WO2018173889A1 - Communication control method and communication system - Google Patents

Communication control method and communication system Download PDF

Info

Publication number
WO2018173889A1
WO2018173889A1 PCT/JP2018/009991 JP2018009991W WO2018173889A1 WO 2018173889 A1 WO2018173889 A1 WO 2018173889A1 JP 2018009991 W JP2018009991 W JP 2018009991W WO 2018173889 A1 WO2018173889 A1 WO 2018173889A1
Authority
WO
WIPO (PCT)
Prior art keywords
slice
communication
communication control
handover
server
Prior art date
Application number
PCT/JP2018/009991
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 下城
雅純 清水
曉 山田
滋 岩科
マラ レディ サマ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2018173889A1 publication Critical patent/WO2018173889A1/en

Links

Images

Definitions

  • the present invention relates to a communication control method and a communication system for performing communication control on a slice that is a virtual network.
  • a virtual network logically generated on a network infrastructure by using a virtualization technology disclosed in Non-Patent Document 1 to virtually separate hardware resources.
  • a service can be provided with respect to the user terminal which a user uses using the network of each independent slice.
  • user data is transmitted and received through the communication path by providing a communication path related to the user terminal to a control node provided in the slice. Is done.
  • the user terminal may change its communication path by performing handover while using the service assigned to each slice.
  • the user terminal Before the user terminal was handed over, the user terminal accessed multiple slices and transmitted / received user data, but when performing handover, one or several slices of the multiple slices were used. There are times when it stops. Handing over such a slice wastes network resources.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a communication control method and a communication system that can prevent waste of resources when a slice is handed over.
  • a communication control method is a communication control of a communication system that performs communication control for a communication terminal that is connected to a slice that is a virtual network generated on a network infrastructure.
  • the slice when performing a handover, if it is determined that a slice that has been connected for communication before the handover is not used, the slice is not used for the unused slice. Communication control can be performed. Therefore, waste of network resources can be eliminated and the resources can be used efficiently.
  • waste of network resources can be eliminated and the resources can be used efficiently.
  • FIG. 10 is a processing sequence diagram of a method for determining whether a slice SL2 is not used in the SMF 221.
  • FIG. 11 is a sequence diagram of processing in which the AMF 301 inquires the PCF 400 about the usage status of each slice.
  • FIG. 12 is a processing sequence diagram of a method for determining whether a slice SL2 is not used in the SMF 221.
  • FIG. 10 is a processing sequence diagram of processing in which the AMF 301 inquires the PCF 400 about the usage status of each slice. It is a figure explaining the condition according to the pattern 3 in the communication system N1.
  • FIG. 10 is a processing sequence diagram of processing in which the AMF 301 inquires the PCF 400 about the usage status of each slice.
  • Fig. 1 shows the configuration of the system 1 constituting the virtualized network.
  • the system 1 in FIG. 1 provides a network service to a UE (UserEquipment) 90 that is a terminal (user terminal) used by a service user (Service User) by assigning a service to a slice that is a virtual network.
  • a slice is a virtual network or service network that is created by logically dividing the network device link and node resources and combining the separated resources. They are separated and do not interfere with each other.
  • the network service refers to a service using network resources such as a communication service (private line service or the like) or an application service (service using a sensor device such as moving image distribution or an embedded device).
  • UE90 is a terminal device which has communication functions, such as a smart phone, for example.
  • the system 1 includes a BSS / OSS (Business Support System / Operations Support System) 10, an SO (Service Operator) 20, an NFVO 30, a VNFM 40, and a VIM (Virtualized Infrastructure Management) 50. It is comprised including.
  • the system 1 includes an NFVI (NFV (Network FunctionsNetworkVirtualization) Infrastructure) 60, an eNB (eNodeB) 80, and a UE 90.
  • NFVO30, VNFM40, and VIM50 are functions of MANO (Management & Orchestration) architecture specified by ETSI NFV-ISG.
  • the system 1 provides a communication function for a mobile communication terminal by a virtual server operating in a virtual machine realized on a physical server. That is, the system 1 is a virtualized mobile communication network.
  • the communication function is provided to the mobile communication terminal by executing a communication process corresponding to the communication function by the virtual machine.
  • the NFVI 60 indicates a network formed from physical resources (node groups) constituting a virtual environment.
  • the physical resources conceptually include computing resources, storage resources, and transmission resources.
  • the physical resource includes a node such as a physical server or a switch that is a physical server device that performs communication processing in the system 1.
  • the physical server includes a storage unit such as a CPU (core, processor), a memory, and a hard disk.
  • a plurality of nodes such as physical servers that constitute the NFVI 60 are arranged together at a base such as a data center (DC).
  • DC data center
  • the arranged physical servers can communicate with each other via a network inside the data center, and can exchange information with each other.
  • the system 1 is provided with a plurality of data centers. Data centers can communicate with each other via a network, and physical servers provided in different data centers can transmit / receive information to / from each other via the network.
  • the SO (Service Operator) 20 is a device that requests creation of a network for providing a network service.
  • a terminal device for example, a personal computer or the like
  • a provider that provides services to various users using a virtual network.
  • the BSS / OSS 10 is a node that performs service management in the system 1 and gives instructions related to communication functions in the system 1. For example, the BSS / OSS 10 instructs the NFVO 30 to add a new network service. In addition, the BSS / OSS 10 can be operated by a telecommunications carrier related to the system 1.
  • the NFVO 30 is an overall management node (functional entity) that manages the entire virtual network (slice) constructed on the NFVI 60 that is a physical resource.
  • the NFVO 30 receives an instruction from the BSS / OSS 10 and performs processing according to the instruction.
  • the NFVO 30 performs management over the entire virtual network constructed in the physical resources of the mobile communication network of infrastructure and network services.
  • the NFVO 30 realizes the network service provided by the virtual network in an appropriate place in cooperation with the VNFM 40 and the VIM 50.
  • network service life cycle management (specifically, for example, network service creation, update, scale control, event collection), resource management over the entire mobile communication network, that is, resource distribution / reservation / allocation management, service -Perform instance management and policy management related to resource allocation (specifically, resource reservation / allocation, optimal allocation based on geography / laws, etc.).
  • the VNFM 40 is a virtual communication function management node (functional entity) that adds a function that constitutes a network service to the NFVI 60 that is a physical resource (node).
  • a plurality of VNFMs 40 may be provided in the system 1.
  • the VIM 50 is a physical resource management node (functional entity) that manages each physical resource (node) in the NFVI 60. Specifically, resource allocation / update / recovery management, association between physical resources and virtualized network, and management of hardware resources and SW resources (hypervisor) list are performed. Normally, the VIM 50 performs management for each data center (station building). Management of physical resources is performed by a method according to the data center. Data center management methods (management resource mounting methods) include OPENSTACK and vCenter. Normally, the VIM 50 is provided for each data center management method. That is, a plurality of VIMs 50 that manage each physical resource in the NFVI 60 are included in different ways. Note that the unit of physical resources managed by different management methods is not necessarily a data center unit.
  • the NFVO 30, VNFM 40, and VIM 50 are realized by executing a program on a physical server device (however, they are not limited to being realized on virtualization, and are separated from a management system). And may be realized on virtualization).
  • the NFVO 30, the VNFM 40, and the VIM 50 may be realized in separate physical server devices, or may be realized in the same server device.
  • the NFVO 30, VNFM 40, and VIM 50 (programs for realizing) may be provided from different vendors.
  • the NFVO 30 When the NFVO 30 receives the network service creation request from the BSS / OSS 10, the NFVO 30 makes a resource securing request for the slice (slice SL1, SL2, etc.) to the VIM 50. When the VIM 50 secures resources in the server devices and switches configuring the NFVI 60, the NFVO 30 defines a slice for the NFVI 60.
  • the NFVO 30 when the NFVO 30 causes the VIM 50 to reserve resources in the NFVI 60, the NFVO 30 stores information defining slices for the NFVI 60 in a table stored in the NFVO 30. Then, the NFVO 30 makes a software installation request for realizing the functions necessary for the network service to the VNFM 40. In response to the installation request, the VNFM 40 installs the software on the NFVI 60 (node such as a server device, a switch device, or a router device) secured by the VIM 50.
  • the NFVI 60 node such as a server device, a switch device, or a router device
  • the NFVO 30 associates the slice and the network service with the table stored in the NFVO 30.
  • the communication system N1 including each node constituting the slice will be described with reference to FIG.
  • the communication system N1 is a system constructed on the NFVI 60.
  • the eNB 80 the AMF (Core Access and Mobility Management function) 301, the SMF (Slice Management Function) 211 and 221, the UP (User Plane node) 212, the UPX 222, and the PCF ( Policy Control Function) 400.
  • the AMF 301 is a slice connection server that performs communication connection control between the slice and the UE 90.
  • UP 212 and UPX 222 are communication nodes that constitute a slice and transmit / receive user data to / from UE 90.
  • the SMFs 211 and 221 are communication control servers that constitute a slice together with the UP 212 and UPX 222 and perform communication control for the UP 212 and UPX 222.
  • the PCF 400 is a server that performs policy management.
  • the PCF 400 is a management server that manages user data transmitted and received within a slice.
  • the PCF 400 can grasp the flow of user data in accordance with the management of the SMFs 211 and 221.
  • UPs 212 and 222 are nodes connected to a service providing server DN (Data ⁇ Network) to transmit and receive user data.
  • DN Data ⁇ Network
  • the NFVO 30 assigns service S1 to slice SL1 and assigns service S2 to slice SL2.
  • the slice SL1 and the slice SL2 are constructed so as to be logically communicable with each other.
  • the slice SL1 that provides the service S1 includes the SMF 211 that is the C-Plane control node and the UP 212 that is the U-Plane control node.
  • the SMF 211 which is a C-plane control node, transmits and receives control signals and the like related to establishment and disconnection of a communication path when providing the service S1 to the user.
  • the UP 212 also provides a communication path when providing the service S1 to the user, and also provides a communication path with the DN (Data Network) 101, which is a service server that provides the service, to execute transmission / reception of user data. .
  • DN Data Network
  • the slice SL2 that provides the service S2 includes the SMF 221 and the UPX 222 that is a U-plane control node.
  • the SMF 221 transmits and receives control signals and the like related to the establishment and disconnection of the communication path when providing the service S2 to the user.
  • the UPX 222 provides a communication path when providing the service S2 to the user, and also provides a communication path with the service server 102 that provides the service to execute transmission / reception of user data.
  • the correspondence relationship between the slice and the service is an example and can be changed as appropriate. That is, a node for providing a plurality of services may be assigned to one slice.
  • Fig. 3 shows an example of the correspondence between each slice and the server.
  • the node is a part of the server, and the function of the SMF 211 of the slice 1 (slice SL1) and the function of the SMF 221 of the slice 2 (slice SL2) are performed by the server 1 (110A), the switch, the router, and the like.
  • the function of the UP 212 of the slice 1 (slice SL1) and the function of the UP 222 of the slice 2 (slice SL2) are realized by the server 2 (110B), a switch, a router, and the like.
  • the access information including the ID of the network service and the destination (for example, IP address) of the logical node that provides the first function of the network service is transmitted to the BSS / OSS 10.
  • the BSS / OSS 10 When the BSS / OSS 10 receives the address information, the BSS / OSS 10 notifies the AMF 301 of the address information.
  • the AMF 301 is a server device that can communicate with the eNodeB (eNB) 80 that is a base station device.
  • eNB eNodeB
  • a service request is made to the eNB 80 together with the network service ID from the UE 90 that is a service user, The network service ID received from the UE 90 is notified.
  • the AMF 301 When the AMF 301 receives the network service ID from the eNB 80, the destination information of the logical node that provides the first function of the network service of the address information corresponding to the network service ID received from the eNB 80 among the address information stored in the AMF 301 is set to the eNB 80. Send to.
  • the eNB 80 notifies the destination information to the UE 90. With this process, the UE 90 can specify the destination to be accessed first in order to use the network service.
  • the AMF 301 holds information on logical nodes that provide network service functions. In other words, the AMF 301 holds information for identifying services that can be handled for each logical node. Although details will be described later, the AMF 301 has a function of providing this information based on an inquiry from another logical node.
  • the communication system N1 refers to a core network when the UE 90 communicates and uses a service.
  • the UE 90 transmits the service server 101 (DN) via the eNB 80 and the UP 212 related to the service S1 provided in the slice SL1. : Data Network)), the service S1 provided by the service server 101 can be used.
  • a communication path for transmitting and receiving user data related to the UE 90 is provided between the eNB 80 and the UP 212. That is, the UP 212 functions as a control node in the slice SL1.
  • a control signal for performing processing related to establishment and disconnection of a communication path between the eNB 80 and the UP 212 is transmitted / received via the AMF 301 and the SMF 211.
  • the UE 90 provides the service server 102 by communicating with the service server 102 (DN: Data Network) via the eNB 80 and the UPX 222 related to the service S2 provided in the slice SL2.
  • Service S2 can be used.
  • a communication path for transmitting and receiving user data related to the UE 90 is provided between the eNB 80 and the UPX 222. That is, the UPX 222 functions as a control node in the slice SL2.
  • a control signal for performing processing related to establishment and disconnection of a communication path between the eNB 80 and the UPX 222 is transmitted / received via the AMF 301 and the SMF 221.
  • the UE 90 can communicate using the slices SL1 and SL2 by providing a communication path between the eNB 80 in the area where the UE 90 is located and the two slices SL1 and SL2. It has become.
  • FIG. 4 is a block diagram showing a functional configuration of the AMF 301, SMF 211, 221 and PCF 400 in the present embodiment.
  • the AMF 301 is a node having a connection / mobility management function, and includes a communication control unit 302.
  • the communication control unit 302 performs connection / mobility management for each UE 90 and each slice.
  • the communication control unit 302 performs connection management based on transmitting a request for switching the communication path of the slice to the SMF 211 and receiving the response.
  • the communication control unit 302 receives a notification that the slice is not used instead of receiving a response to the communication channel switching request, the communication control unit 302 establishes a session of the communication channel forming the slice. Cancel communication processing. If a session has already been established, communication processing for releasing the session is performed.
  • the SMF 211 is a C-plane control node and a node that controls the UP 212.
  • the SMF 211 is a node that forms the slice SL1, and in order to determine whether or not the slice SL1 is used, whether or not a communication packet is transmitted to and received from the slice SL1, for example, the UP 212 within a predetermined time. to decide.
  • the SMF 211 determines that the slice SL1 is not used, the SMF 211 notifies the AMF 301 to that effect.
  • the SMF 221 is a node that controls the UPX 222, and determines whether the slice SL2 is not used.
  • FIG. 4B is a block diagram showing the AMF 301 that makes an inquiry to the PCF 400 and the functions of the PCF 400.
  • the AMF 301 includes a communication control unit 302 and a slice inquiry unit 303.
  • the PCF 400 includes a slice determination unit 401.
  • the communication control unit 302 is a part that performs communication connection control for the SMFs 211 and 221.
  • the slice inquiry unit 303 makes an inquiry about the usage status of each slice to the PCF 400.
  • the slice determination unit 401 is a part that determines whether or not a packet is transmitted / received in a predetermined unit time when receiving an inquiry about the usage status of each slice performed by the slice inquiry unit 303. Note that, instead of the predetermined unit time, whether or not a packet is transmitted / received may be determined at a predetermined time immediately before receiving the inquiry or at that moment.
  • FIG. 5 is a diagram illustrating an example of a hardware configuration of a server (for example, a server configuring the AMF 301, the SMF 211, and the like) that realizes the function of each node that executes the processing according to the present embodiment.
  • the server described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the server described above may be configured to include one or a plurality of the devices illustrated in the figure, or may be configured not to include some devices.
  • Each function in the server reads predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs an operation and the communication performed by the communication device 1004, the memory 1002 and the storage 1003. This is realized by controlling reading and / or writing of data.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the communication control unit 302 in the AMF 301 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, and data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • the program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the above-described communication control unit 302 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication control unit 302 described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the AMF301 or SMF211 includes hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a part or all of each functional block may be realized by the hardware.
  • the processor 1001 may be implemented by at least one of these hardware.
  • Pattern 1 shows a case where the UE 90 moves between eNBs connected to the same UP and SMF.
  • FIG. 6 is a diagram illustrating a situation according to pattern 1 in the communication system N1.
  • the pattern shown in FIG. 6 is a case where the UE 90 moves in the area SA # 1 where the services S1 and S2 can be used by communicating with the slices SL1 and SL2.
  • the base station apparatus with which the UE 90 communicates is changed from the eNB 81 to the eNB 82 by the handover.
  • the UE 90 continues to communicate with the slice SL1 and uses the service S1, but the service S2 using the slice SL2 may not be used.
  • the SMF 211 or 221 determines that no communication packet is transmitted to or received from the slice SL1 or SL2, it can be determined that the slice is not used. Further, the PCF 400 manages communication of each of the slices SL1 and SL2, and if it is determined that no communication packet is transmitted to or received from the slice SL1 or SL2, it can be determined that the slice is not used.
  • the AMF 301 switches the communication path between the eNB 81 and the UP 212 before movement to the communication path between the eNB 82 and the UP 212, but changes the communication path between the eNB 81 and UP 222 before the movement to the eNB 82. And a process of releasing the communication path using the slice SL2 without switching to the communication path between and UP222.
  • FIG. 7 is a processing sequence diagram of a method for determining whether or not the slice SL2 is not used in the SMF 221.
  • a signal related to handover is transmitted and received between the eNB 81 before the UE 90 moves and the destination eNB 82 (HO Request, HO Request ACK: S101).
  • processing related to handover is performed between the UE 90, the eNB 81, and the eNB 82 (Handover Execution: S102).
  • a signal for making a request for changing the communication path is transmitted from the destination eNB 82 to the AMF 301 (Path Switch Request: S103).
  • the signal for making a request for changing the communication path is “Path Switch Request”, but the signal for making a request for changing the communication path is It changes suitably according to the circumstances which change a communication path. This process is the same for other patterns.
  • the request for changing the communication path includes information for identifying the UE 90, information for identifying the communication path (TU-1, TU-2), and information for identifying the session (S-ID1, S-ID2). .
  • E-RAB ID E-UTRANRadio Access Access Bearer ID
  • PDU ID slice ID
  • the AMF 301 When the AMF 301 determines that a plurality of communication paths are provided for the UE 90, the AMF 301 transmits an instruction regarding the change of the communication path to the SMF 211 based on the information specifying the session (Path Switch Request: S105).
  • the instruction regarding the change of the communication path includes information (eNB) ID) for specifying the change destination eNB 82 and information (TU-1) for specifying the communication path to be changed.
  • the process related to the change of the communication path is performed according to a known procedure based on the instruction. Specifically, by transmitting information (eNB ID) specifying the change destination eNB 82 together with information (TU-1) specifying the communication path to be changed to the UP 212 of the same slice SL1. Then, the communication path is instructed (Modify (Bearer Request: S106). In response to this, the UP 212 returns to the SMF 211 that the process for creating the communication path has been performed together with the information (UP1 ID) for identifying the own node after performing the process for creating the communication path ( Modify Bearer Response: S107).
  • eNB ID information specifying the change destination eNB 82 together with information (TU-1) specifying the communication path to be changed to the UP 212 of the same slice SL1.
  • the communication path is instructed (Modify (Bearer Request: S106).
  • the UP 212 returns to the SMF 211 that the process for creating the communication path has been performed together with the information (UP1 ID
  • the SMF 211 that has received the reply from the UP 212 notifies the AMF 301 that the processing related to the change of the communication path has ended as a response to the instruction regarding the change of the communication path (S105) (Path Switch Request ack: S108). .
  • the SMF 211 is instructed to change the communication path based on information specifying the session. Transmit (Path Switch Request: S109).
  • the slice determination unit 221a determines whether or not a slice is used based on the presence / absence of a packet transmitted / received in a predetermined unit time, or the presence / absence of a packet transmitted / received at that moment or the immediately preceding interval. Judging.
  • a notification indicating that the slice SL2 is not used is transmitted to the AMF 301 (S111). This notification includes information that can identify an unused slice, and includes a slice ID, a session ID, and the like.
  • a release process for the communication path forming the slice SL2 is performed according to a known procedure. Specifically, the AMF 301 transmits a bearer information release request (Bearer release request) to the UP 222 via the SMF 221 and receives a response (Bearer release response) (S112). Thereafter, in AMF 301, Deactivate bearer request is transmitted to eNB 82 to release the path of the radio section of slice SL2, and in eNB 82, RRC connection release is transmitted to UE 90, and radio for slice SL2 is transmitted. The resources of the section are released (S113, S114).
  • the processing in the slice SL2 is performed next to the processing in the slice SL1, but the processing in the slice SL1 and the processing in the slice SL2 are performed separately.
  • the order shown may be different.
  • FIG. 8 is a processing sequence diagram thereof. Steps S101 to S103 are the same as in FIG. 7, and a process for handover is performed as the UE 90 moves between eNBs (S101 to S103).
  • the slice inquiring unit 303 transmits a slice usage status inquiry signal to the PCF 400 (S104a).
  • This inquiry signal is generated based on the slice ID for specifying the slice included in the signal for requesting the communication path change, and includes the slice ID. Instead of the slice ID, information for identifying a session, a radio access bearer ID, or the like may be included.
  • the slice determination unit 401 determines the use status of the slice (S104b). In the present embodiment, it is determined that the slice SL2 is not used, and the fact is notified by the slice determination unit 401 (S104c). This notification includes information that can identify an unused slice, and includes a slice ID, a session ID, and the like.
  • an instruction regarding the change of the communication path is transmitted only to the slice SL1. That is, a communication path switching request process and a bearer request are performed for the SMF 211 and the UP 212 forming the slice SL1 (S105 to S108).
  • the SMF 221 and UPX 222 forming the slice SL2 are not requested to switch the communication path, and the bearer information release process is performed on the communication path of the slice SL2 (S112).
  • the resource release processing of the radio section in the slice SL2 is performed (S113, S114).
  • the processes in S105 to S114 are the same as those in FIG.
  • Pattern 2 shows a case where the UE 90 moves between eNBs connected to different UPs under the same SMF.
  • FIG. 9 is a diagram illustrating a situation according to pattern 2 in the communication system N1.
  • the pattern shown in FIG. 9 is a case where the UE 90 moves from the area SA # 1 where the services S1 and S2 can be used to communicate with the slices SL1 and SL2 to move to a different area SA # 2. is there.
  • the area in the present embodiment is configured such that there are a plurality of UPs managed by one SMF, and these UPs are connected to different eNBs.
  • the slice SL1 is formed by SMF 211, UP 212a, and UP 212b.
  • the slice SL2 is formed by the SMF 221, UPX 222a, and UPX 222b. And eNB81 and eNB82 are arrange
  • the base station apparatus when UE 90 communicates is changed from eNB 81 to eNB 82 by handover, but continues to communicate with slice SL1 and use service S1, but service using slice SL2 S2 may not be used. Therefore, although it is necessary to create a communication path between the eNB 82 and the UP 212, it is not necessary to create a communication path between the eNB 82 and the UP 222.
  • FIG. 10 is a process sequence diagram of a method for determining whether the slice SL2 is not used in the SMF 221.
  • a signal related to handover is transmitted and received between the eNB 81 before the UE 90 moves and the destination eNB 82 (HO Request, HO Request ACK: S201).
  • processing related to handover is performed between the UE 90, the eNB 81, and the eNB 82 (Handover Execution: S202).
  • a signal for making a request for changing the communication path is transmitted from the destination eNB 82 to the AMF 301 (Path Switch Request: S203).
  • the request for changing the communication path includes information for specifying the UE 90, information for specifying the communication path (TU-1, TU-2), and a session (S-ID1, S-ID2).
  • S-ID1, S-ID2 information for specifying the communication path
  • S-ID1 information for specifying the communication path
  • S-ID2 information for specifying the communication path
  • S204 information included in the request for changing the communication path
  • two communication paths are individually provided for the UE 90. Can be determined.
  • the DNS server 350 is inquired about information related to the slice when the communication path is provided via the eNB 82 (DNS Query Request / Response: S205). More specifically, information specifying SMFs 211 and 221 that can perform communication when using the services S1 and S2 via the eNB 82 is acquired.
  • the communication control unit 302 from the information related to the SMF 211 and 221 acquired from the DNS server 350, the APN (Access Point Name) of the service server that is transmitting / receiving user data between the eNBs 82 and the location of the UE 90 ( That is, the SMF 211 of the slice SL1 to be accessed to use the service S1 and the SMF 221 of the slice SL2 to be accessed to use the service S2 are identified based on the information of the eNB 82 to be accessed) (S206). ).
  • a request for providing a new session related to the UE 90 is transmitted to the SMF 211 (Create Session Request: S207).
  • the session creation request includes information (eNB ID) for specifying the access destination eNB 82 and information (TU-1) for specifying the communication path provided according to the session creation.
  • the SMF 221 When the SMF 221 receives a session creation request, the SMF 221 performs processing related to the creation of a communication path according to a known procedure based on the request. Specifically, the UP 212b of the same slice SL1 is selected as the UP for creating the communication path (UP selection: S208). Thereafter, the UP 212b is instructed to create a session by transmitting information (eNB ID) specifying the eNB 82 together with information (TU-1) specifying the communication path (Create Session Request: S209).
  • eNB ID information specifying the eNB 82
  • TU-1 specifying the communication path
  • the UP 212b After performing the process related to session creation, the UP 212b returns to the SMF 211 that the process for creating the session has been performed together with information (UP2 ID) for identifying the own node (Create Session Response: S209).
  • the SMF 211 that has received the reply from the UP 212b notifies the AMF 301 that the processing related to the creation of the communication path has ended as a response to the session creation request (S210) (Create Session Response: S210).
  • the AMF 301 transmits a request for creating a new session related to the UE 90 to the SMF 221 (Create Session Request: S211).
  • the SMF 221 determines that the slice SL2 is not used (S212). The determination method is the same as that of the pattern 1 described above. Then, the SMF 221 transmits a notification that the slice SL2 is not used to the AMF 301 (S213).
  • This notification includes information that can identify an unused slice, and includes a slice ID, a session ID, and the like.
  • the AMF 301 When the AMF 301 receives a notification from the SMF 221 that the slice SL2 is not used, the AMF 301 requests the release of the communication path in the wireless section for the slice SL2 without performing the process of creating the communication path for the slice SL2 ( Deactivate bearer request) is transmitted to the eNB 82 (S215). Then, in the eNB 82, RRC connection release is transmitted to the eNB 81, and an instruction to release resources in the radio section for the slice SL2 in the eNB 81 is given (S215, S216).
  • FIG. 11 is a processing sequence diagram thereof. Steps S201 to S205 are the same as in FIG. 10, and the UE 90 moves between eNBs to perform processing for handover, and the eNB 82 transmits a request for switching the communication path to the AMF 301. Then, the AMF 301 inquires DNS about information related to the slice when the communication path is provided via the eNB 82 (S201 to S205).
  • the AMF 301 makes an inquiry about the usage status of each slice in the information related to the acquired slice to the PCF 400 (S205a).
  • the PCF 400 performs communication management of each slice SL1 (SMF211) and slice SL2 (SMF221). If it is determined that no communication packet is transmitted to or received from the slice SL1 or SL2, it can be determined that the slice is not used. In the present embodiment, the PCF 400 determines that the slice SL2 is not used (S205b), and transmits a notification to that effect (S205c). This notification includes information that can identify an unused slice, and includes a slice ID, a session ID, and the like.
  • the SMF 211 of the slice SL1 is selected according to information such as the APN of the service server, and a request for providing a session for the slice SL1 is transmitted. (S206, S207).
  • the UP 212b configuring the slice SL1 is selected based on the ID of the eNB 82 accessed by the UE 90 (S208). Thereafter, in accordance with the processing of S209-S216, a session is created only for slice SL1, and processing for which no session is created is performed for slice SL2.
  • Pattern 3 shows a case where the UE 90 moves between eNBs connected to different UPs and different SMFs, that is, to an area where there is no slice that has been connected for communication before the handover.
  • FIG. 12 is a diagram for explaining the situation of the pattern 3. This is a case where the UE 90 moves from the area SA # 1 in which the services S1 and S2 can be used to the different area SA # 2 in which the services S1 and S2 cannot be used by communicating with the slices SL1 and SL2.
  • the base station apparatus used when the UE 90 communicates needs to change not only the eNB 81 to the eNB 82 due to handover, but also the slice in which communication is performed in order to use the services S1 and S2.
  • the destination area SA # 2 there may be no slice corresponding to the slices SL1 and SL2. Therefore, when an inquiry is made to the DNS server, information related to the AMF 301 may not be acquired from the DNS server.
  • the functions of both the communication path between the eNB 81 and the UP 212 before movement and the communication path between the eNB 81 and the UP 222 before movement are It is conceivable to switch to a communication path with UPY 232 provided in slice SL3 that is not related to the service.
  • the slice SL3 here includes SMFY 231 and UPY 232.
  • eNB 82, AMF 301, UE 90, and the like know whether UE 90 can use services S1 and S2 by providing a communication path with which eNB 82 establishes a communication path in UE SA's destination area SA # 2. Not doing. Also, if the DNS server does not know that the slice SL3 can support the services S1 and S2, the DNS server cannot provide this information to the AMF 301. Therefore, the AMF 301 obtains information by inquiring NSSF (Network (Slice Selection Function).
  • the NSSF is a node that associates a service with a slice, and is a node that answers an appropriate slice to a service request from a request source.
  • a signal for making a request for changing the communication path is transmitted from the destination eNB 82 to the AMF 301 (Path Switch Request: S303).
  • the request for changing the communication path includes information for specifying the UE 90, information for specifying the communication path (TU-1, TU-2), and a session (S-ID1, S-ID2).
  • S-ID1, S-ID2 When receiving a request from the eNB 82 in the AMF 301, whether or not the UE 90 provides a communication path between the two slices and whether or not the slice needs to be changed based on information included in the request for changing the communication path Is determined (S304).
  • the AMF 301 has two communication paths for the UE 90. It can be judged that it is provided individually.
  • the AMF 301 determines whether or not a plurality of communication paths are provided based on the information included in the request for changing the communication path. If the AMF 301 determines that a plurality of communication paths are provided for the UE 90, the following processing is performed.
  • the AMF 301 when it is confirmed that a plurality of communication paths are provided for the UE 90 and the slices SL1 and SL2 do not cover the area SA # 2, the communication path is connected to the DNS server via the eNB 82. Inquires about the information related to the slice at the time of providing (DNS Query Request: S305). More specifically, the AMF 301 transmits the services S1 and S2 to the DNS server by transmitting the ECGI (E-UTRAN Cell Global ID) or the service server APN (APN1 & 2) that provides the services S1 and S2. Information for specifying the SMF of a slice to be communicated when using is acquired.
  • the ECGI is information that identifies a cell where the UE 90 is located, that is, information that indicates the position of the UE 90.
  • the DNS server does not store information in which information specifying an access destination (destination for providing a communication path) is associated with a location and a service type. Accordingly, the DNS server notifies the AMF 301 that there is no information indicating that there is no slice corresponding to the service, that is, no SMF information (DNS Query Response: S306).
  • the AMF 301 makes an inquiry by transmitting information for identifying the UE 90 to the NSSF, information for identifying the service to be used (APN1 & APN2), and ECGI (PolicyRequest: S307). .
  • the NSSF performs communication for using the service in the area where the UE 90 is located based on the information specifying the service to be used, the EGCI, and the information held by the own device. Identify slices that can be routed. Since NSSF holds information for identifying slices that can be handled for each service, this information is used to provide information on the corresponding slices (Policy Response: S308).
  • the AMF 301 determines to establish a session related to two services with the slice SL3 including the SMFY 231 (Selects CPY for boh APN1 & 2 Sessions: S309).
  • the DNS server and NSSF cannot provide information for identifying an appropriate slice for the information (APN1 & APN2) for identifying the service to be used, the service cannot be provided and the service itself is interrupted. .
  • an inquiry about the usage status of each slice (SMF 211 and SMF 221) before the movement is transmitted to the PCF 400 (S310).
  • the PCF 400 performs communication management with respect to the SMFs 211 and 222 constituting the slices SL1 and SL2, and when it is determined that no communication packet is transmitted to or received from the slice SL1 or SL2, the slice is used. It can be judged that it is not done.
  • the slice SL2, that is, the SMF 221 is not used S311), and a notification to that effect is transmitted to the AMF 301 (S312).
  • This notification includes information that can identify an unused slice, and includes a slice ID, a session ID, and the like.
  • a session request for the slice being used is transmitted (S313).
  • the AMF 301 transmits a request for establishing a new session related to the UE 90 to the SMF identified according to the processing so far, that is, the SMFY 231 (Create Session Request: S313).
  • the session creation request includes information (eNB ID) for identifying the access destination eNB 82, information (TU-1) for identifying a communication path provided according to the creation of the session, and information (APN1) for identifying the service. included.
  • the SMFY 231 When receiving a session creation request, the SMFY 231 performs processing related to creation of a communication path according to a known procedure based on the request. Specifically, the UP 232 of the same slice SL3 is selected as the UP for creating the communication path (UP Selection: S314). Thereafter, the UP 232 is instructed to create a session by transmitting information (eNB ID) specifying the eNB 82 together with information (TU-1) specifying the communication path (Create Session Request: S315). After UP232 performs processing related to creation of a communication path, it performs processing for creating a communication path together with information for identifying the communication path (TU-1) and information for identifying its own node (UPYUPID).
  • eNB ID information specifying the eNB 82
  • TU-1 specifying the communication path
  • UPYUPID information for identifying its own node
  • a reply is made to the SMFY 231 (Create Session Response: S316).
  • the SMFY 231 that has received the reply from the UP 263 notifies the AMF 301 that the processing related to the creation of the communication path has ended as a response to the session creation request (S313) (Create Session Response: S317).
  • the AMF 301 When the AMF 301 receives the response from the SMFY 231 (S317), the AMF 301 notifies the eNB 82 that the processing related to the change of the communication path has been completed (Path Switch Request ack: S318).
  • This signal includes information (TU-1) for specifying the communication path of slice SL1 and information (S-ID1) for specifying the session of slice SL1 in association with information (UPY ID) for specifying UP232. It is. Based on this information, the eNB 82 can identify the node that is the counterpart of the communication path.
  • the eNB 82 instructs the eNB 81 to release resources in the wireless section related to the communication path (Release Resource: S319).
  • a request to release a radio section resource for the slice SL2 (Deactivate bearer) without performing a session creation process for the slice SL2 request) is transmitted to the eNB 82 (S320).
  • RRC connection release is transmitted to the eNB 81, and a resource release instruction for the slice SL2 in the eNB 81 is performed (S321).
  • the communication system N1 in the present embodiment can execute a communication control method of a communication system that performs communication control on a communication terminal that is connected to a slice that is a virtual network generated on a network infrastructure.
  • the communication system N1 is used when it is determined that a slice is not used and a determination step that determines whether a slice is used in a control procedure in which the UE 90 as a communication terminal performs a handover.
  • the SMF 211, 221 can determine whether or not a slice is being used when performing a handover channel switching process.
  • the communication system N1 includes an AMF 301 that is a slice connection server that performs communication connection control between the slice and the UE 90, UP 212 and UPX 222 that are communication nodes that configure the slice and transmit user data to and from the UE 90, Slices are configured together with the UP 212 and UPX 222, and include SMFs 211 and 221 that are communication control servers that perform communication control on the UP 212 and UPX 222.
  • the communication control step here may include at least bearer release control.
  • the AMF 301 when the UE 90 is handed over to an area that can be communicably connected to the communication node that is communicably connected before the handover (pattern 1), the AMF 301 The communication connection state of the slice SL2 that has not been performed, for example, the bearer can be released.
  • the SMF 211, 221 can determine the usage status of the slice, and can perform a bearer release process according to the usage status. Therefore, waste of network resources can be eliminated and the resources can be used efficiently.
  • the AMF 301 is used.
  • the communication connection process is not performed for the slice SL2 that is not used, and the communication connection process is performed for the slice SL1 that is being used.
  • the SMF 211 and 221 can determine the usage status of a slice, and can perform communication connection processing such as establishing a session for the slice according to the usage status. Therefore, waste of network resources can be eliminated and the resources can be used efficiently.
  • the PCF 400 can determine the slice usage status.
  • the communication system N1 includes an AMF 301 that performs communication connection control between the slice and the UE 90, a UP 212 and 222 that configure the slice, and transmits and receives user data to and from the UE 90, and a slice together with the UP 212 and 222.
  • SMF 211 and 221 that perform communication control for 222
  • PCF 400 that is a management server that manages the usage status of slices SL1 and SL2.
  • the AMF 301 makes an inquiry to the PCF 400 about the usage status of the slice to which the UE 90 is connected (S104a in FIG. 8, S205a in FIG. 11, S310 in FIG. 13). Is provided.
  • the AMF 301 performs communication control so as not to use an unused slice based on the result of the inquiry in this inquiry step.
  • the AMF 301 uses the result based on the result of the inquiry in the inquiry step.
  • the communication connection state of the slice SL2 that has not been performed, for example, the bearer is released.
  • the AMF 301 performs an inquiry step. On the basis of the result of the inquiry, the communication connection process is not performed on the unused slice, but the communication connection process is performed on the used slice.
  • the UE 90 may be handed over to an area where there is no slice that has been connected for communication before the handover (pattern 3).
  • the communication system N1 further includes an NSSF that is a slice selection server that selects a slice corresponding to a service from a plurality of slices generated in advance.
  • the AMF 301 performs communication connection from the NSSF to the new slice (slice SL3).
  • the SMFY 231 identification information is acquired, and the usage status of the slices SL1 and SL2 to which the UE 90 was connected for communication before the handover is inquired to the PCF 400.
  • the communication connection process for the new slice SL3 corresponding to the slice SL1 that has been connected for communication before the handover is performed based on the inquiry result.
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC ConnectionReconfiguration) message, or the like.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
  • the specific operation performed by a specific device in this specification may be performed by its upper node in some cases.
  • a specific apparatus is a base station
  • various operations performed for communication with a terminal in a network including one or a plurality of network nodes (network nodes) having the base station are: Obviously, it can be performed by the base station and / or other network nodes other than the base station.
  • network nodes network nodes having the base station.
  • a combination of a plurality of other network nodes may be used.
  • Information etc. can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information or the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • the signal may be a message.
  • system and “network” used in this specification are used interchangeably.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by an index.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). When the base station accommodates a plurality of cells, the entire coverage area of the base station can be divided into a plurality of smaller areas, and each smaller area can be divided into a base station subsystem (for example, an indoor small base station RRH: Remote).
  • a communication service can also be provided by Radio Head).
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage. Further, the terms “base station”, “eNB”, “cell”, and “sector” may be used interchangeably herein.
  • a base station may also be called in terms such as a fixed station (station), a NodeB, an eNodeB (eNB), an access point, an femtocell, and a small cell.
  • User terminals can be obtained by those skilled in the art from subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
  • determining may encompass a wide variety of actions. “Judgment” and “determination” are, for example, calculating, computing, processing, deriving, investigating, lookingup (eg, table, database or other data (Search by structure), “acknowledging” (considering as “determining”, “determining”, etc.) may be included. In addition, “determination” and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as “determined” or "determined”.
  • determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • connection means any direct or indirect connection or coupling between two or more elements and It can include the presence of one or more intermediate elements between two “connected” or “coupled” elements.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples
  • electromagnetic energy such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to the element does not generally limit the quantity or order of the elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, a reference to the first and second elements does not mean that only two elements can be employed there, or that in some way the first element must precede the second element.

