WO2018173366A1 - Sensor device - Google Patents

Sensor device Download PDF

Info

Publication number
WO2018173366A1
WO2018173366A1 PCT/JP2017/042242 JP2017042242W WO2018173366A1 WO 2018173366 A1 WO2018173366 A1 WO 2018173366A1 JP 2017042242 W JP2017042242 W JP 2017042242W WO 2018173366 A1 WO2018173366 A1 WO 2018173366A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
elastic cushion
cushion layer
pressure
arm
Prior art date
Application number
PCT/JP2017/042242
Other languages
French (fr)
Japanese (ja)
Inventor
侑 佐藤
絢也 川口
将大 山本
智宏 藤川
Original Assignee
住友理工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友理工株式会社 filed Critical 住友理工株式会社
Publication of WO2018173366A1 publication Critical patent/WO2018173366A1/en

Links

Images

Definitions

  • the present invention relates to a sensor device that detects contact between a moving part of an automatic device such as an industrial robot and a detection target.
  • Such an automatic device is a moving unit that is movable in order to perform a predetermined operation, such as an arm of an industrial robot.
  • Patent Document 1 a spacer is attached to the surface of the link of the robot arm, a tactile sensor is attached to the surface of the spacer, and the robot arm is attached based on the detection result of the tactile sensor.
  • the structure which can avoid a collision by controlling is disclosed.
  • Patent Document 1 also proposes that the spacers have a buffering action by constituting the spacers with flexible members.
  • the spacer is composed of flexible members, depending on the degree of flexibility of the spacer, the deformation of the spacer affects the detection accuracy of the tactile sensor and can effectively detect a collision of a human body or an object with the robot arm. There is a possibility that the impact at the time of collision of a human body or an object cannot be sufficiently reduced.
  • the present invention has been made in the background of the above-mentioned circumstances, and its solution is to accurately detect a worker or the like by a pressure sensor, and to perform a strong collision between the automatic device and the worker or the like. Therefore, it is intended to provide a sensor device having a novel structure in which an action force when an operator or the like contacts an automatic device is sufficiently reduced.
  • a first aspect of the present invention is a sensor device that detects contact between a movable unit provided in an automatic device and a detection target, and is a flexible device that detects contact of the detection target with respect to the movement unit.
  • the elastic cushion layer is disposed closer to the moving part than the pressure sensitive sensor, and the hardness of the elastic cushion layer is the hardness of the dielectric layer constituting the pressure sensitive sensor. It is characterized by 75% to 500% .
  • the pressure-sensitive sensor disposed outside the elastic cushion layer has a flexible structure, the influence of the pressure-sensitive sensor on the buffering property is reduced or avoided.
  • the cushioning property of the elastic cushion layer is sufficiently ensured by setting the hardness of the elastic cushion layer within the range of 75% to 500% with respect to the hardness of the dielectric layer constituting the pressure sensor.
  • the contact of the detection target with respect to the pressure sensor can be effectively detected with sufficient sensitivity.
  • a surface of the elastic cushion layer on the side of the moving part is a surface shape corresponding to an outer surface of the moving part,
  • the elastic cushion layer is attached so as to be directly superimposed on the outer surface of the moving part.
  • the outer surface of the moving unit is uneven, the outer surface of the moving unit is covered with the elastic cushion layer, so that the outer surface of the elastic cushion layer is a flat surface or the like.
  • the pressure-sensitive sensor can be easily attached.
  • the overlapping surface of the elastic cushion layer on the moving part is a surface shape corresponding to the outer surface of the moving part, so that the outer surface of the moving part is covered without providing a special support cover, and the pressure sensor is attached. The surface suitable for can be obtained.
  • a support cover that covers an outer surface of the moving unit is provided, and the elastic cushion layer is attached to the outer surface of the support cover. It is what.
  • the outer surface of the moving part when the outer surface of the moving part has irregularities, the outer surface of the moving part is covered with the support cover, so that the elastic cushion layer such as a flat surface can be easily attached to the outer surface of the support cover. By doing, attachment of an elastic cushion layer becomes easy.
  • a sensor detection circuit or the like can be disposed in the accommodation space provided between the moving unit and the support cover. Furthermore, since the outside of the detection circuit and the like disposed in the accommodation space is covered with the support cover, it is possible to prevent irregularities due to the arrangement of the detection circuit and the like from becoming a problem, and the elastic cushion layer and the pressure-sensitive sensor can be simplified. It can be arranged.
  • a fifth aspect of the present invention is the sensor device described in any one of the first to fourth aspects, wherein a shield layer is provided between the moving part and the pressure-sensitive sensor.
  • the electromagnetic wave emitted from the moving part of the automatic device is shielded by the shield layer, so that the influence of the electromagnetic wave on the pressure sensor is reduced or avoided, and effective detection is realized. Can do.
  • the hardness of the elastic cushion layer is the hardness of the dielectric layer constituting the pressure sensor. Is 100% or more.
  • the elastic cushion layer is the same as or harder than the dielectric layer of the pressure-sensitive sensor, the deformation of the dielectric layer of the pressure-sensitive sensor dominates the contact of the detection target. Therefore, the contact of the detection target is detected with higher accuracy by the pressure sensor.
  • the force acting on the detection target when the detection target comes into contact with the moving part is alleviated by the cushioning property of the elastic cushion layer, and the pressure-sensitive sensor disposed outside the elastic cushion layer is provided. Due to the flexible structure, the influence of the pressure sensor on the buffering property is reduced or avoided. Furthermore, the cushioning property of the elastic cushion layer is sufficiently ensured by setting the hardness of the elastic cushion layer within the range of 75% to 500% with respect to the hardness of the dielectric layer constituting the pressure sensor. However, the contact of the detection target with respect to the pressure sensor can be effectively detected with sufficient sensitivity.
  • FIG. 2 is a sectional view schematically showing a part of the arm of the robot shown in FIG. 1.
  • FIG. 3 is a perspective view schematically showing the second sensor shown in FIG. 2 in an exploded state.
  • the block diagram of the main functions implement
  • Sectional drawing which shows a part of arm as another one Embodiment of this invention roughly.
  • FIG. 1 shows a robot 12 as an automatic device provided with a sensor device 10 as a first embodiment of the present invention.
  • the robot 12 has a structure in which an arm 18 as a moving unit is movably attached to a support base 16 fixed to the floor 14, and the sensor device 10 provided in the robot 12 includes an arm 18. And contact with the worker A as a detection target.
  • the arm 18 supported by the support base 16 includes links 20 a, 20 b, 20 c, and 20 d that are connected to each other at joint portions and are capable of relative tilting.
  • the link 20 a is attached to the support base 16.
  • the link 20d is provided with a grip portion 22 as an end effector.
  • the joint portion connecting the links 20a to 20d and the connection portion between the link 20a and the support base 16 are all tiltable about the rotation shaft 24 extending in the direction orthogonal to the paper surface of FIG.
  • the robot 12 may be capable of tilting around a rotation axis extending in the vertical direction or the horizontal direction in FIG. 1 or twisting around the link center axis.
  • the grip portion 22 is illustrated as the end effector of the arm 18, various known end effectors such as a suction hand can be employed depending on the work performed by the robot 12.
  • the support base 16 is provided with a first sensor 26.
  • the first sensor 26 is a sensor that can detect the worker A at a position relatively far from the support base 16.
  • the first sensor 26 is a laser sensor or an ultrasonic sensor. By irradiating the laser beam and the ultrasonic wave, the worker A approaching the support base 16 from the front can be detected at a position away from the support base 16 and the arm 18.
  • the first detection region 28 in which the first sensor 26 can detect the worker A extends forward from the support base 16 as shown by a two-dot chain line in FIG. Compared with the area 38 and the third detection area 56, the position reaches a position farther from the robot 12. Further, the first detection region 28 extends in a band shape or a fan shape with a predetermined width in a direction orthogonal to the paper surface in FIG.
  • the first sensor 26 is provided on the support base 16 that does not move, and the first detection area 28 of the first sensor 26 includes a danger area 29 in which the arm 18 can move. Thus, it extends to the periphery of the dangerous area 29. As a result, the first sensor 26 can detect the worker A outside the danger area 29 indicated by the alternate long and short dash line in FIG. 1, and the worker can enter the worker before the worker A enters the danger area 29. A can be detected.
  • the first detection region 28 can be set so as to change as the arm 18 moves, for example.
  • the dangerous area 29 of the present embodiment is set to extend in the horizontal direction at a predetermined height, and is set in front of the support base 16 as indicated by a one-dot chain line in FIG.
  • the danger area 29 does not necessarily have to be the entire area where the arm 18 can move and the collision between the worker A and the arm 18 can occur, and is a part of the area where the collision between the worker A and the arm 18 can occur. Also good. Specifically, for example, the danger area 29 may be set only in front of the arm 18 to which the worker A can approach, or may be set only in a part in the height direction. There is a case where it is not set above the arm 18 where the approach of A does not matter.
  • the first sensor 26 is set so that the first detection area 28 of the first sensor 26 extends to the outside of the danger area 29, so that the first sensor 26 works before the contact between the worker A and the arm 18. Person A can be detected.
  • shield layers 30 are provided on the outer sides of the links 20.
  • the shield layer 30 is provided to block electromagnetic waves or the like radiated outward from the arm 18 disposed inside the shield layer 30, and is disposed between the arm 18 and a second sensor 36 described later.
  • the shield layer 30 is made of, for example, a conductive metal such as iron, copper, or an aluminum alloy.
  • a polyethylene powder is coated with a paint obtained by dispersing metal powder on a base material such as rubber or synthetic resin.
  • the surface of the support 32 which is a flexible and insulating resin film formed of terephthalate (PET) or the like, is formed by a method such as silk screen printing.
  • PET terephthalate
  • an elastic cushion layer 34 is provided outside the shield layer 30.
  • the elastic cushion layer 34 is formed of rubber, resin elastomer, or the like, and is preferably an open cell or closed cell foam, or a foam in which these open cells and closed cells are mixed.
  • the material for forming the elastic cushion layer 34 is not particularly limited, for example, semi-rigid urethane foam or the like can be suitably employed.
  • the elastic cushion layer 34 may be formed of non-foamed rubber or resin elastomer.
  • the inner surface 35 on the link 20 side has a shape corresponding to the outer surface of the link 20 with unevenness, and the outer surface on the opposite side to the link 20 is flat. .
  • the elastic cushion layer 34 is attached to the link 20 by means such as adhesion, mechanical engagement, and tightening with a band while being directly superimposed on the outer surface of the link 20.
  • the shield layer 30 and the support body 32 are arranged between the elastic cushion layer 34 and the link 20, but both the shield layer 30 and the support body 32 are flexible and sufficiently thin and are linked. Since the elastic cushion layer 34 is disposed along the outer surface of the link 20, the elastic cushion layer 34 is substantially directly superimposed on the outer surface of the link 20.
  • the irregularities on the outer surface of the link 20 include, for example, the control circuit and wiring arrangement of the arm 18, the design of the link housing, and the screw. It can be formed by a stop structure or the like.
  • a second sensor 36 is superimposed on the outside of the elastic cushion layer 34.
  • the second sensor 36 is a flexible pressure-sensitive sensor that detects the contact of the worker A with the arm 18.
  • a capacitance type planar pressure-sensitive sensor is employed.
  • the 2nd detection area 38 which can detect the operator A with the 2nd sensor 36 is more than the 1st detection area 28 of the 1st sensor 26, as shown with a dashed-two dotted line in FIG. The position is set close to the arm 18.
  • the second sensor 36 of the present embodiment includes a first electrode sheet 44 including a plurality of first electrodes 42 in parallel on both surfaces of the dielectric layer 40, and a plurality of first electrodes 42. It has a structure in which each one of the second electrode sheet 48 provided with the second electrode 46 in parallel is superposed and fixed.
  • the dielectric layer 40 is an elastically deformable sheet-like electrical insulator formed of rubber or resin elastomer, and is preferably formed of non-foamed rubber that hardly changes in volume.
  • the dielectric layer 40 can be integrally formed with a first electrode sheet 44 and a second electrode sheet 48 described later.
  • the dielectric layer 40 has a predetermined hardness with respect to the elastic cushion layer 34. That is, the hardness of the elastic cushion layer 34 is 75% to 500% with respect to the hardness of the dielectric layer 40. More preferably, the elastic cushion layer 34 has a hardness of 100% or more with respect to the hardness of the dielectric layer 40, and the elastic cushion layer 34 has the same hardness or dielectric layer as the dielectric layer 40. It is harder than 40.
  • the hardness of the elastic cushion layer 34 and the dielectric layer 40 can be specified based on, for example, “vulcanized rubber and thermoplastic rubber—how to obtain hardness” defined in JIS K6253-2.
  • the thickness of the dielectric layer 40 is made thinner than the thickness of the elastic cushion layer 34.
  • the thickness of the dielectric layer 40 is approximately 5 mm and the thickness of the elastic cushion layer 34 is approximately 20 mm.
  • each specific thickness dimension is not limited.
  • the elastic cushion layer 34 is thicker than the dielectric layer 40.
  • the 1st electrode sheet 44 and the 2nd electrode sheet 48 are piled up from each one side of the thickness direction with respect to the dielectric material layer 40, and are mutually fixed by means, such as adhesion and welding.
  • a second sensor 36 is formed.
  • the longitudinal direction of the first electrode 42 and the longitudinal direction of the second electrode 46 are different from each other.
  • the first electrode 42 and the second electrode 46 cross each other through the dielectric layer 40.
  • pressure detecting portions 52 for detecting the pressure acting in the facing direction based on the change in capacitance are respectively formed at the crossing facing portions of the first electrode 42 and the second electrode 46 (FIG. 2).
  • the second sensor 36 having a structure in which a plurality of pressure detection units 52 are arranged in a distributed manner is a capacitance type surface pressure sensor that detects a pressure acting on a surface based on a change in capacitance.
  • the rectangular sheet-shaped second sensor 36 is shown, but the specific shape of the second sensor 36 is appropriately set according to the shape of the link 20 and the like.
  • the first electrode 42 and the second electrode 46 are not limited to a belt shape, and may be, for example, a plurality of independent spot shapes, and may be arranged to face each other.
  • a third sensor 54 is superimposed on the outside of the second sensor 36.
  • the third sensor 54 is a pressure-sensitive sensor similar to the second sensor 36, and has substantially the same structure as the second sensor 36. Detailed description will be omitted by attaching the same reference numerals as in FIG.
  • the third detection region 56 in which the worker A can be detected by the third sensor 54 is set at a position closer to the arm 18 than the first detection region 28 of the first sensor 26.
  • the third detection area 56 of the third sensor 54 is the same as the second detection area 38 of the second sensor 36 and is set at a position where they overlap each other. Since the sensor 36 and the third sensor 54 are contact sensors, the second detection region 38 and the third detection region 56 are the surface of the third sensor 54 as shown by two-dot chain lines in FIGS. Is set to
  • detection circuits 58 a and 58 b are connected to the second sensor 36 and the third sensor 54, respectively.
  • the second sensor 36 and the third sensor 54 of the present embodiment are both capacitive sensors, and detect the worker A based on the same detection principle of change in capacitance.
  • the detection circuit 58a connected to the second sensor 36 and the detection circuit 58b connected to the third sensor 54 have the same structure.
  • the detection circuit 58a will be described, and the specific configuration of the detection circuit 58b will be omitted by attaching the same reference numerals as those of the detection circuit 58a in the drawing.
  • the detection circuit 58 a has a structure in which various integrated circuits, connectors, and the like are mounted on the printed circuit board 59, and the first and second of the second sensor 36 in the analog input unit 60 mounted on the printed circuit board 59.
  • the electrodes 42 and 46 are connected.
  • the detection circuit 58 a includes a CV conversion circuit 62 that converts the capacitance detection signal of the second sensor 36 into a corresponding voltage, and a microcomputer connected to the CV conversion circuit 62. 64.
  • the microcomputer 64 scans the plurality of pressure detection units 52 of the second sensor 36 in a scanning manner to detect the pressure acting on each pressure detection unit 52. The function of controlling the detection of pressure by 36 is provided.
  • the microcomputer 64 has a function of filtering the voltage signal converted from the capacitance detection signal of the second sensor 36 to reduce noise and then converting the voltage signal into a digital signal.
  • an external power supply device (not shown) is connected to the power supply input portion 66 provided in the detection circuit 58 a, and the voltage is adjusted while the DC current of the power supply device is adjusted by the DC-DC converter 68. The data is supplied to the microcomputer 64 via the monitoring unit 70.
  • microcomputer 64 of the detection circuit 58a connected to the second sensor 36 and the microcomputer 64 of the detection circuit 58b connected to the third sensor 54 have the detection result of the second sensor 36 and the third result. It may be configured to monitor whether the second sensor 36 and the third sensor 54 are operating normally by comparing the detection results of the sensors 54 with each other.
  • the digital signals generated by the microcomputers 64 of the detection circuits 58a and 58b are output to the outside from the digital output units 72 and 72 of the detection circuits 58a and 58b.
  • the digital signals output from the detection circuits 58a and 58b are transmitted to, for example, the safety device 74 and the notification device 76.
  • the safety device 74 Based on the digital signals generated from the detection signals of the second and third sensors 36 and 54, the safety device 74 performs deceleration or stop of the arm 18, or the alarm device 76 such as a monitor or a speaker
  • the warning for approaching 18 or the operation procedure necessary for restarting the stopped arm 18 can be displayed.
  • a suppression signal for the movement speed of the arm 18 corresponding to the contact location is output in consideration of the location of the contact and the magnitude of the detected pressure.
  • the safety device 74 controls the operation of the arm 18 (for example, decelerates or stops the arm 18), and the notification device 76 issues a danger notification alarm or the like as necessary.
  • the circuit structure of the specific hardware electrical elements for realizing the hardware block configuration shown in FIG. 4 and the functional block configuration shown in FIG. 5 is designed to be the same.
  • the microcomputer 64 can also be a DIP, SIP, PGA, or SOJ.
  • the same package can be adopted in various formats.
  • an external storage element may be used, but a package product including a logic circuit that realizes a target function such as a CPU, a RAM, and a ROM may be used. For example, only the threshold value set in the microcomputer 64 can be changed as necessary.
  • the sensor device 10 of the present embodiment includes second and third sensors 36 and 54 as pressure-sensitive sensors, detection circuits 58a and 58b of the second and third sensors 36 and 54, a shield layer 30, and a support body. 32 and an elastic cushion layer 34, and are attached to the support 16 and the arm 18 of the robot 12.
  • another sensor may be provided in addition to the sensor device 10, so that the detection accuracy of the worker A can be improved and detection can be performed in multiple stages.
  • the worker A when a worker A as a detection target approaches the robot 12 including the sensor device 10 having such a structure, the worker A first uses the first sensor 26 to move the arm 18. Is detected at a relatively far position.
  • the detection signal of the first sensor 26 is converted into a digital signal by a detection circuit (not shown) and transmitted to the safety device 74, the notification device 76, and the like.
  • the moving speed of the arm 18 is reduced by the safety device 74, and the operator A is warned to leave the arm 18 by the notification device 76.
  • the safety device 74 and the notification device 76 can be accommodated in the support base 16 and the link 20.
  • the detection circuit (not shown) of the first sensor 26 and the detection circuits 58 a and 58 b of the second and third sensors 36 and 54 can also be accommodated in the support 16 and the link 20.
  • the worker A uses both the second sensor 36 and the third sensor 54 to make the first sensor Detection is performed at a position closer to the arm 18 than the distal end (front end) of the first detection region 28 of the sensor 26. Then, the second sensor 36 and the third sensor 54 detect contact of the operator A with the arm 18, and the second and third sensors 36 and 54 converted into digital signals by the detection circuits 58a and 58b. Is transmitted to the safety device 74, the notification device 76, etc., for example, the safety device 74 stops the operation of the arm 18, while the notification device 76 moves away from the arm 18 with respect to the worker A. The alarm device 76 displays a procedure necessary for restarting the arm 18 and the like.
  • the first sensor 26 that detects the worker A at a long distance and the second sensor 36 that detects the worker A at a short distance.
  • a third sensor 54 and three sensors Therefore, the approach and contact of the worker A can be detected with higher reliability based on the detection results of the three sensors 26, 36, and 54.
  • the arm 18 is decelerated, so that the arm 18 of the worker A is moved to.
  • the arm 18 can be quickly stopped. Therefore, the force acting on the worker A due to the contact of the arm 18 becomes sufficiently small, and it is possible to avoid problems such as the worker A feeling pain or damaging the arm 18 due to the contact.
  • the worker A is detected by both the second sensor 36 and the third sensor 54 at a position closer to the arm 18 than the first sensor 26. Thereby, at the time of contact between the worker A and the arm 18, the arm 18 can be stopped with higher reliability, and the force acting between the worker A and the arm 18 is reduced. Safety is improved.
  • the hardness of the elastic cushion layer 34 is 75% to 500% with respect to the hardness of each dielectric layer 40 of the second sensor 36 and the third sensor 54.
  • the elastic cushion layer 34 is an elastic foam, and when the elastic cushion layer 34 is elastically deformed, a volume change is caused by the compression and flow of air in the bubbles. It is efficiently reduced and a large cushioning property due to the deformation of the elastic cushion layer 34 can be obtained.
  • the inner surface 35 on the arm 18 side of the elastic cushion layer 34 has a surface shape corresponding to the outer surface of the arm 18, and the elastic cushion layer 34 is directly on the outer surface of the arm 18.
  • the second and third sensors 36 and 54 are disposed outside the elastic cushion layer 34. Thereby, the unevenness of the outer surface of the arm 18 is leveled by the elastic cushion layer 34, and the second and third sensors 36 and 54 can be fixed regardless of the outer surface shape of the arm 18.
  • the shield layer 30 is provided between the arm 18 and the second and third sensors 36 and 54, electromagnetic waves radiated from the arm 18 to the outside can be transmitted to the second and third sensors 36 and 54. Can be prevented from affecting the detection of the contact of the worker A. Thereby, the detection of the contact by the second and third sensors 36 and 54 can be realized with higher accuracy.
  • an intermediate cushion layer 80 having an uneven surface on the second sensor 36 can be provided between the second sensor 36 and the third sensor 54. is there.
  • the intermediate cushion layer 80 includes a plurality of protrusions 82 protruding toward the second sensor 36, and the plurality of protrusions 82 respectively correspond to the plurality of pressure detection parts 52 of the second sensor 36. It is provided in the part and is in contact with the pressure detection part 52 of the second sensor 36.
  • each pressure detection unit 52 that is a detection portion of the second sensor 36 includes: It is possible to detect the contact of the worker A on the arm 18 with excellent sensitivity by causing the pressure due to the contact to be concentrated by the convex portion 82.
  • the aspect of the convex part 82 corresponding to the pressure detection part 52 should just be a thing which can transmit contact pressure to the pressure detection part 52 efficiently, for example, a pressure detection part only in the substantially the same position as the convex part 82.
  • a mode in which a convex portion 82 at least a part of which is positioned on the pressure detection unit 52 as shown in the figure may be provided.
  • FIG. 9 shows a part of a robot 92 as an automatic device including the sensor device 90 according to the second embodiment of the present invention.
  • the robot 92 according to the present embodiment has a structure in which a sensor device 90 is mounted on the outside of the link 20 constituting the arm 18.
  • members and portions that are substantially the same as those of the first embodiment are denoted by the same reference numerals in the drawings, and the description thereof is omitted.
  • the entire robot 92 is the same as the robot 12 of the first embodiment, and a support base (not shown) that supports the arm 18 is provided with a first sensor (not shown) similar to the first embodiment. ing.
  • the electrodes and dielectric layers of the second sensor 36 and the third sensor 54 are omitted for the sake of clarity.
  • the specific structure of the third sensor 54 is the same as that of the first embodiment.
  • the elastic cushion layer 34 is fixed to the outer surface of the link 20.
  • the inner surface 35 located on the link 20 side has a surface shape corresponding to the unevenness on the surface of the link 20, and the outer surface located on the opposite side to the link 20 is configured by a plurality of planes. .
  • Shield layer 30 and second sensor 36 are arranged outside elastic cushion layer 34.
  • the shield layer 30 of the present embodiment is printed on the surface of the second electrode sheet 48 of the second sensor 36, and the shield layer 30 is disposed between the second sensor 36 and the elastic cushion layer 34. .
  • a first sensor (not shown) that detects a detection target at a position far from the arm 18 as in the first embodiment
  • the second sensor 36 and the third sensor 54 that detect the contact of the detection target with respect to the arm 18 can prevent the arm 18 from colliding with the detection target such as an operator.
  • the shield layer 30 may be disposed on the inner side closer to the link 20 than the second sensor 36 and the third sensor 54, and may be disposed on the outer side of the elastic cushion layer 34. You can also In addition, in the present embodiment, since the shield layer 30 is fixed to the second electrode sheet 48 of the second sensor 36, a support for supporting the shield layer 30 is unnecessary, and the structure is simplified. And the number of parts can be reduced.
  • FIG. 9 shows an example in which the outer surface of the elastic cushion layer 34 is a substantially rectangular box shape formed of a plurality of planes, but this is simplified for ease of understanding.
  • the shape of the outer surface of the layer 34 an arbitrary surface shape in which the second and third sensors 36 and 54 and the shield layer 30 can be easily provided as compared with the surface of the link 20 is preferably employed.
  • the outer surface shape of the elastic cushion layer 34 can be set so as to form at least a part of a specific design.
  • the surface shape of the link 20 covered with the elastic cushion layer 34 is not particularly limited.
  • a support cover 96 is disposed so as to cover the link 20 of the arm 18, and the shield layer 30, the elastic cushion layer 34, the second and third sensors 36 and 54, and the skin 94.
  • a structure attached to the surface of the support cover 96 may be employed.
  • the support cover 96 of the present embodiment has a hollow box shape, and is arranged so as to surround the outside of the link 20 by accommodating the link 20 in the internal space.
  • the hardness of the elastic cushion layer 34 may be 75% to 500% with respect to the hardness of the dielectric layer 40.
  • a structure in which the dielectric layer 40 is harder than the elastic cushion layer 34 is also employed. obtain.
  • both the elastic cushion layer 34 and the dielectric layer 40 may be a foam, or both may be a non-foam. Further, the elastic cushion layer 34 and the dielectric layer 40 can be formed of different materials, and the hardness and Poisson's ratio of the elastic cushion layer 34 and the dielectric layer 40 can be adjusted by the difference in the materials. .
  • the structure provided with two of the 2nd sensor 36 and the 3rd sensor 54 was demonstrated as a pressure sensor, only one pressure sensor may be sufficient, Three or more may be sufficient.
  • the hardness, size, shape, etc. of the dielectric layers of each pressure sensor need not necessarily be the same.
  • the hardness of the elastic cushion layer 34 is 75, regardless of the hardness of the dielectric layer of any pressure-sensitive sensor. % To 500% is set.
  • the hardness of the dielectric layer is the hardness of the elastic cushion layer.
  • the detection principle is not limited to the capacitance type.
  • the first sensor 26 is provided on the support base 16 that has been moved away from the moving part such as the arm 18 as in the above-described embodiment, and detects the entry of the operator A into the fixedly set area. Also, a device that is provided in the moving unit and detects the intrusion of the worker A into the area set so as to change with the movement of the moving unit may be employed.
  • the second sensor 36 and the third sensor 54 are both contact sensors, and the first sensor 26 detects the approach of the worker A at a position close to the arm 18.
  • a structure that is a proximity sensor such as a sensor can also be adopted.
  • the first sensor 26 is not essential in the present invention.
  • the worker A is exemplified as the detection target detected by the first to third sensors 26, 36, 54.
  • the detection target is not limited to a person, and may be a thing.
  • the automatic device to which the sensor device according to the present invention is attached is not limited to the industrial robot shown in the above-described embodiment.
  • the automatic device may be a medical or nursing robot or an automatic guided vehicle (AGV). Can be applied.
  • AGV automatic guided vehicle
  • the structure in which a part of the automatic device is the moving unit is illustrated.
  • the automatic device is an AGV, the entire automatic device is the moving unit.

