WO2018174379A1 - Pharmaceutical composition comprising htr2a antagonist as effective ingredient for preventing or treating fatty liver - Google Patents

Pharmaceutical composition comprising htr2a antagonist as effective ingredient for preventing or treating fatty liver Download PDF

Info

Publication number
WO2018174379A1
WO2018174379A1 PCT/KR2017/015006 KR2017015006W WO2018174379A1 WO 2018174379 A1 WO2018174379 A1 WO 2018174379A1 KR 2017015006 W KR2017015006 W KR 2017015006W WO 2018174379 A1 WO2018174379 A1 WO 2018174379A1
Authority
WO
WIPO (PCT)
Prior art keywords
htr2a
fatty liver
liver
expression
mice
Prior art date
Application number
PCT/KR2017/015006
Other languages
French (fr)
Korean (ko)
Inventor
김하일
남궁준
최원석
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170158580A external-priority patent/KR20180108402A/en
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2018174379A1 publication Critical patent/WO2018174379A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/13Nucleic acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention was made by the task number 2014M3A9D8034464 under the support of the Ministry of Science, ICT and Future Planning, and the research management specialized organization of the project is “Korea Research Foundation”, the research project name is “Bio / Medical Technology Development Project”, and the research project title is “Cell Organ Organelle” Development of reconstruction technology for countermeasures through functional recovery ", the host institution is Korea Advanced Institute of Science and Technology, and the research period is 2016.06.26. to be.
  • the present invention was made by the task number 2016M3A9B6902871 under the support of the Ministry of Science, ICT and Future Planning, the research management specialized organization of the project is "Korea Research Foundation", the research project name “Bio / medical technology development project”, the research project title is "local Analysis of Adipose Cell Remodeling Mechanism by Cell-derived Serotonin ", Organizer is Korea Advanced Institute of Science and Technology, Research period 2016.06.26.-2017.06.25. to be.
  • the present invention relates to a pharmaceutical composition for preventing or treating fatty liver, comprising an HTR2A antagonist as an active ingredient.
  • Fatty liver is a disease in which triglycerides accumulate in liver cells. It is caused by excessive energy such as obesity and metabolic syndrome or excessive alcohol consumption. If fatty liver persists, hepatitis, cirrhosis and even liver cancer can cause a series of diseases. Recently, obesity and rural populations are rapidly increasing not only in western developed countries but also in Korea due to lack of eating habits, drinking culture, and lack of exercise, which is a serious social problem.
  • Fatty liver develops when the amount of fat accumulated in the liver exceeds the amount of fat metabolized by the liver through the fat metabolism pathway in the liver. Increased absorption of fat from the blood into the liver, increased fat production from the liver, increased triglycerides synthesized in the liver, reduced fat oxidation consumed in the liver, ultra-low-density lipoprotein (VLDL) that exports fat from the liver to the blood In addition, the reduction of very low desity lipoprotein may be seen in pathophysiology of fatty liver.
  • VLDL ultra-low-density lipoprotein
  • the present inventors have endeavored to develop a substance having anti-fatty activity, and confirmed that the HTR2A antagonist including safogrelate, ketanserine, etc. of the present invention exhibited significant fatty liver improvement effects, and completed the present invention.
  • Another object of the present invention is to provide a food composition for preventing or improving fatty liver, comprising an HTR2A (5-hydroxytrptamine receptor 2A) inhibitor as an active ingredient.
  • the test substance is determined as a candidate for preventing or treating fatty liver.
  • the present invention provides a pharmaceutical composition for the prevention or treatment of fatty liver comprising HTR2A (5-hydroxytrptamine receptor 2A) inhibitor as an active ingredient.
  • fatty liver refers to a condition in which a greater amount of fat is accumulated in the liver than the proportion of fat (5%) in normal liver.
  • the fatty liver may be classified into alcoholic fatty liver due to excessive drinking and non-alcoholic fatty liver due to obesity, diabetes, hyperlipidemia or drugs.
  • Alcoholic fatty liver is caused by the ingestion of alcohol to promote fat synthesis and normal energy metabolism in the liver, non-alcoholic fatty liver occurs due to causes other than alcohol, the non-alcoholic fatty liver causes abnormal fat metabolism It is known to be frequently accompanied by adult disease.
  • alcoholic fatty liver refers to a state in which fat is accumulated in liver cells by ingesting excessive alcohol (excessive drinking).
  • non-alcoholic fatty liver refers to fatty liver caused by causes other than alcohol. It accounts for 57% of the total fatty liver, and is commonly known to be accompanied by the adult disease causing fat metabolism abnormality. One of the causes of adult disease is known to be excessive carbohydrate intake and obesity resulting from obesity. In fact, 75% of patients with nonalcoholic fatty liver have been reported to be obese.
  • HTR2A (5-hydroxytrptamine receptor 2A, or 5-HT2A receptor) belongs to the serotonin receptor family and is one of the subtypes of the 5-HT2 receptor, which is a G protein-coupled receptor (GPCR). HTR2A was first noticed because of its importance as a target for serotonergic hallucinogens such as LSD, and was later found to mediate the action of many antipsychotic drugs, especially atypical drugs. However, the relationship between the HTR2A and fatty liver is not known yet.
  • the prevention or treatment of fatty liver is achieved by an inhibitor of HTR2A.
  • HTR2A The inhibition of HTR2A can be done in a variety of ways.
  • the term “inhibitor” may be an antagonist.
  • Antagonists are substances that antagonize the binding of certain bioactive substances to their receptors, but do not exhibit physiological activity through their respective receptors.
  • Antagonists, blocking agents, inhibitors, etc. are substances that antagonize the binding of certain bioactive substances to their receptors, but do not exhibit physiological activity through their respective receptors.
  • Antagonists, blocking agents, inhibitors, etc. are substances that antagonize the binding of certain bioactive substances to their receptors, but do not exhibit physiological activity through their respective receptors.
  • Antagonists, blocking agents, inhibitors, etc. .
  • the antagonist herein includes an inverse agonist for the receptor.
  • the HTR2A antagonist is Sapogrelate, 5-I-R91150, 5-MeO-NBpBrT, Adatanserin, Altanserin, AMDA (9-Aminomethyl -9,10-dihydroanthracene, Amperozide, Asenapine, BL-1020, Sinanserin, Clozapine, Deramciclane, Fananserin, Plyans Flibanserin, Glemanserin, Iferanserin, Ketanserin, KML-010, Lidanserin, Lubazodone, Lumateperone, Lumeperone, LY- 367,265, Medifoxamine, Mepiprazole, MIN-101, Naphtidrofuryl, Nefazodone, Ollanzapine, Phenoxybenzamine, Pipamperone , Pruvanserin, Lauwolscine, Quetiapine, Risperidone, Ritanserin, It may be selected from the group consisting
  • the HTR2A antagonist is Ketanserin.
  • the HTR2A antagonist may be an HTR2A expression inhibitor.
  • the expression inhibitor may be an HTR2A expression inhibitor selected from the group consisting of antisense oligonucleotides, siRNAs, shRNAs and ribozymes that specifically bind to mRNA of the HTR2A gene, but is not limited thereto.
  • antisense oligonucleotide refers to DNA or RNA or derivatives thereof that contain a nucleic acid sequence complementary to a sequence of a particular mRNA and binds to the complementary sequence within the mRNA to inhibit translation of the mRNA into a protein.
  • An antisense sequence refers to a DNA or RNA sequence that is complementary to HTR2A mRNA (eg, GenBank Accession Nos. NM_000621.4 and NM_001165947.2) and capable of binding to HTR2A mRNA, and translates into HTR2A mRNA, into the cytoplasm. May inhibit the essential activity for translocation, maturation or any other overall biological function of the antisense nucleic acid, 6-100 bases in length, specifically 8-60 bases, more specifically 10 to 40 bases.
  • the antisense nucleic acid can be modified at one or more base, sugar or backbone positions to enhance efficacy (De Mesmaeker et al., Curr Opin Struct Biol., 5 (3): 343-55 (1995) ).
  • the nucleic acid backbone can be modified with phosphorothioate, phosphoroester, methyl phosphonate, short chain alkyl, cycloalkyl, short chain heteroatomic, heterocyclic intersaccharide linkages and the like.
  • antisense nucleic acids may comprise one or more substituted sugar moieties.
  • Antisense nucleic acids can include modified bases.
  • Modified bases include hypoxanthine, 6-methyladenine, 5-me pyrimidine (particularly 5-methylcytosine), 5-hydroxymethylcytosine (HMC), glycosyl HMC, gentobiosil HMC, 2-aminoadenine, 2 Thiouracil, 2-thiothymine, 5-bromouracil, 5-hydroxymethyluracil, 8-azaguanine, 7-deazaguanine, N6 (6-aminohexyl) adenine, 2,6-diaminopurine, etc. There is this.
  • the antisense nucleic acids of the present invention may be chemically bound to one or more moieties or conjugates that enhance the activity and cellular adsorption of the antisense nucleic acids.
  • Antisense oligonucleotides can be synthesized in vitro by conventional methods to be administered in vivo or to allow antisense oligonucleotides to be synthesized in vivo.
  • One example of synthesizing antisense oligonucleotides in vitro is using RNA polymerase I.
  • One example of allowing antisense RNA to be synthesized in vivo is to allow the antisense RNA to be transcribed using a vector whose origin is in the opposite direction of the recognition site (MCS). Such antisense RNA is desirable to ensure that there is a translation stop codon in the sequence so that it is not translated into the peptide sequence.
  • antisense oligonucleotides that can be used in the present invention can be readily prepared according to methods known in the art with reference to the nucleotide sequences of HTR2A mRNA known to GenBank (Weiss, B. (ed.): Antisense Oligodeoxynucleotides and Antisense RNA: Novel Pharmacological and Therapeutic Agents, CRC Press, Boca Raton, FL, 1997; Weiss, B., et al., Antisense RNA gene therapy for studying and modulating biological processes.Cell.Mol.Life Sci., 55: 334-358 (1999).
  • siRNA refers to a nucleic acid molecule capable of mediating RNA interference or gene silencing (see WO 00/44895, WO 01/36646, WO 99/32619, WO 01/29058, WO 99 / 07409 and WO 00/44914) siRNAs are provided as an efficient gene knockdown method or as a gene therapy method because they can inhibit the expression of target genes siRNA was first discovered in plants, worms, fruit flies and parasites. siRNA was developed and used in mammalian cell research.
  • the sense strand (corresponding sequence corresponding to the HTR2A mRNA sequence) and the antisense strand (sequence complementary to the HTR2A mRNA sequence) may be positioned opposite to each other to have a double-chain structure. Or may have a single chain structure with self-complementary sense and antisense strands.
  • siRNAs are not limited to completely paired double-stranded RNA moieties paired with RNA, but paired by mismatches (the corresponding bases are not complementary), bulges (there are no bases corresponding to one chain), and the like. May be included.
  • the total length is 10 to 100 bases, preferably 15 to 80 bases, more preferably 20 to 70 bases.
  • the siRNA terminal structure can be either blunt or cohesive, as long as the expression of the HTR2A gene can be suppressed by the RNAi effect.
  • the cohesive end structure is possible for both 3'-end protrusion structures and 5'-end protrusion structures.
  • an siRNA molecule may have a form in which a short nucleotide sequence (eg, about 5-15 nt) is inserted between a self-complementary sense and an antisense strand, and in this case, by expression of a nucleotide sequence
  • the formed siRNA molecules form a hairpin structure by intramolecular hybridization, and form a stem-and-loop structure as a whole. This stem-and-loop structure is processed in vitro or in vivo to produce an active siRNA molecule capable of mediating RNAi.
  • prevention refers to any action that inhibits or delays the onset of the fatty liver by administration of the composition according to the present invention
  • treatment refers to improving or beneficially modifying fatty liver by administration of the composition. It means all actions.
  • composition for preventing or treating fatty liver of the present invention can be used to suppress or improve the onset of fatty liver by administering to a subject who is likely to develop or develop fatty liver.
  • compositions and methods of treatment comprising the HTR2A antagonist of the present invention as an active ingredient include mammals such as cattle, horses, sheep, pigs, goats, camels, antelopes, dogs, cats, etc., which can cause all diseases related to fatty liver as well as humans. Can also be used for.
  • composition comprising the HTR2A antagonist of the present invention may further comprise a suitable carrier, excipient or diluent according to conventional methods.
  • Carriers, excipients and diluents that may be included in the compositions of the present invention include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, Cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
  • composition comprising the HTR2A antagonist of the present invention, respectively, in the form of powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, oral dosage forms, external preparations, suppositories, or sterile injectable solutions according to a conventional method.
  • Solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and such solid preparations include at least one excipient such as starch, calcium carbonate, sucrose ( sucrose, lactose, gelatin and the like can be mixed.
  • excipients such as starch, calcium carbonate, sucrose ( sucrose, lactose, gelatin and the like can be mixed.
  • lubricants such as magnesium stearate, talc can also be used.
  • Liquid preparations for oral use include suspensions, solvents, emulsions, and syrups, and include various excipients such as wetting agents, sweeteners, fragrances, and preservatives, in addition to commonly used simple diluents such as water and liquid paraffin.
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations and suppositories.
  • non-aqueous solvent and suspending agent propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like can be used.
  • As the base of the suppository witepsol, macrogol, tween 61, cacao butter, laurin butter, glycerogelatin and the like can be used.
  • Preferred dosages of the active ingredients of the present invention vary depending on the patient's condition, age, weight, extent of disease, drug form, route of administration, and duration, and may be appropriately selected by those skilled in the art.
  • the active ingredient of the present invention can be administered in 0.0001 ⁇ 100 mg / kg, preferably in an amount of 0.001 ⁇ 100 mg / kg divided once to several times daily.
  • the active ingredient of the present invention in the composition should be present in an amount of 0.0001 to 10% by weight, preferably 0.001 to 1% by weight based on the total weight of the total composition.
  • the pharmaceutical dosage form of the active ingredient of the present invention may be used in the form of their pharmaceutically acceptable salts, and may be used alone or in combination with other pharmaceutically active ingredients or in a suitable collection.
  • the pharmaceutical composition of the present invention can be administered to mammals such as mice, rats, cattle, horses, pigs, domestic animals, humans, and the like by various routes. All modes of administration can be expected, for example, to be administered by oral, abdominal, rectal or intravenous, arterial, muscle, inhalation, transdermal, subcutaneous, intradermal, intrauterine, dural or intracerebroventricular injection. Can be.
  • the present invention provides a food composition for preventing or improving fatty liver comprising an HTR2A inhibitor as an active ingredient.
  • the HTR2A inhibitor of the present invention is sapogrelate (Sarpogrelate), 5-I-R91150, 5-MeO-NBpBrT, Adatanserin, Altanserin, AMDA (9-Aminomethyl-9,10-dihydroanthracene), Amperozide, Acenapine ), BL-1020, Sinanserin, Clozapine, Deramciclane, Fananserin, Flibanserin, Glemanserin, Iferanserin, Ketan Ketanserin, KML-010, Lidanserin, Lubazodone, Lumateperone, LY-367,265, Medifoxamine, Mepiprazole, MIN-101, Naphtidrofuryl, Nefazodone, Olanzapine, Phenoxybenzamine, Pipamperone, Pruvanserin, Lauwolscine, Queetiapine (Quetiapine) ), Risperidone, Ritanserin, Setoper
  • the food composition for preventing or improving fatty liver of the present invention includes the form of pills, powders, granules, tablets, capsules or liquids, and the like to which the composition of the present invention can be added, for example, various foods , For example, drinks, gum, tea, vitamin complexes, dietary supplements and the like.
  • the food composition may further include other ingredients that do not interfere with fatty liver improvement, and the type thereof is not particularly limited.
  • other ingredients that do not interfere with fatty liver improvement, and the type thereof is not particularly limited.
  • various herbal extracts, food acceptable additives, natural carbohydrates, and the like may be contained as additional ingredients, such as conventional foods.
  • natural carbohydrates examples include monosaccharides such as glucose, fructose, and the like; Disaccharides such as maltose, sucrose and the like; And conventional sugars such as polysaccharides such as dextrin, cyclodextrin, and sugar alcohols such as xylitol, sorbitol, and erythritol.
  • natural flavoring agents tautin, stevia extract
  • synthetic flavoring agents saccharin, aspartame, etc.
  • the food composition of the present invention may include a health functional food.
  • the term "health functional food” refers to a food prepared and processed in the form of tablets, capsules, powders, granules, liquids and pills using raw materials or ingredients having useful functions for the human body.
  • functional means to obtain useful effects for health purposes such as nutrient control or physiological action on the structure and function of the human body.
  • the health functional food of the present invention can be prepared by a method commonly used in the art, and the preparation can be prepared by adding raw materials and ingredients commonly added in the art.
  • the preparation can be prepared by adding raw materials and ingredients commonly added in the art.
  • unlike the general medicine has the advantage that there is no side effect that can occur when taking a long-term use of the drug as a raw material, and excellent portability.
  • the mixed amount of the active ingredient may be suitably determined depending on the purpose of use (prevention, health or therapeutic treatment).
  • the HTR2A antagonist of the present invention is added at a dose of 1 to 10% by weight, preferably 5 to 10% by weight of the raw material composition.
  • it may be used at a dose below the above range.
  • Examples of the food to which the substance can be added include dairy products including meat, sausage, bread, chocolate, candy, snacks, confectionery, pizza, ramen, other noodles, gums, ice cream, various soups, drinks, tea, drinks, Alcoholic beverages and vitamin complexes, and the like and include all of the health foods in the conventional sense.
  • the term " improvement" refers to parameters related to a condition in which fatty liver disease improves or alleviates with administration of a composition according to the invention, such as a decrease in triglycerides, a decrease in lipogenesis, a decrease in hepatic fat, and the like. Means any action to reduce the symptoms of fatty liver.
  • the present inventors confirmed the expression of serotonin synthase Tph1 (Tryptophan hydoxylas 1) in a fatty liver-induced mouse model to confirm the relationship between fatty liver pathophysiology and serotonin. It was confirmed that Tph1 expression was increased in the intestinal tissue, which is the main place of serotonin synthesis (see Fig. 1 and Fig. 2).
  • Tph1 gut-specific knockout (Tph1 GKO) was constructed to induce fatty liver and induced fatty liver. It was confirmed that the change was improved (see FIG. 3).
  • Ethanol-mediated fatty liver improvement in Tph1 GKO mice was confirmed by increased expression of Cpt1a, which is responsible for fatty acid oxidation in the liver, decreased expression of Cd36, which brings fatty acids into cells, and decreased expression of Lpin1, which synthesizes intracellular triglycerides. 8).
  • serotonin receptor HTR2A was administered to ketanserine, a receptor-specific antagonist, and the changes in fatty liver due to high fat diet were investigated.
  • administration of ketanserine with a high fat diet was confirmed that the effect of reducing weight gain (see FIG. 10).
  • glucose and insulin sensitivity tests confirmed that glucose tolerance and insulin resistance were improved by ketanserine (see FIG. 11).
  • the hepatocytes of the mouse were first cultured and the ketanserine was directly administered to confirm that the expression of genes related to fat production was reduced (FIG. On the contrary, it was confirmed that administration of an agonist for HTR2A, a target receptor of ketanserine, showed the opposite result (see FIG. 15).
  • the ketanserine of the present invention inhibited the expression of Acly and Me1 involved in adipogenesis in liver cells, and on the contrary, by confirming the increased expression of Acaca and Fasn by an agonist for HTR2A, a target receptor for ketanserine, Ketanserine can be usefully used in the composition for regulating liver fat metabolism.
  • liver tissue-specific HTR2A-removed mice Htr2a LKO
  • fatty liver see FIGS. 17A to 17C
  • triglycerides in liver tissue.
  • hepatic triglyceride was also found to be significantly reduced in the safogrelate administration group (see Fig. 18) was confirmed that the HTR2A gene is a gene associated with the development of fatty liver, HTR2A antagonist of the present invention composition for the prevention or treatment of fatty liver It can be usefully used.
  • Htr2a LKO liver tissue specific Htr2a-removing mouse
  • the expression level of genes related to lipogenesis and triglyceride synthesis is reduced, the expression amount of genes related to fatty acid uptake is reduced, HTR2A
  • the gene has been confirmed to be a gene associated with the development of fatty liver
  • HTR2A antagonist of the present invention can be usefully used as a composition for the prevention or treatment of fatty liver.
  • HTR2A inhibitors inhibit the expression of the HTR2A gene, a gene involved in the onset of fatty liver (expression inhibitor), or antagonize the action of the HTR2A receptor. (Receptor antagonist), it can be usefully used as a composition for the prevention or treatment of fatty liver.
  • the present invention provides a method for screening a candidate for preventing or treating fatty liver, comprising the following steps:
  • the test substance is determined as a candidate for preventing or treating fatty liver.
  • a test substance is contacted with a cell containing the HTR2A gene or protein.
  • the cells may be prepared variously, specifically hepatocytes.
  • hepatocytes of a mouse were isolated and used.
  • test material refers to an unknown substance used in screening to determine whether the expression level of HTR2A gene, or the amount or activity of HTR2A protein is affected.
  • the test substance specifically includes, but is not limited to, extracts, compounds, antisense nucleotides, and proteins.
  • Step (b): HTR2A The expression level of the gene, or HTR2A Measuring the amount or activity of a protein
  • the test substance is a candidate for preventing or treating fatty liver. Determined as a substance.
  • the measurement of the change in the expression level of the HTR2A gene can be carried out through various methods known in the art. For example, RT-PCR (Sambrook et al., Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press (2001)), Northern blotting (Peter B. Kaufma et al., Molecular and Cellular Methods in Biology and Medicine , 102-108, CRC press), hybridization reaction using cDNA microarray (Sambrook et al., Molecular Cloning.A Laboratory Manual, 3rd ed. Cold Spring Harbor Press (2001)) or in situ hybridization reaction (Sambrook et al. , Molecular Cloning.A Laboratory Manual, 3rd ed.Cold Spring Harbor Press (2001)).
  • RNA is isolated from cells treated with a sample, and then a first-chain cDNA is prepared using oligo dT primers and reverse transcriptase. Subsequently, the first chain cDNA is used as a template, and PCR reaction is performed using the HTR2A gene-specific primer set. Then, PCR amplification products are electrophoresed, and the formed bands are analyzed to measure changes in the expression level of the HTR2A gene.
  • Changes in the amount of HTR2A protein can be carried out through various immunoassay methods known in the art.
  • changes in the amount of HTR2A protein include, but are not limited to, radioimmunoassay, radioimmunoprecipitation, immunoprecipitation, enzymelinked immunosorbent assay (ELISA), capture-ELISA, inhibition or hardwood assay, and sandwich assay. .
  • Fatty liver prophylactic or therapeutic candidates determined through the screening method of the present invention can be used to prevent or treat fatty liver.
  • the present invention provides a method for preventing fatty liver comprising administering to a subject a pharmaceutical composition comprising the above-described HTR2A (5-hydroxytrptamine receptor 2A) inhibitor of the present invention as an active ingredient. Or provide a method of treatment.
  • administer refers to administering a therapeutically effective amount of a composition of the invention directly to a subject (an individual) in need thereof so that the same amount is formed in the subject's body. Say that.
  • a “therapeutically effective amount” of a composition means a content of the composition that is sufficient to provide a therapeutic or prophylactic effect to a subject to which the composition is to be administered, and includes “prophylactically effective amount”.
  • the term “subject” includes, without limitation, human, mouse, rat, guinea pig, dog, cat, horse, cow, pig, monkey, chimpanzee, baboon or rhesus monkey. Specifically, the subject of the present invention is a human.
  • the method for preventing or treating fatty liver of the present invention is a method comprising administering a pharmaceutical composition for preventing or treating fatty liver, which is an aspect of the present invention, and thus avoids excessive complexity of the present disclosure with respect to overlapping contents. To omit them.
  • the present invention provides a pharmaceutical composition for preventing or treating fatty liver, comprising an HTR2A (5-hydroxytrptamine receptor 2A) inhibitor as an active ingredient.
  • the present invention also provides a food composition for preventing or improving fatty liver, comprising an HTR2A inhibitor as an active ingredient.
  • the present invention also provides a method for screening a candidate for preventing or treating fatty liver.
  • the HTR2A inhibitor of the present invention inhibits fatty liver production induced by high fat diet and inhibits the expression of genes related to adipogenesis in hepatocytes, it may be usefully used as an active ingredient for preventing or treating fatty liver.
  • Tph1 tryptophan hydroxylase 1
  • FIG. 2 shows that the expression of Tph1, a rate-determining enzyme of serotonin synthesis, increases by ethanol intake in the intestinal tissues of mice.
  • FIG. 3 is a diagram showing that fatty liver changes by high fat diet were improved in mice in which Tph1 was specifically removed from intestinal tissue.
  • FIG. 4 is a diagram showing that the increase in triglycerides in liver tissue by high fat diet is suppressed in the tissues specifically Tph1 removed.
  • FIG. 5 is a diagram showing changes in the expression of genes associated with hepatic fat metabolism by high fat diet in mice in which Tph1 is specifically removed from intestinal tissue.
  • FIG. 6 is a diagram showing the improvement of fatty liver changes by ethanol diet in mice in which Tph1 is specifically removed from intestinal tissue.
  • FIG. 7 is a diagram showing the decrease of triglycerides in liver tissue by ethanol diet in mice in which Tph1 is specifically removed from intestinal tissue.
  • FIG. 8 is a diagram showing changes in the expression of genes related to hepatic fat metabolism by ethanol diet in mice in which Tph1 is specifically removed from intestinal tissue.
  • Figure 9 is a diagram showing the expression of serotonin receptors and serotonin metabolizing enzymes in liver tissue of the mouse.
  • FIG. 10 is a diagram showing the weight change when ketanserin was administered to a group of mice fed high fat diet.
  • Figure 11 shows the increase in glucose and insulin sensitivity when ketanserin is administered to the mouse group.
  • FIG. 12 is a graph showing the reduction of fat accumulation in liver tissue as a result of H & E tissue staining when ketanserin, a type of HTR2A antagonist of the present invention, was administered to a group of mice fed high fat diet.
  • Figure 13 is a diagram showing the reduction of hepatic triglycerides (hepatic triglycerides) when administration of ketanserin, a type of HTR2A antagonist of the present invention, to a group of mice fed high fat diet.
  • FIG. 14 is a diagram showing a decrease in expression of genes related to fat production when ketanserin is administered to liver cells of a mouse.
  • Figure 15 shows the increase in expression of genes associated with fat production when HTR2A agonist is administered to mouse liver cells.
  • FIG. 16A is a diagram illustrating a vector design for manufacturing an Htr2a floxed mouse
  • FIG. 16B is a schematic diagram showing a method of manufacturing an Htr2a LKO mouse by crossing an Htr2a floxed mouse and an Alb-Cre mouse
  • FIG. 16C is a manufactured Htr2a LKO. RT-PCR results to confirm knockout of mice.
  • Htr2a Liver Knock Out mouse Htr2a LKO
  • wild-type mice divided into normal diet group (SCD, standard chow diet), high fat diet (HFD, high fat diet)
  • SCD standard chow diet
  • HFD high fat diet
  • Figure 18 shows the results of confirming the change in triglycerides in the liver in liver tissue-specific Htr2a removal mice (Htr2a LKO).
  • FIG. 19A is a diagram confirming the change in weight of liver tissue-specific Htr2a-removed mice (Htr2a LKO), and FIG. 19B is a diagram confirming the change in weight ratio by organ to body weight.
  • FIG. 20 is a diagram confirming the changes in glucose tolerance and insulin resistance of liver tissue specific Htr2a deficient mice (Htr2a LKO) (FIG. 20B).
  • FIG. 21 shows a comparison of lipid profiles (total cholesterol, fatty acids, triglycerides, HDL cholesterol levels) in plasma of liver tissue specific Htr2a deficient mice (Htr2a LKO).
  • FIG. 22 is a diagram showing a comparison of expression levels of genes associated with lipo metabolism in liver tissue specific Htr2a-removed mice (Htr2a LKO).
  • Htr2a LKO liver tissue specific Htr2a-removed mice
  • Figure 23 is a diagram showing the weight change when a group of mice fed high fat diet was administered safogrelate, which is a kind of HTR2A antagonist of the present invention.
  • FIG. 24 is a diagram showing the reduction of fat accumulation in liver tissue as a result of H & E tissue staining when administration of safogrelate, which is a type of HTR2A antagonist of the present invention, to a group of mice fed high-fat diet (FIG. 24A: 10x; FIG. 24b: 20x).
  • Figure 25 is a diagram showing a decrease in hepatic triglycerides (hepatic triglyceride) when the administration of safogrelate, which is a type of HTR2A antagonist of the present invention, to a group of mice fed high fat diet.
  • NCD group normal chow diet
  • HFD group high-fat diet
  • NCD group In order to perform the ethanol diet, 10-week-old mice were divided into two diet groups (NCD group and ethanol diet group) and used for the experiment.
  • the NCD group was distilled water, and the ethanol group was previously described (Zhou et al., 2003, Exp . Biol . Med . 227: 214-222; Kao et al., 2012, Hepatology . 56: 594-604 Ethanol was administered according to the following method.
  • ketanserin Sigma
  • 12-week-old mice were divided into two treatment groups (control group, ketanserin group) and used in the experiment.
  • Ketanserine group was injected with ketaneserine dissolved in phosphate-buffered saline (PBS) in 1 mg / kg body weight of the mouse and the same amount of PBS daily in the control group.
  • PBS phosphate-buffered saline
  • mice were anesthetized with Zoletil® (Virbac) intraperitoneally, and then the intraperitoneal incision was taken to extract the intestines and liver.
  • Zoletil® Virbac
  • Tph1, a serotonin synthase, in the intestinal tissue was significantly increased in both the high fat diet (HFD group) and the ethanol diet (EtOH) (see FIGS. 1 and 2). Therefore, high fat diet and ethanol diet was found to increase the expression of Tph1, a serotonin synthase in the intestinal tissue.
  • Tph1 gut-specific knockout mice with Tph1 gene-specific intestinal tissues were removed according to the method described in Sumar et al., 2012, Cell Metab . 16: 588-600. Cre mice were made by crossing.
  • liver tissue of the intestinal tissue specific Tph1 removing mouse (Tph1 GKO) prepared in Example 3-1
  • the liver was extracted by the method described in Example 1-2 and fixed in 10% neutral formalin solution.
  • Paraffin embedded cut to 5 ⁇ m thickness and adhered to the slide.
  • Tph1 GKO intestinal tissue-specific Tph1-removed mice
  • the liver was extracted by the method described in Example 1-2, followed by a 5% NP-40 solution. After pulverizing in and heated to dissolve all lipid components. Triglyceride Reagent (Sigma) was used to decompose triglycerides into Glycerol, and Glycerol Reagent (Sigma) was used to quantify the amount of Glycerol by color reaction. The protein amount was measured by BCA Protein Assay Kit (Pierce) to correct the triglyceride amount to the amount of protein in the tissue.
  • Example 4 intestinal tissue specificity Tph1 Remove mouse ( Tph1 GKO ) Changes in gene expression related to fat metabolism
  • Example 2 was extracted from liver tissues extracted by the method described in Example 1-2.
  • RNA was extracted by the method described in the above, cDNA was synthesized, and realtime PCR was performed.
  • the primers used for PCR used the sequences listed in Table 2 below.
  • Example 5 intestinal tissue specificity Tph1 Remove mouse ( Tph1 GKO ) Synthesis of Serotonin Receptor and Metabolic Enzyme Expression in Liver Tissue
  • Htr1a, Htr1d, HTR2A, Htr2b, Htr3a, Htr4, Htr7, and Slc6a4 responsible for serotonin reuptake, Maoa responsible for serotonin degradation, and Maob among serotonin receptors were confirmed (see FIG. 9).
  • serotonin receptor HTR2A was administered to ketanserine, which is a receptor-specific antagonist, to investigate changes in fatty liver due to high fat diet.
  • ketanserine which is a receptor-specific antagonist
  • the administration of ketanserine with a high fat diet was confirmed that the weight gain is reduced (see Fig. 10).
  • Example 6 of the present invention Ketanserin Of mice by administration Glucose tolerance And insulin resistance
  • a general diet group ii) a general diet and a ketanserine administration group, iii) high fat, in order to confirm the effect of improving the glucose tolerance and insulin resistance of the mouse by administration of the ketanserine of the present invention Diet group, iv) high-fat diet and ketanserine-administered groups were bred, and blood was collected from the caudal vein of mice to measure blood glucose.
  • glucose solution was administered intraperitoneally with 2 g / kg body weight after fasting, and blood glucose was measured after 0, 15, 30, 45, 60, 90, and 120 minutes.
  • Insulin resistance was measured after 0.75 U / kg body weight of insulin solution after fasting and blood glucose was measured after 0, 15, 30, 45, 60, 90, 120 minutes.
  • a general diet group ii) a general diet and ketanserine administration group, iii) a high fat diet group, iv by the method described in Example 1-1
  • Breeding was divided into high fat diet and ketanserine administration group, and liver tissue was observed by H & E staining by the method described in Examples 3-2 and 3-3, and the amount of triglyceride was quantified.
  • Ketanserine was intragastrically administered.
  • hepatocytes of the mouse were isolated by a two-step perfusion method described in.
  • the hepatocytes are high glucose DMEM containing 1% antibiotic-antimycotic solution (Invitrogen, Carlsbad, CA) and 10% bovine calf serum (Invitrogen, Carlsbad, CA)
  • the growth medium incubated in a humid atmosphere of 5% carbon dioxide and 37 °C temperature conditions.
  • Ketanserine which is an HTR2A antagonist, or DOI, which is an HTR2A agonist, was treated to a concentration of 1 ⁇ M, respectively, and after 24 hours, RNA was extracted by the same method as in ⁇ Example 2> to synthesize cDNA, followed by realtime PCR. Primers used for PCR were as shown in Table 2 above.
  • Htr2a liver-specific knockout (Htr2a LKO) was generated by crossing Htr2a floxed mice and Alb-Cre mice (see FIGS. 16A and 16B). Liver tissues of the prepared Htr2a LKO mice were collected and subjected to RT-PCR for the Htr2a gene to confirm that knockout was well performed (see FIG. 16C).
  • Htr2a liver-specific knockout mice Htr2a LKO mice were examined.
  • SCD standar chow diet and high fat diet (HFD).
  • HFD high fat diet
  • liver tissue-specific Htr2a-removed mice (Htr2a LKO) and wild-type mice (WT) prepared in Example 9-1 were bred by the method described in Example 9-2, and liver was extracted by the method described in Example 1-2. It was. As a result of comparing the liver tissues of the Htr2a LKO mice fed the high fat diet and the wild type control mice (WT) fed the high fat diet, it was confirmed that the livers of the Htr2a LKO mice were smaller (FIG. 17A). The livers were also fixed in 10% neutral formalin solution to confirm histological differences, embedded in paraffin, cut to 5 ⁇ m thickness and adhered to slides.
  • Htr2a LKO liver tissue-specific Htr2a-removed mice
  • liver tissue specific Htr2a-removing mice Htr2a LKO prepared in Example 9-1
  • liver was extracted by the method described in Example 1-2, followed by 5% NP-40 solution. After pulverizing in and heated to dissolve all lipid components.
  • Triglyceride Reagent (Sigma) was used to decompose triglycerides into Glycerol, and Glycerol Reagent (Sigma) was used to quantify the amount of Glycerol by color reaction.
  • the protein amount was measured by BCA Protein Assay Kit (Pierce) to correct the triglyceride amount to the amount of protein in the tissue.
  • liver triglyceride amount was reduced in the normal diet and the high-fat diet in liver tissue-specific Htr2a-removed mice (Htr2a LKO). Therefore, it can be seen that the inhibition of expression of the Htr2a receptor of the present invention is also associated with the decrease of triglycerides in the liver.
  • Htr2a liver-specific knockout Htr2a LKO
  • WT wild-type mice
  • WT wild type mice
  • the mice were divided into normal and high-fat diets. Feed was fed and weighed for 4-20 weeks. In addition, the weight of other tissues (eWAT, epididymal white adipose tissue; iWAT, inguinal white adipose tissue; BAT, brown adipose tissue; Quadriceps; kidney) was measured.
  • eWAT epididymal white adipose tissue
  • iWAT inguinal white adipose tissue
  • BAT brown adipose tissue
  • Quadriceps kidney
  • Htr2a liver-specific knockout, Htr2a LKO liver tissue-specific knockout mice
  • i) Groups were divided into general diet wild type mouse group, ii) high fat diet wild type mouse group, iii) general diet Htr2a LKO group, and iv) high fat diet Htr2a LKO group, and blood was collected from the caudal vein of the mouse to measure blood glucose. After fasting, glucose solution was administered intraperitoneally with 2g / kg of glucose solution, and blood glucose was measured after 0, 15, 30, 60, 90, and 120 minutes (18 weeks of age).
  • Insulin resistance measured blood glucose levels after 0, 15, 30, 60, 90, and 120 minutes of intraperitoneal administration of 0.75 U or 1 U of insulin solution after fasting (19 weeks of age). As a result, it was confirmed that there was no difference in glucose tolerance (FIG. 20a) and insulin resistance between wild-type mice and Htr2a LKO mice in both the normal diet and the high-fat diet group (FIG. 20B).
  • Htr2a liver-specific knockout, Htr2a LKO liver tissue-specific Htr2a gene-depleted mice (Htr2a liver-specific knockout, Htr2a LKO) of the present invention
  • i. A) general diet wild type mouse group, ii) high fat diet wild type mouse group, iii) general diet Htr2a LKO group, and iv) high fat diet Htr2a LKO group and then raised blood from the veins of the mice to measure blood glucose.
  • Example 10 liver tissue specific Htr2a Remove mouse ( Htr2a LKO Changes in gene expression related to fat metabolism in liver tissue
  • Example 2 RNA was extracted by the method described in the above, cDNA was synthesized, and realtime PCR was performed.
  • the primer used for PCR the sequence described in Table 2 of Example 4 was used.
  • C57BL6 / J mice from 12 to 20 weeks of age i) general diet + vehicle (vehicle, phosphate buffered saline) ii) general diet + safogrerel Liver (3) high fat diet + vehicle, iv) high fat diet + safogrelate administration group, and then weighed, and weighed the liver tissue by the method described in Examples 3-2 and 3-3 above.
  • triglyceride amount was quantified.
  • the safogrelate was intragastric injection at 30 mg / kg / day.
  • liver tissue was significantly reduced in the sapogrelate administration group as well as the weight and liver tissue results (see FIG. 25).

