WO2018173815A1 - Slice allocation method and mobile communication system - Google Patents

Slice allocation method and mobile communication system Download PDF

Info

Publication number
WO2018173815A1
WO2018173815A1 PCT/JP2018/009322 JP2018009322W WO2018173815A1 WO 2018173815 A1 WO2018173815 A1 WO 2018173815A1 JP 2018009322 W JP2018009322 W JP 2018009322W WO 2018173815 A1 WO2018173815 A1 WO 2018173815A1
Authority
WO
WIPO (PCT)
Prior art keywords
slice
information
service
switching
terminal
Prior art date
Application number
PCT/JP2018/009322
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 下城
雅純 清水
曉 山田
滋 岩科
マラ レディ サマ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2018173815A1 publication Critical patent/WO2018173815A1/en

Links

Images

Definitions

  • One aspect of the present invention relates to a method for allocating a slice, which is a virtual network generated on a network infrastructure, and a mobile communication system.
  • a network system using a conventional virtualization technology is a virtual network that is logically generated on a network infrastructure by virtually separating hardware resources using the virtualization technology disclosed in Non-Patent Document 1. Create a slice. Then, by assigning a service to the slice, it is possible to provide the service using a network of independent slices. Thereby, when a slice is assigned to each service having various requirements, it becomes easy to satisfy the requirements of each service, and the signaling processing and the like can be reduced.
  • An aspect of the present invention has been made in view of the above, and an object of the present invention is to provide a slice assignment method that dynamically changes a slice to be assigned to a service for each user according to a user's situation.
  • a slice allocation method is a slice allocation method executed by a device that allocates a slice that is a virtual network to a service that uses a virtual network generated on a network infrastructure.
  • correspondence information which is information in which slice identification information for identifying a slice to which the service is assigned and status information which is information indicating the status of the terminal is associated with service identification information for identifying the service.
  • a correspondence information storage step for storing a plurality of associations in advance, a service acquisition information for identifying service currently used and a current status information indicating a current status of the terminal from a terminal used by the user From the plurality of correspondence information stored in the step and the correspondence information storage step. Connection switching for identifying correspondence information including situation information associated with current situation information and corresponding to current situation information, and switching a communication session of a terminal on a slice identified by slice identification information included in the correspondence information Steps.
  • a mobile communication system is a mobile communication system in which a slice that is a virtual network is assigned to a service that uses a virtual network generated on a network infrastructure, and the service specifying information that specifies the service
  • Corresponding information storage unit that stores in advance a plurality of correspondence information, which is information in which slice specifying information for specifying a slice to which the service is allocated and status information that is information indicating the status of the terminal is associated in advance Stored in the correspondence information storage unit, and a status acquisition unit that acquires service usage identification information for identifying a service currently in use and current status information indicating the current status of the terminal from a terminal used by the user
  • To identify the corresponding information including information, on the slice identified by the slice specifying information included in the correspondence information includes a connection switching unit that switches the communication session of the terminal, the.
  • a service currently used is determined based on the information.
  • a slice corresponding to the current situation is selected from the plurality of assigned milling cutters, and the communication session of the terminal is switched to the selected slice.
  • the slice allocated to a service can be dynamically changed for every user of a terminal according to the condition of the user. As a result, a service can be smoothly provided to the user of the terminal.
  • slices allocated to services can be dynamically changed for each user according to the user's situation.
  • FIG. 1 shows the configuration of a mobile communication system that implements the slice allocation method according to the present embodiment.
  • a mobile communication system is a system that allocates a slice, which is a virtual network, to a service that uses a virtual network generated on a network infrastructure.
  • a slice is a virtual network or service network that is created by logically dividing the network device link and node resources and combining the separated resources, and the slices separate resources. And do not interfere with each other.
  • the service refers to a service using network resources such as a communication service (private line service or the like) or an application service (service using a moving image distribution or sensor device such as an embedded device).
  • the mobile communication system includes an SO (Service Operator) 20, an OSS / BSS (Operations Support System / Business Support System) 30, a slice management device 10, an NFVO 40, a VNFM 50, and a VIM (Virtualized Infrastructure).
  • Management Virtualization infrastructure management) 60, UDM (Unified Data Management) 70, DNS (Domain Name System) server 80, AUSF (Authentication Server Function) 90, AMF (Core Access and Mobility management Function) 100, RAN 110, SMF (Session Management Function) 120, UPF (User Plane Function) 130, and UE (User Equipment) 140 are comprised.
  • NFVO40, VNFM50, and VIM60 are MANO (Management & Orchestration) architecture.
  • components constitute the core network of the mobile communication system. Note that components that need to transmit and receive information to each other are connected by wire or the like so that information can be transmitted and received.
  • the mobile communication system provides a communication function for a mobile communication terminal by a virtual server operating in a virtual machine realized on a physical server. That is, the mobile communication system is a virtualized mobile communication network.
  • the communication function is provided to the mobile communication terminal by executing a communication process corresponding to the communication function by the virtual machine.
  • the slice management apparatus 10 is a node that performs service management (association between slices and services) in the mobile communication system and gives instructions related to communication functions in the mobile communication system. Further, the slice management device 10 can be operated by a telecommunications carrier related to the mobile communication system.
  • the SO (Service Operator) 20 is a service requesting device, for example, a terminal device (for example, a personal computer) of a business provider that provides services to various users using a virtual network.
  • a service requesting device for example, a terminal device (for example, a personal computer) of a business provider that provides services to various users using a virtual network.
  • the OSS / BSS 30 is a device that receives a service request from the SO 20 and transmits information based on the request to the slice management device 10.
  • the OSS / BSS 30 includes a service parameter (service type that is service specifying information) for identifying (specifying) a service that is a target of the service request, and slice specifying information for specifying a slice to which a service indicated by the service parameter is assigned. (Slice ID) and context information are associated with each other, and the associated information is transmitted to the slice management apparatus 10.
  • the context information is information indicating the status of the user's terminal, for example, information indicating the detection status in the service used by the user, information indicating the user's stay status (stay time), and the like.
  • the correspondence information may be received from the SO 20 and the correspondence information may be transmitted to the slice management apparatus 10.
  • the NFVO 40 is an overall management node (functional entity) that manages the entire virtual network (slice) constructed on the NFVI 160, which is a physical resource.
  • the NFVO 40 receives an instruction from a device that instructs slice generation, and performs processing in accordance with the instruction.
  • the NFVO 40 performs management over the entire virtual network constructed in the physical resources of the mobile communication network of infrastructure and communication services.
  • the NFVO 40 implements a communication service provided by the virtual network at an appropriate location via the VNFM 50 and the VIM 60.
  • service life cycle management (specifically, for example, generation, update, scale control, event collection), resource distribution / reservation / allocation management, service / instance management, and policy management (in the mobile communication network) Specifically, for example, resource reservation / allocation, optimal placement based on geography / laws, etc.) is performed.
  • the VNFM 50 is a virtual communication function management node (functional entity) that adds a function related to a service to the NFVI 160 serving as a physical resource (node).
  • a plurality of VNFMs 50 may be provided in the system.
  • the VIM 60 is a physical resource management node (functional entity) that manages each physical resource (node). Specifically, resource allocation / update / recovery management, association between physical resources and virtualized network, and management of hardware resources and SW resources (hypervisor) list are performed. Normally, the VIM 60 performs management for each data center (station building). Management of physical resources is performed by a method according to the data center. Data center management methods (management resource mounting methods) include OPENSTACK and vCenter. Normally, the VIM 60 is provided for each data center management method. That is, a plurality of VIMs 60 that manage each physical resource in the NFVI 160 in different manners are included. Note that the unit of physical resources managed by different management methods is not necessarily a data center unit.
  • the NFVO 40, the VNFM 50, and the VIM 60 are realized by executing a program on a physical server device (however, they are not limited to being realized on virtualization, and are separated from a management system). And may be realized on virtualization).
  • the NFVO 40, the VNFM 50, and the VIM 60 may be realized by separate physical server devices, or may be realized by the same server device.
  • the NFVO 40, VNFM 50, and VIM 60 (programs for realizing) may be provided from different vendors.
  • the NFVO 40 When the NFVO 40 receives the slice generation request, the NFVO 40 makes a resource securing request for the slice (slice SL1, SL2, etc.) to the VIM 60.
  • the VIM 60 secures resources in the server devices and switches that make up physical resources, the NFVO 40 defines slices for these physical resources.
  • the NFVO 40 when the NFVO 40 causes the VIM 60 to secure a resource in the physical resource, the NFVO 40 stores information defining a slice for the physical resource in a table stored in the NFVO 40. Then, the NFVO 40 requests the VNFM 50 to install software for realizing functions required for the service. In response to the installation request, the VNFM 50 installs the software on a physical resource (node such as a server device, a switch device, or a router device) secured by the VIM 60.
  • a physical resource node such as a server device, a switch device, or a router device
  • the NFVO 40 associates the slice and the service with the table stored in the NFVO 40.
  • the slices SL1 to SL3 are slices that are units for allocating services.
  • the VIM 60 when the NFVO 40 makes a resource securing request for the slices (Slice 1 and Slice 2) to the VIM 60, the VIM 60 sends an instruction to that effect to the switch SW1, the switch SW2, the server SV1, and the switch SW3. Do it. Then, the switch SW1, the switch SW2, the server SV1, and the switch SW3 reserve resources for Slice1. Similarly, according to an instruction from the VIM 60, the switch SW1, the switch SW2, the server SV1, and the switch SW4 reserve resources for Slice2.
  • NFVI 160 which is the above-described physical resource, indicates a network formed from physical resources (node groups) that constitute a virtual environment.
  • the physical resources conceptually include computing resources, storage resources, and transmission resources.
  • the physical resource includes nodes such as a physical server and a switch that are physical server devices that perform communication processing in the system.
  • the physical server includes a storage unit such as a CPU (core, processor), a memory, and a hard disk.
  • a plurality of nodes such as physical servers that constitute the NFVI 160 are arranged together at a base such as a data center (DC).
  • DC data center
  • the arranged physical servers are connected by a network inside the data center, and can exchange information with each other.
  • the system is provided with a plurality of data centers. Data centers are connected by a network, and physical servers provided in different data centers can transmit / receive information to / from each other via the network.
  • the NFVI 160 realizes the functions of the UDM 70, the DNS server 80, the AUSF 90, the AMF 100, the SMF 120, and the UPF 130. .
  • the UDM 70 is a function for managing subscriber information including contract information, authentication information, communication service information, terminal type information, and location information of communication terminals such as the UE 140 in a database.
  • the communication service information is information that defines the type of communication service used by each UE 140.
  • the communication service information includes information for identifying the UE 140 (for example, IMSI (International Mobile Subscriber Identity)) and service parameters indicating requirements of the communication service used by the UE 140.
  • IMSI International Mobile Subscriber Identity
  • DNS server 80 is a function for managing the correspondence between domain names and host names and IP addresses on the network. Further, the DNS server 80 stores information in which information for identifying a slice (for example, slice ID) is associated with the address of the SMF 120. When the DNS server 80 receives an address transmission request from the AMF 100, the DNS server 80 transmits the address of the SMF 120 corresponding to the request to the AMF 100.
  • slice ID information for identifying a slice
  • the AUSF 90 and the AMF 100 are communication devices that are connected to communicate with a user terminal (UE 140) located in an LTE (Long Term Evolution) network.
  • the AUSF 90 is a function that performs authentication management of the UE 140.
  • the AMF 100 is a function that performs location management of the UE 140 and processing for setting a communication path for user data between the UPF 130 and the UE 140.
  • the AMF 100 when the AMF 100 receives a slice switching request including service parameters and context information from the UE 140, the AMF 100 transmits a bearer, which is a communication session set between the UE 140 and the UPF 130 on one slice, on another slice. There is also a function of switching to a bearer (details will be described later).
  • the RAN 110 is a radio base station connected to the AMF 100 and a device having a radio access control function.
  • the SMF 120 is a session management function that manages bearers set between the UE 140 and the UPF 130.
  • the UPF 130 is a function of a serving packet switch that accommodates LTE, and transmits / receives user data used for providing communication services to / from the RAN 110.
  • a plurality of UPFs 130 are provided corresponding to the requirements of a plurality of communication services.
  • the UPF 130 is a junction with a PDN (Packet data network), and is a gateway that transfers user data between the RAN 110 and the PDN.
  • PDN Packet data network
  • the UE 140 is used by a user and is realized as a device having a communication function such as a mobile phone or a PDA (Personal Digital Assistance). Further, the UE 140 acquires context information such as information indicating a detection status in the service used by the user. For example, the UE 140 is triggered by detecting a change in environmental conditions (intruder detection, temperature detection, fire detection, etc.) in the vicinity of the UE 140 based on an image obtained by an image acquisition device such as a camera. Corresponding context information (eg, “normal”, “emergency”, etc.) is acquired. In addition to the camera, the context information can be acquired using various sensors such as a microphone, a positioning sensor, and an optical sensor.
  • context information can be acquired using various sensors such as a microphone, a positioning sensor, and an optical sensor.
  • the UE 140 sends a slice switching request for switching the slice assigned to the currently used service via the RAN 110.
  • This slice switching request includes the service type (used service specifying information) corresponding to the service currently used, and the acquired context information (current status information) indicating the current status of the UE 140.
  • the context information is automatically acquired using the sensor of the UE 140, and the slice switching request may be automatically transmitted in response to the context information, or the context information is acquired according to the input of the user of the UE 140.