Abstract

Provided is a sensor device that has a novel structure, that makes it possible for a pressure senor to accurately detect a worker, etc., and that substantially reduces the force that acts when the worker, etc. contacts an automatic device. A sensor device 10 that detects contact between a detected object A and a mobile part 18 of an automatic device 12. The contact between the detected object A and the mobile part 18 is detected by flexible pressure sensors 36, 54. The pressure sensors 36, 54 are electrostatic capacitive sensors that are formed by adhering a stretchable first electrode 42 and a stretchable second electrode 46 to respective surfaces of an elastically deformable dielectric layer 40 and, on the basis of changes in electrostatic capacity, detect pressure that acts on facing portions of the first and second electrodes 42, 46. An elastic cushioning layer 34 is arranged closer to the mobile part 18 than the pressure sensors 36, 54. The elastic cushioning layer 34 is 75%–500% as hard as the dielectric layer 40.

Description

センサ装置Sensor device
 本発明は、産業用ロボットなどの自動装置の移動部と検出対象の接触を検出するセンサ装置に関するものである。 The present invention relates to a sensor device that detects contact between a moving part of an automatic device such as an industrial robot and a detection target.
 従来から、例えば産業の自動化の推進によって、工場などでは産業用ロボットや産業用車両などの自動装置が一般的に用いられている。このような自動装置は、産業用ロボットのアームなどのように、全体乃至は一部が所定の作業を実行するために移動可能とされた移動部とされている。 Conventionally, automatic devices such as industrial robots and industrial vehicles have been generally used in factories, for example, by promoting industrial automation. Such an automatic device is a moving unit that is movable in order to perform a predetermined operation, such as an arm of an industrial robot.
 ところで、自動装置の採用が増えるに従って、人間の作業者と同じ空間で作業を行う協働ロボットなどの自動装置に対して、安全性の向上なども必要となってきている。例えば、産業用ロボットと作業者が同じ空間で作業を行う場合には、産業用ロボットのアームなどが動く際に、アームなどが人体や作業者が使う工具などの物体と衝突することによる事故の発生を防止し、接触時に作業者の怪我やアーム又は工具などの損傷を回避することが重要である。 By the way, as the adoption of automatic devices increases, it has become necessary to improve the safety of automatic devices such as collaborative robots that work in the same space as human workers. For example, when an industrial robot and an operator work in the same space, when the arm of an industrial robot moves, the arm collides with a human body or an object such as a tool used by the operator. It is important to prevent occurrence and avoid injury to the operator and damage to the arm or tool during contact.
 そこで、特開2003-71778号公報(特許文献1)には、ロボットアームのリンクの表面にスペーサを取り付けると共に、スペーサの表面に触覚センサーを取り付けて、触覚センサーの検出結果に基づいてロボットアームを制御することで、衝突を回避し得る構造が開示されている。また、特許文献1では、スペーサを柔軟な部材により構成することで、スペーサに緩衝作用を持たせることも提案されている。 Therefore, in Japanese Patent Application Laid-Open No. 2003-71778 (Patent Document 1), a spacer is attached to the surface of the link of the robot arm, a tactile sensor is attached to the surface of the spacer, and the robot arm is attached based on the detection result of the tactile sensor. The structure which can avoid a collision by controlling is disclosed. Patent Document 1 also proposes that the spacers have a buffering action by constituting the spacers with flexible members.
 しかしながら、柔軟な部材によりスペーサが構成されていると、スペーサの柔軟性の程度によって、スペーサの変形が触覚センサーの検出精度に影響して、人体や物体のロボットアームへの衝突を有効に検出できなくなったり、人体や物体の衝突時の衝撃を十分に低減できなくなったりするおそれがあった。 However, if the spacer is composed of flexible members, depending on the degree of flexibility of the spacer, the deformation of the spacer affects the detection accuracy of the tactile sensor and can effectively detect a collision of a human body or an object with the robot arm. There is a possibility that the impact at the time of collision of a human body or an object cannot be sufficiently reduced.
特開2003-71778号公報JP 2003-71778 A
 本発明は、上述の事情を背景に為されたものであって、その解決課題は、感圧センサによる作業者などの検出が精度よく実現されて、自動装置と作業者などとの強度な衝突が感圧センサの検出結果に基づいて回避されると共に、作業者などが自動装置に接触する際の作用力が十分に低減される、新規な構造のセンサ装置を提供することにある。 The present invention has been made in the background of the above-mentioned circumstances, and its solution is to accurately detect a worker or the like by a pressure sensor, and to perform a strong collision between the automatic device and the worker or the like. Therefore, it is intended to provide a sensor device having a novel structure in which an action force when an operator or the like contacts an automatic device is sufficiently reduced.
 以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。 Hereinafter, embodiments of the present invention made to solve such problems will be described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible.
 すなわち、本発明の第一の態様は、自動装置に設けられた移動可能な移動部と検出対象の接触を検出するセンサ装置であって、前記移動部に対する前記検出対象の接触を検出する柔軟な感圧センサが配されており、該感圧センサが、弾性変形可能とされた誘電体層の両面に伸縮変形可能とされた第一の電極と第二の電極の各一方が固着された構造を有して、それら第一の電極と第二の電極の該誘電体層を介した対向部分に対して対向方向に作用する圧力を静電容量値の変化に基づいて検出する静電容量型センサとされていると共に、該感圧センサよりも該移動部に近い位置に弾性クッション層が配されており、該弾性クッション層の硬さが該感圧センサを構成する該誘電体層の硬さに対して75%~500%とされていることを、特徴とする。 In other words, a first aspect of the present invention is a sensor device that detects contact between a movable unit provided in an automatic device and a detection target, and is a flexible device that detects contact of the detection target with respect to the movement unit. A structure in which a pressure-sensitive sensor is provided, and each of the first electrode and the second electrode that is elastically deformable is fixed to both surfaces of the dielectric layer. And detecting the pressure acting in the facing direction against the facing portions of the first electrode and the second electrode through the dielectric layer based on the change in the capacitance value The elastic cushion layer is disposed closer to the moving part than the pressure sensitive sensor, and the hardness of the elastic cushion layer is the hardness of the dielectric layer constituting the pressure sensitive sensor. It is characterized by 75% to 500% .
 このような第一の態様に従う構造とされたセンサ装置によれば、弾性クッション層が移動部の外側に配されていることで、検出対象が移動部に接触する際に検出対象に作用する力が、弾性クッション層の緩衝性によって緩和される。しかも、弾性クッション層よりも外側に配される感圧センサが柔軟な構造とされていることにより、感圧センサが緩衝性に及ぼす影響が低減乃至は回避される。 According to the sensor device having the structure according to the first aspect, the force acting on the detection target when the detection target comes into contact with the movement unit because the elastic cushion layer is arranged outside the movement unit. Is mitigated by the cushioning properties of the elastic cushion layer. In addition, since the pressure-sensitive sensor disposed outside the elastic cushion layer has a flexible structure, the influence of the pressure-sensitive sensor on the buffering property is reduced or avoided.
 さらに、弾性クッション層の硬さが感圧センサを構成する誘電体層の硬さに対して75%~500%の範囲に設定されていることにより、弾性クッション層の緩衝性を十分に確保しながら、感圧センサに対する検出対象の接触を十分な感度で有効に検出することができる。 Furthermore, the cushioning property of the elastic cushion layer is sufficiently ensured by setting the hardness of the elastic cushion layer within the range of 75% to 500% with respect to the hardness of the dielectric layer constituting the pressure sensor. However, the contact of the detection target with respect to the pressure sensor can be effectively detected with sufficient sensitivity.
 本発明の第二の態様は、第一の態様に記載されたセンサ装置において、前記弾性クッション層における前記移動部側の面が、該移動部の外面に対応する面形状とされており、該弾性クッション層が該移動部の外面に対して直接的に重ね合わされて取り付けられているものである。 According to a second aspect of the present invention, in the sensor device according to the first aspect, a surface of the elastic cushion layer on the side of the moving part is a surface shape corresponding to an outer surface of the moving part, The elastic cushion layer is attached so as to be directly superimposed on the outer surface of the moving part.
 第二の態様によれば、例えば移動部の外面に凹凸がある場合に、移動部の外面の凹凸が弾性クッション層によって覆われることから、弾性クッション層の外面を平坦面などの感圧センサを取り付け易い形状とすることで、感圧センサの取付けが容易になる。しかも、弾性クッション層における移動部への重ね合わせ面を、移動部の外面に対応する面形状とすることで、支持カバーを特別に設けることなく移動部の外面を覆って、感圧センサの取付けに適する面を得ることができる。 According to the second aspect, for example, when the outer surface of the moving unit is uneven, the outer surface of the moving unit is covered with the elastic cushion layer, so that the outer surface of the elastic cushion layer is a flat surface or the like. By making the shape easy to attach, the pressure-sensitive sensor can be easily attached. In addition, the overlapping surface of the elastic cushion layer on the moving part is a surface shape corresponding to the outer surface of the moving part, so that the outer surface of the moving part is covered without providing a special support cover, and the pressure sensor is attached. The surface suitable for can be obtained.
 本発明の第三の態様は、第一の態様に記載されたセンサ装置において、前記移動部の外面を覆う支持カバーが設けられており、該支持カバーの外面に前記弾性クッション層が取り付けられているものである。 According to a third aspect of the present invention, in the sensor device described in the first aspect, a support cover that covers an outer surface of the moving unit is provided, and the elastic cushion layer is attached to the outer surface of the support cover. It is what.
 第三の態様によれば、例えば移動部の外面に凹凸がある場合に、移動部の外面の凹凸が支持カバーによって覆われることから、支持カバーの外面を平面などの弾性クッション層を取り付け易い形状とすることで、弾性クッション層の取付けが容易になる。 According to the third aspect, for example, when the outer surface of the moving part has irregularities, the outer surface of the moving part is covered with the support cover, so that the elastic cushion layer such as a flat surface can be easily attached to the outer surface of the support cover. By doing, attachment of an elastic cushion layer becomes easy.
 本発明の第四の態様は、第三の態様に記載されたセンサ装置において、前記移動部の外面と前記支持カバーの間に収容空間が形成されているものである。 A fourth aspect of the present invention is the sensor device described in the third aspect, wherein an accommodation space is formed between the outer surface of the moving part and the support cover.
 第四の態様によれば、移動部と支持カバーの間に設けられた収容空間に対して、センサの検出回路などを配設することができる。更に、収容空間に配設された検出回路などの外側が支持カバーによって覆われることから、検出回路などの配設による凹凸が問題になるのを防いで、弾性クッション層や感圧センサを簡単に配設することができる。 According to the fourth aspect, a sensor detection circuit or the like can be disposed in the accommodation space provided between the moving unit and the support cover. Furthermore, since the outside of the detection circuit and the like disposed in the accommodation space is covered with the support cover, it is possible to prevent irregularities due to the arrangement of the detection circuit and the like from becoming a problem, and the elastic cushion layer and the pressure-sensitive sensor can be simplified. It can be arranged.
 本発明の第五の態様は、第一~第四の何れか1つの態様に記載されたセンサ装置において、前記移動部と前記感圧センサの間にシールド層が設けられているものである。 A fifth aspect of the present invention is the sensor device described in any one of the first to fourth aspects, wherein a shield layer is provided between the moving part and the pressure-sensitive sensor.
 第五の態様によれば、自動装置の移動部から発せられる電磁波などをシールド層によって遮ることで、電磁波などの感圧センサへの影響が低減乃至は回避されて、有効な検出を実現することができる。 According to the fifth aspect, the electromagnetic wave emitted from the moving part of the automatic device is shielded by the shield layer, so that the influence of the electromagnetic wave on the pressure sensor is reduced or avoided, and effective detection is realized. Can do.
 本発明の第六の態様は、第一~第五の何れか1つの態様に記載されたセンサ装置において、前記弾性クッション層の硬さが前記感圧センサを構成する前記誘電体層の硬さに対して100%以上とされているものである。 According to a sixth aspect of the present invention, in the sensor device described in any one of the first to fifth aspects, the hardness of the elastic cushion layer is the hardness of the dielectric layer constituting the pressure sensor. Is 100% or more.
 第六の態様によれば、弾性クッション層が感圧センサの誘電体層と同じかそれよりも硬くされていることにより、検出対象の接触に対して感圧センサの誘電体層の変形が支配的に生ぜしめられることから、検出対象の接触が感圧センサによって一層精度よく検出される。 According to the sixth aspect, since the elastic cushion layer is the same as or harder than the dielectric layer of the pressure-sensitive sensor, the deformation of the dielectric layer of the pressure-sensitive sensor dominates the contact of the detection target. Therefore, the contact of the detection target is detected with higher accuracy by the pressure sensor.
 本発明によれば、検出対象が移動部に接触する際に検出対象に作用する力が、弾性クッション層の緩衝性によって緩和されると共に、弾性クッション層よりも外側に配される感圧センサが柔軟な構造とされていることによって、感圧センサが緩衝性に及ぼす影響が低減乃至は回避される。更に、弾性クッション層の硬さが感圧センサを構成する誘電体層の硬さに対して75%~500%の範囲に設定されていることにより、弾性クッション層の緩衝性を十分に確保しながら、感圧センサに対する検出対象の接触を十分な感度で有効に検出することができる。 According to the present invention, the force acting on the detection target when the detection target comes into contact with the moving part is alleviated by the cushioning property of the elastic cushion layer, and the pressure-sensitive sensor disposed outside the elastic cushion layer is provided. Due to the flexible structure, the influence of the pressure sensor on the buffering property is reduced or avoided. Furthermore, the cushioning property of the elastic cushion layer is sufficiently ensured by setting the hardness of the elastic cushion layer within the range of 75% to 500% with respect to the hardness of the dielectric layer constituting the pressure sensor. However, the contact of the detection target with respect to the pressure sensor can be effectively detected with sufficient sensitivity.
