WO2018173344A1 - Exposure device, substrate treatment device, substrate exposure method, and substrate treatment method - Google Patents

Exposure device, substrate treatment device, substrate exposure method, and substrate treatment method Download PDF

Info

Publication number
WO2018173344A1
WO2018173344A1 PCT/JP2017/037053 JP2017037053W WO2018173344A1 WO 2018173344 A1 WO2018173344 A1 WO 2018173344A1 JP 2017037053 W JP2017037053 W JP 2017037053W WO 2018173344 A1 WO2018173344 A1 WO 2018173344A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
ejection
unit
inert gas
window member
Prior art date
Application number
PCT/JP2017/037053
Other languages
French (fr)
Japanese (ja)
Inventor
靖博 福本
孝文 大木
友宏 松尾
正也 浅井
将彦 春本
田中 裕二
知佐世 中山
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2018173344A1 publication Critical patent/WO2018173344A1/en

Links

Images

Definitions

  • the present invention relates to an exposure apparatus that performs exposure processing on a substrate, a substrate processing apparatus, a substrate exposure method, and a substrate processing method.
  • Patent Document 1 describes an exposure apparatus that performs an exposure process on a film (DSA film) containing an induced self-assembled material on a substrate.
  • the exposure apparatus has a light emitting part capable of emitting a vacuum ultraviolet ray having a cross-sectional band shape, and is configured to be movable from the front position to the rear position of the light emitting part so that the substrate crosses the path of the vacuum ultraviolet ray from the light emitting part.
  • the illuminance of vacuum ultraviolet rays is detected in advance by an illuminance sensor, and the moving speed of the substrate is calculated based on the detected illuminance so that a desired amount of vacuum ultraviolet rays is irradiated.
  • the DSA film on the substrate is irradiated with a desired amount of vacuum ultraviolet light by moving the substrate at the calculated moving speed.
  • the illuminance of the vacuum ultraviolet rays applied to the substrate may decrease. In this case, the accuracy of the exposure process decreases. In addition, since the time required for the exposure process is prolonged, the efficiency of the exposure process is lowered.
  • An object of the present invention is to provide an exposure apparatus, a substrate processing apparatus, an exposure method, and a substrate processing method capable of maintaining the accuracy and efficiency of exposure processing.
  • An exposure apparatus has an opening, a processing chamber that houses a substrate, a translucent window member attached to the opening of the processing chamber, and a substrate in the processing chamber through the window member.
  • the light source part which irradiates a vacuum ultraviolet-ray, and the airflow formation part which forms the flow of the inert gas along one surface of a window member are provided.
  • vacuum ultraviolet rays are radiated to the substrate housed in the processing chamber by the light source section through a translucent window member attached to the opening of the processing chamber. Moreover, the flow of the inert gas along one surface of the window member is formed by the airflow forming portion.
  • the inert gas hardly absorbs the vacuum ultraviolet rays applied to the substrate. Therefore, it is possible to prevent the temperature of the window member from rising without reducing the exposure efficiency of the substrate. Thereby, it can prevent that the illumination intensity of the vacuum ultraviolet-ray which permeate
  • One surface of the window member may face the internal space of the processing chamber, and the airflow forming unit may form an inert gas flow along the one surface of the window member in the processing chamber.
  • the airflow forming unit may form an inert gas flow along the one surface of the window member in the processing chamber.
  • the airflow forming unit may include an ejection unit that ejects an inert gas along one surface of the window member into the processing chamber, and an exhaust unit that exhausts the inert gas within the processing chamber.
  • an ejection unit that ejects an inert gas along one surface of the window member into the processing chamber
  • an exhaust unit that exhausts the inert gas within the processing chamber.
  • the ejection part may include an ejection pipe extending in parallel with one surface of the window member and having an ejection port for ejecting an inert gas. In this case, the flow of the inert gas along the entire surface of the window member can be easily formed.
  • the ejection part further includes a holding member provided so as to surround the outer periphery of the ejection pipe, and the holding member has a first slit extending in parallel with one surface of the window member, and ejects from the ejection port of the ejection pipe
  • the inert gas to be discharged may be ejected along one surface of the window member through the first slit of the holding member.
  • the ejection pipe extending parallel to one surface of the window member can be easily held without hindering the flow of the inert gas.
  • the ejection pipe may have a plurality of ejection holes arranged in parallel to one surface of the window member as an ejection outlet and ejecting an inert gas.
  • the ejection pipe can eject an inert gas having a strip-shaped cross section extending in parallel to one surface of the window member from the plurality of ejection holes.
  • the ejection pipe may have a second slit that extends parallel to one surface of the window member and ejects an inert gas as an ejection outlet.
  • the ejection pipe can eject an inert gas having a cross-sectional strip shape extending in parallel with one surface of the window member.
  • the ejection part and the exhaust part may be arranged to face each other across a space in contact with one surface of the window member.
  • the inert gas ejected from the ejection portion passes through the entire window member along one surface of the window member, and is then discharged by the exhaust portion. Thereby, the flow of the inert gas along the whole one surface of the window member can be formed easily and efficiently.
  • the ejection part includes first and second ejection parts arranged to face each other across a space in contact with one surface of the window member, and the exhaust part overlaps the first and second ejection parts. You may arrange
  • the airflow forming unit may form a laminar flow of inert gas along one surface of the window member.
  • heat generated in the window member can be dissipated by the laminar flow of the inert gas along one surface of the window member.
  • the light source unit may be configured to emit vacuum ultraviolet rays having a planar cross section.
  • vacuum ultraviolet rays are emitted in a wide range through the window member. Therefore, the substrate exposure process can be completed in a short time.
  • the heat generated from the entire window member is dissipated by the flow of the inert gas, it is possible to prevent the temperature of the window member from rising even when vacuum ultraviolet rays are irradiated over a wide range of the window member. Thereby, the efficiency can be improved while maintaining the accuracy of the exposure process.
  • the emission area of the vacuum ultraviolet rays by the light source unit may be larger than the area of the substrate. In this case, since the entire surface of the substrate can be exposed, the exposure of the substrate can be completed in a shorter time. Thereby, the efficiency of the exposure process can be further improved.
  • a substrate processing apparatus includes a coating processing unit that forms a film on a substrate by applying a processing liquid to the substrate, and a thermal processing unit that heat-treats the substrate on which the film is formed by the coating processing unit. And an exposure apparatus according to one aspect of the present invention that exposes the substrate heat-treated by the heat treatment unit, and a development processing unit that develops a film on the substrate by supplying a solvent to the substrate exposed by the exposure device.
  • a film is formed on the substrate by applying the processing liquid to the substrate by the coating processing unit.
  • the substrate on which the film is formed by the coating processing unit is heat-treated by the heat treatment unit.
  • the substrate heat-treated by the heat treatment unit is exposed by the exposure apparatus.
  • the film on the substrate is developed by supplying a solvent to the substrate exposed by the exposure apparatus by the development processing unit.
  • the exposure apparatus heat generated in the window member is dissipated by the flow of the inert gas. Therefore, it is possible to prevent the temperature of the window member from rising without reducing the exposure efficiency of the substrate. Thereby, it can prevent that the illumination intensity of the vacuum ultraviolet-ray which permeate
  • the treatment liquid may contain an induction self-organizing material.