  • the slice switching request may be transmitted by a user instruction input.
  • the configuration of the AMF 100 will be described in detail.
  • the AMF 100 also has functions described using a sequence diagram of FIG.
  • FIG. 3 shows a hardware configuration of the AMF 100
  • FIG. 4 shows a functional configuration of the AMF 100
  • the AMF 100 includes a connection / mobility management function unit 11, a situation acquisition unit 12, a switching determination unit 13, a connection switching unit 14, and a correspondence information storage unit 15 as functional components. Has been.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • the AMF 100 may function as a computer that performs processing of the AMF 100 according to the present embodiment.
  • FIG. 3 shows an example of the hardware configuration of the AMF 100 according to the present embodiment.
  • the AMF 100 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the AMF 100 may be configured to include one or a plurality of devices illustrated in the figure, or may be configured not to include some devices.
  • Each function in the AMF 100 reads predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an operation to perform communication by the communication device 1004 and data in the memory 1002 and the storage 1003. This is realized by controlling reading and / or writing.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the connection / mobility management function unit 11, the situation acquisition unit 12, the switching determination unit 13, and the connection switching unit 14 may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, and data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • the program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the connection / mobility management function unit 11 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to perform various processes of mobile communication according to an embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
  • the correspondence information storage unit 15 and the like may be realized by the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • a network device a network controller, a network card, a communication module, or the like.
  • the connection / mobility management function unit 11, the situation acquisition unit 12, the connection switching unit 14, and the like may be realized by the communication device 1004.
  • the input device 1005 is an input device that accepts input from the outside, and the output device 1006 is an output device that performs output to the outside.
  • the input device 1005 and the output device 1006 may be realized by a touch panel display in which both are integrated.
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the AMF 100 includes hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). Alternatively, some or all of the functional blocks may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • connection / mobility management function unit 11 is a part that performs location management of the UE 140 located in the mobile communication system and setting processing of a communication path of control data or user data between the UPF 130 and the UE 140.
  • the status acquisition unit 12 receives (acquires) a slice switching request from the UE 140 via the RAN 110 for switching the slice assigned to the service currently in use. At this time, the status acquisition unit 12 receives the slice switching request including the service type that identifies the service currently used by the US 140 and the context information indicating the current status of the UE 140.
  • the switching determination unit 13 determines whether or not there is a need to switch slices based on the service type and context information included in the slice switching request. That is, the switching determination unit 13 refers to the correspondence information regarding the service management stored in the correspondence information storage unit 15 based on the service type and context information included in the slice switching request, thereby determining whether switching is necessary. Judging.
  • FIG. 5 shows an example of the data configuration of the correspondence information stored in the correspondence information storage unit 15.
  • This correspondence information is stored in advance by extracting necessary information from the correspondence information stored in the slice management apparatus 10 by the AMF 100.
  • the correspondence information for the service type (for example, “AAA”) for specifying the service, the slice ID (for example, “Slice 1”) for specifying the slice to which the service is allocated, and the status of the terminal Is stored in association with context information (for example, “normal”).
  • This correspondence information indicates that when the terminal status is the status indicated by the context information, the terminal should be controlled to use the slice indicated by the slice ID when using the service indicated by the service type. Show.
  • a plurality of combinations for example, “Slice 1”, “Normal”, and “Slice 2” including different slice IDs and different context information) “Abnormal”. Accordingly, different slices are allocated when the same service is used when the terminals are in different situations.
  • the switching determination unit 13 is associated with a service type included in the slice switching request and includes correspondence information including context information included in the slice switching request.
  • the slice ID included in the correspondence information is extracted from the information. For example, when the service type “AAA” and the context information “emergency” are included in the slice switching request, the slice ID “Slice2” is extracted from the plurality of correspondence information shown in FIG. Then, when the slice ID extraction is successful, the switching determination unit 13 determines that the slice needs to be switched, and sends a slice switching request to the connection switching unit 14 with the slice indicated by the slice ID as the switching destination. Output.
  • the connection switching unit 14 receives a slice switching request from the switching determination unit 13 and switches a slice in which a communication session (bearer) between the UE 140 and the UPF 130 is set. That is, the connection switching unit 14 sets the bearer for the service currently used by the UE 140 on the slice specified by the slice ID extracted by the switching determination unit 13 from the slice currently allocated to the service. Switch. Specifically, when the slice switching request is received, the connection switching unit 14 obtains the address of the SMF 120 corresponding to the slice ID that specifies the slice to be switched from the DNS server 80, and sends a new bearer to the SMF 120 of that address.
  • the connection switching unit 14 acquires the address of the SMF 120 to which the switching source slice is assigned from the DNS server 80, and sends an existing bearer disconnection request for requesting disconnection of the bearer set on the switching source slice, Transmit to the corresponding SMF 120.
  • the existing bearer on the switching source slice between the UE 140 and the UPF 130 is disconnected, and the bearer switching is completed.
  • FIG. 6 is a sequence diagram showing a procedure of bearer switching processing by the mobile communication system
  • FIG. 7 is a conceptual diagram showing an image of bearer switching processing by the mobile communication system.
  • context information is acquired in the UE 140 in a state where a service bearer between the UE 140 and the UPF 130 is connected (step S01).
  • a slice switching request is transmitted from the UE 140 to the AMF 100 (step S02).
  • step S02 when the slice acquisition request is received by the status acquisition unit 12 of the AMF 100 (step S02), the following determination process for determining the necessity of switching and the bearer switching process are executed. That is, the service used by the UE 140 and the UE 140 out of the correspondence information stored in the correspondence information storage unit 15 based on the service type and context information included in the slice switching request by the switching judgment unit 13 of the AMF 100. By identifying the correspondence information corresponding to the situation, it is determined whether or not switching is necessary (step S03).
  • the SMF 120 and the UPF 130 (hereinafter referred to as the switching destination slices) to which the switching destination slices identified by the slice ID included in the correspondence information are assigned from the connection switching unit 14 of the AMF 100
  • the new bearer establishment request (Create session request) is transmitted to “switched destination SMF or UPF” (step S04).
  • a new bearer establishment response (Create session response) is returned to the AMF 100 (step S05).
  • a bearer change request (Barer modify request) between the UE 140 and the UPF 130 is transmitted from the AMF 100 to the RAN 110, and a response (Barer modify response) is returned to the AMF 100 after the bearer change process is executed in the RAN 110 (step S06).
  • an existing bearer disconnection request (Delete session) is sent to the SMF 120 and the UPF 130 (hereinafter simply referred to as “switching source SMF or UPF”) to which the switching source slice is assigned. request) is transmitted (step S07).
  • switching source SMF or UPF switching source SMF
  • the bearer disconnection process is performed in the switching source SMF 120 and the switching source UPF 130, and then the existing bearer disconnection response (Delete session response) is returned to the AMF 100 (step S08).
  • the service bearer used by the UE 140 is switched from the switching source slice to the switching destination slice. That is, as shown in FIG. 7, with the slice switching request transmitted from the UE 140, the slice allocated to the service being used by the UE 140 is the slice switching request from the slice “Slice 1” allocated until immediately before. Is switched to the slice “Slice 2” corresponding to the situation indicated by the context information included in.
  • the mobile communication system described above when information identifying the service in use and information indicating the current situation are acquired from the UE 140, the information assigned to the service currently used is allocated based on the information. A slice corresponding to the current situation is selected from the plurality of milling machines, and the bearer between the UE 140 and the UPF 130 is switched on the selected slice. Thereby, the slice allocated to a service can be dynamically changed for every user of UE according to the condition of the user. As a result, a service can be smoothly provided to the user of the UE.
  • a bearer between the UE 140 and the UPF 130 is set on the slice specified by the slice ID included in the specified correspondence information, and the bearer set on the slice other than the slice is disconnected. .
  • the service allocation can be switched from one slice to another according to the situation for each user of the UE, and the slice can be efficiently allocated between the UE users.
  • the slice switching request is acquired from the UE 140
  • identification of correspondence information and switching of bearers between the UE 140 and the UPF 130 are executed.
  • the slice assignment can be quickly changed according to the situation of the user of the UE.
  • the AMF 100 receives a slice switching request from the UE 140, determines whether or not there is a need to switch slices, and executes bearer switching control based on the determination result. Other than the above, it may be determined whether or not slice switching is necessary, or bearer switching control may be performed.
  • an NSSF (NW Slice Selection Function) 150 which is a node different from the AMF 100, has a function for determining whether or not a slice needs to be switched and a bearer switching control function.
  • FIG. 8 is a diagram showing a system configuration according to a modification of the mobile communication system of the above-described embodiment
  • FIG. 9 is a block diagram showing a functional configuration of the NSSF 150 in FIG.
  • the NSSF 150 illustrated in FIG. 8 is a node that performs a function of determining whether or not to switch a slice and a bearer switching control function among the functional units included in the AMF 100 according to the above-described embodiment.
  • the functional component includes a status acquisition unit 22, a switching determination unit 23, a connection switching request unit 24, and a correspondence information storage unit 25.
  • the functions of the situation acquisition unit 22, the switching determination unit 23, and the correspondence information storage unit 25 are the same as the functions of the situation acquisition unit 12, the switching determination unit 13, and the correspondence information storage unit 15 of the AMF 100 described above.
  • the connection switching request unit 24 receives the slice switching request from the switching determination unit 23 and transfers the slice switching request to the AMF 100.
  • the AMF 100 transmits a request for establishing a new bearer and a request for disconnecting an existing bearer to the corresponding SMF 120 in the same manner as the connection switching unit 14 described above.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • the NSSF 150 in the present modification may function as a computer that performs the processing of the NSSF 150 in the present modification.
  • a computer that performs processing of the NSSF 150 can employ a hardware configuration similar to the configuration of FIG.
  • FIG. 10 is a sequence diagram showing a procedure of bearer switching processing by the mobile communication system according to the present modification.
  • context information is acquired in the UE 140 in a state where a service bearer between the UE 140 and the UPF 130 is connected (step S101).
  • a slice switching request is transmitted from the UE 140 to the NSSF 150 via the AMF 100 (step S102).
  • step S102 when the slice acquisition request is received by the status acquisition unit 22 of the NSSF 150 (step S102), the following determination process for determining the necessity of switching and the bearer switching process are executed. That is, the service used by the UE 140 and the UE 140 out of the correspondence information stored in the correspondence information storage unit 25 based on the service type and context information included in the slice switching request by the switching judgment unit 23 of the NSSF 150. By identifying the correspondence information corresponding to the situation, it is determined whether or not switching is necessary (step S103). As a result, if it is determined that the necessity of switching is “present”, a slice switching request is transmitted from the connection switching request unit 24 of the NSSF 150 to the AMF 100 (step S104).
  • a request for establishing a new bearer (Create session request) is transmitted from the AMF 100 to the SMF 120 and the UPF 130 of the switching destination (step S105).
  • a new bearer establishment response (Create session response) is returned to the AMF 100 (step S 106).
  • a bearer change request (Barer modify request) between the UE 140 and the UPF 130 is transmitted from the AMF 100 to the RAN 110, and a response (Barer modify response) is returned to the AMF 100 after the bearer change process is executed in the RAN 110 (step S107).
  • an existing bearer disconnect request (Delete session request) is transmitted from the AMF 100 to the switching source SMF 120 and UPF 130 (step S108).
  • the bearer disconnection process is performed in the switching source SMF 120 and the switching source UPF 130, and then the existing bearer disconnection response (Delete session response) is returned to the AMF 100 (step S109).
  • the service bearer used by the UE 140 is switched from the switching source slice to the switching destination slice. Also by the mobile communication system according to the above-described modification, the slice allocated to the service can be dynamically changed for each user of the UE according to the situation of the user. As a result, a service can be smoothly provided to the user of the UE.
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC ConnectionReconfiguration) message, or the like.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
  • Information etc. can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information or the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by an index.
  • determining may encompass a wide variety of actions.
  • “Judgment”, “decision” can be, for example, calculating, computing, processing, deriving, investigating, looking up (eg, table, database or another (Searching in the data structure), and confirming (ascertaining) what has been confirmed may be considered as “determining” or “deciding”.
  • “determination” and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as "determined” or "determined”.
  • determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • connection means any direct or indirect connection or coupling between two or more elements and It can include the presence of one or more intermediate elements between two “connected” or “coupled” elements.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples
  • electromagnetic energy such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • One embodiment of the present invention uses a method and a mobile communication system for assigning slices, which are virtual networks generated on a network infrastructure, and dynamically changes slices assigned to services for each user according to the user's situation. Is possible.
  • SYMBOLS 100 ... AMF, 11 ... Connection / mobility management function part, 12 ... Situation acquisition part, 13 ... Switching judgment part, 14 ... Connection switching part, 15 ... Corresponding information storage part, 150 ... NSSF, 22 ... Situation acquisition part, 23 ... Switching judgment unit, 24... Connection switching request unit (connection switching unit), 25... Correspondence information storage unit, SL 1 to SL 3.

