WO2018174315A1 - 치아 교정용 나사 - Google Patents

치아 교정용 나사 Download PDF

Info

Publication number
WO2018174315A1
WO2018174315A1 PCT/KR2017/003123 KR2017003123W WO2018174315A1 WO 2018174315 A1 WO2018174315 A1 WO 2018174315A1 KR 2017003123 W KR2017003123 W KR 2017003123W WO 2018174315 A1 WO2018174315 A1 WO 2018174315A1
Authority
WO
WIPO (PCT)
Prior art keywords
tio
body portion
bone
orthodontic
diameter
Prior art date
Application number
PCT/KR2017/003123
Other languages
English (en)
French (fr)
Inventor
최원열
정효태
Original Assignee
강릉원주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강릉원주대학교산학협력단 filed Critical 강릉원주대학교산학협력단
Publication of WO2018174315A1 publication Critical patent/WO2018174315A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0093Features of implants not otherwise provided for
    • A61C8/0096Implants for use in orthodontic treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0018Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the shape
    • A61C8/0022Self-screwing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0018Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the shape
    • A61C8/0022Self-screwing
    • A61C8/0024Self-screwing with self-boring cutting edge

Definitions

  • the present invention relates to orthodontic screws, and more particularly, to orthodontic screws for fixing wires used in orthodontic teeth.
  • the bracket is attached to the surface or the back of the tooth, and the screw is screwed into the alveolar bone approximately perpendicular to the height direction of the tooth. Then, the teeth are straightened by pulling the wire connected to one side of the bracket to fix the other side of the wire to the screw.
  • the screw is firmly coupled to the alveolar bone when the other side of the wire is fixed to the screw, due to the tension of the wire, the screw does not fall out of the alveolar bone.
  • the anchor screw has a head portion (110) exposed to the outside of the gum and a threaded portion 120 coupled to the alveolar bone, the hollow portion in communication with each other in the head portion 110 and the threaded portion 120 in the longitudinal direction Is formed.
  • a plurality of horizontal holes 123.1 to 123.N communicating with the hollow part are formed on the outer circumferential surface of the threaded part 120.
  • the adhesive material is introduced into the transverse holes 123.1 to 123.N and adhesively bonded to the alveolar bone, The anchor screw is firmly coupled to the alveolar bone.
  • the threaded portion 120 is driven into the alveolar bone and coupled, the bone tissue of the tooth enters and fills the horizontal hole 123.1 to 123.N and the hollow portion, and thus the anchor screw is firmly coupled to the alveolar bone.
  • the conventional anchor screw as described above is firmly coupled to the alveolar bone, but since the hollow portion is formed therein, there is a disadvantage in that the rigidity is weak and easily broken in the alveolar bone.
  • Such conventionally used implants have used pure titanium (Ti) or an alloy such as Ti-6Al-4V.
  • micron ( ⁇ m) sized pores are formed in the implant using manufacturing processes such as sand blaster, wet etching, and anodizing.
  • manufacturing processes such as sand blaster, wet etching, and anodizing.
  • titanium anodizing have not yet been precisely identified, and several teams have recently studied the mechanisms, but the reaction time between bone tissue and implants is quite long. It is reported that, for example, dental implants require more than 12 weeks.
  • the present invention has been made to solve the problems of the prior art as described above, an object of the present invention provides a screw for orthodontic teeth that can be firmly coupled to the alveolar bone without deterioration of rigidity, and also BIC (bone to implant)
  • the present invention provides a method for manufacturing a dental implant having a high contact ratio and a bone volume ratio.
  • these problems are exemplary, and the scope of the present invention is not limited thereby.
  • the screw thread is formed on the outer circumferential surface, the body portion made of titanium metal or titanium alloy is fixed to the alveolar bone through the gum; And a head portion formed at one end of the body portion and exposed to the outside of the gum, and supported by one side of the tooth correction wire being caught, wherein the outer peripheral surface of the body portion is injected with an adhesive material or a bone tissue of the tooth is introduced. It may be characterized in that a plurality of grooves are formed to be filled.
  • the groove may be formed as a groove portion having a first diameter in the screw bone of the body portion.
  • the groove may be formed from one end side to the other end side of the body portion in the longitudinal direction of the body portion.
  • the groove may be formed from the central portion of the body portion to the other end side in the longitudinal direction of the body portion.
  • the groove may be formed in a straight form.
  • the groove may be formed in a curved shape.
  • one end and the central portion of the body portion is formed in a cylindrical shape, the other end is formed in a conical shape, the screw thread is formed on the outer peripheral surface of the central portion of the body portion, the head portion, one end surface of the body portion
  • TiO 2 nanotube array formed by anodizing the body portion for loading the drug may further include.
  • the TiO 2 nanotube array may have a tubular structure in which an upper portion is opened and a lower portion is sealed, and the inner diameter is 10 to 300 nm.
  • a plurality of grooves are formed on the outer circumferential surface of the body portion in which the thread is formed. Then, without affecting the rigidity of the body portion, due to the bone tissue of the tooth is filled into the adhesive material or grooves injected into the groove, there is an effect that the body portion is firmly coupled to the alveolar bone.
  • a TiO 2 nanotube array is formed on the implant, so that drugs such as Recombinant human bone morphogenetic protein-2 (rhBMP-2), anti-inflammatory agents, etc. can be inserted into the implant.
  • the drug-loaded implant prepared according to the present invention has high bone to implant contact ratio (BIC) and bone volume ratio. The scope of the present invention is not limited by these effects.
  • FIG. 1 is a perspective view showing the orthodontic screw according to an embodiment of the present invention.
  • Figure 2 is a perspective view of the orthodontic screw according to another embodiment of the present invention.
  • FIG. 3 is a cross-sectional view illustrating the line "A-A" in FIG. 1.
  • Figure 4 is a perspective view of the orthodontic screw according to another embodiment of the present invention.
  • FIG. 5 is a flow chart illustrating a method of manufacturing a dental orthodontic screw according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of equipment for performing for anodizing process.
  • FIG. 7 is a schematic diagram showing the configuration of a device for observing by interferometric biosensing method for the TiO 2 nanotube array.
  • 8A and 8B show a typical image and microstructure of a titanium implant as a processing implant.
  • 9A and 9B show a rough surface image and microstructure of a sandblasted large-grit and acid-etched (SLA) implant.
  • 10A and 10B show rough surfaces of TiO 2 nanotube arrays prepared by anodization.
  • FIG. 11a through 11d are diagrams showing the TiO 2 nanotube array FESEM image of the surface and TiO 2 nano-tube array is loaded in the rhBMP-2.
  • 12 is a graph showing the change in optical thickness for 10 days according to rhBMP-2 loading.
  • 19 is a graph showing the effective stress for each position according to the stress distribution and the measurement position of the screw bone of FIG.
  • 20 is a view showing a measurement position of the model for each diameter of the groove formed in the orthodontic screw of the embodiment of the present invention.
  • 21 is a view showing the effective stress for each measurement position according to the diameter of the groove of FIG.
  • 22 is a view showing the measurement position of the model along the length of the groove formed in the orthodontic screw of an embodiment of the present invention.
  • FIG. 23 is a diagram illustrating effective stress for each measurement position of a groove formed in the orthodontic screw of FIG. 22.
  • FIG. 24 is a view showing a stress distribution along the length of the groove formed in the orthodontic screw of FIG.
  • FIG. 25 is a diagram illustrating an internal stress distribution along a length of a groove formed in the orthodontic screw of FIG. 22.
  • nano is used to mean a size in the range of 1 nm to 1 [mu] m as a size in nanometers, and the nanotubes have a tubular structure and mean that the size of the inner diameter is nano.
  • FIG. 1 and 2 are perspective views showing the orthodontic screw according to an embodiment of the present invention
  • Figure 3 is a cross-sectional view taken along the line "A-A" of FIG.
  • the orthodontic screw according to the present embodiment may include a body 110 and a head 120.
  • the body 110 is fixed to the alveolar bone through the gum.
  • the upper end portion and the central portion side of the body portion 110 may be formed in a cylindrical shape
  • the lower end portion is formed in a conical shape
  • the thread 112 may be formed in a spiral shape on the outer peripheral surface of the central portion.
  • the head 120 may include a boundary plate 121, a support rod 123, and a support plate 125, and may be formed at an upper end of the body 110 to be exposed to the outside of the gum. In addition, one side of the orthodontic wire may be caught and supported by the head 120.
  • the boundary plate 121 may be integrally formed on the top surface of the body portion 110, and may be formed to have a diameter larger than the diameter of the top portion of the body portion 110.
  • the boundary plate 121 may partition the body 110 and the head 120 so that only the body 110 may be fixed to the gum.
  • the support bar 123 may be integrally formed on the upper surface of the boundary plate 121 to protrude upward, and may be formed to have a diameter smaller than the diameter of the boundary plate 121.
  • the support rod 123 may be formed with a support hole 123a, and one side of the wire may be inserted and supported in the support hole 123a.
  • the support plate 125 may be integrally formed on the upper surface of the support bar 123 and may be formed to a diameter larger than the diameter of the support bar 123.
  • the support plate 125 may be coupled and supported by a jig such as a driver or spanner for coupling the body 110 to the gum.
  • the body portion 110 for loading the drug may include a TiO 2 nanotube array 130 formed by anodizing.
  • the TiO 2 nanotube array 130 is the first anodized body portion 110 made of a titanium metal or a titanium alloy using an electrolyte solution containing fluorine (F), and after removal by ultrasonication, the second anodization It may be formed.
  • the TiO 2 nanotube array 130 may have a tubular structure in which an upper portion is open and a lower portion is sealed, and the inner diameter may have a size of 10 nm to 300 nm.
  • drugs such as recombinant human bone growth factors, anti-inflammatory agents and the like into the implant.
  • the orthodontic screw according to the present embodiment may have a plurality of grooves 113 and 114 formed on the outer circumferential surface of the body 110.
  • the groove 113 may be formed as a groove portion having a first diameter in the screw bone of the body portion 110.
  • the groove 114 may be formed from the center of the central portion of the body portion 110 to the bottom surface of the central portion in the longitudinal direction of the body portion 110.
  • the grooves 113 and 114 may be injected with an adhesive material that is harmless to a living body in the form of a gel. That is, in the state in which the adhesive material is injected into the grooves 113 and 114, when the body part 110 is driven and coupled to the gum, the body part 110 may be firmly coupled to the alveolar bone through the adhesive material. .
  • the body portion 110 is coupled to the gum and coupled, after a predetermined time elapses, since bone tissue of the tooth is introduced into the grooves 113 and 114 and filled, the body portion 110 is firmly coupled to the alveolar bone. Can be.
  • the rigidity of the body portion 110 may be hardly affected by the grooves 113 and 114.
  • the groove 114 may be formed in a straight shape. At this time, the groove 114 is preferably formed radially with respect to the center of the body portion 110. In addition, the groove 114 may be formed in a curved shape.
  • FIG 4 is a perspective view showing the orthodontic screw according to another embodiment of the present invention, only the differences from Figures 1 and 2 will be described.
  • the groove 214 formed on the outer circumferential surface of the body portion 210 may be formed from the upper end portion of the central portion of the body portion 210 to the lower surface of the central portion along the longitudinal direction of the body portion 210. .
  • the body portion may have an effect that is firmly coupled to the alveolar bone.
  • FIG. 5 is a flowchart illustrating a method of manufacturing a dental orthodontic screw according to an embodiment of the present invention
  • FIG. 6 is a schematic configuration diagram of equipment for performing the anodization process.
  • a TiO 2 nanotube array is formed by first anodizing a titanium metal or a titanium alloy using an electrolyte solution containing fluorine (F). Forming (S1), and removing the TiO 2 nanotube array formed on the surface of the titanium metal or titanium alloy by ultrasonication (S2), and the titanium metal on the surface from which the TiO 2 nanotube array is removed. Or forming an TiO 2 nanotube array by performing second anodization using an electrolyte solution containing fluorine (F) with respect to the titanium alloy (S3) and drug inside the TiO 2 nanotube array formed by the second anodization. It may include the step of loading (S4).
  • the TiO 2 nanotube array formed by the second anodization has a tubular structure in which the upper portion is open and the lower portion is closed, and the inner diameter is preferably 10 to 300 nm.
  • the drug may comprise one or more substances selected from recombinant human bone growth factors and anti-inflammatory agents.
  • the electrolyte solution is sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 ), citric acid (citric acid), oxalic acid (oxalic acid), ethylene glycol (Ethylene Glycol), glycerol (Glycerol), dimethyl sulfoxide (Dimethyl Sulfoxide; DMSO) may be a solution mixed with NH 4 F to one or more solutions selected from.
  • the first anodization or the second anodization is to place a positive electrode and a negative electrode in which the titanium metal or titanium alloy is disposed apart from each other, so that the positive electrode and the negative electrode is contained in the electrolyte in the electrolytic cell containing the electrolyte,
  • the voltage is applied to the cathode, and the voltage applied to form the TiO 2 nanotube array formed by the first anodization or the second anodization is applied so that the voltage difference between the anode and the cathode is less than or equal to 80V. It is desirable to.
  • the TiO 2 nanotube array may be formed by first anodizing a titanium metal or a titanium alloy using an electrolyte solution containing fluorine (F).
  • the anode and the cathode on which the titanium metal or the titanium alloy is disposed are spaced apart from each other, and the anode and the cathode are immersed in the electrolyte in the electrolyte containing the electrolyte, and a voltage is applied to the anode and the cathode.
  • the material for the first anodization may be titanium (Ti) or titanium (Ti) alloy.
  • the titanium (Ti) alloy is an alloy including at least a titanium (Ti) component, such as a Ti-6Al-4V alloy.
  • Titanium and titanium alloys are widely used in the field of dental implants because of their excellent mechanical properties and biocompatibility.
  • the native oxide layer of titanium can bind directly to bone in the early stages of osteointegration.
  • Implant surface chemistry by methods such as blasting, plasma spraying of hydroxyapatite, sandblasting, etching, and anodic oxidation
  • the anodization equipment includes an electrochemical bath 10, an electrolyte 20, an anode 30, a cathode 40, a power supply 50, and a magnetic stirrer. 80, a stirring magnetic rod 90, a chiller 85, a thermometer 95, and the like can be provided.
  • the anode 30 and the cathode 40 are spaced apart from each other at a predetermined distance.
  • the anode 30 may use titanium (Ti) or a titanium alloy, which is the same as the metal component of the TiO 2 nanotube array to be obtained.
  • the electrolyte for the first anodic oxidation is sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 ), citric acid (citric acid), oxalic acid, ethylene glycol (Ethylene Glycol), glycerol (Glycerol), dimethyl
  • the solution may be a solution in which NH 4 F is mixed with at least one solution selected from dimethyl sulfoxide (DMSO).
  • Titanium or a titanium alloy is prepared to form a TiO 2 nanotube array, and mounted on the anode 30.
  • As the cathode 40 acid resistant metal electrodes such as platinum (Pt), tantalum (Ta), silver (Ag), and gold (Au) are used.
  • the positive electrode 30 is installed to be immersed in the electrolyte 20 by maintaining a constant interval with the negative electrode 40.
  • the positive electrode 30 and the negative electrode 40 are connected to a power supply 50 for applying a voltage or current.
  • the voltage difference between the anode 30 and the cathode 40 is appropriately adjusted in consideration of the diameter size of the TiO 2 nanotubes formed, the length of the TiO 2 nanotubes, and the like.
  • the voltage applied to form the TiO 2 nanotube array formed by the first anodization is preferably applied so that the voltage difference between the anode and the cathode is less than or equal to 80V.
  • the TiO 2 nanotube array formed by the first anodization has a tubular structure in which the upper portion is open and the lower portion is closed, and the inner diameter of the TiO 2 nanotube array is preferably 10 to 300 nm.
  • the electrolytic cell 10 is equipped with a chiller 85 to prevent a sudden temperature rise due to an exothermic reaction during the anodization process and to increase the uniformity of the electrolysis or chemical reaction throughout the metal film.
  • a magnetic stirrer (80) and a stirring magnetic bar (Stirring Magnetic Bar) 90 may be provided to facilitate anodization by stirring.
  • a temperature control device such as a hot plate for maintaining a constant temperature in the electrolytic cell may be provided.
  • the temperature of the electrolytic cell 10 is set to about 0-50 degreeC.
  • the electrolyte 20 may facilitate the movement of charged electrons or ions to form a titanium oxide film (TiO 2 ) on the surface of titanium (Ti) or titanium alloy. Titanium metal ions (Ti 4+ ) are dissolved in the electrolyte solution 20 at the interface between the electrolyte solution 20 and the oxide film, and the electrolyte solution 20 combines with O 2 ⁇ and OH ⁇ ions to form an oxide film at the oxide film and the metal interface. can do.