Abstract

The present invention relates to a pharmaceutical composition comprising an HTR2A inhibitor as an effective ingredient for preventing or treating fatty liver. Being inhibitive of high fat diet-induced fatty liver production and suppressive of the expression of lipogenesis-related genes in hepatocytes, the HTR2A inhibitor of the present invention can be useful as an effective ingredient in a composition for prevention or treatment of fatty liver, and the like.

Description

HTR2A 길항제를 유효성분으로 포함하는 지방간의 예방 또는 치료용 약학적 조성물Pharmaceutical composition for the prevention or treatment of fatty liver containing HTR2A antagonist as an active ingredient
본 발명은 대한민국 미래창조과학부의 지원 하에서 과제번호 2014M3A9D8034464에 의해 이루어진 것으로서, 상기 과제의 연구관리 전문기관은 “한국연구재단”, 연구사업명은 "바이오/의료기술개발사업", 연구과제명은 "세포소기관 기능회복을 통한 대사항상성 복원 기술 개발", 주관기관은 한국과학기술원, 연구기간은 2016.06.26.-2017.06.25. 이다.The present invention was made by the task number 2014M3A9D8034464 under the support of the Ministry of Science, ICT and Future Planning, and the research management specialized organization of the project is “Korea Research Foundation”, the research project name is “Bio / Medical Technology Development Project”, and the research project title is “Cell Organ Organelle” Development of reconstruction technology for countermeasures through functional recovery ", the host institution is Korea Advanced Institute of Science and Technology, and the research period is 2016.06.26. to be.
또한 본 발명은 대한민국 미래창조과학부의 지원 하에서 과제번호 2016M3A9B6902871에 의해 이루어진 것으로서, 상기 과제의 연구관리 전문기관은 “한국연구재단”, 연구사업명은 "바이오/의료기술개발사업", 연구과제명은 "지방세포 유래 세로토닌에 의한 지방세포 리모델링 기전 분석", 주관기관은 한국과학기술원, 연구기간은 2016.06.26.-2017.06.25. 이다.In addition, the present invention was made by the task number 2016M3A9B6902871 under the support of the Ministry of Science, ICT and Future Planning, the research management specialized organization of the project is "Korea Research Foundation", the research project name "Bio / medical technology development project", the research project title is "local Analysis of Adipose Cell Remodeling Mechanism by Cell-derived Serotonin ", Organizer is Korea Advanced Institute of Science and Technology, Research period 2016.06.26.-2017.06.25. to be.
본 특허출원은 2017년 3월 24일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2017-0037833호 및 2017년 11월 24일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2017-0158580호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다. This patent application is filed with the Korean Patent Application No. 10-2017-0037833 filed with the Korean Patent Office on March 24, 2017 and the Korean Patent Application No. 10-2017-0158580 filed with the Korean Patent Office on November 24, 2017. Priority is claimed, the disclosures of which are incorporated herein by reference.
본 발명은 HTR2A 길항제를 유효성분으로 포함하는 지방간의 예방 또는 치료용 약학적 조성물 등에 관한 것이다.The present invention relates to a pharmaceutical composition for preventing or treating fatty liver, comprising an HTR2A antagonist as an active ingredient.
지방간은 간 세포에 중성지방이 축적되는 질병으로, 비만, 대사증후군과 같은 에너지 과잉 상태나 과다한 알코올의 섭취에 의해 발생한다. 지방간이 지속되면 지방간염, 간경화 및 간암 까지도 이어지는 일련의 질환을 유발할 수 있다. 최근 과다한 열량을 섭취하는 식습관과 음주문화, 운동 부족으로 인하여 서구 선진국뿐만 아니라 우리나라에서도 비만인구와 지방간 인구가 급증하고 있으며 이는 심각한 사회문제로 대두 되고 있다.Fatty liver is a disease in which triglycerides accumulate in liver cells. It is caused by excessive energy such as obesity and metabolic syndrome or excessive alcohol consumption. If fatty liver persists, hepatitis, cirrhosis and even liver cancer can cause a series of diseases. Recently, obesity and rural populations are rapidly increasing not only in western developed countries but also in Korea due to lack of eating habits, drinking culture, and lack of exercise, which is a serious social problem.
지방간은 간에서 일어나는 지방대사 경로를 통하여 간에서 축적되는 지방의 양이 간에서 대사되는 지방의 양을 초과하게 되는 경우 발병한다. 혈중으로부터 간으로 유입되는 지방의 흡수 증가, 간에서 만들어내는 지방 신생의 증가, 간에서 합성하는 중성 지방의 증가, 간에서 소비되는 지방 산화의 감소, 간에서 혈중으로 지방을 내보내는 초저밀도 지단백(VLDL, very low desity lipoprotein)의 감소 등이 지방간의 병태생리에서 보이는 내용들이다.Fatty liver develops when the amount of fat accumulated in the liver exceeds the amount of fat metabolized by the liver through the fat metabolism pathway in the liver. Increased absorption of fat from the blood into the liver, increased fat production from the liver, increased triglycerides synthesized in the liver, reduced fat oxidation consumed in the liver, ultra-low-density lipoprotein (VLDL) that exports fat from the liver to the blood In addition, the reduction of very low desity lipoprotein may be seen in pathophysiology of fatty liver.
지방간의 예방 및 치료를 위한 방법으로 식이 조절 및 알코올 섭취 제한 등 대사적인 위험인자를 조절하는 방법이 사용되고 있으나, 아직까지 지방간 자체에 대한 치료법은 부족한 상황이다. 따라서 현재 전 세계적으로 새로운 지방간 치료제의 개발을 위한 다각적인 측면의 연구가 진행되고 있다. 지방간의 예방 또는 치료용 약물은 상술한 간의 지방대사 경로들의 조절을 통해 지방의 축적보다 지방의 감소를 유도하는 기전으로 작용할 수 있다.As a method for preventing and treating fatty liver, methods for controlling metabolic risk factors such as dietary control and limiting alcohol intake are used, but there is a lack of treatment for fatty liver itself. Therefore, researches on various aspects of the development of new fatty liver treatments are currently underway worldwide. Drugs for the prevention or treatment of fatty liver may act as a mechanism for inducing reduction of fat rather than accumulation of fat through the regulation of the fat metabolism pathways described above.
본 발명자들은 항지방간 활성을 갖는 물질을 개발하기 위해 노력한 결과, 본 발명의 사포그렐레이트, 케탄세린 등을 포함하는 HTR2A 길항제가 유의적인 지방간 개선 효과를 나타내는 것을 확인하고 본 발명을 완성하였다.The present inventors have endeavored to develop a substance having anti-fatty activity, and confirmed that the HTR2A antagonist including safogrelate, ketanserine, etc. of the present invention exhibited significant fatty liver improvement effects, and completed the present invention.
본 발명의 목적은 HTR2A(5-hydroxytrptamine receptor 2A) 억제제를 유효성분으로 포함하는 지방간의 예방 또는 치료용 약제학적 조성물을 제공하는데 있다. It is an object of the present invention to provide a pharmaceutical composition for preventing or treating fatty liver, comprising an HTR2A (5-hydroxytrptamine receptor 2A) inhibitor as an active ingredient.
본 발명의 다른 목적은 HTR2A(5-hydroxytrptamine receptor 2A) 억제제를 유효성분으로 포함하는 지방간의 예방 또는 개선용 식품 조성물을 제공하는데 있다.Another object of the present invention is to provide a food composition for preventing or improving fatty liver, comprising an HTR2A (5-hydroxytrptamine receptor 2A) inhibitor as an active ingredient.
본 발명의 또 다른 목적은 다음 단계를 포함하는 지방간의 예방 또는 치료제 후보물질의 스크리닝 방법을 제공하는데 있다:It is still another object of the present invention to provide a method for screening a candidate for preventing or treating fatty liver, comprising the following steps:
(a) HTR2A(5-hydroxytrptamine receptor 2A) 유전자 또는 단백질을 포함하는 분리된 세포에 시험물질을 접촉하는 단계; 및 (a) contacting a test substance with an isolated cell comprising a 5-hydroxytrptamine receptor 2A (HTR2A) gene or protein; And
(b) 상기 HTR2A 유전자의 발현량, 또는 HTR2A 단백질의 양 또는 활성을 측정하는 단계:(b) measuring the expression level of the HTR2A gene, or the amount or activity of the HTR2A protein:
상기 HTR2A 유전자의 발현량, 또는 HTR2A 단백질의 양 또는 활성이 상기 시험물질을 접촉하지 않은 세포와 비교하여 하향조절되는 경우, 상기 시험물질을 지방간의 예방 또는 치료제 후보물질로 판정한다.When the expression level of the HTR2A gene, or the amount or activity of the HTR2A protein is down-regulated in comparison with a cell that does not contact the test substance, the test substance is determined as a candidate for preventing or treating fatty liver.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become apparent from the following detailed description, claims and drawings.
상기 목적을 달성하기 위하여, 본 발명은 HTR2A(5-hydroxytrptamine receptor 2A) 억제제를 유효성분으로 포함하는 지방간의 예방 또는 치료용 약제학적 조성물을 제공한다.In order to achieve the above object, the present invention provides a pharmaceutical composition for the prevention or treatment of fatty liver comprising HTR2A (5-hydroxytrptamine receptor 2A) inhibitor as an active ingredient.
본 명세서에서, 용어 “지방간(fatty liver)”은 정상 간에서 지방이 차지하는 비율(5%)보다 많은 양의 지방이 간에 축적된 증상을 의미한다. 상기 지방간은 크게 과음으로 인한 알코올성 지방간과 비만, 당뇨병, 고지혈증 또는 약물 등으로 인한 비알코올성 지방간으로 분류될 수 있다. 알코올성 지방간은 알코올을 많이 섭취하게 되면 간에서 지방 합성이 촉진되고 정상적인 에너지 대사가 이루어지지 않아 발생하고, 비알코올성 지방간은 알코올 이외의 원인으로 인하여 발생하며, 상기 비알코올성 지방간은 지방 대사의 이상을 초래하는 성인병에 동반되는 경우가 빈번한 것으로 알려져 있다.As used herein, the term “fatty liver” refers to a condition in which a greater amount of fat is accumulated in the liver than the proportion of fat (5%) in normal liver. The fatty liver may be classified into alcoholic fatty liver due to excessive drinking and non-alcoholic fatty liver due to obesity, diabetes, hyperlipidemia or drugs. Alcoholic fatty liver is caused by the ingestion of alcohol to promote fat synthesis and normal energy metabolism in the liver, non-alcoholic fatty liver occurs due to causes other than alcohol, the non-alcoholic fatty liver causes abnormal fat metabolism It is known to be frequently accompanied by adult disease.
본 명세서에서 용어 “알코올성 지방간”이란, 과다한 알코올의 섭취(과음)에 의하여 간세포에 지방이 축적된 상태를 말한다. As used herein, the term "alcoholic fatty liver" refers to a state in which fat is accumulated in liver cells by ingesting excessive alcohol (excessive drinking).
본 발명에서 용어 "비알코올성 지방간"이란, 알코올 이외의 원인으로 인하여 발생하는 지방간을 의미한다. 이는 전체 지방간의 57%를 차지하고, 대체로 지방 대사의 이상을 초래하는 성인병에 동반되는 경우가 빈번한 것으로 알려져 있다. 이러한 성인병에 동반되는 원인 중 하나는 과도한 탄수화물의 섭취 및 이로 인하여 발생하는 비만인 것으로 알려져 있으며, 실제로 비알코올성 지방간이 발병된 환자의 75%가 비만환자라고 보고된 바 있다. As used herein, the term "non-alcoholic fatty liver" refers to fatty liver caused by causes other than alcohol. It accounts for 57% of the total fatty liver, and is commonly known to be accompanied by the adult disease causing fat metabolism abnormality. One of the causes of adult disease is known to be excessive carbohydrate intake and obesity resulting from obesity. In fact, 75% of patients with nonalcoholic fatty liver have been reported to be obese.
본 명세서에서, 용어 “HTR2A(5-hydroxytrptamine receptor 2A, 또는 5-HT2A 수용체)”는 세로토닌 수용체 군에 속하며 G 단백질 결합 수용체 (G protein-coupled receptor, GPCR) 인 5-HT2 수용체의 아형 중 하나이다. HTR2A는 LSD와 같은 세로토닌성 환각제의 표적으로서의 중요성 때문에 처음으로 주목 받았고, 나중에는 많은 항 정신병 약물, 특히 비정형 약물의 작용을 중재하는 것으로 밝혀졌다. 그러나, 상기 HTR2A와 지방간과의 관련성에 대해서는 아직까지 알려진 바가 없다.As used herein, the term “HTR2A (5-hydroxytrptamine receptor 2A, or 5-HT2A receptor)” belongs to the serotonin receptor family and is one of the subtypes of the 5-HT2 receptor, which is a G protein-coupled receptor (GPCR). HTR2A was first noticed because of its importance as a target for serotonergic hallucinogens such as LSD, and was later found to mediate the action of many antipsychotic drugs, especially atypical drugs. However, the relationship between the HTR2A and fatty liver is not known yet.
본 발명의 일 구현예에 따르면, 상기 지방간의 예방 또는 치료는 HTR2A의 억제제 의해 달성된다.According to one embodiment of the invention, the prevention or treatment of fatty liver is achieved by an inhibitor of HTR2A.
상기 HTR2A의 억제는 다양한 방식으로 할 수 있다. The inhibition of HTR2A can be done in a variety of ways.
본 명세서에서 용어, “억제제”는 길항제(antagonist)일 수 있다. 길항제란 어떤 생체작용물질의 수용체와의 결합에 길항적으로 작용하지만, 자신은 각 수용체를 통한 생리작용을 나타내지 않는 물질을 말하며, 길항제, 차단제(blocking agent), 저해제(inhibitor) 등이 이에 해당한다. 본 명세서에서 상기 길항제는 수용체에 대한 역 작용제(inverse agonist)를 포함한다.As used herein, the term “inhibitor” may be an antagonist. Antagonists are substances that antagonize the binding of certain bioactive substances to their receptors, but do not exhibit physiological activity through their respective receptors. Antagonists, blocking agents, inhibitors, etc. . The antagonist herein includes an inverse agonist for the receptor.
본 발명의 구체적인 구현예에 따르면, 상기 HTR2A 길항제는 사포그렐레이트(Sarpogrelate), 5-I-R91150, 5-MeO-NBpBrT, 아다탄세린(Adatanserin), 알탄세린(Altanserin), AMDA(9-Aminomethyl-9,10-dihydroanthracene), 암페로자이드(Amperozide), 아세나핀(Asenapine), BL-1020, 시난세린(Cinanserin), 클로자핀(Clozapine), 데람시클란(Deramciclane), 파난세린(Fananserin), 플리반세린(Flibanserin), 글레만세린(Glemanserin), 이페란세린Iferanserin), 케탄세린(Ketanserin), KML-010, 리단세린(Lidanserin), 루바조돈(Lubazodone), 루마테페론(Lumateperone), LY-367,265, 메디폭사민(Medifoxamine), 메피프라졸(Mepiprazole), MIN-101, 나프티드로퓨릴(Naftidrofuryl), 네파조돈(Nefazodone), 올란자핀(Olanzapine), 페녹시벤자민(Phenoxybenzamine), 피팜페론(Pipamperone), 프루반세린(Pruvanserin), 라우월신(Rauwolscine), 쿠에티아핀(Quetiapine), 리스페리돈(Risperidone), 리탄세린(Ritanserin), 세토페론(Setoperone), 스피페론(Spiperone), 볼리난세린(Volinanserin), 및 자일라미딘(Xylamidine)으로 이루어진 군으로부터 선택될 수 있으나, 이에 제한되는 것은 아니다.According to a specific embodiment of the present invention, the HTR2A antagonist is Sapogrelate, 5-I-R91150, 5-MeO-NBpBrT, Adatanserin, Altanserin, AMDA (9-Aminomethyl -9,10-dihydroanthracene, Amperozide, Asenapine, BL-1020, Sinanserin, Clozapine, Deramciclane, Fananserin, Plyans Flibanserin, Glemanserin, Iferanserin, Ketanserin, KML-010, Lidanserin, Lubazodone, Lumateperone, Lumeperone, LY- 367,265, Medifoxamine, Mepiprazole, MIN-101, Naphtidrofuryl, Nefazodone, Ollanzapine, Phenoxybenzamine, Pipamperone , Pruvanserin, Lauwolscine, Quetiapine, Risperidone, Ritanserin, It may be selected from the group consisting of Setoperone, Spiperone, Svolrone, Volinanserin, and Xylamidine, but is not limited thereto.
본 발명의 가장 구체적인 구현예에 따르면, 상기 HTR2A 길항제는 케탄세린(Ketanserin)이다.According to the most specific embodiment of the present invention, the HTR2A antagonist is Ketanserin.
본 발명의 다른 구현예에 따르면, 상기 HTR2A 길항제는 HTR2A 발현억제제일 수 있다. 상기 발현억제제는 HTR2A 유전자의 mRNA에 특이적으로 결합하는 안티센스 올리고뉴클레오타이드, siRNA, shRNA 및 리보자임으로 이루어진 군으로부터 선택된 HTR2A 발현억제제일 수 있으나, 이에 제한되는 것은 아니다.According to another embodiment of the present invention, the HTR2A antagonist may be an HTR2A expression inhibitor. The expression inhibitor may be an HTR2A expression inhibitor selected from the group consisting of antisense oligonucleotides, siRNAs, shRNAs and ribozymes that specifically bind to mRNA of the HTR2A gene, but is not limited thereto.
본 명세서에서 용어 "안티센스 올리고뉴클레오타이드”란 특정 mRNA의 서열에 상보적인 핵산 서열을 함유하고 있는 DNA 또는 RNA 또는 이들의 유도체를 의미하고, mRNA내의 상보적인 서열에 결합하여 mRNA의 단백질로의 번역을 저해하는 작용을 한다. 안티센스 서열은 HTR2A mRNA(예컨대, GenBank Accession Nos. NM_000621.4 및 NM_001165947.2)에 상보적이고 HTR2A mRNA에 결합할 수 있는 DNA 또는 RNA 서열을 의미하고, HTR2A mRNA의 번역, 세포질내로의 전위(translocation), 성숙(maturation) 또는 다른 모든 전체적인 생물학적 기능에 대한 필수적인 활성을 저해할 수 있다. 안티센스 핵산의 길이는 6 내지 100 염기이고, 구체적으로는 8 내지 60 염기이며, 보다 구체적으로는 10 내지 40 염기이다.As used herein, the term "antisense oligonucleotide" refers to DNA or RNA or derivatives thereof that contain a nucleic acid sequence complementary to a sequence of a particular mRNA and binds to the complementary sequence within the mRNA to inhibit translation of the mRNA into a protein. An antisense sequence refers to a DNA or RNA sequence that is complementary to HTR2A mRNA (eg, GenBank Accession Nos. NM_000621.4 and NM_001165947.2) and capable of binding to HTR2A mRNA, and translates into HTR2A mRNA, into the cytoplasm. May inhibit the essential activity for translocation, maturation or any other overall biological function of the antisense nucleic acid, 6-100 bases in length, specifically 8-60 bases, more specifically 10 to 40 bases.
상기 안티센스 핵산은 효능을 증진시키기 위하여 하나 이상의 염기, 당 또는 골격(backbone)의 위치에서 변형될 수 있다(De Mesmaeker et al., Curr Opin Struct Biol., 5(3):343-55(1995)). 핵산 골격은 포스포로티오에이트, 포스포트리에스테르, 메틸 포스포네이트, 단쇄 알킬, 시클로알킬, 단쇄 헤테로아토믹, 헤테로시클릭 당간 결합 등으로 변형될 수 있다. 또한, 안티센스 핵산은 하나 이상의 치환된 당 모이어티(sugar moiety)를 포함할 수 있다. 안티센스 핵산은 변형된 염기를 포함할 수 있다. 변형된 염기에는 하이포크잔틴, 6-메틸아데닌, 5-me 피리미딘(특히 5-메틸시토신), 5-하이드록시메틸시토신(HMC), 글리코실 HMC, 젠토비오실 HMC, 2-아미노아데닌, 2-티오우라실, 2-티오티민, 5-브로모우라실, 5-하이드록시메틸우라실, 8-아자구아닌, 7-데아자구아닌, N6 (6-아미노헥실)아데닌, 2,6-디아미노퓨린 등이 있다. 또한 본 발명의 안티센스 핵산은 상기 안티센스 핵산의 활성 및 세포 흡착성을 향상시키는 하나 이상의 모이어티(moiety) 또는 컨쥬게이트(conjugate)와 화학적으로 결합될 수 있다. 콜레스테롤 모이어티, 콜레스테릴 모이어티, 콜릭산, 티오에테르, 티오콜레스테롤, 지방성 사슬, 인지질, 폴리아민, 폴리에틸렌 글리콜 사슬, 아다맨탄 아세트산, 팔미틸 모이어티, 옥타데실아민, 헥실아미노-카르보닐-옥시콜에스테롤 모이어티 등의 지용성 모이어티 등이 있고 이에 제한되지는 않는다. 지용성 모이어티를 포함하는 올리고뉴클레오티드와 제조 방법은 본 발명의 기술 분야에서 이미 잘 알려져 있다(미국특허 제5,138,045호, 제5,218,105호 및 제5,459,255호). 상기 변형된 핵산은 뉴클레아제에 대한 안정성을 증가시키고 안티센스 핵산과 표적 mRNA와의 결합 친화력을 증가시킬 수 있다. The antisense nucleic acid can be modified at one or more base, sugar or backbone positions to enhance efficacy (De Mesmaeker et al., Curr Opin Struct Biol., 5 (3): 343-55 (1995) ). The nucleic acid backbone can be modified with phosphorothioate, phosphoroester, methyl phosphonate, short chain alkyl, cycloalkyl, short chain heteroatomic, heterocyclic intersaccharide linkages and the like. In addition, antisense nucleic acids may comprise one or more substituted sugar moieties. Antisense nucleic acids can include modified bases. Modified bases include hypoxanthine, 6-methyladenine, 5-me pyrimidine (particularly 5-methylcytosine), 5-hydroxymethylcytosine (HMC), glycosyl HMC, gentobiosil HMC, 2-aminoadenine, 2 Thiouracil, 2-thiothymine, 5-bromouracil, 5-hydroxymethyluracil, 8-azaguanine, 7-deazaguanine, N6 (6-aminohexyl) adenine, 2,6-diaminopurine, etc. There is this. In addition, the antisense nucleic acids of the present invention may be chemically bound to one or more moieties or conjugates that enhance the activity and cellular adsorption of the antisense nucleic acids. Cholesterol moieties, cholesteryl moieties, cholic acid, thioethers, thiocholesterols, fatty chains, phospholipids, polyamines, polyethylene glycol chains, adamantane acetic acid, palmityl moieties, octadecylamine, hexylamino-carbonyl-oxy Fat-soluble moieties such as a cholesterol ester moiety, and the like. Oligonucleotides comprising fat-soluble moieties and methods of preparation are already well known in the art (US Pat. Nos. 5,138,045, 5,218,105 and 5,459,255). The modified nucleic acid can increase stability to nucleases and increase the binding affinity of the antisense nucleic acid with the target mRNA.
안티센스 올리고뉴클레오타이드의 경우 통상의 방법으로 시험관에서 합성되어 생체 내로 투여하거나 생체 내에서 안티센스 올리고뉴클레오타이드가 합성되도록 할 수 있다. 시험관에서 안티센스 올리고뉴클레오타이드를 합성하는 한 예는 RNA 중합효소 I를 이용하는 것이다. 생체 내에서 안티센스 RNA가 합성되도록 하는 한 가지 예는 인식부위(MCS)의 기원이 반대 방향에 있는 벡터를 사용하여 안티센스 RNA가 전사되도록 하는 것이다. 이런 안티센스 RNA는 서열 내에 번역 중지 코돈이 존재하도록 하여 펩타이드 서열로 번역되지 않도록 하는 것이 바람직하다. Antisense oligonucleotides can be synthesized in vitro by conventional methods to be administered in vivo or to allow antisense oligonucleotides to be synthesized in vivo. One example of synthesizing antisense oligonucleotides in vitro is using RNA polymerase I. One example of allowing antisense RNA to be synthesized in vivo is to allow the antisense RNA to be transcribed using a vector whose origin is in the opposite direction of the recognition site (MCS). Such antisense RNA is desirable to ensure that there is a translation stop codon in the sequence so that it is not translated into the peptide sequence.
본 발명에서 이용될 수 있는 안티센스 올리고뉴클레오타이드의 디자인은, GenBank에 공지된 HTR2A mRNA의 뉴클레오타이드 서열을 참조하여 당업계에 공지된 방법에 따라 쉽게 제작할 수 있다 (Weiss, B. (ed.): Antisense Oligodeoxynucleotides and Antisense RNA : Novel Pharmacological and Therapeutic Agents, CRC Press, Boca Raton, FL, 1997; Weiss, B., et al., Antisense RNA gene therapy for studying and modulating biological processes. Cell. Mol. Life Sci., 55:334-358(1999).The design of antisense oligonucleotides that can be used in the present invention can be readily prepared according to methods known in the art with reference to the nucleotide sequences of HTR2A mRNA known to GenBank (Weiss, B. (ed.): Antisense Oligodeoxynucleotides and Antisense RNA: Novel Pharmacological and Therapeutic Agents, CRC Press, Boca Raton, FL, 1997; Weiss, B., et al., Antisense RNA gene therapy for studying and modulating biological processes.Cell.Mol.Life Sci., 55: 334-358 (1999).
