4의 단일층으로 형성될 수 있으나 이에 한정되는 것은 아니다. 예를 들어, 상부 절연층(37)은 하부 절연층(33)과 유사하게 제1 굴절률을 가지는 제1 재료층과 제2 굴절률을 가지는 제2 재료층이 교대로 적층된 다층 구조를 가질 수 있다. 예를 들어, 상기 제1 재료층은 SiO2 또는 MgF2일 수 있으며, 제2 재료층은 상기 제1 재료층보다 높은 굴절률을 가지는 물질층일 수 있다. 제2 재료층은 예를 들어, TiO2, Nb2O5 또는 ZrO2일 수 있다. 특히, 제1 재료층은 SiO2층으로 형성되고, 제2 재료층은 ZrO2층으로 형성될 수 있다. 이에 따라, 내습성이 강한 발광 다이오드가 제공될 수 있다. 특히, 상부 절연층은 분포브래그 반사기일 수 있다.The upper insulating layer 37 may be formed of a single layer of SiO 2 or Si 3 N 4 , but is not limited thereto. For example, the upper insulating layer 37 may have a multilayer structure in which a first material layer having a first refractive index and a second material layer having a second refractive index are alternately stacked similarly to the lower insulating layer 33. . For example, the first material layer may be SiO 2 or MgF 2 , and the second material layer may be a material layer having a higher refractive index than the first material layer. The second material layer can be, for example, TiO 2 , Nb 2 O 5 or ZrO 2 . In particular, the first material layer may be formed of a SiO 2 layer, and the second material layer may be formed of a ZrO 2 layer. Accordingly, a light emitting diode with high moisture resistance can be provided. In particular, the upper insulating layer may be a distributed Bragg reflector.
한편, 제1 범프 패드(39a)는 상부 절연층(37)의 제1 개구부(37a)를 통해 노출된 제1 패드 금속층(35a)에 전기적으로 접촉하고, 제2 범프 패드(39b)는 제2 개구부(37b)를 통해 노출된 제2 패드 금속층(35b)에 전기적으로 접속할 수 있다. 제1 범프 패드(39a)는 상부 절연층(37)의 제1 개구부들(37a)을 모두 덮어 밀봉하며, 제2 범프 패드(39b)는 상부 절연층(37)의 제2 개구부(37b)를 모두 덮어 밀봉한다.Meanwhile, the first bump pad 39a is in electrical contact with the first pad metal layer 35a exposed through the first opening 37a of the upper insulating layer 37, and the second bump pad 39b is second. The second pad metal layer 35b exposed through the opening 37b may be electrically connected to the second pad metal layer 35b. The first bump pad 39a covers and seals all of the first openings 37a of the upper insulating layer 37, and the second bump pad 39b covers the second opening 37b of the upper insulating layer 37. Cover all and seal.
또한, 도 3a에 도시한 바와 같이, 제1 및 제2 범프 패드(39a, 39b)는 복수의 발광셀들에 걸쳐 배치될 수 있다. 도 3a에서, 제1 범프 패드(39a)는 제2, 제3, 제5, 제6 및 제7 발광셀들(C2, C3, C5, C6 및 C7)의 상부 영역에 걸쳐서 배치되며, 제2 범프 패드(39b)는 제1, 제4, 제5 및 제6 발광셀들(C1, C4, C5, C6)의 상부 영역에 걸쳐서 배치된다. 이에 따라, 제1 및 제2 범프 패드들(39a, 39b)을 상대적으로 크게 형성할 수 있으며, 따라서, 발광 다이오드의 실장 공정을 도울 수 있다.In addition, as illustrated in FIG. 3A, the first and second bump pads 39a and 39b may be disposed over the plurality of light emitting cells. In FIG. 3A, the first bump pad 39a is disposed over an upper region of the second, third, fifth, sixth, and seventh light emitting cells C2, C3, C5, C6, and C7. The bump pad 39b is disposed over an upper region of the first, fourth, fifth, and sixth light emitting cells C1, C4, C5, and C6. Accordingly, the first and second bump pads 39a and 39b may be formed relatively large, and thus, may assist in the process of mounting the light emitting diode.
제1 범프 패드(39a) 및 제2 범프 패드(39b)는 발광 다이오드를 서브마운트나 인쇄회로보드 등에 본딩되는 부분들로서 본딩에 적합한 재료로 형성된다. 예를 들어, 제1 및 제2 범프 패드들(39a, 39b)은 Au층또는 AuSn층을포함할 수 있다.The first bump pads 39a and the second bump pads 39b are formed of a material suitable for bonding as portions of the light emitting diodes bonded to a submount or a printed circuit board. For example, the first and second bump pads 39a and 39b may include an Au layer or an AuSn layer.
한편, 분포 브래그 반사기들(51~59)은 반도체 적층체(30)에 대향하여 기판(21) 상에 배치된다. 분포 브래그 반사기들(51~59)은 도 1 및 도 2를 참조하여 설명한 바와 같으므로, 여기서 상세한 설명은 생략한다.Meanwhile, the distribution Bragg reflectors 51 to 59 are disposed on the substrate 21 to face the semiconductor stack 30. Since the distribution Bragg reflectors 51 to 59 have been described with reference to FIGS. 1 and 2, the detailed description thereof will be omitted.
이상에서 7개의 발광셀들(C1~C7)을 갖는 발광 다이오드에 대해 설명하였지만, 발광셀들의 개수는 더 많을 수도 있고 더 적을 수도 있다. 더욱이, 상기 발광 다이오드는 단일의 발광셀을 포함할 수도 있으며, 이 경우, 연결부(35ab)는 불필요하게 된다.Although the light emitting diode having the seven light emitting cells C1 to C7 has been described above, the number of the light emitting cells may be larger or smaller. Furthermore, the light emitting diode may comprise a single light emitting cell, in which case the connection part 35ab is unnecessary.
한편, 이하에서 설명되는 발광 다이오드 제조 방법을 통해 발광 다이오드의 구조가 더욱 명확하게 설명될 것이다.On the other hand, the structure of the light emitting diode will be described more clearly through the light emitting diode manufacturing method described below.
도 4 내지 도 9는 도 3a의 실시예에 따른 발광 다이오드 제조 방법을 설명하기 위한 개략적인 평면도들 및 단면도들이다. 각 도면들에서 a는 평면도를 b는 각 평면도의 절취선 A-A를 따라 취해진 단면도를 나타낸다.4 through 9 are schematic plan views and cross-sectional views for describing a method of manufacturing a light emitting diode according to the embodiment of FIG. 3A. In each of the figures, a represents a plan view and b represents a cross sectional view taken along the cut line A-A of each plan view.