  • microphase separation occurs on one surface of the substrate by heat-treating the substrate coated with the treatment liquid containing the induced self-organizing material. Further, the substrate on which two types of polymer patterns are formed by microphase separation is exposed and developed. Thereby, one of the two types of polymers is removed, and a fine pattern can be formed.
  • An exposure method includes a step of irradiating a substrate accommodated in a processing chamber by a light source unit with vacuum ultraviolet light through a translucent window member attached to an opening of the processing chamber; Forming a flow of an inert gas along one surface of the window member by the airflow forming unit.
  • heat generated in the window member is dissipated by the flow of the inert gas. Therefore, it is possible to prevent the temperature of the window member from rising without reducing the exposure efficiency of the substrate. Thereby, it can prevent that the illumination intensity of the vacuum ultraviolet-ray which permeate
  • a film is formed on the substrate by applying a processing liquid to the surface to be processed of the substrate by the coating processing unit and the coating processing unit.
  • the substrate after film formation and before development is exposed to vacuum ultraviolet rays.
  • heat generated in the window member is dissipated by the flow of the inert gas. Therefore, it is possible to prevent the temperature of the window member from rising without reducing the exposure efficiency of the substrate. Thereby, it can prevent that the illumination intensity of the vacuum ultraviolet-ray which permeate
  • the accuracy and efficiency of the exposure process can be maintained.
  • FIG. 1 is a schematic sectional view showing the arrangement of an exposure apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic bottom view when the inside of the exposure apparatus of FIG. 1 is viewed from a position below the mounting plate.
  • 3 is a cross-sectional view of the exposure apparatus of FIG. 2 along the line AA.
  • 4 is a cross-sectional view of the exposure apparatus of FIG. 2 taken along the line BB.
  • FIG. 5 is a perspective view showing the configuration of the ejection part of FIGS.
  • FIG. 6 is a side view showing the configuration of the ejection part and the ejection pipe of FIG.
  • FIG. 7 is a cross-sectional view taken along the line CC of the ejection part of FIG.
  • FIG. 1 is a schematic sectional view showing the arrangement of an exposure apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic bottom view when the inside of the exposure apparatus of FIG. 1 is viewed from a position below the mounting plate.
  • FIG. 8 is a functional block diagram showing the configuration of the control unit of FIG.
  • FIG. 9 is a schematic diagram for explaining the operation of the exposure apparatus.
  • FIG. 10 is a schematic diagram for explaining the operation of the exposure apparatus.
  • FIG. 11 is a schematic diagram for explaining the operation of the exposure apparatus.
  • FIG. 12 is a schematic diagram for explaining the operation of the exposure apparatus.
  • FIG. 13 is a flowchart showing an example of an exposure process performed by the control unit of FIG.
  • FIG. 14 is a flowchart showing an example of an exposure process performed by the control unit of FIG.
  • FIG. 15 is a schematic block diagram showing the overall configuration of a substrate processing apparatus provided with the exposure apparatus of FIG.
  • FIG. 16 is a schematic view showing an example of substrate processing by the substrate processing apparatus of FIG. FIG.
  • FIG. 17 is a side view showing the configuration of the ejection pipe in another embodiment.
  • FIG. 18 is a schematic bottom view showing another example of the arrangement of the ejection part and the exhaust part.
  • FIG. 19 is a schematic bottom view showing still another example of the arrangement of the ejection part and the exhaust part.
  • the term “substrate” refers to a semiconductor substrate, an FPD (Flat Panel Display) substrate such as a liquid crystal display device or an organic EL (Electro Luminescence) display device, an optical disk substrate, a magnetic disk substrate, and a magneto-optical disk. It refers to a substrate, a photomask substrate, a solar cell substrate, or the like.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of an exposure apparatus according to an embodiment of the present invention.
  • the exposure apparatus 100 includes a control unit 110, a processing chamber 120, a closing unit 130, a delivery unit 140, an elevating unit 150, a light projecting unit 160, a replacement unit 170, a measuring unit 180, and an airflow forming unit 190.
  • the control unit 110 acquires measurement values from the measurement unit 180 and controls operations of the blocking unit 130, the lifting unit 150, the light projecting unit 160, the replacement unit 170, and the airflow forming unit 190. The function of the control unit 110 will be described later.
  • the processing chamber 120 has an upper opening 121 and an internal space V1.
  • a transfer opening 122 for transferring the substrate W to be processed is formed between the inside and the outside of the processing chamber 120.
  • a film containing an induced self-organizing material hereinafter referred to as a DSA (Directed Self Assembly) film
  • a connecting member 152 of an elevating unit 150 described later passes is formed on the bottom surface of the processing chamber 120.
  • the closing part 130 includes a shutter 131, a rod-shaped connecting member 132, and a driving device 133.
  • the connecting member 132 connects the shutter 131 and the driving device 133.
  • the drive device 133 is a stepping motor, for example.
  • the driving device 133 moves the shutter 131 between an open position where the shutter 131 opens the transport opening 122 and a closed position where the shutter 131 closes the transport opening 122.
  • a seal member 131 a is attached to the shutter 131.
  • the inside of the processing chamber 120 is hermetically sealed by the seal member 131 a being in close contact with the portion surrounding the transfer opening 122 in the processing chamber 120.
  • the driving device 133 moves the shutter 131 away from the processing chamber 120 when moving the shutter 131 between the open position and the closed position. Move up and down in the state.
  • Position sensors 133a and 133b for detecting the upper limit position and the lower limit position of the shutter 131 are attached to the driving device 133.
  • the position sensors 133a and 133b give the detection result to the control unit 110.
  • the driving device 133 and a driving device 153 described later are provided outside the processing chamber 120. Therefore, even when dust is generated by driving the driving devices 133 and 153, the dust is prevented from directly entering the processing chamber 120.
  • the delivery unit 140 includes, for example, a disk-shaped support plate 141 and a plurality (three in this example) of support pins 142.
  • the support plate 141 is disposed in the processing chamber 120 in a horizontal posture.
  • an opening 141a is formed through which a connecting member 152 of an elevating unit 150 described later passes.
  • the plurality of support pins 142 extend upward from the upper surface of the support plate 141 so as to surround the opening 141a.
  • the substrate W to be processed can be placed on the upper ends of the plurality of support pins 142.
  • the elevating unit 150 includes a plate-shaped mounting plate 151, a rod-shaped connecting member 152, and a driving device 153.
  • the mounting plate 151 is arranged in a horizontal posture above the support plate 141 of the delivery unit 140 in the processing chamber 120.
  • a plurality of through holes 151 a corresponding to the plurality of support pins 142 of the support plate 141 are formed in the mounting plate 151.
  • the connecting member 152 is disposed so as to extend vertically through the opening 123 of the processing chamber 120 and the opening 141 a of the support plate 141, and the driving device 153 is disposed below the processing chamber 120.
  • the connecting member 152 connects the mounting plate 151 and the driving device 153.