本発明の第一の実施形態としてのセンサ装置を備えたロボットを示す側面図。The side view which shows the robot provided with the sensor apparatus as 1st embodiment of this invention. 図1に示すロボットのアームの一部を概略的に示す断面図。FIG. 2 is a sectional view schematically showing a part of the arm of the robot shown in FIG. 1. 図2に示す第二のセンサを分解状態で概略的に示す斜視図。FIG. 3 is a perspective view schematically showing the second sensor shown in FIG. 2 in an exploded state. 図2に示す第二,第三のセンサおよびそれらの検出回路を含むハードウエアのブロック図。The block diagram of the hardware containing the 2nd, 3rd sensor shown in FIG. 2, and those detection circuits. 図4に示すハードウエアで実現される主たる機能のブロック図。The block diagram of the main functions implement | achieved by the hardware shown in FIG. 図2に示す第二,第三のセンサおよびそれらの検出回路を含む別態様のハードウエアのブロック図。The block diagram of the hardware of another aspect containing the 2nd, 3rd sensor shown in FIG. 2, and those detection circuits. 本発明の別の一実施形態としてのアームの一部を概略的に示す断面図。Sectional drawing which shows a part of arm as another one Embodiment of this invention roughly. 本発明のまた別の一実施形態としてのアームの一部を概略的に示す断面図。Sectional drawing which shows a part of arm as another one Embodiment of this invention roughly. 本発明の第二の実施形態としてのセンサ装置を備えたロボットを構成するアームの一部を概略的に示す断面図。Sectional drawing which shows schematically a part of arm which comprises the robot provided with the sensor apparatus as 2nd embodiment of this invention. 本発明の更に別の一実施形態としてのアームの一部を概略的に示す断面図。Sectional drawing which shows a part of arm as another one Embodiment of this invention roughly.
 以下、本発明の実施形態について、図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1には、本発明の第一の実施形態としてのセンサ装置10を備えた自動装置としてのロボット12が示されている。ロボット12は、床14に固設された支持台16に対して移動部としてのアーム18が移動可能に取り付けられた構造を有しており、ロボット12に設けられたセンサ装置10が、アーム18と検出対象としての作業者Aとの接触を検出するようになっている。 FIG. 1 shows a robot 12 as an automatic device provided with a sensor device 10 as a first embodiment of the present invention. The robot 12 has a structure in which an arm 18 as a moving unit is movably attached to a support base 16 fixed to the floor 14, and the sensor device 10 provided in the robot 12 includes an arm 18. And contact with the worker A as a detection target.
 より詳細には、支持台16によって支持されたアーム18は、関節部で相互に接続されて相対傾動可能とされたリンク20a,20b,20c,20dを備えており、リンク20aが支持台16に対して傾動可能に接続されていると共に、リンク20dにはエンドエフェクタとして把持部22が設けられている。 More specifically, the arm 18 supported by the support base 16 includes links 20 a, 20 b, 20 c, and 20 d that are connected to each other at joint portions and are capable of relative tilting. The link 20 a is attached to the support base 16. The link 20d is provided with a grip portion 22 as an end effector.
 なお、本実施形態では、各リンク20a~20dを接続する関節部分およびリンク20aと支持台16の接続部分が、何れも図1の紙面直交方向に延びる回動軸24を中心として傾動可能とされているが、ロボット12は、例えば、図1の上下方向や左右方向に延びる回動軸を中心とする傾動やリンク中心軸回りでのねじりなども可能とされ得る。また、アーム18のエンドエフェクタとして把持部22を例示したが、ロボット12が行う作業に応じて、吸引ハンドなどの各種公知のエンドエフェクタを採用することもできる。 In the present embodiment, the joint portion connecting the links 20a to 20d and the connection portion between the link 20a and the support base 16 are all tiltable about the rotation shaft 24 extending in the direction orthogonal to the paper surface of FIG. However, the robot 12 may be capable of tilting around a rotation axis extending in the vertical direction or the horizontal direction in FIG. 1 or twisting around the link center axis. Further, although the grip portion 22 is illustrated as the end effector of the arm 18, various known end effectors such as a suction hand can be employed depending on the work performed by the robot 12.
 また、支持台16には、第一のセンサ26が設けられている。第一のセンサ26は、支持台16から比較的に遠い位置の作業者Aを検出可能なセンサであって、例えばレーザーセンサや超音波センサなどとされており、支持台16から前方に向けてレーザー光や超音波を照射することで、前方から支持台16に接近する作業者Aを支持台16およびアーム18から離れた位置で検出することができる。第一のセンサ26が作業者Aを検出可能な第一の検出領域28は、図1に二点鎖線で示すように、支持台16から前方に向けて延びており、後述する第二の検出領域38および第三の検出領域56に比して、ロボット12からより遠い位置まで達している。更に、第一の検出領域28は、図1中の紙面直交方向に所定の幅で帯状に或いは扇状に広がっている。 Also, the support base 16 is provided with a first sensor 26. The first sensor 26 is a sensor that can detect the worker A at a position relatively far from the support base 16. For example, the first sensor 26 is a laser sensor or an ultrasonic sensor. By irradiating the laser beam and the ultrasonic wave, the worker A approaching the support base 16 from the front can be detected at a position away from the support base 16 and the arm 18. The first detection region 28 in which the first sensor 26 can detect the worker A extends forward from the support base 16 as shown by a two-dot chain line in FIG. Compared with the area 38 and the third detection area 56, the position reaches a position farther from the robot 12. Further, the first detection region 28 extends in a band shape or a fan shape with a predetermined width in a direction orthogonal to the paper surface in FIG.
 本実施形態では、第一のセンサ26が移動しない支持台16に設けられており、第一のセンサ26の第一の検出領域28が、アーム18が移動し得る範囲である危険領域29を含んで、危険領域29の周囲まで広がっている。これにより、第一のセンサ26は、図1に一点鎖線で示す危険領域29よりも外側で作業者Aを検出可能とされており、危険領域29に対する作業者Aの侵入よりも前に作業者Aを検出することができる。尤も、第一の検出領域28は、例えばアーム18の移動に伴って変化するように設定することもできる。 In the present embodiment, the first sensor 26 is provided on the support base 16 that does not move, and the first detection area 28 of the first sensor 26 includes a danger area 29 in which the arm 18 can move. Thus, it extends to the periphery of the dangerous area 29. As a result, the first sensor 26 can detect the worker A outside the danger area 29 indicated by the alternate long and short dash line in FIG. 1, and the worker can enter the worker before the worker A enters the danger area 29. A can be detected. However, the first detection region 28 can be set so as to change as the arm 18 moves, for example.
 本実施形態の危険領域29は、所定の高さにおいて水平方向に延びるように設定されており、図1に一点鎖線で示すように支持台16の前方に設定されている。危険領域29は、必ずしもアーム18が移動可能で作業者Aとアーム18の衝突が生じ得る領域の全体である必要はなく、作業者Aとアーム18の衝突が生じ得る領域の一部であっても良い。具体的には、危険領域29は、例えば、作業者Aが接近し得るアーム18の前方だけに設定されていても良いし、高さ方向の一部だけに設定されていても良く、作業者Aの接近が問題にならないアーム18の上方には設定されない場合もある。そして、第一のセンサ26の第一の検出領域28が危険領域29よりも外側まで広がるように設定されていることにより、作業者Aとアーム18の接触より前に第一のセンサ26が作業者Aを検出することができる。 The dangerous area 29 of the present embodiment is set to extend in the horizontal direction at a predetermined height, and is set in front of the support base 16 as indicated by a one-dot chain line in FIG. The danger area 29 does not necessarily have to be the entire area where the arm 18 can move and the collision between the worker A and the arm 18 can occur, and is a part of the area where the collision between the worker A and the arm 18 can occur. Also good. Specifically, for example, the danger area 29 may be set only in front of the arm 18 to which the worker A can approach, or may be set only in a part in the height direction. There is a case where it is not set above the arm 18 where the approach of A does not matter. The first sensor 26 is set so that the first detection area 28 of the first sensor 26 extends to the outside of the danger area 29, so that the first sensor 26 works before the contact between the worker A and the arm 18. Person A can be detected.
 なお、第一のセンサ26は、支持台16に設けられるレーザーセンサ又は超音波センサに限定されるものではなく、目的とする第一の検出領域28を実現可能な各種公知のセンサを採用することができる。具体的には、例えば、ライトカーテンや光電センサなどを支持台16やその周囲に設ける他、支持台16の前側に位置する床14の表面にマット状の面圧センサを敷設することにより、作業者Aの支持台16への接近を検出する第一のセンサ26を構成することなども可能である。 The first sensor 26 is not limited to the laser sensor or the ultrasonic sensor provided on the support base 16, and various known sensors capable of realizing the target first detection region 28 are employed. Can do. Specifically, for example, by providing a light curtain, a photoelectric sensor or the like around the support base 16 and its surroundings, a mat-like surface pressure sensor is laid on the surface of the floor 14 located on the front side of the support base 16. It is also possible to configure the first sensor 26 that detects the approach of the person A to the support base 16.
 また、図2に示すように、リンク20の外側には、それぞれシールド層30が設けられている。シールド層30は、シールド層30の内側に配されたアーム18から外側へ放射される電磁波などを遮るために設けられており、アーム18と後述する第二のセンサ36の間に配設されている。シールド層30は、例えば鉄や銅、アルミニウム合金などの導電性金属で形成されており、本実施形態では、例えば、金属粉末をゴムや合成樹脂などの基材に分散させてなる塗料によって、ポリエチレンテレフタレート(PET)などで形成された柔軟且つ絶縁性の樹脂フィルムである支持体32の表面に対して、シルクスクリーン印刷などの方法で形成されている。そして、シールド層30は、支持体32をリンク20の表面に貼り付けることにより、リンク20の外面を覆うように配されている。なお、シールド層30は、金属の薄板やメッシュで形成しても良いし、金属粉末を基材に分散させた塗料をリンク20の表面に直接吹き付けるなどして塗膜を形成することで得ることもできる。また、支持体32の厚さは、柔軟に変形可能とされていれば、特に限定されるものではない。 Further, as shown in FIG. 2, shield layers 30 are provided on the outer sides of the links 20. The shield layer 30 is provided to block electromagnetic waves or the like radiated outward from the arm 18 disposed inside the shield layer 30, and is disposed between the arm 18 and a second sensor 36 described later. Yes. The shield layer 30 is made of, for example, a conductive metal such as iron, copper, or an aluminum alloy. In this embodiment, for example, a polyethylene powder is coated with a paint obtained by dispersing metal powder on a base material such as rubber or synthetic resin. The surface of the support 32, which is a flexible and insulating resin film formed of terephthalate (PET) or the like, is formed by a method such as silk screen printing. The shield layer 30 is disposed so as to cover the outer surface of the link 20 by attaching the support 32 to the surface of the link 20. The shield layer 30 may be formed of a metal thin plate or mesh, or may be obtained by forming a coating film by directly spraying the surface of the link 20 with a paint in which metal powder is dispersed in a base material. You can also. Moreover, the thickness of the support body 32 will not be specifically limited if it can be deform | transformed flexibly.
 また、シールド層30の外側には、弾性クッション層34が設けられている。弾性クッション層34は、ゴムや樹脂エラストマなどで形成されており、好適には、連続気泡又は独立気泡の発泡体、或いはそれら連続気泡と独立気泡の混在した発泡体とされている。弾性クッション層34の形成材料は、特に限定されないが、例えば、半硬質の発泡ウレタンなどが好適に採用され得る。尤も、弾性クッション層34は、非発泡のゴムや樹脂エラストマで形成されていても良い。 Further, an elastic cushion layer 34 is provided outside the shield layer 30. The elastic cushion layer 34 is formed of rubber, resin elastomer, or the like, and is preferably an open cell or closed cell foam, or a foam in which these open cells and closed cells are mixed. Although the material for forming the elastic cushion layer 34 is not particularly limited, for example, semi-rigid urethane foam or the like can be suitably employed. However, the elastic cushion layer 34 may be formed of non-foamed rubber or resin elastomer.
 本実施形態の弾性クッション層34は、リンク20側となる内面35が、凹凸のあるリンク20の外面に対応する形状とされていると共に、リンク20と反対側となる外面が平面とされている。そして、弾性クッション層34は、リンク20の外面に対して直接的に重ね合わされた状態で、接着や機械的な係合、バンドによる締付けなどの手段でリンク20に取り付けられている。なお、本実施形態では、シールド層30および支持体32が弾性クッション層34とリンク20の間に配されているが、シールド層30および支持体32は何れも柔軟且つ十分に薄肉とされてリンク20の外面に沿って配されることから、弾性クッション層34は実質的にリンク20の外面に対して直接的に重ね合わされている。また、図2では、リンク20の外面の凹凸が概略的に図示されているが、リンク20の外面の凹凸は、例えば、アーム18の制御回路や配線の配設、リンク筐体のデザインやねじ止め構造などによって形成され得る。 In the elastic cushion layer 34 of the present embodiment, the inner surface 35 on the link 20 side has a shape corresponding to the outer surface of the link 20 with unevenness, and the outer surface on the opposite side to the link 20 is flat. . The elastic cushion layer 34 is attached to the link 20 by means such as adhesion, mechanical engagement, and tightening with a band while being directly superimposed on the outer surface of the link 20. In this embodiment, the shield layer 30 and the support body 32 are arranged between the elastic cushion layer 34 and the link 20, but both the shield layer 30 and the support body 32 are flexible and sufficiently thin and are linked. Since the elastic cushion layer 34 is disposed along the outer surface of the link 20, the elastic cushion layer 34 is substantially directly superimposed on the outer surface of the link 20. 2 schematically shows the irregularities on the outer surface of the link 20, but the irregularities on the outer surface of the link 20 include, for example, the control circuit and wiring arrangement of the arm 18, the design of the link housing, and the screw. It can be formed by a stop structure or the like.
 さらに、弾性クッション層34の外側には、第二のセンサ36が重ね合わされている。第二のセンサ36は、アーム18に対する作業者Aの接触を検出する柔軟な感圧センサであって、本実施形態では静電容量型の面状感圧センサが採用されている。なお、第二のセンサ36によって作業者Aを検出可能な第二の検出領域38は、図1,2に二点鎖線で示すように、第一のセンサ26の第一の検出領域28よりもアーム18に近い位置に設定されている。 Further, a second sensor 36 is superimposed on the outside of the elastic cushion layer 34. The second sensor 36 is a flexible pressure-sensitive sensor that detects the contact of the worker A with the arm 18. In the present embodiment, a capacitance type planar pressure-sensitive sensor is employed. In addition, the 2nd detection area 38 which can detect the operator A with the 2nd sensor 36 is more than the 1st detection area 28 of the 1st sensor 26, as shown with a dashed-two dotted line in FIG. The position is set close to the arm 18.
 本実施形態の第二のセンサ36は、図3に示すように、誘電体層40の両面に対して、複数の第一の電極42を並列的に備える第一の電極シート44と、複数の第二の電極46を並列的に備える第二の電極シート48との各一方を重ね合わせて固着した構造を有している。 As shown in FIG. 3, the second sensor 36 of the present embodiment includes a first electrode sheet 44 including a plurality of first electrodes 42 in parallel on both surfaces of the dielectric layer 40, and a plurality of first electrodes 42. It has a structure in which each one of the second electrode sheet 48 provided with the second electrode 46 in parallel is superposed and fixed.
 誘電体層40は、ゴムや樹脂エラストマで形成された弾性変形可能なシート状の電気絶縁体であって、好適には、体積変化が殆ど生じない非発泡のゴムで形成されている。なお、誘電体層40は、後述する第一の電極シート44および第二の電極シート48に一体形成され得る。 The dielectric layer 40 is an elastically deformable sheet-like electrical insulator formed of rubber or resin elastomer, and is preferably formed of non-foamed rubber that hardly changes in volume. The dielectric layer 40 can be integrally formed with a first electrode sheet 44 and a second electrode sheet 48 described later.
