WO2018173517A1 - Sputtering target and production method therefor - Google Patents

Sputtering target and production method therefor Download PDF

Info

Publication number
WO2018173517A1
WO2018173517A1 PCT/JP2018/003909 JP2018003909W WO2018173517A1 WO 2018173517 A1 WO2018173517 A1 WO 2018173517A1 JP 2018003909 W JP2018003909 W JP 2018003909W WO 2018173517 A1 WO2018173517 A1 WO 2018173517A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
sputtering target
less
molybdenum
particles
Prior art date
Application number
PCT/JP2018/003909
Other languages
French (fr)
Japanese (ja)
Inventor
宏成 占部
池田 真
禎一郎 梅澤
真理子 内田
功 河角
アン・チョオ・ブン
Original Assignee
三井金属鉱業株式会社
Hoya株式会社
ホーヤ エレクトロニクス シンガポール プライベート リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社, Hoya株式会社, ホーヤ エレクトロニクス シンガポール プライベート リミテッド filed Critical 三井金属鉱業株式会社
Priority to SG11201907100R priority Critical patent/SG11201907100RA/en
Priority to JP2019507415A priority patent/JP7060578B2/en
Priority to CN201880013540.XA priority patent/CN110392747B/en
Priority to MYPI2019004604A priority patent/MY193691A/en
Publication of WO2018173517A1 publication Critical patent/WO2018173517A1/en