  • the electrolytic solution 20 in the water molecule is a proton, such as Scheme 1, below, by electrolysis (H +) and hydroxyl ion (OH -) it can be delivered in.
  • Hydrogen ions may move toward the cathode 40, and may be released as hydrogen gas (H 2 ) by bonding electrons between the electrolyte 20 and the surface of the cathode 40.
  • the hydroxyl group ion (OH ⁇ ) moves toward the anode 30 and is separated into oxygen ions (O 2 ⁇ ) and hydrogen ions (H + ) in a natural oxide film formed on the surface of the anode 30.
  • the separated oxygen ions (O 2- ) penetrate the natural oxide film and react with titanium ions (Ti 4 + ) between the natural oxide film and titanium (or titanium alloy) to form a titanium oxide film (TiO 2 ) as shown in Scheme 2 below. Can be formed.
  • H + hydrogen ions react with the titanium oxide film (TiO 2 ) to partially break the bond between titanium (Ti) and oxygen to form a hydroxide, which may be dissolved in the electrolyte solution 20. That is, oxide etching may occur on the surface between the titanium oxide layer TiO 2 and the electrolyte solution 20. As such, a titanium oxide film (TiO 2 ) may be formed at the interface between the natural oxide film and the titanium (or titanium alloy).
  • Water molecules in the electrolyte solution may meet titanium at the anode to form a titanium oxide film (TiO 2 ) as shown in Scheme 3.
  • the titanium oxide film (TiO 2 ) thus formed may be dissociated by a small amount of fluorine ions (F ⁇ ) contained in the electrolyte solution as shown in Scheme 4.
  • This dissociation action occurs over the entire titanium oxide layer (TiO 2 ) and may form a nanotube array.
  • the oxidation reaction of Scheme 3 and the dissociation reaction of Scheme 4 occur simultaneously, thereby obtaining a nanotube array.
  • the TiO 2 nanotube array formed on the surface of the titanium metal or titanium alloy may be removed by ultrasonication.
  • the ultrasonic wave refers to a sound wave having a frequency of 20kHz or more, and the frequency of the ultrasonic wave for removing the TiO 2 nanotube array may be about 28 to 40kHz. If sonication is performed, the TiO 2 nanotube arrays formed on the surface of the titanium metal or titanium alloy may be removed while falling off from the surface of the titanium metal or titanium alloy.
  • the first TiO 2 nano-tube array generated by the anodization is not a drug with ease because a lot of parts that clogged the pores of the nanotubes to dirty the surfaces, and thus claim the TiO 2 nanotube array formed by the first anodizing removal and, TiO 2 nano-tubes will the array is formed in the TiO 2 nanotube array having a clean surface through the second anode oxide with respect to titanium metal or titanium alloy of the removed surface, TiO 2 nano-formed by the second anodizing Most of the pores of the tube array are open, making it easy to mount the drug.
  • the TiO 2 and nanotube array have a second oxide cathode using an electrolyte solution containing fluorine (F) with respect to the titanium metal or titanium alloy of the removed surface can be formed in the TiO 2 nanotube array.
  • F fluorine
  • the anode and the cathode on which the titanium metal or the titanium alloy is disposed are spaced apart from each other, and the anode and the cathode are immersed in the electrolyte in the electrolyte containing the electrolyte, and a voltage is applied to the anode and the cathode. Can be done.
  • the voltage applied to form the TiO 2 nanotube array formed by the second anodization is preferably applied so that the voltage difference between the anode and the cathode is less than or equal to 80V.
  • the electrolyte for the second anodization is sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 ), citric acid (citric acid), oxalic acid (oxalic acid), ethylene glycol (Ethylene Glycol), glycerol (Glycerol), dimethyl
  • the solution may be a solution in which NH 4 F is mixed with at least one solution selected from dimethyl sulfoxide (DMSO).
  • the TiO 2 nanotube array formed by the second anodization has a tubular structure in which the upper portion is open and the lower portion is closed, and the inner diameter is preferably 10 to 300 nm.
  • the drug may be loaded into the TiO 2 nanotube array formed by the second anodization.
  • the drug may comprise one or more substances selected from recombinant human bone growth factors and anti-inflammatory agents.
  • the columnar porous titania TiO 2 nanotube array can be formed by performing two-step anodization (first anodization and second anodization) on a pure titanium or titanium alloy surface, and aligned There is a huge advantage due to the nanostructure. Since the surface area is significantly increased and the surface shape can be changed to resemble the original bone tissue, the formation of the implant surface can enhance bone adhesion.
  • TiO 2 nanotube arrays with controlled diameters of voids can be produced.
  • TiO 2 nanotube surfaces with optimal lengths for cell adhesion and differentiation can induce the migration of osteoblasts and mesenchymal stem cells, thus It can enhance the interaction between the implant surface and the cells.
  • the empty space of the TiO 2 nanotubes can act as a drug reservoir.
  • Drugs such as antibiotics, anti-inflammatory drugs, and growth factors can be prescribed for injection into the mouth, veins, and muscles.
  • some drugs are not effective when delivered through this route. Systemic delivery of these drugs can lead to adverse effects and organ toxicity at high concentrations. Thus, local drug therapy is becoming an accepted type of treatment.
  • Recombinant human bone growth factors are known to improve osteoblast differentiation and bone formation and remodeling.
  • rhBMP-2 Appropriate amounts of rhBMP-2 induce bone formation, but too much may be associated with unwanted effects.
  • Systemic delivery of rhBMP-2 can have unwanted effects because it has uncontrolled adverse effects such as unwanted ectopic bone formation. Therefore, rhBMP-2 must be anchored to the implant surface to allow sufficient time to promote osteoadhesion.
  • TiO 2 nanotube arrays were formed on the surface of the dental implant by two-step anodization.
  • TiO 2 nanotube arrays provide an empty space for drug loading and show biocompatibility.
  • a dental implant with a TiO 2 nanotube array a structure suitable for inserting drugs such as antibiotics, anti-inflammatory agents and growth factors, was designed.
  • rhBMP-2 is loaded into the storage space of TiO 2 nanotube arrays. The effects of TiO 2 nanotube arrays and rhBMP-2 on implant-bone adhesion and remodeling in dental implants were investigated by in vivo experiments and in vitro tests in rabbits.
  • TiO 2 nanotube arrays were prepared on the surface of the implant by two-step anodization using an electrolyte comprising ethylene glycol and 0.5% by weight of NH 4 F.
  • the anodization voltage and time were computer controlled by a LabVIEW program by a DC power supply.
  • Two -step anodization was performed to obtain clean surfaces and open windows of the TiO 2 nanotube array.
  • the implant was first oxidized at a voltage of 60V and 60 minutes.
  • TiO 2 nanotube arrays prepared by first anodization were removed by sonication. Then, a TiO 2 nanotube array with clean open windows was finally produced by second anodization.
  • the voltage and time of the second anodization were 15V and 15 minutes.
  • the thickness and open window size of the TiO 2 nanotube arrays were observed by field emission scanning electron microscopy (FESEM).
  • rhBMP-2 (Cowellme Co., Busan, Korea) was loaded into the interior space of the TiO 2 nanotube array by a dip coating process in a vacuum chamber.
  • the concentration of rhBMP-2 was 1.5 mg / ml.
  • Each implant was immersed three times in rhBMP-2 solution for 5 seconds and dried at a temperature of 20 ° C.
  • FIG. 7 is a schematic diagram showing the configuration of a device for observing by interferometric biosensing method for the TiO 2 nanotube array.
  • the incident white light source A uses a tungsten lamp.
  • the surface where white light is incident on the TiO 2 nanotube array using an optical fiber and a lens is preferably focused to be included in a circle having a diameter of 0.1 to 1 mm.
  • the reflected light interfering from the TiO 2 nanotube array (C) can be collected using a CCD spectrometer (B).
  • Reference numeral 'D' in FIG. 7 is titanium (Ti).
  • TiO 2 nanotubes when no administration of the drug to the array using a CCD spectrometer (B) can be measured that varies the intensity (intensity) depending on the wavelength of the reflected light spectrum
  • TiO 2 nano-administration of drugs to the tube array It is possible to measure the change in intensity depending on the wavelength of the reflected light spectrum in the state.
  • the Fabry-Faro interference phenomenon will be described.
  • the mirrors with high reflectivity are placed in parallel with each other and the light is incident on the mirror, the light transmitted through the mirror transmits a part of light from the surface of the parallel mirror, but most of the time, the transmission and reflection are repeated.
  • the number of reflections between the two mirrors passes through the lower mirror, and each light exhibits interference as much as the path difference.
  • the optical thickness described above the distance between the lower end portion of the pores on the other side in the longitudinal direction of the TiO 2 nanotube array on the upper end of the pore, that is the length of the space in which the drug loaded in the TiO 2 nanotube array. At this time, if the drug is contained between the upper end of the pores and the lower end of the pores, the thickness of the drug is the optical thickness.
  • Equation 1 shows the relationship between the refractive index (n) and the optical thickness (L).
  • n the refractive index of the drug contained in the TiO 2 nanotube array and TiO 2 nano-tube array
  • L is the TiO 2 nanotube array optical thickness of (optical thickness).
  • the optical thickness L can be changed according to the concentration of the electrolyte, the voltage, the anodization time, and the like. As the length of the optical thickness increases, the number of fringes increases and the characteristics of the interference wavelength change.
  • TiO 2 nanotubes irradiated with a white light on the array TiO 2 nano-tube array fabrication by the optical path difference between the top and the bottom of the pores of-the fringe losses in the form of reflected waveform is displayed.
  • the Fabry-Faro Fringe-shaped reflection waveform can confirm the change in the intensity of the white light and the shift of the reflection wavelength.
  • a fast fourier transformation (FFT) of the spectra for the reflection wavelength in the form of Fabry-Faroe fringes against white light is attempted.
  • the fast Fourier transform is an algorithm designed to reduce the number of operations when computing a discrete fourier transform using an approximation formula based on the Fourier transform.
  • Fast Fourier transform is a function calculation method that converts sound information of a temporal flow into a flow of frequency.
  • the reflected light spectrum obtained from the TiO 2 nanotube array is subjected to fast Fourier transform (FFT).
  • FFT fast Fourier transform
  • a peak having a specific optical thickness can be obtained, and this optical thickness is called an effective optical thickness.
  • This effective optical thickness shifts as the spectrum changes depending on the size and refractive index of the drug in the TiO 2 nanotube array.
  • This effective optical thickness is based on the sensing of loading and elution of specific drugs by attaching appropriate capture probes to TiO 2 nanotube inner surfaces and using specific binding. It is possible.
  • FIGS. 8A and 8B show typical images and microstructures of titanium implants.
  • the processing implant has unidirectional processed grooves. By using a CNC mechanism, the surface is smooth as shown in Fig. 8B.
  • 9A and 9B show a rough surface image and microstructure of a sandblasted large-grit and acid-etched (SLA) implant.
  • TiO 2 nanotube arrays show the rough surface of TiO 2 nanotube arrays prepared by two-step anodization. It can be seen that the surface of the TiO 2 nanotube array is less rough than the surface of the SLA implant. However, TiO 2 nanotube arrays have nano-sized holes for loading drugs such as BMP-2, PEP7, ibuprofen.
  • FIG. 11a through 11d are diagrams showing the TiO 2 nanotube array FESEM image of the surface and TiO 2 nano-tube array is loaded in the rhBMP-2.
  • FIG. 6A is an FESEM image of the TiO 2 nanotube array
  • FIG. 11B is an enlarged image of FIG. 11A
  • FIG. 11C is an FESEM image of the TiO 2 nanotube array loaded with rhBMP-2
  • FIG. 11D is an enlarged image of FIG. 11C. to be.
  • TiO 2 nanotube arrays were prepared by two-step anodic oxidation. TiO 2 The diameter of the nanotubes windows and TiO 2 nano-tubes, each was ⁇ 70nm and ⁇ 110nm.
  • the windows of TiO 2 nanotubes are clean and open, and these microstructures are suitable for loading drugs.
  • the thickness of the TiO 2 nanotubes was about 17 ⁇ m, as shown in FIG. 11A.
  • the window of the TiO 2 nanotubes is slightly blocked by rhBMP-2 loading.
  • the diameter of the TiO 2 nanotube window was reduced to ⁇ 50 nm by rhBMP-2 loading. RhBMP-2 loaded on the surface is expected to improve osteoadhesion.
  • rhBMP-2 In order to observe the elution of rhBMP-2 from the TiO 2 nanotube array, an interferometric biosensing method with a flow cell was used.
  • deionized water DI water
  • DI water deionized water
  • the optical thickness change of rhBMP-2 was monitored in real time.
  • 7 is a graph showing the change in optical thickness for 10 days according to rhBMP-2 loading. Baseline was established with an optical thickness of DI water for 20 hours.
  • the solution containing rhBMP-2 was derived by deionized water passing through a dental implant with a TiO 2 nanotube array loaded with rhBMP-2.
  • Optical thickness was increased by elution of rhBMP-2 from TiO 2 nanotube arrays, and slowly increased for 9 days.
  • RhBMP-2 was selected as a drug to improve new bone formation and osteoinduction around the implant surface and evaluated the possibility of using TiO 2 nanotube arrays as drug reservoirs.
  • Dental implants were divided into four groups. The surface of the implant, the implant SLA, TiO 2 nanotube array surface of the implant, and TiO 2 nano-tube array surface implant containing rhBMP-2 were processed respectively named groups I1, I2 group, group I3, I4 group. Four groups of implants were placed in the proximal tibia of the rabbit for 8 weeks. After eight weeks, all the implants were in direct contact with histologically surrounding bones along the stem.
  • I1 group I2 group I3 group I4 group Bone to implant contact (%) 11.1 ⁇ 17.0 14.7 ⁇ 9.5 16.3 ⁇ 11.9 29.5 ⁇ 3.8 Bone volume ratio (%) 66.9 ⁇ 6.7 53.7 ⁇ 11.5 67.2 ⁇ 7.6 77.3 ⁇ 8.8
  • the BIC (bone to implant contact ratio) of the I4 group had a maximum value of 29.5%, and the I3, I2, and I1 groups were 16.3%, 14.7%, and 11.1%, respectively. Bone volume ratios were measured around the implant threads. The highest bone volume fraction of 77.3% was found in the I4 group. The bone volume fractions of the I3, I2, and I1 groups were 67.2%, 53.7%, and 66.9%, respectively.
  • TiO 2 nanotube arrays enhance wettability and can function as drug reservoirs. TiO 2 nanotube implants with rhBMP-2 may increase bone formation.
  • the I4 group loaded with rhBMP-2 on TiO 2 nanotube array showed high BIC (bone to implant contact ratio) and bone volume ratio for 8 weeks. This demonstrates the long lasting effect of rhBMP-2, where bone remodeling, bone formation and bone reduction occur slowly. Figure 12, showing that rhBMP-2 slowly elutes, supports the long lasting effect of rhBMP-2.
  • FIGS. 14-17 show four groups of fluorescence and histologic staining images observed with an optical microscope. Fluorescence and histological staining images shown in FIGS. 14-17 show the right and left, respectively. Fluorescent images are formed by fluorochrome labeling with alizarin red and calcein green. Other patterns of bone formation and bone remodeling were observed in four groups. Red and green represent new bone formations formed for 3 and 6 weeks after implant placement, respectively. Bone formation and bone remodeling, indicated by white arrows, were mainly observed near the periosteum in the I1, I2 and I3 groups. However, bone formation and bone remodeling in the I4 group were observed near all implant threads as well as near the periosteum.
  • Bone formation and bone remodeling in the I1, I2 and I3 groups can be explained by osteoblast-rich periosteum.
  • I4 group abundant bone formation and bone remodeling in the implant stem is due to the osteoogenesis effect of rhBMP-2 eluted from TiO 2 nanotube arrays.
  • the I4 group showed stronger fluorochrome labeling. Fluorescent pigment labeling around the periosteum reflects bone formation, and fluorescent pigment labeling around the implant stem is believed to be bone remodeling and improve bone adhesion.
  • TiO 2 nanotube arrays comprising rhBMP-2 can enhance bone formation and bone remodeling in the vicinity of the implant, thus enhancing bone adhesion to the surface of the dental implant.
  • stress distribution analysis and structural model construction were considered in consideration of material properties according to the formation of TiO2nanotubes on the implant surface.
  • the tube may constitute the groove 113.
  • the P1, P2, P5, and P6 spots without tubes among the screw bones of the implant model that produced the tube had a stress distribution similar to that of the implant model without the tube, and the tube of FIG. 18 was generated.
  • stress concentration occurred around the tube.
  • the tube diameters of the orthodontic screws were tested for 140%, 120%, 100%, 80%, and 60% of the size of the created diameters, and the tube lengths of the orthodontic screws were 190%, 160 Experiments were performed for%, 130% and 100%.
  • FIG. 23 is a diagram showing an effective stress for each measurement position of a groove formed in the orthodontic screw of FIG. 22,
  • FIG. 24 is a diagram showing a stress distribution, and
  • FIG. 25 is a diagram showing an internal stress distribution.
  • TiO2nanotubes When TiO2nanotubes are produced, stress concentrations occur on the surface and inside, and stress concentrations can be affected by the diameter and length of the tube.However, since TiO2nanotubes have an average diameter of 100 nm and a length of 10 ⁇ m, many stress concentrations occur. Since it will not occur and the stress will be distributed evenly, the material properties may not be significantly affected.
  • a plurality of grooves are formed on the outer circumferential surface of the body portion in which the thread is formed, and filled and introduced into the adhesive material or groove injected into the groove without affecting the rigidity of the body portion. Due to the bone tissue of the tooth, there is an effect that the body is firmly coupled to the alveolar bone.
  • the TiO 2 nanotube array is formed in the implant, it is possible to insert a drug such as recombinant human bone growth factor, anti-inflammatory agent, etc.
  • the drug-loaded implant prepared according to the present invention is BIC (bone) to implant contact ratio and bone volume ratio have high effect.