  • a seal member 154 is disposed between the outer peripheral surface of the connecting member 152 and the inner peripheral surface of the opening 123 so that the connecting member 152 can slide in the vertical direction.
  • the driving device 153 is, for example, a stepping motor, and moves the mounting plate 151 between a processing position above the upper ends of the plurality of support pins 142 and a standby position below the upper ends of the plurality of support pins 142. Move up and down. In the state where the mounting plate 151 is in the standby position, the plurality of support pins 142 are inserted through the plurality of through holes 151a, respectively.
  • Position sensors 153 a and 153 b for detecting the upper limit position and the lower limit position of the mounting plate 151 are attached to the driving device 153. The position sensors 153a and 153b give the detection result to the control unit 110.
  • the light projecting unit 160 includes a housing 161 having a lower opening 161a and an internal space V2, a translucent plate 162, a planar light source unit 163, and a power supply device 164.
  • translucent plate 162 is a quartz glass plate.
  • the housing 161 is disposed above the processing chamber 120 so as to close the upper opening 121 of the processing chamber 120.
  • the translucent plate 162 is attached to the housing 161 so as to close the lower opening 161 a of the housing 161.
  • the internal space V ⁇ b> 1 of the processing chamber 120 and the internal space V ⁇ b> 2 of the housing 161 are optically accessible by a translucent plate 162.
  • the light source unit 163 and the power supply device 164 are accommodated in the housing 161.
  • the light source unit 163 is configured by horizontally arranging a plurality of rod-shaped light source elements 163a that emit vacuum ultraviolet rays having a wavelength of about 120 nm or more and about 230 nm or less at predetermined intervals.
  • Each light source element 163a may be, for example, a xenon excimer lamp, or another excimer lamp or a deuterium lamp.
  • the light source unit 163 emits vacuum ultraviolet rays having a substantially uniform light amount distribution into the processing chamber 120 through the translucent plate 162.
  • the area of the emission surface of the vacuum ultraviolet ray in the light source unit 163 is larger than the area of the surface to be processed of the substrate W.
  • the power supply device 164 supplies power to the light source unit 163.
  • the airflow forming unit 190 includes an ejection unit 191 and an exhaust unit 192 that are arranged to face each other with a space below the light transmitting plate 162 of the light projecting unit 160 interposed therebetween.
  • the ejection part 191 ejects an inert gas along the lower surface of the translucent plate 162, thereby forming a laminar flow of the inert gas along the lower surface of the translucent plate 162.
  • the exhaust unit 192 exhausts the inert gas ejected by the ejection unit 191 from the processing chamber 120.
  • nitrogen gas is used as the inert gas. Details of the configuration of the airflow forming unit 190 will be described later.
  • the replacement unit 170 includes pipes 171p, 172p, 173p, valves 171v, 172v, and a suction device 173.
  • the pipes 171p and 172p are connected between the air supply port of the processing chamber 120 and the inert gas supply source.
  • the inert gas is, for example, nitrogen gas.
  • Valves 171v and 172v are inserted in the pipes 171p and 172p.
  • the inert gas supply source to which the pipes 171p and 172p are connected may be an inert gas supply source 193 in FIG. 4 described later, or may be another inert gas supply source.
  • An inert gas is supplied into the processing chamber 120 from the side of the support plate 141 through the pipe 171p.
  • An inert gas is supplied into the processing chamber 120 from below the support plate 141 through the pipe 172p.
  • the flow rate of the inert gas is adjusted by valves 171v and 172v.
  • nitrogen gas is used as the inert gas.
  • the pipe 173p branches into a branch pipe 173a and a branch pipe 173b.
  • the branch pipe 173 a is connected to the exhaust port of the processing chamber 120, and the end of the branch pipe 173 b is disposed between the processing chamber 120 and the shutter 131.
  • a suction device 173 is inserted in the pipe 173p.
  • a valve 173v is inserted in the branch pipe 173b.
  • the suction device 173 is, for example, an ejector.
  • the pipe 173p is connected to the exhaust facility.
  • the exhaust equipment to which the pipe 173p is connected may be the exhaust equipment 194 in FIG. 4 described later, or other exhaust equipment.
  • the suction device 173 discharges the atmosphere in the processing chamber 120 through the branch pipe 173a and the pipe 173p.
  • the suction device 173 discharges the atmosphere between the processing chamber 120 and the shutter 131 through the branch pipe 173b and the pipe 173p together with dust generated by the movement of the shutter 131.
  • the gas discharged by the suction device 173 is rendered harmless by the exhaust facility.
  • the measuring unit 180 includes an oxygen concentration meter 181, an ozone concentration meter 182, and an illuminance meter 183.
  • the oxygen concentration meter 181, the ozone concentration meter 182 and the illuminance meter 183 are connected to the control unit 110 through connection ports p1, p2 and p3 provided in the processing chamber 120, respectively.
  • the oxygen concentration meter 181 is, for example, a galvanic cell type oxygen sensor or a zirconia type oxygen sensor, and measures the oxygen concentration in the processing chamber 120.
  • the ozone concentration meter 182 measures the ozone concentration in the processing chamber 120.
  • the illuminance meter 183 includes a light receiving element such as a photodiode, and measures the illuminance of vacuum ultraviolet rays from the light source unit 163 irradiated on the light receiving surface of the light receiving element.
  • the illuminance is a work rate of vacuum ultraviolet rays irradiated per unit area of the light receiving surface.
  • the unit of illuminance is represented by “W / m 2 ”, for example.
  • the atmosphere in the processing chamber 120 is replaced with an inert gas by the replacement unit 170.
  • the oxygen concentration in the processing chamber 120 is reduced.
  • the predetermined concentration is preferably an oxygen concentration (for example, 1%) at which ozone is not generated by the vacuum ultraviolet rays emitted from the light source unit 163.
  • the exposure amount of the vacuum ultraviolet rays applied to the substrate W reaches a predetermined set exposure amount, the irradiation of the vacuum ultraviolet rays is stopped and the exposure process is ended.
  • the exposure amount is the energy of vacuum ultraviolet rays irradiated per unit area of the surface to be processed of the substrate W during the exposure process.
  • the unit of the exposure amount is represented by “J / m 2 ”, for example. Therefore, the exposure amount of vacuum ultraviolet rays is acquired by integrating the illuminance of vacuum ultraviolet rays measured by the illuminance meter 183.
  • the exposure apparatus 100 is provided with an airflow forming unit 190 that suppresses an increase in the temperature of the translucent plate 162.
  • the configuration of the airflow forming unit 190 will be described.
  • FIG. 2 is a schematic bottom view when the inside of the exposure apparatus 100 of FIG. 1 is viewed from a position below the mounting plate 151.
  • FIG. 3 is a cross-sectional view of the exposure apparatus 100 of FIG. 2 along the line AA.
  • 4 is a cross-sectional view of the exposure apparatus 100 of FIG. 2 taken along line BB. 2 to 4, some components are not shown in order to facilitate understanding of the internal configuration of the exposure apparatus 100.
  • the translucent plate 162 has a substantially rectangular shape. A pair of side edges of the translucent plate 162 that are parallel to each other are referred to as side edges 162a and 162b, respectively.