Abstract

The purpose of the present invention is to prevent waste of resources when performing a handover to a slice. This communication system N1 performs communication control on a communication terminal which communicatively connected with the slice that is a virtualized network generated on a network infrastructure. An SMF 221 determines whether or not the slice is used in a control procedure in which a UE 90 performs the handover. Then, when it is determined that the slice is not used, an AMF 301 performs communication control for not using the slice that is not used.

Description

通信制御方法および通信システムCommunication control method and communication system
 本発明は、仮想ネットワークであるスライスに対して通信制御を行う通信制御方法および通信システムに関する。 The present invention relates to a communication control method and a communication system for performing communication control on a slice that is a virtual network.
 従来の仮想化技術を用いたネットワークシステムでは、非特許文献1に開示された仮想化技術を用いて、ハードウェア資源を仮想的に切り分けて、ネットワークインフラ上に論理的に生成される仮想ネットワークであるスライスを生成する。そして、当該スライスへサービスを割当てることに基づいて、それぞれ独立したスライスのネットワークを用いてユーザが使用するユーザ端末に対してサービスを提供できる。この処理により、多様な要求条件を持つサービス各々にスライスを割り当てた場合、サービス個々の要求条件を満たすことを容易にし、そのシグナリング処理などを軽減させることが可能となる。また、ユーザ端末によって各々のスライスに割り当てられたサービスを利用する場合には、スライスに設けられる制御ノードに対して当該ユーザ端末に係る通信路を設けることで、通信路を介してユーザデータの送受信が行われる。 In a network system using conventional virtualization technology, a virtual network logically generated on a network infrastructure by using a virtualization technology disclosed in Non-Patent Document 1 to virtually separate hardware resources. Create a slice. And based on allocating a service to the said slice, a service can be provided with respect to the user terminal which a user uses using the network of each independent slice. With this process, when a slice is assigned to each service having various request conditions, it becomes easy to satisfy the request condition of each service, and the signaling process and the like can be reduced. In addition, when using a service assigned to each slice by a user terminal, user data is transmitted and received through the communication path by providing a communication path related to the user terminal to a control node provided in the slice. Is done.
 ところで、ユーザ端末は、各々のスライスに割り当てられたサービスを利用しながら、ハンドオーバすることで、その通信路を変更する場合がある。ユーザ端末がハンドオーバの前には、ユーザ端末が複数のスライスに対してアクセスしてユーザデータを送受信していたが、ハンドオーバをする際には、複数のスライスのうち一またはいくつかのスライスを利用しなくなる場合がある。そのようなスライスに対してハンドオーバをすることはネットワークリソースを無駄に使用することになる。 By the way, the user terminal may change its communication path by performing handover while using the service assigned to each slice. Before the user terminal was handed over, the user terminal accessed multiple slices and transmitted / received user data, but when performing handover, one or several slices of the multiple slices were used. There are times when it stops. Handing over such a slice wastes network resources.
 本発明は上記を鑑みてなされたものであり、スライスに対してハンドオーバをする際のリソースの無駄を防止できる通信制御方法および通信システムを提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a communication control method and a communication system that can prevent waste of resources when a slice is handed over.
 上記目的を達成するため、本発明の一側面に係る通信制御方法は、ネットワークインフラ上に生成される仮想化ネットワークであるスライスと通信接続する通信端末に対して通信制御を行う通信システムの通信制御方法において、前記通信端末がハンドオーバを行う制御手順において、前記スライスが利用されているか否かを判断する判断ステップと、前記判断ステップにおいて前記スライスが利用されていないと判断されると、当該利用されていないスライスと通信接続しないための通信制御を行う通信制御ステップと、を備える。 In order to achieve the above object, a communication control method according to an aspect of the present invention is a communication control of a communication system that performs communication control for a communication terminal that is connected to a slice that is a virtual network generated on a network infrastructure. In the method, a determination step of determining whether or not the slice is used in a control procedure in which the communication terminal performs a handover, and a determination is made that the slice is not used in the determination step. A communication control step for performing communication control so as not to establish communication connection with a slice that is not connected.
 この発明によれば、ハンドオーバをする際において、ハンドオーバ前に通信接続していたスライスが利用されていないと判断される場合には、その利用されていないスライスについては、当該スライスを利用しないように通信制御を行うことができる。したがって、ネットワークリソースの無駄を解消し、そのリソースを効率的に利用できる。 According to the present invention, when performing a handover, if it is determined that a slice that has been connected for communication before the handover is not used, the slice is not used for the unused slice. Communication control can be performed. Therefore, waste of network resources can be eliminated and the resources can be used efficiently.
 本発明によれば、ネットワークリソースの無駄を解消し、そのリソースを効率的に利用できる。 According to the present invention, waste of network resources can be eliminated and the resources can be used efficiently.
本発明の実施形態に係るシステムの構成を示す図である。It is a figure which shows the structure of the system which concerns on embodiment of this invention. スライスと通信システムとの関係を示す図である。It is a figure which shows the relationship between a slice and a communication system. スライスとハードとの関係を示す図である。It is a figure which shows the relationship between a slice and hardware. AMF301およびSMF211,221の機能構成を示すブロック図である。It is a block diagram which shows the function structure of AMF301 and SMF211,221. AMF301に係るハードウェア構成を示す図である。It is a figure which shows the hardware constitutions which concern on AMF301. 通信システムN1におけるパターン1にしたがった状況を説明する図である。It is a figure explaining the condition according to the pattern 1 in the communication system N1. SMF221においてスライスSL2を利用していないかを判断する方法の処理シーケンス図である。FIG. 10 is a processing sequence diagram of a method for determining whether a slice SL2 is not used in the SMF 221. AMF301がPCF400に各スライスの利用状況を問い合わせる処理のシーケンス図である。FIG. 11 is a sequence diagram of processing in which the AMF 301 inquires the PCF 400 about the usage status of each slice. 通信システムN1におけるパターン2に従った状況を説明する図である。It is a figure explaining the condition according to the pattern 2 in the communication system N1. SMF221においてスライスSL2が利用されていないかを判断する方法の処理シーケンス図である。FIG. 12 is a processing sequence diagram of a method for determining whether a slice SL2 is not used in the SMF 221. AMF301がPCF400に各スライスの利用状況を問い合わせる処理の処理シーケンス図である。FIG. 10 is a processing sequence diagram of processing in which the AMF 301 inquires the PCF 400 about the usage status of each slice. 通信システムN1におけるパターン3に従った状況を説明する図である。It is a figure explaining the condition according to the pattern 3 in the communication system N1. AMF301がPCF400に各スライスの利用状況を問い合わせる処理の処理シーケンス図である。FIG. 10 is a processing sequence diagram of processing in which the AMF 301 inquires the PCF 400 about the usage status of each slice.
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  図1では、仮想化されたネットワークを構成するシステム1の構成を示している。図1のシステム1は、仮想化ネットワークであるスライスに対してサービスを割り当てることで、サービスユーザ(Service User)の使用する端末(ユーザ端末)であるUE(UserEquipment)90に対してネットワークサービスを提供する。スライスとは、ネットワーク装置のリンクとノードの資源を仮想的に切り分けて、切り分けた資源を結合し、ネットワークインフラ上に論理的に生成される仮想化ネットワーク又はサービス網であり、スライス同士は資源を分離しており、互いに干渉しない。ネットワークサービスとは、通信サービス(専用線サービス等)やアプリケーションサービス(動画配信、エンベデッド装置等のセンサ装置を利用したサービス)等のネットワーク資源を用いたサービスをいう。また、UE90は、例えば、スマートフォン等の通信機能を有する端末装置である。 Fig. 1 shows the configuration of the system 1 constituting the virtualized network. The system 1 in FIG. 1 provides a network service to a UE (UserEquipment) 90 that is a terminal (user terminal) used by a service user (Service User) by assigning a service to a slice that is a virtual network. To do. A slice is a virtual network or service network that is created by logically dividing the network device link and node resources and combining the separated resources. They are separated and do not interfere with each other. The network service refers to a service using network resources such as a communication service (private line service or the like) or an application service (service using a sensor device such as moving image distribution or an embedded device). Moreover, UE90 is a terminal device which has communication functions, such as a smart phone, for example.
 図1に示すようにシステム1は、BSS/OSS(Business Support System/ Operations SupportSystem)10と、SO(Service Operator)20と、NFVO30と、VNFM40と、VIM(Virtualized Infrastructure Management: 仮想化基盤管理)50とを含んで構成されている。また、システム1には、NFVI(NFV(NetworkFunctions Virtualisation)Infrastructure)60とeNB(eNodeB)80とUE90とを含んで構成されている。このうち、NFVO30とVNFM40とVIM50は、ETSI NFV-ISGで仕様化されているMANO(Management & Orchestration)architectureの機能である。 As shown in FIG. 1, the system 1 includes a BSS / OSS (Business Support System / Operations Support System) 10, an SO (Service Operator) 20, an NFVO 30, a VNFM 40, and a VIM (Virtualized Infrastructure Management) 50. It is comprised including. In addition, the system 1 includes an NFVI (NFV (Network FunctionsNetworkVirtualization) Infrastructure) 60, an eNB (eNodeB) 80, and a UE 90. Among these, NFVO30, VNFM40, and VIM50 are functions of MANO (Management & Orchestration) architecture specified by ETSI NFV-ISG.
 これらの構成要素は、システム1におけるコアとなるネットワークを構成するものである。なお、互いに情報の送受信が必要な構成要素間は、有線接続されており情報の送受信が可能となっている。 These constituent elements constitute a core network in the system 1. Note that the components that need to transmit and receive information to each other are connected by wire and can transmit and receive information.
 本実施形態に係るシステム1は、物理サーバ上に実現される仮想マシンにおいて動作する仮想サーバによって移動通信端末に対して通信機能を提供する。即ち、システム1は、仮想化された移動体通信ネットワークである。通信機能は、仮想マシンによって当該通信機能に応じた通信処理を実行することで移動通信端末に対して提供される。 The system 1 according to the present embodiment provides a communication function for a mobile communication terminal by a virtual server operating in a virtual machine realized on a physical server. That is, the system 1 is a virtualized mobile communication network. The communication function is provided to the mobile communication terminal by executing a communication process corresponding to the communication function by the virtual machine.
 NFVI60は、仮想化環境を構成する物理資源(ノード群)から形成されたネットワークを示す。この物理資源は、概念的には計算資源、記憶資源、伝送資源を含む。具体的には、この物理資源は、システム1において通信処理を行う物理的なサーバ装置である物理サーバ、スイッチ等のノードを含んで構成されている。物理サーバは、CPU(コア、プロセッサ)、メモリ、及びハードディスク等の記憶手段を備えて構成される。通常、NFVI60を構成する物理サーバ等のノードは、複数まとめてデータセンタ(DC)等の拠点に配置される。データセンタでは、配置された物理サーバがデータセンタ内部のネットワークによって通信可能とされており、互いに情報の送受信を行うことができるようになっている。また、システム1には、複数のデータセンタが設けられている。データセンタ間はネットワークで通信可能とされており、異なるデータセンタに設けられた物理サーバはそのネットワークを介して互いに情報の送受信を行うことができる。 The NFVI 60 indicates a network formed from physical resources (node groups) constituting a virtual environment. The physical resources conceptually include computing resources, storage resources, and transmission resources. Specifically, the physical resource includes a node such as a physical server or a switch that is a physical server device that performs communication processing in the system 1. The physical server includes a storage unit such as a CPU (core, processor), a memory, and a hard disk. Normally, a plurality of nodes such as physical servers that constitute the NFVI 60 are arranged together at a base such as a data center (DC). In the data center, the arranged physical servers can communicate with each other via a network inside the data center, and can exchange information with each other. Further, the system 1 is provided with a plurality of data centers. Data centers can communicate with each other via a network, and physical servers provided in different data centers can transmit / receive information to / from each other via the network.
 SO(Service Operator)20は、ネットワークサービスを提供するためのネットワークの作成を要求する装置であり、例えば、仮想ネットワークを用いて各種ユーザへサービス提供をする事業者の端末装置(例えば、パーソナルコンピュータ等)である。 The SO (Service Operator) 20 is a device that requests creation of a network for providing a network service. For example, a terminal device (for example, a personal computer or the like) of a provider that provides services to various users using a virtual network. ).
 BSS/OSS10は、システム1におけるサービス管理を行い、システム1での通信機能に係る指示を行うノードである。例えば、BSS/OSS10は、NFVO30に対して、新たなネットワークサービスを追加するための指示を行う。また、BSS/OSS10は、システム1に係る通信事業者によって操作され得る。 The BSS / OSS 10 is a node that performs service management in the system 1 and gives instructions related to communication functions in the system 1. For example, the BSS / OSS 10 instructs the NFVO 30 to add a new network service. In addition, the BSS / OSS 10 can be operated by a telecommunications carrier related to the system 1.
 NFVO30は、物理資源であるNFVI60上に構築された仮想ネットワーク(スライス)全体の管理を行う全体管理ノード(機能エンティティ)である。NFVO30は、BSS/OSS10からの指示を受信し、当該指示に応じた処理を行う。NFVO30は、インフラとネットワークサービスの移動体通信網の物理資源において構築された仮想化ネットワーク全体にわたる管理を行う。NFVO30は、仮想ネットワークが提供したネットワークサービスをVNFM40及びVIM50と連携して適切な場所に実現する。例えば、ネットワークサービスのライフサイクル管理(具体的には例えば、ネットワークサービスの生成、更新、スケール制御、イベント収集)、移動体通信網内全体にわたる資源管理、すなわち資源の分散・予約・割当管理、サービス・インスタンス管理、及び資源配置に関わるポリシー管理(具体的には例えば、リソースの予約・割当、地理・法令等に基づく最適配置)を行う。 The NFVO 30 is an overall management node (functional entity) that manages the entire virtual network (slice) constructed on the NFVI 60 that is a physical resource. The NFVO 30 receives an instruction from the BSS / OSS 10 and performs processing according to the instruction. The NFVO 30 performs management over the entire virtual network constructed in the physical resources of the mobile communication network of infrastructure and network services. The NFVO 30 realizes the network service provided by the virtual network in an appropriate place in cooperation with the VNFM 40 and the VIM 50. For example, network service life cycle management (specifically, for example, network service creation, update, scale control, event collection), resource management over the entire mobile communication network, that is, resource distribution / reservation / allocation management, service -Perform instance management and policy management related to resource allocation (specifically, resource reservation / allocation, optimal allocation based on geography / laws, etc.).
 VNFM40は、物理資源(ノード)となるNFVI60に対して、ネットワークサービスを構成する機能を追加する仮想通信機能管理ノード(機能エンティティ)である。VNFM40は、システム1に複数、設けられていてもよい。 The VNFM 40 is a virtual communication function management node (functional entity) that adds a function that constitutes a network service to the NFVI 60 that is a physical resource (node). A plurality of VNFMs 40 may be provided in the system 1.
 VIM50は、NFVI60における物理資源(ノード)各々を管理する物理資源管理ノード(機能エンティティ)である。具体的には、資源の割当・更新・回収の管理、物理資源と仮想化ネットワークとの関連付け、ハードウェア資源とSW資源(ハイパーバイザー)一覧の管理を行う。通常、VIM50は、データセンタ(局舎)毎に管理を行う。物理資源の管理は、データセンタに応じた方式で行われる。データセンタの管理方式(管理資源の実装方式)は、OPENSTACKやvCenter等の種類がある。通常、VIM50は、データセンタの管理方式毎に設けられる。即ち、互いに異なる方式で、NFVI60における物理資源各々を管理する複数のVIM50が含まれる。なお、異なる管理方式で管理される物理資源の単位は、必ずしもデータセンタ単位でなくてもよい。 The VIM 50 is a physical resource management node (functional entity) that manages each physical resource (node) in the NFVI 60. Specifically, resource allocation / update / recovery management, association between physical resources and virtualized network, and management of hardware resources and SW resources (hypervisor) list are performed. Normally, the VIM 50 performs management for each data center (station building). Management of physical resources is performed by a method according to the data center. Data center management methods (management resource mounting methods) include OPENSTACK and vCenter. Normally, the VIM 50 is provided for each data center management method. That is, a plurality of VIMs 50 that manage each physical resource in the NFVI 60 are included in different ways. Note that the unit of physical resources managed by different management methods is not necessarily a data center unit.
 なお、NFVO30、VNFM40及びVIM50は、物理的なサーバ装置上でプログラムが実行されることにしたがって実現される(但し仮想化上で実現されることを制限するものでは無く、管理系統を分離した上で、仮想化上で実現してもよい)。NFVO30、VNFM40及びVIM50は、それぞれ別々の物理的なサーバ装置において実現されていてもよいし、同じサーバ装置において実現されていてもよい。NFVO30、VNFM40及びVIM50(を実現するためのプログラム)は、別々のベンダから提供されていてもよい。 The NFVO 30, VNFM 40, and VIM 50 are realized by executing a program on a physical server device (however, they are not limited to being realized on virtualization, and are separated from a management system). And may be realized on virtualization). The NFVO 30, the VNFM 40, and the VIM 50 may be realized in separate physical server devices, or may be realized in the same server device. The NFVO 30, VNFM 40, and VIM 50 (programs for realizing) may be provided from different vendors.
 NFVO30は、BSS/OSS10からのネットワークサービス作成要求を受信すると、VIM50に対してスライス(スライスSL1、SL2等)のためのリソース確保要求を行う。VIM50が、NFVI60を構成するサーバ装置やスイッチにおけるリソースを確保すると、NFVO30は、当該これらNFVI60に対してスライスを定義する。 When the NFVO 30 receives the network service creation request from the BSS / OSS 10, the NFVO 30 makes a resource securing request for the slice (slice SL1, SL2, etc.) to the VIM 50. When the VIM 50 secures resources in the server devices and switches configuring the NFVI 60, the NFVO 30 defines a slice for the NFVI 60.
 また、NFVO30は、VIM50に、NFVI60においてリソース確保させると、当該NFVI60に対してスライスを定義した情報をNFVO30が記憶しているテーブルに記憶する。そして、NFVO30は、当該ネットワークサービスに必要となる機能を実現するためのソフトウェアのインストール要求をVNFM40に対して行う。VNFM40は、当該インストール要求に応じて、VIM50によって確保されたNFVI60(サーバ装置、スイッチ装置またはルータ装置などのノード)に対して上記ソフトウェアをインストールする。 Further, when the NFVO 30 causes the VIM 50 to reserve resources in the NFVI 60, the NFVO 30 stores information defining slices for the NFVI 60 in a table stored in the NFVO 30. Then, the NFVO 30 makes a software installation request for realizing the functions necessary for the network service to the VNFM 40. In response to the installation request, the VNFM 40 installs the software on the NFVI 60 (node such as a server device, a switch device, or a router device) secured by the VIM 50.
 NFVO30は、VNFM40にしたがってソフトウェアがインストールされると、NFVO30が記憶しているテーブルへスライスとネットワークサービスとの対応付けをする。 When the software is installed according to the VNFM 40, the NFVO 30 associates the slice and the network service with the table stored in the NFVO 30.
 ここで図2に基づいて、スライスを構成する各ノードを含んだ通信システムN1について説明する。この通信システムN1はNFVI60上で構築されたシステムであり、eNB80、AMF(Core Access and Mobility managementFunction)301、SMF(Slice Management Function)211、221、UP(User Plane node)212、UPX222、およびPCF(Policy Control Function)400を含んで構成されている。AMF301は、スライスとUE90との通信接続制御を行うスライス接続サーバである。UP212,UPX222は、スライスを構成し、UE90との間でユーザデータを送受信する通信ノードである。SMF211,221は、当該UP212,UPX222ともにスライスを構成し、これらUP212、UPX222に対する通信制御を行う通信制御サーバである。PCF400は、ポリシー管理を行うサーバであって、本実施形態においては、スライス内に送受信されるユーザデータの管理を行う管理サーバである。PCF400は、SMF211、221を管理することにしたがって、そのユーザデータの流れを把握できる。UP212、222は、サービス提供サーバであるDN(Data Network)と接続して、ユーザデータの送受信を行うノードである。 Here, the communication system N1 including each node constituting the slice will be described with reference to FIG. The communication system N1 is a system constructed on the NFVI 60. The eNB 80, the AMF (Core Access and Mobility Management function) 301, the SMF (Slice Management Function) 211 and 221, the UP (User Plane node) 212, the UPX 222, and the PCF ( Policy Control Function) 400. The AMF 301 is a slice connection server that performs communication connection control between the slice and the UE 90. UP 212 and UPX 222 are communication nodes that constitute a slice and transmit / receive user data to / from UE 90. The SMFs 211 and 221 are communication control servers that constitute a slice together with the UP 212 and UPX 222 and perform communication control for the UP 212 and UPX 222. The PCF 400 is a server that performs policy management. In this embodiment, the PCF 400 is a management server that manages user data transmitted and received within a slice. The PCF 400 can grasp the flow of user data in accordance with the management of the SMFs 211 and 221. UPs 212 and 222 are nodes connected to a service providing server DN (Data と Network) to transmit and receive user data.