Abstract

This mobile communication system includes: an association information storage unit 15 which stores, in advance, a service type which specifies a service in association with a plurality of pieces of association information in which a slice ID that specifies a slice of an allocation destination of the service is associated with context information that indicates the status of a UE; a status acquisition unit 12 which acquires, from the UE 140, a service type that specifies a service being currently used and the context information that indicates the current status of the UE140; and a connection switching unit 14 which specifies, among the plurality of pieces of association information stored in the association information storage unit 15, association information associated with the service type and including the context information, and switches a bearer of the UE 140 on the slice specified by the slice ID included in the association information.

Description

スライス割当方法及び移動通信システムSlice allocation method and mobile communication system
 本発明の一側面は、ネットワークインフラ上に生成される仮想ネットワークであるスライスを割り当てる方法及び移動通信システムに関する。 One aspect of the present invention relates to a method for allocating a slice, which is a virtual network generated on a network infrastructure, and a mobile communication system.
 従来の仮想化技術を用いたネットワークシステムは、非特許文献1に開示された仮想化技術を用いて、ハードウェア資源を仮想的に切り分けて、ネットワークインフラ上に論理的に生成される仮想ネットワークであるスライスを生成する。そして、当該スライスへサービスを割り当てることにより、それぞれ独立したスライスのネットワークを用いてサービス提供することができる。これにより、多様な要求条件を持つサービス各々にスライスを割り当てた場合、サービス個々の要求条件を満たすことを容易にし、そのシグナリング処理などを軽減させることが可能となる。 A network system using a conventional virtualization technology is a virtual network that is logically generated on a network infrastructure by virtually separating hardware resources using the virtualization technology disclosed in Non-Patent Document 1. Create a slice. Then, by assigning a service to the slice, it is possible to provide the service using a network of independent slices. Thereby, when a slice is assigned to each service having various requirements, it becomes easy to satisfy the requirements of each service, and the signaling processing and the like can be reduced.
 しかし、一意にサービスにスライスを割り当ててしまうと、当該サービスを利用しているユーザの状況が変化した場合に、サービスに対して適切なスライスをユーザの状況に応じて割り当てることは困難である。 However, if a slice is uniquely assigned to a service, it is difficult to assign an appropriate slice to the service according to the user situation when the situation of the user using the service changes.
 本発明の一側面は、上記に鑑みてなされたものであり、サービスに割り当てるスライスをユーザの状況に応じてユーザごとに動的に変えるスライス割当方法を提供することを目的とする。 An aspect of the present invention has been made in view of the above, and an object of the present invention is to provide a slice assignment method that dynamically changes a slice to be assigned to a service for each user according to a user's situation.
 上述の課題を解決するために、本発明の一側面にかかるスライス割当方法は、ネットワークインフラ上に生成される仮想ネットワークを用いるサービスに、仮想ネットワークであるスライスを割り当てる装置により実行されるスライス割当方法であって、サービスを特定するサービス特定情報に対して、当該サービスの割当先のスライスを特定するスライス特定情報と端末の状況を示す情報である状況情報とを対応付けた情報である対応情報を、予め複数関連付けて記憶する対応情報記憶ステップと、ユーザが使用する端末から、現在使用中のサービスを特定する使用サービス特定情報と、端末の現在の状況を示す現在状況情報とを取得する状況取得ステップと、対応情報記憶ステップにより記憶された複数の対応情報の中から、使用サービス特定情報に関連付けられ、かつ、現在状況情報に対応する状況情報を含む対応情報を特定し、当該対応情報に含まれるスライス特定情報によって特定されるスライス上に、端末の通信セッションを切り換える接続切換ステップと、を含む。 In order to solve the above-described problem, a slice allocation method according to one aspect of the present invention is a slice allocation method executed by a device that allocates a slice that is a virtual network to a service that uses a virtual network generated on a network infrastructure. And correspondence information which is information in which slice identification information for identifying a slice to which the service is assigned and status information which is information indicating the status of the terminal is associated with service identification information for identifying the service. , A correspondence information storage step for storing a plurality of associations in advance, a service acquisition information for identifying service currently used and a current status information indicating a current status of the terminal from a terminal used by the user From the plurality of correspondence information stored in the step and the correspondence information storage step. Connection switching for identifying correspondence information including situation information associated with current situation information and corresponding to current situation information, and switching a communication session of a terminal on a slice identified by slice identification information included in the correspondence information Steps.
 あるいは、本発明の他の側面にかかる移動通信システムは、ネットワークインフラ上に生成される仮想ネットワークを用いるサービスに、仮想ネットワークであるスライスを割り当てる移動通信システムであって、サービスを特定するサービス特定情報に対して、当該サービスの割当先のスライスを特定するスライス特定情報と端末の状況を示す情報である状況情報とを対応付けた情報である対応情報を、予め複数関連付けて記憶する対応情報記憶部と、ユーザが使用する端末から、現在使用中のサービスを特定する使用サービス特定情報と、端末の現在の状況を示す現在状況情報とを取得する状況取得部と、対応情報記憶部に記憶された複数の対応情報の中から、使用サービス特定情報に関連付けられ、かつ、現在状況情報に対応する状況情報を含む対応情報を特定し、当該対応情報に含まれるスライス特定情報によって特定されるスライス上に、端末の通信セッションを切り換える接続切換部と、を含む。 Alternatively, a mobile communication system according to another aspect of the present invention is a mobile communication system in which a slice that is a virtual network is assigned to a service that uses a virtual network generated on a network infrastructure, and the service specifying information that specifies the service Corresponding information storage unit that stores in advance a plurality of correspondence information, which is information in which slice specifying information for specifying a slice to which the service is allocated and status information that is information indicating the status of the terminal is associated in advance Stored in the correspondence information storage unit, and a status acquisition unit that acquires service usage identification information for identifying a service currently in use and current status information indicating the current status of the terminal from a terminal used by the user The status that is associated with the service identification information used from the multiple correspondence information and that corresponds to the current status information To identify the corresponding information including information, on the slice identified by the slice specifying information included in the correspondence information includes a connection switching unit that switches the communication session of the terminal, the.
 上記一側面あるいは上記他の側面によれば、端末から使用中のサービスを特定する情報と現在の状況を示す情報とが取得されると、それらの情報を基に、現在使用しているサービスに割り当てられた複数のフライスの中から、現在の状況に対応したスライスが選択され、選択されたスライス上に端末の通信セッションが切り換えられる。これにより、端末のユーザ毎にそのユーザの状況に応じてサービスに割り当てるスライスを動的に変えることができる。その結果、端末のユーザに対して円滑にサービスを提供することができる。 According to the one aspect or the other aspect described above, when information for identifying a service in use and information indicating a current situation are acquired from a terminal, a service currently used is determined based on the information. A slice corresponding to the current situation is selected from the plurality of assigned milling cutters, and the communication session of the terminal is switched to the selected slice. Thereby, the slice allocated to a service can be dynamically changed for every user of a terminal according to the condition of the user. As a result, a service can be smoothly provided to the user of the terminal.
 本発明によれば、サービスに割り当てるスライスをユーザの状況に応じてユーザごとに動的に変えることが可能となる。 According to the present invention, slices allocated to services can be dynamically changed for each user according to the user's situation.
本発明の好適な一実施形態にかかる移動通信システムのシステム構成を示す図である。It is a figure which shows the system configuration | structure of the mobile communication system concerning suitable one Embodiment of this invention. スライスとリソースとの対応関係を示す図である。It is a figure which shows the correspondence of a slice and a resource. 図1のAMF100のハードウェア構成の一例を示すブロック図である。It is a block diagram which shows an example of the hardware constitutions of AMF100 of FIG. 図1のAMF100の機能構成を示すブロック図である。It is a block diagram which shows the function structure of AMF100 of FIG. 図4の対応情報記憶部15に記憶されている対応情報のデータ構成を示す図である。It is a figure which shows the data structure of the correspondence information memorize | stored in the correspondence information storage part 15 of FIG. 実施形態の移動通信システムによるベアラの切換処理の手順を示すシーケンス図である。It is a sequence diagram which shows the procedure of the switching process of the bearer by the mobile communication system of embodiment. 実施形態の移動通信システムによるベアラの切換処理のイメージを示す概念図である。It is a conceptual diagram which shows the image of the switching process of the bearer by the mobile communication system of embodiment. 変形例にかかる移動通信システムのシステム構成を示す図である。It is a figure which shows the system configuration | structure of the mobile communication system concerning a modification. 変形例にかかるNSSF150の機能構成を示すブロック図である。It is a block diagram which shows the function structure of NSSF150 concerning a modification. 変形例におけるベアラの切換処理の手順を示すシーケンス図である。It is a sequence diagram which shows the procedure of the switching process of the bearer in a modification.
 添付図面を参照しながら本発明の実施形態を説明する。可能な場合には、同一の部分には同一の符号を付して、重複する説明を省略する。 Embodiments of the present invention will be described with reference to the accompanying drawings. Where possible, the same parts are denoted by the same reference numerals, and redundant description is omitted.
 図1に本実施形態に係るスライス割当方法を実施する移動通信システムの構成を示す。移動通信システムは、ネットワークインフラ上に生成される仮想ネットワークを用いるサービスに、当該仮想ネットワークであるスライスを割り当てるシステムである。スライスとは、ネットワーク装置のリンクとノードの資源を仮想的に切り分けて、切り分けた資源を結合し、ネットワークインフラ上に論理的に生成される仮想ネットワーク又はサービス網であり、スライス同士は資源を分離しており、互いに干渉しない。サービスとは、通信サービス(専用線サービス等)やアプリケーションサービス(動画配信、エンベデッド装置等のセンサ装置を利用したサービス)等のネットワーク資源を用いたサービスをいう。 FIG. 1 shows the configuration of a mobile communication system that implements the slice allocation method according to the present embodiment. A mobile communication system is a system that allocates a slice, which is a virtual network, to a service that uses a virtual network generated on a network infrastructure. A slice is a virtual network or service network that is created by logically dividing the network device link and node resources and combining the separated resources, and the slices separate resources. And do not interfere with each other. The service refers to a service using network resources such as a communication service (private line service or the like) or an application service (service using a moving image distribution or sensor device such as an embedded device).
 図1に示すように移動通信システムは、SO(Service Operator)20と、OSS/BSS(Operations Support System/Business Support System)30と、スライス管理装置10と、NFVO40と、VNFM50と、VIM(Virtualized Infrastructure Management:仮想化基盤管理)60と、UDM(Unified Data Management)70と、DNS(Domain Name System)サーバ80と、AUSF(Authentication Server Function)90と、AMF(Core Access and Mobility management Function)100と、RAN110と、SMF(Session Management Function)120と、UPF(User Plane Function)130と、UE(User Equipment)140とを含んで構成されている。このうち、NFVO40とVNFM50とVIM60とは、MANO(Management & Orchestration)architectureである。 As shown in FIG. 1, the mobile communication system includes an SO (Service Operator) 20, an OSS / BSS (Operations Support System / Business Support System) 30, a slice management device 10, an NFVO 40, a VNFM 50, and a VIM (Virtualized Infrastructure). Management: Virtualization infrastructure management) 60, UDM (Unified Data Management) 70, DNS (Domain Name System) server 80, AUSF (Authentication Server Function) 90, AMF (Core Access and Mobility management Function) 100, RAN 110, SMF (Session Management Function) 120, UPF (User Plane Function) 130, and UE (User Equipment) 140 are comprised. Among these, NFVO40, VNFM50, and VIM60 are MANO (Management & Orchestration) architecture.
 これらの構成要素は、移動通信システムのコアネットワークを構成するものである。なお、互いに情報の送受信が必要な構成要素間は、有線等で接続されており情報の送受信が可能となっている。 These components constitute the core network of the mobile communication system. Note that components that need to transmit and receive information to each other are connected by wire or the like so that information can be transmitted and received.
 本実施形態に係る移動通信システムは、物理サーバ上に実現される仮想マシンにおいて動作する仮想サーバによって移動通信端末に対して通信機能を提供する。即ち、移動通信システムは、仮想化された移動体通信ネットワークである。通信機能は、仮想マシンによって当該通信機能に応じた通信処理を実行することで移動通信端末に対して提供される。 The mobile communication system according to the present embodiment provides a communication function for a mobile communication terminal by a virtual server operating in a virtual machine realized on a physical server. That is, the mobile communication system is a virtualized mobile communication network. The communication function is provided to the mobile communication terminal by executing a communication process corresponding to the communication function by the virtual machine.
 スライス管理装置10は、移動通信システムにおけるサービス管理(スライスとサービスとの対応付け)を行い、移動通信システムでの通信機能に係る指示を行うノードである。また、スライス管理装置10は、移動通信システムに係る通信事業者によって操作され得る。 The slice management apparatus 10 is a node that performs service management (association between slices and services) in the mobile communication system and gives instructions related to communication functions in the mobile communication system. Further, the slice management device 10 can be operated by a telecommunications carrier related to the mobile communication system.
 SO(Service Operator)20は、サービス要求する装置であり、例えば、仮想ネットワークを用いて各種ユーザへサービス提供をする事業者の端末装置(例えば、パーソナルコンピュータ等)である。 The SO (Service Operator) 20 is a service requesting device, for example, a terminal device (for example, a personal computer) of a business provider that provides services to various users using a virtual network.
 OSS/BSS30は、SO20からのサービス要求を受け付けて、スライス管理装置10へその要求に基づく情報を送信する装置である。このOSS/BSS30は、当該サービス要求の対象となるサービスを識別(特定)するサービスパラメータ(サービス特定情報であるサービスタイプ)と、当該サービスパラメータの示すサービスの割当先のスライスを特定するスライス特定情報(スライスID)と、コンテキスト情報とを対応付けて、当該対応付けた情報をスライス管理装置10へ送信する。ここで、コンテキスト情報とは、ユーザの端末の状況を示す情報であり、例えば、ユーザの利用しているサービスにおける検出状況を示す情報、ユーザの滞在状況(滞在時間)を示す情報等である。なお、SO20から対応情報を受信して、当該対応情報をスライス管理装置10へ送信するようにしてもよい。 The OSS / BSS 30 is a device that receives a service request from the SO 20 and transmits information based on the request to the slice management device 10. The OSS / BSS 30 includes a service parameter (service type that is service specifying information) for identifying (specifying) a service that is a target of the service request, and slice specifying information for specifying a slice to which a service indicated by the service parameter is assigned. (Slice ID) and context information are associated with each other, and the associated information is transmitted to the slice management apparatus 10. Here, the context information is information indicating the status of the user's terminal, for example, information indicating the detection status in the service used by the user, information indicating the user's stay status (stay time), and the like. Note that the correspondence information may be received from the SO 20 and the correspondence information may be transmitted to the slice management apparatus 10.