 さらに、誘電体層40は、弾性クッション層34に対して所定の硬さを有している。即ち、弾性クッション層34の硬さが、誘電体層40の硬さに対して、75%~500%とされている。より好適には、弾性クッション層34の硬さが、誘電体層40の硬さに対して100%以上とされており、弾性クッション層34が誘電体層40と同じ硬さ乃至は誘電体層40よりも硬くされている。なお、弾性クッション層34と誘電体層40の硬さは、例えばJIS K6253-2に規定された「加硫ゴム及び熱可塑性ゴム-硬さの求め方」に基づいて特定することができる。 Furthermore, the dielectric layer 40 has a predetermined hardness with respect to the elastic cushion layer 34. That is, the hardness of the elastic cushion layer 34 is 75% to 500% with respect to the hardness of the dielectric layer 40. More preferably, the elastic cushion layer 34 has a hardness of 100% or more with respect to the hardness of the dielectric layer 40, and the elastic cushion layer 34 has the same hardness or dielectric layer as the dielectric layer 40. It is harder than 40. The hardness of the elastic cushion layer 34 and the dielectric layer 40 can be specified based on, for example, “vulcanized rubber and thermoplastic rubber—how to obtain hardness” defined in JIS K6253-2.
 更にまた、誘電体層40の厚さは、弾性クッション層34の厚さよりも薄くされることが望ましい。なお、本実施形態では、誘電体層40の厚さが略5mmとされていると共に、弾性クッション層34の厚さが略20mmとされているが、各具体的な厚さ寸法は限定されない。前述のように、弾性クッション層34の硬さを誘電体層40の硬さに対して75%~500%の範囲内に設定したことで、例えば弾性クッション層34を誘電体層40よりも厚くして弾性クッション層34による緩衝性能を高度に確保しつつ、後述する誘電体層40によるセンシング性能を良好に得ることが容易となる。 Furthermore, it is desirable that the thickness of the dielectric layer 40 is made thinner than the thickness of the elastic cushion layer 34. In the present embodiment, the thickness of the dielectric layer 40 is approximately 5 mm and the thickness of the elastic cushion layer 34 is approximately 20 mm. However, each specific thickness dimension is not limited. As described above, by setting the hardness of the elastic cushion layer 34 within the range of 75% to 500% with respect to the hardness of the dielectric layer 40, for example, the elastic cushion layer 34 is thicker than the dielectric layer 40. Thus, it is easy to obtain a good sensing performance by the dielectric layer 40 described later while highly securing the cushioning performance by the elastic cushion layer 34.
 第一の電極シート44は、電気絶縁性でシート状とされた基体50に対して、導電性を有する帯状の第一の電極42の複数が並列的に形成された構造を有している。第一の電極42は、ゴムなどの弾性材料にカーボンフィラーや金属粉などの導電材料を混合して形成されており、伸縮変形可能とされている。なお、第一の電極42は、基体50に対して、スクリーン印刷などによって形成され得る。 The first electrode sheet 44 has a structure in which a plurality of strip-like first electrodes 42 having conductivity are formed in parallel with respect to the base body 50 that is made of an electrically insulating sheet. The first electrode 42 is formed by mixing an elastic material such as rubber with a conductive material such as carbon filler or metal powder, and is capable of stretching and deforming. The first electrode 42 can be formed on the substrate 50 by screen printing or the like.
 第二の電極シート48は、第一の電極シート44と同様に、電気絶縁性でシート状とされた基体50に対して、導電性で伸縮変形可能な帯状の第二の電極46が並列的に複数形成された構造を有している。第二の電極46の形成材料や基体50への形成方法などは、第一の電極42と同様である。 Similarly to the first electrode sheet 44, the second electrode sheet 48 has a strip-like second electrode 46 that is electrically conductive and stretchable and deformable in parallel with the base body 50 that is electrically insulating and sheet-like. A plurality of structures are formed. The material for forming the second electrode 46 and the method for forming it on the substrate 50 are the same as those for the first electrode 42.
 そして、第一の電極シート44と第二の電極シート48が、誘電体層40に対して厚さ方向の各一方側から重ね合わされて、接着や溶着などの手段によって相互に固着されることにより、第二のセンサ36が形成されている。かかる誘電体層40と第一,第二の電極シート44,48の重ね合わせ状態において、第一の電極42の長手方向と第二の電極46の長手方向が互いに異なる方向とされており、それら第一の電極42と第二の電極46が誘電体層40を介して相互に交差対向している。これにより、第一の電極42と第二の電極46の交差対向部分には、対向方向に作用する圧力を静電容量の変化に基づいて検出する圧力検出部52がそれぞれ形成されている(図2参照)。従って、複数の圧力検出部52が分散して配置された構造を有する第二のセンサ36は、面に作用する圧力を静電容量の変化に基づいて検出する静電容量型の面圧センサとされている。なお、図3では、矩形シート状の第二のセンサ36が示されているが、第二のセンサ36の具体的な形状は、リンク20の形状などに応じて適宜に設定される。また、第一の電極42と第二の電極46は、帯状に限定されず、例えばそれぞれ独立した複数のスポット状とされて、各別に対向するように配置されていても良い。 And the 1st electrode sheet 44 and the 2nd electrode sheet 48 are piled up from each one side of the thickness direction with respect to the dielectric material layer 40, and are mutually fixed by means, such as adhesion and welding. A second sensor 36 is formed. In the overlapping state of the dielectric layer 40 and the first and second electrode sheets 44 and 48, the longitudinal direction of the first electrode 42 and the longitudinal direction of the second electrode 46 are different from each other. The first electrode 42 and the second electrode 46 cross each other through the dielectric layer 40. As a result, pressure detecting portions 52 for detecting the pressure acting in the facing direction based on the change in capacitance are respectively formed at the crossing facing portions of the first electrode 42 and the second electrode 46 (FIG. 2). Therefore, the second sensor 36 having a structure in which a plurality of pressure detection units 52 are arranged in a distributed manner is a capacitance type surface pressure sensor that detects a pressure acting on a surface based on a change in capacitance. Has been. In FIG. 3, the rectangular sheet-shaped second sensor 36 is shown, but the specific shape of the second sensor 36 is appropriately set according to the shape of the link 20 and the like. In addition, the first electrode 42 and the second electrode 46 are not limited to a belt shape, and may be, for example, a plurality of independent spot shapes, and may be arranged to face each other.
 更にまた、第二のセンサ36の外側には、第三のセンサ54が重ね合わされている。第三のセンサ54は、第二のセンサ36と同様の感圧センサとされており、第二のセンサ36と実質的に同一の構造を有していることから、図中に第二のセンサ36と同一の符号を付すことにより詳細な説明を省略する。また、第三のセンサ54によって作業者Aを検出可能な第三の検出領域56は、第一のセンサ26の第一の検出領域28よりもアーム18に近い位置に設定されている。なお、第三のセンサ54の第三の検出領域56は、第二のセンサ36の第二の検出領域38と同じとされて、互いに重なり合う位置に設定されており、本実施形態では第二のセンサ36と第三のセンサ54が接触センサであることから、図1,2に二点鎖線で示すように、第二の検出領域38と第三の検出領域56が第三のセンサ54の表面に設定されている。 Furthermore, a third sensor 54 is superimposed on the outside of the second sensor 36. The third sensor 54 is a pressure-sensitive sensor similar to the second sensor 36, and has substantially the same structure as the second sensor 36. Detailed description will be omitted by attaching the same reference numerals as in FIG. Further, the third detection region 56 in which the worker A can be detected by the third sensor 54 is set at a position closer to the arm 18 than the first detection region 28 of the first sensor 26. The third detection area 56 of the third sensor 54 is the same as the second detection area 38 of the second sensor 36 and is set at a position where they overlap each other. Since the sensor 36 and the third sensor 54 are contact sensors, the second detection region 38 and the third detection region 56 are the surface of the third sensor 54 as shown by two-dot chain lines in FIGS. Is set to
 また、主たるハードウエアのブロック図を図4に示すように、第二のセンサ36と第三のセンサ54には、それぞれ検出回路58a,58bが接続されている。本実施形態の第二のセンサ36と第三のセンサ54は、何れも静電容量型センサとされており、静電容量の変化という互いに同じ検出原理に基づいて作業者Aを検出することから、第二のセンサ36に接続される検出回路58aと第三のセンサ54に接続される検出回路58bが互いに同一の構造とされている。以下では、検出回路58aについて説明し、検出回路58bの具体的な構成については、図中に検出回路58aと同一の符号を付すことで説明を省略する。 Further, as shown in a block diagram of main hardware in FIG. 4, detection circuits 58 a and 58 b are connected to the second sensor 36 and the third sensor 54, respectively. The second sensor 36 and the third sensor 54 of the present embodiment are both capacitive sensors, and detect the worker A based on the same detection principle of change in capacitance. The detection circuit 58a connected to the second sensor 36 and the detection circuit 58b connected to the third sensor 54 have the same structure. Hereinafter, the detection circuit 58a will be described, and the specific configuration of the detection circuit 58b will be omitted by attaching the same reference numerals as those of the detection circuit 58a in the drawing.
 検出回路58aは、プリント基板59に各種の集積回路やコネクタなどが実装された構造を有しており、プリント基板59に実装されたアナログ入力部60において第二のセンサ36の第一,第二の電極42,46に接続されている。また、検出回路58aは、第二のセンサ36の静電容量の検出信号を対応する電圧に変換するC-V変換回路62を備えていると共に、C-V変換回路62と接続されたマイクロコンピュータ64を備えている。このマイクロコンピュータ64は、第二のセンサ36の複数の圧力検出部52に対して検出用電流を走査的に流して、各圧力検出部52に作用する圧力をそれぞれ検出させるなど、第二のセンサ36による圧力の検出を制御する機能を備えている。更に、マイクロコンピュータ64は、第二のセンサ36の静電容量の検出信号から変換された電圧信号を、フィルタリングしてノイズを低減した後、デジタル信号に変換する機能を備えている。なお、検出回路58aに設けられた電源入力部66に対して外部の図示しない電源装置が接続されており、電源装置の直流電流が、DC-DCコンバータ68によって電圧を調節された状態で、電圧監視部70を介してマイクロコンピュータ64に供給される。 The detection circuit 58 a has a structure in which various integrated circuits, connectors, and the like are mounted on the printed circuit board 59, and the first and second of the second sensor 36 in the analog input unit 60 mounted on the printed circuit board 59. The electrodes 42 and 46 are connected. The detection circuit 58 a includes a CV conversion circuit 62 that converts the capacitance detection signal of the second sensor 36 into a corresponding voltage, and a microcomputer connected to the CV conversion circuit 62. 64. The microcomputer 64 scans the plurality of pressure detection units 52 of the second sensor 36 in a scanning manner to detect the pressure acting on each pressure detection unit 52. The function of controlling the detection of pressure by 36 is provided. Further, the microcomputer 64 has a function of filtering the voltage signal converted from the capacitance detection signal of the second sensor 36 to reduce noise and then converting the voltage signal into a digital signal. Note that an external power supply device (not shown) is connected to the power supply input portion 66 provided in the detection circuit 58 a, and the voltage is adjusted while the DC current of the power supply device is adjusted by the DC-DC converter 68. The data is supplied to the microcomputer 64 via the monitoring unit 70.
 なお、第二のセンサ36に接続される検出回路58aのマイクロコンピュータ64と、第三のセンサ54に接続される検出回路58bのマイクロコンピュータ64は、第二のセンサ36の検出結果と第三のセンサ54の検出結果を相互に比較参照するなどして、第二のセンサ36と第三のセンサ54が正常に作動しているか否かなどを監視し合うようにしても良い。 Note that the microcomputer 64 of the detection circuit 58a connected to the second sensor 36 and the microcomputer 64 of the detection circuit 58b connected to the third sensor 54 have the detection result of the second sensor 36 and the third result. It may be configured to monitor whether the second sensor 36 and the third sensor 54 are operating normally by comparing the detection results of the sensors 54 with each other.
 そして、検出回路58a,58bの各マイクロコンピュータ64が生成したデジタル信号は、検出回路58a,58bのデジタル出力部72,72から外部へ出力される。検出回路58a,58bから出力されるデジタル信号は、例えば、安全装置74や報知装置76などに送信される。この第二,第三のセンサ36,54の検出信号から生成されたデジタル信号に基づいて、安全装置74がアーム18の減速や停止を実行したり、モニターやスピーカーなどの報知装置76が例えばアーム18への接近に対する警告や、停止したアーム18の再始動に必要な操作手順などを表示したりするようにできる。 The digital signals generated by the microcomputers 64 of the detection circuits 58a and 58b are output to the outside from the digital output units 72 and 72 of the detection circuits 58a and 58b. The digital signals output from the detection circuits 58a and 58b are transmitted to, for example, the safety device 74 and the notification device 76. Based on the digital signals generated from the detection signals of the second and third sensors 36 and 54, the safety device 74 performs deceleration or stop of the arm 18, or the alarm device 76 such as a monitor or a speaker The warning for approaching 18 or the operation procedure necessary for restarting the stopped arm 18 can be displayed.
 図5には、マイクロコンピュータ64を含むハードウエアで実現される主たる機能のブロック図が示されている。即ち、先ず、ステップ(以下、S)1において、第二,第三のセンサ36,54の各圧力検出部52へ走査的に給電して、各圧力検出部52の静電容量を測定する。次に、S2において、第二,第三のセンサ36,54の各圧力検出部52の静電容量値に基づいて各圧力検出部52に作用した圧力の値を取得する。また次に、S3において、取得した作用圧力値を予め入力設定された閾値と比較して、アーム18に対する作業者Aの接触の有無を判定する。S3で人体の接触があったと判定された場合には、S4において、接触の場所や検出した圧力の大きさなどを考慮して、接触場所に対応したアーム18の運動速度の抑制信号を出力する。この速度の抑制信号に基づいて、安全装置74がアーム18の作動を制御する(例えば、アーム18を減速又は停止させる)と共に、報知装置76が必要に応じて危険報知警報の発令などを実行する。 FIG. 5 shows a block diagram of main functions realized by hardware including the microcomputer 64. That is, first, in step (hereinafter referred to as S) 1, power is supplied to the pressure detectors 52 of the second and third sensors 36 and 54 in a scanning manner, and the capacitance of each pressure detector 52 is measured. Next, in S <b> 2, the value of the pressure applied to each pressure detection unit 52 is acquired based on the capacitance value of each pressure detection unit 52 of the second and third sensors 36 and 54. Next, in S3, the obtained working pressure value is compared with a preset threshold value, and it is determined whether or not the operator A has touched the arm 18. If it is determined in S3 that a human body has been touched, in S4, a suppression signal for the movement speed of the arm 18 corresponding to the contact location is output in consideration of the location of the contact and the magnitude of the detected pressure. . Based on this speed suppression signal, the safety device 74 controls the operation of the arm 18 (for example, decelerates or stops the arm 18), and the notification device 76 issues a danger notification alarm or the like as necessary. .