 NFVO30では、図2に示すように、SMF211およびUP212を含んだ、第1のサービス(サービスS1)用のスライスであるスライスSL1、SMF221およびUPX222を含んだ、第2のサービス(サービスS2)用のスライスであるスライスSL2を生成する。NFVO30は、スライスSL1に対してサービスS1を割り当て、スライスSL2に対してサービスS2を割り当てる。 In the NFVO 30, as shown in FIG. 2, for the second service (service S2) including the slices SL1, SMF221, and UPX222, which are slices for the first service (service S1) including the SMF 211 and UP212. A slice SL2 that is a slice is generated. The NFVO 30 assigns service S1 to slice SL1 and assigns service S2 to slice SL2.
 このように、通信システムN1では、スライスSL1およびスライスSL2が、互いに論理的に通信可能に構築される。 Thus, in the communication system N1, the slice SL1 and the slice SL2 are constructed so as to be logically communicable with each other.
 本実施形態では、サービスS1を提供するスライスSL1には、C-Plane制御ノードであるSMF211及びU-Plane制御ノードであるUP212が含まれる。C-plane制御ノードであるSMF211は、ユーザに対してサービスS1を提供する際の通信路の開設及び切断に係る制御信号等の送受信を行う。また、UP212は、ユーザに対してサービスS1を提供する際に通信路を設けると共に、サービスを提供するサービスサーバであるDN(Data Network)101とも通信路を設けて、ユーザデータの送受信を実行する。また、サービスS2を提供するスライスSL2には、SMF221及びU-plane制御ノードであるUPX222が含まれる。SMF221は、ユーザに対してサービスS2を提供する際の通信路の開設及び切断に係る制御信号等の送受信を行う。また、UPX222は、ユーザに対してサービスS2を提供する際に通信路を設けると共に、サービスを提供するサービスサーバ102とも通信路を設けて、ユーザデータの送受信を実行する。上記のスライスとサービスとの対応関係は、一例であり、適宜変更できる。すなわち、複数のサービスを提供するためのノードが1つのスライスに割り当てられていてもよい。 In the present embodiment, the slice SL1 that provides the service S1 includes the SMF 211 that is the C-Plane control node and the UP 212 that is the U-Plane control node. The SMF 211, which is a C-plane control node, transmits and receives control signals and the like related to establishment and disconnection of a communication path when providing the service S1 to the user. The UP 212 also provides a communication path when providing the service S1 to the user, and also provides a communication path with the DN (Data Network) 101, which is a service server that provides the service, to execute transmission / reception of user data. . In addition, the slice SL2 that provides the service S2 includes the SMF 221 and the UPX 222 that is a U-plane control node. The SMF 221 transmits and receives control signals and the like related to the establishment and disconnection of the communication path when providing the service S2 to the user. Further, the UPX 222 provides a communication path when providing the service S2 to the user, and also provides a communication path with the service server 102 that provides the service to execute transmission / reception of user data. The correspondence relationship between the slice and the service is an example and can be changed as appropriate. That is, a node for providing a plurality of services may be assigned to one slice.
 図3に、各スライスとサーバとの対応関係の例を示す。図3に示すように、ノードはサーバの一部であり、スライス1(スライスSL1)のSMF211の機能及びスライス2(スライスSL2)のSMF221の機能は、サーバ1(110A)及びスイッチ、ルータ等により実現される。また、スライス1(スライスSL1)のUP212の機能及びスライス2(スライスSL2)のUP222の機能は、サーバ2(110B)及びスイッチ、ルータ等により実現される。 Fig. 3 shows an example of the correspondence between each slice and the server. As shown in FIG. 3, the node is a part of the server, and the function of the SMF 211 of the slice 1 (slice SL1) and the function of the SMF 221 of the slice 2 (slice SL2) are performed by the server 1 (110A), the switch, the router, and the like. Realized. The function of the UP 212 of the slice 1 (slice SL1) and the function of the UP 222 of the slice 2 (slice SL2) are realized by the server 2 (110B), a switch, a router, and the like.
 NFVO30がスライスへネットワークサービスを割り当てると、当該ネットワークサービスのIDと、当該ネットワークサービスの最初の機能を提供する論理ノードの宛先(例えば、IPアドレス)とを含むアクセス情報をBSS/OSS10へ送信する。 When the NFVO 30 assigns a network service to the slice, the access information including the ID of the network service and the destination (for example, IP address) of the logical node that provides the first function of the network service is transmitted to the BSS / OSS 10.
 BSS/OSS10は、当該アドレス情報を受信すると、AMF301へ当該アドレス情報を通知する。AMF301は、基地局装置であるeNodeB(eNB)80と互いに通信可能なサーバ装置であり、サービスユーザであるUE90からネットワークサービスIDと共に、サービス要求がeNB80へなされると、当該eNB80からAMF301に対してUE90から受信したネットワークサービスIDを通知する。 When the BSS / OSS 10 receives the address information, the BSS / OSS 10 notifies the AMF 301 of the address information. The AMF 301 is a server device that can communicate with the eNodeB (eNB) 80 that is a base station device. When a service request is made to the eNB 80 together with the network service ID from the UE 90 that is a service user, The network service ID received from the UE 90 is notified.
 AMF301は、eNB80からネットワークサービスIDを受信すると、AMF301が記憶するアドレス情報のうち、eNB80から受信したネットワークサービスIDに対応するアドレス情報のネットワークサービスの最初の機能を提供する論理ノードの宛先情報をeNB80へ送信する。eNB80は、当該宛先情報をUE90へ通知する。この処理により、UE90は、ネットワークサービスを利用するために最初にアクセスする宛先を特定できる。 When the AMF 301 receives the network service ID from the eNB 80, the destination information of the logical node that provides the first function of the network service of the address information corresponding to the network service ID received from the eNB 80 among the address information stored in the AMF 301 is set to the eNB 80. Send to. The eNB 80 notifies the destination information to the UE 90. With this process, the UE 90 can specify the destination to be accessed first in order to use the network service.
 上記のように、AMF301は、ネットワークサービスの機能を提供する論理ノードの情報を保持している。換言すると、AMF301は、論理ノード毎に対応可能なサービスを特定する情報を保持している。詳細は後述するが、他の論理ノードからの問い合わせに基づいて、AMF301は、この情報を提供する機能を有する。 As described above, the AMF 301 holds information on logical nodes that provide network service functions. In other words, the AMF 301 holds information for identifying services that can be handled for each logical node. Although details will be described later, the AMF 301 has a function of providing this information based on an inquiry from another logical node.
 ここで、図3を参照しながら、本実施形態に係るシステム1にしたがって生成されるスライスの各ノード及びその他の装置に基づいて構成される通信システムN1について説明する。この通信システムN1とは、UE90が通信を行ってサービスを利用する際のコアネットワークを指している。 Here, a communication system N1 configured based on each node of a slice generated according to the system 1 according to the present embodiment and other devices will be described with reference to FIG. The communication system N1 refers to a core network when the UE 90 communicates and uses a service.
 図3に示すように、システム1において構築されるスライスを含む通信システムN1においては、UE90は、eNB80、及び、スライスSL1に設けられたサービスS1に係るUP212を経由して、サービスサーバ101(DN:Data Network))との間で通信を行うことで、サービスサーバ101の提供するサービスS1を利用できる。この際、eNB80とUP212との間には、UE90に係るユーザデータを送受信するための通信路が設けられる。すなわち、UP212がスライスSL1における制御ノードとして機能する。また、eNB80とUP212との間の通信路の開設及び切断に係る処理を行うための制御信号は、AMF301及びSMF211を経由して送受信が行われる。 As shown in FIG. 3, in the communication system N1 including the slice constructed in the system 1, the UE 90 transmits the service server 101 (DN) via the eNB 80 and the UP 212 related to the service S1 provided in the slice SL1. : Data Network)), the service S1 provided by the service server 101 can be used. At this time, a communication path for transmitting and receiving user data related to the UE 90 is provided between the eNB 80 and the UP 212. That is, the UP 212 functions as a control node in the slice SL1. In addition, a control signal for performing processing related to establishment and disconnection of a communication path between the eNB 80 and the UP 212 is transmitted / received via the AMF 301 and the SMF 211.
 また、UE90は、eNB80、及び、スライスSL2に設けられたサービスS2に係るUPX222を経由して、サービスサーバ102(DN:Data Network)との間で通信を行うことで、サービスサーバ102の提供するサービスS2を利用できる。この際、eNB80とUPX222との間には、UE90に係るユーザデータを送受信するための通信路が設けられる。すなわち、UPX222がスライスSL2における制御ノードとして機能する。また、このeNB80とUPX222との間の通信路の開設及び切断に係る処理を行うための制御信号は、AMF301及びSMF221を経由して送受信が行われる。 Also, the UE 90 provides the service server 102 by communicating with the service server 102 (DN: Data Network) via the eNB 80 and the UPX 222 related to the service S2 provided in the slice SL2. Service S2 can be used. At this time, a communication path for transmitting and receiving user data related to the UE 90 is provided between the eNB 80 and the UPX 222. That is, the UPX 222 functions as a control node in the slice SL2. In addition, a control signal for performing processing related to establishment and disconnection of a communication path between the eNB 80 and the UPX 222 is transmitted / received via the AMF 301 and the SMF 221.
 このように、本実施形態においては、UE90が在圏するエリアのeNB80と2つのスライスSL1,SL2との間で通信路を設けることで、UE90はスライスSL1,SL2を利用した通信が可能な状態となっている。 Thus, in this embodiment, the UE 90 can communicate using the slices SL1 and SL2 by providing a communication path between the eNB 80 in the area where the UE 90 is located and the two slices SL1 and SL2. It has become.
 図4は、本実施形態におけるAMF301、SMF211、221、およびPCF400の機能構成を示すブロック図である。図4(a)に示されるとおりAMF301は、接続・モビリティ管理機能を有するノードであり、通信制御部302を備えている。この通信制御部302は、各UE90と各スライスとに対して接続・モビリティ管理を行う。通信制御部302は、SMF211にスライスの通信路の切り換え要求を送信し、その応答を受信することに基づいて接続管理を行う。ここで通信制御部302は、通信路の切り換え要求に対する応答を受信することに代えて、当該スライスが利用されていない旨の通知を受信すると、当該スライスを形成する通信路のセッションを張るための通信処理を中止する。なお、すでにセッションが張られている場合には、当該セッションを解放するための通信処理を行う。 FIG. 4 is a block diagram showing a functional configuration of the AMF 301, SMF 211, 221 and PCF 400 in the present embodiment. As shown in FIG. 4A, the AMF 301 is a node having a connection / mobility management function, and includes a communication control unit 302. The communication control unit 302 performs connection / mobility management for each UE 90 and each slice. The communication control unit 302 performs connection management based on transmitting a request for switching the communication path of the slice to the SMF 211 and receiving the response. When the communication control unit 302 receives a notification that the slice is not used instead of receiving a response to the communication channel switching request, the communication control unit 302 establishes a session of the communication channel forming the slice. Cancel communication processing. If a session has already been established, communication processing for releasing the session is performed.
 SMF211は、C-plane制御ノードであり、UP212を制御するノードである。本実施形態においては、SMF211は、スライスSL1を形成するノードであり、このスライスSL1の利用の有無を判断するために、スライスSL1、例えば、UP212に通信パケットが、所定時間内において送受信されたかを判断する。SMF211は、スライスSL1が利用されていないと判断すると、その旨を、AMF301に通知する。SMF221も、同様に、UPX222を制御するノードであり、スライスSL2が利用されていないかを判断する。 The SMF 211 is a C-plane control node and a node that controls the UP 212. In the present embodiment, the SMF 211 is a node that forms the slice SL1, and in order to determine whether or not the slice SL1 is used, whether or not a communication packet is transmitted to and received from the slice SL1, for example, the UP 212 within a predetermined time. to decide. When the SMF 211 determines that the slice SL1 is not used, the SMF 211 notifies the AMF 301 to that effect. Similarly, the SMF 221 is a node that controls the UPX 222, and determines whether the slice SL2 is not used.
 図4(b)は、PCF400に対して問合せを行うAMF301、およびそのPCF400の機能を示すブロック図である。図に示されるとおり、AMF301は、通信制御部302およびスライス問合部303を含んで構成されている。PCF400は、スライス判断部401を含んで構成されている。 FIG. 4B is a block diagram showing the AMF 301 that makes an inquiry to the PCF 400 and the functions of the PCF 400. As shown in the figure, the AMF 301 includes a communication control unit 302 and a slice inquiry unit 303. The PCF 400 includes a slice determination unit 401.
 通信制御部302は、SMF211,221に対する通信接続制御を行う部分である。 The communication control unit 302 is a part that performs communication connection control for the SMFs 211 and 221.
 スライス問合部303は、通信制御部302において通信路の切り換え要求を受信すると、PCF400に対して各スライスの利用状況の問合せを行う。 When the communication control unit 302 receives the communication path switching request, the slice inquiry unit 303 makes an inquiry about the usage status of each slice to the PCF 400.
 PCF400において、スライス判断部401は、スライス問合部303が行った各スライスの利用状況の問合せを受けると、所定の単位時間においてパケットの送受信の有無を判断する部分である。なお、所定の単位時間に代えて、問合せを受けた直前の所定時間や、その瞬間において、パケットの送受信の有無を判断してもよい。 In the PCF 400, the slice determination unit 401 is a part that determines whether or not a packet is transmitted / received in a predetermined unit time when receiving an inquiry about the usage status of each slice performed by the slice inquiry unit 303. Note that, instead of the predetermined unit time, whether or not a packet is transmitted / received may be determined at a predetermined time immediately before receiving the inquiry or at that moment.
 図5は、本実施形態に係る処理を実行する各ノードの機能を実現するサーバ(例えば、AMF301およびSMF211等を構成するサーバ)のハードウェア構成の一例を示す図である。上述のサーバは、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 FIG. 5 is a diagram illustrating an example of a hardware configuration of a server (for example, a server configuring the AMF 301, the SMF 211, and the like) that realizes the function of each node that executes the processing according to the present embodiment. The server described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。上記のサーバのハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configuration of the server described above may be configured to include one or a plurality of the devices illustrated in the figure, or may be configured not to include some devices.
 サーバにおける各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004が行う通信や、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。 Each function in the server reads predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs an operation and the communication performed by the communication device 1004, the memory 1002 and the storage 1003. This is realized by controlling reading and / or writing of data.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のAMF301における通信制御部302などは、プロセッサ1001で実現されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like. For example, the communication control unit 302 in the AMF 301 described above may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュールやデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、上述の通信制御部302は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。 Further, the processor 1001 reads programs (program codes), software modules, and data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the above-described communication control unit 302 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks. Although the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(ElectricallyErasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存できる。 The memory 1002 is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the embodiment of the present invention.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. The storage 1003 may be referred to as an auxiliary storage device. The storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の通信制御部302などは、通信装置1004で実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like. For example, the communication control unit 302 described above may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001やメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
 また、AMF301またはSMF211等は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。 The AMF301 or SMF211 includes hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). A part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
 次に、これらAMF301およびSMF211を含む通信システムN1におけるUE90がハンドオーバする際における通信路の変更の具体的な処理(通信制御方法)について説明する。 Next, specific processing (communication control method) for changing the communication path when the UE 90 in the communication system N1 including the AMF 301 and the SMF 211 is handed over will be described.
 (パターン1)
パターン1は、UE90が同一のUP、SMFに接続するeNB間を移動する場合を示す。図6は、通信システムN1におけるパターン1にしたがった状況を説明する図である。図6に示すパターンは、例えば、UE90がスライスSL1,SL2との間で通信を行うことでUE90がサービスS1,S2を利用できるエリアSA#1内で移動をする場合である。この場合、UE90が通信をする際の基地局装置は、ハンドオーバによりeNB81からeNB82へ変更される。その際、UE90は、引き続きスライスSL1との通信を行ってサービスS1を利用するが、スライスSL2を利用したサービスS2は、利用していない場合がある。
(Pattern 1)
Pattern 1 shows a case where the UE 90 moves between eNBs connected to the same UP and SMF. FIG. 6 is a diagram illustrating a situation according to pattern 1 in the communication system N1. The pattern shown in FIG. 6 is a case where the UE 90 moves in the area SA # 1 where the services S1 and S2 can be used by communicating with the slices SL1 and SL2. In this case, the base station apparatus with which the UE 90 communicates is changed from the eNB 81 to the eNB 82 by the handover. At that time, the UE 90 continues to communicate with the slice SL1 and uses the service S1, but the service S2 using the slice SL2 may not be used.
 例えば、SMF211,221が、スライスSL1またはSL2に通信パケットが送受信されていないと判断すると、そのスライスは利用されていないと判断できる。また、PCF400は、各スライスSL1およびSL2の通信管理をしており、そのスライスSL1またはSL2に、通信パケットが送受信されていないと判断すると、そのスライスは利用されていないと判断できる。 For example, if the SMF 211 or 221 determines that no communication packet is transmitted to or received from the slice SL1 or SL2, it can be determined that the slice is not used. Further, the PCF 400 manages communication of each of the slices SL1 and SL2, and if it is determined that no communication packet is transmitted to or received from the slice SL1 or SL2, it can be determined that the slice is not used.
 スライスSL2が利用されていないと判断されると、AMF301は、移動前のeNB81とUP212との通信路をeNB82とUP212との通信路に切り替えるが、移動前のeNB81とUP222との通信路をeNB82とUP222との通信路に切り替えることなく、そのスライスSL2を利用した通信路を解放する、処理を行う。 If it is determined that the slice SL2 is not used, the AMF 301 switches the communication path between the eNB 81 and the UP 212 before movement to the communication path between the eNB 82 and the UP 212, but changes the communication path between the eNB 81 and UP 222 before the movement to the eNB 82. And a process of releasing the communication path using the slice SL2 without switching to the communication path between and UP222.
 スライスが利用されているか否かを判断する際において、SMF211においてどのスライスを利用していないかを判断する方法と、AMF301がPCF(Policy Control Function)400に問合せをすることにより、どのスライスを利用していないかを判断する方法とがある。このようなケースにおける具体的な処理の手順について、図を参照しながら説明する。図7は、SMF221においてスライスSL2を利用していないかを判断する方法の処理シーケンス図である。 When determining whether or not a slice is used, a method for determining which slice is not used in the SMF 211 and which slice is used by the AMF 301 making an inquiry to the PCF (Policy Control Function) 400 There is a method to judge whether or not. A specific processing procedure in such a case will be described with reference to the drawings. FIG. 7 is a processing sequence diagram of a method for determining whether or not the slice SL2 is not used in the SMF 221.
 まず、UE90の移動前のeNB81と移動先のeNB82との間でハンドオーバに係る信号の送受信が行われる(HO Request, HO Request ACK:S101)。この信号を契機として、UE90,eNB81,eNB82の間でハンドオーバに係る処理が行われる(Handover Execution:S102)。 First, a signal related to handover is transmitted and received between the eNB 81 before the UE 90 moves and the destination eNB 82 (HO Request, HO Request ACK: S101). With this signal as a trigger, processing related to handover is performed between the UE 90, the eNB 81, and the eNB 82 (Handover Execution: S102).