Links

Images

Definitions

  • the present invention relates to a sputtering target and a manufacturing method thereof.
  • a target material obtained by sintering MoSi 2 powder by hot pressing (hereinafter also referred to as “HP”) has been used.
  • HP a target material obtained by sintering MoSi 2 powder by hot pressing
  • sintering at a high temperature is necessary, and as a result, the crystal grain size of Si after sintering tends to be large.
  • An increase in the crystal grain size of Si contributes to an increase in generation of particles during sputtering.
  • Patent Document 1 For the purpose of reducing the generation of particles during sputtering, in Patent Document 1, the density is 99% or more, and the abundance of a coarse silicon phase of 10 ⁇ m or more appearing on the sputtering surface is 1 piece / mm 2 or less, A silicide target for sputtering having an oxygen content of 150 ppm or less has been proposed.
  • Patent Document 2 describes a sputtering target in which silicon is 70 to 97% by weight and the balance is substantially made of refractory metal silicide.
  • the metal structure of the target has at least a silicon phase and a refractory metal silicide phase composed of silicon and a refractory metal, and the sputtering surface has a peak of the Si (111) surface obtained by X-ray diffraction.
  • the half width is 0.5 deg or less, and the half width of the peak of the refractory metal silicide (101) plane is 0.5 deg or less.
  • Patent Document 3 describes a sputtering target for forming a light semi-transmissive film on a light-transmitting substrate.
  • This target is substantially composed of metal and silicon, and exists as metal silicide particles and silicon particles by containing more silicon than the stoichiometrically stable composition of metal and silicon. .
  • the average particle size and / or particle size distribution of the metal silicide particles is set so that the defect occurrence rate of the light semi-transmissive film is not more than a predetermined value.
  • Patent Document 4 describes a sputtering target made of a metal silicide and silicon, which is used when a mask blank is manufactured by a sputtering method. According to this document, the generation of particles is reduced according to this target.
  • an object of the present invention is to improve a sputtering target, and more specifically, to provide a sputtering target in which generation of particles during sputtering is suppressed as compared with the conventional method and a method for manufacturing the sputtering target.
  • the present invention is a sputtering target having a molybdenum content of 3 mol% to 25 mol% and a silicon content of 75 mol% to 97 mol%, A silicon phase having an average particle diameter of 2.0 ⁇ m or less and a molybdenum silicide phase having an average particle diameter of molybdenum silicide particles of 2.5 ⁇ m or less;
  • the present invention provides a sputtering target in which the average number of pores having a major axis of 0.3 ⁇ m or more present in the silicon phase is 10 or less in the range of 90 ⁇ m ⁇ 125 ⁇ m.
  • this invention is as a suitable manufacturing method of the said sputtering target, Mixing molybdenum powder and silicon powder, The obtained mixed powder is subjected to a discharge plasma sintering method, and then subjected to a hot isostatic pressing method,
  • the present invention provides a method for producing a sputtering target, wherein the sintering temperature in the step of applying the hot isostatic pressing method is 1150 ° C. or higher and 1350 ° C. or lower.
  • FIG. 1 is a schematic diagram showing the measurement position of the long diameter of holes generated in a sputtering target.
  • the sputtering target of the present invention includes silicon and molybdenum.
  • the molybdenum content is preferably 3 mol% or more and 25 mol% or less, more preferably 3.3 mol% or more and 24 mol% or less, and 3.5 mol% or more and 23 mol% or less. It is more preferable that The silicon content is preferably 75 mol% or more and 97 mol% or less, more preferably 76 mol% or more and 96.7 mol% or less, and further preferably 77 mol% or more and 96.5 mol% or less.
  • the sputtering target of the present invention includes a phase composed of silicon (hereinafter also referred to as “silicon phase”) and a phase composed of molybdenum silicide (hereinafter also referred to as “molybdenum silicide phase”).
  • the sputtering target having such a structure is, for example, a so-called silicon-rich target having a composition in which the amount of silicon is larger than that of a stoichiometrically stable composition. Silicon is present as molybdenum silicide particles and silicon particles by containing more than the stoichiometrically stable composition of molybdenum and silicon (making it silicon-rich).
  • the molybdenum content and silicon content in the sputtering target of the present invention can be regarded as the mixing ratio (mol%) of molybdenum powder and silicon powder as raw materials. It can also be obtained by a method such as ICP analysis using an ICP (inductively coupled plasma emission spectroscopy) analyzer.
  • the sputtering target of the present invention is preferably composed of silicon alone and molybdenum silicide. However, as long as the advantageous effects of the present invention are not impaired, molybdenum alone, a solid solution of silicon and molybdenum, or a small amount of other metal elements. It is allowed to be included.
  • the content of components other than silicon simple substance and molybdenum silicide is preferably 1.0% by mass or less with respect to the mass of the sputtering target.
  • the present invention is characterized in that the average particle size of the silicon particles of the sputtering target is controlled within a specific range, and the average particle size of the molybdenum silicide particles is controlled within a specific range.
  • the inventors have found that the generation of particles due to arcing during sputtering can be effectively suppressed by controlling the average particle size of silicon particles to preferably 2.0 ⁇ m or less.
  • the average particle size of the silicon particles is more preferably 1.9 ⁇ m or less, still more preferably 1.8 ⁇ m or less, and particularly preferably 1.7 ⁇ m or less.
  • the average particle diameter of the silicon particles is not particularly limited, but is usually 0.1 ⁇ m or more.
  • the inventors have found that the generation of particles due to arcing during sputtering can be effectively suppressed by controlling the average particle diameter of molybdenum silicide particles to preferably 2.5 ⁇ m or less.
  • the average particle diameter of the molybdenum silicide particles is more preferably 2.2 ⁇ m or less, further preferably 2.1 ⁇ m or less, and particularly preferably 2.0 ⁇ m or less.
  • the average particle diameter of the molybdenum silicide particles is not particularly limited, but is usually 0.1 ⁇ m or more.
  • the average particle diameter of the silicon particles and the average particle diameter of the molybdenum silicide particles can be measured by the following method.
  • Measurement method of average particle size First, the surface of the sputtering target material is polished and smoothed. About this smooth surface, an FE gun type scanning electron microscope (SUPRA55VP / Carl) equipped with an energy dispersive X-ray analysis (EDS) / electron beam backscatter diffraction analysis (EBSD) apparatus (Pegasus System / Ametech). EDS spectrum and EBSD pattern of silicon and molybdenum silicide are measured by Zeiss.
  • the measurement conditions are an acceleration voltage of 20 kV, a magnification of 3000 times, an observation visual field of 10 ⁇ m ⁇ 20 ⁇ m, and a measurement interval of 0.02 ⁇ m.
  • the crystal phases to be indexed are a silicon phase and a molybdenum silicide phase, which are distinguished from each other from the EDS spectrum.
  • select the analysis menu “Grain Size” of the EBSD analysis program OIM Analysis / manufactured by TSL Solutions Co., Ltd.
  • each area weighted average crystal grain size ( ⁇ m) of silicon phase and molybdenum silicide phase Is calculated.
  • the grain boundary is identified as a general grain boundary, and a twin grain boundary having an orientation relationship of 70 ° rotation around the ⁇ 001> axis is not regarded as a general grain boundary.
  • the measurement is performed randomly in 5 fields of view, and the average crystal grain size of the silicon phase and the molybdenum silicide phase in each field of view is calculated.
  • a numerical value obtained by further averaging the average crystal grain sizes of the silicon phase and the molybdenum silicide phase obtained in each field of view is defined as the average crystal grain size of the silicon phase and the molybdenum silicide phase of the sputtering target.
  • the average number of pores having a major axis of 0.3 ⁇ m or more present in the silicon phase is 90 ⁇ m ⁇ 125 ⁇ m.
  • the number is 10 or less in the rectangular range.
  • the “vacancy” existing in the silicon phase can be rephrased as “void” or “defect”, and in short, is a space in which no substance exists in the silicon phase. If vacancies exist in the silicon phase, this is the starting point, and particles are likely to be generated due to arcing during sputtering.
  • the generation of particles during sputtering is effectively suppressed by balancing the average particle diameter of the silicon particles in the silicon phase and the size of the pores.
  • the average number of vacancies having a major axis of 0.3 ⁇ m or more present in the silicon phase is 5 in a rectangular field of view of 90 ⁇ m ⁇ 125 ⁇ m in observation with a scanning electron microscope.
  • the number is preferably not more than 3, and more preferably not more than 3.
  • the major axis of vacancies in the silicon phase and the average number of vacancies can be measured by the following method. (Measuring method of the average number of holes having a major axis of 0.3 ⁇ m or more)
  • the surface of the sputtering target is polished and smoothed. This smooth surface is enlarged by a magnification of 1000 times using a scanning electron microscope (JXA-8800-R, manufactured by JEOL) to form a rectangular field of view of 90 ⁇ m ⁇ 125 ⁇ m. Further, it is magnified 5000 times and the number of holes having a major axis of 0.3 ⁇ m or more in the above-mentioned visual field is counted.
  • the same measurement is performed randomly in 10 fields, and the average number of holes in each field is defined as the average number of holes having a major axis of 0.3 ⁇ m or more of the sputtering target.
  • the major axis of the hole means the length of the appearing hole in the longest direction (see FIG. 1).
  • a discharge plasma sintering described later is performed.
  • the target of the present invention is produced by combining a sintering method (hereinafter sometimes abbreviated as “SPS method”) and a hot isostatic pressing method (hereinafter also abbreviated as “HIP method”). It is advantageous.
  • the sputtering target of the present invention has a relative density of 99% or more, preferably 99.5% or more, more preferably 99.7% or more, and even more preferably 100% or more. More preferably, it is 100.5% or more.
  • the higher the relative density the better.
  • the upper limit is not particularly defined, but is usually 102%.
  • the relative density is measured based on the Archimedes method.
  • the theoretical density ⁇ can be calculated from the following formula (1).
  • ⁇ (C 1/100 ) / ⁇ 1 + (C 2/100) / ⁇ 2 ⁇ -1 ⁇
  • Silicon density: ⁇ 1 2.33 g / cm 3 Mass% of silicon: C 1 Density ⁇ 2 of molybdenum silicide (MoSi 2 ): 6.24 g / cm 3 Mass% of molybdenum silicide (MoSi 2 ): C 2
  • the above C 1 and C 2 can be calculated from the analysis values obtained by analyzing the mass% of silicon and the mass% of molybdenum in the sputtering target of the present invention by ICP emission spectroscopy.
  • the relative density of the sputtering target of the present invention is a percentage value with respect to the theoretical density ⁇ (g / cm 3 ), it may exceed 100%. Since molybdenum alone, solid solution of silicon and molybdenum, and other elements are in small quantities, they can be ignored in calculating the theoretical density.
  • aggregates having an equivalent circle diameter of 10 ⁇ m or more (hereinafter also referred to as “aggregates of molybdenum silicide particles”) due to aggregation of molybdenum silicide particles be 1 / mm 2 or less.
  • the aggregate of molybdenum silicide particles is more preferably 0.8 pieces / mm 2 or less, further preferably 0.5 pieces / mm 2 or less, and 0.2 pieces / mm 2 or less. It is particularly preferred that The closer the number of aggregates of molybdenum silicide particles is to zero, the better.
  • the number of aggregates of molybdenum silicide particles can be measured as follows. (Measuring method of aggregate) First, the surface of the sputtering target is polished and smoothed. This smooth surface is magnified 200 times using a scanning electron microscope (JXA-8800-R, manufactured by JEOL), and 30 fields of a rectangular field of 0.5 mm ⁇ 0.65 mm are randomly photographed. Using the particle analysis software (particle analysis version 3.0, manufactured by Sumitomo Metal Technology Co., Ltd.), the number of aggregates having an equivalent circle diameter of 10 ⁇ m or more due to aggregation of molybdenum silicide particles is measured from the obtained image.
  • the particle analysis software particle analysis version 3.0, manufactured by Sumitomo Metal Technology Co., Ltd.
  • the total number of the aggregates of the molybdenum silicide particles obtained and divided by 9.75 mm 2 is defined as the number of molybdenum silicide particle aggregates per 1 mm 2 .
  • the sputtering target of the present invention is preferably manufactured through a step of mixing molybdenum powder and silicon powder and subjecting the obtained mixed powder to a discharge plasma sintering method.
  • a powder of molybdenum alone and a powder of silicon simple substance are prepared, and both are mixed.
  • the molybdenum powder it is preferable to use a powder having a specific surface area of 4.0 m 2 / g or more as measured by the BET (Brunauer-Emmett-Teller) method from the viewpoint of obtaining a fine structure of the molybdenum silicide phase.
  • the specific surface area of the molybdenum powder is preferably 5.0 m 2 / g or more, and more preferably 6.0 m 2 / g or more.
  • the upper limit value of the specific surface area of the molybdenum powder is not particularly defined, but is preferably 8.0 m 2 / g or less from the viewpoint of preventing aggregation of the molybdenum powder.
  • the specific surface area of the silicon powder is preferably 5.0 m 2 / g or more, and more preferably 6.0 m 2 / g or more.
  • the upper limit value of the average particle diameter of the silicon powder is not particularly defined, but is preferably 8.0 m 2 / g or less from the viewpoint of preventing aggregation of the silicon powder.
  • the specific surface area of the molybdenum powder and the silicon powder is, for example, a fully automatic specific surface area measuring device (Macsorb (registered trademark) HM -1 model-1210) manufactured by Mountec Co., Ltd., and a mixed gas (nitrogen 30 vol% + helium 70 vol%). ) And the BET single point method. As long as the specific surface area is within the above range, there is no particular limitation on the shape of the molybdenum powder and the silicon powder.
  • the mixing ratio of the molybdenum powder and the silicon powder is expressed in mol%, and the value of Mo / (Mo + Si) ⁇ 100 is preferably 3% or more and 25% or less, and is 3.3% or more and 24% or less. Is more preferably 3.5% or more and 23% or less. Further, the value of Si / (Mo + Si) ⁇ 100 is preferably 75% or more and 97% or less, more preferably 76% or more and 96.7% or less, and 77% or more and 96.5% or less. Is more preferable. By mixing molybdenum and silicon at this ratio, the target of interest can be successfully obtained.
  • Various mixing means can be used for mixing the molybdenum powder and the silicon powder.
  • a bead mill, a sand mill, an attritor (registered trademark), a medium stirring type mill such as a ball mill, a three-roll mill, or the like can be used.
  • the diameter of the medium when using the medium stirring mill is preferably 5 mm or more and 20 mm or less.
  • the material of the media is preferably zirconia or alumina, for example.
  • the mixed powder that has been subjected to sieving may be calcined for the purpose of adjusting the specific surface area.
  • the mixed powder is filled into a sintering die having a predetermined shape of the molding recess.
  • a sintering die for example, a graphite die can be used, but it is not limited to this material.
  • the SPS method is one of solid compression sintering methods similar to a hot press sintering method (hereinafter abbreviated as “HP method”).
  • HP method hot press sintering method
  • the mixed powder filled in the sintering die is heated while being pressurized.
  • HP method heating is performed while applying pressure, but the SPS method is different from the HP method in heating.
  • the object to be sintered is heated from the outside for a long time using a heating element of a hot press apparatus, whereas in the SPS method, the on-off DC pulse voltage / current is conductive.
  • the self-heating of the sintering die to which electric energy is directly input is used as a sintering driving force together with pressurization.
  • electromagnetic energy by pulse energization self-heating of the workpiece and discharge plasma energy generated between particles are combined and sintered.
  • Driving power in addition to the thermal and mechanical energy used for general sintering, electromagnetic energy by pulse energization, self-heating of the workpiece and discharge plasma energy generated between particles are combined and sintered.
  • the rate of temperature increase when performing the SPS method is preferably 5 ° C./min or more and 20 ° C./min or less, preferably 10 ° C./min or more and 18 ° C./min or less. More preferably. Abnormal grain growth can be suppressed by setting the temperature rising rate to 5 ° C./min or more, and by suppressing the temperature increase to 20 ° C./min or less, temperature variation in the sintered body can be suppressed. it can.
  • the sintering temperature is preferably 1100 ° C. or higher and 1200 ° C. or lower, more preferably 1120 ° C. or higher and 1200 ° C. or lower.
  • the sintering temperature can be obtained by measuring the surface temperature of the sintering die using a radiation thermometer (manufactured by Chino, IR-AHS0).
  • the pressure during sintering is preferably 25 MPa or more and 80 MPa or less, and more preferably 27 MPa or more and 50 MPa or less.
  • the sintering holding time is preferably 20 minutes or more and 300 minutes or less, more preferably 30 minutes or more and 180 minutes or less, provided that the sintering temperature and pressure are in the above-mentioned ranges.
  • the sintering atmosphere can be a vacuum or an inert gas.
  • a vacuum it is preferable to employ conditions of 30 Pa or less, particularly 10 Pa or less in absolute pressure.
  • an inert gas argon or nitrogen can be used as the inert gas.
  • the rate of temperature rise when performing the HIP method is preferably 5 ° C./min or more and 20 ° C./min or less, preferably 10 ° C./min or more and 15 ° C./min or less. More preferably. Abnormal grain growth can be suppressed by setting the temperature rising rate to 5 ° C./min or more, and by suppressing the temperature increase to 20 ° C./min or less, temperature variation in the sintered body can be suppressed. it can.
  • the temperature is preferably 1150 ° C. or higher and 1350 ° C. or lower, more preferably 1200 ° C. or higher and 1350 ° C. or lower. By setting the temperature to 1150 ° C.
  • the pressure is preferably 90 MPa or more, and more preferably 100 MPa or more.
  • the upper limit of the pressure is not particularly defined, but is usually 200 MPa.
  • the holding time is preferably not less than 30 minutes and not more than 240 minutes, more preferably not less than 60 minutes and not more than 180 minutes, provided that the temperature and pressure are in the above ranges.
  • the sputtering target manufactured in this way is suitably used when forming a light semi-transmissive film (halftone phase shift film) of a mask blank which becomes an original plate when manufacturing a halftone phase shift mask, for example.
  • a translucent substrate such as transparent quartz glass is preferably used as the substrate to be sputtered.
  • Attritor registered trademark
  • a zirconia ball having a diameter of 10 mm was used as a medium.
  • Example 1 In Example 1, the HIP method was not performed. Except for this, a sputtering target was obtained in the same manner as in Example 1.
  • Example 2 A sputtering target was obtained in the same manner as in Example 1 except that the conditions shown in Table 1 below were adopted.
  • Example 2 In Example 2, the HIP method was not performed. Except for this, a sputtering target was obtained in the same manner as in Example 1.
  • Comparative Example 3 This comparative example is an example in which the HIP method in Example 2 was performed under the conditions shown in Table 1 below. Other than that was carried out similarly to Example 2, and obtained the sputtering target.
  • Example 3 A sputtering target was obtained in the same manner as in Example 1 except that the conditions shown in Table 1 below were adopted.
  • Comparative Example 4 This comparative example is an example in which sintering was performed by the HP method under the conditions shown in Table 1 instead of the SPS method. Other than that was carried out similarly to Example 3, and obtained the sputtering target.
  • Example 4 A sputtering target was obtained in the same manner as in Example 1 except that the conditions shown in Table 1 below were adopted.
  • Example 5 In Example 4, the HIP method was not performed. Except for this, a sputtering target was obtained in the same manner as in Example 1.
  • grains were measured with the above-mentioned method. Further, the number of vacancies having a major axis of 0.3 ⁇ m or more existing in the silicon phase (range of 90 ⁇ m ⁇ 125 ⁇ m) was measured. Further, the number of aggregates of molybdenum silicide particles was measured. Furthermore, the relative density of the target was measured. These results are shown in Table 1 below.
  • Example 1 the following evaluation was performed on each sputtering target of Example 1 and Comparative Example 1 in order to verify the effect of particles generated when a thin film was formed by sputtering using these targets.
  • ten translucent substrates made of synthetic quartz glass having a main surface dimension of about 152 mm ⁇ about 152 mm and a thickness of about 6.25 mm were prepared.
  • the translucent substrate has its end face and main surface polished to a predetermined surface roughness, and then subjected to a predetermined cleaning process and a drying process.
  • a defect inspection was performed with a defect inspection apparatus (M6640 manufactured by Lasertec Corporation) on the main surface on the thin film forming side of all of the prepared translucent substrates.
  • defect data relating to the type of defect (convex defect, concave defect, etc.) present on the main surface on the thin film forming side of the inspected translucent substrate and the position (coordinate) of the defect is obtained. Obtained and recorded in association with the translucent substrate subjected to the defect inspection.
  • the translucent substrate after the defect inspection was divided into two sets of one set.
  • a thin film was formed by a sputtering method using the sputtering target of Example 1, and a substrate with a thin film according to Example 1 was produced.
  • a thin film was formed by sputtering using the sputtering target of Comparative Example 1 to produce a substrate with a thin film according to Comparative Example 1.
  • the sputtering target of Example 1 or Comparative Example 1 is attached to the cathode in the film forming chamber of the single-wafer DC sputtering apparatus, and the main surface on the side subjected to the defect inspection is the sputtering target on the substrate stage in the film forming chamber.
  • a translucent substrate was installed so as to oppose.
  • the defect inspection was performed on the surface of each thin film of each thin film substrate according to Example 1 and each thin film substrate according to Comparative Example 1 with a defect inspection apparatus (M6640 manufactured by Lasertec Corporation).
  • a defect inspection apparatus M6640 manufactured by Lasertec Corporation.
  • the defect-existing data relating to the type of defect (convex defect, concave defect, etc.) present on the surface of the inspected thin film and the position (coordinates) of the defect is obtained, and the substrate with the thin film subjected to the defect inspection Recording was performed in association with (translucent substrate).
  • Example 1 Comparative Example 1
  • an operation for extracting only defects that occurred when the thin film was formed by the sputtering method was performed. Specifically, the defect data on the main surface of the translucent substrate associated with the same translucent substrate are compared with the defect data on the surface of the thin film, and exist at a position (coordinates) common to the two defect data. The defect to be removed was excluded from the defect data on the surface of the thin film, and this was recorded as the defect data of the defect (film defect) generated during the formation of the thin film in association with the substrate with the thin film (translucent substrate).
  • the average number of film defects of the five thin film-attached substrates according to Example 1 was reduced to 1/25 of the average number of film defects of the five thin film-attached substrates according to Comparative Example 1. It was confirmed that From these results, it can be said that by forming a thin film by the sputtering method using the sputtering target of Example 1, generation of particles due to arcing from the sputtering target during sputtering can be sufficiently suppressed.
  • a Mo—Si based sputtering target in which generation of particles is suppressed as compared with the conventional method and a method for manufacturing the same.