우선, 도 4a 및 도 4b를 참조하면, 기판(21) 상에 제1 도전형 반도체층(23), 활성층(25) 및 제2 도전형 반도체층(27)을 포함하는 반도체 적층체(30)가 성장된다. 상기 기판(21)은 질화갈륨계 반도체층을 성장시킬 수 있는 기판으로서, 예컨대 사파이어 기판, 탄화실리콘 기판, 질화갈륨(GaN) 기판, 스피넬 기판 등일 수 있다. 특히, 상기 기판(21)은 패터닝된 사파이어 기판과 같이 패터닝된 기판일 수 있다.4A and 4B, a semiconductor laminate 30 including a first conductive semiconductor layer 23, an active layer 25, and a second conductive semiconductor layer 27 on a substrate 21. Is grown. The substrate 21 may be a substrate capable of growing a gallium nitride based semiconductor layer, and may be, for example, a sapphire substrate, a silicon carbide substrate, a gallium nitride (GaN) substrate, a spinel substrate, or the like. In particular, the substrate 21 may be a patterned substrate, such as a patterned sapphire substrate.
제1 도전형 반도체층(23)은 예컨대 n형 질화갈륨계층을 포함하고, 제2 도전형 반도체층(27)은 p형 질화갈륨계층을 포함할 수 있다. 또한, 활성층(25)은 단일양자우물 구조 또는 다중양자우물 구조일 수 있으며, 우물층과 장벽층을 포함할 수 있다. 또한, 우물층은 요구되는 광의 파장에 따라 그 조성원소가 선택될 수 있으며, 예컨대 AlGaN, GaN 또는 InGaN을 포함할 수 있다.The first conductive semiconductor layer 23 may include, for example, an n-type gallium nitride based layer, and the second conductive semiconductor layer 27 may include a p-type gallium nitride based layer. In addition, the active layer 25 may be a single quantum well structure or a multi-quantum well structure, and may include a well layer and a barrier layer. In addition, the well layer may be selected in its composition according to the wavelength of light required, for example AlGaN, GaN or InGaN.
이어서, 반도체 적층(30)을 패터닝하여 복수의 발광셀들(C1~C7)이 형성된다. 예컨대, 제1 도전형 반도체층(23)의 상면을 노출시키기 위한 메사 형성 공정 및 셀 분리 영역(ISO)을 형성하기 위한 셀 분리 공정이 사진 및 식각 공정을 이용하여 수행될 수 있다. Subsequently, a plurality of light emitting cells C1 to C7 are formed by patterning the semiconductor stack 30. For example, a mesa forming process for exposing the top surface of the first conductivity type semiconductor layer 23 and a cell separation process for forming the cell isolation region ISO may be performed using a photo and etching process.
발광셀들(C1~C7)은 셀 분리 영역(ISO)에 의해 서로 이격되며, 각각 관통홀들(30a)을 가진다. 도 4b에 도시한 바와 같이, 셀 분리 영역(ISO)의 측벽 및 관통홀들(30a)의 측벽은 경사지게 형성될 수 있다.The light emitting cells C1 to C7 are spaced apart from each other by the cell isolation region ISO, and have through holes 30a. As shown in FIG. 4B, the sidewalls of the cell isolation region ISO and the sidewalls of the through holes 30a may be inclined.
한편, 메사 식각 공정에 의해 각 발광셀들의 제1 도전형 반도체층(23)의 상면이 노출된다. 관통홀들(30a)은 메사 식각 공정에서 함께 형성될 수 있다. 다만, 제2 도전형 반도체층(27) 및 활성층(23)의 둘레를 따라 제1 도전형 반도체층(23)의 상면이 링 형상으로 노출될 수도 있으나, 이에 한정되는 것은 아니다. 도 4a 및 도 4b에 도시한 바와 같이, 기판(21)의 가장자리 근처에 위치하는 발광셀들(C1~C7)의 가장자리들 근처에서 제1 도전형 반도체층(23)의 상면이 노출되고, 그 외의 가장자리들 근처에서는 제2 도전형 반도체층(27), 활성층(23) 및 제1 도전형 반도체층(23)이 연속적인 경사면을 이룰 수 있으며, 따라서, 제1 도전형 반도체층(23)의 상면이 노출되지 않을 수 있다. 특정 실시예에서, 발광셀들에 의해 둘러싸인 고립된 발광셀이 존재할 수 있는데, 이 고립된 발광셀의 가장자리들은 기판(21)의 가장자리로부터 이격된다. 이 경우, 이 고립된 발광셀의 제1 도전형 반도체층(23)은 제2 도전형 반도체층(27) 및 활성층(25)과 함께 연속적인 경사면을 형성하고, 그 가장자리 근처에 노출된 상면을 전혀 갖지 않을 수 있다.Meanwhile, an upper surface of the first conductive semiconductor layer 23 of each of the light emitting cells is exposed by a mesa etching process. The through holes 30a may be formed together in a mesa etching process. However, the upper surface of the first conductive semiconductor layer 23 may be exposed in a ring shape along the circumferences of the second conductive semiconductor layer 27 and the active layer 23, but is not limited thereto. As shown in FIGS. 4A and 4B, the top surface of the first conductivity-type semiconductor layer 23 is exposed near the edges of the light emitting cells C1 to C7 positioned near the edge of the substrate 21. Near the outer edges, the second conductivity type semiconductor layer 27, the active layer 23 and the first conductivity type semiconductor layer 23 may form a continuous inclined surface, and thus, the first conductivity type semiconductor layer 23 The top surface may not be exposed. In a particular embodiment, there may be an isolated light emitting cell surrounded by light emitting cells, wherein the edges of the isolated light emitting cell are spaced apart from the edge of the substrate 21. In this case, the first conductive semiconductor layer 23 of the isolated light emitting cell forms a continuous inclined surface together with the second conductive semiconductor layer 27 and the active layer 25, and the upper surface exposed near the edge is formed. You may not have it at all.
기판(21) 상에 셀 분리 영역(ISO)에 의해 서로 이격된 복수의 발광셀들(C1~C7)을 형성함에 따라 높이가 서로 다른 위치들을 갖는 모폴로지가 형성된다. 이 모폴로지에서, 각 발광셀의 제2 도전형 반도체층(27)의 상면이 가장 높으며, 셀 분리 영역(ISO)에 노출된 기판(21) 면이 가장 낮다.As the plurality of light emitting cells C1 to C7 spaced apart from each other by the cell isolation region ISO on the substrate 21, morphologies having positions having different heights are formed. In this morphology, the top surface of the second conductivity-type semiconductor layer 27 of each light emitting cell is the highest, and the surface of the substrate 21 exposed to the cell isolation region ISO is the lowest.
도 5a 및 도 5b를 참조하면, 발광셀들(C1~C7) 상에 각각 오믹 반사층들(31)이 형성된다. 오믹 반사층(31)은 예를 들어, 리프트 오프 기술을 이용하여 형성될 수 있다. 오믹 반사층(31)은 단일층 또는 다중층으로 형성될 수 있으며, 예컨대 오믹층 및 반사층을 포함할 수 있다. 이들 층들은 예를 들어, 전자-빔 증발법을 이용하여 형성될 수 있다. 오믹 반사층(31)을 형성하기 전에 오믹 반사층(31)이 형성될 영역에 개구부를 가지는 예비 절연층(도시하지 않음)이 먼저 형성될 수도 있다.5A and 5B, ohmic reflective layers 31 are formed on the light emitting cells C1 to C7, respectively. The ohmic reflective layer 31 may be formed using, for example, a lift off technique. The ohmic reflective layer 31 may be formed of a single layer or multiple layers, and may include, for example, an ohmic layer and a reflective layer. These layers can be formed using, for example, electron-beam evaporation. Before forming the ohmic reflective layer 31, a preliminary insulating layer (not shown) having an opening may be formed first in the region where the ohmic reflective layer 31 is to be formed.