 また、図4に示されたハードウエアブロック構成と図5に示された機能ブロック構成とを実現するための具体的なハードウエアの電気素子の回路構造は、同じに設計されている。例えば、図4のアナログ入力部60やC-V変換回路62、電圧監視部70、デジタル出力部72、入出力部(I/O)だけでなく、マイクロコンピュータ64もDIPやSIP、PGAやSOJなど各種形式で同じパッケージのものが採用され得る。なお、マイクロコンピュータ64としては、外部の記憶素子を利用しても良いが、例えばCPU、RAM、ROMなどの目的とする機能を実現する論理回路を備えたパッケージ品であっても良い。そして、例えばマイクロコンピュータ64に設定される閾値の設定値だけを必要に応じて異ならせて使用することもできる。 Further, the circuit structure of the specific hardware electrical elements for realizing the hardware block configuration shown in FIG. 4 and the functional block configuration shown in FIG. 5 is designed to be the same. For example, in addition to the analog input unit 60, the CV conversion circuit 62, the voltage monitoring unit 70, the digital output unit 72, and the input / output unit (I / O) in FIG. 4, the microcomputer 64 can also be a DIP, SIP, PGA, or SOJ. The same package can be adopted in various formats. As the microcomputer 64, an external storage element may be used, but a package product including a logic circuit that realizes a target function such as a CPU, a RAM, and a ROM may be used. For example, only the threshold value set in the microcomputer 64 can be changed as necessary.
 また、図6に示すように、第二のセンサ36と第三のセンサ54は、一つの検出回路77に接続されていても良い。即ち、検出回路77は、例えばマイクロコンピュータ64が第二のセンサ36用の入出力チャネルと第三のセンサ54用の入出力チャネルを備えており、第二のセンサ36と第三のセンサ54の検出作動の制御や検出信号の処理などを並列的に実行可能とされている。本実施形態では、第二のセンサ36と第三のセンサ54が静電容量の変化に基づいて接触を検出する同一の検出原理を有するセンサとされていることから、第二のセンサ36と第三のセンサ54において一つの検出回路77の共用が可能とされている。 Further, as shown in FIG. 6, the second sensor 36 and the third sensor 54 may be connected to one detection circuit 77. That is, in the detection circuit 77, for example, the microcomputer 64 includes an input / output channel for the second sensor 36 and an input / output channel for the third sensor 54, and the second sensor 36 and the third sensor 54. Control of detection operation and processing of detection signals can be executed in parallel. In the present embodiment, the second sensor 36 and the third sensor 54 are sensors having the same detection principle for detecting contact based on a change in capacitance. The three sensors 54 can share one detection circuit 77.
 本実施形態のセンサ装置10は、感圧センサとしての第二,第三のセンサ36,54と、第二,第三のセンサ36,54の検出回路58a,58bと、シールド層30および支持体32と、弾性クッション層34とを、含んで構成されており、ロボット12の支持台16およびアーム18に取り付けられている。尤も、第一のセンサ26のように、センサ装置10に加えて更なる別のセンサを設けて、作業者Aの検出精度の向上や検出の多段階化などを図ることもできる。 The sensor device 10 of the present embodiment includes second and third sensors 36 and 54 as pressure-sensitive sensors, detection circuits 58a and 58b of the second and third sensors 36 and 54, a shield layer 30, and a support body. 32 and an elastic cushion layer 34, and are attached to the support 16 and the arm 18 of the robot 12. However, like the first sensor 26, another sensor may be provided in addition to the sensor device 10, so that the detection accuracy of the worker A can be improved and detection can be performed in multiple stages.
 このような構造とされたセンサ装置10を備えるロボット12に対して、図1に示すように、検出対象としての作業者Aが接近すると、作業者Aは、先ず第一のセンサ26によってアーム18から比較的に遠い位置で検出される。第一のセンサ26が作業者Aを検出すると、第一のセンサ26の検出信号が図示しない検出回路によってデジタル信号に変換されて、安全装置74や報知装置76などに送信される。これにより、安全装置74によってアーム18の移動速度が低減されると共に、作業者Aに対して報知装置76によってアーム18から離れるように警告する。なお、安全装置74や報知装置76は、支持台16やリンク20に収容され得る。更に、第一のセンサ26の図示しない検出回路や第二,第三のセンサ36,54の検出回路58a,58bも、支持台16やリンク20に収容され得る。 As shown in FIG. 1, when a worker A as a detection target approaches the robot 12 including the sensor device 10 having such a structure, the worker A first uses the first sensor 26 to move the arm 18. Is detected at a relatively far position. When the first sensor 26 detects the worker A, the detection signal of the first sensor 26 is converted into a digital signal by a detection circuit (not shown) and transmitted to the safety device 74, the notification device 76, and the like. As a result, the moving speed of the arm 18 is reduced by the safety device 74, and the operator A is warned to leave the arm 18 by the notification device 76. The safety device 74 and the notification device 76 can be accommodated in the support base 16 and the link 20. Further, the detection circuit (not shown) of the first sensor 26 and the detection circuits 58 a and 58 b of the second and third sensors 36 and 54 can also be accommodated in the support 16 and the link 20.
 減速後のアーム18の移動速度は、第一のセンサ26によって検出された作業者Aのアーム18からの距離などに応じて適宜に設定されるが、例えば、250mm/sec以下まで減速させることにより、第二,第三のセンサ36,54によって作業者Aのアーム18への接触を検知した場合にアーム18を停止させることで、作業者Aに作用する力を十分に小さくすることができる。 The moving speed of the arm 18 after deceleration is appropriately set according to the distance from the arm 18 of the worker A detected by the first sensor 26. For example, by decelerating to 250 mm / sec or less. When the contact of the worker A to the arm 18 is detected by the second and third sensors 36 and 54, the force acting on the worker A can be sufficiently reduced by stopping the arm 18.
 次に、作業者Aがアーム18に対して更に接近して、作業者Aがアーム18に接触すると、作業者Aは、第二のセンサ36と第三のセンサ54の両方によって、第一のセンサ26の第一の検出領域28の遠位端(前端)よりもアーム18に近い位置で検出される。そして、第二のセンサ36と第三のセンサ54によって作業者Aのアーム18への接触が検出されて、検出回路58a,58bによってデジタル信号に変換された第二,第三のセンサ36,54の検出信号が、安全装置74や報知装置76などに送信されることにより、例えば、安全装置74がアーム18の作動を停止する一方、報知装置76が作業者Aに対してアーム18から離れるように警告すると共に、報知装置76がアーム18の再始動に必要な手順などを表示する。 Next, when the worker A further approaches the arm 18 and the worker A comes into contact with the arm 18, the worker A uses both the second sensor 36 and the third sensor 54 to make the first sensor Detection is performed at a position closer to the arm 18 than the distal end (front end) of the first detection region 28 of the sensor 26. Then, the second sensor 36 and the third sensor 54 detect contact of the operator A with the arm 18, and the second and third sensors 36 and 54 converted into digital signals by the detection circuits 58a and 58b. Is transmitted to the safety device 74, the notification device 76, etc., for example, the safety device 74 stops the operation of the arm 18, while the notification device 76 moves away from the arm 18 with respect to the worker A. The alarm device 76 displays a procedure necessary for restarting the arm 18 and the like.
 このように、本実施形態におけるセンサ装置10を備えたロボット12によれば、遠距離で作業者Aを検出する第一のセンサ26と、近距離で作業者Aを検出する第二のセンサ36および第三のセンサ54との3つのセンサを備えている。それ故、それら3つのセンサ26,36,54の各検出結果に基づいて、作業者Aの接近と接触をより高い信頼性で検出することができる。 As described above, according to the robot 12 including the sensor device 10 in the present embodiment, the first sensor 26 that detects the worker A at a long distance and the second sensor 36 that detects the worker A at a short distance. And a third sensor 54 and three sensors. Therefore, the approach and contact of the worker A can be detected with higher reliability based on the detection results of the three sensors 26, 36, and 54.
 しかも、作業者Aがアーム18に接触する前に、作業者Aの接近を第一のセンサ26で検出することによって、アーム18が減速されるようにしたことで、作業者Aのアーム18への接触が検出された場合には、アーム18を速やかに停止させることができる。それ故、アーム18の接触によって作業者Aに作用する力が十分に小さくなって、接触によって作業者Aが痛みを感じたり、アーム18が損傷したりするなどの不具合を回避することができる。 In addition, by detecting the approach of the worker A by the first sensor 26 before the worker A contacts the arm 18, the arm 18 is decelerated, so that the arm 18 of the worker A is moved to. When the contact is detected, the arm 18 can be quickly stopped. Therefore, the force acting on the worker A due to the contact of the arm 18 becomes sufficiently small, and it is possible to avoid problems such as the worker A feeling pain or damaging the arm 18 due to the contact.
 さらに、第一のセンサ26よりもアーム18に近い位置において、作業者Aが第二のセンサ36と第三のセンサ54の両方によって検出されるようになっている。これにより、作業者Aとアーム18の接触時に、アーム18の停止をより優れた信頼性で実行させることができて、作業者Aとアーム18の間に作用する力が低減されることで、安全性の向上が図られる。 Furthermore, the worker A is detected by both the second sensor 36 and the third sensor 54 at a position closer to the arm 18 than the first sensor 26. Thereby, at the time of contact between the worker A and the arm 18, the arm 18 can be stopped with higher reliability, and the force acting between the worker A and the arm 18 is reduced. Safety is improved.
 また、弾性クッション層34の硬さは、第二のセンサ36と第三のセンサ54の各誘電体層40の硬さに対して75%~500%とされている。これにより、作業者Aとアーム18の接触時には、弾性クッション層34による緩衝性が十分に発揮されると共に、誘電体層40の弾性変形が有効に生ぜしめられて、静電容量の変化に基づく接触の検出が優れた検出感度で実現される。 The hardness of the elastic cushion layer 34 is 75% to 500% with respect to the hardness of each dielectric layer 40 of the second sensor 36 and the third sensor 54. Thereby, when the worker A and the arm 18 are in contact with each other, the cushioning property by the elastic cushion layer 34 is sufficiently exerted, and the elastic deformation of the dielectric layer 40 is effectively generated, which is based on the change in capacitance. Contact detection is realized with excellent detection sensitivity.
 特に本実施形態では、弾性クッション層34の硬さが誘電体層40の硬さに対して100%以上とされていることから、第二のセンサ36と第三のセンサ54による作業者Aの接触の検出が高い検出感度で実現される。加えて、第二のセンサ36と第三のセンサ54が柔軟な構造とされており、誘電体層40が十分に柔らかくされていることから、弾性クッション層34による緩衝性も有効に得ることができる。 In particular, in this embodiment, since the hardness of the elastic cushion layer 34 is 100% or more with respect to the hardness of the dielectric layer 40, the worker A's operation by the second sensor 36 and the third sensor 54 is performed. Contact detection is realized with high detection sensitivity. In addition, since the second sensor 36 and the third sensor 54 have a flexible structure and the dielectric layer 40 is sufficiently softened, the cushioning property by the elastic cushion layer 34 can be effectively obtained. it can.
 さらに、弾性クッション層34のポアソン比が誘電体層40のポアソン比よりも小さくされていることから、弾性クッション層34において体積変化を伴う圧縮が誘電体層40よりも生じ易くされて、例えば、弾性クッション層34の変形による緩衝性をより有利に得ることができる。特に本実施形態では、弾性クッション層34が弾性発泡体とされており、弾性クッション層34の弾性変形時に気泡内の空気の圧縮や流動によって体積変化が生ぜしめられることから、作用力のエネルギーが効率的に低減されて、弾性クッション層34の変形による緩衝性を大きく得ることができる。 Furthermore, since the Poisson's ratio of the elastic cushion layer 34 is made smaller than the Poisson's ratio of the dielectric layer 40, the elastic cushion layer 34 is more easily compressed with a volume change than the dielectric layer 40. The buffering property due to the deformation of the elastic cushion layer 34 can be obtained more advantageously. In particular, in the present embodiment, the elastic cushion layer 34 is an elastic foam, and when the elastic cushion layer 34 is elastically deformed, a volume change is caused by the compression and flow of air in the bubbles. It is efficiently reduced and a large cushioning property due to the deformation of the elastic cushion layer 34 can be obtained.
 また、本実施形態では、弾性クッション層34のアーム18側のとなる内面35が、アーム18の外面に対応する面形状とされて、弾性クッション層34がアーム18の外面に対して直接的に重ね合わされて取り付けられており、弾性クッション層34の外側に第二,第三のセンサ36,54が配されている。これにより、アーム18の外面の凹凸が弾性クッション層34によって均されて、アーム18の外面形状に拘らず第二,第三のセンサ36,54を固着することができる。 In the present embodiment, the inner surface 35 on the arm 18 side of the elastic cushion layer 34 has a surface shape corresponding to the outer surface of the arm 18, and the elastic cushion layer 34 is directly on the outer surface of the arm 18. The second and third sensors 36 and 54 are disposed outside the elastic cushion layer 34. Thereby, the unevenness of the outer surface of the arm 18 is leveled by the elastic cushion layer 34, and the second and third sensors 36 and 54 can be fixed regardless of the outer surface shape of the arm 18.
 さらに、アーム18と第二,第三のセンサ36,54の間にシールド層30が設けられていることにより、アーム18から外部へ放射される電磁波などが第二,第三のセンサ36,54による作業者Aの接触の検出に影響するのを防ぐことができる。これにより、第二,第三のセンサ36,54による接触の検出をより精度よく実現することができる。 Further, since the shield layer 30 is provided between the arm 18 and the second and third sensors 36 and 54, electromagnetic waves radiated from the arm 18 to the outside can be transmitted to the second and third sensors 36 and 54. Can be prevented from affecting the detection of the contact of the worker A. Thereby, the detection of the contact by the second and third sensors 36 and 54 can be realized with higher accuracy.
 なお、図7に示すように、第二のセンサ36と第三のセンサ54の間に中間クッション層78を設けても良い。この中間クッション層78は、例えば第二のセンサ36とシールド層30の間に設けられる弾性クッション層34と同様の弾性材料で形成されており、略平板形状とされている。このような中間クッション層78を備える構造によれば、作業者Aがアーム18に接触する際の緩衝性を更に向上させることができると共に、それぞれ接触センサとされた第二のセンサ36と第三のセンサ54の検出感度を、中間クッション層78によって調節することができて、例えば、第二のセンサ36の検出感度を第三のセンサ54の検出感度よりも低く設定することが容易になる。 Note that, as shown in FIG. 7, an intermediate cushion layer 78 may be provided between the second sensor 36 and the third sensor 54. The intermediate cushion layer 78 is made of, for example, an elastic material similar to the elastic cushion layer 34 provided between the second sensor 36 and the shield layer 30 and has a substantially flat plate shape. According to such a structure including the intermediate cushion layer 78, it is possible to further improve the shock-absorbing property when the operator A comes into contact with the arm 18, and the second sensor 36 and the third sensor which are contact sensors, respectively. The detection sensitivity of the sensor 54 can be adjusted by the intermediate cushion layer 78. For example, the detection sensitivity of the second sensor 36 can be easily set lower than the detection sensitivity of the third sensor 54.