Abstract

This sputtering target has a molybdenum content of 3 mol% to 25 mol% and a silicon content of 75 mol% to 97 mol%. The sputtering target comprises a silicon phase in which the average particle diameter of the silicon particles is 2.0 µm or less and a molybdenum silicide phase in which the average particle diameter of the molybdenum silicide particles is 2.5 µm or less. The average number of holes with a major axis of at least 0.3 µm that are present in the silicon phase is no more than 10 in a 90 µm x 125 µm area.

Description

スパッタリングターゲット及びその製造方法Sputtering target and manufacturing method thereof
 本発明は、スパッタリングターゲット及びその製造方法に関する。 The present invention relates to a sputtering target and a manufacturing method thereof.
 マスクブランク等の用途に使用されるMo-Si系のスパッタリングターゲットでは、MoSi粉をホットプレス(以下「HP」ともいう。)等で焼結したターゲット材が用いられてきた。このHPで焼結したMoSiターゲット材の製造に当たっては、高温での焼結が必要であり、そのことに起因して焼結後のSiの結晶粒径が大きくなりやすい。Siの結晶粒径の増大は、スパッタリング時にパーティクルの発生が増加する一因となる。 In a Mo—Si-based sputtering target used for mask blanks and the like, a target material obtained by sintering MoSi 2 powder by hot pressing (hereinafter also referred to as “HP”) has been used. In manufacturing the MoSi 2 target material sintered with HP, sintering at a high temperature is necessary, and as a result, the crystal grain size of Si after sintering tends to be large. An increase in the crystal grain size of Si contributes to an increase in generation of particles during sputtering.
 スパッタリング時にパーティクルの発生を少なくすることを目的として、特許文献1においては、密度が99%以上であり、スパッタ面に現れる10μm以上の粗大シリコン相の存在量が1個/mm以下であり、酸素含有量が150ppm以下であるスパッタリング用シリサイドターゲットが提案されている。特許文献2には、シリコンが70~97重量%であり、残部が実質的に高融点金属シリサイドからなるスパッタリングターゲットが記載されている。このターゲットの金属組織は少なくともシリコン相と、シリコン及び高融点金属からなる高融点金属シリサイド相を有しており、且つスパッタ面は、X線回折法によって求められたSi(111)面のピークの半値幅が0.5deg以下で、且つ高融点金属シリサイド(101)面のピークの半値幅が0.5deg以下である。 For the purpose of reducing the generation of particles during sputtering, in Patent Document 1, the density is 99% or more, and the abundance of a coarse silicon phase of 10 μm or more appearing on the sputtering surface is 1 piece / mm 2 or less, A silicide target for sputtering having an oxygen content of 150 ppm or less has been proposed. Patent Document 2 describes a sputtering target in which silicon is 70 to 97% by weight and the balance is substantially made of refractory metal silicide. The metal structure of the target has at least a silicon phase and a refractory metal silicide phase composed of silicon and a refractory metal, and the sputtering surface has a peak of the Si (111) surface obtained by X-ray diffraction. The half width is 0.5 deg or less, and the half width of the peak of the refractory metal silicide (101) plane is 0.5 deg or less.
 特許文献3には、透光性基板上に光半透過膜を形成するためのスパッタリングターゲットが記載されている。このターゲットは、金属とシリコンとから実質的になり、シリコンが、金属とシリコンとの化学量論的に安定な組成よりも多く含有されることにより、金属シリサイド粒子及びシリコン粒子として存在している。また、金属シリサイド粒子の平均粒径及び/又は粒度分布が、光半透過膜の欠陥発生率が所定の値以下となるように設定されている。 Patent Document 3 describes a sputtering target for forming a light semi-transmissive film on a light-transmitting substrate. This target is substantially composed of metal and silicon, and exists as metal silicide particles and silicon particles by containing more silicon than the stoichiometrically stable composition of metal and silicon. . The average particle size and / or particle size distribution of the metal silicide particles is set so that the defect occurrence rate of the light semi-transmissive film is not more than a predetermined value.
 特許文献4には、スパッタリング法でマスクブランクを製作する際に使用され、金属シリサイドとシリコンからなるスパッタリングターゲットが記載されている。同文献では、このターゲットによればパーティクルの発生が低減するとされている。 Patent Document 4 describes a sputtering target made of a metal silicide and silicon, which is used when a mask blank is manufactured by a sputtering method. According to this document, the generation of particles is reduced according to this target.
米国特許第5,460,793号明細書US Pat. No. 5,460,793 特開2002-173765号公報JP 2002-173765 A 特開2005-200688号公報Japanese Patent Laid-Open No. 2005-200688 特開2004-109317号公報JP 2004-109317 A
 以上のとおり、Mo-Si系のスパッタリングターゲットを用いてスパッタリングを行ったときに生じるパーティクルの数を低減させる試みは種々行われている。しかしマスクブランクに要求されるパーティクルの特性がますます厳しくなっている現状において、未だ満足し得るレベルにまでパーティクルの発生を低減できるスパッタリングターゲットは提供されていない。 As described above, various attempts have been made to reduce the number of particles generated when sputtering is performed using a Mo—Si sputtering target. However, in the present situation where the characteristics of the particles required for the mask blank are becoming more and more severe, a sputtering target capable of reducing the generation of particles to a satisfactory level has not been provided.
 したがって本発明の課題はスパッタリングターゲットの改良にあり、更に詳細には、スパッタリング時におけるパーティクルの発生が従来よりも抑制されたスパッタリングターゲット及びその製造方法を提供することにある。 Therefore, an object of the present invention is to improve a sputtering target, and more specifically, to provide a sputtering target in which generation of particles during sputtering is suppressed as compared with the conventional method and a method for manufacturing the sputtering target.
 本発明は、モリブデン含有量が3mol%以上25mol%以下であり、ケイ素含有量が75mol%以上97mol%以下であるスパッタリングターゲットであって、
 ケイ素粒子の平均粒径が2.0μm以下のケイ素相と、モリブデンシリサイド粒子の平均粒径が2.5μm以下のモリブデンシリサイド相とを含み、
 ケイ素相中に存在する長径0.3μm以上の空孔の平均個数が、90μm×125μmの範囲において、10個以下であるスパッタリングターゲットを提供するものである。
The present invention is a sputtering target having a molybdenum content of 3 mol% to 25 mol% and a silicon content of 75 mol% to 97 mol%,
A silicon phase having an average particle diameter of 2.0 μm or less and a molybdenum silicide phase having an average particle diameter of molybdenum silicide particles of 2.5 μm or less;
The present invention provides a sputtering target in which the average number of pores having a major axis of 0.3 μm or more present in the silicon phase is 10 or less in the range of 90 μm × 125 μm.
 また本発明は、前記のスパッタリングターゲットの好適な製造方法として、
 モリブデン粉末とケイ素粉末とを混合し、
 得られた混合粉を放電プラズマ焼結法に付し、次いで
 熱間等方圧加圧法に付す、工程を有し、
 前記熱間等方圧加圧法に付す工程における焼結温度が1150℃以上1350℃以下であるスパッタリングターゲットの製造方法を提供するものである。
Moreover, this invention is as a suitable manufacturing method of the said sputtering target,
Mixing molybdenum powder and silicon powder,
The obtained mixed powder is subjected to a discharge plasma sintering method, and then subjected to a hot isostatic pressing method,
The present invention provides a method for producing a sputtering target, wherein the sintering temperature in the step of applying the hot isostatic pressing method is 1150 ° C. or higher and 1350 ° C. or lower.
図1は、スパッタリングターゲットに生じた空孔の長径の測定位置を示す模式図である。FIG. 1 is a schematic diagram showing the measurement position of the long diameter of holes generated in a sputtering target.
 以下本発明を、その好ましい実施形態に基づき説明する。本発明のスパッタリングターゲットは、ケイ素とモリブデンとを含んで構成されている。詳細には、本発明のスパッタリングターゲットは、モリブデン含有量が3mol%以上25mol%以下であることが好ましく、3.3mol%以上24mol%以下であることが更に好ましく、3.5mol%以上23mol%以下であることが一層好ましい。ケイ素含有量については、75mol%以上97mol%以下であることが好ましく、76mol%以上96.7mol%以下であることが更に好ましく、77mol%以上96.5mol%以下であることが一層好ましい。また、本発明のスパッタリングターゲットは、ケイ素から構成される相(以下「ケイ素相」ともいう。)と、モリブデンシリサイドから構成される相(以下「モリブデンシリサイド相」ともいう。)とを含むものである。このような構造のスパッタリングターゲットは、例えば該ターゲットの組成を、化学量論的に安定な組成よりもケイ素の量を多くした組成のいわゆるケイ素リッチターゲットである。そしてケイ素が、モリブデンとケイ素との化学量論的に安定な組成よりも多く含有されること(ケイ素リッチとすること)によって、モリブデンシリサイド粒子とケイ素粒子として存在する。 Hereinafter, the present invention will be described based on preferred embodiments thereof. The sputtering target of the present invention includes silicon and molybdenum. Specifically, in the sputtering target of the present invention, the molybdenum content is preferably 3 mol% or more and 25 mol% or less, more preferably 3.3 mol% or more and 24 mol% or less, and 3.5 mol% or more and 23 mol% or less. It is more preferable that The silicon content is preferably 75 mol% or more and 97 mol% or less, more preferably 76 mol% or more and 96.7 mol% or less, and further preferably 77 mol% or more and 96.5 mol% or less. The sputtering target of the present invention includes a phase composed of silicon (hereinafter also referred to as “silicon phase”) and a phase composed of molybdenum silicide (hereinafter also referred to as “molybdenum silicide phase”). The sputtering target having such a structure is, for example, a so-called silicon-rich target having a composition in which the amount of silicon is larger than that of a stoichiometrically stable composition. Silicon is present as molybdenum silicide particles and silicon particles by containing more than the stoichiometrically stable composition of molybdenum and silicon (making it silicon-rich).
 本発明のスパッタリングターゲットにおけるモリブデン含有量及びケイ素含有量は、原料となるモリブデン粉末とケイ素粉末の混合比率(モル%)と同視することができるが、例えばスパッタリングターゲットを溶解した液を測定対象とし、ICP(誘導結合プラズマ発光分光)分析装置を使用したICP分析等の方法で得ることもできる。 The molybdenum content and silicon content in the sputtering target of the present invention can be regarded as the mixing ratio (mol%) of molybdenum powder and silicon powder as raw materials. It can also be obtained by a method such as ICP analysis using an ICP (inductively coupled plasma emission spectroscopy) analyzer.
 なお本発明のスパッタリングターゲットは、ケイ素単体及びモリブデンシリサイドからなることが望ましいが、本発明の有利な効果を損なわない限りにおいて、モリブデン単体や、ケイ素とモリブデンとの固溶体、又は他の金属元素が少量含まれていることは許容される。ケイ素単体及びモリブデンシリサイド以外の成分の含有量は、スパッタリングターゲットの質量に対して1.0質量%以下であることが好ましい。 The sputtering target of the present invention is preferably composed of silicon alone and molybdenum silicide. However, as long as the advantageous effects of the present invention are not impaired, molybdenum alone, a solid solution of silicon and molybdenum, or a small amount of other metal elements. It is allowed to be included. The content of components other than silicon simple substance and molybdenum silicide is preferably 1.0% by mass or less with respect to the mass of the sputtering target.