Abstract

본 발명은 치아 교정용 나사에 관한 것으로서, 외주면에 나사산이 형성되며, 잇몸을 통하여 치조골에 박혀서 고정되는 티타늄 금속 또는 티타늄 합금으로 이루어진 몸체부; 및 상기 몸체부의 일단부에 형성되고 상기 잇몸의 외측으로 노출되며, 치아 교정용 와이어의 일측이 걸려서 지지되는 머리부;를 포함하며, 상기 몸체부의 외주면에는 접착물질이 주입되거나 치아의 골조직이 유입되어 채워질 수 있도록 형성되는 복수의 홈이 형성된 것을 특징으로 할 수 있다.

Description

치아 교정용 나사
본 발명은 치아 교정용 나사에 관한 것으로서, 더 상세하게는 치아의 교정시 사용되는 와이어를 고정하기 위한 치아 교정용 나사에 관한 것이다.
비뚤어진 치아를 가지런하게 교정하기 위해서는 치아의 표면 또는 이면에 브라켓을 부착하여 결합하고, 치아의 높이방향과 대략 수직하게 나사를 치조골에 박아서 결합한다. 그리고, 브라켓에 일측이 연결된 와이어를 당겨서 와이어의 타측을 나사에 고정함으로써, 치아를 교정한다.
이때, 나사가 견고하게 치조골에 결합되어야 와이어의 타측을 나사에 고정하였을 때, 와이어의 장력에 의하여, 나사가 치조골로부터 빠지지 않는다.
본 출원인이 출원하여 등록받은 한국등록특허공보 제10-0759470호에 개시된 "치아 교정용 선재의 고정에 이용되는 앵커 나사"에 대하여 설명한다.
상기 앵커 나사는 잇몸의 외부로 노출되는 헤드부(110)와 치조골에 박혀서 결합되는 나사산부(120)를 가지고, 헤드부(110)와 나사산부(120)의 내부에는 상호 연통된 중공부가 세로방향으로 형성된다. 그리고, 나사산부(120)의 외주면에는 중공부와 연통된 복수의 가로방향 홀(123.1∼123.N)이 형성된다.
그리하여, 나사산부(120)를 치조골에 박아서 결합한 상태에서, 중공부를 통하여 생체에 무해한 접착물질을 주입하면, 접착물질이 가로방향 홀(123.1∼123.N)로 유입되어 치조골에 접착 결합되므로, 상기 앵커 나사가 치조골에 견고하게 결합된다.
또는, 나사산부(120)를 치조골에 박아서 결합하면, 치아의 골조직이 가로방향 홀(123.1∼123.N)과 중공부로 유입되어 채워지므로, 상기 앵커 나사가 치조골에 견고하게 결합된다.
상기와 같은 종래의 앵커 나사는 치조골에 견고하게 결합은 되나, 내부에 중공부가 형성되어 있으므로, 강성이 약하여 치조골에 박는 도중에 쉽게 파손되는 단점이 있었다.
또한, 이러한 기존에 사용된 임플란트(Implant)는 순수한 티타늄(Ti)이나, Ti-6Al-4V와 같은 합금을 사용하여 왔다.
최근에는 골조식에 골접합 특성을 향상시키고자 샌드블래스터(sand blaster), 습식식각(wet etching), 아노다이징(anodizing)과 같은 제조 공정을 이용하여 임플란트에 마이크로미터(㎛) 크기의 기공을 형성하고자 하는 시도가 있다. 그러나, 티타늄(Ti) 아노다이징 관련한 메카니즘(mechanism)이 아직 정확히 규명되지는 않았으며, 최근에 여러 연구팀에서 그 메카니즘을 연구하고 있으나, 이렇게 골조직과 임플란트와의 상호작용이 이루어지기에는 상당히 긴 반응시간이 요구되며, 일례로 치아용 임플란트의 경우 12주 이상의 기간이 소요된다고 보고되고 있다.
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 강성의 저하 없이 치조골에 견고하게 결합할 수 있는 치아 교정용 나사를 제공하며, 또한, BIC(bone to implant contact ratio)와 뼈 부피율(bone volume ratio)이 높은 치과용 임플란트의 제조방법을 제공함에 있다. 그러나 이러한 과제는 예시적인 것으로서, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.
상기 과제를 해결하기 위한 본 발명의 사상에 따른 치아 교정용 나사는, 외주면에 나사산이 형성되며, 잇몸을 통하여 치조골에 박혀서 고정되는 티타늄 금속 또는 티타늄 합금으로 이루어진 몸체부; 및 상기 몸체부의 일단부에 형성되고 상기 잇몸의 외측으로 노출되며, 치아 교정용 와이어의 일측이 걸려서 지지되는 머리부;를 포함하며, 상기 몸체부의 외주면에는 접착물질이 주입되거나 치아의 골조직이 유입되어 채워질 수 있도록 형성되는 복수의 홈이 형성된 것을 특징으로 할 수 있다.
본 발명의 사상에 따르면, 상기 홈은 상기 몸체부의 나사골에 제1직경을 가지는 홈부로 형성된 것을 특징으로 할 수 있다.
본 발명의 사상에 따르면, 상기 홈은 상기 몸체부의 길이방향을 따라 상기 몸체부의 일단부측에서 타단부측까지 형성된 것을 특징으로 할 수 있다.
본 발명의 사상에 따르면, 상기 홈은 상기 몸체부의 길이방향을 따라 상기 몸체부의 중앙부에서 타단부측까지 형성된 것을 특징으로 할 수 있다.
본 발명의 사상에 따르면, 상기 홈은 직선형태로 형성된 것을 특징으로 할 수 있다.
본 발명의 사상에 따르면, 상기 홈은 곡선형태로 형성된 것을 특징으로 할 수 있다.
본 발명의 사상에 따르면, 상기 몸체부의 일단부 및 중앙부는 원기둥형으로 형성되고, 타단부는 원뿔형으로 형성되며, 상기 나사산은 상기 몸체부의 중앙부 외주면에 형성되고, 상기 머리부는, 상기 몸체부의 일단면에 일체로 형성되며 상기 몸체부의 일단부의 직경 보다 큰 직경을 가지는 경계판, 상기 경계판의 직경 보다 작은 직경을 가지면서 상기 경계판에 일체로 형성되고 상기 와이어의 일측이 삽입 지지되는 지지공이 형성된 지지봉, 상기 지지봉의 직경 보다 큰 직경을 가지면서 상기 지지봉에 일체로 형성되고 상기 몸체부를 상기 잇몸에 결합하기 위한 지그가 맞물려 지지되는 지지판을 포함하는 것을 특징으로 할 수 있다.
본 발명의 사상에 따르면, 약물을 로딩하기 위한 상기 몸체부를 양극산화 하여 형성된 TiO2 나노튜브 어레이;를 더 포함할 수 있다.
본 발명의 사상에 따르면, 상기 TiO2 나노튜브 어레이는, 상부는 개방되고 하부는 밀폐되어 있는 튜브형 구조를 가지며, 내부 직경의 크기가 10~300nm를 갖도록 형성하는 것을 특징으로 할 수 있다.
본 발명에 따른 치아 교정용 나사에 의하면, 나사산이 형성된 몸체부의 외주면에 복수의 홈이 형성된다. 그러면, 몸체부의 강성에 영향을 주지 않으면서, 홈에 주입된 접착물질 또는 홈으로 유입되어 채워지는 치아의 골조직으로 인해, 몸체부가 치조골에 견고하게 결합되는 효과가 있다.
또한, 본 발명에 의하면, 임플란트에 TiO2 나노튜브 어레이가 형성되어 있어 재조합 인간 골 성장 인자(Recombinant human bone morphogenetic protein-2; rhBMP-2), 소염제 등과 같은 약물을 삽입할 수 있으며, 본 발명에 따라 제조된 약물이 로딩된 임플란트는, BIC(bone to implant contact ratio)와 뼈 부피율(bone volume ratio)이 높다. 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 치아 교정용 나사를 나타내는 사시도이다.
도 2는 본 발명의 다른 실시예에 따른 치아 교정용 나사를 나타내는 사시도이다.
도 3은 도 1의 "A-A"선를 나타내는 단면도이다.
도 4는 본 발명의 또 다른 실시예에 따른 치아 교정용 나사를 나타내는 사시도이다.
도 5는 본 발명의 일 실시예에 따른 치아 교정용 나사의 제조방법을 나타내는 순서도이다.
도 6은 양극산화 공정을 위한 수행하기 위한 장비의 개략적인 구성도이다.
도 7은 TiO2 나노튜브 어레이에 대하여 간섭측정 바이오센싱법으로 관찰하기 장치의 구성을 보여주는 모식도이다.
도 8a 및 도 8b는 가공 임플란트로서 티타늄 임플란트의 전형적인 이미지와 미세구조를 보여주는 도면이다.
도 9a 및 도 9b는 SLA(sandblasted large-grit and acid-etched) 임플란트의 거친 표면 이미지와 미세구조를 보여주는 도면이다.
도 10a 및 도 10b는 양극산화에 의해 제조된 TiO2 나노튜브 어레이의 거친 표면을 보여주는 도면이다.
도 11a 내지 도 11d는 TiO2 나노튜브 어레이의 FESEM 이미지와 표면에 rhBMP-2가 로딩된 TiO2 나노튜브 어레이를 보여주는 도면이다.
도 12는 rhBMP-2 로딩에 따라 10일 동안의 광학두께 변화를 보여주는 그래프이다.
도 13은 조직계측학적 분석(histomorphometric analysis)의 결과를 보여준다.
도 14 내지 도 17은 광학현미경으로 관찰된 4개 그룹의 형광(fluorescence) 및 조직학적 염색(histologic staining) 이미지를 보여주는 도면이다.
도 18은 나사골의 응력 분포 및 측정 위치를 나타내는 도면이다.
도 19는 도 18의 나사골의 응력 분포 및 측정 위치 따른 위치별 유효응력을 나타내는 그래프이다.
도 20은 본 발명의 일 실시예의 치아 교정용 나사에 형성된 홈의 직경별 모형의 측정위치를 나타내는 도면이다.
도 21은 도 20의 홈의 직경에 따른 측정위치별 유효응력을 나타내는 도면이다.
도 22는 본 발명의 일 실시예의 치아 교정용 나사에 형성된 홈의 길이에 따른 모형의 측정위치를 나타내는 도면이다.
도 23은 도 22의 치아 교정용 나사에 형성된 홈의 측정 위치별 유효응력을 나타내는 도면이다.
도 24는 도 22의 치아 교정용 나사에 형성된 홈의 길이에 따른 응력분포를 나타내는 도면이다.
도 25는 도 22의 치아 교정용 나사에 형성된 홈의 길이에 따른 내부응력분포를 나타내는 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 여러 실시예들을 상세히 설명하기로 한다.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려 이들 실시예들은 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다. 또한, 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이다.
이하, 본 발명의 실시예들은 본 발명의 이상적인 실시예들을 개략적으로 도시하는 도면들을 참조하여 설명한다. 도면들에 있어서, 예를 들면, 제조 기술 및/또는 공차(tolerance)에 따라, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명 사상의 실시예는 본 명세서에 도시된 영역의 특정 형상에 제한된 것으로 해석되어서는 아니 되며, 예를 들면 제조상 초래되는 형상의 변화를 포함하여야 한다.
이하에서, 나노라 함은 나노미터 단위의 크기로서 1㎚∼1㎛ 범위의 크기를 의미하는 것으로 사용하며, 나노튜브는 튜브형 구조를 가지면서 내부 직경의 크기가 나노인 것을 의미하는 것으로 사용한다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 치아 교정용 나사를 나타내는 사시도이며, 도 3은 도 2의 "A-A"선를 나타내는 단면도이다.
도 1 내지 도 3에 도시된 바와 같이, 본 실시예에 따른 치아 교정용 나사는 몸체부(110)와 머리부(120)를 포함할 수 있다.
상기 몸체부(110)는 잇몸을 통하여 치조골에 박혀서 고정된다. 이를 위하여, 몸체부(110)의 상단부측과 중앙부측은 원기둥형으로 형성될 수 있고, 하단부는 원뿔형으로 형성되며, 중앙부측 외주면에는 나선형태로 나사산(112)이 형성될 수 있다.
상기 머리부(120)는 경계판(121), 지지봉(123) 및 지지판(125)을 포함할 수 있으며, 몸체부(110)의 상단부에 형성되어 상기 잇몸의 외측으로 노출 될 수 있다. 또한, 머리부(120)에는 치아 교정용 와이어의 일측이 걸려서 지지될 수 있다.
더욱 구체적으로 설명하면, 경계판(121)은 몸체부(110)의 상단면에 일체로 형성될 수 있으며, 몸체부(110)의 상단부의 직경 보다 큰 직경으로 형성될 수 있다. 경계판(121)은 상기 잇몸에 몸체부(110)만 박혀서 고정될 수 있도록, 몸체부(110)와 머리부(120)를 구획할 수 있다.