  • the ejection portion 191 of the airflow forming portion 190 is provided horizontally below and on the outer side 162a of the translucent plate 162.
  • the exhaust part 192 of the airflow forming part 190 is provided horizontally below and on the outer side 162 b of the translucent plate 162.
  • the ejection portion 191 extends in parallel to the side 162a of the light transmitting plate 162
  • the exhaust portion 192 extends in parallel to the side 162b of the light transmitting plate 162.
  • the ejection part 191 and the exhaust part 192 face each other with the space below the translucent plate 162 interposed therebetween.
  • FIG. 5 is a perspective view showing the configuration of the ejection portion 191 shown in FIGS.
  • FIGS. 6A and 6B are side views showing the configurations of the ejection pipe 191a and the ejection portion 191 in FIG. 5, respectively.
  • FIGS. 7A to 7D are cross-sectional views taken along the line CC of the ejection portion 191 in FIG. 6B.
  • the ejection part 191 includes an ejection pipe 191a, a plurality (three in this example) of supply pipes 191b and a holding member 191c.
  • the ejection pipe 191a has a cylindrical shape extending in one direction. Both ends of the ejection pipe 191a are closed.
  • a plurality of ejection holes 191h are formed on the outer peripheral surface of the ejection pipe 191a in parallel to the axial direction of the ejection pipe 191a at a predetermined interval. The inside and the outside of the ejection pipe 191a communicate with each other through the plurality of ejection holes 191h.
  • the plurality of supply pipes 191b are connected between the ejection pipe 191a and the inert gas supply source 193. Specifically, one end of the plurality of supply pipes 191b is attached to the outer peripheral surface of the ejection pipe 191a through the holding member 191c so as to be arranged at a predetermined interval. The inside of the ejection pipe 191a communicates with the inside of each supply pipe 191b. The other ends of the plurality of supply pipes 191b are attached to an inert gas supply source 193. A valve 191v is inserted in each supply pipe 191b.
  • the holding member 191c is a cylindrical member having a substantially polygonal cross section extending in one direction.
  • a slit 191s extending in one direction is formed in the holding member 191c. Both ends of the holding member 191c are open.
  • the ejection pipe 191a is held in the holding member 191c.
  • the holding member 191c is attached in the processing chamber 120 of FIG. 1 so that the slit 191s faces inward of the processing chamber 120.
  • the inside and the outside of the holding member 191c communicate with each other through the slit 191s.
  • an inert gas is jetted along the lower surface of the translucent plate 162 through the slit 191s of the holding member 191c. Therefore, the ejection pipe 191a may be held by the holding member 191c with the plurality of ejection holes 191h facing in any direction.
  • the several ejection hole 191h is arrange
  • the plurality of ejection holes 191h are arranged in a state of facing obliquely upward 45 degrees.
  • the plurality of ejection holes 191h are arranged in a state of facing obliquely upward 25 degrees.
  • the plurality of ejection holes 191h are arranged in a state of facing obliquely downward 10 degrees.
  • the exhaust part 192 of FIG. 4 includes an exhaust pipe 192a, a plurality (three in this example) of recovery pipes 192b and a holding member 192c.
  • the exhaust pipe 192a and the holding member 192c have the same configuration as the ejection pipe 191a and the holding member 191c, respectively. Accordingly, a plurality of exhaust holes (not shown) similar to the ejection holes 191h are formed in the exhaust pipe 192a.
  • a slit 192s similar to the slit 191s is formed in the holding member 192c.
  • Each recovery pipe 192b has the same configuration as each supply pipe 191b except that it is connected to the exhaust facility 194 instead of the inert gas supply source 193.
  • the exhaust part 192 may have a configuration different from the ejection part 191.
  • a single member having a slit as the exhaust port may be used, or a single member having a plurality of exhaust holes as the exhaust port may be used.
  • the inert gas supplied from the inert gas supply source 193 is guided into the ejection pipe 191a through the plurality of supply pipes 191b. Further, the inert gas is ejected through the plurality of ejection holes 191h (FIG. 3) of the ejection pipe 191a and the slit 191s of the holding member 191c. As a result, the inert gas is guided between the light transmitting plate 162 and the substrate W in the direction of the exhaust portion 192 along the lower surface of the light transmitting plate 162 as indicated by an arrow in FIG. Thereby, a flow of an inert gas along the lower surface of the translucent plate 162 is formed.
  • the flow of the inert gas is a laminar flow having a cross-sectional band shape that is in contact with the entire lower surface of the light-transmitting plate 162.
  • the inert gas that has passed under the translucent plate 162 flows into the exhaust pipe 192a through the slit 192s of the holding member 192c and a plurality of exhaust holes (not shown) of the exhaust part 192. Thereafter, the inert gas is recovered to the exhaust facility 194 through a plurality of recovery pipes 192b. In this case, since the inert gas containing the heat from the translucent plate 162 is discharged to the outside of the processing chamber 120, the temperature rise of the translucent plate 162 is efficiently prevented.
  • FIG. 8 is a functional block diagram showing the configuration of the control unit 110 in FIG.
  • the control unit 110 includes a blockage control unit 1, a lift control unit 2, an exhaust control unit 3, an air supply control unit 4, a concentration acquisition unit 5, a concentration comparison unit 6, an airflow control unit 7, and illuminance acquisition.
  • Unit 8 an exposure amount calculation unit 9, an exposure amount comparison unit 10, and a light projection control unit 11.
  • the control unit 110 includes, for example, a CPU (Central Processing Unit) and a memory.
  • a control program is stored in advance in the memory of the control unit 110.
  • the function of each unit of the control unit 110 is realized by the CPU of the control unit 110 executing the control program stored in the memory.
  • the closing control unit 1 controls the driving device 133 so that the shutter 131 moves between the closing position and the opening position based on the detection results of the position sensors 133a and 133b in FIG.
  • the elevation control unit 2 controls the driving device 153 so that the mounting plate 151 moves between the standby position and the processing position based on the detection results of the position sensors 153a and 153b in FIG.
  • the exhaust control unit 3 controls the suction device 173 and the valve 173v so as to exhaust the atmosphere in the processing chamber 120 and the atmosphere between the processing chamber 120 and the shutter 131 in FIG.
  • the air supply control unit 4 controls the valves 171v and 172v in FIG. 1 so as to supply an inert gas into the processing chamber 120.
  • the concentration acquisition unit 5 acquires the value of the oxygen concentration measured by the oxygen concentration meter 181 of FIG.
  • the concentration comparison unit 6 compares the oxygen concentration measured by the concentration acquisition unit 5 with a predetermined concentration.
  • the airflow control unit 7 emits an inert gas from the ejection unit 191 in FIG. 4 and emits an inert gas by the exhaust unit 192 in a period in which the ultraviolet light is irradiated from the light source unit 163 to the substrate W by the light projection control unit 11.
  • the airflow forming unit 190 is controlled so as to be discharged.
  • the illuminance acquisition unit 8 acquires the value of the illuminance of vacuum ultraviolet rays measured by the illuminometer 183 in FIG.