 また、図8に示すように、第二のセンサ36への重ね合わせ面が凹凸面形状とされた中間クッション層80を第二のセンサ36と第三のセンサ54の間に設けることも可能である。この中間クッション層80は、第二のセンサ36に向けて突出する複数の凸部82を備えており、それら複数の凸部82が第二のセンサ36の複数の圧力検出部52とそれぞれ対応する部分に設けられて、第二のセンサ36の圧力検出部52に接触している。これによれば、作業者Aがアーム18に接触する際に、作業者Aに作用する力を効果的に低減しながら、第二のセンサ36の検出部分である各圧力検出部52には、接触による圧力を凸部82によって集中的に作用させて、作業者Aのアーム18への接触を優れた感度で検出することができる。なお、圧力検出部52に対応した凸部82の態様は、接触圧力を圧力検出部52へ効率的に伝達し得るものであれば良く、例えば、凸部82と略同じ位置にだけ圧力検出部52を設ける他、図示のように少なくとも一部が圧力検出部52上に位置する凸部82を設けるなどの態様であっても良い。 In addition, as shown in FIG. 8, an intermediate cushion layer 80 having an uneven surface on the second sensor 36 can be provided between the second sensor 36 and the third sensor 54. is there. The intermediate cushion layer 80 includes a plurality of protrusions 82 protruding toward the second sensor 36, and the plurality of protrusions 82 respectively correspond to the plurality of pressure detection parts 52 of the second sensor 36. It is provided in the part and is in contact with the pressure detection part 52 of the second sensor 36. According to this, when the worker A comes into contact with the arm 18, while effectively reducing the force acting on the worker A, each pressure detection unit 52 that is a detection portion of the second sensor 36 includes: It is possible to detect the contact of the worker A on the arm 18 with excellent sensitivity by causing the pressure due to the contact to be concentrated by the convex portion 82. In addition, the aspect of the convex part 82 corresponding to the pressure detection part 52 should just be a thing which can transmit contact pressure to the pressure detection part 52 efficiently, for example, a pressure detection part only in the substantially the same position as the convex part 82. In addition to the provision of 52, a mode in which a convex portion 82 at least a part of which is positioned on the pressure detection unit 52 as shown in the figure may be provided.
 また、図9には、本発明の第二の実施形態としてのセンサ装置90を備える自動装置としてのロボット92の一部が示されている。本実施形態のロボット92は、アーム18を構成するリンク20の外側にセンサ装置90が装着された構造を有している。以下の説明において、第一の実施形態と実質的に同一の部材および部位については、図中に同一の符号を付すことで説明を省略する。なお、ロボット92の全体は、第一の実施形態のロボット12と同様であり、アーム18を支持する図示しない支持台には、第一の実施形態と同様の図示しない第一のセンサが設けられている。また、図9と後述する図10では、見易さのために、第二のセンサ36と第三のセンサ54の電極や誘電体層を省略して示すが、それら第二のセンサ36と第三のセンサ54の具体的な構造は、第一の実施形態と同様である。 FIG. 9 shows a part of a robot 92 as an automatic device including the sensor device 90 according to the second embodiment of the present invention. The robot 92 according to the present embodiment has a structure in which a sensor device 90 is mounted on the outside of the link 20 constituting the arm 18. In the following description, members and portions that are substantially the same as those of the first embodiment are denoted by the same reference numerals in the drawings, and the description thereof is omitted. The entire robot 92 is the same as the robot 12 of the first embodiment, and a support base (not shown) that supports the arm 18 is provided with a first sensor (not shown) similar to the first embodiment. ing. In FIG. 9 and FIG. 10 to be described later, the electrodes and dielectric layers of the second sensor 36 and the third sensor 54 are omitted for the sake of clarity. The specific structure of the third sensor 54 is the same as that of the first embodiment.
 より詳細には、リンク20の外面には、弾性クッション層34が固着されている。弾性クッション層34は、リンク20側に位置する内面35がリンク20の表面の凹凸に対応する面形状とされていると共に、リンク20と反対側に位置する外面が複数の平面で構成されている。 More specifically, the elastic cushion layer 34 is fixed to the outer surface of the link 20. In the elastic cushion layer 34, the inner surface 35 located on the link 20 side has a surface shape corresponding to the unevenness on the surface of the link 20, and the outer surface located on the opposite side to the link 20 is configured by a plurality of planes. .
 弾性クッション層34の外側には、シールド層30と第二のセンサ36が配されている。本実施形態のシールド層30は、第二のセンサ36の第二の電極シート48の表面に印刷されており、第二のセンサ36と弾性クッション層34の間にシールド層30が配されている。 Shield layer 30 and second sensor 36 are arranged outside elastic cushion layer 34. The shield layer 30 of the present embodiment is printed on the surface of the second electrode sheet 48 of the second sensor 36, and the shield layer 30 is disposed between the second sensor 36 and the elastic cushion layer 34. .
 さらに、第二のセンサ36の外側には、第三のセンサ54が配されており、第三のセンサ54の外側が表皮94によって覆われている。表皮94は、皮革、布、ビニルシートやゴムシートを含むエラストマシートなどの柔軟な材料で形成されており、第三のセンサ54に対する汚れの付着などを防止する。 Furthermore, a third sensor 54 is disposed outside the second sensor 36, and the outer side of the third sensor 54 is covered with a skin 94. The skin 94 is made of a flexible material such as leather, cloth, an elastomer sheet including a vinyl sheet or a rubber sheet, and prevents dirt from being attached to the third sensor 54.
 このような本実施形態に従う構造のセンサ装置90を備えたロボット92においても、第一の実施形態と同様に、アーム18から離れた遠い位置で検出対象を検出する図示しない第一のセンサと、アーム18に対する検出対象の接触を検出する第二のセンサ36および第三のセンサ54とによって、アーム18が作業者などの検出対象に衝突するのを防ぐことができる。 In the robot 92 including the sensor device 90 having the structure according to the present embodiment, a first sensor (not shown) that detects a detection target at a position far from the arm 18 as in the first embodiment, The second sensor 36 and the third sensor 54 that detect the contact of the detection target with respect to the arm 18 can prevent the arm 18 from colliding with the detection target such as an operator.
 また、シールド層30は、本実施形態に示すように、第二のセンサ36および第三のセンサ54よりもリンク20に近い内側に配されていれば良く、弾性クッション層34よりも外側に配することもできる。しかも、本実施形態では、シールド層30が第二のセンサ36の第二の電極シート48に固着されていることにより、シールド層30を支持するための支持体が不要とされて、構造の簡略化や部品点数の削減が図られる。 Further, as shown in the present embodiment, the shield layer 30 may be disposed on the inner side closer to the link 20 than the second sensor 36 and the third sensor 54, and may be disposed on the outer side of the elastic cushion layer 34. You can also In addition, in the present embodiment, since the shield layer 30 is fixed to the second electrode sheet 48 of the second sensor 36, a support for supporting the shield layer 30 is unnecessary, and the structure is simplified. And the number of parts can be reduced.
 なお、図9では、弾性クッション層34の外面を複数の平面からなる略矩形箱状とした例を示しているが、これは理解を容易にするために簡略化したものであって、弾性クッション層34の外面の形状としては、リンク20の表面に比して第二,第三のセンサ36,54およびシールド層30を設け易い任意の面形状が好適に採用される。更に、例えば弾性クッション層34の外面形状を、特定の意匠の少なくとも一部をなすように設定することもできる。更にまた、弾性クッション層34で覆われるリンク20の表面形状は、特に限定されない。 FIG. 9 shows an example in which the outer surface of the elastic cushion layer 34 is a substantially rectangular box shape formed of a plurality of planes, but this is simplified for ease of understanding. As the shape of the outer surface of the layer 34, an arbitrary surface shape in which the second and third sensors 36 and 54 and the shield layer 30 can be easily provided as compared with the surface of the link 20 is preferably employed. Furthermore, for example, the outer surface shape of the elastic cushion layer 34 can be set so as to form at least a part of a specific design. Furthermore, the surface shape of the link 20 covered with the elastic cushion layer 34 is not particularly limited.
 また、図10に示すように、アーム18のリンク20を覆うように支持カバー96が配設されて、シールド層30と弾性クッション層34と第二,第三のセンサ36,54と表皮94とが、支持カバー96の表面に取り付けられた構造も採用され得る。本実施形態の支持カバー96は、中空箱状とされており、リンク20が内部空間に収容されることでリンク20の外側を囲むように配されている。このように、リンク20の表面が支持カバー96で覆われていることにより、リンク20の表面の凹凸に拘らず、シールド層30と弾性クッション層34と第二,第三のセンサ36,54と表皮94が、リンク20の外側に容易に設けられる。 Further, as shown in FIG. 10, a support cover 96 is disposed so as to cover the link 20 of the arm 18, and the shield layer 30, the elastic cushion layer 34, the second and third sensors 36 and 54, and the skin 94. However, a structure attached to the surface of the support cover 96 may be employed. The support cover 96 of the present embodiment has a hollow box shape, and is arranged so as to surround the outside of the link 20 by accommodating the link 20 in the internal space. Thus, since the surface of the link 20 is covered with the support cover 96, the shield layer 30, the elastic cushion layer 34, the second and third sensors 36 and 54, regardless of the irregularities on the surface of the link 20. A skin 94 is easily provided on the outside of the link 20.
 さらに、図10では、支持カバー96とリンク20の間に形成された収容空間98は、第二,第三のセンサ36,54の検出回路77などが収容可能とされている。なお、図10では、検出回路77が支持カバー96に固定された状態で収容空間98に配された構造を例示したが、例えば、収容空間98に配される検出回路77などは、リンク20に固定されていても良い。 Further, in FIG. 10, the accommodation space 98 formed between the support cover 96 and the link 20 can accommodate the detection circuits 77 of the second and third sensors 36 and 54. 10 illustrates a structure in which the detection circuit 77 is fixed to the support cover 96 and is disposed in the accommodation space 98. For example, the detection circuit 77 and the like disposed in the accommodation space 98 is connected to the link 20. It may be fixed.
 以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、弾性クッション層34の硬さは、誘電体層40の硬さに対して75%~500%とされていれば良く、例えば誘電体層40が弾性クッション層34よりも硬い構造も採用され得る。 As mentioned above, although embodiment of this invention has been explained in full detail, this invention is not limited by the specific description. For example, the hardness of the elastic cushion layer 34 may be 75% to 500% with respect to the hardness of the dielectric layer 40. For example, a structure in which the dielectric layer 40 is harder than the elastic cushion layer 34 is also employed. obtain.
 また、弾性クッション層34と誘電体層40は、両方が発泡体であっても良いし、両方が非発泡体であっても良い。更に、弾性クッション層34と誘電体層40は、互いに異なる材質で形成することも可能であり、弾性クッション層34と誘電体層40の硬さやポアソン比などを材質の違いによって調節することもできる。 Further, both the elastic cushion layer 34 and the dielectric layer 40 may be a foam, or both may be a non-foam. Further, the elastic cushion layer 34 and the dielectric layer 40 can be formed of different materials, and the hardness and Poisson's ratio of the elastic cushion layer 34 and the dielectric layer 40 can be adjusted by the difference in the materials. .
 また、前記実施形態では、感圧センサとして、第二のセンサ36と第三のセンサ54の二つを備えた構造について説明したが、感圧センサは、一つだけであっても良いし、三つ以上であっても良い。更に、複数の感圧センサを設ける場合には、各感圧センサの誘電体層の硬さや大きさ、形状などは、必ずしも互いに同じである必要はない。このように互いに異なる誘電体層を備えた複数の感圧センサを採用する場合には、弾性クッション層34の硬さが、何れの感圧センサの誘電体層の硬さに対しても、75%~500%となるように設定される。尤も、接触による圧力を検出する追加のセンサを、本発明の感圧センサとは別に設けることも可能であり、このような追加のセンサについては、誘電体層の硬さは弾性クッション層の硬さに対して制限されるものではなく、検出原理も静電容量型に限定されない。 Moreover, in the said embodiment, although the structure provided with two of the 2nd sensor 36 and the 3rd sensor 54 was demonstrated as a pressure sensor, only one pressure sensor may be sufficient, Three or more may be sufficient. Furthermore, when a plurality of pressure sensors are provided, the hardness, size, shape, etc. of the dielectric layers of each pressure sensor need not necessarily be the same. When a plurality of pressure-sensitive sensors having different dielectric layers are employed as described above, the hardness of the elastic cushion layer 34 is 75, regardless of the hardness of the dielectric layer of any pressure-sensitive sensor. % To 500% is set. However, it is possible to provide an additional sensor for detecting the pressure due to contact separately from the pressure-sensitive sensor of the present invention. For such an additional sensor, the hardness of the dielectric layer is the hardness of the elastic cushion layer. The detection principle is not limited to the capacitance type.
 また、第一のセンサ26は、前記実施形態のようにアーム18などの移動部を外れた支持台16に設けられて、固定的に設定されたエリアに対する作業者Aの侵入を検出するものの他、移動部に設けられて、移動部の移動に伴って変化するように設定されたエリアに対する作業者Aの侵入を検出するものも採用され得る。 Further, the first sensor 26 is provided on the support base 16 that has been moved away from the moving part such as the arm 18 as in the above-described embodiment, and detects the entry of the operator A into the fixedly set area. Also, a device that is provided in the moving unit and detects the intrusion of the worker A into the area set so as to change with the movement of the moving unit may be employed.
 さらに、例えば、第二のセンサ36と第三のセンサ54が何れも接触センサとされていると共に、第一のセンサ26がアーム18から近い位置で作業者Aの接近を検出する静電容量型センサなどの近接センサとされた構造も採用できる。なお、第一のセンサ26は、本発明において必須ではない。 Furthermore, for example, the second sensor 36 and the third sensor 54 are both contact sensors, and the first sensor 26 detects the approach of the worker A at a position close to the arm 18. A structure that is a proximity sensor such as a sensor can also be adopted. The first sensor 26 is not essential in the present invention.
 前記実施形態では、第一~第三のセンサ26,36,54によって検出する検出対象として作業者Aを例示したが、検出対象は人に限定されず、物であっても良い。 In the above embodiment, the worker A is exemplified as the detection target detected by the first to third sensors 26, 36, 54. However, the detection target is not limited to a person, and may be a thing.
 また、本発明に係るセンサ装置が装着される自動装置は、前記実施形態に示した産業用ロボットに限定されず、例えば、医療用乃至は介護用のロボットや無人搬送車(AGV)などにも適用され得る。なお、前記実施形態では、自動装置の一部が移動部とされる構造を例示したが、例えば自動装置がAGVである場合には、自動装置の全体が移動部とされる。 Further, the automatic device to which the sensor device according to the present invention is attached is not limited to the industrial robot shown in the above-described embodiment. For example, the automatic device may be a medical or nursing robot or an automatic guided vehicle (AGV). Can be applied. In the embodiment, the structure in which a part of the automatic device is the moving unit is illustrated. However, for example, when the automatic device is an AGV, the entire automatic device is the moving unit.
10,90:センサ装置、12,92:ロボット(自動装置)、18:アーム(移動部)、34:弾性クッション層、36:第二のセンサ(感圧センサ)、40:誘電体層、42:第一の電極、46:第二の電極、54:第三のセンサ(感圧センサ)、96:支持カバー、98:収容空間 10, 90: Sensor device, 12, 92: Robot (automatic device), 18: Arm (moving part), 34: Elastic cushion layer, 36: Second sensor (pressure sensor), 40: Dielectric layer, 42 : First electrode, 46: second electrode, 54: third sensor (pressure sensor), 96: support cover, 98: accommodation space