 NFVO40は、物理資源であるNFVI160上に構築された仮想ネットワーク(スライス)全体の管理を行う全体管理ノード(機能エンティティ)である。NFVO40は、スライス生成を指示する装置からの指示を受信し、当該指示に応じた処理を行う。NFVO40は、インフラと通信サービスの移動体通信網の物理資源において構築された仮想化ネットワーク全体にわたる管理を行う。NFVO40は、仮想ネットワークにより提供される通信サービスをVNFM50及びVIM60を経由して適切な場所に実現する。例えば、サービスのライフサイクル管理(具体的には例えば、生成、更新、スケール制御、イベント収集)、移動体通信網内全体にわたる資源の分散・予約・割当管理、サービス・インスタンス管理、及びポリシー管理(具体的には例えば、リソースの予約・割当、地理・法令等に基づく最適配置)を行う。 The NFVO 40 is an overall management node (functional entity) that manages the entire virtual network (slice) constructed on the NFVI 160, which is a physical resource. The NFVO 40 receives an instruction from a device that instructs slice generation, and performs processing in accordance with the instruction. The NFVO 40 performs management over the entire virtual network constructed in the physical resources of the mobile communication network of infrastructure and communication services. The NFVO 40 implements a communication service provided by the virtual network at an appropriate location via the VNFM 50 and the VIM 60. For example, service life cycle management (specifically, for example, generation, update, scale control, event collection), resource distribution / reservation / allocation management, service / instance management, and policy management (in the mobile communication network) Specifically, for example, resource reservation / allocation, optimal placement based on geography / laws, etc.) is performed.
 VNFM50は、物理資源(ノード)となるNFVI160に対して、サービスに係る機能を追加する仮想通信機能管理ノード(機能エンティティ)である。VNFM50は、システムに複数、設けられていてもよい。 The VNFM 50 is a virtual communication function management node (functional entity) that adds a function related to a service to the NFVI 160 serving as a physical resource (node). A plurality of VNFMs 50 may be provided in the system.
 VIM60は、物理資源(ノード)各々を管理する物理資源管理ノード(機能エンティティ)である。具体的には、資源の割当・更新・回収の管理、物理資源と仮想化ネットワークとの関連付け、ハードウェア資源とSW資源(ハイパーバイザー)一覧の管理を行う。通常、VIM60は、データセンタ(局舎)毎に管理を行う。物理資源の管理は、データセンタに応じた方式で行われる。データセンタの管理方式(管理資源の実装方式)は、OPENSTACKやvCenter等の種類がある。通常、VIM60は、データセンタの管理方式毎に設けられる。即ち、互いに異なる方式で、NFVI160における物理資源各々を管理する複数のVIM60が含まれる。なお、異なる管理方式で管理される物理資源の単位は、必ずしもデータセンタ単位でなくてもよい。 The VIM 60 is a physical resource management node (functional entity) that manages each physical resource (node). Specifically, resource allocation / update / recovery management, association between physical resources and virtualized network, and management of hardware resources and SW resources (hypervisor) list are performed. Normally, the VIM 60 performs management for each data center (station building). Management of physical resources is performed by a method according to the data center. Data center management methods (management resource mounting methods) include OPENSTACK and vCenter. Normally, the VIM 60 is provided for each data center management method. That is, a plurality of VIMs 60 that manage each physical resource in the NFVI 160 in different manners are included. Note that the unit of physical resources managed by different management methods is not necessarily a data center unit.
 なお、NFVO40、VNFM50及びVIM60は、物理的なサーバ装置上でプログラムが実行されることにより実現される(但し仮想化上で実現されることを制限するものでは無く、管理系統を分離した上で、仮想化上で実現してもよい)。NFVO40、VNFM50及びVIM60は、それぞれ別々の物理的なサーバ装置で実現されていてもよいし、同じサーバ装置で実現されていてもよい。NFVO40、VNFM50及びVIM60(を実現するためのプログラム)は、別々のベンダから提供されていてもよい。 The NFVO 40, the VNFM 50, and the VIM 60 are realized by executing a program on a physical server device (however, they are not limited to being realized on virtualization, and are separated from a management system). And may be realized on virtualization). The NFVO 40, the VNFM 50, and the VIM 60 may be realized by separate physical server devices, or may be realized by the same server device. The NFVO 40, VNFM 50, and VIM 60 (programs for realizing) may be provided from different vendors.
 NFVO40は、スライス生成要求を受信すると、VIM60に対してスライス(スライスSL1、SL2等)のためのリソース確保要求を行う。VIM60が、物理資源を構成するサーバ装置やスイッチにおけるリソースを確保すると、NFVO40は、当該これら物理資源に対してスライスを定義する。 When the NFVO 40 receives the slice generation request, the NFVO 40 makes a resource securing request for the slice (slice SL1, SL2, etc.) to the VIM 60. When the VIM 60 secures resources in the server devices and switches that make up physical resources, the NFVO 40 defines slices for these physical resources.
 また、NFVO40は、VIM60に、物理資源においてリソース確保させると、当該物理資源に対してスライスを定義した情報をNFVO40が記憶しているテーブルに記憶する。そして、NFVO40は、当該サービスに必要となる機能を実現するためのソフトウェアのインストール要求をVNFM50に対して行う。VNFM50は、当該インストール要求に応じて、VIM60によって確保された物理資源(サーバ装置、スイッチ装置またはルータ装置などのノード)に対して上記ソフトウェアをインストールする。 Further, when the NFVO 40 causes the VIM 60 to secure a resource in the physical resource, the NFVO 40 stores information defining a slice for the physical resource in a table stored in the NFVO 40. Then, the NFVO 40 requests the VNFM 50 to install software for realizing functions required for the service. In response to the installation request, the VNFM 50 installs the software on a physical resource (node such as a server device, a switch device, or a router device) secured by the VIM 60.
 NFVO40は、VNFM50によりソフトウェアがインストールされると、NFVO40が記憶しているテーブルへスライスとサービスとの対応付けをする。スライスSL1~スライスSL3は、サービスを割り当てる単位となるスライスである。 When the software is installed by the VNFM 50, the NFVO 40 associates the slice and the service with the table stored in the NFVO 40. The slices SL1 to SL3 are slices that are units for allocating services.
 例えば図2に示すように、NFVO40がスライス(Slice1及びSlice2)のためのリソース確保要求をVIM60へ行うと、VIM60は、その旨の指示をスイッチSW1、スイッチSW2、サーバSV1、及びスイッチSW3に対して行う。そして、これらスイッチSW1、スイッチSW2、サーバSV1、及びスイッチSW3はSlice1用にリソースを確保する。同様に、VIM60からの指示に従って、スイッチSW1、スイッチSW2、サーバSV1、及びスイッチSW4は、Slice2用にリソースを確保する。 For example, as shown in FIG. 2, when the NFVO 40 makes a resource securing request for the slices (Slice 1 and Slice 2) to the VIM 60, the VIM 60 sends an instruction to that effect to the switch SW1, the switch SW2, the server SV1, and the switch SW3. Do it. Then, the switch SW1, the switch SW2, the server SV1, and the switch SW3 reserve resources for Slice1. Similarly, according to an instruction from the VIM 60, the switch SW1, the switch SW2, the server SV1, and the switch SW4 reserve resources for Slice2.
 上述の物理資源であるNFVI160は、仮想化環境を構成する物理資源(ノード群)から形成されたネットワークを示す。この物理資源は、概念的には計算資源、記憶資源、伝送資源を含む。具体的には、この物理資源は、システムにおいて通信処理を行う物理的なサーバ装置である物理サーバ、スイッチ等のノードを含んで構成されている。物理サーバは、CPU(コア、プロセッサ)、メモリ、及びハードディスク等の記憶手段を備えて構成される。通常、NFVI160を構成する物理サーバ等のノードは、複数まとめてデータセンタ(DC)等の拠点に配置される。データセンタでは、配置された物理サーバがデータセンタ内部のネットワークによって接続されており、互いに情報の送受信を行うことができるようになっている。また、システムには、複数のデータセンタが設けられている。データセンタ間はネットワークで接続されており、異なるデータセンタに設けられた物理サーバはそのネットワークを介して互いに情報の送受信を行うことができる。 NFVI 160, which is the above-described physical resource, indicates a network formed from physical resources (node groups) that constitute a virtual environment. The physical resources conceptually include computing resources, storage resources, and transmission resources. Specifically, the physical resource includes nodes such as a physical server and a switch that are physical server devices that perform communication processing in the system. The physical server includes a storage unit such as a CPU (core, processor), a memory, and a hard disk. Normally, a plurality of nodes such as physical servers that constitute the NFVI 160 are arranged together at a base such as a data center (DC). In the data center, the arranged physical servers are connected by a network inside the data center, and can exchange information with each other. The system is provided with a plurality of data centers. Data centers are connected by a network, and physical servers provided in different data centers can transmit / receive information to / from each other via the network.
 上述のように、VNFM50が、物理資源(ノード)となるNFVI160に対して、各種機能を追加することにより、NFVI160は、UDM70、DNSサーバ80、AUSF90、AMF100、SMF120、及びUPF130の機能を実現する。 As described above, when the VNFM 50 adds various functions to the NFVI 160 serving as a physical resource (node), the NFVI 160 realizes the functions of the UDM 70, the DNS server 80, the AUSF 90, the AMF 100, the SMF 120, and the UPF 130. .
 UDM70は、UE140等の通信端末の契約情報、認証情報、通信サービス情報、端末タイプ情報及び在圏情報を含む加入者情報をデータベースで管理する機能である。ここで、通信サービス情報とは、各UE140が利用する通信サービスのタイプを定義した情報である。通信サービス情報には、UE140を識別する情報(例えば、IMSI(International Mobile Subscriber Identity))と、当該UE140が利用する通信サービスの要件を示すサービスパラメータとが含まれる。 The UDM 70 is a function for managing subscriber information including contract information, authentication information, communication service information, terminal type information, and location information of communication terminals such as the UE 140 in a database. Here, the communication service information is information that defines the type of communication service used by each UE 140. The communication service information includes information for identifying the UE 140 (for example, IMSI (International Mobile Subscriber Identity)) and service parameters indicating requirements of the communication service used by the UE 140.
 DNSサーバ80は、ネットワーク上でドメイン名やホスト名とIPアドレスの対応関係を管理する機能である。さらにDNSサーバ80は、スライスを識別する情報(例えば、スライスID)とSMF120のアドレスとを対応付けた情報を記憶している。DNSサーバ80は、AMF100からアドレスの送信要求を受け付けると、要求に応じたSMF120のアドレスをAMF100へ送信する。 DNS server 80 is a function for managing the correspondence between domain names and host names and IP addresses on the network. Further, the DNS server 80 stores information in which information for identifying a slice (for example, slice ID) is associated with the address of the SMF 120. When the DNS server 80 receives an address transmission request from the AMF 100, the DNS server 80 transmits the address of the SMF 120 corresponding to the request to the AMF 100.
 AUSF90及びAMF100は、LTE(Long Term Evolution)ネットワークに在圏するユーザ端末(UE140)と通信接続する通信装置である。AUSF90は、UE140の認証管理を行う機能である。AMF100は、UE140の位置管理、及びUPF130とUE140との間のユーザデータの通信経路の設定処理を行う機能である。 The AUSF 90 and the AMF 100 are communication devices that are connected to communicate with a user terminal (UE 140) located in an LTE (Long Term Evolution) network. The AUSF 90 is a function that performs authentication management of the UE 140. The AMF 100 is a function that performs location management of the UE 140 and processing for setting a communication path for user data between the UPF 130 and the UE 140.
 また、AMF100は、UE140からサービスパラメータとコンテキスト情報とを含むスライス切換依頼を受信した際に、1つのスライス上においてUE140とUPF130との間に設定されている通信セッションであるベアラを他のスライス上のベアラに切り換える機能も有する(詳細は後述する)。 In addition, when the AMF 100 receives a slice switching request including service parameters and context information from the UE 140, the AMF 100 transmits a bearer, which is a communication session set between the UE 140 and the UPF 130 on one slice, on another slice. There is also a function of switching to a bearer (details will be described later).
 RAN110は、AMF100に接続された無線基地局であるとともに、無線アクセス制御機能を有した装置である。 The RAN 110 is a radio base station connected to the AMF 100 and a device having a radio access control function.
 SMF120は、UE140とUPF130との間に設定されているベアラの管理を行うセッション管理機能である。UPF130は、LTEを収容する在圏パケット交換機の機能で、RAN110との間で通信サービス提供に利用されるユーザデータの送受信を行う。このUPF130は、複数の通信サービスの要件に対応して複数設けられている。また、UPF130は、PDN(Packet data network)との接合点であり、RAN110とPDNとの間でユーザデータの転送などを行うゲートウェイである。 The SMF 120 is a session management function that manages bearers set between the UE 140 and the UPF 130. The UPF 130 is a function of a serving packet switch that accommodates LTE, and transmits / receives user data used for providing communication services to / from the RAN 110. A plurality of UPFs 130 are provided corresponding to the requirements of a plurality of communication services. The UPF 130 is a junction with a PDN (Packet data network), and is a gateway that transfers user data between the RAN 110 and the PDN.
 UE140は、ユーザにより用いられ、例えば、携帯電話、PDA(Personal Digital Assistance)等の通信機能を有する装置として実現される。さらに、UE140は、ユーザの利用しているサービスにおける検出状況を示す情報等のコンテキスト情報を取得する。例えば、UE140は、カメラ等の画像取得デバイスで得られた画像を基にUE140の近傍の環境状況の変化(侵入者検知、温度検知、火災検知等)を検出することを契機に、その変化に対応したコンテキスト情報(例えば、“通常”、“非常”等)を取得する。コンテキスト情報は、カメラ以外にも、マイク、測位センサ、光センサ等の様々なセンサを利用して取得され得る。そして、UE140は、特定のコンテキスト情報(例えば、“非常”)を取得したことを契機にして、現在使用しているサービスに割り当てられたスライスを切り換えるためのスライス切換依頼をRAN110を経由してAMF100に送信する。このスライス切換依頼には、現在使用しているサービスに対応したサービスタイプ(使用サービス特定情報)と、取得した現在のUE140の状況を示すコンテキスト情報(現在状況情報)とが含まれる。ここで、コンテキスト情報はUE140のセンサを利用して自動的に取得され、それを契機にスライス切換依頼が自動的に送信されてもよいし、UE140のユーザの入力に応じてコンテキスト情報が取得され、ユーザの指示入力によってスライス切換依頼が送信されてもよい。 The UE 140 is used by a user and is realized as a device having a communication function such as a mobile phone or a PDA (Personal Digital Assistance). Further, the UE 140 acquires context information such as information indicating a detection status in the service used by the user. For example, the UE 140 is triggered by detecting a change in environmental conditions (intruder detection, temperature detection, fire detection, etc.) in the vicinity of the UE 140 based on an image obtained by an image acquisition device such as a camera. Corresponding context information (eg, “normal”, “emergency”, etc.) is acquired. In addition to the camera, the context information can be acquired using various sensors such as a microphone, a positioning sensor, and an optical sensor. Then, when the UE 140 acquires specific context information (for example, “emergency”), the UE 140 sends a slice switching request for switching the slice assigned to the currently used service via the RAN 110. Send to. This slice switching request includes the service type (used service specifying information) corresponding to the service currently used, and the acquired context information (current status information) indicating the current status of the UE 140. Here, the context information is automatically acquired using the sensor of the UE 140, and the slice switching request may be automatically transmitted in response to the context information, or the context information is acquired according to the input of the user of the UE 140. The slice switching request may be transmitted by a user instruction input.
 以下、AMF100の構成について詳細に説明する。なお、AMF100は、以下で説明する機能以外にも、後述の図6のシーケンス図を用いて説明する機能も有するものとする。 Hereinafter, the configuration of the AMF 100 will be described in detail. In addition to the functions described below, the AMF 100 also has functions described using a sequence diagram of FIG.
 図3には、AMF100のハードウェア構成を示し、図4には、AMF100の機能構成を示す。図4に示すように、AMF100は、機能的な構成要素として、接続・モビリティ管理機能部11、状況取得部12、切換判断部13、接続切換部14、及び対応情報記憶部15を含んで構成されている。 3 shows a hardware configuration of the AMF 100, and FIG. 4 shows a functional configuration of the AMF 100. As shown in FIG. 4, the AMF 100 includes a connection / mobility management function unit 11, a situation acquisition unit 12, a switching determination unit 13, a connection switching unit 14, and a correspondence information storage unit 15 as functional components. Has been.
 図4に示すブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。 The block diagram shown in FIG. 4 shows functional unit blocks. These functional blocks (components) are realized by any combination of hardware and / or software. Further, the means for realizing each functional block is not particularly limited. That is, each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
 例えば、本発明の一実施の形態におけるAMF100は、本実施形態のAMF100の処理を行うコンピュータとして機能してもよい。図3には、本実施形態に係るAMF100のハードウェア構成の一例を示している。AMF100は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the AMF 100 according to an embodiment of the present invention may function as a computer that performs processing of the AMF 100 according to the present embodiment. FIG. 3 shows an example of the hardware configuration of the AMF 100 according to the present embodiment. The AMF 100 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、本明細書における説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。AMF100のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the description in this specification, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configuration of the AMF 100 may be configured to include one or a plurality of devices illustrated in the figure, or may be configured not to include some devices.