  • the exposure amount calculation unit 9 applies the vacuum ultraviolet rays irradiated to the substrate W based on the illuminance of the vacuum ultraviolet rays acquired by the illuminance acquisition unit 8 and the irradiation time of the vacuum ultraviolet rays from the light source unit 163 in FIG.
  • the exposure amount is calculated.
  • the exposure amount comparison unit 10 compares the exposure amount calculated by the exposure amount calculation unit 9 with a predetermined set exposure amount.
  • the light projection control unit 11 controls the supply of power from the power supply device 164 of FIG. 1 to the light source unit 163 so that the light source unit 163 emits vacuum ultraviolet rays based on the comparison result by the concentration comparison unit 6. Further, the light projection control unit 11 supplies the exposure amount calculation unit 9 with the power supply time from the power supply device 164 to the light source unit 163 as the irradiation time of vacuum ultraviolet rays from the light source unit 163 to the substrate W. Further, the light projection control unit 11 controls the power supply device 164 so that the light source unit 163 stops the emission of the vacuum ultraviolet rays based on the comparison result by the exposure amount comparison unit 10.
  • FIGS. 9 to 12 are schematic diagrams for explaining the operation of the exposure apparatus 100. 9 to 12, in order to facilitate understanding of the configuration inside the processing chamber 120 and the housing 161, some components are not shown, and the outlines of the processing chamber 120 and the housing 161 are only one point. Indicated by a chain line. 13 and 14 are flowcharts showing an example of exposure processing performed by the control unit 110 in FIG. Hereinafter, the exposure processing by the control unit 110 will be described with reference to FIGS.
  • the shutter 131 is in the closed position and the mounting plate 151 is in the standby position. Further, the oxygen concentration in the processing chamber 120 is measured constantly or periodically by the oxygen concentration meter 181 and acquired by the concentration acquisition unit 5. At this time, the oxygen concentration in the processing chamber 120 measured by the oxygen concentration meter 181 is equal to the oxygen concentration in the atmosphere.
  • the closing control unit 1 moves the shutter 131 to the open position (step S1).
  • the substrate W to be processed can be placed on the upper ends of the plurality of support pins 142 through the transport opening 122.
  • the substrate W is placed on the upper ends of the plurality of support pins 142 by the transfer device 220 shown in FIG.
  • the elevation controller 2 determines whether or not the substrate W is placed on the upper ends of the plurality of support pins 142 (step S2). When the substrate W is not placed, the elevation control unit 2 waits until the substrate W is placed on the upper ends of the plurality of support pins 142. When the substrate W is placed, the elevation control unit 2 moves the shutter 131 to the closed position as shown in FIG. 11 (step S3).
  • the exhaust control unit 3 discharges the atmosphere in the processing chamber 120 by the suction device 173 of FIG. 1 (step S4). Further, the air supply control unit 4 supplies an inert gas into the processing chamber 120 through the pipes 171p and 172p in FIG. 1 (step S5). Either of the processes of steps S4 and S5 may be started first, or may be started simultaneously. Thereafter, as shown in FIG. 12, the elevation controller 2 moves the placement plate 151 to the processing position (step S6). As a result, the substrate W is transferred from the plurality of support pins 142 to the mounting plate 151 and is brought close to the translucent plate 162.
  • the concentration comparison unit 6 determines whether or not the oxygen concentration in the processing chamber 120 has decreased to a predetermined concentration (step S7). When the oxygen concentration has not decreased to the predetermined concentration, the concentration comparison unit 6 stands by until the oxygen concentration decreases to the predetermined concentration. When the oxygen concentration decreases to a predetermined concentration, the light projection control unit 11 causes the light source unit 163 to emit vacuum ultraviolet rays (step S8). Thereby, vacuum ultraviolet rays are irradiated onto the substrate W from the light source unit 163 through the light transmitting plate 162, and the DSA film formed on the surface to be processed is exposed.
  • the airflow control unit 7 causes the ejection unit 191 to eject the inert gas and causes the exhaust unit 192 to discharge the inert gas (step S9).
  • the illuminance acquisition unit 8 causes the illuminance meter 183 to start measuring the illuminance of vacuum ultraviolet rays, and acquires the measured illuminance from the illuminance meter 183 (step S10).
  • the processes in steps S8 to S10 are started almost simultaneously.
  • the exposure amount calculation unit 9 calculates the exposure amount of the vacuum ultraviolet ray irradiated to the substrate W by integrating the illuminance of the vacuum ultraviolet ray acquired by the illuminance acquisition unit 8 (step S11).
  • the exposure amount comparison unit 10 determines whether or not the exposure amount calculated by the exposure amount calculation unit 9 has reached the set exposure amount (step S12). When the exposure amount has not reached the set exposure amount, the exposure amount comparison unit 10 stands by until the exposure amount reaches the set exposure amount.
  • the light projection control unit 11 stops the emission of the vacuum ultraviolet rays from the light source unit 163 (step S13). Moreover, the airflow control unit 7 stops the ejection of the inert gas by the ejection unit 191 and the discharge of the inert gas by the exhaust unit 192 (step S14). Furthermore, the illuminance acquisition unit 8 stops the illuminance measurement by the illuminometer 183 (step S15). The processes in steps S13 to S15 are started almost simultaneously.
  • the elevation controller 2 lowers the placement plate 151 to the standby position (step S16).
  • the substrate W is transferred from the placement plate 151 to the plurality of support pins 142.
  • the exhaust control unit 3 stops the discharge of the atmosphere in the processing chamber 120 by the suction device 173 (step S17).
  • the air supply control unit 4 stops the supply of the inert gas from the pipes 171p and 172p into the processing chamber 120 (step S18). Any of the processes in steps S17 to S22 may be started first, or may be started simultaneously.
  • the closing control unit 1 moves the shutter 131 to the open position as shown in FIG. 10 (step S19). Accordingly, the exposed substrate W can be carried out from the plurality of support pins 142 to the outside of the processing chamber 120 through the transfer opening 122. In this example, the substrate W is unloaded from the plurality of support pins 142 to the outside of the processing chamber 120 by the transfer device 220 shown in FIG.
  • the closing control unit 1 determines whether or not the substrate W has been unloaded from the plurality of support pins 142 (step S20). When the substrate W has not been unloaded, the closing control unit 1 stands by until the substrate W is unloaded from the plurality of support pins 142. When the substrate W is carried out, the closing control unit 1 moves the shutter 131 to the closing position as shown in FIG. 9 (step S21), and the exposure process is ended. By repeating the above operation, exposure processing can be sequentially performed on the plurality of substrates W.
  • the ejection of the inert gas by the ejection unit 191 and the discharge of the inert gas by the exhaust unit 192 are performed in the same period as the irradiation of the vacuum ultraviolet rays from the light source unit 163 to the substrate W.
  • the invention is not limited to this.
  • the ejection of the inert gas and the discharge of the inert gas may be performed before or after the start of the irradiation of the vacuum ultraviolet rays onto the substrate W.
  • the stop of the ejection of the inert gas and the stop of the discharge of the inert gas may be performed before or after the stop of the irradiation of the vacuum ultraviolet rays onto the substrate W.