Claims (6)

  1.  自動装置に設けられた移動可能な移動部と検出対象の接触を検出するセンサ装置であって、
     前記移動部に対する前記検出対象の接触を検出する柔軟な感圧センサが配されており、該感圧センサが、弾性変形可能とされた誘電体層の両面に伸縮変形可能とされた第一の電極と第二の電極の各一方が固着された構造を有して、それら第一の電極と第二の電極の該誘電体層を介した対向部分に対して対向方向に作用する圧力を静電容量値の変化に基づいて検出する静電容量型センサとされていると共に、
     該感圧センサよりも該移動部に近い位置に弾性クッション層が配されており、該弾性クッション層の硬さが該感圧センサを構成する該誘電体層の硬さに対して75%~500%とされていることを特徴とするセンサ装置。
    A sensor device for detecting contact between a movable unit provided in an automatic device and a detection target,
    A flexible pressure-sensitive sensor that detects contact of the detection target with respect to the moving unit is disposed, and the pressure-sensitive sensor is configured to be elastically deformable on both surfaces of the dielectric layer. Each of the electrodes and the second electrode has a fixed structure, and static pressure acting on the opposing portions of the first electrode and the second electrode through the dielectric layer is suppressed. It is a capacitive sensor that detects based on a change in capacitance value,
    An elastic cushion layer is disposed closer to the moving part than the pressure sensor, and the hardness of the elastic cushion layer is 75% to 75% of the hardness of the dielectric layer constituting the pressure sensor. A sensor device characterized by being 500%.
  2.  前記弾性クッション層における前記移動部側の面が、該移動部の外面に対応する面形状とされており、該弾性クッション層が該移動部の外面に対して直接的に重ね合わされて取り付けられている請求項1に記載のセンサ装置。 The surface of the elastic cushion layer on the side of the moving part has a surface shape corresponding to the outer surface of the moving part, and the elastic cushion layer is directly overlapped and attached to the outer surface of the moving part. The sensor device according to claim 1.
  3.  前記移動部の外面を覆う支持カバーが設けられており、該支持カバーの外面に前記弾性クッション層が取り付けられている請求項1に記載のセンサ装置。 The sensor device according to claim 1, wherein a support cover that covers an outer surface of the moving unit is provided, and the elastic cushion layer is attached to the outer surface of the support cover.
  4.  前記移動部の外面と前記支持カバーの間に収容空間が形成されている請求項3に記載のセンサ装置。 The sensor device according to claim 3, wherein a housing space is formed between an outer surface of the moving part and the support cover.
  5.  前記移動部と前記感圧センサの間にシールド層が設けられている請求項1~4の何れか一項に記載のセンサ装置。 The sensor device according to any one of claims 1 to 4, wherein a shield layer is provided between the moving part and the pressure sensor.
  6.  前記弾性クッション層の硬さが前記感圧センサを構成する前記誘電体層の硬さに対して100%以上とされている請求項1~5の何れか一項に記載のセンサ装置。 The sensor device according to any one of claims 1 to 5, wherein a hardness of the elastic cushion layer is 100% or more with respect to a hardness of the dielectric layer constituting the pressure-sensitive sensor.
PCT/JP2017/042242 2017-03-21 2017-11-24 Sensor device WO2018173366A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-055023 2017-03-21
JP2017055023A JP2018155711A (en) 2017-03-21 2017-03-21 Sensor device