본 명세서에서 용어 "siRNA”는 RNA 방해 또는 유전자 사일런싱을 매개할 수 있는 핵산 분자를 의미한다(참조: WO 00/44895, WO 01/36646, WO 99/32619, WO 01/29058, WO 99/07409 및 WO 00/44914). siRNA는 표적 유전자의 발현을 억제할 수 있기 때문에 효율적인 유전자 넉다운 방법으로서 또는 유전자치료 방법으로 제공된다. siRNA는 식물, 벌레, 초파리 및 기생충에서 처음으로 발견되었으나, 최근에 siRNA를 개발/이용하여 포유류 세포연구에 응용되었다.As used herein, the term “siRNA” refers to a nucleic acid molecule capable of mediating RNA interference or gene silencing (see WO 00/44895, WO 01/36646, WO 99/32619, WO 01/29058, WO 99 / 07409 and WO 00/44914) siRNAs are provided as an efficient gene knockdown method or as a gene therapy method because they can inhibit the expression of target genes siRNA was first discovered in plants, worms, fruit flies and parasites. siRNA was developed and used in mammalian cell research.
본 발명에서 siRNA 분자가 이용되는 경우, 센스 가닥(HTR2A mRNA 서열에 상응하는(corresponding) 서열)과 안티센스 가닥(HTR2A mRNA 서열에 상보적인 서열)이 서로 반대쪽에 위치하여 이중쇄를 이루는 구조를 가질 수 있으며, 또는 자기-상보성(self-complementary) 센스 및 안티센스 가닥을 가지는 단일쇄 구조를 가질 수 있다. siRNA는 RNA끼리 짝을 이루는 이중사슬 RNA 부분이 완전히 쌍을 이루는 것에 한정되지 않고 미스매치(대응하는 염기가 상보적이지 않음), 벌지(일방의 사슬에 대응하는 염기가 없음) 등에 의하여 쌍을 이루지 않는 부분이 포함될 수 있다. 전체 길이는 10 내지 100 염기, 바람직하게는 15 내지 80 염기, 더욱 바람직하게는 20 내지 70 염기이다.When the siRNA molecule is used in the present invention, the sense strand (corresponding sequence corresponding to the HTR2A mRNA sequence) and the antisense strand (sequence complementary to the HTR2A mRNA sequence) may be positioned opposite to each other to have a double-chain structure. Or may have a single chain structure with self-complementary sense and antisense strands. siRNAs are not limited to completely paired double-stranded RNA moieties paired with RNA, but paired by mismatches (the corresponding bases are not complementary), bulges (there are no bases corresponding to one chain), and the like. May be included. The total length is 10 to 100 bases, preferably 15 to 80 bases, more preferably 20 to 70 bases.
siRNA 말단 구조는 HTR2A 유전자의 발현을 RNAi 효과에 의하여 억제할 수 있는 것이면 평활(blunt) 말단 혹은 점착(cohesive) 말단 모두 가능하다. 점착 말단 구조는 3'-말단 돌출 구조와 5'-말단 돌출 구조 모두 가능하다.The siRNA terminal structure can be either blunt or cohesive, as long as the expression of the HTR2A gene can be suppressed by the RNAi effect. The cohesive end structure is possible for both 3'-end protrusion structures and 5'-end protrusion structures.
본 발명에서 siRNA 분자는, 자기-상보성(self-complementary) 센스 및 안티센스 가닥 사이에 짧은 뉴클레오타이드 서열(예컨대, 약 5-15 nt)이 삽입된 형태를 가질 수 있으며, 이 경우 뉴클레오타이드 서열의 발현에 의해 형성된 siRNA 분자는 분자내 혼성화에 의하여 헤어핀 구조를 형성하게 되며, 전체적으로는 스템-앤드-루프 구조를 형성하게 된다. 이 스템-앤드-루프 구조는 인 비트로 또는 인 비보에서 프로세싱되어 RNAi를 매개할 수 있는 활성의 siRNA 분자를 생성한다.In the present invention, an siRNA molecule may have a form in which a short nucleotide sequence (eg, about 5-15 nt) is inserted between a self-complementary sense and an antisense strand, and in this case, by expression of a nucleotide sequence The formed siRNA molecules form a hairpin structure by intramolecular hybridization, and form a stem-and-loop structure as a whole. This stem-and-loop structure is processed in vitro or in vivo to produce an active siRNA molecule capable of mediating RNAi.
본 발명에서 용어 "예방"은 본 발명에 따른 조성물의 투여로 상기 지방간의 발병을 억제시키거나 발병을 지연하는 모든 행위를 말하며, "치료"란 상기 조성물의 투여로 지방간을 호전시키거나 이롭게 변경하는 모든 행위를 의미한다.In the present invention, the term "prevention" refers to any action that inhibits or delays the onset of the fatty liver by administration of the composition according to the present invention, and "treatment" refers to improving or beneficially modifying fatty liver by administration of the composition. It means all actions.
본 발명의 지방간의 예방 또는 치료용 조성물은 지방간이 발생할 가능성이 있거나 또는 발생된 개체에 투여함으로써 지방간의 발병을 억제하거나 호전시키는데 사용될 수 있다.The composition for preventing or treating fatty liver of the present invention can be used to suppress or improve the onset of fatty liver by administering to a subject who is likely to develop or develop fatty liver.
본 발명의 HTR2A 길항제를 유효성분으로 포함하는 조성물 및 치료방법은 인간뿐만 아니라 지방간과 관련된 모든 질병이 발병할 수 있는 소, 말, 양, 돼지, 염소, 낙타, 영양, 개, 고양이 등의 포유동물에게도 사용될 수 있다. Compositions and methods of treatment comprising the HTR2A antagonist of the present invention as an active ingredient include mammals such as cattle, horses, sheep, pigs, goats, camels, antelopes, dogs, cats, etc., which can cause all diseases related to fatty liver as well as humans. Can also be used for.
본 발명의 상기 HTR2A 길항제를 포함하는 조성물은 통상의 방법에 따른 적절한 담체, 부형제 또는 희석제를 더 포함할 수 있다. The composition comprising the HTR2A antagonist of the present invention may further comprise a suitable carrier, excipient or diluent according to conventional methods.
본 발명의 조성물에 포함될 수 있는 담체, 부형제 및 희석제로는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. Carriers, excipients and diluents that may be included in the compositions of the present invention include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, Cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
본 발명의 상기 HTR2A 길항제를 포함하는 조성물은, 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 또는 멸균 주사용액의 형태로 제형화하여 사용될 수 있다. The composition comprising the HTR2A antagonist of the present invention, respectively, in the form of powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, oral dosage forms, external preparations, suppositories, or sterile injectable solutions according to a conventional method. Can be formulated and used.
상세하게는, 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 유효성분에 적어도 하나 이상의 부형제 예를 들면, 전분, 칼슘카보네이트(calcium carbonate), 수크로스(sucrose), 락토오스(lactose), 젤라틴 등을 섞어 조제될 수 있다. 또한, 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 같은 윤활제들도 사용될 수 있다. 경구를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는 데, 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제 및 좌제가 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜 (propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로젤라틴 등이 사용될 수 있다.Specifically, when formulated, it may be prepared using diluents or excipients such as commonly used fillers, extenders, binders, wetting agents, disintegrating agents, surfactants, and the like. Solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and such solid preparations include at least one excipient such as starch, calcium carbonate, sucrose ( sucrose, lactose, gelatin and the like can be mixed. In addition to simple excipients, lubricants such as magnesium stearate, talc can also be used. Liquid preparations for oral use include suspensions, solvents, emulsions, and syrups, and include various excipients such as wetting agents, sweeteners, fragrances, and preservatives, in addition to commonly used simple diluents such as water and liquid paraffin. Can be. Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations and suppositories. As the non-aqueous solvent and suspending agent, propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like can be used. As the base of the suppository, witepsol, macrogol, tween 61, cacao butter, laurin butter, glycerogelatin and the like can be used.
본 발명의 유효성분의 바람직한 투여량은 환자의 상태, 연령, 체중, 질병의 정도, 약물형태, 투여경로 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 그러나, 바람직한 효과를 위해서, 본 발명의 유효성분은 0.0001 ~ 100 mg/kg으로, 바람직하게는 0.001 ~ 100 mg/kg의 양을 일일 1회 내지 수회로 나누어 투여할 수 있다. 조성물에서 본 발명의 유효성분은 전체 조성물 총 중량에 대하여 0.0001 ~ 10 중량%, 바람직하게는 0.001 ~ 1 중량%의 양으로 존재하여야 한다. Preferred dosages of the active ingredients of the present invention vary depending on the patient's condition, age, weight, extent of disease, drug form, route of administration, and duration, and may be appropriately selected by those skilled in the art. However, for the desired effect, the active ingredient of the present invention can be administered in 0.0001 ~ 100 mg / kg, preferably in an amount of 0.001 ~ 100 mg / kg divided once to several times daily. The active ingredient of the present invention in the composition should be present in an amount of 0.0001 to 10% by weight, preferably 0.001 to 1% by weight based on the total weight of the total composition.
또한, 본 발명의 유효성분의 약제학적 투여 형태는 이들의 약제학적 허용 가능한 염의 형태로도 사용될 수 있고, 또한 단독으로 또는 타 약제학적 활성 유효성분과 결합하거나 적당한 집합으로 사용될 수 있다. In addition, the pharmaceutical dosage form of the active ingredient of the present invention may be used in the form of their pharmaceutically acceptable salts, and may be used alone or in combination with other pharmaceutically active ingredients or in a suitable collection.
본 발명의 약제학적 조성물은 마우스, 랫트, 소, 말, 돼지 등의 가축, 인간 등의 포유동물에 다양한 경로로 투여될 수 있다. 투여의 모든 방식은 예상될 수 있는데, 예를 들면, 경구, 복강, 직장 또는 정맥, 동맥, 근육, 흡입, 경피, 피하, 피내, 자궁 내, 경막 또는 뇌혈관내 (intracerebroventricular) 주사에 의해 투여될 수 있다. The pharmaceutical composition of the present invention can be administered to mammals such as mice, rats, cattle, horses, pigs, domestic animals, humans, and the like by various routes. All modes of administration can be expected, for example, to be administered by oral, abdominal, rectal or intravenous, arterial, muscle, inhalation, transdermal, subcutaneous, intradermal, intrauterine, dural or intracerebroventricular injection. Can be.
본 발명의 다른 양태에 따르면, 본 발명은 HTR2A 억제제를 유효성분으로 포함하는 지방간의 예방 또는 개선용 식품 조성물을 제공한다.According to another aspect of the present invention, the present invention provides a food composition for preventing or improving fatty liver comprising an HTR2A inhibitor as an active ingredient.
본 발명의 상기 HTR2A 억제제는 사포그렐레이트(Sarpogrelate), 5-I-R91150, 5-MeO-NBpBrT, 아다탄세린(Adatanserin), 알탄세린(Altanserin), AMDA(9-Aminomethyl-9,10-dihydroanthracene), 암페로자이드(Amperozide), 아세나핀(Asenapine), BL-1020, 시난세린(Cinanserin), 클로자핀(Clozapine), 데람시클란(Deramciclane), 파난세린(Fananserin), 플리반세린(Flibanserin), 글레만세린(Glemanserin), 이페란세린Iferanserin), 케탄세린(Ketanserin), KML-010, 리단세린(Lidanserin), 루바조돈(Lubazodone), 루마테페론(Lumateperone), LY-367,265, 메디폭사민(Medifoxamine), 메피프라졸(Mepiprazole), MIN-101, 나프티드로퓨릴(Naftidrofuryl), 네파조돈(Nefazodone), 올란자핀(Olanzapine), 페녹시벤자민(Phenoxybenzamine), 피팜페론(Pipamperone), 프루반세린(Pruvanserin), 라우월신(Rauwolscine), 쿠에티아핀(Quetiapine), 리스페리돈(Risperidone), 리탄세린(Ritanserin), 세토페론(Setoperone), 스피페론(Spiperone), 볼리난세린(Volinanserin), 및 자일라미딘(Xylamidine)으로 이루어진 군으로부터 선택된 HTR2A 길항제일 수 있으나, 이에 제한되는 것은 아니다.The HTR2A inhibitor of the present invention is sapogrelate (Sarpogrelate), 5-I-R91150, 5-MeO-NBpBrT, Adatanserin, Altanserin, AMDA (9-Aminomethyl-9,10-dihydroanthracene), Amperozide, Acenapine ), BL-1020, Sinanserin, Clozapine, Deramciclane, Fananserin, Flibanserin, Glemanserin, Iferanserin, Ketan Ketanserin, KML-010, Lidanserin, Lubazodone, Lumateperone, LY-367,265, Medifoxamine, Mepiprazole, MIN-101, Naphtidrofuryl, Nefazodone, Olanzapine, Phenoxybenzamine, Pipamperone, Pruvanserin, Lauwolscine, Queetiapine (Quetiapine) ), Risperidone, Ritanserin, Setoperone, Setoperone, Spiperone, Vololinanserin, and Xylamidine These antagonists may be an HTR2A from the group consisting of, without being limited thereto.
상기 식품 조성물은 지방간을 예방 또는 개선하는 기능을 가진다.The food composition has a function of preventing or improving fatty liver.
본 발명의 상기 지방간의 예방 또는 개선용 식품 조성물은 환제, 분말, 과립, 정제, 캡슐 또는 액제 등의 형태를 포함하며, 본 발명의 조성물을 첨가할 수 있는 식품으로는, 예를 들어, 각종 식품류, 예를 들어, 음료, 껌, 차, 비타민 복합제, 건강보조 식품류 등이 있다.The food composition for preventing or improving fatty liver of the present invention includes the form of pills, powders, granules, tablets, capsules or liquids, and the like to which the composition of the present invention can be added, for example, various foods , For example, drinks, gum, tea, vitamin complexes, dietary supplements and the like.
상기 식품 조성물에는 HTR2A 억제제 이외에도 지방간의 개선에 방해가 되지 않는 다른 성분을 추가적으로 포함할 수 있으며, 그 종류는 특별히 제한되지 않는다. 예를 들어, 통상의 식품과 같이 여러 가지 생약 추출물, 식품학적으로 허용가능한 식품보조첨가제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다.In addition to the HTR2A inhibitor, the food composition may further include other ingredients that do not interfere with fatty liver improvement, and the type thereof is not particularly limited. For example, various herbal extracts, food acceptable additives, natural carbohydrates, and the like may be contained as additional ingredients, such as conventional foods.
상기 "식품보조첨가제"란 식품에 보조적으로 첨가될 수 있는 구성요소를 의미하며, 각 제형의 식품을 제조하는데 첨가되는 것으로서 당업자가 적절히 선택하여 사용할 수 있다. 식품보조첨가제의 예로는 여러 가지 영양제, 비타민, 광물 (전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 충진제, 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 등이 포함되지만, 특별히 이에 제한되지는 않는다.The "food supplement" means a component that can be added to food supplements, and can be used by those skilled in the art as appropriately added to prepare the food of each formulation. Examples of food additives include flavors such as various nutrients, vitamins, minerals (electrolytes), synthetic and natural flavors, colorants and fillers, pectic acid and salts thereof, alginic acid and salts thereof, organic acids, protective colloidal thickeners. , pH adjusting agents, stabilizers, preservatives, glycerin, alcohols, carbonation agents used in carbonated beverages, and the like, but is not particularly limited thereto.
상기 천연 탄수화물의 예는 모노사카라이드, 예를 들어, 포도당, 과당 등; 디사카라이드, 예를 들어 말토스, 수크로스 등; 및 폴리사카라이드, 예를 들어 덱스트린, 시클로덱스트린 등과 같은 통상적인 당, 및 자일리톨, 소르비톨, 에리트리톨 등의 당알코올이다. 상술한 것 이외의 향미제로서 천연 향미제(타우마틴, 스테비아 추출물) 및 합성 향미제(사카린, 아스파르탐 등)도 사용할 수 있다.Examples of such natural carbohydrates include monosaccharides such as glucose, fructose, and the like; Disaccharides such as maltose, sucrose and the like; And conventional sugars such as polysaccharides such as dextrin, cyclodextrin, and sugar alcohols such as xylitol, sorbitol, and erythritol. As flavoring agents other than those mentioned above, natural flavoring agents (tautin, stevia extract) and synthetic flavoring agents (saccharin, aspartame, etc.) can also be used.
본 발명의 식품 조성물에는 건강기능성 식품이 포함될 수 있다. 본 발명에서 용어 "건강기능성 식품"이란 인체에 유용한 기능성을 가진 원료나 성분을 사용하여 정제, 캅셀, 분말, 과립, 액상 및 환 등의 형태로 제조 및 가공한 식품을 말한다. 여기서 기능성이라 함은 인체의 구조 및 기능에 대하여 영양소를 조절하거나 생리학적 작용 등과 같은 보건용도에 유용한 효과를 얻는 것을 의미한다. The food composition of the present invention may include a health functional food. In the present invention, the term "health functional food" refers to a food prepared and processed in the form of tablets, capsules, powders, granules, liquids and pills using raw materials or ingredients having useful functions for the human body. Here, functional means to obtain useful effects for health purposes such as nutrient control or physiological action on the structure and function of the human body.
본 발명의 건강기능성 식품은 당업계에서 통상적으로 사용되는 방법에 의하여 제조가능하며, 상기 제조시에는 당업계에서 통상적으로 첨가하는 원료 및 성분을 첨가하여 제조할 수 있다. 또한 일반 약품과는 달리 식품을 원료로 하여 약품의 장기 복용 시 발생할 수 있는 부작용 등이 없는 장점이 있고, 휴대성이 뛰어나다. The health functional food of the present invention can be prepared by a method commonly used in the art, and the preparation can be prepared by adding raw materials and ingredients commonly added in the art. In addition, unlike the general medicine has the advantage that there is no side effect that can occur when taking a long-term use of the drug as a raw material, and excellent portability.
유효 성분의 혼합양은 사용 목적(예방, 건강 또는 치료적 처치)에 따라 적합하게 결정될 수 있다. 일반적으로, 식품의 제조 시에 본 발명의 HTR2A 길항제는 원료 조성물 중 1 ~ 10 중량 %, 바람직하게는 5 ~ 10 중량 %의 용량으로 첨가된다. 그러나 건강 및 위생을 목적으로 하거나 또는 건강 조절을 목적으로 하는 장기간의 섭취의 경우에는 상기 범위 이하의 용량으로도 사용될 수 있다.The mixed amount of the active ingredient may be suitably determined depending on the purpose of use (prevention, health or therapeutic treatment). Generally, in the preparation of food, the HTR2A antagonist of the present invention is added at a dose of 1 to 10% by weight, preferably 5 to 10% by weight of the raw material composition. However, in the case of prolonged ingestion for health and hygiene purposes or health control purposes, it may be used at a dose below the above range.
상기 식품의 종류에는 특별한 제한은 없다. 상기 물질을 첨가할 수 있는 식품의 예로는 육류, 소세지, 빵, 쵸코렛, 캔디류, 스넥류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 드링크제, 알코올 음료 및 비타민 복합제 등이 있으며, 통상적인 의미에서의 건강식품을 모두 포함한다. There is no particular limitation on the kind of food. Examples of the food to which the substance can be added include dairy products including meat, sausage, bread, chocolate, candy, snacks, confectionery, pizza, ramen, other noodles, gums, ice cream, various soups, drinks, tea, drinks, Alcoholic beverages and vitamin complexes, and the like and include all of the health foods in the conventional sense.
본 명세서에서 용어, "개선"은 본 발명에 따른 조성물의 투여로 지방간의 병증이 호전 내지 완화되는 상태와 관련된 파라미터, 예를 들면 중성지방 양의 감소, 지방신생의 감소, 간내 지방량의 감소 등, 지방간의 증상을 감소시키는 모든 행위를 의미한다.As used herein, the term " improvement " refers to parameters related to a condition in which fatty liver disease improves or alleviates with administration of a composition according to the invention, such as a decrease in triglycerides, a decrease in lipogenesis, a decrease in hepatic fat, and the like. Means any action to reduce the symptoms of fatty liver.
본 발명의 실시예에서, 본 발명자들은 지방간의 병태생리와 세로토닌의 관계를 확인하기 위하여 지방간 유도 마우스 모델에서 세로토닌 합성 효소인 Tph1 (Tryptophan hydoxylas 1)의 발현을 확인한 결과, 고지방 식이나 에탄올 섭취에 의해 세로토닌 합성의 주된 장소인 장 조직에서의 Tph1 발현이 증가함을 확인하였다 (도 1 참조 및 도 2 참조). In an embodiment of the present invention, the present inventors confirmed the expression of serotonin synthase Tph1 (Tryptophan hydoxylas 1) in a fatty liver-induced mouse model to confirm the relationship between fatty liver pathophysiology and serotonin. It was confirmed that Tph1 expression was increased in the intestinal tissue, which is the main place of serotonin synthesis (see Fig. 1 and Fig. 2).
또한, 증가된 세로토닌과 지방간의 상관관계를 분석하기 위하여 장 조직 특이적으로 Tph1 이 제거된 마우스 (Tph1 gut-specific knockout, 이하 Tph1 GKO)를 제작하여 지방간을 유도한 결과, 고지방식이에 의한 지방간 변화가 개선됨을 확인하였다 (도 3 참조). In addition, in order to analyze the correlation between increased serotonin and fat, Tph1 gut-specific knockout (Tph1 GKO) was constructed to induce fatty liver and induced fatty liver. It was confirmed that the change was improved (see FIG. 3).
또한 해당 마우스의 간 조직에서 중성지방을 정량한 결과 wild type 마우스에 비해 유의한 감소를 확인하였다 (도 4 참조). In addition, as a result of quantifying triglycerides in the liver tissue of the mouse, it was confirmed a significant reduction compared to wild type mice (see Figure 4).
나아가, Tph1 GKO 마우스에서 고지방식이에 의한 지방간 변화가 개선되는 이유를 찾기 위하여 간의 지방대사와 관련된 유전자들의 발현 양상을 조사한 결과, 지방신생성 (de novo lipogenesis)을 담당하는 Fasn, Acly, Me1, Scd1 및 중성지방합성을 담당하는 Gpam, Lpin1, Mogat1 의 발현이 감소됨을 확인하였다(도 5 참조). 또한 이러한 변화가 지방생성의 주된 유전자 발현 전사 인자인 Srebp1c 의 감소에 의한 것임을 확인하였다(도 5 참조). Furthermore, in order to find out why fatty liver changes by high-fat diet were improved in Tph1 GKO mice, the expression patterns of liver metabolism-related genes were examined. As a result, Fasn, Acly, Me1, Expression of Gpam, Lpin1, Mogat1 responsible for Scd1 and triglyceride synthesis was confirmed to be reduced (see FIG. 5). It was also confirmed that this change was due to the reduction of Srebp1c, the major gene expression transcription factor of adipogenesis (see FIG. 5).