  • the ejection of the inert gas by the ejection unit 191 and the discharge of the inert gas by the exhaust unit 192 may be performed constantly when the shutter 131 is in the closed position. Therefore, the process of step S9 may be performed substantially simultaneously with the process of step S4 or step S5. Moreover, the process of step S14 may be performed substantially simultaneously with the process of step S17 or step S18.
  • FIG. 15 is a schematic block diagram showing the overall configuration of a substrate processing apparatus provided with the exposure apparatus 100 of FIG.
  • processing using block copolymer induced self-assembly is performed.
  • a processing liquid containing an induction self-organizing material is applied on the surface of the substrate W to be processed.
  • two types of polymer patterns are formed on the surface to be processed of the substrate W by microphase separation that occurs in the induced self-assembled material.
  • One of the two types of polymers is removed by the solvent.
  • the treatment liquid containing the induced self-organizing material is called DSA liquid.
  • DSA liquid a process for removing one of the two types of polymer patterns formed on the surface to be processed of the substrate W by microphase separation
  • a developer a solvent used for the development process
  • the substrate processing apparatus 200 includes a control device 210, a transport device 220, a heat treatment device 230, a coating device 240, and a developing device 250 in addition to the exposure device 100.
  • the control device 210 includes, for example, a CPU and a memory or a microcomputer, and controls operations of the transport device 220, the heat treatment device 230, the coating device 240, and the developing device 250.
  • the control device 210 gives a command for controlling the operation of the closing unit 130, the lifting unit 150, the light projecting unit 160, the replacement unit 170, and the airflow forming unit 190 of the exposure apparatus 100 of FIG.
  • the transport apparatus 220 transports the substrate W between the exposure apparatus 100, the heat treatment apparatus 230, the coating apparatus 240, and the development apparatus 250 while holding the substrate W to be processed.
  • the heat treatment apparatus 230 heat-treats the substrate W before and after the coating process by the coating apparatus 240 and the development process by the developing apparatus 250.
  • the coating apparatus 240 performs a film coating process by supplying a DSA liquid to the surface of the substrate W to be processed.
  • a block copolymer composed of two types of polymers is used as the DSA liquid.
  • Examples of combinations of two types of polymers include polystyrene-polymethyl methacrylate (PS-PMMA), polystyrene-polydimethylsiloxane (PS-PDMS), polystyrene-polyferrocenyldimethylsilane (PS-PFS), and polystyrene-polyethylene oxide.
  • PS-PEO polystyrene-polyvinylpyridine
  • PS-PHOST polystyrene-polyhydroxystyrene
  • PMMA-PMAPOSS polymethyl methacrylate-polymethacrylate polyhedral oligomeric silsesquioxane
  • the developing device 250 supplies the developer to the surface to be processed of the substrate W, thereby developing the film.
  • a solvent for the developer for example, toluene, heptane, acetone, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), cyclohexanone, acetic acid, tetrahydrofuran, isopropyl alcohol (IPA) or tetramethylammonium hydroxide (TMAH) ) And the like.
  • FIG. 16 is a schematic diagram showing an example of processing of the substrate W by the substrate processing apparatus 200 of FIG.
  • the state of the substrate W that changes each time processing is performed is shown in a cross-sectional view.
  • the base layer L1 is formed so as to cover the surface to be processed of the substrate W as shown in FIG.
  • a guide pattern L2 made of, for example, a photoresist is formed on L1.
  • the operation of the substrate processing apparatus 200 will be described with reference to FIGS. 15 and 16.
  • the transfer device 220 sequentially transfers the substrate W to be processed to the heat treatment device 230 and the coating device 240.
  • the temperature of the substrate W is adjusted to a temperature suitable for forming the DSA film.
  • the coating apparatus 240 the DSA liquid is supplied to the surface to be processed of the substrate W, and the coating process is performed. Accordingly, as shown in FIG. 16B, a DSA film L3 composed of two types of polymers is formed in a region on the base layer L1 where the guide pattern L2 is not formed.
  • the transfer device 220 sequentially transfers the substrate W on which the DSA film L3 is formed to the heat treatment device 230 and the exposure device 100.
  • the heat treatment apparatus 230 performs the heat treatment of the substrate W, thereby causing microphase separation in the DSA film L3.
  • a pattern Q1 made of one polymer and a pattern Q2 made of the other polymer are formed.
  • the linear pattern Q1 and the linear pattern Q2 are directionally formed along the guide pattern L2.
  • the substrate W is cooled in the heat treatment apparatus 230. Further, in the exposure apparatus 100, the entire DSA film L3 after microphase separation is irradiated with vacuum ultraviolet rays for modifying the DSA film L3, and exposure processing is performed. Thereby, the bond between one polymer and the other polymer is cut, and the pattern Q1 and the pattern Q2 are separated.
  • the transport device 220 sequentially transports the substrate W after the exposure processing by the exposure device 100 to the heat treatment device 230 and the developing device 250.
  • the substrate W is cooled in the heat treatment apparatus 230.
  • a developer is supplied to the DSA film L3 on the substrate W, and development processing is performed.
  • the pattern Q1 is removed, and finally the pattern Q2 remains on the substrate W.
  • the transport device 220 collects the substrate W after the development processing from the development device 250.
  • vacuum ultraviolet rays are irradiated to the substrate W accommodated in the processing chamber 120 by the light source unit 163 through the light transmitting plate 162 attached to the upper opening 121 of the processing chamber 120. Is done. Moreover, the flow of the inert gas along one surface of the translucent plate 162 is formed as a laminar flow by the ejection part 191 and the exhaust part 192.
  • the heat generated in the light transmitting plate 162 is dissipated by the flow of the inert gas. Further, the inert gas hardly absorbs the vacuum ultraviolet rays applied to the substrate W. Therefore, it is possible to prevent the temperature of the translucent plate 162 from rising without reducing the exposure efficiency of the substrate W. Thereby, it can prevent that the illumination intensity of the vacuum ultraviolet-ray which permeate
  • FIG. 17 is a side view showing the configuration of the ejection pipe 191a in another embodiment.
  • slits 191t extending in one direction are formed in the ejection pipe 191a instead of the plurality of ejection holes 191h in FIG. 6 (a).
  • the inside and the outside of the ejection pipe 191a communicate with each other through the slit 191t.
  • the inert gas having a strip-shaped cross section can be ejected from the slit 191t.
  • the exposure apparatus 100 includes one ejection part 191 and one exhaust part 192, but the present invention is not limited to this.
  • the exposure apparatus 100 may include a plurality of ejection portions 191.
  • the exposure apparatus 100 may include a plurality of exhaust units 192.
  • FIG. 18 is a schematic bottom view showing another example of the arrangement of the ejection part and the exhaust part.
  • the first ejection portion 191 ⁇ / b> A is provided horizontally below and on the outer side 162 a of the translucent plate 162, and the second ejection portion 191 ⁇ / b> B is disposed below the side 162 b of the translucent plate 162.
  • the exhaust portion 192 is provided horizontally below and outside one side 162c of the pair of sides 162c and 162d orthogonal to the sides 162a and 162b of the translucent plate 162.