 本発明においては、スパッタリングターゲットのケイ素粒子の平均粒径を特定の範囲に制御し、且つモリブデンシリサイド粒子の平均粒径を特定の範囲に制御する点に特徴の一つを有する。詳細には、ケイ素粒子の平均粒径を好ましくは2.0μm以下に制御することで、スパッタリング時におけるアーキングに起因するパーティクルの発生を効果的に抑制できることが本発明者らの検討の結果判明した。この観点から、ケイ素粒子の平均粒径は1.9μm以下であることが更に好ましく、1.8μm以下であることが一層好ましく、1.7μm以下であることが特に好ましい。なお、ケイ素粒子の平均粒径は特に下限値を定めるものではないが、通常0.1μm以上である。 The present invention is characterized in that the average particle size of the silicon particles of the sputtering target is controlled within a specific range, and the average particle size of the molybdenum silicide particles is controlled within a specific range. Specifically, the inventors have found that the generation of particles due to arcing during sputtering can be effectively suppressed by controlling the average particle size of silicon particles to preferably 2.0 μm or less. . From this viewpoint, the average particle size of the silicon particles is more preferably 1.9 μm or less, still more preferably 1.8 μm or less, and particularly preferably 1.7 μm or less. The average particle diameter of the silicon particles is not particularly limited, but is usually 0.1 μm or more.
 一方、モリブデンシリサイド粒子の平均粒径を好ましくは2.5μm以下に制御することでも、スパッタリング時におけるアーキングに起因するパーティクルの発生を効果的に抑制できることが本発明者らの検討の結果判明した。この観点から、モリブデンシリサイド粒子の平均粒径は2.2μm以下であることが更に好ましく、2.1μm以下であることが一層好ましく、2.0μm以下であることが特に好ましい。なお、モリブデンシリサイド粒子の平均粒径は特に下限値を定めるものではないが、通常0.1μm以上である。 On the other hand, the inventors have found that the generation of particles due to arcing during sputtering can be effectively suppressed by controlling the average particle diameter of molybdenum silicide particles to preferably 2.5 μm or less. From this viewpoint, the average particle diameter of the molybdenum silicide particles is more preferably 2.2 μm or less, further preferably 2.1 μm or less, and particularly preferably 2.0 μm or less. The average particle diameter of the molybdenum silicide particles is not particularly limited, but is usually 0.1 μm or more.
 ケイ素粒子の平均粒径及びモリブデンシリサイド粒子の平均粒径は次の方法で測定できる。
 (平均粒径の測定方法)
 まず、スパッタリングターゲット材の表面を研磨し平滑にする。この平滑表面について、エネルギー分散型X線分析(EDS)/電子線後方散乱回折分析(EBSD)装置(Pegasus System/アメテック(株)製)を搭載したFE銃型の走査型電子顕微鏡(SUPRA55VP/Carl Zeiss社製)によって、ケイ素とモリブデンシリサイドのEDSスペクトルとEBSDパターンを測定する。測定条件は、加速電圧20kV、倍率3000倍、観察視野10μm×20μm、測定間隔0.02μmとする。指数付けする結晶相は、ケイ素相とモリブデンシリサイド相であり、EDSスペクトルから両者を区別する。得られたデータについてEBSD解析プログラム(OIM Analysis/(株)TSLソリューションズ製)の分析メニュー「Grain Size」を選択して、ケイ素相とモリブデンシリサイド相とのそれぞれ面積重みつき平均結晶粒径(μm)を算出する。このとき5°以上の方位差が検出されたときに一般粒界として識別させるものとし、<001>軸周りに70°回転の方位関係にある双晶粒界は一般粒界とみなさないこととして行う。前記測定を無作為に5視野にて行い、各視野でのケイ素相及びモリブデンシリサイド相の平均結晶粒径を算出する。各視野で得られたケイ素相及びモリブデンシリサイド相の平均結晶粒径を更に平均した数値をそのスパッタリングターゲットのケイ素相及びモリブデンシリサイド相の平均結晶粒径とする。
The average particle diameter of the silicon particles and the average particle diameter of the molybdenum silicide particles can be measured by the following method.
(Measuring method of average particle size)
First, the surface of the sputtering target material is polished and smoothed. About this smooth surface, an FE gun type scanning electron microscope (SUPRA55VP / Carl) equipped with an energy dispersive X-ray analysis (EDS) / electron beam backscatter diffraction analysis (EBSD) apparatus (Pegasus System / Ametech). EDS spectrum and EBSD pattern of silicon and molybdenum silicide are measured by Zeiss. The measurement conditions are an acceleration voltage of 20 kV, a magnification of 3000 times, an observation visual field of 10 μm × 20 μm, and a measurement interval of 0.02 μm. The crystal phases to be indexed are a silicon phase and a molybdenum silicide phase, which are distinguished from each other from the EDS spectrum. For the obtained data, select the analysis menu “Grain Size” of the EBSD analysis program (OIM Analysis / manufactured by TSL Solutions Co., Ltd.), and each area weighted average crystal grain size (μm) of silicon phase and molybdenum silicide phase Is calculated. At this time, when an orientation difference of 5 ° or more is detected, the grain boundary is identified as a general grain boundary, and a twin grain boundary having an orientation relationship of 70 ° rotation around the <001> axis is not regarded as a general grain boundary. Do. The measurement is performed randomly in 5 fields of view, and the average crystal grain size of the silicon phase and the molybdenum silicide phase in each field of view is calculated. A numerical value obtained by further averaging the average crystal grain sizes of the silicon phase and the molybdenum silicide phase obtained in each field of view is defined as the average crystal grain size of the silicon phase and the molybdenum silicide phase of the sputtering target.
 本発明のスパッタリングターゲットは、ケイ素相におけるケイ素粒子の平均粒径が上述の値以下であることに加え、ケイ素相中に存在する長径0.3μm以上の空孔の平均個数が、90μm×125μmの長方形の範囲において、10個以下であることも特徴の一つである。ケイ素相中に存在する「空孔」とは、「空隙」あるいは「欠陥」とも言い換えることができ、要するにケイ素相中における何らの物質も存在しない空間のことである。空孔がケイ素相中に存在すると、これが起点となり、スパッタリング時におけるアーキングに起因してパーティクルが発生しやすくなるところ、空孔のサイズを小さくし、且つ存在数を少なくすることで、パーティクルの発生を効果的に抑制できることが本発明者らの検討の結果判明した。空孔は、ケイ素相中のケイ素粒子を十分に粒成長させることで減少させることができるが、ケイ素粒子の平均粒径を過度に大きくすると、先に述べたとおり、スパッタリング時に、アーキングに起因するパーティクルの発生が起こりやすくなる。そこで本発明においては、ケイ素相中のケイ素粒子の平均粒径と、空孔のサイズとをバランスさせることで、スパッタリング時におけるパーティクルの発生を効果的に抑制している。 In the sputtering target of the present invention, in addition to the average particle size of silicon particles in the silicon phase being equal to or less than the above value, the average number of pores having a major axis of 0.3 μm or more present in the silicon phase is 90 μm × 125 μm. One of the features is that the number is 10 or less in the rectangular range. The “vacancy” existing in the silicon phase can be rephrased as “void” or “defect”, and in short, is a space in which no substance exists in the silicon phase. If vacancies exist in the silicon phase, this is the starting point, and particles are likely to be generated due to arcing during sputtering. By reducing the size of the vacancies and reducing the number of particles, generation of particles As a result of the study by the present inventors, it has been found that the above can be effectively suppressed. The vacancies can be reduced by sufficiently growing the silicon particles in the silicon phase. However, if the average particle size of the silicon particles is excessively increased, as described above, it is caused by arcing during sputtering. Particle generation is likely to occur. Therefore, in the present invention, the generation of particles during sputtering is effectively suppressed by balancing the average particle diameter of the silicon particles in the silicon phase and the size of the pores.
 以上の効果を一層顕著なものとする観点から、ケイ素相中に存在する長径0.3μm以上の空孔の平均個数は、走査型電子顕微鏡による観察における、90μm×125μmの長方形の視野において、5個以下であることが好ましく、3個以下であることが更に好ましい。 From the viewpoint of making the above effect even more remarkable, the average number of vacancies having a major axis of 0.3 μm or more present in the silicon phase is 5 in a rectangular field of view of 90 μm × 125 μm in observation with a scanning electron microscope. The number is preferably not more than 3, and more preferably not more than 3.
 ケイ素相中の空孔の長径、及び空孔の平均個数は次の方法で測定できる。
 (長径0.3μm以上の空孔の平均個数の測定方法)
 まず、スパッタリングターゲットの表面を研磨し平滑にする。この平滑表面を、走査型電子顕微鏡(JXA-8800-R、JEOL社製)を用いて倍率1000倍に拡大し、90μm×125μmの長方形の視野とする。更に5000倍に拡大して前述の視野内における長径0.3μm以上の空孔の数を数える。同様の測定を無作為に10視野にて行い、各視野における空孔の数を平均したものを、そのスパッタリングターゲットの長径0.3μm以上の空孔の平均個数とする。空孔の長径とは現出した空孔の最も長い方向における長さのことをいう(図1参照)。
The major axis of vacancies in the silicon phase and the average number of vacancies can be measured by the following method.
(Measuring method of the average number of holes having a major axis of 0.3 μm or more)
First, the surface of the sputtering target is polished and smoothed. This smooth surface is enlarged by a magnification of 1000 times using a scanning electron microscope (JXA-8800-R, manufactured by JEOL) to form a rectangular field of view of 90 μm × 125 μm. Further, it is magnified 5000 times and the number of holes having a major axis of 0.3 μm or more in the above-mentioned visual field is counted. The same measurement is performed randomly in 10 fields, and the average number of holes in each field is defined as the average number of holes having a major axis of 0.3 μm or more of the sputtering target. The major axis of the hole means the length of the appearing hole in the longest direction (see FIG. 1).
 ケイ素粒子の平均粒径及びモリブデンシリサイド粒子の平均粒径を上述の範囲内に制御し、且つケイ素相中の空孔の長径を上述の範囲内に制御するためには、例えば後述する放電プラズマ焼結法(以下「SPS法」と略称することもある。)と、熱間等方圧加圧法(以下「HIP法」と略称することもある。)とを組み合わせて本発明のターゲットを製造することが有利である。 In order to control the average particle diameter of the silicon particles and the average particle diameter of the molybdenum silicide particles within the above-mentioned range and to control the long diameter of the vacancies in the silicon phase within the above-described range, for example, a discharge plasma sintering described later is performed. The target of the present invention is produced by combining a sintering method (hereinafter sometimes abbreviated as “SPS method”) and a hot isostatic pressing method (hereinafter also abbreviated as “HIP method”). It is advantageous.
 本発明のスパッタリングターゲットは、その相対密度が99%以上であり、99.5%以上であることが好ましく、99.7%以上であることが更に好ましく、100%以上であることが一層好ましく、100.5%以上であることがより一層好ましい。ターゲットの相対密度を高くすることによって、ターゲットのポア部(空孔)が少なくなるので、スパッタリング時に放電が安定し、アーキングに起因するパーティクルの発生を防ぐことができる。相対密度は高ければ高いほど好ましく、上限値は特に定めるものではないが、通常102%である。相対密度は、アルキメデス法に基づき測定される。具体的には、スパッタリングターゲットの空中質量を、体積(=スパッタリングターゲットの水中質量/計測温度における水比重)で除し、理論密度ρ(g/cm)に対する百分率の値を相対密度(単位:%)とした。 The sputtering target of the present invention has a relative density of 99% or more, preferably 99.5% or more, more preferably 99.7% or more, and even more preferably 100% or more. More preferably, it is 100.5% or more. By increasing the relative density of the target, the pores (holes) of the target are reduced, so that the discharge is stabilized during sputtering and the generation of particles due to arcing can be prevented. The higher the relative density, the better. The upper limit is not particularly defined, but is usually 102%. The relative density is measured based on the Archimedes method. Specifically, the air mass of the sputtering target is divided by the volume (= the mass of the sputtering target in water / the specific gravity of the water at the measurement temperature), and the percentage value relative to the theoretical density ρ (g / cm 3 ) is the relative density (unit: %).
 本発明のスパッタリングターゲットは、ほぼケイ素とモリブデンシリサイド(MoSi)から構成されているため、理論密度ρは下記式(1)から算出することができる。
 