Tph1 GKO 마우스의 고지방식이에 의한 지방간 개선 효과가 알코올성 지방간에도 적용되는지를 확인하기 위해 해당 마우스에 에탄올 식이를 시행한 결과 역시 지방간이 개선됨을 확인하였다(도 6 참조). 또한 해당 마우스의 간 조직에서 중성지방을 정량한 결과 wild type 마우스에 비해 유의한 감소를 확인하였다(도 7 참조). In order to confirm whether the fatty liver improvement effect by the high fat diet of Tph1 GKO mouse is applied to alcoholic fatty liver, the result of ethanol diet was also confirmed in the mouse (see FIG. 6). In addition, as a result of quantifying triglycerides in the liver tissue of the mouse, it was confirmed a significant decrease compared to wild type mice (see Figure 7).
Tph1 GKO 마우스에서 에탄올에 의한 지방간 개선은 간에서 지방산 산화를 담당하는 Cpt1a 의 발현 증가, 지방산을 세포내로 들여오는 Cd36 의 발현 감소, 세포내 중성지방을 합성하는 Lpin1 발현의 감소에 의한 것으로 확인되었다(도 8 참조).Ethanol-mediated fatty liver improvement in Tph1 GKO mice was confirmed by increased expression of Cpt1a, which is responsible for fatty acid oxidation in the liver, decreased expression of Cd36, which brings fatty acids into cells, and decreased expression of Lpin1, which synthesizes intracellular triglycerides. 8).
이상의 Tph1 GKO 마우스가 보이는 알코올성 및 비알코올성 지방간에 대한 개선효과가 직접적인 세로토닌 신호전달 과정과 연관되어 있는지를 확인하기 위하여 간 조직의 유전자 발현을 조사한 결과 세로토닌 수용체들과 세로토닌의 재흡수 및 대사를 담당하는 유전자들의 발현이 확인되었다 (도 9 참조). Gene expression of liver tissues was examined to determine whether the Tph1 GKO mice showed improvement in alcoholic and non-alcoholic fatty livers, which were directly involved in serotonin signaling, and were responsible for resorption and metabolism of serotonin receptors and serotonin. Expression of genes was confirmed (see FIG. 9).
그 중 세로토닌 수용체 HTR2A를 대상으로 하여 해당 수용체 특이적 길항제인 케탄세린을 투여하면서 고지방식이에 의한 지방간 변화를 조사하였다. 그 결과, 고지방식이와 함께 케탄세린을 투여하면 체중 증가가 감소되는 효과를 확인할 수 있었다(도 10 참조). 또한 포도당 및 인슐린 감수성 검사에서 케탄세린에 의해 내당능, 인슐린 저항성이 개선됨을 확인하였다 (도 11 참조). 이와 함께 고지방식이에 의한 지방간 변화가 케탄세린을 투여한 군에서 개선됨을 관찰하였고 (도 12 참조) 간 조직 내 중성지방의 양이 유의하게 감소됨을 확인하였다 (도 13 참조). Among them, serotonin receptor HTR2A was administered to ketanserine, a receptor-specific antagonist, and the changes in fatty liver due to high fat diet were investigated. As a result, administration of ketanserine with a high fat diet was confirmed that the effect of reducing weight gain (see FIG. 10). In addition, glucose and insulin sensitivity tests confirmed that glucose tolerance and insulin resistance were improved by ketanserine (see FIG. 11). In addition, it was observed that the fatty liver change by the high-fat diet was improved in the ketanserine-treated group (see FIG. 12), and the amount of triglyceride in the liver tissue was significantly reduced (see FIG. 13).
이상의 본 발명의 케탄세린에 의한 결과들이 직접적으로 간 세포에 작용해서 나타난 것인지를 확인하기 위하여 마우스의 간세포를 초대 배양하여 케탄세린을 직접 투여한 결과 지방 생성에 관련된 유전자들의 발현 감소를 확인하였고 (도 14 참조), 반대로 케탄세린의 목적 수용체인 HTR2A 에 대한 작용제(agonist)를 투여하면 그 반대의 결과가 나타나는 것을 확인하였다(도 15 참조).In order to confirm whether the results of the ketanserine of the present invention were directly acted on the liver cells, the hepatocytes of the mouse were first cultured and the ketanserine was directly administered to confirm that the expression of genes related to fat production was reduced (FIG. On the contrary, it was confirmed that administration of an agonist for HTR2A, a target receptor of ketanserine, showed the opposite result (see FIG. 15).
따라서, 간으로 작용하는 세로토닌을 억제하면 지방생성의 주된 유전자 발현 전사 인자인 Srebp1c 의 발현이 억제되어, 그로 인한 지방 생성 관련 유전자들의 발현을 억제시키고 이를 통해 알코올성 및 비알코올성 지방간의 개선 및 중성지방의 감소를 확인하였고, 이를 매개하는 세로토닌 수용체가 HTR2A 임을 확인함으로써 본 발명의 케탄세린을 지방간의 예방 또는 치료용 조성물로 유용하게 사용할 수 있음을 확인하였다.Therefore, inhibiting serotonin, which acts as a liver, inhibits the expression of Srebp1c, a major gene expression transcription factor of lipogenesis, thereby inhibiting the expression of genes related to fat production, thereby improving alcoholic and non-alcoholic fatty liver and triglycerides. The decrease was confirmed, and by confirming that the serotonin receptor mediating this is HTR2A, it was confirmed that the ketanserine of the present invention can be usefully used as a composition for preventing or treating fatty liver.
또한, 본 발명의 케탄세린은 간 세포에서 지방생성에 관여하는 Acly, Me1 의 발현을 억제하였으며, 이와 반대로 케탄세린의 목적 수용체인 HTR2A 에 대한 작용제에 의해 Acaca, Fasn 의 발현 증가를 확인함으로써, 상기 케탄세린을 간 지방대사 조절용 조성물에 유용하게 사용할 수 있다.In addition, the ketanserine of the present invention inhibited the expression of Acly and Me1 involved in adipogenesis in liver cells, and on the contrary, by confirming the increased expression of Acaca and Fasn by an agonist for HTR2A, a target receptor for ketanserine, Ketanserine can be usefully used in the composition for regulating liver fat metabolism.
또한, 본 발명의 다른 실시예에 따르면, 간조직 특이적 HTR2A 제거 마우스(Htr2a LKO)에서 간 내 지방 축적이 감소되어 지방간이 개선됨을 확인하였으며(도 17a 내지 도 17c 참조), 간 조직 내 중성지방(hepatic triglyceride)의 양도 사포그렐레이트 투여군에서 유의하게 감소되는 것을 확인하였으므로(도 18 참조) 상기 HTR2A 유전자는 지방간의 발병과 관련된 유전자임을 확인하였으며, 본 발명의 HTR2A 길항제는 지방간의 예방 또는 치료용 조성물로 유용하게 사용할 수 있다.Further, according to another embodiment of the present invention, it was confirmed that fatty liver accumulation was improved in liver tissue-specific HTR2A-removed mice (Htr2a LKO), thereby improving fatty liver (see FIGS. 17A to 17C), and triglycerides in liver tissue. (hepatic triglyceride) was also found to be significantly reduced in the safogrelate administration group (see Fig. 18) was confirmed that the HTR2A gene is a gene associated with the development of fatty liver, HTR2A antagonist of the present invention composition for the prevention or treatment of fatty liver It can be usefully used.
또한, 본 발명의 다른 실시예에 따르면, 간 조직 특이적 Htr2a 제거 마우스(Htr2a LKO)에서 지방신생 및 중성지방 합성과 관련된 유전자의 발현량이 감소하고, 지방산 흡수와 관련된 유전자의 발현량이 감소되므로, HTR2A 유전자는 지방간의 발병과 관련된 유전자임이 확인되었으며, 본 발명의 HTR2A 길항제는 지방간의 예방 또는 치료용 조성물로 유용하게 사용할 수 있다.In addition, according to another embodiment of the present invention, in the liver tissue specific Htr2a-removing mouse (Htr2a LKO), the expression level of genes related to lipogenesis and triglyceride synthesis is reduced, the expression amount of genes related to fatty acid uptake is reduced, HTR2A The gene has been confirmed to be a gene associated with the development of fatty liver, HTR2A antagonist of the present invention can be usefully used as a composition for the prevention or treatment of fatty liver.
또한, 본 발명의 또 다른 실시예에 다르면, 고지방식이를 섭취한 마우스 군에 본 발명의 HTR2A 안타고니스트의 일종인 사포그렐레이트을 투여하였을 때, 비히클만 투여한 군과 비교하여 체중증가가 유의하게 감소되었으며(도 23), 간 조직 내 지방의 축적은 감소되었으며(도 24a 및 도 24b), 간 조직 내 중성지방(hepatic triglyceride) 또한 감소되었다. 따라서, 본 발명에서 HTR2A의 일종인 케탄세린 및 사포그렐레이트를 통하여 확인한 바와 같이, HTR2A 억제제는 지방간이 발병과 관련된 유전자인 HTR2A 유전자의 발현을 억제하거나(발현억제), 또는 HTR2A 수용체의 작용을 길항함으로서(수용체 길항제), 지방간의 예방 또는 치료용 조성물로써 유용하게 사용할 수 있다.In addition, according to another embodiment of the present invention, when the high-fat diet mouse group was administered safogrelate, which is a kind of HTR2A antagonist of the present invention, the weight gain was significantly reduced compared to the vehicle-only group. (FIG. 23), accumulation of fat in liver tissue was reduced (FIGS. 24A and 24B), and hepatic triglycerides were also reduced. Thus, as confirmed through ketanserine and safogrelate, which are a type of HTR2A in the present invention, HTR2A inhibitors inhibit the expression of the HTR2A gene, a gene involved in the onset of fatty liver (expression inhibitor), or antagonize the action of the HTR2A receptor. (Receptor antagonist), it can be usefully used as a composition for the prevention or treatment of fatty liver.
본 발명의 또 다른 양태에 따르면, 본 발명은 다음 단계를 포함하는 지방간의 예방 또는 치료제 후보물질의 스크리닝 방법을 제공한다:According to another aspect of the invention, the present invention provides a method for screening a candidate for preventing or treating fatty liver, comprising the following steps:
(a) HTR2A(5-hydroxytrptamine receptor 2A) 유전자 또는 단백질을 포함하는 분리된 세포에 시험물질을 접촉하는 단계; 및 (a) contacting a test substance with an isolated cell comprising a 5-hydroxytrptamine receptor 2A (HTR2A) gene or protein; And
(b) 상기 HTR2A 유전자의 발현량, 또는 HTR2A 단백질의 양 또는 활성을 측정하는 단계:(b) measuring the expression level of the HTR2A gene, or the amount or activity of the HTR2A protein:
상기 HTR2A 유전자의 발현량, 또는 HTR2A 단백질의 양 또는 활성이 상기 시험물질을 접촉하지 않은 세포와 비교하여 하향조절되는 경우, 상기 시험물질을 지방간의 예방 또는 치료제 후보물질로 판정한다.When the expression level of the HTR2A gene, or the amount or activity of the HTR2A protein is down-regulated in comparison with a cell that does not contact the test substance, the test substance is determined as a candidate for preventing or treating fatty liver.
본 발명의 지방간의 예방 또는 치료제 후보물질의 스크리닝 방법을 각각의 단계로 상세하게 설명하면 다음과 같다:The screening method of the candidate for preventing or treating fatty liver of the present invention will be described in detail with each step as follows:
단계 (a): Step (a): HTR2AHTR2A (5-(5- hydroxytrptaminehydroxytrptamine receptor 2A) 유전자 또는 단백질을 포함하는 분리된 세포에 시험물질을 접촉 receptor 2A) contacting test substance with isolated cells containing genes or proteins
본 발명에 따르면, HTR2A 유전자 또는 단백질을 포함하는 세포에 시험물질을 접촉시킨다.According to the present invention, a test substance is contacted with a cell containing the HTR2A gene or protein.
상기 세포는 다양하게 준비될 수 있으나, 구체적으로는 간세포이다.The cells may be prepared variously, specifically hepatocytes.
본 발명의 구체적인 구현예에 따르면, 마우스의 간세포를 분리하여 이용하였다.According to a specific embodiment of the present invention, hepatocytes of a mouse were isolated and used.
본 발명의 스크리닝 방법을 언급하여 사용되는 용어 “시험물질”은 HTR2A 유전자의 발현량, 또는 HTR2A 단백질의 양 또는 활성에 영향을 미치는지 여부를 확인하기 위하여 스크리닝에서 이용되는 미지의 물질을 의미한다. 상기 시험물질은 구체적으로는 추출물, 화합물, 안티센스 뉴클레오타이드, 및 단백질을 포함하나, 이에 제한되는 것은 아니다.As used to refer to the screening method of the present invention, the term “test material” refers to an unknown substance used in screening to determine whether the expression level of HTR2A gene, or the amount or activity of HTR2A protein is affected. The test substance specifically includes, but is not limited to, extracts, compounds, antisense nucleotides, and proteins.
단계 (b): Step (b): HTR2AHTR2A 유전자의 발현량, 또는  The expression level of the gene, or HTR2AHTR2A 단백질의 양 또는 활성을 측정 Measuring the amount or activity of a protein
이어서, 시험물질을 접촉한 세포에서 HTR2A 유전자의 발현량, 또는 HTR2A 단백질의 양 또는 활성이 상기 시험물질을 접촉하지 않은 세포와 비교하여 하향조절되는 경우, 상기 시험물질을 지방간의 예방 또는 치료제의 후보물질로서 판정한다. Subsequently, when the expression level of the HTR2A gene, or the amount or activity of the HTR2A protein in the cells in contact with the test substance is down-regulated compared with the cells not in contact with the test substance, the test substance is a candidate for preventing or treating fatty liver. Determined as a substance.
HTR2A 유전자의 발현량 변화의 측정은 당업계에 공지된 다양한 방법을 통해 실시될 수 있다. 예를 들어, RT-PCR(Sambrook 등, Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001)), 노던 블롯팅(Peter B. Kaufma et al., Molecular and Cellular Methods in Biology and Medicine, 102-108, CRC press), cDNA 마이크로어레이를 이용한 혼성화 반응(Sambrook 등, Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001)) 또는 인 시투(in situ) 혼성화 반응 (Sambrook 등, Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001))을 이용하여 실시할 수 있다.The measurement of the change in the expression level of the HTR2A gene can be carried out through various methods known in the art. For example, RT-PCR (Sambrook et al., Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press (2001)), Northern blotting (Peter B. Kaufma et al., Molecular and Cellular Methods in Biology and Medicine , 102-108, CRC press), hybridization reaction using cDNA microarray (Sambrook et al., Molecular Cloning.A Laboratory Manual, 3rd ed. Cold Spring Harbor Press (2001)) or in situ hybridization reaction (Sambrook et al. , Molecular Cloning.A Laboratory Manual, 3rd ed.Cold Spring Harbor Press (2001)).
RT-PCR 프로토콜에 따라 실시하는 경우에는 우선, 시료를 처리한 세포에서 총 RNA를 분리한 다음, 올리고 dT 프라이머 및 역전사효소를 이용하여 제1쇄 cDNA를 제조한다. 이어, 제1쇄 cDNA를 주형으로 이용하고, HTR2A 유전자-특이적 프라이머 세트를 이용하여 PCR 반응을 실시한다. 그런 다음, PCR 증폭 산물을 전기영동하고, 형성된 밴드를 분석하여 HTR2A 유전자의 발현량 변화를 측정한다.When performing according to the RT-PCR protocol, first, total RNA is isolated from cells treated with a sample, and then a first-chain cDNA is prepared using oligo dT primers and reverse transcriptase. Subsequently, the first chain cDNA is used as a template, and PCR reaction is performed using the HTR2A gene-specific primer set. Then, PCR amplification products are electrophoresed, and the formed bands are analyzed to measure changes in the expression level of the HTR2A gene.
HTR2A 단백질의 양의 변화는 당업계에 공지된 다양한 면역분석 방법을 통해 실시될 수 있다. 예를 들어, HTR2A 단백질의 양의 변화는 방사능면역분석, 방사능면역침전, 면역침전, ELISA(enzymelinked immunosorbent assay), 캡처-ELISA, 억제 또는 경재 분석, 그리고 샌드위치 분석을 포함하지만, 이에 한정되는 것은 아니다.Changes in the amount of HTR2A protein can be carried out through various immunoassay methods known in the art. For example, changes in the amount of HTR2A protein include, but are not limited to, radioimmunoassay, radioimmunoprecipitation, immunoprecipitation, enzymelinked immunosorbent assay (ELISA), capture-ELISA, inhibition or hardwood assay, and sandwich assay. .
본 발명의 스크리닝 방법을 통해 판정된 지방간의 예방 또는 치료제 후보물질은 지방간을 예방 또는 치료하는데 이용될 수 있다.Fatty liver prophylactic or therapeutic candidates determined through the screening method of the present invention can be used to prevent or treat fatty liver.
본 발명의 또 다른 양태에 따르면, 본 발명은 상술한 본 발명의 HTR2A(5-hydroxytrptamine receptor 2A) 억제제를 유효성분으로 포함하는 약제학적 조성물을 대상체(subject)에 투여하는 단계를 포함하는 지방간의 예방 또는 치료방법을 제공한다.According to still another aspect of the present invention, the present invention provides a method for preventing fatty liver comprising administering to a subject a pharmaceutical composition comprising the above-described HTR2A (5-hydroxytrptamine receptor 2A) inhibitor of the present invention as an active ingredient. Or provide a method of treatment.
본 명세서에서 사용된 용어, "투여" 또는 "투여하다"는 본 발명의 조성물의 치료적 유효량을 상기 조성물을 필요로 하는 대상체(개체)에 직접적으로 투여함으로써 대상체의 체내에서 동일한 양이 형성되도록 하는 것을 말한다. As used herein, the term “administration” or “administer” refers to administering a therapeutically effective amount of a composition of the invention directly to a subject (an individual) in need thereof so that the same amount is formed in the subject's body. Say that.
조성물의 "치료적 유효량"은 조성물을 투여하고자 하는 대상체에게 치료적 또는 예방적 효과를 제공하기에 충분한 조성물의 함량을 의미하며, 이에 "예방적 유효량"을 포함하는 의미이다. 또한, 본 명세서에서 사용된 용어, "대상체"는 제한 없이 인간, 마우스, 랫트, 기니아 피그, 개, 고양이, 말, 소, 돼지, 원숭이, 침팬지, 비비 또는 붉은털 원숭이를 포함한다. 구체적으로는, 본 발명의 대상체는 인간이다.A "therapeutically effective amount" of a composition means a content of the composition that is sufficient to provide a therapeutic or prophylactic effect to a subject to which the composition is to be administered, and includes "prophylactically effective amount". Also, as used herein, the term "subject" includes, without limitation, human, mouse, rat, guinea pig, dog, cat, horse, cow, pig, monkey, chimpanzee, baboon or rhesus monkey. Specifically, the subject of the present invention is a human.
본 발명의 상기 지방간의 예방 또는 치료방법은, 본 발명의 일 양태인 지방간의 예방 또는 치료용 약제학적 조성물을 투여하는 단계를 포함하는 방법이므로, 중복되는 내용에 대해서는 본 명세서 기재의 과도한 복잡성을 피하기 위해 생략하도록 한다. The method for preventing or treating fatty liver of the present invention is a method comprising administering a pharmaceutical composition for preventing or treating fatty liver, which is an aspect of the present invention, and thus avoids excessive complexity of the present disclosure with respect to overlapping contents. To omit them.
본 발명은 HTR2A(5-hydroxytrptamine receptor 2A) 억제제를 유효성분으로 포함하는 지방간의 예방 또는 치료용 약제학적 조성물을 제공한다.The present invention provides a pharmaceutical composition for preventing or treating fatty liver, comprising an HTR2A (5-hydroxytrptamine receptor 2A) inhibitor as an active ingredient.
또한, 본 발명은 HTR2A 억제제를 유효성분으로 포함하는 지방간의 예방 또는 개선용 식품 조성물을 제공한다.The present invention also provides a food composition for preventing or improving fatty liver, comprising an HTR2A inhibitor as an active ingredient.
또한, 본 발명은 지방간의 예방 또는 치료제 후보물질의 스크리닝 방법을 제공한다The present invention also provides a method for screening a candidate for preventing or treating fatty liver.
본 발명의 HTR2A 억제제는 고지방식이에 의해 유도되는 지방간 생성을 억제하고, 간세포 내 지방생성과 관련된 유전자들의 발현을 억제하므로 지방간의 예방 또는 치료용 조성물 등의 유효성분으로 유용하게 사용될 수 있다.Since the HTR2A inhibitor of the present invention inhibits fatty liver production induced by high fat diet and inhibits the expression of genes related to adipogenesis in hepatocytes, it may be usefully used as an active ingredient for preventing or treating fatty liver.
도 1는 마우스의 장조직에서 고지방식이에 의해 세로토닌 합성의 속도결정단계 효소인 tryptophan hydroxylase 1 (Tph1) 의 발현이 증가하는 것을 나타낸 도이다.1 is a diagram showing that the expression of tryptophan hydroxylase 1 (Tph1), a rate determining step enzyme of serotonin synthesis, is increased by high fat diet in mouse intestinal tissue.
도 2은 마우스의 장조직에서 에탄올 섭취에 의해 세로토닌 합성의 속도결정단계 효소인 Tph1 의 발현이 증가하는 것을 나타낸 도이다.Figure 2 shows that the expression of Tph1, a rate-determining enzyme of serotonin synthesis, increases by ethanol intake in the intestinal tissues of mice.
도 3는 장조직 특이적으로 Tph1 이 제거된 마우스에서 고지방식이에 의한 지방간 변화가 개선됨을 나타낸 도이다.3 is a diagram showing that fatty liver changes by high fat diet were improved in mice in which Tph1 was specifically removed from intestinal tissue.
도 4는 장조직 특이적으로 Tph1 이 제거된 마우스에서 고지방식이에 의한 간 조직 내 중성지방의 증가가 억제됨을 나타낸 도이다.4 is a diagram showing that the increase in triglycerides in liver tissue by high fat diet is suppressed in the tissues specifically Tph1 removed.
도 5은 장조직 특이적으로 Tph1 이 제거된 마우스에서 고지방식이에 의한 간의 지방대사와 관련된 유전자들의 발현 변화를 나타낸 도이다.5 is a diagram showing changes in the expression of genes associated with hepatic fat metabolism by high fat diet in mice in which Tph1 is specifically removed from intestinal tissue.
도 6은 장조직 특이적으로 Tph1 이 제거된 마우스에서 에탄올 식이에 의한 지방간 변화가 개선됨을 타나낸 도이다.6 is a diagram showing the improvement of fatty liver changes by ethanol diet in mice in which Tph1 is specifically removed from intestinal tissue.
도 7은 장조직 특이적으로 Tph1 이 제거된 마우스에서 에탄올 식이에 의한 간 조직 내 중성지방이 감소됨을 나타낸 도이다.FIG. 7 is a diagram showing the decrease of triglycerides in liver tissue by ethanol diet in mice in which Tph1 is specifically removed from intestinal tissue.
도 8는 장조직 특이적으로 Tph1 이 제거된 마우스에서 에탄올 식이에 의한 간의 지방대사와 관련된 유전자들의 발현 변화를 나타낸 도이다.8 is a diagram showing changes in the expression of genes related to hepatic fat metabolism by ethanol diet in mice in which Tph1 is specifically removed from intestinal tissue.
도 9은 마우스의 간조직에서 세로토닌 수용체 및 세로토닌 대사 효소들의 발현을 나타낸 도이다.Figure 9 is a diagram showing the expression of serotonin receptors and serotonin metabolizing enzymes in liver tissue of the mouse.
도 10은 고지방식이를 섭취한 마우스 군에 ketanserin을 투여하였을 때, 체중 변화를 나타낸 도이다.10 is a diagram showing the weight change when ketanserin was administered to a group of mice fed high fat diet.
도 11은 마우스 군에 ketanserin을 투여하였을 때, 포도당 및 인슐린 감수성의 증가를 나타낸 도이다.Figure 11 shows the increase in glucose and insulin sensitivity when ketanserin is administered to the mouse group.
도 12은 고지방식이를 섭취한 마우스 군에 본 발명의 HTR2A 안타고니스트의 일종인 ketanserin을 투여하였을 때, 간 조직 내 지방 축적의 감소를 H&E 조직 염색결과로 나타낸 도이다.12 is a graph showing the reduction of fat accumulation in liver tissue as a result of H & E tissue staining when ketanserin, a type of HTR2A antagonist of the present invention, was administered to a group of mice fed high fat diet.
도 13은 고지방식이를 섭취한 마우스 군에 본 발명의 HTR2A 안타고니스트의 일종인 ketanserin을 투여하였을 때, 간 조직 내 중성지방(hepatic triglyceride)의 감소를 나타낸 도이다.Figure 13 is a diagram showing the reduction of hepatic triglycerides (hepatic triglycerides) when administration of ketanserin, a type of HTR2A antagonist of the present invention, to a group of mice fed high fat diet.