본 실시예에 있어서, 발광셀들(C1~C7)이 형성된 후에 오믹 반사층(31)이 형성되는 것으로 설명하지만, 이에 한정되는 것은 아니다. 예를 들어, 오믹 반사층(31)이 먼저 형성되고, 발광셀들(C1~C7)이 형성될 수도 있으며, 또한, 오믹 반사층(31)을 위한 금속층이 반도체 적층(30) 상에 증착된 후, 금속층과 반도체 적층(30)이 함께 패터닝되어 오믹 반사층(31) 및 발광셀들(C1~C7)이 함께 형성될 수도 있다.In the present exemplary embodiment, the ohmic reflective layer 31 is formed after the light emitting cells C1 to C7 are formed, but is not limited thereto. For example, the ohmic reflective layer 31 may be formed first, and the light emitting cells C1 to C7 may be formed, and a metal layer for the ohmic reflective layer 31 is deposited on the semiconductor stack 30. The metal layer and the semiconductor stack 30 may be patterned together to form the ohmic reflective layer 31 and the light emitting cells C1 to C7 together.
도 6a 및 도 6b를 참조하면, 오믹 반사층(31) 및 발광셀들(C1~C7)을 덮는 하부 절연층(33)이 형성된다. 하부 절연층(33)은 SiO2 또는 Si3N4와 같은 단일층으로 형성될 수 있다. 또는, 하부 절연층(33)은 화학기상증착(CVD) 등의 기술을 사용하여 굴절률이 서로 다른 제1 재료층과 제2 재료층을 교대로 적층하여 형성될 수 있다. 예를 들어, 상기 제1 재료층은 SiO2 또는 MgF2일 수 있으며, 제2 재료층은 상기 제1 재료층보다 높은 굴절률을 가지는 물질층일 수 있다. 제2 재료층은 예를 들어, TiO2, Nb2O5 또는 ZrO2일 수 있다. 특히, 제1 재료층은 예컨대 SiO2층일 수 있고, 제2 재료층은 ZrO2층일 수 있다. 제2 재료층으로 ZrO2층을 채택함으로써 내습성이 강한 하부 절연층(33)을 제공할 수 있다.6A and 6B, a lower insulating layer 33 covering the ohmic reflective layer 31 and the light emitting cells C1 to C7 is formed. The lower insulating layer 33 may be formed of a single layer such as SiO 2 or Si 3 N 4. Alternatively, the lower insulating layer 33 may be formed by alternately stacking a first material layer and a second material layer having different refractive indices using a technique such as chemical vapor deposition (CVD). For example, the first material layer may be SiO 2 or MgF 2 , and the second material layer may be a material layer having a higher refractive index than the first material layer. The second material layer can be, for example, TiO 2 , Nb 2 O 5 or ZrO 2 . In particular, the first material layer can be, for example, an SiO 2 layer, and the second material layer can be a ZrO 2 layer. By adopting the ZrO 2 layer as the second material layer, the lower insulating layer 33 having high moisture resistance can be provided.
앞서 설명한 예비 절연층(도시하지 않음)은 하부 절연층(33)과 통합될 수 있다. 따라서, 오믹 반사층(31) 주위에 형성된 예비 절연층에 기인하여, 하부 절연층(33)의 두께가 위치에 따라 다를 수 있다. 즉, 오믹 반사층(31) 상의 하부 절연층(33)이 오믹 반사층(31) 주위의 하부 절연층(33)보다 얇을 수 있다.The preliminary insulating layer (not shown) described above may be integrated with the lower insulating layer 33. Therefore, due to the preliminary insulating layer formed around the ohmic reflective layer 31, the thickness of the lower insulating layer 33 may vary depending on the position. That is, the lower insulating layer 33 on the ohmic reflective layer 31 may be thinner than the lower insulating layer 33 around the ohmic reflective layer 31.
하부 절연층(33)은 사진 및 식각 공정을 통해 패터닝될 수 있으며, 이에 따라, 하부 절연층(33)은 관통홀들(30a) 내에서 제1 도전형 반도체층(23)을 노출시키는 제1 개구부(33a)를 가지며, 또한, 각 발광셀 상에서 오믹 반사층(31)을 노출시키는 제2 개구부(33b)를 가진다. 나아가, 하부 절연층(33)은 기판(21)의 가장자리 근처에 배치된 측면을 가진다.The lower insulating layer 33 may be patterned through a photolithography and an etching process. Accordingly, the lower insulating layer 33 may expose the first conductive semiconductor layer 23 in the through holes 30a. It has an opening 33a and has a second opening 33b exposing the ohmic reflective layer 31 on each light emitting cell. Further, the lower insulating layer 33 has a side surface disposed near the edge of the substrate 21.
도 7a 및 도 7b를 참조하면, 하부 절연층(33) 상에 제1 패드 금속층(35a), 제2 패드 금속층(35b) 및 연결부들(35ab)이 형성된다.7A and 7B, a first pad metal layer 35a, a second pad metal layer 35b, and connecting portions 35ab are formed on the lower insulating layer 33.
연결부들(35ab)은 제1 발광셀(C1) 내지 제7 발광셀(C7)을 전기적으로 연결하여 발광셀들(C1~C7)의 직렬 어레이를 형성한다. 제1 발광셀(C1)은 직렬 어레이의 첫단에 위치하며, 제7 발광셀(C7)은 직렬 어레이의 끝단에 위치한다.The connecting parts 35ab electrically connect the first to seventh light emitting cells C1 to C7 to form a series array of light emitting cells C1 to C7. The first light emitting cell C1 is positioned at the first end of the series array, and the seventh light emitting cell C7 is positioned at the end of the series array.
특히, 연결부들(35ab)은 각각 하나의 발광셀의 제1 도전형 반도체층(23)과 그것에 이웃하는 발광셀의 제2 도전형 반도체층(27)을 전기적으로 연결한다. 연결부들(35ab)은 하부 절연층(33)의 제1 개구부들(33a)을 통해 관통홀들(30a) 내에 노출된 제1 도전형 반도체층(23)에 전기적으로 접속할 수 있으며, 하부 절연층(33)의 제2 개구부들(33b)을 통해 노출된 오믹 반사층(31)에 전기적으로 접속할 수 있다. 나아가, 연결부들(35ab)은 제1 도전형 반도체층(23)과 오믹 반사층(31)에 직접 접촉할 수 있다. In particular, the connecting portions 35ab electrically connect the first conductive semiconductor layer 23 of one light emitting cell and the second conductive semiconductor layer 27 of the light emitting cell adjacent thereto. The connecting portions 35ab may be electrically connected to the first conductive semiconductor layer 23 exposed in the through holes 30a through the first openings 33a of the lower insulating layer 33. The ohmic reflective layer 31 may be electrically connected through the second openings 33b of 33. In addition, the connection parts 35ab may directly contact the first conductivity-type semiconductor layer 23 and the ohmic reflective layer 31.