 この後、移動先のeNB82から、AMF301に対して、通信路の変更に係る要求を行う信号が送信される(Path Switch Request:S103)。なお、ここでは、UE90がハンドオーバを行う場合について説明しているので、通信路の変更に係る要求を行う信号は”Path Switch Request”であるが、通信路の変更に係る要求を行う信号は、通信路を変更する事情に応じて適宜変更される。この処理は、他のパターンでも同様である。通信路の変更に係る要求には、UE90を特定する情報と、通信路を特定する情報(TU-1,TU-2)及びセッションを特定する情報(S-ID1, S-ID2)が含まれる。なお、セッションを特定する情報(S-ID:Session ID)に代えて、無線アクセスベアラのID(E-RAB ID:E-UTRANRadio Access Bearer ID)や、スライスを特定するためのスライスID(PDU ID)を用いてもよい。この点は後述の他の実施形態及び他のパターンでも同様である。 After this, a signal for making a request for changing the communication path is transmitted from the destination eNB 82 to the AMF 301 (Path Switch Request: S103). Here, since the case where the UE 90 performs handover is described, the signal for making a request for changing the communication path is “Path Switch Request”, but the signal for making a request for changing the communication path is It changes suitably according to the circumstances which change a communication path. This process is the same for other patterns. The request for changing the communication path includes information for identifying the UE 90, information for identifying the communication path (TU-1, TU-2), and information for identifying the session (S-ID1, S-ID2). . In place of information (S-ID: Session ID) for specifying a session, a radio access bearer ID (E-RAB ID: E-UTRANRadio Access Access Bearer ID) or a slice ID (PDU ID) for specifying a slice ) May be used. This also applies to other embodiments and other patterns described later.
 AMF301が、UE90に関して複数の通信路が設けられていると判定した場合、セッションを特定する情報等に基づいて、SMF211に対して通信路の変更に関する指示を送信する(Path Switch Request:S105)。通信路の変更に関する指示には、変更先のeNB82を特定する情報(eNB ID)と、変更の対象となる通信路を特定する情報(TU-1)と、が含まれる。 When the AMF 301 determines that a plurality of communication paths are provided for the UE 90, the AMF 301 transmits an instruction regarding the change of the communication path to the SMF 211 based on the information specifying the session (Path Switch Request: S105). The instruction regarding the change of the communication path includes information (eNB) ID) for specifying the change destination eNB 82 and information (TU-1) for specifying the communication path to be changed.
 SMF211では、通信路の変更に関する指示を受信すると、当該指示に基づいて、公知の手順にしたがって、通信路の変更に係る処理を行う。具体的には、同一のスライスSL1のUP212に対して、変更の対象となる通信路を特定する情報(TU-1)と共に、変更先のeNB82を特定する情報(eNB ID)を送信することで、通信路の作成を指示する(Modify Bearer Request:S106)。これに対して、UP212は、通信路の作成に係る処理を行った後、自ノードを特定する情報(UP1 ID)と共に、通信路を作成する処理を行ったことをSMF211に対して返信する(Modify Bearer Response:S107)。UP212からの返信を受信したSMF211は、通信路の変更に係る処理が終わったことを、通信路の変更に関する指示(S105)に対する応答として、AMF301に対して通知する(Path Switch Request ack:S108)。 When the SMF 211 receives an instruction regarding the change of the communication path, the process related to the change of the communication path is performed according to a known procedure based on the instruction. Specifically, by transmitting information (eNB ID) specifying the change destination eNB 82 together with information (TU-1) specifying the communication path to be changed to the UP 212 of the same slice SL1. Then, the communication path is instructed (Modify (Bearer Request: S106). In response to this, the UP 212 returns to the SMF 211 that the process for creating the communication path has been performed together with the information (UP1 ID) for identifying the own node after performing the process for creating the communication path ( Modify Bearer Response: S107). The SMF 211 that has received the reply from the UP 212 notifies the AMF 301 that the processing related to the change of the communication path has ended as a response to the instruction regarding the change of the communication path (S105) (Path Switch Request ack: S108). .
 SMF221においても同様の処理が行われ、AMF301が、UE90に関して複数の通信路が設けられていると判定した場合、セッションを特定する情報等に基づいて、SMF211に対して通信路の変更に関する指示を送信する(Path Switch Request:S109)。本実施形態においてはSMF221を用いたスライスはUE90によって利用されていないと判断される(S110)。例えば、SMF221において、そのスライス判断部221aは、所定の単位時間での送受信されたパケットの有無や、その瞬間または直前区間の送受信されたパケットの有無に基づいて、スライスが利用されているか否かを判断する。SMF221では、スライスSL2が利用されていないことを示す通知がAMF301に送信される(S111)。この通知には、利用されていないスライスを特定可能な情報が含まれており、スライスIDや、セッションIDなどが含まれている。 The same processing is performed in the SMF 221, and when the AMF 301 determines that a plurality of communication paths are provided for the UE 90, the SMF 211 is instructed to change the communication path based on information specifying the session. Transmit (Path Switch Request: S109). In the present embodiment, it is determined that the slice using the SMF 221 is not used by the UE 90 (S110). For example, in the SMF 221, the slice determination unit 221a determines whether or not a slice is used based on the presence / absence of a packet transmitted / received in a predetermined unit time, or the presence / absence of a packet transmitted / received at that moment or the immediately preceding interval. Judging. In the SMF 221, a notification indicating that the slice SL2 is not used is transmitted to the AMF 301 (S111). This notification includes information that can identify an unused slice, and includes a slice ID, a session ID, and the like.
 そして、AMF301において、スライスSL2が利用されていないことを示す通知が受信されると、公知の手順により、そのスライスSL2を形成する通信路に対する解放処理が行われる。具体的には、AMF301において、ベアラ情報の解放要求(Bearer release request)がSMF221を介してUP222に対して送信され、その応答(Bearer release response)が受信される(S112)。その後、AMF301においてeNB82に対して、スライスSL2の無線区間のパスを解放するために、Deactivate bearer requestが送信され、eNB82においては、UE90に対してRRC connection releaseが送信され、スライスSL2のための無線区間のリソースが開放される(S113、S114)。 Then, when the AMF 301 receives a notification indicating that the slice SL2 is not used, a release process for the communication path forming the slice SL2 is performed according to a known procedure. Specifically, the AMF 301 transmits a bearer information release request (Bearer release request) to the UP 222 via the SMF 221 and receives a response (Bearer release response) (S112). Thereafter, in AMF 301, Deactivate bearer request is transmitted to eNB 82 to release the path of the radio section of slice SL2, and in eNB 82, RRC connection release is transmitted to UE 90, and radio for slice SL2 is transmitted. The resources of the section are released (S113, S114).
 図7では、スライスSL1での処理のつぎにスライスSL2での処理が行われているが、スライスSL1での処理と、スライスSL2での処理は個別に行われるため、処理の順序は、図7に示す順序とは異なる可能性がある。 In FIG. 7, the processing in the slice SL2 is performed next to the processing in the slice SL1, but the processing in the slice SL1 and the processing in the slice SL2 are performed separately. The order shown may be different.
 つぎに、AMF301がPCF400に各スライスの利用状況を問い合わせる処理について説明する。図8は、その処理シーケンス図である。ステップS101~ステップS103は、図7と同じであり、UE90がeNB間を移動することにしたがって、ハンドオーバのための処理が行われる(S101~S103)。 Next, processing in which the AMF 301 inquires the PCF 400 about the usage status of each slice will be described. FIG. 8 is a processing sequence diagram thereof. Steps S101 to S103 are the same as in FIG. 7, and a process for handover is performed as the UE 90 moves between eNBs (S101 to S103).
 AMF301において、通信路の変更に係る要求を行う信号(Path Switch Request)が受信されると、スライス問合部303により、PCF400に対して、スライスの利用状況の問合せ信号が送信される(S104a)。この問合せ信号は、通信路の変更に係る要求を行う信号に含まれているスライスを特定するためのスライスIDに基づいて生成され、スライスIDが含まれる。なお、スライスIDに代えて、セッションを特定する情報や、無線アクセスベアラのID等が含まれてもよい。 When the AMF 301 receives a signal for making a request for changing the communication path (Path Switch 通信 Request), the slice inquiring unit 303 transmits a slice usage status inquiry signal to the PCF 400 (S104a). . This inquiry signal is generated based on the slice ID for specifying the slice included in the signal for requesting the communication path change, and includes the slice ID. Instead of the slice ID, information for identifying a session, a radio access bearer ID, or the like may be included.
 PCF400において、各スライスにおいて通信されているパケット量が各SMFを介して管理されており、スライス判断部401により、スライスの利用状況が判断される(S104b)。本実施形態では、スライスSL2が利用されていないと判断され、その旨がスライス判断部401により通知される(S104c)。この通知には、利用されていないスライスを特定可能な情報が含まれており、スライスIDや、セッションIDなどが含まれている。 In the PCF 400, the amount of packets communicated in each slice is managed via each SMF, and the slice determination unit 401 determines the use status of the slice (S104b). In the present embodiment, it is determined that the slice SL2 is not used, and the fact is notified by the slice determination unit 401 (S104c). This notification includes information that can identify an unused slice, and includes a slice ID, a session ID, and the like.
 AMF301において、スライスSL2が利用されていない旨の通知が受信されると、スライスSL1のみに対して通信路の変更に関する指示が送信される。すなわち、スライスSL1を形成するSMF211およびUP212に対して、通信路の切り換え要求処理およびベアラ要求が行われる(S105-S108)。AMF301において、スライスSL2を形成するSMF221、UPX222に対しては、通信路の切り換え要求等は行われず、スライスSL2の通信路におけるベアラ情報の解放処理が行われる(S112)。その後、スライスSL2における無線区間のリソースの解放処理が行われる(S113、S114)。これらS105-S114の処理は、図7と同じである。 When the AMF 301 receives a notification that the slice SL2 is not used, an instruction regarding the change of the communication path is transmitted only to the slice SL1. That is, a communication path switching request process and a bearer request are performed for the SMF 211 and the UP 212 forming the slice SL1 (S105 to S108). In the AMF 301, the SMF 221 and UPX 222 forming the slice SL2 are not requested to switch the communication path, and the bearer information release process is performed on the communication path of the slice SL2 (S112). Thereafter, the resource release processing of the radio section in the slice SL2 is performed (S113, S114). The processes in S105 to S114 are the same as those in FIG.
 (パターン2)
パターン2は、UE90が、同一のSMFの配下にある異なるUPに接続するeNB間を移動する場合を示す。図9は、通信システムN1におけるパターン2に従った状況を説明する図である。図9に示すパターンは、例えば、UE90がスライスSL1,SL2との間で通信を行うことでUE90がサービスS1,S2を利用できるエリアSA#1から、異なるエリアSA#2へ移動をする場合である。なお、本実施形態におけるエリアは、一のSMFが管理するUPが複数存在し、それらUPは異なるeNBに接続されるように構成されたものである。この例では、スライスSL1は、SMF211、UP212a、およびUP212bにより形成されている。また、スライスSL2は、SMF221、UPX222a、およびUPX222bにより形成されている。そして、eNB81およびeNB82は、いずれのスライスSL1およびSL2にもアクセス可能に配置されている。したがって、UE90は、エリアSA#2に移動したとしてもスライスSL1およびSL2にアクセスできる。
(Pattern 2)
Pattern 2 shows a case where the UE 90 moves between eNBs connected to different UPs under the same SMF. FIG. 9 is a diagram illustrating a situation according to pattern 2 in the communication system N1. The pattern shown in FIG. 9 is a case where the UE 90 moves from the area SA # 1 where the services S1 and S2 can be used to communicate with the slices SL1 and SL2 to move to a different area SA # 2. is there. The area in the present embodiment is configured such that there are a plurality of UPs managed by one SMF, and these UPs are connected to different eNBs. In this example, the slice SL1 is formed by SMF 211, UP 212a, and UP 212b. The slice SL2 is formed by the SMF 221, UPX 222a, and UPX 222b. And eNB81 and eNB82 are arrange | positioned so that access to either slice SL1 and SL2 is possible. Therefore, the UE 90 can access the slices SL1 and SL2 even when moving to the area SA # 2.
 本実施形態において、UE90が通信をする際の基地局装置は、ハンドオーバによりeNB81からeNB82へ変更されるが、引き続きスライスSL1との通信を行ってサービスS1を利用するが、スライスSL2を利用したサービスS2は、利用していない場合がある。したがって、eNB82とUP212との通信路を作成する必要があるが、eNB82とUP222との通信路を作成する必要はない。 In the present embodiment, the base station apparatus when UE 90 communicates is changed from eNB 81 to eNB 82 by handover, but continues to communicate with slice SL1 and use service S1, but service using slice SL2 S2 may not be used. Therefore, although it is necessary to create a communication path between the eNB 82 and the UP 212, it is not necessary to create a communication path between the eNB 82 and the UP 222.
 上述パターン1と同様に、スライスが利用されて否かを判断する際において、SMF211、221においてどのスライスを利用していないかを判断する方法と、AMF301がPCF400に問合せをすることにしたがって、どのスライスを利用していないかを判断する方法とがある。このようなケースにおける具体的な処理の手順について、図を参照しながら説明する。図10は、SMF221においてスライスSL2が利用されていないかを判断する方法の処理シーケンス図を示す。 Similar to pattern 1 above, when determining whether or not a slice is used, which method is used to determine which slice is not used in SMF 211 and 221, and which AMF 301 makes an inquiry to PCF 400 There is a method for determining whether a slice is used. A specific processing procedure in such a case will be described with reference to the drawings. FIG. 10 is a process sequence diagram of a method for determining whether the slice SL2 is not used in the SMF 221.
 まず、UE90の移動前のeNB81と移動先のeNB82との間でハンドオーバに係る信号の送受信が行われる(HO Request, HO Request ACK:S201)。この信号を契機として、UE90,eNB81,eNB82の間でハンドオーバに係る処理が行われる(Handover Execution:S202)。 First, a signal related to handover is transmitted and received between the eNB 81 before the UE 90 moves and the destination eNB 82 (HO Request, HO Request ACK: S201). With this signal as a trigger, processing related to handover is performed between the UE 90, the eNB 81, and the eNB 82 (Handover Execution: S202).
 この後、移動先のeNB82から、AMF301に対して、通信路の変更に係る要求を行う信号が送信される(Path Switch Request:S203)。 Thereafter, a signal for making a request for changing the communication path is transmitted from the destination eNB 82 to the AMF 301 (Path Switch Request: S203).
 通信路の変更に係る要求には、UE90を特定する情報と、通信路を特定する情報(TU-1,TU-2)及びセッションを特定する(S-ID1, S-ID2)が含まれる。AMF301において、eNB82からの要求を受信すると、通信路の変更に係る要求に含まれる情報により、UE90が2つのスライスとの間で通信路を設けているか否かを判定する(S204)。本実施形態では、通信路の変更に係る要求に、通信路を特定する情報が複数含まれていて、セッションを特定する情報が複数含まれていると、UE90に関して2つの通信路が個別に設けられていることを判断できる。 The request for changing the communication path includes information for specifying the UE 90, information for specifying the communication path (TU-1, TU-2), and a session (S-ID1, S-ID2). When receiving a request from the eNB 82 in the AMF 301, it is determined whether or not the UE 90 provides a communication path between the two slices based on information included in the request for changing the communication path (S204). In the present embodiment, when a request for changing a communication path includes a plurality of pieces of information for specifying a communication path and a plurality of pieces of information for specifying a session, two communication paths are individually provided for the UE 90. Can be determined.
 AMF301において、DNSサーバ350に対して、eNB82を介して通信路を設ける際のスライスに係る情報を問い合わせる(DNS Query Request/Response:S205)。より具体的には、eNB82を介してサービスS1,S2を利用する際に通信を行うことができるSMF211、221を特定する情報を取得する。この結果、通信制御部302では、DNSサーバ350から取得されるSMF211、221に係る情報から、eNB82間でユーザデータを送受信しようしているサービスサーバのAPN(Access Point Name)と、UE90の位置(すなわちアクセスするeNB82の情報)とに基づいて、サービスS1を利用するためにアクセスすべきスライスSL1のSMF211と、サービスS2を利用するためにアクセスすべきスライスSL2のSMF221と、が特定される(S206)。 In the AMF 301, the DNS server 350 is inquired about information related to the slice when the communication path is provided via the eNB 82 (DNS Query Request / Response: S205). More specifically, information specifying SMFs 211 and 221 that can perform communication when using the services S1 and S2 via the eNB 82 is acquired. As a result, in the communication control unit 302, from the information related to the SMF 211 and 221 acquired from the DNS server 350, the APN (Access Point Name) of the service server that is transmitting / receiving user data between the eNBs 82 and the location of the UE 90 ( That is, the SMF 211 of the slice SL1 to be accessed to use the service S1 and the SMF 221 of the slice SL2 to be accessed to use the service S2 are identified based on the information of the eNB 82 to be accessed) (S206). ).
 AMF301において、SMF211に対して、UE90に係る新たなセッションを設けるための要求を送信する(Create Session Request:S207)。セッションの作成要求には、アクセス先のeNB82を特定する情報(eNB ID)と、セッションの作成にしたがって設けられる通信路を特定する情報(TU-1)と、が含まれる。 In the AMF 301, a request for providing a new session related to the UE 90 is transmitted to the SMF 211 (Create Session Request: S207). The session creation request includes information (eNB ID) for specifying the access destination eNB 82 and information (TU-1) for specifying the communication path provided according to the session creation.
 SMF221では、セッションの作成要求を受信すると、当該要求に基づいて、公知の手順により、通信路の作成に係る処理を行う。具体的には、通信路を作成するUPとして、同一のスライスSL1のUP212bを選択する(UP Selection:S208)。その後、UP212bに対して、通信路を特定する情報(TU-1)と共に、eNB82を特定する情報(eNB ID)を送信することで、セッション作成を指示する(Create Session Request:S209)。UP212bは、セッション作成に係る処理を行った後、自ノードを特定する情報(UP2 ID)と共に、セッションを作成する処理を行ったことをSMF211に対して返信する(Create Session Response:S209)。UP212bからの返信を受信したSMF211は、通信路の作成に係る処理が終わったことを、セッション作成要求(S210)に対する応答として、AMF301に対して通知する(Create Session Response:S210)。 When the SMF 221 receives a session creation request, the SMF 221 performs processing related to the creation of a communication path according to a known procedure based on the request. Specifically, the UP 212b of the same slice SL1 is selected as the UP for creating the communication path (UP selection: S208). Thereafter, the UP 212b is instructed to create a session by transmitting information (eNB ID) specifying the eNB 82 together with information (TU-1) specifying the communication path (Create Session Request: S209). After performing the process related to session creation, the UP 212b returns to the SMF 211 that the process for creating the session has been performed together with information (UP2 ID) for identifying the own node (Create Session Response: S209). The SMF 211 that has received the reply from the UP 212b notifies the AMF 301 that the processing related to the creation of the communication path has ended as a response to the session creation request (S210) (Create Session Response: S210).
 また、AMF301は、SMF221に対して、UE90に係る新たなセッションを作成するための要求を送信する(Create Session Request:S211)。ここでは、SMF221は、スライスSL2は使用されていないと判断する(S212)。その判断手法は上述パターン1と同じである。そして、SMF221は、スライスSL2は利用されていない旨の通知を、AMF301に送信する(S213)。この通知には、利用されていないスライスを特定可能な情報が含まれており、スライスIDや、セッションIDなどが含まれている。 In addition, the AMF 301 transmits a request for creating a new session related to the UE 90 to the SMF 221 (Create Session Request: S211). Here, the SMF 221 determines that the slice SL2 is not used (S212). The determination method is the same as that of the pattern 1 described above. Then, the SMF 221 transmits a notification that the slice SL2 is not used to the AMF 301 (S213). This notification includes information that can identify an unused slice, and includes a slice ID, a session ID, and the like.
 AMF301では、SMF221からスライスSL2は利用されていない旨の通知を受けると、スライスSL2のための通信路の作成処理を行うことなく、スライスSL2のための無線区間の通信路の解放処理の要求(Deactivate bearer request)をeNB82に送信する(S215)。そして、eNB82では、RRC connection releaseがeNB81に対して送信され、eNB81におけるスライスSL2のための無線区間のリソースの解放指示が行われる(S215、S216)。 When the AMF 301 receives a notification from the SMF 221 that the slice SL2 is not used, the AMF 301 requests the release of the communication path in the wireless section for the slice SL2 without performing the process of creating the communication path for the slice SL2 ( Deactivate bearer request) is transmitted to the eNB 82 (S215). Then, in the eNB 82, RRC connection release is transmitted to the eNB 81, and an instruction to release resources in the radio section for the slice SL2 in the eNB 81 is given (S215, S216).