여기서, 상기 지지봉(123)은 경계판(121)의 상면에 일체로 형성되어 상측으로 돌출될 수 있으며, 경계판(121)의 직경 보다 작은 직경으로 형성될 수 있다. 지지봉(123)에는 지지공(123a)이 형성될 수 있으며, 지지공(123a)에 상기 와이어의 일측이 삽입 지지될 수 있다.
상기 지지판(125)은 지지봉(123)의 상면에 일체로 형성될 수 있으며 지지봉(123)의 직경 보다 큰 직경으로 형성될 수 있다. 지지판(125)은 몸체부(110)를 상기 잇몸에 결합하기 위한 드라이버 또는 스패너 등과 같은 지그가 맞물려 결합 지지될 수 있다.
또한, 약물을 로딩하기 위한 상기 몸체부(110)를 양극산화 하여 형성된 TiO2 나노튜브 어레이(130)를 포함할 수 있다.
상기 TiO2 나노튜브 어레이(130)는, 불소(F)를 포함하는 전해액을 사용하여 티타늄 금속 또는 티타늄 합금으로 이루어진 몸체부(110)를 제1 양극산화하고, 초음파로 제거한 후에, 제2 양극산화 되어 형성된 것 일 수 있다.
더욱 구체적으로 설명하면, 상기 TiO2 나노튜브 어레이(130)는 상부는 개방되고 하부는 밀폐되어 있는 튜브형 구조를 가지며, 내부 직경의 크기가 10~300nm를 갖도록 형성할 수 있다.
그리하여, 임플란트에 재조합 인간 골 성장 인자, 소염제 등과 같은 약물을 삽입할 수 있다.
본 실시예에 따른 치아 교정용 나사는 몸체부(110)의 외주면에 복수의 홈(113,114)이 형성될 수 있다.
상기 홈(113)은 상기 몸체부(110)의 나사골에 제1직경을 가지는 홈부로 형성될 수 있다. 또한, 상기 홈(114)은 몸체부(110)의 길이방향을 따라 몸체부(110)의 중앙부의 중앙에서 중앙부 하단면까지 형성될 수 있다.
상기 홈(113,114)에는 겔(Gel) 형태의 생체에 무해한 접착물질이 주입될 수 있다. 즉, 홈(113,114)에 상기 접착물질을 주입한 상태에서, 몸체부(110)를 상기 잇몸에 박아서 결합하면, 상기 접착물질을 매개로 몸체부(110)가 치조골에 견고하게 결합될 수 있다.
또는, 상기 몸체부(110)를 상기 잇몸에 박아서 결합하면, 소정의 시간이 경과한 후, 치아의 골조직이 홈(113,114)으로 유입되어 채워지므로, 몸체부(110)가 치조골에 견고하게 결합될 수 있다.
본 실시예에 따른 치아 교정용 나사는 몸체부(110)의 외주면에 홈(113,114)이 형성되므로, 홈(113,114)으로 인해 몸체부(110)의 강성은 거의 영향을 받지 않을 수 있다.
상기 홈(114)은 직선형태로 형성될 수 있다. 이때, 홈(114)은 몸체부(110)의 중심을 기준으로 방사상으로 형성되는 것이 바람직하다. 그리고, 홈(114)은 곡선형태로 형성될 수도 있다.
도 4는 본 발명의 다른 실시예에 따른 치아 교정용 나사를 나타내는 사시도로서, 도 1 및 도 2와의 차이점만을 설명한다.
도 4에 도시된 바와 같이, 몸체부(210)의 외주면에 형성된 홈(214)은 몸체부(210)의 길이방향을 따라 몸체부(210)의 중앙부 상단부측에서 중앙부 하단면까지 형성될 수 있다.
그리하여, 상기와 같은 홈(113,114,214)에 주입된 접착물질 또는 홈(113,114,214)으로 유입되어 채워지는 치아의 골조직으로 인해, 몸체부가 치조골에 견고하게 결합되는 효과를 가질 수 있다.
도 5는 본 발명의 일 실시예에 따른 치아 교정용 나사의 제조방법을 나타내는 순서도이며, 도 6은 양극산화 공정을 위한 수행하기 위한 장비의 개략적인 구성도이다.
도 5에 개시된 바와 같이, 본 발명의 일 실시예에 따른 치아 교정용 나사 제조방법은, 불소(F)를 포함하는 전해액을 사용하여 티타늄 금속 또는 티타늄 합금을 제1 양극산화하여 TiO2 나노튜브 어레이를 형성하는 단계(S1)와, 상기 티타늄 금속 또는 티타늄 합금의 표면에 형성된 상기 TiO2 나노튜브 어레이를 초음파 처리하여 제거하는 단계(S2)와, 상기 TiO2 나노튜브 어레이가 제거된 표면의 티타늄 금속 또는 티타늄 합금에 대하여 불소(F)를 포함하는 전해액을 사용하여 제2 양극산화하여 TiO2 나노튜브 어레이를 형성하는 단계(S3) 및 상기 제2 양극산화에 의해 형성된 TiO2 나노튜브 어레이 내부에 약물을 로딩하는 단계(S4)를 포함할 수 있다.
상기 제2 양극산화에 의해 형성된 TiO2 나노튜브 어레이는 상부는 개방되고 하부는 밀폐되어 있는 튜브형 구조를 가지며, 내부 직경의 크기가 10~300nm를 갖도록 형성하는 것이 바람직하다.
상기 약물은 재조합 인간 골 성장 인자 및 소염제 중에서 선택된 1종 이상의 물질을 포함할 수 있다.
상기 전해액은 황산(H2SO4), 인산(H3PO4), 구연산(citric acid), 옥살산(oxalic acid), 에틸렌 글리콜(Ethylene Glycol), 글리세롤(Glycerol), 디메틸설프옥사이드(Dimethyl Sulfoxide; DMSO) 중에서 선택된 1종 이상의 용액에 NH4F가 혼합된 용액일 수 있다.
상기 제1 양극산화 또는 상기 제2 양극산화는 티타늄 금속 또는 티타늄 합금이 배치된 양극과 음극을 서로 이격 배치하고, 전해액이 담긴 전해조 내에서 상기 전해액에 상기 양극과 음극이 담겨지도록 하고, 상기 양극과 음극에 전압을 인가하여 수행하며, 상기 제1 양극산화 또는 제2 양극산화에 의해 형성되는 TiO2 나노튜브 어레이를 형성하기 위하여 인가하는 전압은 상기 양극과 음극의 전압차가 80V 보다 작거나 같도록 인가하는 것이 바람직하다.
이하에서, 본 발명의 바람직한 실시예에 따른 치과용 임플란트의 제조방법을 더욱 구체적으로 설명한다.
불소(F)를 포함하는 전해액을 사용하여 티타늄 금속 또는 티타늄 합금을 제1 양극산화하여 TiO2 나노튜브 어레이를 형성할 수 있다.
상기 제1 양극산화는 티타늄 금속 또는 티타늄 합금이 배치된 양극과 음극을 서로 이격 배치하고, 전해액이 담긴 전해조 내에서 상기 전해액에 상기 양극과 음극이 담겨지도록 하고, 상기 양극과 음극에 전압을 인가하여 수행한다.
상기 제1 양극산화를 위한 재질은 티타늄(Ti) 또는 티타늄(Ti) 합금일 수 있다. 상기 티타늄(Ti) 합금은 Ti-6Al-4V 합금과 같이 티타늄(Ti) 성분을 적어도 포함하는 합금이다.
티타늄과 티타늄 합금은 기계적 특성과 생체적합성이 우수하여 치아용 임플란트(dental implants) 분야에서 광범위하게 사용되고 있다. 그러나, 티타늄의 자연산화층(native oxide layer)은 골유착(osseointegration)의 초기 단계에서 뼈와 직접적으로 결합할 수 있다. 블래스팅(blasting), 하이드록시아파타이트(hydroxyapatite)의 플라즈마 스프레이(plasma spraying), 샌드블래스팅(sandblasting), 에칭(etching), 양극산화(anodic oxidation)와 같은 방법으로 임플랜트 계면화학(implant surface chemistry)이나 표면 형상을 변화시킴으로써 치과 또는 정형외과용 임플란트를 최적화하려는 연구가 있다.
양극산화를 하기 위해 중요한 인자로는 전해액, 인가전압, 양극산화 시간, 온도 등을 들을 수 있다. 상기 양극산화 장비는 도 6에 도시된 바와 같이, 전해조(electrochemical bath)(10), 전해액(20), 양극(30), 음극(40), 전원 공급수단(power supply)(50), 자석 교반기(80), 교반용 자석 막대(90), 냉각장치(chiller)(85), 온도계(thermometer)(95) 등을 구비할 수 있다.
상기 양극(30)과 상기 음극(40)은 소정 거리를 두고 서로 이격 배치된다. 양극(30)은 얻고자 하는 TiO2 나노튜브 어레이의 금속성분과 동일한 성분인 티타늄(Ti) 또는 티타늄합금을 사용할 수 있다.
상기 제1 양극산화를 위한 전해액은 황산(H2SO4), 인산(H3PO4), 구연산(citric acid), 옥살산(oxalic acid), 에틸렌 글리콜(Ethylene Glycol), 글리세롤(Glycerol), 디메틸설프옥사이드(Dimethyl Sulfoxide; DMSO) 중에서 선택된 1종 이상의 용액에 NH4F가 혼합된 용액일 수 있다.
TiO2 나노튜브 어레이를 형성하기 위하여 티타늄 또는 티타늄합금을 준비하고, 이를 양극(30)에 장착한다. 음극(40)으로는 백금(Pt), 탄탈륨(Ta), 은(Ag), 금(Au)과 같은 내산성 금속 전극을 사용한다. 양극(30)은 음극(40)과 일정한 간격을 유지하여 전해액(20) 속에 잠길 수 있도록 설치한다. 양극(30)과 음극(40)은 전압 또는 전류를 인가하기 위한 전원 공급 수단(power supply)(50)에 연결되어 있다. 양극(30)과 음극(40)의 전압차는 형성되는 TiO2 나노튜브의 직경 크기, TiO2 나노튜브의 길이 등을 고려하여 적절하게 조절한다. 상기 제1 양극산화에 의해 형성되는 TiO2 나노튜브 어레이를 형성하기 위하여 인가하는 전압은 상기 양극과 음극의 전압차가 80V 보다 작거나 같도록 인가하는 것이 바람직하다. 상기 제1 양극산화에 의해 형성된 TiO2 나노튜브 어레이는 상부는 개방되고 하부는 밀폐되어 있는 튜브형 구조를 가지며, 내부 직경의 크기가 10~300nm를 갖도록 형성하는 것이 바람직하다.
전해조(10)에는 양극산화 공정 중 발열 반응에 의한 급격한 온도 상승을 방지하고, 금속막 전체에 전기 분해 또는 화학 반응의 균일성을 높이기 위해 냉각장치(Chiller)(85)가 구비되고, 또한 전해액을 교반하여 양극산화 공정이 용이하게 일어나도록 하기 위하여 자석 교반기(Magnetic Stirrer)(80)와 교반용 자석 막대(Stirring Magnetic Bar)(90)가 구비되어 있을 수 있다. 또한, 도시되어 있지는 않지만 전해조 내의 온도을 일정하게 유지하기 위한 핫플레이트(Hot Plate)와 같은 온도 조절 장치가 설치되어 있을 수도 있다.
전해조(10)의 온도는 0∼50℃ 정도 범위로 설정하는 것이 바람직하다.
전해액(20)은 전하를 띤 전자나 이온의 이동을 원활히 해주어 티타늄(Ti) 또는 티타늄합금 표면에 티타늄산화막(TiO2)을 형성하게 할 수 있다. 티타늄 금속 이온(Ti4+)은 전해액(20)과 산화막 계면에서 전해액(20)에 용해되며, 전해액(20)은 산화막과 금속 계면에서 산화막을 형성시킬 수 있도록 O2-, OH- 이온과 결합할 수 있다.
양극산화 공정을 살펴보면, 전해액(20) 속의 물분자(H2O)는 전기분해에 의하여 아래의 반응식 1과 같이 수소 이온(H+)과 하이드록실기 이온(OH-)으로 전해될 수 있다.
[반응식 1]
H2O→H+OH
수소 이온(H)은 음극(40)쪽으로 이동하고, 전해액(20)과 음극(40) 표면 사이에서 전자와 결합하여 수소 가스(H2)로 방출될 수 있다.
하이드록실기 이온(OH-)은 양극(30)쪽으로 이동하고, 양극(30) 표면에 형성된 자연산화막에서 산소 이온(O2-)과 수소 이온(H)으로 분리되어진다. 이때 분리되어진 산소 이온(O2-)은 자연산화막을 침투하여 자연산화막과 티타늄(또는 티타늄합금) 사이에서 티타늄 이온(Ti4 )과 반응하여 아래의 반응식 2와 같이 티타늄산화막(TiO2)을 형성하게 될 수 있다.
[반응식 2]
Ti4++2O2-→TiO2
또한, 수소 이온(H)은 티타늄산화막(TiO2)과 반응하여 티타늄(Ti)과 산소의 결합을 부분적으로 끊고 수산화물을 형성하게 되며, 이것은 전해액(20)에 용해될 수 있다. 즉, 티타늄산화막(TiO2)과 전해액(20) 사이의 표면에서 산화물 에칭(etching)이 발생할 수 있다. 이렇게 자연산화막과 티타늄(또는 티타늄합금) 사이의 계면에서는 티타늄산화막(TiO2)이 형성되게 될 수 있다.
이를 종합하여 반응식으로 나타내면, 다음의 반응식 3과 같다.
[반응식 3]
Ti + 2H2O → TiO2 + 4H+ + 4e-