 AMF100における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信や、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。 Each function in the AMF 100 reads predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an operation to perform communication by the communication device 1004 and data in the memory 1002 and the storage 1003. This is realized by controlling reading and / or writing.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、接続・モビリティ管理機能部11、状況取得部12、切換判断部13、及び接続切換部14などは、プロセッサ1001で実現されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like. For example, the connection / mobility management function unit 11, the situation acquisition unit 12, the switching determination unit 13, and the connection switching unit 14 may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュールやデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、接続・モビリティ管理機能部11は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。 Further, the processor 1001 reads programs (program codes), software modules, and data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the connection / mobility management function unit 11 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks. Although the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る移動体通信の各種処理を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to perform various processes of mobile communication according to an embodiment of the present invention.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。例えば、対応情報記憶部15などは、ストレージ1003で実現されてもよい。 The storage 1003 is a computer-readable recording medium such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. The storage 1003 may be referred to as an auxiliary storage device. The storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003. For example, the correspondence information storage unit 15 and the like may be realized by the storage 1003.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、接続・モビリティ管理機能部11、状況取得部12、及び接続切換部14などは、通信装置1004で実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like. For example, the connection / mobility management function unit 11, the situation acquisition unit 12, the connection switching unit 14, and the like may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイスであり、出力装置1006は、外部への出力を実施する出力デバイスである。入力装置1005及び出力装置1006は、両者が一体となったタッチパネルディスプレイで実現されてもよい。 The input device 1005 is an input device that accepts input from the outside, and the output device 1006 is an output device that performs output to the outside. The input device 1005 and the output device 1006 may be realized by a touch panel display in which both are integrated.
 また、プロセッサ1001やメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
 また、AMF100は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。 The AMF 100 includes hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). Alternatively, some or all of the functional blocks may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
 次に、AMF100の各機能部の機能について述べる。 Next, the function of each functional part of the AMF 100 will be described.
 接続・モビリティ管理機能部11は、移動通信システムに在圏するUE140の位置管理、及びUPF130とUE140との間の制御データ又はユーザデータの通信経路の設定処理を行う部分である。 The connection / mobility management function unit 11 is a part that performs location management of the UE 140 located in the mobile communication system and setting processing of a communication path of control data or user data between the UPF 130 and the UE 140.
 状況取得部12は、UE140から、RAN110を経由して、現在使用中のサービスに割り当てられたスライスを切り換えるためのスライス切換依頼を受信(取得)する。このとき、状況取得部12は、スライス切換依頼に、US140が現在使用中のサービスを特定するサービスタイプと、現在のUE140の状況を示すコンテキスト情報を含んで受信する。 The status acquisition unit 12 receives (acquires) a slice switching request from the UE 140 via the RAN 110 for switching the slice assigned to the service currently in use. At this time, the status acquisition unit 12 receives the slice switching request including the service type that identifies the service currently used by the US 140 and the context information indicating the current status of the UE 140.
 切換判断部13は、状況取得部12によってスライス切換依頼が受信された際に、スライス切換依頼に含まれるサービスタイプとコンテキスト情報とを基に、スライスの切り替えの必要性の有無を判断する。すなわち、切換判断部13は、スライス切換依頼に含まれるサービスタイプ及びコンテキスト情報を基に、対応情報記憶部15に記憶されているサービス管理に関する対応情報を参照することによって、切り替えの必要性の有無を判断する。 When the status acquisition unit 12 receives a slice switching request, the switching determination unit 13 determines whether or not there is a need to switch slices based on the service type and context information included in the slice switching request. That is, the switching determination unit 13 refers to the correspondence information regarding the service management stored in the correspondence information storage unit 15 based on the service type and context information included in the slice switching request, thereby determining whether switching is necessary. Judging.
 図5には、対応情報記憶部15に記憶されている対応情報のデータ構成の一例を示す。この対応情報は、AMF100によって、スライス管理装置10において記憶された対応情報の中から必要な情報が抽出されて予め記憶されているものである。このように、対応情報においては、サービスを特定するサービスタイプ(例えば、“AAA”)に対して、そのサービスの割当先のスライスを特定するスライスID(例えば、“Slice1”)と、端末の状況を示すコンテキスト情報(例えば、“通常”)とが対応付けられて記憶されている。この対応情報は、端末の状況がコンテキスト情報の示す状況であるときに端末がサービスタイプが示すサービスを利用する際には、スライスIDの示すスライスを使用するように制御されるべきであることを示している。ここで、対応情報においては、同一のサービスタイプ(例えば“AAA”)に対して、異なるスライスIDと異なるコンテキスト情報とを含む複数の組み合わせ(例えば、“Slice1”と“通常”、“Slice2”と“異常”)が対応付けられている。これによって、端末が異なる状況のときに同一のサービスを利用する際に、異なるスライスが割り当てられる。 FIG. 5 shows an example of the data configuration of the correspondence information stored in the correspondence information storage unit 15. This correspondence information is stored in advance by extracting necessary information from the correspondence information stored in the slice management apparatus 10 by the AMF 100. As described above, in the correspondence information, for the service type (for example, “AAA”) for specifying the service, the slice ID (for example, “Slice 1”) for specifying the slice to which the service is allocated, and the status of the terminal Is stored in association with context information (for example, “normal”). This correspondence information indicates that when the terminal status is the status indicated by the context information, the terminal should be controlled to use the slice indicated by the slice ID when using the service indicated by the service type. Show. Here, in the correspondence information, for the same service type (for example, “AAA”), a plurality of combinations (for example, “Slice 1”, “Normal”, and “Slice 2” including different slice IDs and different context information) “Abnormal”) is associated. Accordingly, different slices are allocated when the same service is used when the terminals are in different situations.
 詳細には、切換判断部13は、スライス切換依頼に含まれるサービスタイプに関連付けられ、かつ、スライス切換依頼に含まれるコンテキスト情報を含む対応情報を、対応情報記憶部15に記憶された複数の対応情報の中から特定し、その対応情報に含まれるスライスIDを抽出する。例えば、スライス切換依頼にサービスタイプ“AAA”及びコンテキスト情報“非常”が含まれていた場合には、図5に示す複数の対応情報の中から、スライスID“Slice2”を抽出する。そして、切換判断部13は、スライスIDの抽出が成功した場合には、スライスの切り替えの必要性有りと判断し、そのスライスIDの示すスライスを切換先とするスライス切換依頼を接続切換部14に出力する。 Specifically, the switching determination unit 13 is associated with a service type included in the slice switching request and includes correspondence information including context information included in the slice switching request. The slice ID included in the correspondence information is extracted from the information. For example, when the service type “AAA” and the context information “emergency” are included in the slice switching request, the slice ID “Slice2” is extracted from the plurality of correspondence information shown in FIG. Then, when the slice ID extraction is successful, the switching determination unit 13 determines that the slice needs to be switched, and sends a slice switching request to the connection switching unit 14 with the slice indicated by the slice ID as the switching destination. Output.
 接続切換部14は、切換判断部13からのスライス切換依頼を受けて、UE140~UPF130間の通信セッション(ベアラ)が設定されているスライスを切り換える。すなわち、接続切換部14は、UE140が現在利用しているサービス用のベアラを、現在そのサービスに割り当てられているスライス上から、切換判断部13によって抽出されたスライスIDによって特定されるスライス上に切り換える。具体的には、接続切換部14は、スライス切換依頼を受けると、切換先のスライスを特定するスライスIDに対応するSMF120のアドレスをDNSサーバ80から取得し、そのアドレスのSMF120に対して新規ベアラの確立依頼を送信する。これによって、UE140~UPF130間にスライスIDによって特定されるスライス上のベアラが新規に確立される。さらに、接続切換部14は、切換元のスライスが割り当てられているSMF120のアドレスをDNSサーバ80から取得し、切換元のスライス上に設定されているベアラの切断を依頼する既存ベアラ切断依頼を、該当のSMF120に向けて送信する。これによって、UE140~UPF130間における切換元のスライス上の既存のベアラが切断され、ベアラの切り替えが完了する。 The connection switching unit 14 receives a slice switching request from the switching determination unit 13 and switches a slice in which a communication session (bearer) between the UE 140 and the UPF 130 is set. That is, the connection switching unit 14 sets the bearer for the service currently used by the UE 140 on the slice specified by the slice ID extracted by the switching determination unit 13 from the slice currently allocated to the service. Switch. Specifically, when the slice switching request is received, the connection switching unit 14 obtains the address of the SMF 120 corresponding to the slice ID that specifies the slice to be switched from the DNS server 80, and sends a new bearer to the SMF 120 of that address. Send a request to establish As a result, a bearer on the slice specified by the slice ID is newly established between the UE 140 and the UPF 130. Further, the connection switching unit 14 acquires the address of the SMF 120 to which the switching source slice is assigned from the DNS server 80, and sends an existing bearer disconnection request for requesting disconnection of the bearer set on the switching source slice, Transmit to the corresponding SMF 120. As a result, the existing bearer on the switching source slice between the UE 140 and the UPF 130 is disconnected, and the bearer switching is completed.
 次に、上述した移動通信システムのベアラの切換処理の手順について説明するとともに、本実施形態にかかるスライス割当方法について詳述する。図6は、移動通信システムによるベアラの切換処理の手順を示すシーケンス図であり、図7は、移動通信システムによるベアラの切換処理のイメージを示す概念図である。 Next, the procedure of the bearer switching process of the mobile communication system described above will be described, and the slice allocation method according to the present embodiment will be described in detail. FIG. 6 is a sequence diagram showing a procedure of bearer switching processing by the mobile communication system, and FIG. 7 is a conceptual diagram showing an image of bearer switching processing by the mobile communication system.
 まず、図6を参照して、ベアラの切換処理について説明する。最初に、UE140~UPF130間にあるサービス用のベアラが接続されている状態で、UE140においてコンテキスト情報が取得される(ステップS01)。コンテキスト情報の取得を契機に、UE140からAMF100に対して、スライス切換依頼が送信される(ステップS02)。 First, the bearer switching process will be described with reference to FIG. First, context information is acquired in the UE 140 in a state where a service bearer between the UE 140 and the UPF 130 is connected (step S01). Upon acquisition of the context information, a slice switching request is transmitted from the UE 140 to the AMF 100 (step S02).
 次に、AMF100の状況取得部12によってスライス切換依頼が受信されたこと(ステップS02)を契機として、以下の切り替えの必要性の有無の判断処理およびベアラの切換処理が実行される。すなわち、AMF100の切換判断部13によって、スライス切換依頼に含まれるサービスタイプ及びコンテキスト情報を基に、対応情報記憶部15に記憶されている対応情報の中から、UE140が利用しているサービス及びUE140の状況に対応する対応情報が特定されることにより、切り替えの必要性の有無が判断される(ステップS03)。その結果、切り替えの必要性“有り”と判断された場合には、AMF100の接続切換部14から、対応情報に含まれるスライスIDによって識別される切換先のスライスが割り当てられたSMF120及びUPF130(以下、単に「切換先のSMF又はUPF」と言う。)に対して、新規ベアラの確立依頼(Create session request)が送信される(ステップS04)。これによって、切換先のSMF120及び切換先のUPF130においてベアラの接続処理が行われた後にAMF100に対して新規ベアラの確立応答(Create session response)が返信される(ステップS05)。その後、AMF100からRAN110に対してUE140~UPF130間のベアラ変更依頼(Barer modify request)が送信され、RAN110においてベアラ変更処理が実行された後にAMF100に対して応答(Barer modify response)が返される(ステップS06)。 Next, when the slice acquisition request is received by the status acquisition unit 12 of the AMF 100 (step S02), the following determination process for determining the necessity of switching and the bearer switching process are executed. That is, the service used by the UE 140 and the UE 140 out of the correspondence information stored in the correspondence information storage unit 15 based on the service type and context information included in the slice switching request by the switching judgment unit 13 of the AMF 100. By identifying the correspondence information corresponding to the situation, it is determined whether or not switching is necessary (step S03). As a result, if it is determined that there is a need for switching, the SMF 120 and the UPF 130 (hereinafter referred to as the switching destination slices) to which the switching destination slices identified by the slice ID included in the correspondence information are assigned from the connection switching unit 14 of the AMF 100 The new bearer establishment request (Create session request) is transmitted to “switched destination SMF or UPF” (step S04). As a result, after the bearer connection processing is performed in the switching destination SMF 120 and the switching destination UPF 130, a new bearer establishment response (Create session response) is returned to the AMF 100 (step S05). After that, a bearer change request (Barer modify request) between the UE 140 and the UPF 130 is transmitted from the AMF 100 to the RAN 110, and a response (Barer modify response) is returned to the AMF 100 after the bearer change process is executed in the RAN 110 (step S06).
 さらに、AMF100の接続切換部14から、切換元のスライスが割り当てられたSMF120及びUPF130(以下、単に「切換元のSMF又はUPF」と言う。)に対して、既存のベアラの切断依頼(Delete session request)が送信される(ステップS07)。これによって、切換元のSMF120及び切換元のUPF130においてベアラの切断処理が行われた後にAMF100に対して既存ベアラの切断応答(Delete session response)が返信される(ステップS08)。 Further, from the connection switching unit 14 of the AMF 100, an existing bearer disconnection request (Delete session) is sent to the SMF 120 and the UPF 130 (hereinafter simply referred to as “switching source SMF or UPF”) to which the switching source slice is assigned. request) is transmitted (step S07). As a result, the bearer disconnection process is performed in the switching source SMF 120 and the switching source UPF 130, and then the existing bearer disconnection response (Delete session response) is returned to the AMF 100 (step S08).
 上記のようなAMF100による切換制御の処理によって、UE140の利用しているサービス用のベアラが切換元のスライス上から切換先のスライス上に切り換えられる。つまり、図7に示すように、UE140から送信されたスライス切換依頼を契機にして、UE140が利用中のサービスに割り当てられるスライスが、直前まで割り当てられていたスライス“Slice1”から、そのスライス切換依頼に含まれるコンテキスト情報の示す状況に対応したスライス“Slice2”に切り換えられる。 By the switching control process by the AMF 100 as described above, the service bearer used by the UE 140 is switched from the switching source slice to the switching destination slice. That is, as shown in FIG. 7, with the slice switching request transmitted from the UE 140, the slice allocated to the service being used by the UE 140 is the slice switching request from the slice “Slice 1” allocated until immediately before. Is switched to the slice “Slice 2” corresponding to the situation indicated by the context information included in.
 次に、本実施形態の移動通信システムおよびスライス割当方法の作用効果について説明する。上述した移動通信システムによれば、UE140から使用中のサービスを特定する情報と現在の状況を示す情報とが取得されると、それらの情報を基に、現在使用しているサービスに割り当てられた複数のフライスの中から、現在の状況に対応したスライスが選択され、選択されたスライス上にUE140~UPF130間のベアラが切り換えられる。これにより、UEのユーザ毎にそのユーザの状況に応じてサービスに割り当てるスライスを動的に変えることができる。その結果、UEのユーザに対して円滑にサービスを提供することができる。 Next, operational effects of the mobile communication system and the slice allocation method according to the present embodiment will be described. According to the mobile communication system described above, when information identifying the service in use and information indicating the current situation are acquired from the UE 140, the information assigned to the service currently used is allocated based on the information. A slice corresponding to the current situation is selected from the plurality of milling machines, and the bearer between the UE 140 and the UPF 130 is switched on the selected slice. Thereby, the slice allocated to a service can be dynamically changed for every user of UE according to the condition of the user. As a result, a service can be smoothly provided to the user of the UE.