  • the inert gas is jetted in the direction from the side 162a toward the side 162b along the lower surface of the translucent plate 162 by the first jet 191A.
  • the inert gas is ejected in the direction from the side 162b toward the side 162a along the lower surface of the translucent plate 162 by the second ejection portion 191B.
  • the ejected inert gas travels while being bent so as to approach the exhaust part 192, and reaches the exhaust part 192.
  • a laminar flow along the lower surface of the translucent plate 162 is formed by the inert gas ejected by the first and second ejection portions 191A and 191B.
  • FIG. 19 is a schematic bottom view showing still another example of the arrangement of the ejection part and the exhaust part.
  • the example of FIG. 19 is different from the example of FIG. 18 in that the first exhaust part 192A is provided horizontally below and outside one side 162c of the translucent plate 162, and the second exhaust part 192B is This is a point provided horizontally below and outside the other side 162d of the light transmitting plate 162.
  • the inert gas ejected by the first ejection part 191A proceeds while bending so as to approach the first and second exhaust parts 192A, 192B, and the first and second exhaust parts 192A. , 192B.
  • the inert gas ejected by the second ejection part 191B travels while being bent so as to approach the first and second exhaust parts 192A, 192B, and enters the first and second exhaust parts 192A, 192B.
  • a laminar flow along the lower surface of the translucent plate 162 is formed by the inert gas ejected by the first and second ejection portions 191A and 191B.
  • the exhaust part 192 is disposed at a position facing the ejection part 191 with the space below the translucent plate 162 interposed therebetween, but the present invention is not limited to this.
  • the exhaust part 192 may be disposed at another position.
  • the airflow formation part 190 contains the exhaust part 192, this invention is not limited to this. Since the inert gas ejected by the ejection part 191 is exhausted from the processing chamber 120 through the branch pipe 173a, the pipe 173p, and the suction device 173, the airflow formation part 190 may not include the exhaust part 192.
  • the DSA liquid is used as the processing liquid, but the present invention is not limited to this. Other processing liquids different from the DSA liquid may be used.
  • the exit surface of the vacuum ultraviolet ray is larger than the surface to be processed of the substrate W, and the entire surface of the substrate W is exposed.
  • the emission surface of the vacuum ultraviolet ray may be smaller than the surface to be processed of the substrate W, or the vacuum ultraviolet ray having a linear cross section may be emitted without having a planar cross section.
  • the vacuum ultraviolet ray is irradiated on the entire surface of the substrate W to be processed by relatively moving the vacuum ultraviolet ray emitting surface and the surface of the substrate W to be processed.
  • an inert gas is supplied into the processing chamber 120 during the exposure process, but the present invention is not limited to this. If the oxygen concentration in the processing chamber 120 can be sufficiently reduced during the exposure processing, the inert gas may not be supplied into the processing chamber 120.
  • the upper opening 121 is an example of an opening
  • the substrate W is an example of a substrate
  • the processing chamber 120 is an example of a processing chamber
  • the translucent plate 162 is an example of a window member
  • the part 163 is an example of a light source part
  • the airflow formation part 190 is an example of an airflow formation part.
  • the exposure apparatus 100 is an example of an exposure apparatus
  • the internal space V1 is an example of an internal space
  • the ejection part 191 is an example of an ejection part
  • the exhaust part 192 is an example of an exhaust part
  • the ejection pipe 191a is an ejection pipe.
  • the ejection hole 191h or the slit 191t is an example of the ejection port.
  • the holding member 191c is an example of the holding member
  • the slits 191s and 191t are examples of the first and second slits
  • the ejection hole 191h is an example of the ejection hole
  • the first and second ejection portions 191A, 191B is an example of the 1st and 2nd ejection part, respectively.
  • the coating device 240 is an example of a coating processing unit
  • the thermal processing device 230 is an example of a thermal processing unit
  • the developing device 250 is an example of a developing processing unit
  • the substrate processing device 200 is an example of a substrate processing device.

Abstract

Provided is an exposure device comprising: a treatment chamber having an opening and accommodating a substrate; a translucent window member attached to the opening of the treatment chamber; a light source unit irradiating the substrate in the treatment chamber with vacuum ultraviolet rays through the window member; and an air flow formation unit forming a flow of an inert gas along one surface of the window member. In the exposure device, the vacuum ultraviolet rays from the light source unit is irradiated to the substrate accommodated in the treatment chamber through the translucent window member attached to the opening of the treatment chamber. Furthermore, the air flow formation unit forms a flow of an inert gas along the one surface of the window member.

Description

露光装置、基板処理装置、基板の露光方法および基板処理方法Exposure apparatus, substrate processing apparatus, substrate exposure method, and substrate processing method
 本発明は、基板に露光処理を行う露光装置、基板処理装置、基板の露光方法および基板処理方法に関する。 The present invention relates to an exposure apparatus that performs exposure processing on a substrate, a substrate processing apparatus, a substrate exposure method, and a substrate processing method.
 近年、基板に形成されるパターンを微細化するために、ブロック共重合体の誘導自己組織化(DSA:Directed Self Assembly)を利用したフォトリソグラフィ技術の開発が進められている。このようなフォトリソグラフィ技術においては、ブロック重合体が塗布された基板に加熱処理が施された後、基板の一面が露光されることによりブロック重合体が改質される。この処理においては、基板の露光量を正確に調整することが求められる。 In recent years, in order to make a pattern formed on a substrate finer, development of a photolithography technique using guided self-assembly (DSA) of a block copolymer has been promoted. In such a photolithography technique, after the heat treatment is performed on the substrate on which the block polymer is applied, the block polymer is modified by exposing one surface of the substrate. In this process, it is required to accurately adjust the exposure amount of the substrate.
 特許文献1には、基板上の誘導自己組織化材料を含む膜(DSA膜)に露光処理を行う露光装置が記載されている。露光装置は、断面帯状の真空紫外線を出射可能な光出射部を有し、基板が光出射部からの真空紫外線の経路を横切るように光出射部の前方位置から後方位置に移動可能に構成される。露光処理前に、真空紫外線の照度が照度センサにより予め検出され、所望の露光量の真空紫外線が照射されるように、検出された照度に基づいて基板の移動速度が算出される。露光処理時に、基板が算出された移動速度で移動することにより、所望の露光量の真空紫外線が基板上のDSA膜に照射される。
特開2016-183990号公報
Patent Document 1 describes an exposure apparatus that performs an exposure process on a film (DSA film) containing an induced self-assembled material on a substrate. The exposure apparatus has a light emitting part capable of emitting a vacuum ultraviolet ray having a cross-sectional band shape, and is configured to be movable from the front position to the rear position of the light emitting part so that the substrate crosses the path of the vacuum ultraviolet ray from the light emitting part. The Prior to the exposure process, the illuminance of vacuum ultraviolet rays is detected in advance by an illuminance sensor, and the moving speed of the substrate is calculated based on the detected illuminance so that a desired amount of vacuum ultraviolet rays is irradiated. During the exposure process, the DSA film on the substrate is irradiated with a desired amount of vacuum ultraviolet light by moving the substrate at the calculated moving speed.