전해질 용액속의 물분자는 양극에서 티타늄과 만나 티타늄산화막(TiO2)을 반응식 3과 같이 형성할 수 있다.
이렇게 형성된 티타늄산화막(TiO2)은 전해질 용액에 포함되어 있는 소량의 불소이온 (fluorine ion, F-)에 의해 반응식 4와 같이 해리될 수 있다.
[반응식 4]
TiO2 + 6F- + 4H+ → [TiF6]2- + 2H2O
이러한 해리 작용은 전체 티타늄산화막(TiO2)에 걸쳐 발생하며 나노튜브 어레이를 형성하게 될 수 있다. 또한 양극산화 시간이 증가될수록 반응식 3의 산화 반응과 반응식 4의 해리 반응이 동시에 발생하게 되고, 이로부터 나노튜브 어레이를 얻을 수 있다.
상기 티타늄 금속 또는 티타늄 합금의 표면에 형성된 상기 TiO2 나노튜브 어레이를 초음파 처리하여 제거할 수 있다. 일반적으로 초음파라 함은 20kHz 이상의 주파수를 갖는 음파를 말하며, TiO2 나노튜브 어레이를 제거하기 위한 초음파의 주파수는 28 ~ 40kHz 정도일 수 있다. 초음파 처리를 수행하게 되면, 티타늄 금속 또는 티타늄 합금의 표면에 형성된 TiO2 나노튜브 어레이는 티타늄 금속 또는 티타늄 합금의 표면으로부터 떨어져 나가면서 제거되게 될 수 있다. 제1 양극산화에서 생성된 TiO2 나노튜브 어레이는 표면이 지저분해서 나노튜브의 기공이 막혀 있는 부분이 많이 있기 때문에 약물 탑재가 용이하지 않으며, 따라서 제1 양극산화에 의해 형성된 TiO2 나노튜브 어레이를 제거하고, TiO2 나노튜브 어레이가 제거된 표면의 티타늄 금속 또는 티타늄 합금에 대하여 제2 양극산화를 통해서 깨끗한 표면을 갖는 TiO2 나노튜브 어레이를 형성하는 것이며, 제2 양극산화에 의해 형성된 TiO2 나노튜브 어레이의 기공은 대부분 열려 있어 약물 탑재가 용이한 구조를 만들 수가 있다.
상기 TiO2 나노튜브 어레이가 제거된 표면의 티타늄 금속 또는 티타늄 합금에 대하여 불소(F)를 포함하는 전해액을 사용하여 제2 양극산화 하여 TiO2 나노튜브 어레이를 형성할 수 있다.
상기 제2 양극산화는 티타늄 금속 또는 티타늄 합금이 배치된 양극과 음극을 서로 이격 배치하고, 전해액이 담긴 전해조 내에서 상기 전해액에 상기 양극과 음극이 담겨지도록 하고, 상기 양극과 음극에 전압을 인가하여 수행할 수 있다.
상기 제2 양극산화에 의해 형성되는 TiO2 나노튜브 어레이를 형성하기 위하여 인가하는 전압은 상기 양극과 음극의 전압차가 80V 보다 작거나 같도록 인가하는 것이 바람직하다.
상기 제2 양극산화를 위한 전해액은 황산(H2SO4), 인산(H3PO4), 구연산(citric acid), 옥살산(oxalic acid), 에틸렌 글리콜(Ethylene Glycol), 글리세롤(Glycerol), 디메틸설프옥사이드(Dimethyl Sulfoxide; DMSO) 중에서 선택된 1종 이상의 용액에 NH4F가 혼합된 용액일 수 있다.
상기 제2 양극산화에 의해 형성된 TiO2 나노튜브 어레이는 상부는 개방되고 하부는 밀폐되어 있는 튜브형 구조를 가지며, 내부 직경의 크기가 10~300nm를 갖도록 형성하는 것이 바람직하다.
상기 제2 양극산화에 의해 형성된 TiO2 나노튜브 어레이 내부에 약물을 로딩 할 수 있다. 상기 약물은 재조합 인간 골 성장 인자 및 소염제 중에서 선택된 1종 이상의 물질을 포함할 수 있다.
상술한 바와 같이, 원주형의 다공성 티타니아인 TiO2 나노튜브 어레이는 순수 티타늄 또는 티타늄 합금 표면에 2-스텝 양극산화(제1 양극산화와 제2 양극산화)를 수행하여 형성될 수 있고, 정렬된 나노구조(nanostructure)로 인하여 커다란 장점이 있다. 표면적이 상당히 증가하고 표면 형상이 원래의 뼈조직(bone tissue)과 유사하게 변화될 수 있기 때문에, 임플란트 표면의 형성이 골유착을 강화시킬 수 있다.
전압, 전류밀도, 전해액과 같은 공정 요소의 제어를 통해 빈 공간의 조절된 직경을 갖는 정렬된 TiO2 나노튜브 어레이를 제조할 수 있다. 세포 접착(cell adhesion) 및 분화(differentiation)를 위한 최적의 길이를 갖는 TiO2 나노튜브 표면은 조골세포(osteoblasts)의 이동과 간엽세포(mesenchymal) 줄기세포(stem cells)를 유도할 수 있고, 따라서 임플란트 표면과 세포 사이의 상호작용을 강화할 수 있다.
TiO2 나노튜브의 빈 공간은 약물 저장소로서 작용할 수 있다. 항생제, 항염증제, 성장인자와 같은 약물은 구강, 정맥, 근육으로 주입되게 처방될 수 있다. 그러나, 어떤 약물들은 이러한 루트를 통해 전달될 때에 효과적이지 못하다. 이러한 약물들의 시스템적 전달은 고농도에 따른 역효과와 장기 독성(organ toxicity)을 유발할 수 있다. 따라서, 국부적 약물 요법이 치료의 허용된 타입이 되고 있다.
한편, 재조합 인간 골 성장 인자는 조골세포 분화와 뼈 형성 및 리모델링(remodeling)을 개선하는 것으로 알려져 있다.
rhBMP-2의 적절한 양은 뼈 형성을 유도하지만 너무 많은 양은 원치않는 영향과 관련될 수 있다. rhBMP-2의 시스템적 전달은 원치않는 이소성 뼈 형성(ectopic bone formation)과 같은 제어되지 않는 역 효과를 가지기 때문에 원치않는 영향을 끼칠 수 있다. 따라서, rhBMP-2가 임플란트 표면에 고정되어야 골유착을 촉진하기 위한 충분한 시간을 가질 수가 있다.
이하, 본 발명의 이해를 돕기 위해서 상술한 기술적 사상을 적용한 실험예를 설명한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 아래의 실험예에 의해서 한정되는 것은 아니다.
[실험예 1]
본 발명의 일부 실시예에 따른 점용접 제어방법에 의한 용접품질에 대해서 실험한 결과를 설명하면 다음과 같다.
본 발명의 실험예에서는 2-스텝 양극산화에 의해 치과용 임플란트의 표면에 TiO2 나노튜브 어레이를 형성하였다. TiO2 나노튜브 어레이는 약물 로딩을 위한 빈 공간을 제공하며, 생체적합성을 보여준다. 항생제, 소염제, 성장인자와 같은 약물을 삽입하기에 적합한 구조인 TiO2 나노튜브 어레이를 갖는 치과용 임플란트를 디자인하였다. 임플란트-뼈 유착을 개선하기 위하여, rhBMP-2는 TiO2 나노튜브 어레이의 저장 공간에 로딩된다. 토끼에 대한 생체내 실험과 시험관 시험에 의해 치과용 임플란트에서 임플란트-뼈 유착과 리모델링에 대한 TiO2 나노튜브 어레이와 rhBMP-2의 영향을 연구하였다.
에틸렌 글리콜과 0.5중량%의 NH4F를 포함하는 전해액을 사용하여 2-스텝 양극산화에 의해 임플란트의 표면에 TiO2 나노튜브 어레이를 제조하였다. 적절한 미세구조의 TiO2 나노튜브 어레이를 얻기 위하여, DC 파워 서플라이에 의해 양극산화 전압과 시간이 LabVIEW 프로그램에 의해 컴퓨터적으로 제어되었다. TiO2 나노튜브 어레이의 깨끗한 표면과 열린 윈도우(open windows)를 얻기 위하여 2-스텝 양극산화가 수행되었다. 임플란트는 60V의 전압과 60분의 시간으로 첫번째로 산화되었다. 제1 양극산화에 의해 제조된 TiO2 나노튜브 어레이는 초음파 처리에 의해 제거되었다. 그 다음에, 깨끗하고 열린 윈도우를 갖는 TiO2 나노튜브 어레이가 제2 양극산화에 의해 최종적으로 제조되었다. 제2 양극산화의 전압과 시간은 15V와 15분 이었다. TiO2 나노튜브 어레이의 두께와 열린 윈도우 크기는 전계 주사전자현미경(field emission scanning electron microscopy; FESEM)으로 관찰하였다. rhBMP-2(Cowellme Co., Busan, Korea)는 진공 챔버에서 딥 코팅(dip coating) 공정에 의해 TiO2 나노튜브 어레이의 내부 공간으로 로딩되었다. rhBMP-2의 농도는 1.5mg/ml 이었다. 각 임플란트는 rhBMP-2 용액에 5초 동안 3번을 담그었으며, 20℃의 온도에서 건조하였다.
rhBMP-2의 용출은 간섭측정 바이오센싱법(interferometric biosensing method)에 의해 관찰되었다.
도 7은 TiO2 나노튜브 어레이에 대하여 간섭측정 바이오센싱법으로 관찰하기 장치의 구성을 보여주는 모식도이다.
도 7을 참조하면, 입사 백색광 공급원(A)은 텅스텐 램프를 사용한다. 백색광이 광섬유 및 렌즈를 이용하여 TiO2 나노튜브 어레이 위에 입사된 면은 직경이 0.1~1mm인 원 안에 포함되도록 초점을 맞추는 것이 바람직하다.
이때, TiO2 나노튜브 어레이(C)로부터 간섭되어 나오는 반사광을 CCD 스펙트로미터(B)를 이용하여 수집할 수 있다. 도 7에서 참조부호 'D'는 티타늄(Ti)이다.
이하에서, TiO2 나노튜브 어레이에 대한 간섭 반사광을 측정하는 방법을 설명한다. TiO2 나노튜브 어레이에 약물을 투여하지 않은 상태에서 CCD 스펙트로미터(B)를 이용하여 반사광 스펙트럼의 파장에 따라 강도(intensity)가 변하는 것을 측정할 수 있으며, TiO2 나노튜브 어레이에 약물을 투여한 상태에서 반사광 스펙트럼의 파장에 따라 강도(intensity)가 변하는 것을 측정할 수 있다.
먼저 패브리-패로 간섭 현상에 대하여 설명한다. 반사율이 높은 거울을 서로 평행하게 놓고 거울에 빛을 입사시켰을 때 거울을 투과한 빛은 평행한 거울의 표면에서 일부의 빛을 투과하지만, 대부분은 투과와 반사를 반복한다. 입사한 방향의 반대쪽에서는 두 거울 사이를 반사한 수만큼 아래 거울을 투과하여 나오는데, 각각의 빛이 경로 차이 만큼 간섭 현상을 보인다.
나노 크기의 기공을 갖는 TiO2 나노튜브 어레이에 백색광을 입사시키면, TiO2 나노튜브 어레이에 형성된 기공의 상단부와 기공의 하단부의 광 경로 차이에 의해서 광학두께에 관계된 간섭 패턴이 나타난다.
광학두께라고 하는 것은 상술한 바와 같이, 기공의 상단부에서 TiO2 나노튜브 어레이의 길이 방향으로 반대편에 있는 기공의 하단부 사이의 간격, 즉 TiO2 나노튜브 어레이 내에 약물이 탑재되는 공간의 길이를 나타낸다. 이때 기공의 상단부와 기공의 하단부 사이에 약물이 들어 있으면 약물의 두께가 광학두께가 된다.
수학식 1은 굴절률(n)과 광학두께(L)의 관계를 보여준다.
[수학식 1]
mλ=2nL
여기서 m은 간섭 차수이고, λ는 m 차수에서 얻어지는 최대 간섭 파장이고, n은 TiO2 나노튜브 어레이와 TiO2 나노튜브 어레이에 포함된 약물에 따른 굴절률이고, L은 TiO2 나노튜브 어레이의 광학두께(optical thickness)이다.
전해액의 농도, 전압, 양극산화 시간 등에 따라 광학두께 L을 변화시킬 수 있다. 광학두께의 길이가 길어질수록 프린지(fringe)의 수가 증가하며, 간섭파장의 특성을 변화시킨다.
TiO2 나노튜브 어레이 위에 백색광을 조사하면, TiO2 나노튜브 어레이의 상단부와 기공의 하단부의 광 경로 차에 의해서 패브리-패로 프린지 형태의 반사파형이 나타난다.
약물을 투여함에 따라 패브리-패로 프린지 형태의 반사 파형이 백색광의 세기 변화와 반사 파장의 이동을 확인할 수 있다.
백색광에 대한 패브리-패로 프린지 형태의 반사파장에 대한 스펙트럼을 고속 푸리에 변환(fast fourier transformation; FFT)을 시도한다. 고속 푸리에 변환은 푸리에 변환에 근거하여 근사공식을 이용한 이산 푸리에 변환(discrete fourier transform)을 계산할 때 연산회수를 줄일 수 있도록 고안된 알고리즘이다.
고속 푸리에 변환은 시간적 흐름의 소리 정보를 주파수의 흐름으로 변환시켜 주는 함수 계산 방식이다.
TiO2 나노튜브 어레이로부터 얻어진 반사광 스펙트럼을 고속 푸리에 변환(FFT)시킨다.
특정한 광학두께를 갖는 피크(peak)를 얻을 수 있고, 이런 광학두께를 유효 광학두께라고 한다. 이런 유효 광학두께는 TiO2 나노튜브 어레이 안에 들어있는 약물의 크기와 굴절률에 따른 스펙트럼의 변화에 따라 이동하게 된다.