 また、上記実施形態では、特定した対応情報に含まれるスライスIDによって特定されるスライス上に、UE140~UPF130間のベアラが設定され、当該スライス以外のスライス上に設定されていたベアラが切断される。こうすることにより、UEのユーザ毎に状況に応じて1つのスライスから別のスライスにサービスの割り当てを切り換えることができ、UEのユーザ間で効率的にスライスを割り当てることができる。 In the above embodiment, a bearer between the UE 140 and the UPF 130 is set on the slice specified by the slice ID included in the specified correspondence information, and the bearer set on the slice other than the slice is disconnected. . By doing so, the service allocation can be switched from one slice to another according to the situation for each user of the UE, and the slice can be efficiently allocated between the UE users.
 さらに、上記実施形態では、UE140からスライス切換依頼を取得したことを契機として、対応情報の特定、及びUE140~UPF130間のベアラの切り換えが実行される。こうすることにより、UEのユーザの状況に応じて迅速にスライスの割り当てを変更することができる。 Furthermore, in the above-described embodiment, when the slice switching request is acquired from the UE 140, identification of correspondence information and switching of bearers between the UE 140 and the UPF 130 are executed. By doing so, the slice assignment can be quickly changed according to the situation of the user of the UE.
 以上、本実施形態について詳細に説明したが、当業者にとっては、本実施形態が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本実施形態は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本実施形態に対して何ら制限的な意味を有するものではない。 As mentioned above, although this embodiment was described in detail, it is clear for those skilled in the art that this embodiment is not limited to embodiment described in this specification. The present embodiment can be implemented as a modification and change without departing from the spirit and scope of the present invention defined by the description of the scope of claims. Therefore, the description of the present specification is for illustrative purposes and does not have any limiting meaning to the present embodiment.
 例えば、上記実施形態においては、AMF100が、UE140からスライス切換依頼を受けて、スライスの切り換えの必要性の有無を判断し、その判断結果を基にベアラの切換制御を実行していたが、AMF100以外が、スライスの切り換えの必要性の有無の判断、あるいは、ベアラの切換制御を行ってもよい。以下では、AMF100とは別のノードであるNSSF(NW Slice Selection Function)150が、スライスの切り換えの必要性の有無の判断機能、及びベアラの切換制御機能を有する場合の構成について説明する。図8は、上述した実施形態の移動通信システムの変形例にかかるシステム構成を示す図であり、図9は、図8のNSSF150の機能構成を示すブロック図である。 For example, in the above embodiment, the AMF 100 receives a slice switching request from the UE 140, determines whether or not there is a need to switch slices, and executes bearer switching control based on the determination result. Other than the above, it may be determined whether or not slice switching is necessary, or bearer switching control may be performed. In the following, a configuration will be described in which an NSSF (NW Slice Selection Function) 150, which is a node different from the AMF 100, has a function for determining whether or not a slice needs to be switched and a bearer switching control function. FIG. 8 is a diagram showing a system configuration according to a modification of the mobile communication system of the above-described embodiment, and FIG. 9 is a block diagram showing a functional configuration of the NSSF 150 in FIG.
 図8に示すNSSF150は、上述した実施形態のAMF100の有する機能部のうち、スライスの切り換えの必要性の有無の判断機能、及びベアラの切換制御機能を担うノードであり、図9に示すように、機能的な構成要素として、状況取得部22、切換判断部23、接続切換依頼部24、及び対応情報記憶部25を含んで構成されている。状況取得部22、切換判断部23、及び対応情報記憶部25の機能は、上述したAMF100の状況取得部12、切換判断部13、及び対応情報記憶部15の機能と同様である。接続切換依頼部24は、切換判断部23からスライス切換依頼を受けて、そのスライス切換依頼をAMF100に転送する。これに対して、AMF100は、上述した接続切換部14と同様にして、新規ベアラの確立依頼、および既存ベアラの切断依頼のそれぞれを、該当するSMF120に送信する。 The NSSF 150 illustrated in FIG. 8 is a node that performs a function of determining whether or not to switch a slice and a bearer switching control function among the functional units included in the AMF 100 according to the above-described embodiment. As illustrated in FIG. The functional component includes a status acquisition unit 22, a switching determination unit 23, a connection switching request unit 24, and a correspondence information storage unit 25. The functions of the situation acquisition unit 22, the switching determination unit 23, and the correspondence information storage unit 25 are the same as the functions of the situation acquisition unit 12, the switching determination unit 13, and the correspondence information storage unit 15 of the AMF 100 described above. The connection switching request unit 24 receives the slice switching request from the switching determination unit 23 and transfers the slice switching request to the AMF 100. On the other hand, the AMF 100 transmits a request for establishing a new bearer and a request for disconnecting an existing bearer to the corresponding SMF 120 in the same manner as the connection switching unit 14 described above.
 図9に示すブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。 The block diagram shown in FIG. 9 shows functional unit blocks. These functional blocks (components) are realized by any combination of hardware and / or software. Further, the means for realizing each functional block is not particularly limited. That is, each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
 例えば、本変形例におけるNSSF150は、本変形例のNSSF150の処理を行うコンピュータとして機能してもよい。NSSF150の処理を行うコンピュータは、図3の構成と同様のハードウェア構成を採用することができる。 For example, the NSSF 150 in the present modification may function as a computer that performs the processing of the NSSF 150 in the present modification. A computer that performs processing of the NSSF 150 can employ a hardware configuration similar to the configuration of FIG.
 次に、上述した変形例における移動通信システムのベアラ切換処理の手順について説明するとともに、変形例にかかるスライス割当方法について詳述する。図10は、本変形例にかかる移動通信システムによるベアラ切換処理の手順を示すシーケンス図である。 Next, the procedure of the bearer switching process of the mobile communication system in the above-described modification will be described, and the slice allocation method according to the modification will be described in detail. FIG. 10 is a sequence diagram showing a procedure of bearer switching processing by the mobile communication system according to the present modification.
 最初に、UE140~UPF130間にあるサービス用のベアラが接続されている状態で、UE140においてコンテキスト情報が取得される(ステップS101)。コンテキスト情報の取得を契機に、UE140からAMF100を経由してNSSF150に対して、スライス切換依頼が送信される(ステップS102)。 First, context information is acquired in the UE 140 in a state where a service bearer between the UE 140 and the UPF 130 is connected (step S101). In response to the acquisition of the context information, a slice switching request is transmitted from the UE 140 to the NSSF 150 via the AMF 100 (step S102).
 次に、NSSF150の状況取得部22によってスライス切換依頼が受信されたこと(ステップS102)を契機として、以下の切り替えの必要性の有無の判断処理およびベアラの切換処理が実行される。すなわち、NSSF150の切換判断部23によって、スライス切換依頼に含まれるサービスタイプ及びコンテキスト情報を基に、対応情報記憶部25に記憶されている対応情報の中から、UE140が利用しているサービス及びUE140の状況に対応する対応情報が特定されることにより、切り替えの必要性の有無が判断される(ステップS103)。その結果、切り替えの必要性“有り”と判断された場合には、NSSF150の接続切換依頼部24からAMF100に向けて、スライス切換依頼が送信される(ステップS104)。これに対して、AMF100から、切換先のSMF120及びUPF130に対して、新規ベアラの確立依頼(Create session request)が送信される(ステップS105)。これによって、切換先のSMF120及び切換先のUPF130においてベアラの接続処理が行われた後にAMF100に対して新規ベアラの確立応答(Create session response)が返信される(ステップS106)。その後、AMF100からRAN110に対してUE140~UPF130間のベアラ変更依頼(Barer modify request)が送信され、RAN110においてベアラ変更処理が実行された後にAMF100に対して応答(Barer modify response)が返される(ステップS107)。 Next, when the slice acquisition request is received by the status acquisition unit 22 of the NSSF 150 (step S102), the following determination process for determining the necessity of switching and the bearer switching process are executed. That is, the service used by the UE 140 and the UE 140 out of the correspondence information stored in the correspondence information storage unit 25 based on the service type and context information included in the slice switching request by the switching judgment unit 23 of the NSSF 150. By identifying the correspondence information corresponding to the situation, it is determined whether or not switching is necessary (step S103). As a result, if it is determined that the necessity of switching is “present”, a slice switching request is transmitted from the connection switching request unit 24 of the NSSF 150 to the AMF 100 (step S104). In response to this, a request for establishing a new bearer (Create session request) is transmitted from the AMF 100 to the SMF 120 and the UPF 130 of the switching destination (step S105). Thus, after bearer connection processing is performed in the switching destination SMF 120 and the switching destination UPF 130, a new bearer establishment response (Create session response) is returned to the AMF 100 (step S 106). After that, a bearer change request (Barer modify request) between the UE 140 and the UPF 130 is transmitted from the AMF 100 to the RAN 110, and a response (Barer modify response) is returned to the AMF 100 after the bearer change process is executed in the RAN 110 (step S107).
 さらに、AMF100から、切換元のSMF120及びUPF130に対して、既存のベアラの切断依頼(Delete session request)が送信される(ステップS108)。これによって、切換元のSMF120及び切換元のUPF130においてベアラの切断処理が行われた後にAMF100に対して既存ベアラの切断応答(Delete session response)が返信される(ステップS109)。 Further, an existing bearer disconnect request (Delete session request) is transmitted from the AMF 100 to the switching source SMF 120 and UPF 130 (step S108). As a result, the bearer disconnection process is performed in the switching source SMF 120 and the switching source UPF 130, and then the existing bearer disconnection response (Delete session response) is returned to the AMF 100 (step S109).
 このようなNSSF150による切換制御の処理によって、UE140の利用しているサービス用のベアラが切換元のスライス上から切換先のスライス上に切り換えられる。上述した変形例にかかる移動通信システムによっても、UEのユーザ毎にそのユーザの状況に応じてサービスに割り当てるスライスを動的に変えることができる。その結果、UEのユーザに対して円滑にサービスを提供することができる。 By such switching control processing by the NSSF 150, the service bearer used by the UE 140 is switched from the switching source slice to the switching destination slice. Also by the mobile communication system according to the above-described modification, the slice allocated to the service can be dynamically changed for each user of the UE according to the situation of the user. As a result, a service can be smoothly provided to the user of the UE.
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC ConnectionReconfiguration)メッセージなどであってもよい。 The notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods. For example, notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. Further, the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC ConnectionReconfiguration) message, or the like.
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA. (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-WideBand), The present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The processing procedures, sequences, flowcharts and the like of each aspect / embodiment described in this specification may be switched in order as long as there is no contradiction. For example, the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
 情報等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information etc. can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input / output information or the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in this specification may be used alone, in combination, or may be switched according to execution. In addition, notification of predetermined information (for example, notification of being “X”) is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether it is called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be interpreted broadly.
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。 Further, software, instructions, etc. may be transmitted / received via a transmission medium. For example, software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave. When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission media.
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described herein may be represented using any of a variety of different technologies. For example, data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。 Note that the terms described in this specification and / or terms necessary for understanding this specification may be replaced with terms having the same or similar meaning.
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。 In addition, information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information. . For example, the radio resource may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的なものではない。 The names used for the above parameters are not limited in any way.
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。 As used herein, the terms “determining” and “determining” may encompass a wide variety of actions. “Judgment”, “decision” can be, for example, calculating, computing, processing, deriving, investigating, looking up (eg, table, database or another (Searching in the data structure), and confirming (ascertaining) what has been confirmed may be considered as “determining” or “deciding”. In addition, “determination” and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as "determined" or "determined". In addition, “determination” and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。 The terms “connected”, “coupled”, or any variation thereof, means any direct or indirect connection or coupling between two or more elements and It can include the presence of one or more intermediate elements between two “connected” or “coupled” elements. The coupling or connection between the elements may be physical, logical, or a combination thereof. As used herein, the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples By using electromagnetic energy, such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used herein, the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
 「含む(include)」、「含んでいる(comprising)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 As long as “include”, “comprising”, and variations thereof, are used in the specification or claims, these terms are similar to the term “comprising”. It is intended to be comprehensive. Furthermore, the term “or” as used herein or in the claims is not intended to be an exclusive OR.
 本明細書において、文脈または技術的に明らかに1つのみしか存在しない装置である場合以外は、複数の装置をも含むものとする。 In this specification, unless there is only one device that is clearly present in context or technically, a plurality of devices are also included.
 本開示の全体において、文脈から明らかに単数を示したものではなければ、複数のものを含むものとする。 In the whole of the present disclosure, a plural is included unless it is clearly indicated by a context.
 本発明の一形態は、ネットワークインフラ上に生成される仮想ネットワークであるスライスを割り当てる方法及び移動通信システムを使用用途とし、サービスに割り当てるスライスをユーザの状況に応じてユーザごとに動的に変えることを可能にするものである。 One embodiment of the present invention uses a method and a mobile communication system for assigning slices, which are virtual networks generated on a network infrastructure, and dynamically changes slices assigned to services for each user according to the user's situation. Is possible.
 100…AMF、11…接続・モビリティ管理機能部、12…状況取得部、13…切換判断部、14…接続切換部、15…対応情報記憶部、150…NSSF、22…状況取得部、23…切換判断部、24…接続切換依頼部(接続切換部)、25…対応情報記憶部、SL1~SL3…スライス、140…UE(端末)。 DESCRIPTION OF SYMBOLS 100 ... AMF, 11 ... Connection / mobility management function part, 12 ... Situation acquisition part, 13 ... Switching judgment part, 14 ... Connection switching part, 15 ... Corresponding information storage part, 150 ... NSSF, 22 ... Situation acquisition part, 23 ... Switching judgment unit, 24... Connection switching request unit (connection switching unit), 25... Correspondence information storage unit, SL 1 to SL 3.