 つぎに、AMF301がPCF400にスライスSL2の利用状況を問い合わせる処理について説明する。図11は、その処理シーケンス図である。ステップS201~ステップS205は、図10と同じであり、UE90がeNB間を移動することにより、ハンドオーバのための処理が行われ、eNB82からAMF301にその通信路の切り換え要求が送信される。そして、AMF301において、DNSに対してeNB82を介して通信路を設ける際のスライスに係る情報を問い合わせる(S201-S205)。 Next, processing in which the AMF 301 inquires the PCF 400 about the usage status of the slice SL2 will be described. FIG. 11 is a processing sequence diagram thereof. Steps S201 to S205 are the same as in FIG. 10, and the UE 90 moves between eNBs to perform processing for handover, and the eNB 82 transmits a request for switching the communication path to the AMF 301. Then, the AMF 301 inquires DNS about information related to the slice when the communication path is provided via the eNB 82 (S201 to S205).
 その後、AMF301において、PCF400に対して、取得したスライスに係る情報における各スライスの利用状況の問合せが行われる(S205a)PCF400は、各スライスSL1(SMF211)およびスライスSL2(SMF221)の通信管理をしており、そのスライスSL1またはSL2に、通信パケットが送受信されていないと判断すると、そのスライスは利用されていないと判断できる。本実施形態においては、PCF400において、スライスSL2が利用されていないと判断され(S205b)、その旨の通知が送信される(S205c)。この通知には、利用されていないスライスを特定可能な情報が含まれており、スライスIDや、セッションIDなどが含まれている。 Thereafter, the AMF 301 makes an inquiry about the usage status of each slice in the information related to the acquired slice to the PCF 400 (S205a). The PCF 400 performs communication management of each slice SL1 (SMF211) and slice SL2 (SMF221). If it is determined that no communication packet is transmitted to or received from the slice SL1 or SL2, it can be determined that the slice is not used. In the present embodiment, the PCF 400 determines that the slice SL2 is not used (S205b), and transmits a notification to that effect (S205c). This notification includes information that can identify an unused slice, and includes a slice ID, a session ID, and the like.
 AMF301において、PCF400からスライスSL2が利用されていない旨の通知が受信されると、サービスサーバのAPN等の情報に従って、スライスSL1のSMF211が選択され、スライスSL1に対するセッションを設けるための要求が送信される(S206、S207)。SMF211において、UE90がアクセスしたeNB82のID等に基づいて、スライスSL1を構成するUP212bを選択する(S208)。以降、S209-S216の処理にしたがって、スライスSL1のみについてセッションが作成され、スライスSL2に対しては、セッションが作成されない処理が行われる。 When the AMF 301 receives a notification that the slice SL2 is not used from the PCF 400, the SMF 211 of the slice SL1 is selected according to information such as the APN of the service server, and a request for providing a session for the slice SL1 is transmitted. (S206, S207). In the SMF 211, the UP 212b configuring the slice SL1 is selected based on the ID of the eNB 82 accessed by the UE 90 (S208). Thereafter, in accordance with the processing of S209-S216, a session is created only for slice SL1, and processing for which no session is created is performed for slice SL2.
 (パターン3)
パターン3は、UE90が、異なるUP、異なるSMFに接続するeNB間、すなわちハンドオーバ前に通信接続していたスライスが存在しないエリアへ移動する場合を示す。図12は、パターン3の状況を説明する図である。UE90がスライスSL1,SL2との間で通信を行うことでUE90がサービスS1,S2を利用できるエリアSA#1から、サービスS1,S2を利用できない異なるエリアSA#2へ移動をする場合である。この場合、UE90が通信をする際の基地局装置は、ハンドオーバによりeNB81からeNB82へ変更されるだけでなく、サービスS1,S2を利用するために通信を行うスライスを変更する必要がある。ただし、移動先のエリアSA#2では、スライスSL1,SL2に対応するスライスが存在しない場合がある。したがって、DNSサーバに対して問い合わせを行った場合に、DNSサーバからAMF301に係る情報を取得できない場合がある。
(Pattern 3)
Pattern 3 shows a case where the UE 90 moves between eNBs connected to different UPs and different SMFs, that is, to an area where there is no slice that has been connected for communication before the handover. FIG. 12 is a diagram for explaining the situation of the pattern 3. This is a case where the UE 90 moves from the area SA # 1 in which the services S1 and S2 can be used to the different area SA # 2 in which the services S1 and S2 cannot be used by communicating with the slices SL1 and SL2. In this case, the base station apparatus used when the UE 90 communicates needs to change not only the eNB 81 to the eNB 82 due to handover, but also the slice in which communication is performed in order to use the services S1 and S2. However, in the destination area SA # 2, there may be no slice corresponding to the slices SL1 and SL2. Therefore, when an inquiry is made to the DNS server, information related to the AMF 301 may not be acquired from the DNS server.
 このような場合に2つのサービスを継続して利用する方法としては、移動前のeNB81とUP212との通信路と、移動前のeNB81とUP222との通信路と、の両方の機能を、2つのサービスとは関連性がないスライスSL3に設けられたUPY232との通信路に切り替えることが考えられる。ここでのスライスSL3には、SMFY231と、UPY232と、が含まれる。 In such a case, as a method of continuously using the two services, the functions of both the communication path between the eNB 81 and the UP 212 before movement and the communication path between the eNB 81 and the UP 222 before movement are It is conceivable to switch to a communication path with UPY 232 provided in slice SL3 that is not related to the service. The slice SL3 here includes SMFY 231 and UPY 232.
 なお、UE90の移動先のエリアSA#2において、eNB82がどのスライスとの間に通信路を設けることで、UE90がサービスS1,S2を利用できるかについては、eNB82、AMF301、及びUE90等は把握をしていない。また、スライスSL3がサービスS1,S2に対応可能であることをDNSサーバが把握していない場合には、DNSサーバもこの情報をAMF301に対して提供することができない。そのため、AMF301は、NSSF(Network Slice Selection Function)に問い合わせることで情報を取得する。このNSSFは、サービスとスライスとの対応付けを行っているノードであり、要求元からのサービス要求に対して、適切なスライスを回答するノードである。 It should be noted that eNB 82, AMF 301, UE 90, and the like know whether UE 90 can use services S1 and S2 by providing a communication path with which eNB 82 establishes a communication path in UE SA's destination area SA # 2. Not doing. Also, if the DNS server does not know that the slice SL3 can support the services S1 and S2, the DNS server cannot provide this information to the AMF 301. Therefore, the AMF 301 obtains information by inquiring NSSF (Network (Slice Selection Function). The NSSF is a node that associates a service with a slice, and is a node that answers an appropriate slice to a service request from a request source.
 上記のようなパターン3における具体的な処理の手順について、図13を参照しながら説明する。 A specific processing procedure in the pattern 3 as described above will be described with reference to FIG.
 まず、UE90の移動前のeNB81と移動先のeNB82との間でハンドオーバに係る信号の送受信が行われる(HO Request, HO Request ACK:S301)。この信号を契機として、UE90,eNB81,eNB82の間でハンドオーバに係る処理が行われる(Handover Execution:S302)。 First, transmission / reception of a signal related to handover is performed between the eNB 81 before the UE 90 moves and the eNB 82 of the movement destination (HO Request, HO Request ACK: S301). Triggered by this signal, processing related to handover is performed among the UE 90, eNB 81, and eNB 82 (Handover Execution: S302).
 この後、移動先のeNB82から、AMF301に対して、通信路の変更に係る要求を行う信号が送信される(Path Switch Request:S303)。 After this, a signal for making a request for changing the communication path is transmitted from the destination eNB 82 to the AMF 301 (Path Switch Request: S303).
 通信路の変更に係る要求には、UE90を特定する情報と、通信路を特定する情報(TU-1,TU-2)及びセッションを特定する(S-ID1, S-ID2)が含まれる。AMF301において、eNB82からの要求を受信すると、通信路の変更に係る要求に含まれる情報により、UE90が2つのスライスとの間で通信路を設けているか否か、スライスを変える必要があるか否かを判定する(S304)。本実施形態では、通信路の変更に係る要求に、通信路を特定する情報が複数含まれていて、セッションを特定する情報が複数含まれていると、AMF301では、UE90に関して2つの通信路が個別に設けられていることを判断できる。このように、通信路の変更に係る要求に含まれる情報に基づいて、AMF301では、複数の通信路が設けられているか否かの判定を行う。そして、AMF301において、UE90に関して複数の通信路が設けられていると判定された場合には、以下の処理を行う。 The request for changing the communication path includes information for specifying the UE 90, information for specifying the communication path (TU-1, TU-2), and a session (S-ID1, S-ID2). When receiving a request from the eNB 82 in the AMF 301, whether or not the UE 90 provides a communication path between the two slices and whether or not the slice needs to be changed based on information included in the request for changing the communication path Is determined (S304). In the present embodiment, when a plurality of pieces of information specifying a communication path are included in a request related to a change of a communication path and a plurality of pieces of information specifying a session are included, the AMF 301 has two communication paths for the UE 90. It can be judged that it is provided individually. As described above, the AMF 301 determines whether or not a plurality of communication paths are provided based on the information included in the request for changing the communication path. If the AMF 301 determines that a plurality of communication paths are provided for the UE 90, the following processing is performed.
 AMF301において、UE90に関して複数の通信路が設けられていて、且つ、スライスSL1,SL2がエリアSA#2をカバーしていないことが確認された場合、DNSサーバに対して、eNB82を介して通信路を設ける際のスライスに係る情報を問い合わせる(DNS Query Request:S305)。より具体的には、AMF301は、DNSサーバに対して、ECGI(E-UTRAN Cell Global ID)もしくはサービスS1,S2を提供するサービスサーバのAPN(APN1&2)を送信することで、サービスS1,S2を利用する際に通信を行うべきスライスのSMFを特定する情報を取得する。ECGIは、UE90が在圏するセルを特定する情報であり、すなわち、UE90の位置を示す情報である。 In the AMF 301, when it is confirmed that a plurality of communication paths are provided for the UE 90 and the slices SL1 and SL2 do not cover the area SA # 2, the communication path is connected to the DNS server via the eNB 82. Inquires about the information related to the slice at the time of providing (DNS Query Request: S305). More specifically, the AMF 301 transmits the services S1 and S2 to the DNS server by transmitting the ECGI (E-UTRAN Cell Global ID) or the service server APN (APN1 & 2) that provides the services S1 and S2. Information for specifying the SMF of a slice to be communicated when using is acquired. The ECGI is information that identifies a cell where the UE 90 is located, that is, information that indicates the position of the UE 90.
 DNSサーバは、location及びサービスの種類に対して、アクセス先(通信路を設ける先)のスライスを特定する情報が対応付けられた情報を記憶していない。したがって、DNSサーバは、AMF301に対して、サービスに対応するスライスが存在しないことを示す情報、すなわち、SMFの情報がないことを通知する(DNS Query Response:S306)。 The DNS server does not store information in which information specifying an access destination (destination for providing a communication path) is associated with a location and a service type. Accordingly, the DNS server notifies the AMF 301 that there is no information indicating that there is no slice corresponding to the service, that is, no SMF information (DNS Query Response: S306).
 このように、DNSサーバからSMFを特定する情報が提供されない場合、AMF301側では、UE90がサービスS1,S2を利用するためにeNB82との間で通信路を設ける相手方のスライスを特定することができないことになる。そこで、AMF301では、NSSFに対してUE90を特定する情報と、利用したいサービスを特定する情報(APN1&APN2)と、ECGIとを送信して、問い合わせを行う(PolicyRequest:S307)
Thus, when the information which specifies SMF is not provided from a DNS server, UE90 cannot specify the other party's slice which provides a communication path between eNB82 in order for UE90 to use service S1, S2. It will be. Therefore, the AMF 301 makes an inquiry by transmitting information for identifying the UE 90 to the NSSF, information for identifying the service to be used (APN1 & APN2), and ECGI (PolicyRequest: S307).
.
 これに対して、NSSFは、利用したいサービスを特定する情報と、EGCIと、自装置で保持している情報と、に基づいて、UE90の在圏するエリアにおいて、当該サービスを利用するための通信路を設けることができるスライスを特定する。NSSFでは、サービス毎に対応可能なスライスを特定する情報を保持していることから、この情報を利用して、対応するスライスの情報を提供する(Policy Response:S308)。 On the other hand, the NSSF performs communication for using the service in the area where the UE 90 is located based on the information specifying the service to be used, the EGCI, and the information held by the own device. Identify slices that can be routed. Since NSSF holds information for identifying slices that can be handled for each service, this information is used to provide information on the corresponding slices (Policy Response: S308).
 AMF301では、NSSFからの情報に基づいて、SMFY231が含まれるスライスSL3との間で2つのサービスに係るセッションを設けることを決定する(Selects CPY for both APN1&2 Sessions:S309)。 Based on the information from NSSF, the AMF 301 determines to establish a session related to two services with the slice SL3 including the SMFY 231 (Selects CPY for boh APN1 & 2 Sessions: S309).
 このように、DNSサーバから提供される情報では、適切なスライス(SMF)を選択することができない場合には、サービスに対応したスライスを特定する情報を保持するNSSFに対して問い合わせる構成とする。この処理により、2つのサービスを利用するための適切なスライス(SMF)に係る情報を取得することが可能となる。 As described above, in the information provided from the DNS server, when an appropriate slice (SMF) cannot be selected, an inquiry is made to the NSSF that holds information for identifying the slice corresponding to the service. With this process, it is possible to acquire information related to an appropriate slice (SMF) for using the two services.
 なお、DNSサーバ及びNSSFが、利用したいサービスを特定する情報(APN1&APN2)に対して適切なスライスを特定する情報を提供できない場合には、サービスの提供ができないため、サービスの提供自体が中断される。 If the DNS server and NSSF cannot provide information for identifying an appropriate slice for the information (APN1 & APN2) for identifying the service to be used, the service cannot be provided and the service itself is interrupted. .
 AMF301において、SMFを選択する処理の後、PCF400に対して、移動前における各スライス(SMF211およびSMF221)の利用状況の問合せが送信される(S310)。上述の通り、PCF400は、各スライスSL1およびSL2を構成するSMF211および222に対して通信管理をしており、そのスライスSL1またはSL2に、通信パケットが送受信されていないと判断すると、そのスライスは利用されていないと判断できる。本実施形態では、PCF400においては、スライスSL2、すなわちSMF221が利用されていないと判断され(S311)、その旨の通知がAMF301に送信される(S312)。この通知には、利用されていないスライスを特定可能な情報が含まれており、スライスIDや、セッションIDなどが含まれている。 In the AMF 301, after the process of selecting the SMF, an inquiry about the usage status of each slice (SMF 211 and SMF 221) before the movement is transmitted to the PCF 400 (S310). As described above, the PCF 400 performs communication management with respect to the SMFs 211 and 222 constituting the slices SL1 and SL2, and when it is determined that no communication packet is transmitted to or received from the slice SL1 or SL2, the slice is used. It can be judged that it is not done. In the present embodiment, in the PCF 400, it is determined that the slice SL2, that is, the SMF 221 is not used (S311), and a notification to that effect is transmitted to the AMF 301 (S312). This notification includes information that can identify an unused slice, and includes a slice ID, a session ID, and the like.
 AMF301において、スライスの利用状況の通知が受信されると、利用されているスライスに対するセッション要求が送信される(S313)。 When the AMF 301 receives the notification of the slice usage status, a session request for the slice being used is transmitted (S313).
 AMF301では、ここまでの処理にしたがって特定されたSMF、すなわち、SMFY231に対して、UE90に係る新たなセッションを設けるための要求を送信する(Create Session Request:S313)。セッションの作成要求には、アクセス先のeNB82を特定する情報(eNB ID)と、セッションの作成にしたがって設けられる通信路を特定する情報(TU-1)と、サービスを特定する情報(APN1)が含まれる。この処理により、SMFY231において、スライスSL1に対応するサービスに係るセッションを開設することが認識される。 The AMF 301 transmits a request for establishing a new session related to the UE 90 to the SMF identified according to the processing so far, that is, the SMFY 231 (Create Session Request: S313). The session creation request includes information (eNB ID) for identifying the access destination eNB 82, information (TU-1) for identifying a communication path provided according to the creation of the session, and information (APN1) for identifying the service. included. By this processing, it is recognized that the session related to the service corresponding to the slice SL1 is opened in the SMFY 231.
 SMFY231では、セッションの作成要求を受信すると、当該要求に基づいて、公知の手順により、通信路の作成に係る処理を行う。具体的には、通信路を作成するUPとして、同一のスライスSL3のUP232を選択する(UP Selection:S314)。その後、UP232に対して、通信路を特定する情報(TU-1)と共に、eNB82を特定する情報(eNB ID)を送信することで、セッションの作成を指示する(Create Session Request:S315)。UP232は、通信路の作成に係る処理を行った後、通信路を特定する情報(TU-1)及び自ノードを特定する情報(UPY ID)と共に、通信路を作成する処理を行ったことをSMFY231に対して返信する(Create Session Response:S316)。UP263からの返信を受信したSMFY231は、通信路の作成に係る処理が終わったことを、セッションの作成要求(S313)に対する応答として、AMF301に対して通知する(Create Session Response:S317)。 When receiving a session creation request, the SMFY 231 performs processing related to creation of a communication path according to a known procedure based on the request. Specifically, the UP 232 of the same slice SL3 is selected as the UP for creating the communication path (UP Selection: S314). Thereafter, the UP 232 is instructed to create a session by transmitting information (eNB ID) specifying the eNB 82 together with information (TU-1) specifying the communication path (Create Session Request: S315). After UP232 performs processing related to creation of a communication path, it performs processing for creating a communication path together with information for identifying the communication path (TU-1) and information for identifying its own node (UPYUPID). A reply is made to the SMFY 231 (Create Session Response: S316). The SMFY 231 that has received the reply from the UP 263 notifies the AMF 301 that the processing related to the creation of the communication path has ended as a response to the session creation request (S313) (Create Session Response: S317).
 AMF301では、SMFY231からの応答(S317)を受信すると、eNB82に対して、通信路の変更に係る処理が終了したことを通知する(Path Switch Request ack:S318)。この信号には、UP232を特定する情報(UPY ID)に対応付けて、スライスSL1の通信路を特定する情報(TU-1)と、スライスSL1のセッションを特定する情報(S-ID1)が含まれる。この情報に基づいて、eNB82は、通信路の相手方となるノードを特定できる。 When the AMF 301 receives the response from the SMFY 231 (S317), the AMF 301 notifies the eNB 82 that the processing related to the change of the communication path has been completed (Path Switch Request ack: S318). This signal includes information (TU-1) for specifying the communication path of slice SL1 and information (S-ID1) for specifying the session of slice SL1 in association with information (UPY ID) for specifying UP232. It is. Based on this information, the eNB 82 can identify the node that is the counterpart of the communication path.
 その後、eNB82からeNB81に対して、通信路に係る無線区間のリソースの開放を指示する(Release Resource:S319)。AMF301では、SMF221からスライスSL2は利用されていない旨の通知を受けると、スライスSL2のためのセッションの作成処理を行うことなく、スライスSL2のための無線区間のリソースの解放処理の要求(Deactivate bearer request)をeNB82に送信する(S320)。そして、eNB82では、RRC connection releaseがeNB81に対して送信され、eNB81におけるスライスSL2のためのリソースの解放指示が行われる(S321)。 Thereafter, the eNB 82 instructs the eNB 81 to release resources in the wireless section related to the communication path (Release Resource: S319). When the AMF 301 receives a notification from the SMF 221 that the slice SL2 is not used, a request to release a radio section resource for the slice SL2 (Deactivate bearer) without performing a session creation process for the slice SL2 request) is transmitted to the eNB 82 (S320). Then, in the eNB 82, RRC connection release is transmitted to the eNB 81, and a resource release instruction for the slice SL2 in the eNB 81 is performed (S321).
 つぎに、本実施形態における通信システムN1のパターン1~パターン3における作用効果について説明する。 Next, functions and effects of patterns 1 to 3 of the communication system N1 in the present embodiment will be described.
 本実施形態における通信システムN1は、ネットワークインフラ上に生成される仮想化ネットワークであるスライスと通信接続する通信端末に対して通信制御を行う通信システムの通信制御方法を実行できる。 The communication system N1 in the present embodiment can execute a communication control method of a communication system that performs communication control on a communication terminal that is connected to a slice that is a virtual network generated on a network infrastructure.
 この通信システムN1は、通信端末であるUE90がハンドオーバを行う制御手順において、スライスが利用されているか否かを判断する判断ステップと、スライスが利用されていないと判断されると、当該利用されていないスライスを利用しないための通信制御を行う通信制御ステップと、を備える。 The communication system N1 is used when it is determined that a slice is not used and a determination step that determines whether a slice is used in a control procedure in which the UE 90 as a communication terminal performs a handover. A communication control step for performing communication control for not using any slice.