이런 유효 광학두께는 TiO2 나노튜브 내부 표면에 적당한 포획 전극(capture probe)을 부착하여 특정 바인딩(specific binding)을 사용하는 방법으로 특정한 약물을 장전(loading)하고 용출(elution)하는 것에 대한 센싱이 가능하다.
도 8a 및 도 8b에 나타낸 가공 임플란트(machined implant)는 티타늄 임플란트의 전형적인 이미지와 미세구조를 보여주는 도면이다. 가공 임플란트는 일방향 가공된 그루브(grooves)를 가지고 있다. CNC 기구를 이용하여 가공함으로써 도 8b에 나타낸 바와 같이 표면이 매끄럽다.
도 9a 및 도 9b는 SLA(sandblasted large-grit and acid-etched) 임플란트의 거친 표면 이미지와 미세구조를 보여주는 도면이다.
도 10a 및 도 10b는 2-스텝 양극산화에 의해 제조된 TiO2 나노튜브 어레이의 거친 표면을 보여준다. TiO2 나노튜브 어레이의 표면은 SLA 임플란트 표면보다 덜 거친 것을 볼 수 있다. 그러나, TiO2 나노튜브 어레이는 BMP-2, PEP7, 이브프로펜(ibuprofen)과 같은 약물을 로딩하기 위한 나노 사이즈(nano-sized)의 홀들(holes)을 가지고 있다.
도 11a 내지 도 11d는 TiO2 나노튜브 어레이의 FESEM 이미지와 표면에 rhBMP-2가 로딩된 TiO2 나노튜브 어레이를 보여주는 도면이다. 도 6a는 TiO2 나노튜브 어레이의 FESEM 이미지이고, 도 11b는 도 11a의 확대 이미지이며, 도 11c는 rhBMP-2가 로딩된 TiO2 나노튜브 어레이의 FESEM 이미지이고, 도 11d는 도 11c의 확대 이미지이다. TiO2 나노튜브 어레이는 2-스텝 양극산화(two-step anodic oxidation)에 의해 제조되었다. TiO2 나노튜브 윈도우와 TiO2 나노튜브의 직경은 각각 ∼70nm와 ∼110nm 였다. TiO2 나노튜브의 윈도우는 깨끗하고 열려 있으며, 이러한 미세구조는 약물을 로딩하기에 적합하다. TiO2 나노튜브의 두께는 도 11a에 도시된 바와 같이 ∼17㎛ 정도 였다. 도 11d에 도시된 바와 같이, TiO2 나노튜브의 윈도우는 rhBMP-2 로딩으로 약간 막혀있다. rhBMP-2 로딩에 의해 TiO2 나노튜브 윈도우의 직경은 ∼50nm 정도로 감소하였다. 표면에 로딩된 rhBMP-2는 골유착을 개선할 것으로 기대된다.
TiO2 나노튜브 어레이로부터 rhBMP-2의 용출을 관찰하기 위하여, 플로우 셀(flow cell)을 갖는 간섭측정 바이오센싱법(interferometric biosensing method)이 사용되었다. 상기 방법에서, rhBMP-2가 로딩된 TiO2 나노튜브를 갖는 치과용 임플란트로 탈이온수(deionized water; DI water)가 흐른다. rhBMP-2의 광학두께 변화는 실시간으로 모니터링 되었다. 도 7은 rhBMP-2 로딩에 따라 10일 동안의 광학두께 변화를 보여주는 그래프이다. 베이스라인(baseline)은 20시간 동안 탈이온수(DI water)의 광학두께를 가지고 설립되었다. rhBMP-2를 포함하는 용액은 rhBMP-2가 로딩된 TiO2 나노튜브 어레이를 갖는 치과용 임플란트를 통과하는 탈이온수에 의해 유도되었다. 광학두께는 TiO2 나노튜브 어레이로부터 rhBMP-2의 용출에 의해 증가되었으며, 9일 동안 서서히 증가되었다.
임플란트 표면 주위에 새로운 뼈 형성과 골유착 유도를 개선하기 위한 약물로 rhBMP-2를 선정하고, 약물 저장소로서 TiO2 나노튜브 어레이의 사용 가능성을 평가하였다. 치과용 임플란트는 4개의 그룹으로 분류하였다. 가공된 표면 임플란트, SLA 임플란트, TiO2 나노튜브 어레이 표면 임플란트, 그리고 rhBMP-2를 포함하는 TiO2 나노튜브 어레이 표면 임플란트를 각각 I1 그룹, I2 그룹, I3 그룹, I4 그룹이라고 명명하였다. 4개 그룹의 임플란트는 8주 동안 토끼의 근위경골(proximal tibia)에 식립되었다. 8주 후에, 모든 임플란트들이 조직학적으로 줄기를 따라 뼈를 둘러싸면서 직접 접촉하고 있었다.
도 13과 표 1은 조직계측학적 분석(histomorphometric analysis)의 결과를 보여준다.
I1 그룹 I2 그룹 I3 그룹 I4 그룹
Bone to implant contact(%) 11.1±17.0 14.7±9.5 16.3±11.9 29.5±3.8
Bone volume ratio(%) 66.9±6.7 53.7±11.5 67.2±7.6 77.3±8.8
표 1과 도 13을 참조하면, I4 그룹의 BIC(bone to implant contact ratio)는 최대값이 29.5% 였고, I3 그룹, I2 그룹, 그리고 I1 그룹은 각각 16.3%, 14.7%, 11.1% 였다. 뼈 부피율(bone volume ratio)는 임플란트 줄기(implant threads) 주위에서 측정되었다. 77.3%의 가장 높은 뼈 부피율은 I4 그룹에서 나타났다. I3 그룹, I2 그룹, 그리고 I1 그룹의 뼈 부피율은 각각 67.2%, 53.7%, 66.9% 이었다. 이러한 결과는 TiO2 나노튜브 어레이 표면 임플란트가 가공된 표면 임플란트나 SLA 임플란트에 비하여 골유착 효과가 크고, rhBMP-2를 포함하는 TiO2 나노튜브 어레이 표면 임플란트는 뼈 유도(bone induction)의 생화학적 효과를 가짐을 보여주는 것이다. TiO2 나노튜브 어레이는 뼈 형성과 세포 유착 효과(cell adhesion effect)를 강화하는 것으로 판단된다. TiO2 나노튜브 어레이는 새로운 뼈 성장을 위한 우수한 산화물 미세구조를 가지며, 단백질 상호작용, 빠르고 영구적인 뼈 접착을 위한 뼈의 성분에 영향을 끼칠 수 있다.
rhBMP-2가 코팅된 임플란트의 골유착 효과가 보고되었으나, rhBMP-2를 단순히 코팅하거나 적시는 방법은 rhBMP-2에 의한 장기로 지속적인 골유착을 제공할 수 없다. TiO2 나노튜브 어레이는 습윤성을 강화하고, 약물 저장소로서 기능할 수 있다. rhBMP-2가 결합된 TiO2 나노튜브 임플란트는 골 형성을 높일 수 있다. rhBMP-2가 TiO2 나노튜브 어레이에 로딩된 I4 그룹은 작용 후 8주 동안에 BIC(bone to implant contact ratio)와 뼈 부피율(bone volume ratio)이 높게 나타났다. 이것은 rhBMP-2의 오래 지속되는 효과를 입증하는 것이고, 뼈 리모델링, 뼈 형성 및 뼈 환원(bone reduction)이 천천히 일어난다. rhBMP-2가 서서히 용출되는 것을 보여주는 도 12은 rhBMP-2의 오래 지속되는 효과를 뒷받침하는 것이다.
도 14 내지 도 17은 광학현미경으로 관찰된 4개 그룹의 형광(fluorescence) 및 조직학적 염색(histologic staining) 이미지를 보여준다. 도 14 내지 도 17에 나타낸 형광 및 조직학적 염색 이미지들은 우측과 좌측을 각각 보여준다. 형광 이미지들은 알리자린 레드(alizarin red)와 칼세인 그린(calcein green)으로 형광색소 라벨링(fluorochrome labeling) 함에 의해 형성된다. 뼈 형성과 뼈 리모델링의 다른 패턴들은 4개 그룹에서 관찰되었다. 레드(red)와 그린(green)은 임플랜트 식립 후에 각각 3주와 6주 동안 형성된 새로운 뼈 형성을 나타낸다. 흰색 화살표로 표시되는 뼈 형성과 뼈 리모델링은 I1 그룹, I2 그룹 및 I3 그룹에서 골막(periosteum) 부근에서 주로 관찰되었다. 그러나, I4 그룹에서 뼈 형성과 뼈 리모델링은 골막 부근뿐만 아니라 모든 임플란트 줄기(implant threads) 부근에서도 관찰되었다.
I1 그룹, I2 그룹 및 I3 그룹에서 뼈 형성과 뼈 리모델링은 조골세포가 풍부한 골막(osteoblast-rich periosteum)에 의해 설명될 수 있다. I4 그룹에서, 임플란트 줄기에서의 풍부한 뼈 형성과 뼈 리모델링은 TiO2 나노튜브 어레이로부터 용출된 rhBMP-2의 골 형성 효과(osteogenesis effect)에 기인한다. 또한, I4 그룹은 더 강한 형광색소 라벨링을 보여주었다. 골막 주위의 형광색소 라벨링은 뼈 형성을 반영하는 것이고, 임플란트 줄기 주위의 형광색소 라벨링은 뼈 리모델링이 되고 골유착을 개선하는 것으로 판단된다. rhBMP-2를 포함하는 TiO2 나노튜브 어레이는 임플란트 부근의 뼈 형성과 뼈 리모델링을 증대시킬 수 있고, 따라서 치과용 임플란트의 표면에 골유착을 강화시킬 수 있다.
[실험예 2]
본 발명의 일부 실시예에 따른 치아 교정용 나사에 대해서 임플란트 표면에 TiO₂나노튜브 형성에 따른 재료물성을 고려한 응력분포 해석 및 구조모델 구성을실험하였다.
나사산으로 설계된 임플란트에 튜브 형성에 따른 응력분포를 해석하기 위하여 튜브 형성 전과 후를 해석하였으며 또한 튜브의 직경 및 생성 길이에 따른 해석을 진행하였다.
여기서, 튜브는 상기 홈(113)을 구성 할 수 있다.
도 18에서 나타난 바와 같이, 튜브를 생성 시킨 임플란트 모형의 나사골 중 튜브가 없는 P1, P2, P5, P6 지점은 튜브를 생성시키지 않은 임플란트 모형과 비슷한 응력분포를 보였으며, 도 18의 튜브가 생성된 P3, P4의 나사골 부분의 응력 분포는 튜브 주변으로 응력 집중현상이 발생하였다.
또한, 도 19의 나사골의 응력 분포 및 측정 위치 따른 위치별 유효응력을 나타내는 그래프에서도 튜브가 생성된 P3, P4의 나사골 부분의 유효응력이 높게 나타나고 있다.
이어서, 치아 교정용 나사의 튜브 직경에 따른 응력분포에 대해서 실험하였다. 치아 교정용 나사의 튜브 직경은 생성된 직경의 크기의 140%, 120%, 100%, 80%, 60%에 대하여 실험을 하였고, 치아 교정용 나사의 튜브 길이는 생성된 길이의 190%, 160%, 130%, 100%에 대하여 실험을 하였다.
도 20에 나타난 바와 같이, 튜브의 직경에 따른 응력분포는 튜브의 직경이 작아질수록 튜브 주변의 응력집중 현상이 완화되었다. 또한, 도 21과 같이 내부의 응력집중도 완화되는 것을 알 수 있다.
도 22에 나타난 바와 같이, 튜브 생성 길이에 따른 응력분포를 해석한 결과 튜브의 생성 길이가 작아질수록 튜브 주변의 응력집중 현상이 완화는 되지만, 생성되는 튜브의 직경의 차이에 따른 완화 폭보다는 작은 것을 알 수 있다. 내부 응력집중은 도 22 내지 도 25에서와 같이 튜브의 생성 길이가 작을수록 완화가 되는 것을 알 수 있다.
여기서, 도 23은 도 22의 치아 교정용 나사에 형성된 홈의 측정 위치별 유효응력을 나타내는 도면이고, 도 24는 응력분포를 나타내는 도면이고, 도 25는 내부응력분포를 나타내는 도면이다.
TiO₂나노튜브 생성시 표면과 내부에 응력집중현상이 발생을 하며 응력집중 현상은 튜브의 직경과 길이에 영향을 받을수 있으나, TiO₂나노튜브는 평균 직경 100 nm, 길이 10 μm 이내 이므로 많은 응력집중현상이 발생하지 않고 응력이 고르게 분포할 것이므로 재료물성에는 큰 영향을 미치지 않을 수 있다.
이와 같이 본 발명에 따른 치아 교정용 나사에 따르면, 나사산이 형성된 몸체부의 외주면에 복수의 홈이 형성되어, 몸체부의 강성에 영향을 주지 않으면서, 홈에 주입된 접착물질 또는 홈으로 유입되어 채워지는 치아의 골조직으로 인해, 몸체부가 치조골에 견고하게 결합되는 효과가 있다.
또한, 본 발명에 의하면, 임플란트에 TiO2 나노튜브 어레이가 형성되어 있어 재조합 인간 골 성장 인자, 소염제 등과 같은 약물을 삽입할 수 있으며, 본 발명에 따라 제조된 약물이 로딩된 임플란트는, BIC(bone to implant contact ratio)와 뼈 부피율(bone volume ratio)이 높은 효과를 가진다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (9)