도 14는 마우스의 간 세포에 ketanserin을 투여하였을 때, 지방 생성과 관련된 유전자들의 발현 감소를 나타낸 도이다.14 is a diagram showing a decrease in expression of genes related to fat production when ketanserin is administered to liver cells of a mouse.
도 15는 마우스의 간 세포에 HTR2A 작용제를 투여하였을 때, 지방 생성과 관련된 유전자들의 발현 증가를 나타낸 도이다.Figure 15 shows the increase in expression of genes associated with fat production when HTR2A agonist is administered to mouse liver cells.
도 16a는 Htr2a floxed 마우스를 제조하기 위한 벡터 디자인을 나타낸 도이고, 도 16b는 Htr2a floxed 마우스와 Alb-Cre 마우스를 교배하여 Htr2a LKO 마우스를 제작하는 방법을 나타낸 모식도이며, 도 16c는 제작된 Htr2a LKO 마우스의 넉아웃을 확인하기 위한 RT-PCR 결과이다.FIG. 16A is a diagram illustrating a vector design for manufacturing an Htr2a floxed mouse, and FIG. 16B is a schematic diagram showing a method of manufacturing an Htr2a LKO mouse by crossing an Htr2a floxed mouse and an Alb-Cre mouse, and FIG. 16C is a manufactured Htr2a LKO. RT-PCR results to confirm knockout of mice.
도 17은 간 조직 특이적 Htr2a 유전자 넉아웃 마우스(Htr2a Liver Knock Out mouse, Htr2a LKO)와 야생형 마우스를 정상식이군(SCD, standard chow diet)과, 고지방식이군(HFD, high fat diet)으로 나누어 사육한 후의 육안(도 17a) 및 현미경적 소견(도 17b 및 도 17c)을 나타낸 도이다. 17 is divided into liver tissue-specific Htr2a gene knockout mice (Htr2a Liver Knock Out mouse, Htr2a LKO) and wild-type mice divided into normal diet group (SCD, standard chow diet), high fat diet (HFD, high fat diet) It is a figure which shows the naked eye (FIG. 17A) and the microscopic findings (FIG. 17B and 17C) after a while.
도 18은 간 조직 특이적 Htr2a 제거 마우스(Htr2a LKO)에서의 간 내 중성지방량 변화를 확인한 결과이다. Figure 18 shows the results of confirming the change in triglycerides in the liver in liver tissue-specific Htr2a removal mice (Htr2a LKO).
도 19a는 간 조직 특이적 Htr2a 제거 마우스(Htr2a LKO)의 체중 변화를 확인한 도이고, 도 19b는 체중에 대한 기관별 중량비의 변화를 확인한 도이다.19A is a diagram confirming the change in weight of liver tissue-specific Htr2a-removed mice (Htr2a LKO), and FIG. 19B is a diagram confirming the change in weight ratio by organ to body weight.
도 20은 간 조직 특이적 Htr2a 제거 마우스(Htr2a LKO)의 내당능 및 인슐린 저항성에 대한 변화를 확인한 도이다(도 20b).20 is a diagram confirming the changes in glucose tolerance and insulin resistance of liver tissue specific Htr2a deficient mice (Htr2a LKO) (FIG. 20B).
도 21은 간 조직 특이적 Htr2a 제거 마우스(Htr2a LKO)의 혈장 내 지질 프로파일(총 콜레스테롤, 지방산, 중성지방, HDL 콜레스테롤 수준)을 비교하여 나타낸 도이다.FIG. 21 shows a comparison of lipid profiles (total cholesterol, fatty acids, triglycerides, HDL cholesterol levels) in plasma of liver tissue specific Htr2a deficient mice (Htr2a LKO).
도 22는 간 조직 특이적 Htr2a 제거 마우스(Htr2a LKO)의 지방대사와 관련된 유전자의 발현량 변화를 비교하여 나타낸 도이다. FIG. 22 is a diagram showing a comparison of expression levels of genes associated with lipo metabolism in liver tissue specific Htr2a-removed mice (Htr2a LKO). FIG.
도 23은 고지방식이를 섭취한 마우스 군에 본 발명의 HTR2A 안타고니스트의 일종인 사포그렐레이트을 투여하였을 때, 체중 변화를 나타낸 도이다. Figure 23 is a diagram showing the weight change when a group of mice fed high fat diet was administered safogrelate, which is a kind of HTR2A antagonist of the present invention.
도 24는 고지방식이를 섭취한 마우스 군에 본 발명의 HTR2A 안타고니스트의 일종인 사포그렐레이트을 투여하였을 때, 간 조직 내 지방 축적의 감소를 H&E 조직 염색결과로 나타낸 도이다(도 24a: 10x; 도 24b: 20x). FIG. 24 is a diagram showing the reduction of fat accumulation in liver tissue as a result of H & E tissue staining when administration of safogrelate, which is a type of HTR2A antagonist of the present invention, to a group of mice fed high-fat diet (FIG. 24A: 10x; FIG. 24b: 20x).
도 25는 고지방식이를 섭취한 마우스 군에 본 발명의 HTR2A 안타고니스트의 일종인 사포그렐레이트을 투여하였을 때, 간 조직 내 중성지방(hepatic triglyceride)의 감소를 나타낸 도이다.Figure 25 is a diagram showing a decrease in hepatic triglycerides (hepatic triglyceride) when the administration of safogrelate, which is a type of HTR2A antagonist of the present invention, to a group of mice fed high fat diet.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention.
실시예Example
실시예 1: 실험동물 Example 1: Experimental Animal
1-1. 실험 동물 사육1-1. Breeding experimental animals
7주령 된 수컷 흰쥐(C57BL/6)를 ㈜중앙실험동물에서 분양받아 사용하였다. 8주령이 되었을 때 5마리씩 두 개의 식이군(NCD군: normal chow diet, HFD군: high-fat diet)으로 나누어 실험에 사용하였다. NCD군은 일반식이를, HFD군은 60% 고지방식이를 급여하였다. 사육장의 온도는 23℃로 유지하였으며, 식이와 식수는 12주간 자유롭게 먹도록 하였다. Seven-week-old male rats (C57BL / 6) were used for pre-sale in a central laboratory animal. At eight weeks of age, five animals were divided into two diet groups (NCD group: normal chow diet and HFD group: high-fat diet). NCD group fed the normal diet and HFD group fed the 60% high-fat diet. The temperature of the kennel was maintained at 23 ℃, diet and drinking water was free to eat for 12 weeks.
에탄올 식이를 시행하기 위해서 10주령이 된 마우스들을 두 개의 식이군 (NCD군, 에탄올 식이군)으로 나누어 실험에 사용하였다. 일반 식이를 하면서, NCD 군에는 증류수를, 에탄올군은 선행문헌 (Zhou et al., 2003, Exp . Biol . Med . 227: 214-222; Kao et al., 2012, Hepatology. 56: 594-604) 의 방법대로 에탄올을 투여하였다. In order to perform the ethanol diet, 10-week-old mice were divided into two diet groups (NCD group and ethanol diet group) and used for the experiment. In the general diet, the NCD group was distilled water, and the ethanol group was previously described (Zhou et al., 2003, Exp . Biol . Med . 227: 214-222; Kao et al., 2012, Hepatology . 56: 594-604 Ethanol was administered according to the following method.
케탄세린(ketanserin, Sigma) 투여를 시행하기 위해서 12주령이 된 마우스들을 두 개의 치료군 (대조군, ketanserin군) 으로 나누어 실험에 사용하였다. 일반식이 또는 고지방식이를 하면서 케탄세린군에는 PBS(phosphate-buffered saline)에 녹인 케탄세린을 마우스 체중 1 kg 당 1 mg을, 대조군에는 동량의 PBS를 매일 복강 주사하였다.To administer ketanserin (Sigma), 12-week-old mice were divided into two treatment groups (control group, ketanserin group) and used in the experiment. Ketanserine group was injected with ketaneserine dissolved in phosphate-buffered saline (PBS) in 1 mg / kg body weight of the mouse and the same amount of PBS daily in the control group.
1-2. 조직 적출1-2. Tissue extraction
마우스에 졸레틸(Zoletil®, Virbac)을 복강주사 하여 마취시킨 후, 복강을 절개하여 장, 간을 적출하였다.The mice were anesthetized with Zoletil® (Virbac) intraperitoneally, and then the intraperitoneal incision was taken to extract the intestines and liver.
실시예Example 2: 장 조직에서 세로토닌 합성 효소  2: serotonin synthase in intestinal tissue Tph1Tph1 (( TryptophanTryptophan hydroxylasehydroxylase 1)의1) of 발현 확인 Expression confirmation
실시예 1-1에 기재된 조건의 NCD군, HFD군, 및 에탄올 식이군에 대하여, 실시예 1-2에 기재된 방법으로 장 조직을 적출하였다. 적출한 장 조직으로부터 Trizol reagent(Invitrogen)를 이용하여 RNA를 분리하고 spectrophotometer를 이용하여 RNA를 정량하였다. 분리된 총 RNA 중 1 μg을 QuantiTect Reverse Transcription Kit (Qiagen)을 이용하여 cDNA를 합성하고, Fast SYBR Green Master Mix (Applied Biosystems)를 이용하여 realtime PCR을 수행하였다. 유전자의 발현량은 Actb(Actin, beta)를 내부 대조군으로 이용하여 표준화하였다. PCR에 사용된 프라이머는 Primer-blast (www.ncbi.nlm.nih.gov/tools/primer-blast/)를 이용하여 제작하였으며 하기 표 1에 기재된 서열을 사용하였다. The intestinal tissue was removed by the method of Example 1-2 about the NCD group, HFD group, and ethanol diet group of the conditions of Example 1-1. RNA was isolated from the extracted intestinal tissue using Trizol reagent (Invitrogen) and RNA was quantified using a spectrophotometer. 1 μg of the total RNA isolated was synthesized using QuantiTect Reverse Transcription Kit (Qiagen), and realtime PCR was performed using Fast SYBR Green Master Mix (Applied Biosystems). Gene expression levels were normalized using Actb (Actin, beta) as an internal control. Primers used for PCR were prepared using Primer-blast (www.ncbi.nlm.nih.gov/tools/primer-blast/) and the sequences described in Table 1 were used.
유전자gene Forward primerForward primer Reverse primerReverse primer
ActbActb GGTACCACCATGTACCCAGGGGTACCACCATGTACCCAGG GAAAGGGTGTAAAACGCAGCGAAAGGGTGTAAAACGCAGC
Tph1Tph1 ACCATGATTGAAGACAACAAGGAGACCATGATTGAAGACAACAAGGAG TCAACTGTTCTCGGCTGATGTCAACTGTTCTCGGCTGATG
그 결과, 고지방 식이(HFD군)와 에탄올 식이(EtOH) 모두에서 대조군에 비해 장 조직에서 세로토닌 합성 효소인 Tph1의 발현이 유의하게 증가됨을 확인하였다(도 1 및 도 2 참조). 따라서, 고지방 식이와 에탄올 식이는 장조직 내 세로토닌 합성 효소인 Tph1의 발현을 증가시키는 것을 알 수 있었다. As a result, it was confirmed that the expression of Tph1, a serotonin synthase, in the intestinal tissue was significantly increased in both the high fat diet (HFD group) and the ethanol diet (EtOH) (see FIGS. 1 and 2). Therefore, high fat diet and ethanol diet was found to increase the expression of Tph1, a serotonin synthase in the intestinal tissue.
실시예 3: 장 조직 특이 Tph1 제거 마우스(Tph1 GKO)의 지방간 변화 확인Example 3: Confirmation of Changes in Fatty Liver of Intestinal Tissue-Specific Tph1-Removed Mice (Tph1 GKO)
3-1. 장 조직 특이적으로 Tph1 유전자가 제거된 마우스의 제작3-1. Construction of Mice with Tph1 Gene Specific to Intestinal Tissue
장 조직 특이적으로 Tph1 유전자가 제거된 마우스 (Tph1 gut-specific knockout, Tph1 GKO)는 선행문헌 (Sumara et al., 2012, Cell Metab. 16: 588-600) 의 방법대로 Tph1 floxed 마우스와 Villin-Cre 마우스를 교배하여 제작하였다.Tph1 gut-specific knockout (Tph1 GKO) mice with Tph1 gene-specific intestinal tissues were removed according to the method described in Sumar et al., 2012, Cell Metab . 16: 588-600. Cre mice were made by crossing.
3-2. 장 조직 특이 Tph1 제거 마우스(Tph1 GKO) 간 조직의 현미경적 소견3-2. Microscopic Findings of Liver Tissue in Intestinal Tissue-Specific Tph1-removed Mouse (Tph1 GKO)
실시예 3-1에서 제조한 장조직 특이 Tph1 제거 마우스(Tph1 GKO)의 간 조직을 현미경으로 관찰하기 위하여, 실시예 1-2에 기재된 방법으로 간을 적출하여 10% 중성 포르말린 용액에 고정시킨 다음, 파라핀으로 포매하고, 5 μm 두께로 절단하여 슬라이드에 접착시켰다. 이후 탈파라핀 및 함수과정을 거쳐 헤마톡실린 및 에오신 (Hematoxylin & Eosin)으로 염색하였다. In order to observe the liver tissue of the intestinal tissue specific Tph1 removing mouse (Tph1 GKO) prepared in Example 3-1, the liver was extracted by the method described in Example 1-2 and fixed in 10% neutral formalin solution. , Paraffin embedded, cut to 5 μm thickness and adhered to the slide. After the deparaffin and water-containing process, it was stained with hematoxylin and Eosin (Hematoxylin & Eosin).
그 결과 장 조직 특이적으로 Tph1 이 제거된 마우스 (Tph1 GKO)에서 고지방식이에 의한 지방간 변화가 개선됨을 확인하였다(도 3 참조). Tph1 GKO 마우스에 에탄올 식이를 시행한 결과에서도 역시 지방간이 개선됨을 확인하였다(도 6 참조). 따라서, 세로토닌의 감소가 지방간의 개선과 관련성이 있음을 알 수 있었다.As a result, it was confirmed that fatty liver changes due to high fat diet were improved in mice in which Tph1 was specifically removed (Tph1 GKO). It was also confirmed that fatty liver was also improved in the result of ethanol diet in Tph1 GKO mice (see FIG. 6). Therefore, it can be seen that the reduction of serotonin is associated with the improvement of fatty liver.
3-3. 장 조직 특이 Tph1 제거 마우스(Tph1 GKO) 간 조직 내 중성지방의 정량3-3. Determination of Triglycerides in Liver Tissues of Intestinal Tissue-Specific Tph1-removed Mice (Tph1 GKO)
실시예 3-1에서 제조한 장조직 특이 Tph1 제거 마우스(Tph1 GKO)의 간 조직 내 중성지방을 정량하기 위하여, 실시예 1-2에 기재된 방법으로 간을 적출한 다음, 5% NP-40 용액에서 분쇄한 후 가열하여 지질 성분을 모두 녹여내었다. Triglyceride Reagent (Sigma)를 이용하여 중성지방을 Glycerol로 분해시킨 후 Glycerol Reagent (Sigma)를 이용하여 Glycerol의 양을 발색반응으로 정량하였다. 중성지방량을 조직의 단백질량으로 보정하기 위하여 BCA Protein Assay Kit (Pierce)로 단백질량을 측정하였다. In order to quantify the triglycerides in the liver tissues of the intestinal tissue-specific Tph1-removed mice (Tph1 GKO) prepared in Example 3-1, the liver was extracted by the method described in Example 1-2, followed by a 5% NP-40 solution. After pulverizing in and heated to dissolve all lipid components. Triglyceride Reagent (Sigma) was used to decompose triglycerides into Glycerol, and Glycerol Reagent (Sigma) was used to quantify the amount of Glycerol by color reaction. The protein amount was measured by BCA Protein Assay Kit (Pierce) to correct the triglyceride amount to the amount of protein in the tissue.
그 결과 Tph1 GKO 마우스에서 고지방식이나 에탄올 식이 양쪽 모두에서 중성지방량이 감소됨을 확인하였다 (도 4 및 도 7 참조). 따라서, 세로토닌의 감소가 간 내 중성지방의 감소와도 관련이 있음을 알 수 있었다.As a result, it was confirmed that the triglyceride amount was reduced in both high fat diet and ethanol diet in Tph1 GKO mice (see FIGS. 4 and 7). Therefore, it was found that the decrease in serotonin was also related to the decrease of triglyceride in the liver.
실시예Example 4: 장 조직 특이  4: intestinal tissue specificity Tph1Tph1 제거 마우스( Remove mouse ( Tph1Tph1 GKOGKO ) 간 조직에서 지방 대사 관련 유전자 발현 변화 확인) Changes in gene expression related to fat metabolism
장조직 특이 Tph1 제거 마우스(Tph1 GKO)와 일반 마우스(WT)의 간 조직 내 지방 대사 관련 유전자의 발현 정도를 비교하기 위하여, 실시예 1-2에 기재된 방법으로 적출한 간 조직으로부터, 실시예 2에 기재된 방법으로 RNA를 추출하고 cDNA를 합성하여 realtime PCR을 시행하였다. PCR 에 사용된 primer는 하기 표 2에 기재된 서열을 사용하였다.In order to compare the expression level of adipose metabolism related genes in liver tissues of intestinal tissue-specific Tph1-removed mice (Tph1 GKO) and normal mice (WT), Example 2 was extracted from liver tissues extracted by the method described in Example 1-2. RNA was extracted by the method described in the above, cDNA was synthesized, and realtime PCR was performed. The primers used for PCR used the sequences listed in Table 2 below.
유전자gene Forward primerForward primer Reverse primerReverse primer
ActbActb GGTACCACCATGTACCCAGGGGTACCACCATGTACCCAGG GAAAGGGTGTAAAACGCAGCGAAAGGGTGTAAAACGCAGC
AcacaAcaca CAGTAACCTGGTGAAGCTGGACAGTAACCTGGTGAAGCTGGA GCCAGACATGCTGGATCTCATGCCAGACATGCTGGATCTCAT
FasnFasn AAGCGGTCTGGAAAGCTGAAAAGCGGTCTGGAAAGCTGAA AGGCTGGGTTGATACCTCCAAGGCTGGGTTGATACCTCCA
AclyAcly CCCTCTTCAGCCGACATACCCCCTCTTCAGCCGACATACC CTGCTTGTGATCCCCAGTGACTGCTTGTGATCCCCAGTGA
Me1Me1 GACCCGCATCTCAACAAGGAGACCCGCATCTCAACAAGGA CAGGAGATACCTGTCGAAGTCACAGGAGATACCTGTCGAAGTCA
Scd1Scd1 AGAGTCAGGAGGGCAGGTTTAGAGTCAGGAGGGCAGGTTT GAACTGGAGATCTCTTGGAGCAGAACTGGAGATCTCTTGGAGCA
GpamGpam CCACAGAGCTGGGAAAGGTTCCACAGAGCTGGGAAAGGTT GTGCCTTGTGTGCGTTTCATGTGCCTTGTGTGCGTTTCAT
AgpatAgpat GCGCAATGTCGAGAACATGAGCGCAATGTCGAGAACATGA TCATTCCAAGCAGGTCGAGGTCATTCCAAGCAGGTCGAGG
Lpin1Lpin1 CATACAAAGGCAGCCACACGCATACAAAGGCAGCCACACG CGGGGTTCAGTCCCTTGTAGCGGGGTTCAGTCCCTTGTAG
Mogat1Mogat1 TTGACCCATGGTGCCAGTTTTTGACCCATGGTGCCAGTTT GTGGCAAGGCTACTCCCATTGTGGCAAGGCTACTCCCATT
Dgat1Dgat1 GGATCTGAGGTGCCATCGTCGGATCTGAGGTGCCATCGTC ATCAGCATCACCACACACCAATCAGCATCACCACACACCA
Dgat2Dgat2 CATCATCGTGGTGGGAGGTGCATCATCGTGGTGGGAGGTG TGGGAACCAGATCAGCTCCATTGGGAACCAGATCAGCTCCAT
Cd36Cd36 TGGCCAAGCTATTGCGACATTGGCCAAGCTATTGCGACAT ACACAGCGTAGATAGACCTGCACACAGCGTAGATAGACCTGC
Cpt1aCpt1a AGCTCGCACATTACAAGGACAAGCTCGCACATTACAAGGACA CCAGCACAAAGTTGCAGGACCCAGCACAAAGTTGCAGGAC
MtpMtp TGCTTCCGTTAAAGGTCACACATGCTTCCGTTAAAGGTCACACA CTTGCGGTTTTCCTTTGCCCCTTGCGGTTTTCCTTTGCCC
ApobApob TACTTCCACCCACAGTCCCCTTACTTCCACCCACAGTCCCCT CCTTAGAAGCCTTGGGCACATCCTTAGAAGCCTTGGGCACAT
PpargPparg GGTGTGATCTTAACTGCCGGAGGTGTGATCTTAACTGCCGGA GCCCAAACCTGATGGCATTGGCCCAAACCTGATGGCATTG
Ppargc1aPpargc1a GCCCAGGTACGACAGCTATGGCCCAGGTACGACAGCTATG ACGGCGCTCTTCAATTGCTTACGGCGCTCTTCAATTGCTT
Nr1h3Nr1h3 GCAGGACCAGCTCCAAGTAGGCAGGACCAGCTCCAAGTAG CCCTTCTCAGTCTGCTCCACCCCTTCTCAGTCTGCTCCAC
MlxiplMlxipl AAGTTGCTATGCCGGGACAAAAGTTGCTATGCCGGGACAA ATGACAGCCTCAGGTTTCCGATGACAGCCTCAGGTTTCCG
Srebp1cSrebp1c GGAGCCATGGATTGCACATTGGAGCCATGGATTGCACATT GGCCCGGGAAGTCACTGTGGCCCGGGAAGTCACTGT
EsrrgEsrrg GTCTTGACAGAGTGCGTGGAGTCTTGACAGAGTGCGTGGA TTCAGCCACCAACAAATGCGTTCAGCCACCAACAAATGCG
Tph1 GKO 마우스에 고지방식이를 적용시킨 결과, 지방신생성 (de novo lipogenesis)을 담당하는 Fasn, Acly, Me1, Scd1 및 중성지방합성을 담당하는 Gpam, Lpin1, Mogat1의 발현이 감소됨을 확인하였다(도 5 참조). 또한, 이러한 변화는 지방생성의 주된 유전자 발현 전사 인자인 Srebp1c의 감소에 의한 것임을 확인하였다(도 5 참조). Application of the high-fat diet to Tph1 GKO mice showed that the expression of Fasn, Acly, Me1, Scd1, responsible for de novo lipogenesis, and Gpam, Lpin1, Mogat1, responsible for triglyceride synthesis, were reduced ( See FIG. 5). In addition, this change was confirmed to be due to the reduction of Srebp1c, a major gene expression transcription factor of adipogenesis (see FIG. 5).
또한, Tph1 GKO 마우스에 에탄올 식이를 적용시킨 결과, 지방간 개선은 간에서 지방산 산화를 담당하는 Cpt1a 의 발현 증가, 지방산을 세포내로 들여오는 Cd36 의 발현 감소, 세포내 중성지방을 합성하는 Lpin1 발현의 감소에 의한 것으로 확인하였다(도 8 참조).In addition, the application of ethanol diet to Tph1 GKO mice showed that fatty liver improvement increased the expression of Cpt1a, which is responsible for fatty acid oxidation in the liver, decreased the expression of Cd36 that brought fatty acids into cells, and reduced Lpin1 expression that synthesizes intracellular triglycerides. It was confirmed by (see Fig. 8).
실시예Example 5: 장 조직 특이  5: intestinal tissue specificity Tph1Tph1 제거 마우스( Remove mouse ( Tph1Tph1 GKOGKO ) 간 조직 내 세로토닌 수용체의 합성 및 대사 효소 발현 변화 확인) Synthesis of Serotonin Receptor and Metabolic Enzyme Expression in Liver Tissue
장 조직 특이 Tph1 제거 마우스(Tph1 GKO)와 일반 마우스(WT)의 간 조직 내 세로토닌 수용체, 세로토닌의 합성 및 대사효소와 관련된 유전자의 발현 정도를 비교하기 위하여, 상기 실시예 1-2에 기재된 방법으로 적출한 간 조직으로부터, 실시예 2에 기재된 방법으로 RNA를 추출하고 cDNA를 합성하여 end-point PCR을 시행하였다. PCR 에 사용된 primer는 하기 표 3에 기재된 서열을 사용하였다.In order to compare the expression levels of serotonin receptors, the synthesis of serotonin and the expression of genes related to metabolic enzymes in liver tissues of intestinal tissue-specific Tph1 deficient mice (Tph1 GKO) and normal mice (WT), From the extracted liver tissue, RNA was extracted by the method described in Example 2, cDNA was synthesized, and end-point PCR was performed. Primers used for PCR used the sequences described in Table 3 below.
유전자gene Forward primerForward primer Reverse primerReverse primer
ActbActb GGTACCACCATGTACCCAGGGGTACCACCATGTACCCAGG GAAAGGGTGTAAAACGCAGCGAAAGGGTGTAAAACGCAGC
Htr1aHtr1a TCAGCTACCAAGTGATCACCTCTTCAGCTACCAAGTGATCACCTCT GTCCACTTGTTGAGCACCTGGTCCACTTGTTGAGCACCTG
Htr1bHtr1b TGCTCCTCATCGCCCTCTATGTGCTCCTCATCGCCCTCTATG CTAGCGGCCATGAGTTTCTTCTTCTAGCGGCCATGAGTTTCTTCTT
Htr1dHtr1d CCTCCAACAGATCCCTGAATGCCTCCAACAGATCCCTGAATG CAGAGCAATGACACAGAGATGCACAGAGCAATGACACAGAGATGCA
Htr1fHtr1f TGTGAGAGAGAGCTGGATTATGGTGTGAGAGAGAGCTGGATTATGG TAGTTCCTTGGTGCCTCCAGAATAGTTCCTTGGTGCCTCCAGAA
HTR2AHTR2A AGCTGCAGAATGCCACCAACTATAGCTGCAGAATGCCACCAACTAT GGGATTGGCATGGATATACCTACGGGATTGGCATGGATATACCTAC
Htr2bHtr2b AAATAAGCCACCTCAACGCCTAAATAAGCCACCTCAACGCCT TCCCGAAATGTCTTATTGAAGAGTCCCGAAATGTCTTATTGAAGAG
Htr2cHtr2c TTCTTAATGTCCCTAGCCATTGCTTCTTAATGTCCCTAGCCATTGC GCAATCTTCATGATGGCCTTAGTGCAATCTTCATGATGGCCTTAGT
Htr3aHtr3a AAATCAGGGCGAGTGGGAGCTGAAATCAGGGCGAGTGGGAGCTG GACACGATGATGAGGAAGACTGGACACGATGATGAGGAAGACTG
Htr3bHtr3b CGTGTGGTACCGAGAGGTTTCGTGTGGTACCGAGAGGTTT GGATGGGCTTGTGGTTTCTAGGATGGGCTTGTGGTTTCTA
Htr4Htr4 ATGGACAAACTTGATGCTAATGTGAATGGACAAACTTGATGCTAATGTGA TCACCAGCACCGAAACCAGCATCACCAGCACCGAAACCAGCA
Htr5aHtr5a GATTGACTTCAGTGGGCTCGGATTGACTTCAGTGGGCTCG AAAGTCAGGACTAGCACTCGAAAGTCAGGACTAGCACTCG
Htr5bHtr5b GGAGCCTTCTACCTGCCTCTGGAGCCTTCTACCTGCCTCT ATGAGCTCCGTCAGGAAGAAATGAGCTCCGTCAGGAAGAA
Htr6Htr6 CCTCACATGGCTGGGATACTCCTCACATGGCTGGGATACT ATCTGAGTTGGGTGGCAGAGATCTGAGTTGGGTGGCAGAG
Htr7Htr7 CTCGGTGTGCTTTGTCAAGACTCGGTGTGCTTTGTCAAGA TTGGCCATACATTTCCCATTTTGGCCATACATTTCCCATT
Tph1Tph1 ACCATGATTGAAGACAACAAGGAGACCATGATTGAAGACAACAAGGAG TCAACTGTTCTCGGCTGATGTCAACTGTTCTCGGCTGATG
Tph2Tph2 GCCATGCAGCCCGCAATGATGATGGCCATGCAGCCCGCAATGATGATG CAACTGCTGTCTTGCTGCTCCAACTGCTGTCTTGCTGCTC
Slc6a4Slc6a4 CGCAGTTCCCAGTACAAGCCGCAGTTCCCAGTACAAGC CGTGAAGGAGGAGATGAGGCGTGAAGGAGGAGATGAGG
MaoaMaoa GCGGTACAAGGGTCTGTTCCGCGGTACAAGGGTCTGTTCC CAGCCAATCCTGAGATGCCGCAGCCAATCCTGAGATGCCG
MaobMaob GGGCGGCATCTCAGGTATGGGGGCGGCATCTCAGGTATGG AAGTCCTGCCTCCTACACGGAAGTCCTGCCTCCTACACGG
그 결과, 세로토닌 수용체들 중 Htr1a, Htr1d, HTR2A, Htr2b, Htr3a, Htr4, Htr7 및 세로토닌 재흡수를 담당하는 Slc6a4, 세로토닌 분해를 담당하는 Maoa, Maob 의 발현이 확인되었다(도 9 참조).As a result, the expression of Htr1a, Htr1d, HTR2A, Htr2b, Htr3a, Htr4, Htr7, and Slc6a4 responsible for serotonin reuptake, Maoa responsible for serotonin degradation, and Maob among serotonin receptors were confirmed (see FIG. 9).