Claims (4)

  1.  ネットワークインフラ上に生成される仮想ネットワークを用いるサービスに、前記仮想ネットワークであるスライスを割り当てる装置により実行されるスライス割当方法であって、
     前記サービスを特定するサービス特定情報に対して、当該サービスの割当先のスライスを特定するスライス特定情報と端末の状況を示す情報である状況情報とを対応付けた情報である対応情報を、予め複数関連付けて記憶する対応情報記憶ステップと、
     ユーザが使用する端末から、現在使用中のサービスを特定する使用サービス特定情報と、前記端末の現在の状況を示す現在状況情報とを取得する状況取得ステップと、
     前記対応情報記憶ステップにより記憶された複数の対応情報の中から、前記使用サービス特定情報に関連付けられ、かつ、前記現在状況情報に対応する状況情報を含む対応情報を特定し、当該対応情報に含まれる前記スライス特定情報によって特定されるスライス上に、前記端末の通信セッションを切り換える接続切換ステップと、
    を含むスライス割当方法。
    A slice allocation method executed by an apparatus that allocates a slice that is a virtual network to a service that uses a virtual network generated on a network infrastructure,
    A plurality of correspondence information that is information in which slice identification information for identifying a slice to which the service is assigned and status information that is information indicating the status of the terminal is associated with the service identification information for identifying the service in advance. A correspondence information storing step for storing the information in association;
    A status acquisition step of acquiring from the terminal used by the user service usage information identifying service currently in use and current status information indicating the current status of the terminal;
    Among the plurality of pieces of correspondence information stored in the correspondence information storage step, the correspondence information that is associated with the use service identification information and includes the situation information corresponding to the current situation information is identified and included in the correspondence information. A connection switching step of switching the communication session of the terminal on the slice specified by the slice specifying information,
    Slice allocation method including
  2.  前記接続切換ステップでは、特定した前記対応情報に含まれる前記スライス特定情報によって特定されるスライス上に、前記端末の前記通信セッションを設定し、当該スライス以外のスライス上に設定されていた前記サービス用の通信セッションを切断する、
    請求項1記載のスライス割当方法。
    In the connection switching step, the communication session of the terminal is set on a slice specified by the slice specifying information included in the specified correspondence information, and the service is set on a slice other than the slice Disconnect the communication session of
    The slice allocation method according to claim 1.
  3.  前記接続切換ステップでは、前記状況取得ステップにおいて前記装置が前記端末から現在状況情報を取得したことを契機として、前記対応情報の特定、及び前記端末の前記通信セッションの切り換えを実行する、
    請求項1又は2に記載のスライス割当方法。
    In the connection switching step, when the device acquires the current status information from the terminal in the status acquisition step, the correspondence information is specified and the communication session of the terminal is switched.
    The slice allocation method according to claim 1 or 2.
  4.  ネットワークインフラ上に生成される仮想ネットワークを用いるサービスに、前記仮想ネットワークであるスライスを割り当てる移動通信システムであって、
     前記サービスを特定するサービス特定情報に対して、当該サービスの割当先のスライスを特定するスライス特定情報と端末の状況を示す情報である状況情報とを対応付けた情報である対応情報を、予め複数関連付けて記憶する対応情報記憶部と、
     ユーザが使用する端末から、現在使用中のサービスを特定する使用サービス特定情報と、前記端末の現在の状況を示す現在状況情報とを取得する状況取得部と、
     前記対応情報記憶部に記憶された複数の対応情報の中から、前記使用サービス特定情報に関連付けられ、かつ、前記現在状況情報に対応する状況情報を含む対応情報を特定し、当該対応情報に含まれる前記スライス特定情報によって特定されるスライス上に、前記端末の通信セッションを切り換える接続切換部と、
    を含む移動通信システム。
    A mobile communication system that allocates a slice that is a virtual network to a service that uses a virtual network generated on a network infrastructure,
    A plurality of correspondence information that is information in which slice identification information for identifying a slice to which the service is assigned and status information that is information indicating the status of the terminal is associated with the service identification information for identifying the service in advance. A correspondence information storage unit for storing the information in association with each other;
    A status acquisition unit that acquires service usage identification information for identifying a service currently in use from a terminal used by a user, and current status information indicating the current status of the terminal;
    Among the plurality of pieces of correspondence information stored in the correspondence information storage unit, the correspondence information that is associated with the use service identification information and includes the situation information corresponding to the current situation information is identified and included in the correspondence information A connection switching unit that switches a communication session of the terminal on the slice specified by the slice specifying information,
    A mobile communication system.
PCT/JP2018/009322 2017-03-21 2018-03-09 Slice allocation method and mobile communication system WO2018173815A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017054758A JP2018157506A (en) 2017-03-21 2017-03-21 Slice allocation method and mobile communication system
JP2017-054758 2017-03-21