Publications (1)

Publication Number Publication Date
WO2018173366A1 true WO2018173366A1 (en) 2018-09-27

Family

ID=63584461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042242 WO2018173366A1 (en) 2017-03-21 2017-11-24 Sensor device

Country Status (2)

Country Link
JP (1) JP2018155711A (en)
WO (1) WO2018173366A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129567A1 (en) * 2018-12-21 2020-06-25 ソニー株式会社 Pressure sensitive sensor, and electronic instrument
WO2021209480A1 (en) * 2020-04-16 2021-10-21 Fogale Nanotech Capacitive detection device with deployable electrode and apparatus provided with such a device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116723919A (en) * 2021-03-04 2023-09-08 索尼集团公司 Robot, end effector, and robot system
JP7254433B2 (en) * 2021-05-31 2023-04-10 Nissha株式会社 Finger with tactile sensor of robot hand and robot hand with tactile sensor using this

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239479A (en) * 1999-12-24 2001-09-04 Sony Corp Leg type mobile robot and exterior module for robot
JP2009036557A (en) * 2007-07-31 2009-02-19 Sony Corp Device and method for detection, and program
JP2011093549A (en) * 2009-10-28 2011-05-12 Gifu Plast Ind Co Ltd Rubber strip for pallet
JP2011237288A (en) * 2010-05-11 2011-11-24 Tokai Rubber Ind Ltd Electrostatic capacitance type sensor and sensor installation structure
US20130271159A1 (en) * 2012-01-28 2013-10-17 Arizona State University Systems for providing electro-mechanical sensors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239479A (en) * 1999-12-24 2001-09-04 Sony Corp Leg type mobile robot and exterior module for robot
JP2009036557A (en) * 2007-07-31 2009-02-19 Sony Corp Device and method for detection, and program
JP2011093549A (en) * 2009-10-28 2011-05-12 Gifu Plast Ind Co Ltd Rubber strip for pallet
JP2011237288A (en) * 2010-05-11 2011-11-24 Tokai Rubber Ind Ltd Electrostatic capacitance type sensor and sensor installation structure
US20130271159A1 (en) * 2012-01-28 2013-10-17 Arizona State University Systems for providing electro-mechanical sensors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129567A1 (en) * 2018-12-21 2020-06-25 ソニー株式会社 Pressure sensitive sensor, and electronic instrument
US11397499B2 (en) 2018-12-21 2022-07-26 Sony Group Corporation Pressure-sensitive sensor and electronic apparatus
WO2021209480A1 (en) * 2020-04-16 2021-10-21 Fogale Nanotech Capacitive detection device with deployable electrode and apparatus provided with such a device

Also Published As

Publication number Publication date
JP2018155711A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
WO2018173380A1 (en) Sensor device
WO2018173366A1 (en) Sensor device
US20190368950A1 (en) Sensor device
WO2018230036A1 (en) Safety device
US6499359B1 (en) Compressible capacitance sensor for determining the presence of an object
EP0518836A1 (en) Driven shielding capacitive proximity sensor
US10666252B2 (en) Capacitive sensor
US20120008266A1 (en) Operation device
US20140207279A1 (en) Robot apparatus
US20170203440A1 (en) Compliant touch sensor
JP2022516903A (en) Replenishment collision detection and prevention system for medical imaging equipment
US11788905B2 (en) Capacitance sensor
US11904455B2 (en) Proximity detection system
JP2007035334A (en) Capacitive touch switch
WO2020090342A1 (en) Sensor device
JP2020049595A (en) Personal protection device of robot
JP7265411B2 (en) Pressure sensor sheet and pressure sensor
CN115624344A (en) Anticollision shell module and C arm device
WO2022002058A1 (en) Body housing and vehicle having same
US20230202045A1 (en) Robot System
WO2023127415A1 (en) Gripping detection device and steering device
WO2021193932A1 (en) Electrostatic capacitance sensor, sensor unit, and robot
WO2023122278A1 (en) Robot system
JP2001113477A (en) Collision detecting device
JP2020163484A (en) Movable body, robot, and moving body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902555

Country of ref document: EP

Kind code of ref document: A1