연결부들(35ab)은 이웃하는 발광셀들을 연결하기 위해 셀 분리 영역(ISO)을 지난다. 도 7a에 도시한 바와 같이, 각각의 연결부(35ab)는 기판(21) 상의 모폴로지의 영향을 줄이기 위해, 하나의 발광셀의 제1 도전형 반도체층(23)의 가장자리들 중 오직 하나의 가장자리의 상부를 지난다. 즉, 본 실시예에 있어서, 각 발광셀의 제1 도전형 반도체층(23)은 네 개의 가장자리들을 가지며, 연결부(35ab)는 이 가장자리들 중 오직 하나의 가장자리 상부를 지난다. 연결부(35ab)가 전기적 연결에 불필요하게 셀 분리 영역(ISO)을 지나는 것을 방지하여 연결부(35ab)가 모폴로지의 영향으로 손상되는 것을 줄일 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 연결부(35ab)가 발광셀의 2개 이상의 측면들을 덮을 수도 있으며, 발광셀 주위의 2개 이상의 셀 분리 영역들(ISO)을 덮을 수도 있다.The connection parts 35ab pass through the cell isolation region ISO to connect neighboring light emitting cells. As shown in FIG. 7A, each connection portion 35ab is formed at the edge of only one of the edges of the first conductivity-type semiconductor layer 23 of one light emitting cell in order to reduce the influence of the morphology on the substrate 21. Pass the upper part That is, in the present embodiment, the first conductive semiconductor layer 23 of each light emitting cell has four edges, and the connecting portion 35ab passes over the upper edge of only one of these edges. It is possible to prevent the connection part 35ab from passing through the cell isolation region ISO unnecessarily for electrical connection, thereby reducing the damage of the connection part 35ab due to the influence of the morphology. However, the present invention is not limited thereto, and the connection part 35ab may cover two or more side surfaces of the light emitting cell, and may cover two or more cell separation regions ISO around the light emitting cell.
한편, 제1 패드 금속층(35a)은 발광셀들의 직렬 어레이의 끝단에 위치한 마지막 발광셀(C7) 상에 위치하고, 제2 패드 금속층(35b)은 첫단에 위치한 제1 발광셀(C1) 상에 위치한다. 제1 패드 금속층(35a)은 마지막 발광셀(C7)의 제2 도전형 반도체층(27) 상부 영역 내에 한정되어 위치할 수 있으며, 제2 패드 금속층(35b)은 제1 발광셀(C1)의 상부 영역 내에 한정되어 위치할 수 있다.Meanwhile, the first pad metal layer 35a is positioned on the last light emitting cell C7 located at the end of the series array of light emitting cells, and the second pad metal layer 35b is positioned on the first light emitting cell C1 located at the first end. do. The first pad metal layer 35a may be located within the upper region of the second conductive semiconductor layer 27 of the last light emitting cell C7, and the second pad metal layer 35b may be disposed on the first light emitting cell C1. It can be located confined in the upper region.
제1 패드 금속층(35a)은 마지막 발광셀(C7) 상에서 하부 절연층(33)의 제1 개구부(33a)를 통해 제1 도전형 반도체층(23)에 전기적으로 접속한다. 제1 패드 금속층(35a)은 제1 도전형 반도체층(23)에 직접 접촉할 수 있다. 따라서, 제1 패드 금속층(35a)은 제1 도전형 반도체층(23)에 오믹 콘택하는 오믹층을 포함할 수 있다.The first pad metal layer 35a is electrically connected to the first conductive semiconductor layer 23 through the first opening 33a of the lower insulating layer 33 on the last light emitting cell C7. The first pad metal layer 35a may directly contact the first conductive semiconductor layer 23. Therefore, the first pad metal layer 35a may include an ohmic layer that ohmic contacts the first conductive semiconductor layer 23.
한편, 제2 패드 금속층(35b)은 제1 발광셀(C1) 상에서 하부 절연층(33)의 제2 개구부(33b)를 통해 오믹 반사층(31)에 전기적으로 접속한다. 제2 패드 금속층(35b)은 오믹 반사층(31)에 직접 접촉할 수 있다. 나아가, 도 7a에 도시한 바와 같이, 제2 패드 금속층(35b)은 연결부(35ab)에 의해 둘러싸일 수 있다. 이에 따라, 제2 패드 금속층(35b)과 연결부(35ab) 사이에 경계 영역이 형성될 수 있으며, 이 경계 영역에 하부 절연층(33)이 노출될 수 있다.Meanwhile, the second pad metal layer 35b is electrically connected to the ohmic reflective layer 31 on the first light emitting cell C1 through the second opening 33b of the lower insulating layer 33. The second pad metal layer 35b may directly contact the ohmic reflective layer 31. Furthermore, as shown in FIG. 7A, the second pad metal layer 35b may be surrounded by the connection part 35ab. Accordingly, a boundary region may be formed between the second pad metal layer 35b and the connection portion 35ab, and the lower insulating layer 33 may be exposed on the boundary region.
상기 제1 패드 금속층(35a), 제2 패드 금속층(35b) 및 연결부들(35ab)은 동일 재료로 동일 공정에서 함께 형성될 수 있다. 예컨대, 상기 제1 패드 금속층(35a), 제2 패드 금속층(35b) 및 연결부들(35ab)은 접착층으로서 Ti, Cr, Ni 등을 포함할 수 있으며, 금속 반사층으로 Al을 포함할 수 있다. 나아가, 상기 제1 패드 금속층(35a), 제2 패드 금속층(35b) 및 연결부들(35ab)은 Sn과 같은 금속 원소의 확산을 방지하기 위한 확산 방지층 및 확산 방지층의 산화를 방지하기 위한 산화 방지층을 더 포함할 수 있다. 확산 방지층으로서는 예를 들어 Cr, Ti, Ni, Mo, TiW 또는 W 등이 사용될 수 있으며, 산화방지층으로서는 Au가사용될 수 있다.The first pad metal layer 35a, the second pad metal layer 35b, and the connecting portions 35ab may be formed together in the same process using the same material. For example, the first pad metal layer 35a, the second pad metal layer 35b, and the connecting portions 35ab may include Ti, Cr, Ni, or the like as an adhesive layer, and may include Al as the metal reflective layer. Further, the first pad metal layer 35a, the second pad metal layer 35b, and the connecting portions 35ab may include a diffusion barrier layer for preventing diffusion of a metal element such as Sn and an oxidation barrier layer for preventing oxidation of the diffusion barrier layer. It may further include. As the diffusion barrier layer, for example, Cr, Ti, Ni, Mo, TiW or W may be used, and Au may be used as the antioxidant layer.
도 8a 및 도 8b를 참조하면, 제1 패드 금속층(35a), 제2 패드 금속층(35b) 및 연결부들(35ab)을 덮는 상부 절연층(37)이 형성된다. 상부 절연층(31)은 제1 패드 금속층(35a)을 노출시키는 개구부(37a) 및 제2 패드 금속층(35b)을 노출시키는 개구부(37b)를 가진다. 본 실시예에 있어서, 복수의 개구부들(37a)이 도시되어 있으나, 이에 한정되는 것은 아니며, 하나의 개구부(37a)가 사용될 수도 있다.8A and 8B, an upper insulating layer 37 covering the first pad metal layer 35a, the second pad metal layer 35b, and the connecting portions 35ab is formed. The upper insulating layer 31 has an opening 37a exposing the first pad metal layer 35a and an opening 37b exposing the second pad metal layer 35b. In the present embodiment, a plurality of openings 37a are illustrated, but the present invention is not limited thereto, and one opening 37a may be used.