ρ={(C/100)/ρ+(C/100)/ρ-1 ・・・(1)
 
ケイ素の密度:ρ=2.33g/cm
ケイ素の質量%:C
モリブデンシリサイド(MoSi)の密度ρ:6.24g/cm
モリブデンシリサイド(MoSi)の質量%:C
Since the sputtering target of the present invention is substantially composed of silicon and molybdenum silicide (MoSi 2 ), the theoretical density ρ can be calculated from the following formula (1).

ρ = {(C 1/100 ) / ρ 1 + (C 2/100) / ρ 2} -1 ··· (1)

Silicon density: ρ 1 = 2.33 g / cm 3
Mass% of silicon: C 1
Density ρ 2 of molybdenum silicide (MoSi 2 ): 6.24 g / cm 3
Mass% of molybdenum silicide (MoSi 2 ): C 2
 上記C、Cは、本発明のスパッタリングターゲットにおけるケイ素の質量%、モリブデンの質量%をICP発光分光分析法等で分析し、その分析値から算出することができる。なお、本発明のスパッタリングターゲットの相対密度は、上記理論密度ρ(g/cm)に対する百分率の値であるため、100%を超えることもありうる。またモリブデン単体、ケイ素とモリブデンの固溶体、他の元素は少量であるので、理論密度を計算する上では無視することができる。 The above C 1 and C 2 can be calculated from the analysis values obtained by analyzing the mass% of silicon and the mass% of molybdenum in the sputtering target of the present invention by ICP emission spectroscopy. In addition, since the relative density of the sputtering target of the present invention is a percentage value with respect to the theoretical density ρ (g / cm 3 ), it may exceed 100%. Since molybdenum alone, solid solution of silicon and molybdenum, and other elements are in small quantities, they can be ignored in calculating the theoretical density.
 本発明のスパッタリングターゲットは、モリブデンシリサイド粒子の凝集による、円相当径10μm以上の凝集体(以下「モリブデンシリサイド粒子の凝集体」ともいう。)が、1個/mm以下であることが好ましい。モリブデンシリサイド粒子の凝集体を、1個/mm以下に制御することで、凝集体の箇所を起点とするアーキングの発生を抑制することができ、またアーキングに起因するパーティクル発生の少ないスパッタリングターゲットを得ることができる。この観点から、モリブデンシリサイド粒子の凝集体は、0.8個/mm以下であることが更に好ましく、0.5個/mm以下であることが一層好ましく、0.2個/mm以下であることが特に好ましい。モリブデンシリサイド粒子の凝集体の数はゼロに近ければ近いほど好ましい。 In the sputtering target of the present invention, it is preferable that aggregates having an equivalent circle diameter of 10 μm or more (hereinafter also referred to as “aggregates of molybdenum silicide particles”) due to aggregation of molybdenum silicide particles be 1 / mm 2 or less. By controlling the agglomerates of molybdenum silicide particles to 1 piece / mm 2 or less, it is possible to suppress the occurrence of arcing starting from the location of the agglomerates, and a sputtering target with less generation of particles due to arcing. Obtainable. In this respect, the aggregate of molybdenum silicide particles is more preferably 0.8 pieces / mm 2 or less, further preferably 0.5 pieces / mm 2 or less, and 0.2 pieces / mm 2 or less. It is particularly preferred that The closer the number of aggregates of molybdenum silicide particles is to zero, the better.
 モリブデンシリサイド粒子の凝集体の数は次のように測定できる。
 (凝集体の測定方法)
 まず、スパッタリングターゲットの表面を研磨し平滑にする。この平滑表面を、走査型電子顕微鏡(JXA-8800-R、JEOL社製)を用いて倍率200倍に拡大し、0.5mm×0.65mmの長方形の視野を無作為に30視野撮影する。得られた画像から粒子解析ソフトウエア(粒子解析Version3.0、住友金属テクノロジー株式会社製)を用いて、モリブデンシリサイド粒子の凝集による、円相当径10μm以上の凝集体数を計測する。得られたモリブデンシリサイド粒子の凝集体数を合計し9.75mm(0.5mm×0.65mm×30視野分)で除したものをモリブデンシリサイド粒子の凝集体の1mm当たりの個数とする。
The number of aggregates of molybdenum silicide particles can be measured as follows.
(Measuring method of aggregate)
First, the surface of the sputtering target is polished and smoothed. This smooth surface is magnified 200 times using a scanning electron microscope (JXA-8800-R, manufactured by JEOL), and 30 fields of a rectangular field of 0.5 mm × 0.65 mm are randomly photographed. Using the particle analysis software (particle analysis version 3.0, manufactured by Sumitomo Metal Technology Co., Ltd.), the number of aggregates having an equivalent circle diameter of 10 μm or more due to aggregation of molybdenum silicide particles is measured from the obtained image. The total number of the aggregates of the molybdenum silicide particles obtained and divided by 9.75 mm 2 (0.5 mm × 0.65 mm × 30 fields) is defined as the number of molybdenum silicide particle aggregates per 1 mm 2 .
 次に、本発明のスパッタリングターゲットの好適な製造方法について説明する。本発明のスパッタリングターゲットは、モリブデン粉末とケイ素粉末とを混合し、得られた混合粉を放電プラズマ焼結法に付す工程を経て好適に製造される。 Next, a preferred method for producing the sputtering target of the present invention will be described. The sputtering target of the present invention is preferably manufactured through a step of mixing molybdenum powder and silicon powder and subjecting the obtained mixed powder to a discharge plasma sintering method.
 本発明のターゲットを得るには、まずモリブデン単体の粉末とケイ素単体の粉末とを用意し、両者を混合する。モリブデン粉末としては、BET(Brunauer-Emmett-Teller)法で測定した比表面積が4.0m/g以上のものを用いることが、モリブデンシリサイド相の微細組織を得る点から好ましい。この利点を一層顕著なものとする観点から、モリブデン粉末の比表面積は、5.0m/g以上であることが好ましく、6.0m/g以上であることが一層好ましい。モリブデン粉末の比表面積の上限値は特に定めるものではないが、モリブデン粉末の凝集を防ぐ観点から8.0m/g以下が好ましい。 In order to obtain the target of the present invention, first, a powder of molybdenum alone and a powder of silicon simple substance are prepared, and both are mixed. As the molybdenum powder, it is preferable to use a powder having a specific surface area of 4.0 m 2 / g or more as measured by the BET (Brunauer-Emmett-Teller) method from the viewpoint of obtaining a fine structure of the molybdenum silicide phase. From the viewpoint of making this advantage even more remarkable, the specific surface area of the molybdenum powder is preferably 5.0 m 2 / g or more, and more preferably 6.0 m 2 / g or more. The upper limit value of the specific surface area of the molybdenum powder is not particularly defined, but is preferably 8.0 m 2 / g or less from the viewpoint of preventing aggregation of the molybdenum powder.
 一方、ケイ素粉末としては、BET法で測定した比表面積が4.0m/g以上のものを用いることが、ケイ素相及びモリブデンシリサイド相の微細組織を得る点から好ましい。この利点を一層顕著なものとする観点から、ケイ素粉末の比表面積は、5.0m/g以上であることが好ましく、6.0m/g以上であることが一層好ましい。ケイ素粉末の平均粒径の上限値は特に定めるものではないが、ケイ素粉末の凝集を防ぐ観点から8.0m/g以下が好ましい。 On the other hand, it is preferable to use a silicon powder having a specific surface area measured by the BET method of 4.0 m 2 / g or more from the viewpoint of obtaining a microstructure of a silicon phase and a molybdenum silicide phase. From the viewpoint of making this advantage more remarkable, the specific surface area of the silicon powder is preferably 5.0 m 2 / g or more, and more preferably 6.0 m 2 / g or more. The upper limit value of the average particle diameter of the silicon powder is not particularly defined, but is preferably 8.0 m 2 / g or less from the viewpoint of preventing aggregation of the silicon powder.
 モリブデン粉末及びケイ素粉末の比表面積は、例えば全自動比表面積測定装置(株式会社マウンテック製、Macsorb(登録商標)HM model-1210)を使用し、吸着ガスとして混合ガス(窒素30vol%+ヘリウム70vol%)を用い、BET一点法で測定することができる。比表面積が上述の範囲内である限り、モリブデン粉末及びケイ素粉末の形状に特に制限はない。 The specific surface area of the molybdenum powder and the silicon powder is, for example, a fully automatic specific surface area measuring device (Macsorb (registered trademark) HM -1 model-1210) manufactured by Mountec Co., Ltd., and a mixed gas (nitrogen 30 vol% + helium 70 vol%). ) And the BET single point method. As long as the specific surface area is within the above range, there is no particular limitation on the shape of the molybdenum powder and the silicon powder.
 モリブデン粉末とケイ素粉末との混合比率は、モル%で表して、Mo/(Mo+Si)×100の値が3%以上25%以下であることが好ましく、3.3%以上24%以下であることが更に好ましく、3.5%以上23%以下であることが一層好ましい。また、Si/(Mo+Si)×100の値が75%以上97%以下であることが好ましく、76%以上96.7%以下であることが更に好ましく、77%以上96.5%以下であることが一層好ましい。この比率でモリブデンとケイ素とを混合することで、目的とするターゲットを首尾よく得ることができる。 The mixing ratio of the molybdenum powder and the silicon powder is expressed in mol%, and the value of Mo / (Mo + Si) × 100 is preferably 3% or more and 25% or less, and is 3.3% or more and 24% or less. Is more preferably 3.5% or more and 23% or less. Further, the value of Si / (Mo + Si) × 100 is preferably 75% or more and 97% or less, more preferably 76% or more and 96.7% or less, and 77% or more and 96.5% or less. Is more preferable. By mixing molybdenum and silicon at this ratio, the target of interest can be successfully obtained.
 モリブデン粉末とケイ素粉末との混合には種々の混合手段を用いることができる。例えばビーズミル、サンドミル、アトライタ(登録商標)及びボールミルなどの媒体攪拌型ミル、三本ロールミル、などを用いることができる。媒体攪拌型ミルを用いるときのメディアの直径は5mm以上20mm以下であることが好ましい。メディアの材質は、例えばジルコニアやアルミナなどが好ましい。また、得られた混合粉に対して、目開き50μm以下の篩を使用して篩い分けを行ってもよい。また、篩い分けを行った混合粉は、比表面積の調整を行うことを目的として仮焼を行ってもよい。 Various mixing means can be used for mixing the molybdenum powder and the silicon powder. For example, a bead mill, a sand mill, an attritor (registered trademark), a medium stirring type mill such as a ball mill, a three-roll mill, or the like can be used. The diameter of the medium when using the medium stirring mill is preferably 5 mm or more and 20 mm or less. The material of the media is preferably zirconia or alumina, for example. Moreover, you may screen with respect to the obtained mixed powder using a sieve with an opening of 50 micrometers or less. The mixed powder that has been subjected to sieving may be calcined for the purpose of adjusting the specific surface area.