그 중, 세로토닌 수용체 HTR2A를 대상으로 하여 해당 수용체 특이적 길항제인 케탄세린을 투여하면서 고지방식이에 의한 지방간 변화를 조사하였다. 그 결과, 고지방식이와 함께 케탄세린을 투여하면 체중 증가가 감소되는 것을 확인할 수 있었다(도 10 참조). Among them, serotonin receptor HTR2A was administered to ketanserine, which is a receptor-specific antagonist, to investigate changes in fatty liver due to high fat diet. As a result, the administration of ketanserine with a high fat diet was confirmed that the weight gain is reduced (see Fig. 10).
실시예Example 6: 본 발명의  6: of the present invention 케탄세린Ketanserin 투여에 의한 마우스의  Of mice by administration 내당능Glucose tolerance 및 인슐린 저항성의 개선 효과 And insulin resistance
본 발명의 케탄세린 투여에 의한 마우스의 내당능 및 인슐린 저항성 개선 효과를 확인하기 위하여, 상기 실시예 1-1에 기재된 방법에 따라 i) 일반식이군, ii) 일반식이 및 케탄세린 투여군, iii) 고지방 식이군, iv) 고지방 식이 및 케탄세린 투여군으로 나누어 사육한 다음, 마우스의 미정맥으로부터 혈액을 채취하여 혈당을 측정하였다. According to the method described in Example 1-1, i) a general diet group, ii) a general diet and a ketanserine administration group, iii) high fat, in order to confirm the effect of improving the glucose tolerance and insulin resistance of the mouse by administration of the ketanserine of the present invention Diet group, iv) high-fat diet and ketanserine-administered groups were bred, and blood was collected from the caudal vein of mice to measure blood glucose.
내당능은 절식 후 포도당 용액을 체중 kg 당 2g씩 복강 내로 투여하고 0, 15, 30, 45, 60, 90, 120분 경과 후에 혈당을 측정하였다. After fasting, glucose solution was administered intraperitoneally with 2 g / kg body weight after fasting, and blood glucose was measured after 0, 15, 30, 45, 60, 90, and 120 minutes.
인슐린 저항성은 절식 후 인슐린 용액을 체중 kg 당 0.75 U 씩 복강 내로 투여하고 0, 15, 30, 45, 60, 90, 120분 경과 후에 혈당을 측정하였다. Insulin resistance was measured after 0.75 U / kg body weight of insulin solution after fasting and blood glucose was measured after 0, 15, 30, 45, 60, 90, 120 minutes.
그 결과, iv) 케탄세린을 투여하는 경우 고지방 식이를 섭취한 마우스 군에서 내당능 장애와 인슐린 저항성이 개선되는 것을 확인하였다(도 11 참조).As a result, iv) it was confirmed that impaired glucose tolerance and insulin resistance in the group of mice fed high fat diet when ketanserine was administered (see FIG. 11).
실시예 7: 본 발명의 케탄세린 투여에 의한 지방간의 개선 효과Example 7 Fatty Liver Improvement Effect by Ketanserine Administration of the Present Invention
본 발명의 케탄세린 투여에 의한 마우스의 지방간 개선 효과를 확인하기 위하여, 상기 실시예 1-1에 기재된 방법으로 i) 일반식이군, ii) 일반식이 및 케탄세린 투여군, iii) 고지방 식이군, iv) 고지방 식이 및 케탄세린 투여군으로 나누어 사육한 다음, 상기 실시예 3-2 및 3-3에 기재된 방법으로 간 조직을 H&E 염색하여 현미경으로 관찰하고, 중성지방량을 정량하였다. 케탄세린은 위내투여 하였다. In order to confirm the fatty liver improvement effect of the mouse by the ketanserine administration of the present invention, i) a general diet group, ii) a general diet and ketanserine administration group, iii) a high fat diet group, iv by the method described in Example 1-1 ) Breeding was divided into high fat diet and ketanserine administration group, and liver tissue was observed by H & E staining by the method described in Examples 3-2 and 3-3, and the amount of triglyceride was quantified. Ketanserine was intragastrically administered.
그 결과, iv) 고지방 식이에 의한 간 내 지방의 축적이 케탄세린을 투여한 군에서 감소되어 지방간이 개선됨을 확인하였고(도 12 참조), 간 조직 내 중성지방의 양 또한 유의하게 감소됨을 확인하였다(도 13 참조). As a result, it was confirmed that iv) the accumulation of hepatic fat by the high fat diet was reduced in the ketanserine-administered group, thereby improving the fatty liver (see FIG. 12), and the amount of triglycerides in the liver tissue was also significantly reduced. (See Figure 13).
실시예 8: 본 발명의 케탄세린에 의한 간세포의 지방대사 효소 변화 조사Example 8 Investigation of Lipid Metabolism Enzyme Change of Hepatocytes by Ketanserine of the Present Invention
본 발명의 케탄세린에 의한 결과들이 직접적으로 간 세포에 작용해서 나타난 것인지를 확인하기 위하여 마우스의 간세포를 초대 배양하여 HTR2A 길항제인 케탄세린과 HTR2A 작용제인 DOI(1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane)를 각각 투여하고 지방 생성에 관련된 유전자들의 발현 정도를 측정하였다. In order to confirm whether the results of the ketanserine of the present invention are directly induced by the action of liver cells, the hepatocytes of the mouse were first cultured, and the ketaneserine and the HTR2A agonist DOI (1- (2,5-dimethoxy-4) -iodophenyl) -2-aminopropane) was administered and the expression levels of genes involved in fat production were measured.
구체적으로 마우스의 간세포를 초대 배양하기 위하여 선행문헌 (Klaunig et al., 1981, In Vitro. 17: 913-925; Li et al., 2010, Methods Mol Biol. 633: 185-196)에서 설명한 2단계 관류 방법을 통해 마우스의 간세포를 분리하였다. 상기 간세포는 1% 항생제-항사상균제(antibiotic-antimycotic) 용액(Invitrogen, Carlsbad, CA) 및 10% 우아혈청(bovine calf serum)(Invitrogen, Carlsbad, CA)을 포함하는 고농도 포도당(high glucose) DMEM 생장 배지, 5% 이산화탄소의 습한 대기 및 37℃ 온도 조건에서 배양하였다. Specifically, for the first culture of mouse liver cells (Klaunig et al., 1981, In Vitro . 17: 913-925; Li et al., 2010, Methods Mol Biol . 633: 185-196), hepatocytes of the mouse were isolated by a two-step perfusion method described in. The hepatocytes are high glucose DMEM containing 1% antibiotic-antimycotic solution (Invitrogen, Carlsbad, CA) and 10% bovine calf serum (Invitrogen, Carlsbad, CA) The growth medium, incubated in a humid atmosphere of 5% carbon dioxide and 37 ℃ temperature conditions.
HTR2A 길항제인 케탄세린 또는 HTR2A 작용제인 DOI는 각각 1 μM 의 농도가 되도록 처리하여, 24시간 후 상기 <실시예 2>와 같은 방법으로 RNA를 추출하여 cDNA를 합성 후 realtime PCR을 시행하였다. PCR 에 사용된 primer 는 상기 표 2와 같았다.Ketanserine, which is an HTR2A antagonist, or DOI, which is an HTR2A agonist, was treated to a concentration of 1 μM, respectively, and after 24 hours, RNA was extracted by the same method as in <Example 2> to synthesize cDNA, followed by realtime PCR. Primers used for PCR were as shown in Table 2 above.
결과는 도 14 및 도 15에 나타내었다.The results are shown in FIGS. 14 and 15.
도 14에 나타낸 바와 같이, 본 발명의 HTR2A 길항제인 케탄세린 처리시, 지방 생성에 관련된 유전자들의 발현 감소가 나타났다. 반면, 도 15에 나타낸 바와 같이, 케탄세린의 목적 수용체인 HTR2A의 작용제인 DOI를 투여한 결과, 지방 생성에 관련된 유전자들의 발현 증가가 나타났다.As shown in Figure 14, when treated with ketanserine, the HTR2A antagonist of the present invention, a decrease in the expression of genes involved in fat production appeared. On the other hand, as shown in Figure 15, administration of DOI, an agonist of HTR2A, a target receptor for ketanserin, increased expression of genes involved in fat production.
실시예Example 9: 본 발명의  9: of the present invention 간조직Liver tissue 특이  singularity Htr2aHtr2a 제거 마우스( Remove mouse ( Htr2aHtr2a LKOLKO )의 지방간 변화 확인Confirmation of changes in fatty liver
9-1. 간 조직 특이적으로 Htr2a 유전자가 제거된 마우스의 제작9-1. Liver Tissue-Specific Htr2a Gene-free Mouse
간 조직 특이적으로 Htr2a 유전자가 제거된 마우스 (Htr2a liver-specific knockout, Htr2a LKO)는 Htr2a floxed 마우스와 Alb-Cre 마우스를 교배하여 제작하였다(도 16a 및 도 16b 참조). 제작한 Htr2a LKO mouse의 간 조직을 채취하여 Htr2a 유전자에 대한 RT-PCR을 시행하여 넉아웃이 잘 이루어졌음을 확인하였다(도 16c 참조).Htr2a liver-specific knockout (Htr2a LKO) was generated by crossing Htr2a floxed mice and Alb-Cre mice (see FIGS. 16A and 16B). Liver tissues of the prepared Htr2a LKO mice were collected and subjected to RT-PCR for the Htr2a gene to confirm that knockout was well performed (see FIG. 16C).
9-2. 실험동물의 사육9-2. Breeding of Experimental Animals
간 조직 특이적으로 Htr2a 유전자가 제거된 마우스 (Htr2a liver-specific knockout, Htr2a LKO)에서의 고지방 식이에 따른 표현형을 관찰하기 위하여, 각각 야생형(WT, wild type)과 Htr2a LKO 마우스에 대해서 정상식이군(SCD, standar chow diet)과 고지방식이군(HFD, high fat diet)으로 나누었다. i) 정상식이군은 4-20주간 정상식이를 먹였고, ii) 고지방식이군은 4주-12주간은 정상식이를 먹이고, 13주-20주간은 고지방식이를 먹였다. To observe the phenotypes associated with high-fat diets in Htr2a liver-specific knockout (Htr2a LKO), the HT2a-specific knockout mice (WT, wild type) and Htr2a LKO mice were examined. SCD, standar chow diet and high fat diet (HFD). i) Normal diet group fed normal diet for 4-20 weeks, ii) High-fat diet fed normal diet for 4-12 weeks, and high diet for 13-20 weeks.
9-9- 3. 간3. Liver 조직 특이  Tissue specificity Htr2aHtr2a 제거 마우스( Remove mouse ( Htr2aHtr2a LKOLKO ) 간 조직의 A) liver tissue 육안 및 Naked and 현미경적 소견Microscopic findings
실시예 9-1에서 제조한 간 조직 특이 Htr2a 제거 마우스(Htr2a LKO)와 야생형 마우스(WT)를 실시예 9-2에 기재된 방법으로 사육한 뒤, 실시예 1-2에 기재된 방법으로 간을 적출하였다. 고지방식이를 먹인 Htr2a LKO 마우스와 고지방식이를 먹인 야생형 대조군 마우스(WT)의 간조직을 육안상 비교한 결과, Htr2a LKO 마우스의 간이 더 작은 것을 확인할 수 있었다(도 17a). 또한 조직학적 차이를 확인하기 위해 적출한 간을 10% 중성 포르말린 용액에 고정시킨 다음, 파라핀으로 포매하고, 5 μm 두께로 절단하여 슬라이드에 접착시켰다. 이후 탈파라핀 및 함수과정을 거쳐 헤마톡실린 및 에오신 (Hematoxylin & Eosin)으로 염색하였다. 그 결과 간 조직 특이적으로 Htr2a 이 제거된 마우스 (Htr2a LKO)에서 고지방식이에 의한 지방 내 간축적이 감소됨을 확인하였다(도 17b 및 도 17c 참조). 따라서, 본 발명의 Htr2a 수용체의 발현억제가 지방간의 개선 효과가 있음을 알 수 있었다.Liver tissue-specific Htr2a-removed mice (Htr2a LKO) and wild-type mice (WT) prepared in Example 9-1 were bred by the method described in Example 9-2, and liver was extracted by the method described in Example 1-2. It was. As a result of comparing the liver tissues of the Htr2a LKO mice fed the high fat diet and the wild type control mice (WT) fed the high fat diet, it was confirmed that the livers of the Htr2a LKO mice were smaller (FIG. 17A). The livers were also fixed in 10% neutral formalin solution to confirm histological differences, embedded in paraffin, cut to 5 μm thickness and adhered to slides. After the deparaffin and water-containing process, it was stained with hematoxylin and Eosin (Hematoxylin & Eosin). As a result, it was confirmed that in the liver tissue-specific Htr2a-removed mice (Htr2a LKO), fat accumulation in fat by the high fat diet was reduced (see FIGS. 17B and 17C). Therefore, it was found that the inhibition of expression of the Htr2a receptor of the present invention has an effect of improving fatty liver.
9-4. 간 조직 특이 9-4. Liver tissue specificity Htr2aHtr2a 제거 마우스( Remove mouse ( Htr2aHtr2a LKOLKO ) 간 조직 내 중성지방의 정량Determination of Triglycerides in Liver Tissue
실시예 9-1에서 제조한 간 조직 특이 Htr2a 제거 마우스(Htr2a LKO)의 간 조직 내 중성지방을 정량하기 위하여, 실시예 1-2에 기재된 방법으로 간을 적출한 다음, 5% NP-40 용액에서 분쇄한 후 가열하여 지질 성분을 모두 녹여내었다. Triglyceride Reagent (Sigma)를 이용하여 중성지방을 Glycerol로 분해시킨 후 Glycerol Reagent (Sigma)를 이용하여 Glycerol의 양을 발색반응으로 정량하였다. 중성지방량을 조직의 단백질량으로 보정하기 위하여 BCA Protein Assay Kit (Pierce)로 단백질량을 측정하였다. To quantify triglycerides in liver tissue of liver tissue specific Htr2a-removing mice (Htr2a LKO) prepared in Example 9-1, liver was extracted by the method described in Example 1-2, followed by 5% NP-40 solution. After pulverizing in and heated to dissolve all lipid components. Triglyceride Reagent (Sigma) was used to decompose triglycerides into Glycerol, and Glycerol Reagent (Sigma) was used to quantify the amount of Glycerol by color reaction. The protein amount was measured by BCA Protein Assay Kit (Pierce) to correct the triglyceride amount to the amount of protein in the tissue.
그 결과 간 조직 특이 Htr2a 제거 마우스(Htr2a LKO)에서 일반 식이 및 고지방식이에서 간 내 중성지방량이 감소됨을 확인하였다 (도 18 참조). 따라서, 본 발명의 Htr2a 수용체의 발현 억제가 간 내 중성지방의 감소와도 관련이 있음을 알 수 있었다.As a result, it was confirmed that the liver triglyceride amount was reduced in the normal diet and the high-fat diet in liver tissue-specific Htr2a-removed mice (Htr2a LKO). Therefore, it can be seen that the inhibition of expression of the Htr2a receptor of the present invention is also associated with the decrease of triglycerides in the liver.
9-5. 간 조직 특이 9-5. Liver tissue specificity Htr2aHtr2a 제거 마우스( Remove mouse ( Htr2aHtr2a LKOLKO )의 체중 및 기관별 중량 확인Body weight and organ weight
간 조직 특이적으로 Htr2a 유전자가 제거된 마우스 (Htr2a liver-specific knockout, Htr2a LKO)와 야생형(WT, wild type) 마우스의 대사 프로파일을 확인하기 위하여, 각각의 마우스들을 정상식이군과 고지방식이군으로 나누어서 사료를 급이하고, 4주-20주간 체중을 측정하였다. 또한, 체중에 대한 간을 제외한 다른 조직(eWAT, epididymal white adipose tissue; iWAT, inguinal white adipose tissue; BAT, brown adipose tissue; Quadriceps; kidney)의 중량을 측정하였다. 그 결과, 정상식이군과 고지방식이군 모두에서 야생형 마우스(WT)와 Htr2a LKO 마우스 간의 체중 차이는 나타나지 않았으며, 체중에 대한 기관별 중량비도 차이가 없었다(도 19 참조).To determine the metabolic profiles of Htr2a liver-specific knockout (Htr2a LKO) and wild-type (WT, wild type) mice, the mice were divided into normal and high-fat diets. Feed was fed and weighed for 4-20 weeks. In addition, the weight of other tissues (eWAT, epididymal white adipose tissue; iWAT, inguinal white adipose tissue; BAT, brown adipose tissue; Quadriceps; kidney) was measured. As a result, there was no difference in weight between wild-type mice (WT) and Htr2a LKO mice in both the normal diet and the high-fat diet group, and there was no difference in the weight-to-organ weight ratio (see FIG. 19).
9-6. 간 조직 특이 9-6. Liver tissue specificity Htr2aHtr2a 제거 마우스( Remove mouse ( Htr2aHtr2a LKOLKO )의 )of 내당능Glucose tolerance 및 인슐린 저항성의 변화 확인 Changes in insulin and insulin resistance
본 발명의 간 조직 특이적으로 Htr2a 유전자가 제거된 마우스 (Htr2a liver-specific knockout, Htr2a LKO)에서의 내당능 및 인슐린 저항성 개선 효과를 확인하기 위하여, 상기 실시예 9-2에 기재된 방법에 따라 i) 일반 식이 야생형 마우스군, ii) 고지방 식이 야생형 마우스군, iii) 일반 식이 Htr2a LKO군, iv) 고지방 식이 Htr2a LKO군으로 나누어 사육한 다음, 마우스의 미정맥으로부터 혈액을 채취하여 혈당을 측정하였다. 내당능은 절식 후 포도당 용액을 체중 kg 당 2g씩 복강 내로 투여하고 0, 15, 30, 60, 90, 120분 경과 후에 혈당을 측정하였다(18주령). 인슐린 저항성은 절식 후 인슐린 용액을 체중 kg 당 0.75 U 또는 1 U 씩 복강 내로 투여하고 0, 15, 30, 60, 90, 120분 경과 후에 혈당을 측정하였다(19주령). 그 결과, 정상식이군과 고지방식이군 모두에서 야생형 마우스와 Htr2a LKO 마우스 간의 내당능(도 20a) 및 인슐린 저항성에서는 차이가 없음을 확인하였다(도 20b).According to the method described in Example 9-2, to confirm the effect of improving glucose tolerance and insulin resistance in liver tissue-specific Htr2a gene-free mice (Htr2a liver-specific knockout, Htr2a LKO) of the present invention, i) Groups were divided into general diet wild type mouse group, ii) high fat diet wild type mouse group, iii) general diet Htr2a LKO group, and iv) high fat diet Htr2a LKO group, and blood was collected from the caudal vein of the mouse to measure blood glucose. After fasting, glucose solution was administered intraperitoneally with 2g / kg of glucose solution, and blood glucose was measured after 0, 15, 30, 60, 90, and 120 minutes (18 weeks of age). Insulin resistance measured blood glucose levels after 0, 15, 30, 60, 90, and 120 minutes of intraperitoneal administration of 0.75 U or 1 U of insulin solution after fasting (19 weeks of age). As a result, it was confirmed that there was no difference in glucose tolerance (FIG. 20a) and insulin resistance between wild-type mice and Htr2a LKO mice in both the normal diet and the high-fat diet group (FIG. 20B).
9-7. 간 조직 특이 9-7. Liver tissue specificity Htr2aHtr2a 제거 마우스( Remove mouse ( Htr2aHtr2a LKOLKO )의 )of 혈장내In plasma 지질 프로파일의 변화 확인 Identify changes in lipid profile
본 발명의 간 조직 특이적으로 Htr2a 유전자가 제거된 마우스 (Htr2a liver-specific knockout, Htr2a LKO)에서의 혈장 내 지질 수준에 미치는 효과를 확인하기 위하여, 상기 실시예 9-2에 기재된 방법에 따라 i) 일반 식이 야생형 마우스군, ii) 고지방 식이 야생형 마우스군, iii) 일반 식이 Htr2a LKO군, iv) 고지방 식이 Htr2a LKO군으로 나누어 사육한 다음, 마우스의 미정맥으로부터 혈액을 채취하여 혈당을 측정하였다. 그 결과, 정상식이군과 고지방식이군 모두에서 야생형 마우스와 Htr2a LKO 마우스 간의 총 콜레스테롤, 지방산, 중성지방, HDL 콜레스테롤 수준의 차이가 없음을 확인하였다(도 21).In order to confirm the effect on plasma lipid levels in the liver tissue-specific Htr2a gene-depleted mice (Htr2a liver-specific knockout, Htr2a LKO) of the present invention, i. A) general diet wild type mouse group, ii) high fat diet wild type mouse group, iii) general diet Htr2a LKO group, and iv) high fat diet Htr2a LKO group, and then raised blood from the veins of the mice to measure blood glucose. As a result, it was confirmed that there was no difference in total cholesterol, fatty acid, triglyceride, and HDL cholesterol levels between wild-type mice and Htr2a LKO mice in both the normal diet group and the high-fat diet group (FIG. 21).
실시예Example 10: 간 조직 특이  10: liver tissue specific Htr2aHtr2a 제거 마우스( Remove mouse ( Htr2aHtr2a LKOLKO )의 간 조직에서 지방 대사 관련 유전자 발현 변화 확인Changes in gene expression related to fat metabolism in liver tissue
간조직 특이 Htr2a 제거 마우스(Htr2a LKO)와 일반 마우스(WT)의 간 조직 내 지방 대사 관련 유전자의 발현 정도를 비교하기 위하여, 실시예 1-2에 기재된 방법으로 적출한 간 조직으로부터, 실시예 2에 기재된 방법으로 RNA를 추출하고 cDNA를 합성하여 realtime PCR을 시행하였다. PCR 에 사용된 primer는 상기 실시예 4의 표 2에 기재된 서열을 사용하였다. Htr2a LKO 마우스에 고지방식이를 적용시킨 결과, 지방신생성(de novo lipogenesis) 및 중성지방합성(TG syntheis)과 관련된 유전자(Srebp1c, Fasn, Gpam, Agpat1, Mogat1) 및 지방산 흡수(Fatty acid uptake)와 관련된 유전자(Cd36)의 발현이 감소됨을 확인하였다(도 22a 내지 도 22c 참조). In order to compare the expression level of adipose metabolism-related genes in liver tissues of liver tissue-specific Htr2a-removed mice (Htr2a LKO) and normal mice (WT), from the liver tissues extracted by the method described in Example 1-2, Example 2 RNA was extracted by the method described in the above, cDNA was synthesized, and realtime PCR was performed. As the primer used for PCR, the sequence described in Table 2 of Example 4 was used. Application of high-fat diet to Htr2a LKO mice resulted in genes related to de novo lipogenesis and triglyceride synthesis (Srebp1c, Fasn, Gpam, Agpat1, Mogat1) and fatty acid uptake It was confirmed that the expression of the gene (Cd36) associated with is reduced (see FIGS. 22A-22C).
실시예 11: 본 발명의 사포그렐레이트 투여에 의한 지방간의 개선 효과Example 11 Improvement of Fatty Liver by Administration of Safogrelate of the Present Invention
본 발명의 사포그렐레이트 투여에 의한 마우스의 지방간 개선 효과를 확인하기 위하여, C57BL6/J 마우스에 12주령부터 20주령까지 i) 일반식이+비히클(vehicle, phosphate buffered saline) ii) 일반식이+사포그렐레이트(sarpogrelate hydrochloride) 투여군, iii) 고지방 식이+비히클, iv) 고지방 식이+사포그렐레이트 투여군으로 나누어 사육한 다음, 체중을 계량하고, 상기 실시예 3-2 및 3-3에 기재된 방법으로 간 조직을 H&E 염색하여 현미경으로 관찰하였으며, 중성지방량을 정량하였다. 상기 사포그렐레이트는 30 mg/kg/day 로 위내 투여(intragastric injection) 하였다.In order to confirm the effect of improving the fatty liver of mice by administration of safogrelate of the present invention, C57BL6 / J mice from 12 to 20 weeks of age i) general diet + vehicle (vehicle, phosphate buffered saline) ii) general diet + safogrerel Liver (3) high fat diet + vehicle, iv) high fat diet + safogrelate administration group, and then weighed, and weighed the liver tissue by the method described in Examples 3-2 and 3-3 above. Was observed under a microscope by H & E staining, triglyceride amount was quantified. The safogrelate was intragastric injection at 30 mg / kg / day.
그 결과, 일반식이를 먹인 군에서는 i) 비히클 투여 군과 ii) 사포그렐레이트 투여 군 사이에 유의한 체중차이는 관찰되지 않았으나, 고지방 식이를 먹인 군에서는 iii) 비히클 투여 군에서 체중이 증가하였고, iv) 사포그렐레이트 투여 군에서는 체중증가가 유의하게 감소되는 것을 확인하였다(도 23 참조).As a result, no significant weight difference was observed between the i) vehicle and ii) safogrelate groups in the normal diet group, but the body weight gain was increased in the iii) vehicle group in the high-fat diet group. iv) It was confirmed that the weight gain was significantly reduced in the safogrelate administration group (see FIG. 23).
또한, 간 조직을 적출하여 H&E 염색한 결과에서도 일반식이를 먹인 군에서는 간 내 지방의 축적 정도에서 차이가 없었으나, 고지방 식이를 먹인 군에서는 iv) 사포그렐레이트를 투여한 군에서 간 내 지방 축적이 감소되어 지방간이 개선됨을 확인하였다(도 24a 및 도 24b 참조). In addition, there was no difference in the accumulation of liver fat in the group fed the normal diet in the result of H & E staining by liver tissue extraction, but in the group fed the high fat diet iv) the accumulation of liver fat in the group fed safogrelate This decrease was confirmed to improve fatty liver (see FIGS. 24A and 24B).
간 조직 내 중성지방(hepatic triglyceride)의 양도 체중 및 간 조직 결과와 마찬가지로 사포그렐레이트 투여군에서 유의하게 감소되는 것을 확인하였다(도 25 참조).It was confirmed that the amount of hepatic triglyceride in liver tissue was significantly reduced in the sapogrelate administration group as well as the weight and liver tissue results (see FIG. 25).