 この処理により、ハンドオーバをする際において、ハンドオーバ前に通信接続していたスライスが利用されていないと判断される場合には、その利用されていないスライスについては、当該スライスを利用しないように通信制御を行うことができる。したがって、ネットワークリソースの無駄を解消し、そのリソースを効率的に利用できる。 By this processing, when it is determined that a slice that has been connected for communication before handover is not used when performing handover, communication control is performed so that the slice that is not used is not used. It can be performed. Therefore, waste of network resources can be eliminated and the resources can be used efficiently.
 本実施形態の通信システムN1においては、SMF211、221において、ハンドオーバの通信路の切り換え処理を行う際に、スライスが利用されているか否かを判断することができる。その場合、通信システムN1は、スライスとUE90との通信接続制御を行うスライス接続サーバであるAMF301と、スライスを構成し、UE90との間でユーザデータを送受信する通信ノードであるUP212、UPX222と、当該UP212,UPX222とともにスライスを構成し、UP212、UPX222に対する通信制御を行う通信制御サーバであるSMF211,221とを含んで構成されている。 In the communication system N1 of the present embodiment, the SMF 211, 221 can determine whether or not a slice is being used when performing a handover channel switching process. In that case, the communication system N1 includes an AMF 301 that is a slice connection server that performs communication connection control between the slice and the UE 90, UP 212 and UPX 222 that are communication nodes that configure the slice and transmit user data to and from the UE 90, Slices are configured together with the UP 212 and UPX 222, and include SMFs 211 and 221 that are communication control servers that perform communication control on the UP 212 and UPX 222.
 SMF211、221が実行する判断ステップ(図7のS110または図10のS110)において、SMF221は、スライスSL2が利用されていないと判断すると、当該利用されていないスライスSL2を特定可能な識別情報(スライスID等)をAMF301に通知する。そして、AMF301が実行する通信制御ステップ(図7のS112~S114、または図10のS12~S114)において、利用されていないスライスを利用しないための通信制御を行う。なお、ここでの通信制御ステップは、少なくともベアラの解放制御を含めばよい。 In the determination step (S110 in FIG. 7 or S110 in FIG. 10) executed by the SMF 211 or 221, if the SMF 221 determines that the slice SL2 is not used, identification information (slices) that can identify the slice SL2 that is not used. ID etc.) is notified to the AMF 301. Then, in the communication control step (S112 to S114 in FIG. 7 or S12 to S114 in FIG. 10) executed by the AMF 301, communication control is performed so that unused slices are not used. The communication control step here may include at least bearer release control.
 さらに具体的には、本実施形態の通信システムN1において、UE90が、ハンドオーバ前に通信接続されていた通信ノードと通信接続可能なエリアへハンドオーバした場合には(パターン1)、AMF301は、当該利用されていないスライスSL2の通信接続状態、例えばベアラを解放できる。 More specifically, in the communication system N1 of the present embodiment, when the UE 90 is handed over to an area that can be communicably connected to the communication node that is communicably connected before the handover (pattern 1), the AMF 301 The communication connection state of the slice SL2 that has not been performed, for example, the bearer can be released.
 このような構成によって、SMF211,221においてスライスの利用状況を判断することができ、その利用状況に応じてベアラの解放処理を行うことができる。したがって、ネットワークリソースの無駄を解消し、そのリソースを効率的に利用できる。 With this configuration, the SMF 211, 221 can determine the usage status of the slice, and can perform a bearer release process according to the usage status. Therefore, waste of network resources can be eliminated and the resources can be used efficiently.
 また、UE90が、ハンドオーバ前と同じスライスに通信接続可能なエリアであって、当該ハンドオーバ前とは異なる通信ノードが配置されるエリアへハンドオーバした場合には(パターン2)、AMF301は、当該利用されていないスライスSL2に対しては、通信接続処理は行わず、利用されているスライスSL1に対して通信接続処理を行う。 Further, when the UE 90 is handed over to an area where communication connection to the same slice as before the handover is possible and a communication node different from that before the handover is arranged (Pattern 2), the AMF 301 is used. The communication connection process is not performed for the slice SL2 that is not used, and the communication connection process is performed for the slice SL1 that is being used.
 このような構成によって、SMF211,221においてスライスの利用状況を判断することができ、その利用状況に応じたスライスに対してセッションを張るなどの通信接続処理を行うことができる。したがって、ネットワークリソースの無駄を解消し、そのリソースを効率的に利用できる。 With this configuration, the SMF 211 and 221 can determine the usage status of a slice, and can perform communication connection processing such as establishing a session for the slice according to the usage status. Therefore, waste of network resources can be eliminated and the resources can be used efficiently.
 一方で、上記SMF211等での判断処理に代えて、PCF400において、スライスの利用状況を判断できる。 On the other hand, instead of the determination process in the SMF 211 or the like, the PCF 400 can determine the slice usage status.
 通信システムN1は、スライスとUE90との通信接続制御を行うAMF301と、スライスを構成し、UE90との間でユーザデータを送受信するUP212,222と、当該UP212,222とともにスライスを構成し、UP212,222に対する通信制御を行うSMF211、221と、スライスSL1、SL2の利用状況を管理する管理サーバであるPCF400とを含んで構成されている。 The communication system N1 includes an AMF 301 that performs communication connection control between the slice and the UE 90, a UP 212 and 222 that configure the slice, and transmits and receives user data to and from the UE 90, and a slice together with the UP 212 and 222. SMF 211 and 221 that perform communication control for 222, and PCF 400 that is a management server that manages the usage status of slices SL1 and SL2.
 AMF301は、ハンドオーバ手順における切り換え要求を受けると、PCF400に対して、UE90が通信接続しているスライスの利用状況の問合せを行う問合せステップ(図8のS104a、図11のS205a、図13のS310)を備える。 In response to the switching request in the handover procedure, the AMF 301 makes an inquiry to the PCF 400 about the usage status of the slice to which the UE 90 is connected (S104a in FIG. 8, S205a in FIG. 11, S310 in FIG. 13). Is provided.
 PCF400においては、SMF211、221が管理しているUP212、UPX222が送受信している通信パケット量を判断することに基づいて、スライスが利用されているか否かを判断できる(図8のS104b、図11のS205b、図13のS311)。 In the PCF 400, it is possible to determine whether or not a slice is used based on determining the amount of communication packets transmitted and received by the UP 212 and UPX 222 managed by the SMF 211 and 221 (S104b in FIG. 8, FIG. 11). S205b, S311 of FIG. 13).
 そして、AMF301は、この問合せステップにおいて問合せた結果に基づいて、利用されていないスライスを利用しないための通信制御を行う。 The AMF 301 performs communication control so as not to use an unused slice based on the result of the inquiry in this inquiry step.
 さらに具体的には、UE90が、ハンドオーバ前に通信接続されていた通信ノードと通信接続可能なエリアへハンドオーバした場合には(パターン1)、AMF301は、問合せステップにおいて問合せた結果に基づいて、利用されていないスライスSL2の通信接続状態、例えばベアラを解放する。 More specifically, when the UE 90 is handed over to an area that can be communicably connected to a communication node that has been communicably connected before the handover (pattern 1), the AMF 301 uses the result based on the result of the inquiry in the inquiry step. The communication connection state of the slice SL2 that has not been performed, for example, the bearer is released.
 この処理により、ハンドオーバをする際において、ハンドオーバ前に通信接続していたスライスが利用されていないと判断される場合には、その利用されていないスライスについては、当該スライスを利用しないように通信制御を行うことができる。したがって、ネットワークリソースの無駄を解消し、そのリソースを効率的に利用できる。 By this processing, when it is determined that a slice that has been connected for communication before handover is not used when performing handover, communication control is performed so that the slice that is not used is not used. It can be performed. Therefore, waste of network resources can be eliminated and the resources can be used efficiently.
 また、UE90が、ハンドオーバ前と同じスライスに通信接続可能なエリアであって、当該ハンドオーバ前とは異なる通信ノードが配置されているエリアへハンドオーバした場合には(パターン2)、AMF301は、問合せステップにおいて問合せた結果に基づいて、利用されていないスライスの通信接続処理は行わず、利用されているスライスに対して通信接続処理を行う。 In addition, when the UE 90 is handed over to an area in which communication connection to the same slice as before the handover is possible and a communication node different from that before the handover is arranged (pattern 2), the AMF 301 performs an inquiry step. On the basis of the result of the inquiry, the communication connection process is not performed on the unused slice, but the communication connection process is performed on the used slice.
 このような構成によって、PCF400においてスライスの利用状況を判断することができ、その利用状況に応じたスライスに対してセッションを張るなどの通信接続処理を行うことができる。したがって、ネットワークリソースの無駄を解消し、そのリソースを効率的に利用できる。 With such a configuration, it is possible to determine the slice usage status in the PCF 400, and to perform communication connection processing such as establishing a session for the slice according to the usage status. Therefore, waste of network resources can be eliminated and the resources can be used efficiently.
 さらに、UE90は、ハンドオーバ前に通信接続していたスライスが存在しないエリアにハンドオーバすることもある(パターン3)。この例示においては、通信システムN1は、予め生成されている複数のスライスからサービスに対応したスライスを選択するスライス選択サーバであるNSSFをさらに備えている。 Furthermore, the UE 90 may be handed over to an area where there is no slice that has been connected for communication before the handover (pattern 3). In this example, the communication system N1 further includes an NSSF that is a slice selection server that selects a slice corresponding to a service from a plurality of slices generated in advance.
 そして、UE90が、ハンドオーバ前に通信接続していたスライス(例えばスライスSL1およびSL2)と通信接続できないエリアへハンドオーバした場合には、AMF301は、NSSFから新たなスライス(スライスSL3)に通信接続するためのSMFY231の識別情報を取得し、PCF400に対して、UE90がハンドオーバ前に通信接続していたスライスSL1およびSL2の利用状況の問合せを行う。ここでは、スライスSL2が利用されていないと判断されるため、その問合せた結果に基づいて、ハンドオーバ前に通信接続していたスライスSL1に対応する新たなスライスSL3に対する通信接続処理を行う。 Then, when the UE 90 performs handover to an area where communication connection cannot be established with slices (for example, slices SL1 and SL2) that have been connected for communication before the handover, the AMF 301 performs communication connection from the NSSF to the new slice (slice SL3). The SMFY 231 identification information is acquired, and the usage status of the slices SL1 and SL2 to which the UE 90 was connected for communication before the handover is inquired to the PCF 400. Here, since it is determined that the slice SL2 is not used, the communication connection process for the new slice SL3 corresponding to the slice SL1 that has been connected for communication before the handover is performed based on the inquiry result.
 この処理により、スライスが存在しないエリアにハンドオーバしたとしても、ハンドオーバ前に利用していたスライスとして選択された新たなスライスSL3に通信接続できる。その際、すでに利用されなくなったスライスSL2を用いたサービスについては、新たなスライスSL3を使って通信接続しないようにすることで、そのリソースの無駄を防止できる。 By this processing, even if a handover is performed to an area where no slice exists, communication connection can be made to a new slice SL3 selected as a slice used before the handover. At this time, a service using the slice SL2 that is no longer used can be prevented from being wasted by not using the new slice SL3 for communication connection.
 以上、本実施形態について詳細に説明したが、当業者にとっては、本実施形態が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本実施形態は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施できる。したがって、本明細書の記載は、例示説明を目的とするものであり、本実施形態に対して何ら制限的な意味を有するものではない。 As mentioned above, although this embodiment was described in detail, it is clear for those skilled in the art that this embodiment is not limited to embodiment described in this specification. The present embodiment can be implemented as a modification and change without departing from the spirit and scope of the present invention defined by the description of the scope of claims. Therefore, the description of the present specification is for illustrative purposes and does not have any limiting meaning to the present embodiment.
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC ConnectionReconfiguration)メッセージなどであってもよい。 The notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods. For example, notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. Further, the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC ConnectionReconfiguration) message, or the like.
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA. (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-WideBand), The present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The processing procedures, sequences, flowcharts and the like of each aspect / embodiment described in this specification may be switched in order as long as there is no contradiction. For example, the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
 本明細書において特定の装置によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。例えば、特定の装置が基地局であった場合においては、当該基地局を有する1つまたは複数のネットワークノード(network nodes)を含んだネットワークにおいて、端末との通信のために行われる様々な動作は、基地局および/または基地局以外の他のネットワークノードによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせであってもよい。 The specific operation performed by a specific device in this specification may be performed by its upper node in some cases. For example, when a specific apparatus is a base station, various operations performed for communication with a terminal in a network including one or a plurality of network nodes (network nodes) having the base station are: Obviously, it can be performed by the base station and / or other network nodes other than the base station. Although the case where there is one network node other than the base station in the above is illustrated, a combination of a plurality of other network nodes may be used.
 情報等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information etc. can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input / output information or the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in this specification may be used alone, in combination, or may be switched according to execution. In addition, notification of predetermined information (for example, notification of being “X”) is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether it is called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be interpreted broadly.
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。 Further, software, instructions, etc. may be transmitted / received via a transmission medium. For example, software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave. When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission media.
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described herein may be represented using any of a variety of different technologies. For example, data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、信号はメッセージであってもよい。 Note that the terms described in this specification and / or terms necessary for understanding this specification may be replaced with terms having the same or similar meaning. For example, the signal may be a message.
 本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。 The terms “system” and “network” used in this specification are used interchangeably.
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。 In addition, information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information. . For example, the radio resource may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的なものではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。 The names used for the above parameters are not limited in any way. Further, mathematical formulas and the like that use these parameters may differ from those explicitly disclosed herein. Since various channels (eg, PUCCH, PDCCH, etc.) and information elements (eg, TPC, etc.) can be identified by any suitable name, the various names assigned to these various channels and information elements are However, it is not limited.
 基地局は、1つまたは複数(例えば、3つ)の(セクタとも呼ばれる)セルを収容できる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、および/または基地局サブシステムのカバレッジエリアの一部または全体を指す。さらに、「基地局」「eNB」、「セル」、および「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(accesspoint)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。 The base station can accommodate one or a plurality of (for example, three) cells (also called sectors). When the base station accommodates a plurality of cells, the entire coverage area of the base station can be divided into a plurality of smaller areas, and each smaller area can be divided into a base station subsystem (for example, an indoor small base station RRH: Remote). A communication service can also be provided by Radio Head). The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage. Further, the terms “base station”, “eNB”, “cell”, and “sector” may be used interchangeably herein. A base station may also be called in terms such as a fixed station (station), a NodeB, an eNodeB (eNB), an access point, an femtocell, and a small cell.
 ユーザ端末は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 User terminals can be obtained by those skilled in the art from subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(lookingup)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。 As used herein, the terms “determining” and “determining” may encompass a wide variety of actions. “Judgment” and “determination” are, for example, calculating, computing, processing, deriving, investigating, lookingup (eg, table, database or other data (Search by structure), “acknowledging” (considering as “determining”, “determining”, etc.) may be included. In addition, “determination” and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as "determined" or "determined". In addition, “determination” and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。 The terms “connected”, “coupled”, or any variation thereof, means any direct or indirect connection or coupling between two or more elements and It can include the presence of one or more intermediate elements between two “connected” or “coupled” elements. The coupling or connection between the elements may be physical, logical, or a combination thereof. As used herein, the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples By using electromagnetic energy, such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used herein, the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
 本明細書で「第1の」、「第2の」などの呼称を使用した場合においては、その要素へのいかなる参照も、それらの要素の量または順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1および第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 In the present specification, when a designation such as “first” or “second” is used, any reference to the element does not generally limit the quantity or order of the elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, a reference to the first and second elements does not mean that only two elements can be employed there, or that in some way the first element must precede the second element.
 「含む(include)」、「含んでいる(including)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 These terms are similar to the term “comprising” as long as “include”, “including” and variations thereof are used herein or in the claims. It is intended to be comprehensive. Furthermore, the term “or” as used herein or in the claims is not intended to be an exclusive OR.
 本明細書において、文脈または技術的に明らかに1つのみしか存在しない装置である場合以外は、複数の装置をも含むものとする。 In this specification, unless there is only one device that is clearly present in context or technically, a plurality of devices are also included.
10…BSS/OSS、20…SO、30…NFVO、40…VNFM、50…VIM、60…NFVI、80、81、82…eNB、90…UE、101,102…DN、211、221…SMF、211a、221a…スライス判断部、212…UP,222…UPX、400…PCF、302…通信制御部、303…スライス問合部、401…スライス判断部。 10 ... BSS / OSS, 20 ... SO, 30 ... NFVO, 40 ... VNFM, 50 ... VIM, 60 ... NFVI, 80, 81, 82 ... eNB, 90 ... UE, 101,102 ... DN, 211,221 ... SMF, 211a, 221a, slice determination unit, 212 ... UP, 222 ... UPX, 400 ... PCF, 302 ... communication control unit, 303 ... slice inquiry unit, 401 ... slice determination unit.