 混合粉は、次いで、所定の形状の成形凹部を有する焼結ダイ内に充填される。焼結ダイとしては例えばグラファイト製のものを用いることができるが、この材質に限られない。焼結ダイに混合粉を充填したら、該混合粉をSPS法に付す。SPS法は、ホットプレス焼結法(以下「HP法」と略称する。)などと同様の固体圧縮焼結法の一つである。SPS法においては、焼結ダイ内に充填した前記の混合粉を加圧しながら加熱する。HP法においても加圧しながら加熱を行うが、SPS法はHP法と加熱の仕方が相違する。HP法ではホットプレス装置の発熱体を用いて長時間にわたり焼結対象物に対して外部から加熱を行うのに対して、SPS法では、オン-オフの直流パルス電圧・電流を導電性のある焼結ダイ及び焼結対象物に直接印加する。そして、電気エネルギーが直接投入された焼結ダイの自己発熱を、加圧とともに焼結駆動力として利用する。つまり、一般的な焼結に用いられる熱的及び機械的エネルギーに加えて、パルス通電による電磁的エネルギーや被加工物の自己発熱及び粒子間に発生する放電プラズマエネルギーなどを複合的に焼結の駆動力としている。このような焼結方式を採用するSPS法によれば、粒成長が抑制された緻密な焼結体を製造することができる。要するに、ケイ素粒子の平均粒径、及びモリブデンシリサイド粒子の平均粒径を上述の範囲に制御することが可能となる。 Next, the mixed powder is filled into a sintering die having a predetermined shape of the molding recess. As the sintering die, for example, a graphite die can be used, but it is not limited to this material. Once the sintered die is filled with the mixed powder, the mixed powder is subjected to the SPS method. The SPS method is one of solid compression sintering methods similar to a hot press sintering method (hereinafter abbreviated as “HP method”). In the SPS method, the mixed powder filled in the sintering die is heated while being pressurized. In the HP method, heating is performed while applying pressure, but the SPS method is different from the HP method in heating. In the HP method, the object to be sintered is heated from the outside for a long time using a heating element of a hot press apparatus, whereas in the SPS method, the on-off DC pulse voltage / current is conductive. Apply directly to the sintering die and the object to be sintered. The self-heating of the sintering die to which electric energy is directly input is used as a sintering driving force together with pressurization. In other words, in addition to the thermal and mechanical energy used for general sintering, electromagnetic energy by pulse energization, self-heating of the workpiece and discharge plasma energy generated between particles are combined and sintered. Driving power. According to the SPS method employing such a sintering method, a dense sintered body in which grain growth is suppressed can be produced. In short, it becomes possible to control the average particle diameter of the silicon particles and the average particle diameter of the molybdenum silicide particles within the above-described ranges.
 目的とするターゲットを首尾よく得る観点から、SPS法を行うときの昇温速度は、5℃/min以上20℃/min以下であることが好ましく、10℃/min以上18℃/min以下であることが更に好ましい。昇温速度を5℃/min以上にすることで、異常粒成長を抑制することができ、また20℃/min以下にすることで、焼結体内に温度のバラツキが生じることを抑制することができる。焼結温度は、1100℃以上1200℃以下であることが好ましく、1120℃以上1200℃以下であることが更に好ましい。焼成温度を1100℃以上にすることで、焼結体の密度が低くなることを抑制でき、また1200℃以下にすることで、溶出の発生を抑制できる。焼結温度は、放射温度計(チノー社製、IR-AHS0)を使用して、焼結ダイの表面温度を計測することで得ることができる。焼結時の圧力は、25MPa以上80MPa以下であることが好ましく、27MPa以上50MPa以下であることが更に好ましい。焼結保持時間は、焼結温度及び圧力が上述の範囲であることを条件として、20分以上300分以下であることが好ましく、30分以上180分以下であることが更に好ましい。 From the viewpoint of successfully obtaining a target of interest, the rate of temperature increase when performing the SPS method is preferably 5 ° C./min or more and 20 ° C./min or less, preferably 10 ° C./min or more and 18 ° C./min or less. More preferably. Abnormal grain growth can be suppressed by setting the temperature rising rate to 5 ° C./min or more, and by suppressing the temperature increase to 20 ° C./min or less, temperature variation in the sintered body can be suppressed. it can. The sintering temperature is preferably 1100 ° C. or higher and 1200 ° C. or lower, more preferably 1120 ° C. or higher and 1200 ° C. or lower. By setting the firing temperature to 1100 ° C. or higher, it is possible to suppress the density of the sintered body from being lowered, and by setting it to 1200 ° C. or lower, generation of elution can be suppressed. The sintering temperature can be obtained by measuring the surface temperature of the sintering die using a radiation thermometer (manufactured by Chino, IR-AHS0). The pressure during sintering is preferably 25 MPa or more and 80 MPa or less, and more preferably 27 MPa or more and 50 MPa or less. The sintering holding time is preferably 20 minutes or more and 300 minutes or less, more preferably 30 minutes or more and 180 minutes or less, provided that the sintering temperature and pressure are in the above-mentioned ranges.
 焼結の雰囲気は、真空又は不活性ガスとすることができる。真空で焼結を行う場合には、絶対圧で30Pa以下、特に10Pa以下の条件を採用することが好ましい。不活性ガス中で焼結を行う場合には、不活性ガスとしてアルゴンや窒素を用いることができる。 The sintering atmosphere can be a vacuum or an inert gas. When sintering is performed in a vacuum, it is preferable to employ conditions of 30 Pa or less, particularly 10 Pa or less in absolute pressure. When sintering is performed in an inert gas, argon or nitrogen can be used as the inert gas.
 本製造方法においては、SPS法に引き続きHIP法を行うことが有利である。SPS法とHIP法とを組み合わせてスパッタリングターゲットを製造することで、ケイ素粒子及びモリブデンシリサイド粒子の粒成長を抑えつつ、ケイ素相中に空孔が生じることを効果的に抑制することができる。 In this production method, it is advantageous to perform the HIP method following the SPS method. By producing a sputtering target by combining the SPS method and the HIP method, it is possible to effectively suppress the generation of vacancies in the silicon phase while suppressing the growth of silicon particles and molybdenum silicide particles.
 目的とするターゲットを首尾よく得る観点から、HIP法を行うときの昇温速度は、5℃/min以上20℃/min以下であることが好ましく、10℃/min以上15℃/min以下であることが更に好ましい。昇温速度を5℃/min以上にすることで、異常粒成長を抑制することができ、また20℃/min以下にすることで、焼結体内に温度のバラツキが生じることを抑制することができる。温度は、1150℃以上1350℃以下であることが好ましく、1200℃以上1350℃以下であることが更に好ましい。温度を1150℃以上にすることで、ケイ素相中に空孔が発生することを抑制することができ、また1350℃以下にすることで、ケイ素粒子の粗大化や溶融を抑制することができる。また温度を1350℃以下にすることでも、ケイ素相中に空孔が発生することを抑制することができる。圧力は、90MPa以上であることが好ましく、100MPa以上であることが更に好ましい。圧力の上限値は特に定めるものではないが、通常200MPaである。保持時間は、温度及び圧力が上述の範囲であることを条件として、30分以上240分以下であることが好ましく、60分以上180分以下であることが更に好ましい。 From the viewpoint of successfully obtaining a target of interest, the rate of temperature rise when performing the HIP method is preferably 5 ° C./min or more and 20 ° C./min or less, preferably 10 ° C./min or more and 15 ° C./min or less. More preferably. Abnormal grain growth can be suppressed by setting the temperature rising rate to 5 ° C./min or more, and by suppressing the temperature increase to 20 ° C./min or less, temperature variation in the sintered body can be suppressed. it can. The temperature is preferably 1150 ° C. or higher and 1350 ° C. or lower, more preferably 1200 ° C. or higher and 1350 ° C. or lower. By setting the temperature to 1150 ° C. or higher, generation of vacancies in the silicon phase can be suppressed, and by setting the temperature to 1350 ° C. or lower, coarsening and melting of silicon particles can be suppressed. Moreover, generation | occurrence | production of a void | hole in a silicon phase can also be suppressed by making temperature into 1350 degrees C or less. The pressure is preferably 90 MPa or more, and more preferably 100 MPa or more. The upper limit of the pressure is not particularly defined, but is usually 200 MPa. The holding time is preferably not less than 30 minutes and not more than 240 minutes, more preferably not less than 60 minutes and not more than 180 minutes, provided that the temperature and pressure are in the above ranges.
 HIP法による焼結が終了したら、加熱を停止して冷却を行う。冷却の方式に特に制限はなく、自然冷却とすることが簡便である。以上の条件を適切に調整することで、目的とするターゲットを首尾よく得ることができる。 When the sintering by the HIP method is completed, the heating is stopped and the cooling is performed. There is no restriction | limiting in particular in the system of cooling, It is easy to set it as natural cooling. By appropriately adjusting the above conditions, the target can be successfully obtained.
 このようにして製造されたスパッタリングターゲットは、例えばハーフトーン型位相シフトマスクを製造するときの原版となるマスクブランクの光半透過膜(ハーフトーン位相シフト膜)を形成する際に好適に用いられる。スパッタリングの対象となる基板としては、例えば透明石英ガラス等の透光性基板が好適に用いられる。 The sputtering target manufactured in this way is suitably used when forming a light semi-transmissive film (halftone phase shift film) of a mask blank which becomes an original plate when manufacturing a halftone phase shift mask, for example. As the substrate to be sputtered, for example, a translucent substrate such as transparent quartz glass is preferably used.
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、斯かる実施例に制限されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such embodiments.
  〔実施例1〕
(1)焼結用の混合粉の調製
 BET法による比表面積が4.1m/gであるケイ素単体の粉末と、同じくBET法による比表面積が4.7m/gであるモリブデン単体の粉末とを、Mo:Si=4:96(モル比)となるように秤量した。日本コークス社製のアトライタ(登録商標)を用いて両者を混合して混合粉を得た。アトライタ(登録商標)の運転条件は、280rpmで24時間とした。メディアとして直径10mmのジルコニアボールを用いた。このようにして得られた混合粉を目開き50μmの篩で篩い分けした。篩い分けした混合粉を、800℃で3時間仮焼した。
[Example 1]
(1) Preparation of mixed powder for sintering Powder of silicon simple substance having specific surface area of 4.1 m 2 / g by BET method and powder of molybdenum simple substance having specific surface area of 4.7 m 2 / g by BET method Were weighed so that Mo: Si = 4: 96 (molar ratio). Both were mixed using Attritor (registered trademark) manufactured by Nippon Coke Co., Ltd. to obtain a mixed powder. The operating conditions of Attritor (registered trademark) were 24 hours at 280 rpm. A zirconia ball having a diameter of 10 mm was used as a medium. The mixed powder thus obtained was sieved with a sieve having an opening of 50 μm. The mixed powder thus sieved was calcined at 800 ° C. for 3 hours.
(2)SPS法による焼結
 前記の仮焼した混合粉をグラファイト製の焼結ダイ内に充填した。焼結ダイの直径は230mmであった。次いでSPS法によって混合粉の焼結を行った。SPS法の実施条件は以下のとおりとした。
・焼結雰囲気:真空(絶対圧10Pa)
・昇温速度:10℃/min
・焼結温度:1175℃
・焼結保持時間:30min
・圧力:41MPa
・降温:自然炉冷
(2) Sintering by SPS Method The calcined mixed powder was filled in a sintering die made of graphite. The diameter of the sintering die was 230 mm. Subsequently, the mixed powder was sintered by the SPS method. The implementation conditions of the SPS method were as follows.
・ Sintering atmosphere: Vacuum (absolute pressure 10 Pa)
・ Raising rate: 10 ° C / min
・ Sintering temperature: 1175 ° C
・ Sintering holding time: 30 min
・ Pressure: 41 MPa
・ Cooling: Natural furnace cooling
(3)HIP法による焼結
・ガス:アルゴン
・昇温速度:10℃/min
・焼結温度:1250℃
・焼結保持時間:120min
・圧力:145MPa
・降温:自然炉冷
(3) Sintering by HIP method, gas: argon, heating rate: 10 ° C / min
・ Sintering temperature: 1250 ° C
・ Sintering holding time: 120 min
・ Pressure: 145 MPa
・ Cooling: Natural furnace cooling
  〔比較例1〕
 実施例1においてHIP法を行わなかった。これ以外は、実施例1と同様にしてスパッタリングターゲットを得た。
[Comparative Example 1]
In Example 1, the HIP method was not performed. Except for this, a sputtering target was obtained in the same manner as in Example 1.
  〔実施例2〕
 以下の表1に示す条件を採用したこと以外、実施例1と同様にしてスパッタリングターゲットを得た。