Claims (13)

  1. HTR2A(5-hydroxytrptamine receptor 2A) 억제제를 유효성분으로 포함하는 지방간의 예방 또는 치료용 약제학적 조성물.A pharmaceutical composition for preventing or treating fatty liver, comprising an HTR2A (5-hydroxytrptamine receptor 2A) inhibitor as an active ingredient.
  2. 제 1항에 있어서, 상기 HTR2A 억제제는 HTR2A 길항제인 것을 특징으로 하는 조성물.The composition of claim 1, wherein the HTR2A inhibitor is an HTR2A antagonist.
  3. 제 2 항에 있어서, 상기 HTR2A 길항제는 사포그렐레이트(Sarpogrelate), 5-I-R91150, 5-MeO-NBpBrT, 아다탄세린(Adatanserin), 알탄세린(Altanserin), AMDA(9-Aminomethyl-9,10-dihydroanthracene), 암페로자이드(Amperozide), 아세나핀(Asenapine), BL-1020, 시난세린(Cinanserin), 클로자핀(Clozapine), 데람시클란(Deramciclane), 파난세린(Fananserin), 플리반세린(Flibanserin), 글레만세린(Glemanserin), 이페란세린Iferanserin), 케탄세린(Ketanserin), KML-010, 리단세린(Lidanserin), 루바조돈(Lubazodone), 루마테페론(Lumateperone), LY-367,265, 메디폭사민(Medifoxamine), 메피프라졸(Mepiprazole), MIN-101, 나프티드로퓨릴(Naftidrofuryl), 네파조돈(Nefazodone), 올란자핀(Olanzapine), 페녹시벤자민(Phenoxybenzamine), 피팜페론(Pipamperone), 프루반세린(Pruvanserin), 라우월신(Rauwolscine), 쿠에티아핀(Quetiapine), 리스페리돈(Risperidone), 리탄세린(Ritanserin), 세토페론(Setoperone), 스피페론(Spiperone), 볼리난세린(Volinanserin), 및 자일라미딘(Xylamidine)으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 조성물.The method of claim 2, wherein the HTR2A antagonist is Sapogrelate, 5-I-R91150, 5-MeO-NBpBrT, Adatanserin, Altanserin, AMDA (9-Aminomethyl-9, 10-dihydroanthracene, Amperozide, Asenapine, BL-1020, Sinanserin, Clozapine, Deramciclane, Fananserin, Flybanserine Flibanserin, Glemanserin, Iferanserin, Ketanserin, KML-010, Lidanserin, Lubazodone, Lumatezolone, Lumateperone, LY-367,265, Medi Medifoxamine, Mepiprazole, MIN-101, Naphtidrofuryl, Nefazodone, Ollanzapine, Phenoxybenzamine, Pipamperone, Pruvann Pruvanserin, Lauwolscine, Quetiapine, Risperidone, Ritanserin, Setoperone, Blood Peron (Spiperone), Bolivar I serine (Volinanserin), and xylene lamina composition being selected from the group consisting of a Dean (Xylamidine).
  4. 제 3 항에 있어서, 상기 HTR2A 길항제는 케탄세린 또는 사포그렐레이트인 것을 특징으로 하는 조성물.4. The composition of claim 3 wherein the HTR2A antagonist is ketanserine or safogrelate.
  5. 제 1 항에 있어서, 상기 HTR2A 억제제는 HTR2A 유전자의 mRNA에 상보적으로 결합하는 안티센스 뉴클레오티드, siRNA, shRNA 및 리보자임으로 이루어진 군으로부터 선택된 HTR2A 발현억제제인 것을 특징으로 하는 조성물.The composition of claim 1, wherein the HTR2A inhibitor is an HTR2A expression inhibitor selected from the group consisting of antisense nucleotides, siRNAs, shRNAs and ribozymes that complementarily bind to mRNA of the HTR2A gene.
  6. 제 1 항에 있어서, 상기 지방간은 알코올성 지방간 또는 비알코올성 지방간인 것을 특징으로 하는 조성물.The composition of claim 1, wherein the fatty liver is alcoholic fatty liver or non-alcoholic fatty liver.
  7. HTR2A(5-hydroxytrptamine receptor 2A) 억제제를 유효성분으로 포함하는 지방간의 예방 또는 개선용 식품 조성물.A food composition for preventing or improving fatty liver, comprising an HTR2A (5-hydroxytrptamine receptor 2A) inhibitor as an active ingredient.
  8. 제 7 항에 있어서, 상기 HTR2A 억제제는 사포그렐레이트(Sarpogrelate), 5-I-R91150, 5-MeO-NBpBrT, 아다탄세린(Adatanserin), 알탄세린(Altanserin), AMDA(9-Aminomethyl-9,10-dihydroanthracene), 암페로자이드(Amperozide), 아세나핀(Asenapine), BL-1020, 시난세린(Cinanserin), 클로자핀(Clozapine), 데람시클란(Deramciclane), 파난세린(Fananserin), 플리반세린(Flibanserin), 글레만세린(Glemanserin), 이페란세린Iferanserin), 케탄세린(Ketanserin), KML-010, 리단세린(Lidanserin), 루바조돈(Lubazodone), 루마테페론(Lumateperone), LY-367,265, 메디폭사민(Medifoxamine), 메피프라졸(Mepiprazole), MIN-101, 나프티드로퓨릴(Naftidrofuryl), 네파조돈(Nefazodone), 올란자핀(Olanzapine), 페녹시벤자민(Phenoxybenzamine), 피팜페론(Pipamperone), 프루반세린(Pruvanserin), 라우월신(Rauwolscine), 쿠에티아핀(Quetiapine), 리스페리돈(Risperidone), 리탄세린(Ritanserin), 세토페론(Setoperone), 스피페론(Spiperone), 볼리난세린(Volinanserin), 및 자일라미딘(Xylamidine)으로 이루어진 군으로부터 선택된 HTR2A 길항제인 것을 특징으로 하는 조성물.According to claim 7, wherein the HTR2A inhibitor is Sapogrelate (Sarpogrelate), 5-I-R91150, 5-MeO-NBpBrT, Adatanserin, Altanserin, AMDA (9-Aminomethyl-9, 10-dihydroanthracene, Amperozide, Asenapine, BL-1020, Sinanserin, Clozapine, Deramciclane, Fananserin, Flybanserine Flibanserin, Glemanserin, Iferanserin, Ketanserin, KML-010, Lidanserin, Lubazodone, Lumatezolone, Lumateperone, LY-367,265, Medi Medifoxamine, Mepiprazole, MIN-101, Naphtidrofuryl, Nefazodone, Ollanzapine, Phenoxybenzamine, Pipamperone, Pruvann Pruvanserin, Lauwolscine, Quetiapine, Risperidone, Ritanserin, Setoperone, Blood Peron (Spiperone), Bolivar I serine (Volinanserin), and compositions, characterized in that the selected HTR2A antagonist from the group consisting of xylene lamina Dean (Xylamidine).
  9. 다음 단계를 포함하는 지방간의 예방 또는 치료제 후보물질의 스크리닝 방법:Screening methods for candidates for the prevention or treatment of fatty liver, comprising the following steps:
    (a) HTR2A(5-hydroxytrptamine receptor 2A) 유전자 또는 단백질을 포함하는 분리된 세포에 시험물질을 접촉하는 단계; 및 (a) contacting a test substance with an isolated cell comprising a 5-hydroxytrptamine receptor 2A (HTR2A) gene or protein; And
    (b) 상기 HTR2A 유전자의 발현량, 또는 HTR2A 단백질의 양 또는 활성을 측정하는 단계:(b) measuring the expression level of the HTR2A gene, or the amount or activity of the HTR2A protein:
    상기 HTR2A 유전자의 발현량, 또는 HTR2A 단백질의 양 또는 활성이 상기 시험물질을 접촉하지 않은 세포와 비교하여 하향조절되는 경우, 상기 시험물질을 지방간의 예방 또는 치료제 후보물질로 판정한다.When the expression level of the HTR2A gene, or the amount or activity of the HTR2A protein is down-regulated in comparison with a cell that does not contact the test substance, the test substance is determined as a candidate for preventing or treating fatty liver.
  10. 제 9 항에 있어서, 상기 (a) 단계의 세포는 간세포인 것을 특징으로 하는 방법.The method of claim 9, wherein the cell of step (a) is characterized in that hepatocytes.
  11. 제 9 항에 있어서, 상기 단계 (a)의 시험물질은 추출물, 화합물, 안티센스 뉴클레오타이드, 및 단백질로 이루어진 군으로부터 선택되는 것을 특징으로 하는 방법.10. The method of claim 9, wherein the test substance of step (a) is selected from the group consisting of extracts, compounds, antisense nucleotides, and proteins.
  12. 제 9 항에 있어서, 상기 단계 (b)의 HTR2A 유전자 발현량, 또는 HTR2A 단백질의 양 또는 활성은 RT-PCR, 노던 블롯, 마이크로어레이, 방사능면역침전, 면역침전, ELISA, 웨스턴블롯으로 이루어진 군으로부터 선택된 어느 하나의 기법으로 측정하는 것을 특징으로 하는 방법.10. The method according to claim 9, wherein the amount of HTR2A gene expression, or the amount or activity of HTR2A protein in step (b) is RT-PCR, Northern blot, microarray, radioimmunoprecipitation, immunoprecipitation, ELISA, Western blot. Measuring by any one of the selected techniques.
  13. 제 1 항 내지 제 6 항 중 어느 한 항의 HTR2A(5-hydroxytrptamine receptor 2A) 억제제를 유효성분으로 포함하는 약제학적 조성물을 대상체(subject)에 투여하는 단계를 포함하는 지방간의 예방 또는 치료방법.A method for preventing or treating fatty liver, comprising administering to a subject a pharmaceutical composition comprising the HTR2A (5-hydroxytrptamine receptor 2A) inhibitor of any one of claims 1 to 6 as an active ingredient.
PCT/KR2017/015006 2017-03-24 2017-12-19 Pharmaceutical composition comprising htr2a antagonist as effective ingredient for preventing or treating fatty liver WO2018174379A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0037833 2017-03-24
KR20170037833 2017-03-24
KR10-2017-0158580 2017-11-24
KR1020170158580A KR20180108402A (en) 2017-03-24 2017-11-24 Pharmaceutical Composition For Preventing Or Treating Fatty Liver Comprising HTR2A Antigonist