  1. 외주면에 나사산이 형성되며, 잇몸을 통하여 치조골에 박혀서 고정되는 티타늄 금속 또는 티타늄 합금으로 이루어진 몸체부; 및
    상기 몸체부의 일단부에 형성되고 상기 잇몸의 외측으로 노출되며, 치아 교정용 와이어의 일측이 걸려서 지지되는 머리부;
    를 포함하며,
    상기 몸체부의 외주면에는 접착물질이 주입되거나 치아의 골조직이 유입되어 채워질 수 있도록 형성되는 복수의 홈이 형성된 것을 특징으로 하는, 치아 교정용 나사.
  2. 제1항에 있어서,
    상기 홈은 상기 몸체부의 나사골에 제1직경을 가지는 홈부로 형성된 것을 특징으로 하는, 치아 교정용 나사.
  3. 제1항에 있어서,
    상기 홈은 상기 몸체부의 길이방향을 따라 상기 몸체부의 일단부측에서 타단부측까지 형성된 것을 특징으로 하는, 치아 교정용 나사.
  4. 제1항에 있어서,
    상기 홈은 상기 몸체부의 길이방향을 따라 상기 몸체부의 중앙부에서 타단부측까지 형성된 것을 특징으로 하는, 치아 교정용 나사.
  5. 제3항 또는 제4항에 있어서,
    상기 홈은 직선형태로 형성된 것을 특징으로 하는, 치아 교정용 나사.
  6. 제3항 또는 제4항에 있어서,
    상기 홈은 곡선형태로 형성된 것을 특징으로 하는, 치아 교정용 나사.
  7. 제1항에 있어서,
    상기 몸체부의 일단부 및 중앙부는 원기둥형으로 형성되고, 타단부는 원뿔형으로 형성되며, 상기 나사산은 상기 몸체부의 중앙부 외주면에 형성되고,
    상기 머리부는, 상기 몸체부의 일단면에 일체로 형성되며 상기 몸체부의 일단부의 직경 보다 큰 직경을 가지는 경계판, 상기 경계판의 직경 보다 작은 직경을 가지면서 상기 경계판에 일체로 형성되고 상기 와이어의 일측이 삽입 지지되는 지지공이 형성된 지지봉, 상기 지지봉의 직경 보다 큰 직경을 가지면서 상기 지지봉에 일체로 형성되고 상기 몸체부를 상기 잇몸에 결합하기 위한 지그가 맞물려 지지되는 지지판을 포함하는 것을 특징으로 하는, 치아 교정용 나사.
  8. 제1항에 있어서,
    약물을 로딩하기 위한 상기 몸체부를 양극산화 하여 형성된 TiO2 나노튜브 어레이;
    를 더 포함하는, 치아 교정용 나사.
  9. 제8항에 있어서,
    상기 TiO2 나노튜브 어레이는,
    상부는 개방되고 하부는 밀폐되어 있는 튜브형 구조를 가지며, 내부 직경의 크기가 10~300nm를 갖도록 형성하는 것을 특징으로 하는, 치아 교정용 나사.
PCT/KR2017/003123 2017-03-20 2017-03-23 치아 교정용 나사 WO2018174315A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0034810 2017-03-20
KR1020170034810A KR20180106457A (ko) 2017-03-20 2017-03-20 치아 교정용 나사