[Example 2]
A sputtering target was obtained in the same manner as in Example 1 except that the conditions shown in Table 1 below were adopted.
  〔比較例2〕
 実施例2においてHIP法を行わなかった。これ以外は、実施例1と同様にしてスパッタリングターゲットを得た。
[Comparative Example 2]
In Example 2, the HIP method was not performed. Except for this, a sputtering target was obtained in the same manner as in Example 1.
  〔比較例3〕
 本比較例は、実施例2においてHIP法を以下の表1に示す条件で行った例である。それ以外は、実施例2と同様にしてスパッタリングターゲットを得た。
[Comparative Example 3]
This comparative example is an example in which the HIP method in Example 2 was performed under the conditions shown in Table 1 below. Other than that was carried out similarly to Example 2, and obtained the sputtering target.
  〔実施例3〕
 以下の表1に示す条件を採用したこと以外、実施例1と同様にしてスパッタリングターゲットを得た。
Example 3
A sputtering target was obtained in the same manner as in Example 1 except that the conditions shown in Table 1 below were adopted.
  〔比較例4〕
 本比較例はSPS法に代えて、表1に示す条件でHP法による焼結を行った例である。それ以外は、実施例3と同様にしてスパッタリングターゲットを得た。
[Comparative Example 4]
This comparative example is an example in which sintering was performed by the HP method under the conditions shown in Table 1 instead of the SPS method. Other than that was carried out similarly to Example 3, and obtained the sputtering target.
  〔実施例4〕
 以下の表1に示す条件を採用したこと以外、実施例1と同様にしてスパッタリングターゲットを得た。
Example 4
A sputtering target was obtained in the same manner as in Example 1 except that the conditions shown in Table 1 below were adopted.
  〔比較例5〕
 実施例4においてHIP法を行わなかった。これ以外は、実施例1と同様にしてスパッタリングターゲットを得た。
[Comparative Example 5]
In Example 4, the HIP method was not performed. Except for this, a sputtering target was obtained in the same manner as in Example 1.
  〔評価〕
 実施例及び比較例で得られたターゲットについて、上述の方法で、ケイ素粒子の平均粒径、及びモリブデンシリサイド粒子の平均粒径を測定した。また、ケイ素相中に存在する長径0.3μm以上の空孔の個数(90μm×125μmの範囲)を測定した。また、モリブデンシリサイド粒子の凝集体の個数を測定した。更にターゲットの相対密度を測定した。これらの結果を以下の表1に示す。
[Evaluation]
About the target obtained by the Example and the comparative example, the average particle diameter of the silicon particle and the average particle diameter of molybdenum silicide particle | grains were measured with the above-mentioned method. Further, the number of vacancies having a major axis of 0.3 μm or more existing in the silicon phase (range of 90 μm × 125 μm) was measured. Further, the number of aggregates of molybdenum silicide particles was measured. Furthermore, the relative density of the target was measured. These results are shown in Table 1 below.
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果より、実施例1から4のターゲットはいずれも、ケイ素粒子の平均粒径が2.0μm以下のケイ素相と、モリブデンシリサイド粒子の平均粒径が2.5μm以下のモリブデンシリサイド相とを含み、ケイ素相中に存在する長径0.3μm以上の空孔の平均個数が、90μm×125μmの範囲において10個以下であることがわかる。 From the results shown in Table 1, all of the targets of Examples 1 to 4 have a silicon phase in which the average particle size of silicon particles is 2.0 μm or less and a molybdenum silicide phase in which the average particle size of molybdenum silicide particles is 2.5 μm or less. It can be seen that the average number of pores having a major axis of 0.3 μm or more existing in the silicon phase is 10 or less in the range of 90 μm × 125 μm.
 次に、実施例1と比較例1の各スパッタリングターゲットに対し、これらのターゲットを用いてスパッタリング法で薄膜を形成したときに発生するパーティクルに係る効果を検証するため、以下の評価を行った。 Next, the following evaluation was performed on each sputtering target of Example 1 and Comparative Example 1 in order to verify the effect of particles generated when a thin film was formed by sputtering using these targets.
 最初に、主表面の寸法が約152mm×約152mmで、厚さが約6.25mmの合成石英ガラスからなる透光性基板を10枚準備した。その透光性基板は、端面及び主表面が所定の表面粗さに研磨され、その後、所定の洗浄処理及び乾燥処理を施されたものである。次に、この準備されたすべての透光性基板の、薄膜を形成する側の主表面に対して欠陥検査装置(レーザーテック社製 M6640)で欠陥検査を行った。この欠陥検査では、その検査した透光性基板の、薄膜を形成する側の主表面に存在する欠陥の種類(凸状欠陥、凹状欠陥等)とその欠陥の位置(座標)に係る欠陥データを取得し、その欠陥検査した透光性基板と対応付けて記録した。 First, ten translucent substrates made of synthetic quartz glass having a main surface dimension of about 152 mm × about 152 mm and a thickness of about 6.25 mm were prepared. The translucent substrate has its end face and main surface polished to a predetermined surface roughness, and then subjected to a predetermined cleaning process and a drying process. Next, a defect inspection was performed with a defect inspection apparatus (M6640 manufactured by Lasertec Corporation) on the main surface on the thin film forming side of all of the prepared translucent substrates. In this defect inspection, defect data relating to the type of defect (convex defect, concave defect, etc.) present on the main surface on the thin film forming side of the inspected translucent substrate and the position (coordinate) of the defect is obtained. Obtained and recorded in association with the translucent substrate subjected to the defect inspection.
 次に、欠陥検査後の透光性基板を1セット5枚の2セットに分けた。一方のセットの各透光性基板に対しては、実施例1のスパッタリングターゲットを用いてスパッタリング法で薄膜を形成し、実施例1に係る薄膜付き基板を製造した。また、もう一方のセットの各透光性基板に対しては、比較例1のスパッタリングターゲットを用いてスパッタリング法で薄膜を形成して比較例1に係る薄膜付き基板を製造した。 Next, the translucent substrate after the defect inspection was divided into two sets of one set. For each light-transmitting substrate in one set, a thin film was formed by a sputtering method using the sputtering target of Example 1, and a substrate with a thin film according to Example 1 was produced. Moreover, with respect to each of the translucent substrates in the other set, a thin film was formed by sputtering using the sputtering target of Comparative Example 1 to produce a substrate with a thin film according to Comparative Example 1.
 具体的には、以下の工程で行った。まず、枚葉式DCスパッタ装置の成膜室内のカソードに、実施例1又は比較例1のスパッタリングターゲットを取り付け、成膜室内の基板ステージ上に、欠陥検査を行った側の主表面がスパッタリングターゲットと対向するように透光性基板を設置した。続いて、成膜室内をアルゴン(Ar)、窒素(N)及びヘリウム(He)の混合ガスの雰囲気(ガス流量 Ar=10.5sccm、N=48sccm、He=100sccm、ガス圧=0.3Pa)とした状態で、DC電源の電力を3.0kWで反応性スパッタリングを行い、透光性基板の主表面上にモリブデン、ケイ素及び窒素からなる薄膜を67nmの厚さで形成し、実施例1又は比較例1に係る薄膜付き基板を製造した。 Specifically, the following steps were performed. First, the sputtering target of Example 1 or Comparative Example 1 is attached to the cathode in the film forming chamber of the single-wafer DC sputtering apparatus, and the main surface on the side subjected to the defect inspection is the sputtering target on the substrate stage in the film forming chamber. A translucent substrate was installed so as to oppose. Subsequently, an atmosphere of a mixed gas of argon (Ar), nitrogen (N 2 ), and helium (He) (gas flow rate Ar = 10.5 sccm, N 2 = 48 sccm, He = 100 sccm, gas pressure = 0. 3 Pa), reactive sputtering was performed with a DC power supply of 3.0 kW, and a thin film made of molybdenum, silicon, and nitrogen was formed to a thickness of 67 nm on the main surface of the translucent substrate. A substrate with a thin film according to 1 or Comparative Example 1 was produced.
 次に、実施例1に係る各薄膜付き基板と比較例1に係る各薄膜付き基板の各薄膜の表面に対して欠陥検査装置(レーザーテック社製 M6640)で欠陥検査をそれぞれ行った。この欠陥検査においても、その検査した薄膜の表面に存在する欠陥の種類(凸状欠陥、凹状欠陥等)とその欠陥の位置(座標)に係る欠陥データを取得し、その欠陥検査した薄膜付き基板(透光性基板)と対応付けて記録した。 Next, the defect inspection was performed on the surface of each thin film of each thin film substrate according to Example 1 and each thin film substrate according to Comparative Example 1 with a defect inspection apparatus (M6640 manufactured by Lasertec Corporation). In this defect inspection, the defect-existing data relating to the type of defect (convex defect, concave defect, etc.) present on the surface of the inspected thin film and the position (coordinates) of the defect is obtained, and the substrate with the thin film subjected to the defect inspection Recording was performed in association with (translucent substrate).
 最後に、実施例1と比較例1の各薄膜付き基板に対し、薄膜をスパッタリング法で形成したときに発生した欠陥のみを抽出する作業を行った。具体的には、同じ透光性基板に対応付けされた透光性基板の主表面の欠陥データと薄膜の表面の欠陥データとを照合し、2つの欠陥データで共通する位置(座標)に存在する欠陥を薄膜の表面の欠陥データから除外し、これを薄膜の形成時に発生した欠陥(膜欠陥)の欠陥データとして、その薄膜付き基板(透光性基板)と対応付けして記録した。 Finally, for each thin film-attached substrate of Example 1 and Comparative Example 1, an operation for extracting only defects that occurred when the thin film was formed by the sputtering method was performed. Specifically, the defect data on the main surface of the translucent substrate associated with the same translucent substrate are compared with the defect data on the surface of the thin film, and exist at a position (coordinates) common to the two defect data. The defect to be removed was excluded from the defect data on the surface of the thin film, and this was recorded as the defect data of the defect (film defect) generated during the formation of the thin film in association with the substrate with the thin film (translucent substrate).
 以上の検証の結果、実施例1に係る5枚の薄膜付き基板の膜欠陥の平均個数は、比較例1に係る5枚の薄膜付き基板の膜欠陥の平均個数の1/25に減少していることが確認できた。これらの結果から、実施例1のスパッタリングターゲットを用いてスパッタリング法で薄膜を形成することにより、スパッタリング時にスパッタリングターゲットからアーキングに起因するパーティクルが発生することを十分に抑制できているといえる。 As a result of the above verification, the average number of film defects of the five thin film-attached substrates according to Example 1 was reduced to 1/25 of the average number of film defects of the five thin film-attached substrates according to Comparative Example 1. It was confirmed that From these results, it can be said that by forming a thin film by the sputtering method using the sputtering target of Example 1, generation of particles due to arcing from the sputtering target during sputtering can be sufficiently suppressed.
 本発明によれば、パーティクルの発生が従来よりも抑制されたMo-Si系スパッタリングターゲット及びその製造方法が提供される。 According to the present invention, there are provided a Mo—Si based sputtering target in which generation of particles is suppressed as compared with the conventional method and a method for manufacturing the same.