Publications (1)

Publication Number Publication Date
WO2018173815A1 true WO2018173815A1 (en) 2018-09-27

Family

ID=63585317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009322 WO2018173815A1 (en) 2017-03-21 2018-03-09 Slice allocation method and mobile communication system

Country Status (2)

Country Link
JP (1) JP2018157506A (en)
WO (1) WO2018173815A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021022889A (en) 2019-07-30 2021-02-18 ソニー株式会社 Network slice control server, service server, and control method thereof
JP7175425B1 (en) * 2022-02-15 2022-11-18 三菱電機株式会社 Resource allocation device, resource allocation method, control circuit and storage medium
JP7345076B1 (en) 2023-03-09 2023-09-14 Kddi株式会社 Information processing device and information processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015513864A (en) * 2012-03-08 2015-05-14 サムスン エレクトロニクス カンパニー リミテッド Method for controlling services in a wireless communication system
JP2016201602A (en) * 2015-04-07 2016-12-01 株式会社Nttドコモ Communication system and communication method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015513864A (en) * 2012-03-08 2015-05-14 サムスン エレクトロニクス カンパニー リミテッド Method for controlling services in a wireless communication system
JP2016201602A (en) * 2015-04-07 2016-12-01 株式会社Nttドコモ Communication system and communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THE 7TH FORUM ON DATA ENGINEERING AND INFORMATION MANAGEMENT, 18 August 2015 (2015-08-18) *

Also Published As

Publication number Publication date
JP2018157506A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
WO2018173808A1 (en) Information notification method and mobile communication system
US10356663B2 (en) Service allocation determining methid
WO2017170937A1 (en) Slice changing method and slice changing device
WO2018034156A1 (en) Slice assignment method
JP6941613B2 (en) Slice management system and slice management method
JP6307173B2 (en) System and method
EP3429137B1 (en) Slice allocating method
JPWO2018131413A1 (en) Mobile communication system and congestion control method
WO2018173815A1 (en) Slice allocation method and mobile communication system
WO2018180496A1 (en) Communication control method and communication terminal
JP2018186450A (en) Communication control method
JP6932133B2 (en) Slice allocation method
JP2018170713A (en) Communication terminal
WO2018173889A1 (en) Communication control method and communication system
WO2019035404A1 (en) Node group and migration method
WO2017026531A1 (en) Base station, management device, and connection method
JPWO2018131315A1 (en) Gateway selection method and communication system
WO2018131414A1 (en) Communication control device and communication control method
JP2018160769A (en) Communication control server and communication system
JPWO2018131314A1 (en) Gateway selection method and communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772327

Country of ref document: EP

Kind code of ref document: A1