상부 절연층(37)의 개구부(37b)는 하부 절연층(33)의 제2 개구부(33b)로부터 횡방향으로 이격되어 배치될 수 있다. 상부 절연층(37)의 개구부(37b)와 하부 절연층(33)의 제2 개구부(33b)를 서로 중첩하지 않도록 이격시킴으로써, 오믹 반사층(31)이 솔더 등에 의해 오염되는 것을 방지할 수 있다. 그러나 본 발명은 이에 한정되는 것은 아니며, 하부 절연층(33)의 제2 개구부(33b)와 상부 절연층(37)의 개구부(37b)가 서로 중첩될 수도 있다.The opening 37b of the upper insulating layer 37 may be disposed to be laterally spaced apart from the second opening 33b of the lower insulating layer 33. By separating the opening 37b of the upper insulating layer 37 and the second opening 33b of the lower insulating layer 33 from overlapping each other, it is possible to prevent the ohmic reflective layer 31 from being contaminated by solder or the like. However, the present invention is not limited thereto, and the second opening 33b of the lower insulating layer 33 and the opening 37b of the upper insulating layer 37 may overlap each other.
한편, 상부 절연층(37)은 또한 기판(21)의 가장자리를 따라 하부 절연층(33)의 가장자리를 덮을 수 있으며, 기판(21)의 가장자리 근처의 일부 영역을 노출시킬 수 있다. 상부 절연층(37)의 가장자리는 연결부들(35ab)로부터 적어도 11um, 나아가 적어도 15um 이격되도록 형성될 수 있다.Meanwhile, the upper insulating layer 37 may also cover the edge of the lower insulating layer 33 along the edge of the substrate 21, and may expose some region near the edge of the substrate 21. The edge of the upper insulating layer 37 may be formed to be spaced apart from the connecting portions 35ab by at least 11 μm, and at least 15 μm.
상부 절연층(37)은 실리콘 산화막 또는 실리콘 질화막의 단일층으로 형성될 수도 있으며, 나아가 다층 구조의 분포 브래그 반사기로 형성될 수도 있다. 상부 절연층(37)은 또한 하부 절연층(33)과 유사하게 제1 재료층과 제2 재료층이 교대로 적층된 분포 브래그 반사기일 수 있다. 예를 들어, 상기 제1 재료층은 SiO2 또는 MgF2일 수 있으며, 제2 재료층은 상기 제1 재료층보다 높은 굴절률을 가지는 물질층일 수 있다. 제2 재료층은 예를 들어, TiO2, Nb2O5 또는 ZrO2일 수 있다. 특히, 상부 절연층(37)은 SiO2층/ZrO2층이 교대로 적층된 분포 브래그 반사기로 형성될 수도 있다.The upper insulating layer 37 may be formed of a single layer of a silicon oxide film or a silicon nitride film, or may be formed of a distributed Bragg reflector having a multilayer structure. The upper insulating layer 37 may also be a distributed Bragg reflector in which the first material layer and the second material layer are alternately stacked similarly to the lower insulating layer 33. For example, the first material layer may be SiO 2 or MgF 2 , and the second material layer may be a material layer having a higher refractive index than the first material layer. The second material layer can be, for example, TiO 2 , Nb 2 O 5 or ZrO 2 . In particular, the upper insulating layer 37 may be formed of a distributed Bragg reflector in which SiO 2 layers / ZrO 2 layers are alternately stacked.
상부 절연층(37) 또한 사진 및 식각 공정을 이용하여 패터닝될 수 있으며, 이에 따라 개구부들(37a, 37b)이 형성될 수 있다. 이들 개구부들(37a, 37b) 또한 하부 절연층(33)의 개구부들(33a, 33b)과 같이 오픗셋 형상의 측벽을 가질 수 있다. The upper insulating layer 37 may also be patterned by using a photolithography and etching process, and thus openings 37a and 37b may be formed. These openings 37a and 37b may also have an offset-shaped sidewall like the openings 33a and 33b of the lower insulating layer 33.
도 9a 및 도 9b를 참조하면, 상부 절연층(37) 상에 제1 범프 패드(39a) 및 제2 범프 패드(39b)가 형성된다.9A and 9B, a first bump pad 39a and a second bump pad 39b are formed on the upper insulating layer 37.
제1 범프 패드(39a)는 상부 절연층(37)의 개구부(37a)를 통해 제1 패드 금속층(35a)에 전기적으로 접속하고, 제2 범프 패드(39b)는 상부 절연층(37)의 개구부(37b)를 통해 제2 패드 금속층(35b)에 전기적으로 접속한다.The first bump pad 39a is electrically connected to the first pad metal layer 35a through the opening 37a of the upper insulating layer 37, and the second bump pad 39b is an opening of the upper insulating layer 37. It is electrically connected to the second pad metal layer 35b through 37b.
제1 및 제2 범프 패드(39a, 39b)는 도 9a에 도시한 바와 같이 복수의 발광셀들에 걸쳐서 형성될 수 있다. 상부 절연층(37)이 발광셀들과 제1 및 제2 범프 패드들(39a, 39b) 사이에서 전기적 단락을 방지한다.The first and second bump pads 39a and 39b may be formed over the plurality of light emitting cells as shown in FIG. 9A. The upper insulating layer 37 prevents an electrical short between the light emitting cells and the first and second bump pads 39a and 39b.
제1 및 제2 범프 패드들(39a, 39b)이 형성된 후, 기판(21)의 하면을 그라인딩 및/또는 래핑 공정을 통해 부분적으로 제거하여 기판(21) 두께를 감소시킬 수 있다. 이어서, 기판(21) 상에 도 3a의 분포 브래그 반사기들(51~59)을 순차적으로 형성하여 분포 브래그 반사기들(51~59)의 적층체를 형성하고, 기판(21)을 개별 칩 단위로 분할함으로써 서로 분리된 발광 다이오드가 제공된다. 이때, 상기 기판(21)은 레이저 스크라이빙 기술을 이용하여 분리될 수 있다.After the first and second bump pads 39a and 39b are formed, the bottom surface of the substrate 21 may be partially removed through grinding and / or lapping to reduce the thickness of the substrate 21. Subsequently, the distribution Bragg reflectors 51 to 59 of FIG. 3A are sequentially formed on the substrate 21 to form a stack of the distribution Bragg reflectors 51 to 59, and the substrate 21 is formed in individual chip units. By dividing, light emitting diodes separated from each other are provided. In this case, the substrate 21 may be separated using a laser scribing technique.