Publications (1)

Publication Number Publication Date
WO2018174379A1 true WO2018174379A1 (en) 2018-09-27

Family

ID=63585586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015006 WO2018174379A1 (en) 2017-03-24 2017-12-19 Pharmaceutical composition comprising htr2a antagonist as effective ingredient for preventing or treating fatty liver

Country Status (1)

Country Link
WO (1) WO2018174379A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150024995A1 (en) * 2009-06-05 2015-01-22 Veroscience Llc Combination Of Dopamine Agonists Plus First Phase Insulin Secretagogues For The Treatment Of Metabolic Disorders
KR101519448B1 (en) * 2014-03-28 2015-05-13 한국과학기술원 A method for screening composition for prevention and treatment of obesity or diabetes
KR20160108258A (en) * 2016-06-20 2016-09-19 한국과학기술원 Compositions for Preventing or Treating Metabolic Diseases

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150024995A1 (en) * 2009-06-05 2015-01-22 Veroscience Llc Combination Of Dopamine Agonists Plus First Phase Insulin Secretagogues For The Treatment Of Metabolic Disorders
KR101519448B1 (en) * 2014-03-28 2015-05-13 한국과학기술원 A method for screening composition for prevention and treatment of obesity or diabetes
KR20160108258A (en) * 2016-06-20 2016-09-19 한국과학기술원 Compositions for Preventing or Treating Metabolic Diseases

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FU, JIHUA: "Long-term stress with hyperglucocorticoidemia-induced hepatic steatosis with VLDL overproduction is dependent on both 5-HT2 receptor and 5-HT synthesis in liver", INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, vol. 12, no. 2, 1 January 2016 (2016-01-01), pages 219 - 234, XP055608750, ISSN: 1449-2288, DOI: 10.7150/ijbs.13062 *
PEREZ-CORNAGO, AUROR A: "DNA hypermethylation of the serotonin receptor type-2A gene is associated with a worse response to a weight loss intervention in subjects with metabolic syndrome", NUTRIENTS, vol. 6, no. 6, 23 June 2014 (2014-06-23), pages 2387 - 2403, XP055608753, DOI: 10.3390/nu6062387 *

Similar Documents

Publication Publication Date Title
Kiran et al. Sirtuin 7 in cell proliferation, stress and disease: Rise of the Seventh Sirtuin!
KR101665846B1 (en) Pharmaceutical composition for preventing or treating of nonalcoholic fatty liver disease comprising G protein coupled receptor 119 ligand as an active ingredient
WO2016093599A1 (en) Pharmaceutical composition for prevention or treatment of metabolic disease, comprising bacteroides acidifaciens as effective ingredient
Bakshi et al. Trajectory of leptin and leptin receptor in vertebrates: Structure, function and their regulation
WO2012008788A2 (en) Composition containing serine as an active ingredient for the prevention and treatment of fatty liver diseases, and use thereof
WO2016048005A2 (en) Novel pentadienoyl piperidine derivative and use thereof
WO2018174379A1 (en) Pharmaceutical composition comprising htr2a antagonist as effective ingredient for preventing or treating fatty liver
WO2019022482A2 (en) Composition for preventing or treating fibrotic diseases comprising dendropanax morbifera extract as active ingredient
WO2009151304A2 (en) Composition comprised of akap12 and uses of akap12 mutant zebrafish as an animal model
KR102307548B1 (en) Pharmaceutical Composition For Preventing Or Treating Fatty Liver Comprising HTR2A Antigonist
WO2016133352A1 (en) Composition for preventing, alleviating or treating metabolic diseases, containing amodiaquine as active ingredient
WO2015111971A1 (en) Pharmaceutical composition containing gpr119 ligand as active ingredient for preventing or treating non-alcoholic fatty liver disease
WO2019124803A1 (en) Composition comprising selaginella rossii warb. extract or fractions thereof for preventing or treating metabolic syndromes
WO2021033995A1 (en) Composition comprising amomum tsaoko extract for prevention, alleviation, or treatment of sarcopenia-related disease
WO2020197304A1 (en) Composition for preventing, ameliorating, or treating pancreatic cancer, including tetraspanin-2 inhibitor as active ingredient
WO2021261631A1 (en) Novel picalibacterium prosnich eb-fpdk9 strain and uses thereof
WO2011059294A2 (en) Anticancer and immunity-enhancing composition containing morphinan alkaloids as active ingredients
WO2015147369A1 (en) Pharmaceutical composition containing sirt2 inhibitor
WO2023149768A1 (en) Pharmaceutical composition comprising deubiquitinase inhibitor for preventing or treating endoplasmic reticulum stress-related diseases
WO2023096233A1 (en) Novel peptide and use thereof
WO2023096232A1 (en) Novel peptide and use thereof
CN109172559B (en) Application of ethacrynic acid in preparing medicine for treating and preventing obesity and related metabolic diseases
WO2019235876A1 (en) Pharmaceutical composition comprising expression or activity inhibitor of c-src for preventing or treating synucleinopathy
WO2015056970A1 (en) Composition for preventing or treating osteoporosis, containing progranulin inhibitor as active ingredient
US20190008864A1 (en) Pharmaceutical composition containing gpr119 ligand as effective ingredient for preventing or treating non-alcoholic steatohepatitis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901602

Country of ref document: EP

Kind code of ref document: A1