Claims (9)

  1.  ネットワークインフラ上に生成される仮想化ネットワークであるスライスと通信接続する通信端末に対して通信制御を行う通信システムの通信制御方法において、
     前記通信端末がハンドオーバを行う制御手順において、前記スライスが利用されているか否かを判断する判断ステップと、
     前記判断ステップにおいて前記スライスが利用されていないと判断されると、当該利用されていないスライスと通信接続しないための通信制御を行う通信制御ステップと、
    を備える通信制御方法。
    In a communication control method of a communication system that performs communication control for a communication terminal that is connected to a slice that is a virtualized network generated on a network infrastructure,
    A determination step of determining whether or not the slice is used in a control procedure in which the communication terminal performs handover;
    If it is determined that the slice is not used in the determining step, a communication control step for performing communication control so as not to establish communication connection with the unused slice;
    A communication control method comprising:
  2.  前記通信システムは、
     前記スライスと前記通信端末との通信接続制御を行うスライス接続サーバと、前記スライスを構成し、前記通信端末との間でユーザデータを送受信する通信ノードと、当該通信ノードとともに前記スライスを構成し、前記通信ノードに対する通信制御を行う通信制御サーバとを含んで構成され、
     前記通信制御サーバが実行する前記判断ステップにおいて、前記スライスが利用されていないと判断すると、当該利用されていないスライスを特定可能な識別情報を前記スライス接続サーバに通知し、
     前記スライス接続サーバが実行する前記通信制御ステップにおいて、利用されていないスライスと通信接続しないための通信制御を行う、
    請求項1に記載の通信制御方法。
    The communication system is:
    A slice connection server that performs communication connection control between the slice and the communication terminal, a slice constituting the slice, a communication node that transmits and receives user data to and from the communication terminal, and the slice together with the communication node, A communication control server that performs communication control on the communication node,
    In the determination step executed by the communication control server, when it is determined that the slice is not used, the slice connection server is notified of identification information that can identify the slice that is not used,
    In the communication control step executed by the slice connection server, communication control is performed so as not to connect to a slice that is not used.
    The communication control method according to claim 1.
  3.  前記通信端末が、ハンドオーバ前に通信接続されていた通信ノードと通信接続可能なエリアへハンドオーバした場合には、
     前記通信制御ステップにおいて、当該利用されていないスライスの通信接続状態を解放する、
    請求項2に記載の通信制御方法。
    When the communication terminal is handed over to an area that can be communicably connected to a communication node that is communicably connected before the handover,
    In the communication control step, the communication connection state of the unused slice is released.
    The communication control method according to claim 2.
  4.  前記通信端末が、ハンドオーバ前と同じスライスに通信接続可能なエリアであって、当該ハンドオーバ前とは異なる通信ノードが配置されるエリアへハンドオーバした場合には、
     前記通信制御ステップにおいて、当該利用されていないスライスに対しては、通信接続処理は行わず、利用されているスライスに対して通信接続処理を行う、
    請求項2または3に記載の通信制御方法。
    In the case where the communication terminal is handed over to an area where communication connection to the same slice as before the handover is possible and a communication node different from that before the handover is arranged,
    In the communication control step, communication connection processing is not performed on the unused slice, and communication connection processing is performed on the used slice.
    The communication control method according to claim 2 or 3.
  5.  前記通信システムは、
     前記スライスと前記通信端末との通信接続制御を行うスライス接続サーバと、前記スライスを構成し、前記通信端末との間でユーザデータを送受信する通信ノードと、当該通信ノードとともに前記スライスを構成し、前記通信ノードに対する通信制御を行う通信制御サーバと、前記スライスの利用状況を管理する管理サーバとを含んで構成され、
     前記スライス接続サーバは、
     ハンドオーバ手順における切り換え要求を受けると、前記管理サーバに対して、前記通信端末が通信接続しているスライスの利用状況の問合せを行う問合ステップをさらに備え、
     前記スライス接続サーバが実行する前記通信制御ステップにおいて、前記問合ステップにおいて問合せた結果に基づいて、利用されていないスライスと通信接続しないための通信制御を行う、
     請求項1に記載の通信制御方法。
    The communication system is:
    A slice connection server that performs communication connection control between the slice and the communication terminal, a slice constituting the slice, a communication node that transmits and receives user data to and from the communication terminal, and the slice together with the communication node, A communication control server that performs communication control for the communication node, and a management server that manages the usage status of the slice,
    The slice connection server is:
    Upon receiving a switching request in a handover procedure, the management server further includes an inquiry step for inquiring about the usage status of the slice to which the communication terminal is connected for communication.
    In the communication control step executed by the slice connection server, based on the result of the inquiry in the inquiry step, communication control is performed to prevent communication connection with a slice that is not used.
    The communication control method according to claim 1.
  6.  前記通信端末が、ハンドオーバ前に通信接続されていた通信ノードと通信接続可能なエリアへハンドオーバした場合には、
     前記通信制御ステップにおいて、前記問合ステップにおいて問合せた結果に基づいて、利用されていないスライスの通信接続状態を解放する、
     請求項5に記載の通信制御方法。
    When the communication terminal is handed over to an area that can be communicably connected to a communication node that is communicably connected before the handover,
    In the communication control step, based on the result of the inquiry in the inquiry step, release a communication connection state of a slice that is not used.
    The communication control method according to claim 5.
  7.  前記通信端末が、ハンドオーバ前と同じスライスに通信接続可能なエリアであって、当該ハンドオーバ前とは異なる通信ノードが配置されているエリアへハンドオーバした場合には、
     前記通信制御ステップにおいて、前記問合ステップにおいて問合せた結果に基づいて、利用されていないスライスの通信接続処理は行わず、利用されているスライスに対して通信接続処理を行う、
     請求項5または6に記載の通信制御方法。
    In the case where the communication terminal is handed over to an area where communication connection to the same slice as before the handover is possible and a communication node different from that before the handover is arranged,
    In the communication control step, based on the result of the inquiry in the inquiry step, the communication connection processing of the unused slice is not performed, and the communication connection processing is performed on the used slice.
    The communication control method according to claim 5 or 6.
  8.  前記通信システムは、予め生成されている複数のスライスからサービスに対応したスライスを選択するスライス選択サーバをさらに備え、
     前記通信端末が、当該通信端末がハンドオーバ前に通信接続していたスライスと通信接続できないエリアへハンドオーバした場合には、
     前記通信制御ステップにおいて、
     前記スライス選択サーバから新たなスライスに通信接続するための通信制御サーバの識別情報を取得し、
     前記管理サーバに対して、前記通信端末がハンドオーバ前に通信接続していたスライスの利用状況の問合せを行い、
     前記問合せた結果に基づいて、前記ハンドオーバ前に通信接続していたスライスに対応する新たなスライスに対する通信接続処理を行う、
    請求項5~7のいずれか一項に記載の通信制御方法。
    The communication system further includes a slice selection server that selects a slice corresponding to a service from a plurality of slices generated in advance,
    When the communication terminal is handed over to an area where the communication terminal cannot communicate with the slice with which communication was established before the handover,
    In the communication control step,
    Obtain identification information of a communication control server for communication connection to a new slice from the slice selection server,
    Query the management server for the usage status of the slice that the communication terminal was in communication connection before handover,
    Based on the inquiry result, communication connection processing is performed for a new slice corresponding to the slice that was connected for communication before the handover.
    The communication control method according to any one of claims 5 to 7.
  9.  ネットワークインフラ上に生成される仮想化ネットワークであるスライスと通信接続する通信端末に対して通信制御を行う通信システムにおいて、
     前記通信端末がハンドオーバを行う制御手順において、前記スライスが利用されているか否かを判断する判断部と、
     前記判断部において前記スライスが利用されていないと判断されると、当該利用されていないスライスを利用しないための通信制御を行う通信制御部と、
    を備える通信システム。
    In a communication system that performs communication control on a communication terminal that communicates with a slice that is a virtualized network generated on a network infrastructure,
    A determination unit that determines whether or not the slice is used in a control procedure in which the communication terminal performs handover;
    When the determination unit determines that the slice is not used, a communication control unit that performs communication control so as not to use the unused slice;
    A communication system comprising:
PCT/JP2018/009991 2017-03-21 2018-03-14 Communication control method and communication system WO2018173889A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-054898 2017-03-21
JP2017054898A JP6662804B2 (en) 2017-03-21 2017-03-21 Communication control method and communication system