상기 분포 브래그 반사기들(51~59)은 사진 및 식각 공정 또는 리프트 오프 기술을 이용하여 기판(21)에 가까운 분포 브래그 반사기(51)부터 차례로 형성될 수 있다. 즉, 제1 분포 브래그 반사기(51)를 형성하고, 그 위에 제2 분포 브래그 반사기(53), 제3 분포 브래그 반사기(55), 제4 분포 브래그 반사기(57) 및 제5 분포 브래그 반사기(59)를 차례로 형성할 수 있다. 이와 달리, 90% 이상의 반사율을 갖도록 기판(21) 상에 제1 재료층과 제2 재료층을 교대로 적층한 후, 위에서부터 제5 분포 브래그 반사기(59)를 패터닝하여 형성하고, 이어서, 제4 분포 브래그 반사기(57), 제3 분포 브래그 반사기(55), 제2 분포 브래그 반사기(53)를 차례로 패터닝하여 형성함으로써 분포 브래그 반사기들(51~59)의 적층체를 형성할 수 있다.The distribution Bragg reflectors 51 to 59 may be sequentially formed from the Distribution Bragg reflectors 51 close to the substrate 21 by using a photographic and etching process or a lift off technique. That is, the first distributed Bragg reflector 51 is formed, and the second distributed Bragg reflector 53, the third distributed Bragg reflector 55, the fourth distributed Bragg reflector 57 and the fifth distributed Bragg reflector 59 are formed thereon. ) Can be formed one after the other. Alternatively, the first material layer and the second material layer are alternately stacked on the substrate 21 so as to have a reflectance of 90% or more, and then the fifth distributed Bragg reflector 59 is patterned from above, and then, By stacking the fourth distributed Bragg reflector 57, the third distributed Bragg reflector 55, and the second distributed Bragg reflector 53, the laminate of the distributed Bragg reflectors 51 to 59 may be formed.
분포 브래그 반사기들(51, 53, 55, 57, 59)은 각각 굴절률이 서로 다른 제1 재료층과 제2 재료층이 교대로 적층된 구조를 가진다. 예를 들어, 제1 재료층은 SiO2 또는 MgF2일 수 있으며, 제2 재료층은 상기 제1 재료층보다 높은 굴절률을 가지는 물질층일 수 있다. 제2 재료층은 예를 들어, TiO2, Nb2O5 또는 ZrO2일 수 있다. 분포 브래그 반사기들(51, 53, 55, 57, 59)이 모두 동일한 제1 및 제2 재료층들로 형성될 수 있지만, 이에 한정되는 것은 아니며, 서로 다른 제1 및 제2 재료층들로 형성될 수도 있다. 예를 들어, 제1 분포 브래그 반사기(51)는 SiO2/TiO2로 형성되고, 제2 분포 브래그 반사기는 SiO2/ZrO2로 형성될 수도 있다.The distributed Bragg reflectors 51, 53, 55, 57, 59 have a structure in which a first material layer and a second material layer having different refractive indices are alternately stacked. For example, the first material layer may be SiO 2 or MgF 2 , and the second material layer may be a material layer having a higher refractive index than the first material layer. The second material layer can be, for example, TiO 2 , Nb 2 O 5 or ZrO 2 . The distribution Bragg reflectors 51, 53, 55, 57, 59 may all be formed of the same first and second material layers, but are not limited to this and are formed of different first and second material layers. May be For example, the first distributed Bragg reflector 51 may be formed of SiO 2 / TiO 2, and the second distributed Bragg reflector 51 may be formed of SiO 2 / ZrO 2.
한편, 식각공정이나 리프트 오프 기술을 이용하여 형성된 분포 브래그 반사기들(51~59)의 측면들은 경사각을 가질 수 있으며, 그 경사각은 기판(21) 면에 대해 약 20 내지 70도 범위 내일 수 있다.Meanwhile, side surfaces of the distribution Bragg reflectors 51 to 59 formed using an etching process or a lift off technique may have an inclination angle, and the inclination angle may be in a range of about 20 to 70 degrees with respect to the surface of the substrate 21.
도 10은 본 발명의 또 다른 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 단면도이다.10 is a schematic cross-sectional view for describing a light emitting diode according to still another embodiment of the present invention.
도 10을 참조하면, 본 실시예에 따른 발광 다이오드는 도 1을 참조하여 설명한 발광 다이오드와 대체로 유사하나, 분포 브래그 반사기들(51~59)이 모두 기판(21)의 일측에 치우쳐 배치된 것에 차이가 있다. 예를 들어, 분포 브래그 반사기들(51~59)은 일측 측면들이 나란하도록 적층될 수 있다. 도 1의 발광 다이오드는 도 2에 도시한 바와 같이 대칭적인 지향 패턴을 가지지만, 본 실시예에 따른 발광 다이오드는 출사광의 지향 패턴이 비대칭적인 형상을 갖게 된다.Referring to FIG. 10, the light emitting diode according to the present exemplary embodiment is generally similar to the light emitting diode described with reference to FIG. 1, except that all of the distribution Bragg reflectors 51 to 59 are disposed on one side of the substrate 21. There is. For example, the distribution Bragg reflectors 51 to 59 may be stacked such that one side surfaces thereof are side by side. Although the light emitting diode of FIG. 1 has a symmetrical directing pattern as shown in FIG. 2, the light emitting diode according to the present embodiment has an asymmetrical shape of the directing pattern of the emitted light.
본 실시예에 있어서, 분포 브래그 반사기들(51~59)의 일측 측면들이 나란한 것에 대해 설명하지만, 분포 브래그 반사기들(51~59)의 위치 및 형상은 다양하게 변형될 수 있으며, 이에 따라, 발광 다이오드의 출사광의 지향 패턴을 다양하게 변화시킬 수 있다.In this embodiment, one side of the distribution Bragg reflectors 51 to 59 will be described as being parallel, but the position and shape of the Distribution Bragg reflectors 51 to 59 may be modified in various ways. The directing pattern of the emitted light of the diode can be variously changed.
이상에서, 본 발명의 다양한 실시예들에 대해 설명하였으나, 본 발명은 이들 실시예들에 한정되는 것은 아니다. 또한, 하나의 실시예에 대해서 설명한 사항이나 구성요소는 본 발명의 기술적 사상을 벗어나지 않는 한, 다른 실시예에도 적용될 수 있다.In the above, various embodiments of the present invention have been described, but the present invention is not limited to these embodiments. In addition, the matters or components described with respect to one embodiment may be applied to other embodiments without departing from the technical spirit of the present invention.

Claims (20)

  1. 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 반도체 적층체; 및A semiconductor laminate including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; And
    상기 반도체 적층체의 일측 상에 배치된 복수의 분포 브래그 반사기들을 포함하되,A plurality of distributed Bragg reflectors disposed on one side of the semiconductor laminate,
    상기 복수의 분포 브래그 반사기들은 서로 다른 면적을 가지고 적층된 발광 다이오드.The plurality of distributed Bragg reflectors are stacked with different areas.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 복수의 분포 브래그 반사기들은 상기 반도체 적층체로부터 멀수록 좁은 면적을 가지는 발광 다이오드.The plurality of distributed Bragg reflectors have a narrower area as the distance from the semiconductor stack.