Claims (5)

  1.  モリブデン含有量が3mol%以上25mol%以下であり、ケイ素含有量が75mol%以上97mol%以下であるスパッタリングターゲットであって、
     ケイ素粒子の平均粒径が2.0μm以下のケイ素相と、モリブデンシリサイド粒子の平均粒径が2.5μm以下のモリブデンシリサイド相とを含み、
     ケイ素相中に存在する長径0.3μm以上の空孔の平均個数が、90μm×125μmの範囲において、10個以下であるスパッタリングターゲット。
    A sputtering target having a molybdenum content of 3 mol% to 25 mol% and a silicon content of 75 mol% to 97 mol%,
    A silicon phase having an average particle diameter of 2.0 μm or less and a molybdenum silicide phase having an average particle diameter of molybdenum silicide particles of 2.5 μm or less;
    A sputtering target in which the average number of pores having a major axis of 0.3 μm or more present in the silicon phase is 10 or less in the range of 90 μm × 125 μm.
  2.  モリブデンシリサイド粒子の凝集による、円相当径10μm以上の凝集体が、1mm当たり1個以下である請求項1に記載のスパッタリングターゲット。 2. The sputtering target according to claim 1, wherein the number of aggregates having an equivalent circle diameter of 10 μm or more due to aggregation of molybdenum silicide particles is 1 or less per 1 mm 2 .
  3.  相対密度が99%以上である請求項1又は2に記載のスパッタリングターゲット。 The sputtering target according to claim 1 or 2, wherein the relative density is 99% or more.
  4.  請求項1ないし3のいずれか一項に記載のスパッタリングターゲットの製造方法であって、
     モリブデン粉末とケイ素粉末とを混合し、
     得られた混合粉を放電プラズマ焼結法に付し、次いで
     熱間等方圧加圧法に付す、工程を有し、
     前記熱間等方圧加圧法に付す工程における焼結温度が1150℃以上1350℃以下であるスパッタリングターゲットの製造方法。
    It is a manufacturing method of the sputtering target as described in any one of Claim 1 thru | or 3, Comprising:
    Mixing molybdenum powder and silicon powder,
    The obtained mixed powder is subjected to a discharge plasma sintering method, and then subjected to a hot isostatic pressing method,
    The manufacturing method of the sputtering target whose sintering temperature in the process attached | subjected to the said hot isostatic pressing method is 1150 degreeC or more and 1350 degrees C or less.
  5.  前記放電プラズマ焼結法に付す工程における焼結温度が1100℃以上1200℃以下である請求項4に記載の製造方法。  The manufacturing method according to claim 4, wherein a sintering temperature in the step of subjecting to the discharge plasma sintering method is 1100 ° C. or more and 1200 ° C. or less.
PCT/JP2018/003909 2017-03-23 2018-02-06 Sputtering target and production method therefor WO2018173517A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11201907100R SG11201907100RA (en) 2017-03-23 2018-02-06 Sputtering target and production method therefor
JP2019507415A JP7060578B2 (en) 2017-03-23 2018-02-06 Sputtering target and its manufacturing method
CN201880013540.XA CN110392747B (en) 2017-03-23 2018-02-06 Sputtering target and method for producing same
MYPI2019004604A MY193691A (en) 2017-03-23 2018-02-06 Sputtering target and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-057426 2017-03-23
JP2017057426 2017-03-23

Publications (1)

Publication Number Publication Date
WO2018173517A1 true WO2018173517A1 (en) 2018-09-27

Family

ID=63585306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003909 WO2018173517A1 (en) 2017-03-23 2018-02-06 Sputtering target and production method therefor

Country Status (5)

Country Link
JP (1) JP7060578B2 (en)
CN (1) CN110392747B (en)
MY (1) MY193691A (en)
SG (1) SG11201907100RA (en)
WO (1) WO2018173517A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004167A1 (en) * 1993-07-27 1995-02-09 Kabushiki Kaisha Toshiba High melting point metallic silicide target and method for producing the same, high melting point metallic silicide film and semiconductor device
JP2004204278A (en) * 2002-12-25 2004-07-22 Hitachi Metals Ltd Silicide target manufacturing method
JP2005200688A (en) * 2004-01-14 2005-07-28 Hoya Corp Sputtering target and photomask blank manufacturing method using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794382B2 (en) * 1993-05-07 1998-09-03 株式会社ジャパンエナジー Silicide target for sputtering and method for producing the same
JP4509363B2 (en) * 2000-12-05 2010-07-21 株式会社東芝 Sputtering target, sputtering target manufacturing method, phase shift mask blank manufacturing method, and phase shift mask manufacturing method
JP2004109317A (en) * 2002-09-17 2004-04-08 Shin Etsu Chem Co Ltd Sputtering target, and method for manufacturing mask blank
FR2944295B1 (en) * 2009-04-10 2014-08-15 Saint Gobain Coating Solutions MOLYBDENE-BASED TARGET AND THERMAL PROJECTION DELIVERY METHOD OF A TARGET

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004167A1 (en) * 1993-07-27 1995-02-09 Kabushiki Kaisha Toshiba High melting point metallic silicide target and method for producing the same, high melting point metallic silicide film and semiconductor device
JP2004204278A (en) * 2002-12-25 2004-07-22 Hitachi Metals Ltd Silicide target manufacturing method
JP2005200688A (en) * 2004-01-14 2005-07-28 Hoya Corp Sputtering target and photomask blank manufacturing method using the same

Also Published As

Publication number Publication date
JP7060578B2 (en) 2022-04-26
JPWO2018173517A1 (en) 2020-01-23
CN110392747B (en) 2021-10-29
SG11201907100RA (en) 2019-10-30
CN110392747A (en) 2019-10-29
MY193691A (en) 2022-10-25

Similar Documents

Publication Publication Date Title
JP5586752B2 (en) High density refractory metal and alloy sputtering targets
JP6264846B2 (en) Oxide sintered body, sputtering target and manufacturing method thereof
WO2011034110A1 (en) Metal oxide-metal composite sputtering target
TWI654330B (en) Tungsten silicide target and manufacturing method thereof
KR20140073571A (en) Sputtering target and method for producing same
KR20120060858A (en) Cu-in-ga-se quaternary alloy sputtering target
TWI583813B (en) Sintered body sputtering target
JP2015175025A (en) C-PARTICLE DISPERSED Pe-Pt-BASED SPUTTERING TARGET
JP5969493B2 (en) Sputtering target and manufacturing method thereof
JP2022082780A (en) Tungsten silicide target member, manufacturing method of the same, and manufacturing method of tungsten silicide film
WO2018173517A1 (en) Sputtering target and production method therefor
JP2007290875A (en) Titanium oxide-based sintered compact and its manufacturing method
JP6734399B2 (en) Magnetic material sputtering target and manufacturing method thereof
TWI683018B (en) IZO target material and its manufacturing method
JP2017218621A (en) Target material and method for manufacturing the same
CN111183244B (en) Ferromagnetic material sputtering target
WO2018179556A1 (en) Sputtering target and production method therefor
WO2017141558A1 (en) Sputtering target for magnetic recording medium, and magnetic thin film
TWI680198B (en) Ferromagnetic material sputtering target, manufacturing method thereof, and magnetic recording film manufacturing method
WO2021241522A1 (en) METAL-Si BASED POWDER, METHOD FOR PRODUCING SAME, METAL-Si BASED SINTERED BODY, SPUTTERING TARGET, AND METAL-Si BASED THIN FILM MANUFACTURING METHOD
JP4413503B2 (en) Sputtering target and manufacturing method thereof
US20220189750A1 (en) Sputtering Target And Method For Manufacturing Sputtering Target
JP2019178396A (en) Sputtering target
JP2020147822A (en) MANUFACTURING METHOD OF MgO-TiO-BASED SPUTTERING TARGET

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770438

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507415

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770438

Country of ref document: EP

Kind code of ref document: A1