Publications (1)

Publication Number Publication Date
WO2018173889A1 true WO2018173889A1 (en) 2018-09-27

Family

ID=63584507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009991 WO2018173889A1 (en) 2017-03-21 2018-03-14 Communication control method and communication system

Country Status (2)

Country Link
JP (1) JP6662804B2 (en)
WO (1) WO2018173889A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3991473A2 (en) * 2020-08-05 2022-05-04 NEC Corporation Access network node, user equipment, network function node and control method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Procedures for the 5G System; stage 2; (release 15", 3GPP TS 23.502, V0.2.0, 3GPP, 24 February 2017 (2017-02-24), pages 46 - 48, XP055540710 *
HUAWEI ET AL.: "TS 23.502-Minimizing handover signalling overhead for PDU sessions having no data activity", 3GPP TSG SA WG2 #120, 21 March 2017 (2017-03-21), XP051257576, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_120_Busan/Docs/S2-172003.zip> [retrieved on 20180514] *

Also Published As

Publication number Publication date
JP6662804B2 (en) 2020-03-11
JP2018157515A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
EP3331204A1 (en) Service allocation determining method
CN110352611B (en) Information notification method and mobile communication system
JP6941613B2 (en) Slice management system and slice management method
JP7030055B2 (en) Communication control device and communication control method
WO2019077801A1 (en) Communication system, communication control device, and communication method
WO2018180496A1 (en) Communication control method and communication terminal
WO2018173815A1 (en) Slice allocation method and mobile communication system
JP2018056867A (en) Communication system and communication method
WO2018173889A1 (en) Communication control method and communication system
WO2019159372A1 (en) Information transfer method and node group
JP2018186450A (en) Communication control method
JP2019036873A (en) base station
JP2018170713A (en) Communication terminal
WO2019193764A1 (en) Base station device and communication system
WO2019078212A1 (en) Communication control method and connection target change method
JP7034098B2 (en) Communication control device and communication control method
WO2017026531A1 (en) Base station, management device, and connection method
WO2019078210A1 (en) Communication control method
WO2019035404A1 (en) Node group and migration method
WO2019159286A1 (en) Path controller and relay device
WO2018216435A1 (en) Communication system and communication method
WO2018173567A1 (en) Node and migration method
WO2019035451A1 (en) Communication control method and communication control device
JPWO2018131314A1 (en) Gateway selection method and communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771987

Country of ref document: EP

Kind code of ref document: A1