  3. 청구항 3에 있어서,The method according to claim 3,
    상기 복수의 분포 브래그 반사기들은 동일한 중심축을 가지는 발광 다이오드.The plurality of distributed Bragg reflectors have the same central axis.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 복수의 분포 브래그 반사기들은 일측 측면들이 나란하도록 적층된 발광 다이오드.The plurality of distributed Bragg reflectors are stacked so that one side side by side.
  5. 청구항 2에 있어서,The method according to claim 2,
    상기 분포 브래그 반사기들 각각은 5% 내지 50% 범위 내의 반사율을 나타내는 발광 다이오드.Wherein each of the distributed Bragg reflectors exhibits a reflectance in the range of 5% to 50%.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 분포 브래그 반사기들이 가장 많이 중첩된 영역의 반사율은 상기 활성층에서 방출된 광에 대해 90% 이상의 반사율을 나타내는 발광 다이오드.And a reflectance of the region where the distribution Bragg reflectors are most overlapped represents a reflectance of 90% or more with respect to light emitted from the active layer.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 분포 브래그 반사기들이 가장 적게 중첩된 영역의 반사율은 10% 이하의 반사율을 나타내는 발광 다이오드.Wherein the reflectance of the region where the distribution Bragg reflectors are least overlapped has a reflectance of 10% or less.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 반도체 적층체와 상기 복수의 분포 브래그 반사기들 사이에 위치하는 기판을 더 포함하는 발광 다이오드.And a substrate positioned between the semiconductor stack and the plurality of distributed Bragg reflectors.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 반도체 적층체를 덮되, 상기 반도체 적층체의 제1 도전형 반도체층을 노출시키는 제1 개구부를 포함하는 하부 절연층; 및A lower insulating layer covering the semiconductor stack and including a first opening exposing the first conductive semiconductor layer of the semiconductor stack; And
    상기 하부 절연층 상에 배치되고, 상기 하부 절연층의 제1 개구부를 통해 상기 제1 도전형 반도체층에 전기적으로 접속하는 제1 금속층을 더 포함하는 발광 다이오드.And a first metal layer disposed on the lower insulating layer and electrically connected to the first conductive semiconductor layer through the first opening of the lower insulating layer.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 제2 도전형 반도체층 상에 배치되어 상기 제2 도전형 반도체층에 오믹 콘택하는 오믹 반사층을 더 포함하되,An ohmic reflective layer disposed on the second conductive semiconductor layer and ohmic contacting the second conductive semiconductor layer,
    상기 하부 절연층은 상기 오믹 반사층을 노출시키는 제2 개구부를 더 포함하는 발광 다이오드.The lower insulating layer further includes a second opening exposing the ohmic reflective layer.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 제1 금속층을 덮는 상부 절연층;An upper insulating layer covering the first metal layer;
    상기 상부 절연층 상에 위치하며, 상기 반도체 적층체의 제1 도전형 반도체층 및 제2 도전형 반도체층에 각각 전기적으로 접속된 제1 범프 패드 및 제2 범프 패드를 더 포함하되,A first bump pad and a second bump pad on the upper insulating layer and electrically connected to the first conductive semiconductor layer and the second conductive semiconductor layer of the semiconductor laminate, respectively,
    상기 상부 절연층은 상기 제1 금속층을 노출시키는 제1 개구부를 포함하고,The upper insulating layer includes a first opening exposing the first metal layer,
    상기 제1 범프 패드는 상기 제1 개구부를 통해 상기 제1 금속층에 접속하는 발광 다이오드.And the first bump pad is connected to the first metal layer through the first opening.
  12. 청구항 9에 있어서,The method according to claim 9,
    상기 반도체 적층체는 서로 이격된 복수의 발광셀들을 포함하고,The semiconductor laminate includes a plurality of light emitting cells spaced apart from each other,
    상기 제1 금속층은 이웃하는 발광셀들을 전기적으로 직렬 연결하여 발광셀들의 직렬 어레이를 형성하기 위한 연결부(들), 및 상기 직렬 어레이의 끝단에 배치된 마지막 발광셀의 제1 도전형 반도체층에 전기적으로 접속하는 제1 패드 금속층을 포함하는 발광 다이오드.The first metal layer electrically connects adjacent light emitting cells in series to form a series array of light emitting cells, and a first conductive semiconductor layer of the last light emitting cell disposed at an end of the series array. A light emitting diode comprising a first pad metal layer connected to each other.
  13. 청구항 12에 있어서,The method according to claim 12,
    각 발광셀의 제2 도전형 반도체층 상에 배치되어 상기 제2 도전형 반도체층에 오믹 콘택하는 오믹 반사층; 및An ohmic reflective layer disposed on the second conductive semiconductor layer of each light emitting cell and ohmic contacting the second conductive semiconductor layer; And
    상기 하부 절연층 상에 배치되어 상기 직렬 어레이의 첫단에 배치된 제1 발광셀의 오믹 반사층에 전기적으로 접속하는 제2 패드 금속층을 더 포함하고,A second pad metal layer disposed on the lower insulating layer and electrically connected to the ohmic reflective layer of the first light emitting cell disposed at the first end of the series array;
    상기 하부 절연층은 각 발광셀 상의 상기 오믹 반사층을 노출시키는 제2 개구부들을 더 포함하며,The lower insulating layer further includes second openings exposing the ohmic reflective layer on each light emitting cell.
    상기 제2 패드 금속층은 상기 제2 개구부를 통해 상기 제1 발광셀 상의 오믹 반사층에 전기적으로 접속된 발광 다이오드.And the second pad metal layer is electrically connected to an ohmic reflective layer on the first light emitting cell through the second opening.
  14. 청구항 12에 있어서,The method according to claim 12,
    상기 연결부(들), 제1 및 제2 패드 금속층를 덮되, 상기 제1 및 제2 패드 금속층의 상면들을 각각 노출시키는 개구부들을 가지는 상부 절연층; 및An upper insulating layer covering the connection portion (s) and the first and second pad metal layers, the upper insulating layer having openings exposing top surfaces of the first and second pad metal layers, respectively; And
    상기 상부 절연층의 개구부들에 의해 노출된 상기 제1 패드 금속층 및 제2 패드 금속층의 상면에 각각 접속하는 제1 범프 패드 및 제2 범프 패드를 더 포함하는 발광 다이오드.And a first bump pad and a second bump pad respectively connected to upper surfaces of the first pad metal layer and the second pad metal layer exposed by the openings of the upper insulating layer.
  15. 청구항 14에 있어서,The method according to claim 14,
    상기 제1 범프 패드 및 제2 범프 패드는 각각 2개 이상의 발광셀들 상부 영역에 걸쳐서 배치된 발광 다이오드.The first bump pad and the second bump pad are respectively disposed over an upper region of two or more light emitting cells.
  16. 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 반도체 적층체; 및A semiconductor laminate including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; And
    상기 반도체 적층체의 일측 상에 배치된 분포 브래그 반사기들의 적층체를 포함하되,A stack of distributed Bragg reflectors disposed on one side of the semiconductor stack,
    상기 분포 브래그 반사기들의 적층체는 두께가 서로 다른 영역들을 포함하고,The stack of distributed Bragg reflectors includes regions of different thicknesses,
    상기 분포 브래그 반사기들의 적층체는 두께가 두꺼운 영역에서 더 높은 반사율을 가지는 발광 다이오드.Wherein said stack of distributed Bragg reflectors has a higher reflectance in a thicker region.