Publications (1)

Publication Number Publication Date
WO2018174315A1 true WO2018174315A1 (ko) 2018-09-27

Family

ID=63585824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003123 WO2018174315A1 (ko) 2017-03-20 2017-03-23 치아 교정용 나사

Country Status (2)

Country Link
KR (1) KR20180106457A (ko)
WO (1) WO2018174315A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109044546A (zh) * 2018-09-28 2018-12-21 郑州康德钛制品科技有限公司 一种牙种植体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110082658A (ko) * 2010-01-12 2011-07-20 전북대학교산학협력단 타이타늄 임플란트의 표면처리 방법 및 그 방법에 의해 제조된 임플란트
KR101457763B1 (ko) * 2012-08-01 2014-11-03 강릉원주대학교산학협력단 치아 교정용 나사
KR101507916B1 (ko) * 2013-06-17 2015-04-07 강릉원주대학교산학협력단 치아 교정용 나사
KR20160001390A (ko) * 2014-06-27 2016-01-06 주식회사 비에스코렘 생체활성 물질로 표면개질된 임플란트 및 이의 제조방법
KR20160126513A (ko) * 2015-04-24 2016-11-02 강릉원주대학교산학협력단 약물이 로딩된 치과용 임플란트의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110082658A (ko) * 2010-01-12 2011-07-20 전북대학교산학협력단 타이타늄 임플란트의 표면처리 방법 및 그 방법에 의해 제조된 임플란트
KR101457763B1 (ko) * 2012-08-01 2014-11-03 강릉원주대학교산학협력단 치아 교정용 나사
KR101507916B1 (ko) * 2013-06-17 2015-04-07 강릉원주대학교산학협력단 치아 교정용 나사
KR20160001390A (ko) * 2014-06-27 2016-01-06 주식회사 비에스코렘 생체활성 물질로 표면개질된 임플란트 및 이의 제조방법
KR20160126513A (ko) * 2015-04-24 2016-11-02 강릉원주대학교산학협력단 약물이 로딩된 치과용 임플란트의 제조방법

Also Published As

Publication number Publication date
KR20180106457A (ko) 2018-10-01

Similar Documents

Publication Publication Date Title
WO2016171310A1 (ko) 약물이 로딩된 치과용 임플란트의 제조방법
Cipriano et al. Anodic growth and biomedical applications of TiO2 nanotubes
US20070187840A1 (en) Nanoscale probes for electrophysiological applications
US7998568B2 (en) Bioceramic coated apparatus and method of forming the same
Choi et al. Biological responses of anodized titanium implants under different current voltages
Louarn et al. Nanostructured surface coatings for titanium alloy implants
WO2018174315A1 (ko) 치아 교정용 나사
Patel et al. Transparent TiO 2 nanotubes on zirconia for biomedical applications
Wang et al. Tooth enamel evaluation after tooth bleaching with hydrogen peroxide assisted by a DC nonthermal atmospheric-pressure plasma jet
Moon et al. Bioactivity of Ti‐6Al‐4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer
US20180161128A1 (en) Dental Implant And Abutment With Nanotube Arrays
Alécio et al. Doxycycline release of dental implants with nanotube surface, coated with poly lactic-co-glycolic acid for extended pH-controlled drug delivery
KR20110113589A (ko) 다공성 티타늄 산화막을 이용하여 생체활성 물질의 담지율을 높이는 임플란트 재료의 제조방법 및 이에 의한 임플란트 재료
WO2015129967A1 (ko) 다공성 한방침 및 이의 제조방법
EP3669817B1 (en) Dental implant assembly and method for manufacturing same
Goodarzi et al. Titanium dioxide nanotube arrays: A novel approach into periodontal tissue regeneration on the surface of titanium implants
CN209797796U (zh) 一种氧化锆陶瓷表面镀覆的二氧化锆纳米管薄膜涂层和氧化锆陶瓷牙科冠桥修复体
CN109485459B (zh) 一种氧化锆陶瓷表面镀覆的二氧化锆纳米管薄膜涂层及其制备方法与应用
KR100865345B1 (ko) 나노튜브에 의해 치아회분말이 코팅되도록 한 치과용임플란트 제조방법
CN108175527B (zh) 具备可见光机能化功能的种植体基台穿龈结构及制作方法
WO2015137555A1 (ko) 약물 검출 장치 및 이를 이용한 약물 검출 방법
WO2018199610A1 (ko) 귀금속 나노입자가 도금된 침술용 다공성 침 및 이의 제조방법
KR20120133659A (ko) 치과용 임플란트의 표면처리방법
KR20110051441A (ko) 치과용 임플란트 표면에 나노튜브를 신속하고도 균일하게 형성시키는 방법
KR20130117899A (ko) 양극 산화법에 의해 나노 티타니아를 코팅한 식립형 임플란트 및 그 코팅 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902258

Country of ref document: EP

Kind code of ref document: A1