  17. 청구항 16에 있어서,The method according to claim 16,
    상기 분포 브래그 반사기들의 적층체는 중앙에서 가장 높은 반사율을 나타내고, 가장자리 근처에서 가장 낮은 반사율을 나타내는 발광 다이오드.Wherein said stack of distributed Bragg reflectors exhibits the highest reflectance in the center and the lowest reflectance near the edge.
  18. 청구항 16에 있어서,The method according to claim 16,
    상기 활성층에서 생성된 광의 적어도 일부는 상기 분포 브래그 반사기들의 적층체를 통해 외부로 방출되는 발광 다이오드.At least a portion of the light generated in the active layer is emitted to the outside through the stack of distributed Bragg reflectors.
  19. 청구항 18에 있어서,The method according to claim 18,
    상기 반도체 적층체와 상기 분포 브래그 반사기들의 적층체 사이에 배치된 기판을 더 포함하는 발광 다이오드.And a substrate disposed between the semiconductor stack and the stack of distributed Bragg reflectors.
  20. 청구항 19에 있어서,The method according to claim 19,
    상기 반도체 적층체 상에 배치되어 각각 상기 제1 도전형 반도체층 및 제2 도전형 반도체층에 전기적으로 접속된 제1 범프 패드 및 제2 범프 패드를 더 포함하는 발광 다이오드.And a first bump pad and a second bump pad disposed on the semiconductor laminate and electrically connected to the first conductive semiconductor layer and the second conductive semiconductor layer, respectively.
PCT/KR2018/002542 2017-03-21 2018-03-02 Light-emitting diode including distributed bragg reflector laminate WO2018174425A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170035463A KR20180106720A (en) 2017-03-21 2017-03-21 Light emitting diode with stack of dbrs
KR10-2017-0035463 2017-03-21

Publications (1)

Publication Number Publication Date
WO2018174425A1 true WO2018174425A1 (en) 2018-09-27

Family

ID=63584657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002542 WO2018174425A1 (en) 2017-03-21 2018-03-02 Light-emitting diode including distributed bragg reflector laminate

Country Status (2)

Country Link
KR (1) KR20180106720A (en)
WO (1) WO2018174425A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113036008A (en) * 2021-03-12 2021-06-25 錼创显示科技股份有限公司 Light emitting element and display panel
CN113424315A (en) * 2019-02-14 2021-09-21 首尔伟傲世有限公司 Display light-emitting element transfer method and display device
CN113924662A (en) * 2019-05-29 2022-01-11 首尔伟傲世有限公司 Light emitting element with cantilever electrode, display panel with light emitting element and display device
TWI762234B (en) * 2021-03-12 2022-04-21 錼創顯示科技股份有限公司 Light emitting element and display panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050023184A (en) * 2003-08-27 2005-03-09 주식회사 옵토웰 Resonant Cavity Light Emitting Diode and fabrication method thereof
JP2011508445A (en) * 2007-12-28 2011-03-10 ソウル オプト デバイス カンパニー リミテッド Light emitting diode and manufacturing method thereof
KR20110053064A (en) * 2009-11-13 2011-05-19 서울옵토디바이스주식회사 Light emitting diode chip and light emitting diode package each having distributed bragg reflector
KR20120031343A (en) * 2010-09-24 2012-04-03 서울옵토디바이스주식회사 Wafer-level light emitting diode package having plurality of light emitting cells and method of fabricating the same
KR20140073351A (en) * 2012-12-06 2014-06-16 엘지이노텍 주식회사 Light Emitting Device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050023184A (en) * 2003-08-27 2005-03-09 주식회사 옵토웰 Resonant Cavity Light Emitting Diode and fabrication method thereof
JP2011508445A (en) * 2007-12-28 2011-03-10 ソウル オプト デバイス カンパニー リミテッド Light emitting diode and manufacturing method thereof
KR20110053064A (en) * 2009-11-13 2011-05-19 서울옵토디바이스주식회사 Light emitting diode chip and light emitting diode package each having distributed bragg reflector
KR20120031343A (en) * 2010-09-24 2012-04-03 서울옵토디바이스주식회사 Wafer-level light emitting diode package having plurality of light emitting cells and method of fabricating the same
KR20140073351A (en) * 2012-12-06 2014-06-16 엘지이노텍 주식회사 Light Emitting Device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113424315A (en) * 2019-02-14 2021-09-21 首尔伟傲世有限公司 Display light-emitting element transfer method and display device
CN113924662A (en) * 2019-05-29 2022-01-11 首尔伟傲世有限公司 Light emitting element with cantilever electrode, display panel with light emitting element and display device
CN113036008A (en) * 2021-03-12 2021-06-25 錼创显示科技股份有限公司 Light emitting element and display panel
TWI762234B (en) * 2021-03-12 2022-04-21 錼創顯示科技股份有限公司 Light emitting element and display panel
CN113036008B (en) * 2021-03-12 2023-11-03 錼创显示科技股份有限公司 Light-emitting element and display panel

Also Published As

Publication number Publication date
KR20180106720A (en) 2018-10-01

Similar Documents

Publication Publication Date Title
WO2016064134A2 (en) Light emitting device and method of fabricating the same
WO2014025195A1 (en) Wafer level light-emitting diode array and method for manufacturing same
CN111120962B (en) Light emitting diode having a plurality of light emitting cells
WO2012039555A2 (en) Wafer-level light emitting diode package and method of fabricating the same
WO2018174425A1 (en) Light-emitting diode including distributed bragg reflector laminate
WO2011145850A2 (en) High efficiency light emitting diode and method of fabricating the same
WO2020231131A1 (en) Light emitting package
WO2021085935A1 (en) Light-emitting element for display, and display apparatus having same
WO2016204482A1 (en) Light-emitting element comprising a plurality of wavelength conversion units, and production method therefor
WO2015016561A1 (en) Light emitting diode, method of fabricating the same and led module having the same
WO2021086026A1 (en) Led display device
WO2020036423A1 (en) Light-emitting device
WO2015005706A1 (en) Led chip having esd protection
WO2017138707A1 (en) High-power light-emitting diode and light-emitting module having same
WO2016148424A1 (en) Light emitting element including metal bulk
WO2020241993A1 (en) Vertical light-emitting diode
WO2016047932A1 (en) Method of fabricating lighting emitting device and lighting emitting device fabricated by the same
WO2020096384A1 (en) Light-emitting diode
KR20180122840A (en) Highly reliable light emitting diode
WO2016003205A1 (en) Light emitting element
WO2021133140A1 (en) Light-emitting element and led display device including same
WO2020111429A1 (en) Light emitting device
WO2022031138A1 (en) Light-emitting diode having plurality of light-emitting cells
WO2019022427A1 (en) Light emitting diode for vehicle headlamp
WO2021251717A1 (en) Unit pixel having light-emitting devices, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771604

Country of ref document: EP

Kind code of ref document: A1