JP 2016-183990 A
 長時間にわたって露光装置を使用すると、基板に照射される真空紫外線の照度が低下することがある。この場合、露光処理の精度が低下する。また、露光処理に要する時間が長期化することにより、露光処理の効率が低下する。 If the exposure apparatus is used for a long time, the illuminance of the vacuum ultraviolet rays applied to the substrate may decrease. In this case, the accuracy of the exposure process decreases. In addition, since the time required for the exposure process is prolonged, the efficiency of the exposure process is lowered.
 本発明の目的は、露光処理の精度および効率を維持することが可能な露光装置、基板処理装置、露光方法および基板処理方法を提供することである。 An object of the present invention is to provide an exposure apparatus, a substrate processing apparatus, an exposure method, and a substrate processing method capable of maintaining the accuracy and efficiency of exposure processing.
 (1)本発明の一局面に従う露光装置は、開口を有し、基板を収容する処理室と、処理室の開口に取り付けられた透光性の窓部材と、窓部材を通して処理室内の基板に真空紫外線を照射する光源部と、窓部材の一面に沿った不活性ガスの流れを形成する気流形成部とを備える。 (1) An exposure apparatus according to an aspect of the present invention has an opening, a processing chamber that houses a substrate, a translucent window member attached to the opening of the processing chamber, and a substrate in the processing chamber through the window member. The light source part which irradiates a vacuum ultraviolet-ray, and the airflow formation part which forms the flow of the inert gas along one surface of a window member are provided.
 この露光装置においては、処理室の開口に取り付けられた透光性の窓部材を通して、光源部により処理室内に収容された基板に真空紫外線が照射される。また、気流形成部により窓部材の一面に沿った不活性ガスの流れが形成される。 In this exposure apparatus, vacuum ultraviolet rays are radiated to the substrate housed in the processing chamber by the light source section through a translucent window member attached to the opening of the processing chamber. Moreover, the flow of the inert gas along one surface of the window member is formed by the airflow forming portion.
 この構成によれば、長時間にわたって真空紫外線が窓部材に照射される場合でも、窓部材に発生する熱が不活性ガスの流れにより放散される。また、不活性ガスは、基板に照射される真空紫外線をほとんど吸収しない。そのため、基板の露光効率を低下させることなく窓部材の温度が上昇することを防止することができる。これにより、窓部材を透過して基板に照射される真空紫外線の照度が低下することを防止することができる。また、窓部材の温度上昇による昇華物の生成が防止される。その結果、露光処理の精度および効率を維持することができる。 According to this configuration, even when the vacuum ultraviolet rays are irradiated to the window member for a long time, the heat generated in the window member is dissipated by the flow of the inert gas. Further, the inert gas hardly absorbs the vacuum ultraviolet rays applied to the substrate. Therefore, it is possible to prevent the temperature of the window member from rising without reducing the exposure efficiency of the substrate. Thereby, it can prevent that the illumination intensity of the vacuum ultraviolet-ray which permeate | transmits a window member and is irradiated to a board | substrate falls. Moreover, the production | generation of the sublimation by the temperature rise of a window member is prevented. As a result, the accuracy and efficiency of the exposure process can be maintained.
 (2)窓部材の一面は、処理室の内部空間に面し、気流形成部は、処理室内において窓部材の一面に沿った不活性ガスの流れを形成してもよい。この場合、処理室の内部空間に接する窓部材の面の温度上昇が防止されるので、処理室内で昇華物が生成されることが防止される。それにより、昇華物の付着による窓部材の透過率の低下が防止されるとともに、処理室内の汚染が防止される。 (2) One surface of the window member may face the internal space of the processing chamber, and the airflow forming unit may form an inert gas flow along the one surface of the window member in the processing chamber. In this case, since the temperature rise of the surface of the window member in contact with the internal space of the processing chamber is prevented, the generation of sublimates in the processing chamber is prevented. Thereby, the fall of the transmittance | permeability of the window member by adhesion of a sublimate is prevented, and contamination in a processing chamber is prevented.
 (3)気流形成部は、処理室内に窓部材の一面に沿うように不活性ガスを噴出する噴出部と、処理室内の不活性ガスを排出する排気部とを含んでもよい。この場合、噴出部から噴出される不活性ガスが排気部により排出されることにより、処理室内において不活性ガスの流れをより容易に形成することができる。また、窓部材からの熱を含む不活性ガスが処理室の外部に排出されるので、窓部材の温度上昇が効率的に防止される。 (3) The airflow forming unit may include an ejection unit that ejects an inert gas along one surface of the window member into the processing chamber, and an exhaust unit that exhausts the inert gas within the processing chamber. In this case, when the inert gas ejected from the ejection part is exhausted by the exhaust part, the flow of the inert gas can be more easily formed in the processing chamber. Moreover, since the inert gas containing the heat from the window member is discharged to the outside of the processing chamber, the temperature rise of the window member is efficiently prevented.
 (4)噴出部は、窓部材の一面に平行に延びかつ不活性ガスを噴出する噴出口を有する噴出管を含んでもよい。この場合、窓部材の一面の全体に沿った不活性ガスの流れを容易に形成することができる。 (4) The ejection part may include an ejection pipe extending in parallel with one surface of the window member and having an ejection port for ejecting an inert gas. In this case, the flow of the inert gas along the entire surface of the window member can be easily formed.
 (5)噴出部は、噴出管の外周を囲むように設けられる保持部材をさらに含み、保持部材は、窓部材の一面に平行に延びる第1のスリットを有し、噴出管の噴出口から噴出される不活性ガスが保持部材の第1のスリットを通して窓部材の一面に沿って噴出されてもよい。この場合、窓部材の一面に平行に延びる噴出管を不活性ガスの流れを妨げることなく容易に保持することができる。 (5) The ejection part further includes a holding member provided so as to surround the outer periphery of the ejection pipe, and the holding member has a first slit extending in parallel with one surface of the window member, and ejects from the ejection port of the ejection pipe The inert gas to be discharged may be ejected along one surface of the window member through the first slit of the holding member. In this case, the ejection pipe extending parallel to one surface of the window member can be easily held without hindering the flow of the inert gas.
 (6)噴出管は、噴出口として窓部材の一面に平行に並びかつ不活性ガスを噴出する複数の噴出孔を有してもよい。この場合、噴出管は、複数の噴出孔から窓部材の一面に平行に延びる断面帯状の不活性ガスを噴出することができる。 (6) The ejection pipe may have a plurality of ejection holes arranged in parallel to one surface of the window member as an ejection outlet and ejecting an inert gas. In this case, the ejection pipe can eject an inert gas having a strip-shaped cross section extending in parallel to one surface of the window member from the plurality of ejection holes.
 (7)噴出管は、噴出口として窓部材の一面に平行に延びかつ不活性ガスを噴出する第2のスリットを有してもよい。この場合、噴出管は、窓部材の一面に平行に延びる断面帯状の不活性ガスを噴出することができる。 (7) The ejection pipe may have a second slit that extends parallel to one surface of the window member and ejects an inert gas as an ejection outlet. In this case, the ejection pipe can eject an inert gas having a cross-sectional strip shape extending in parallel with one surface of the window member.
 (8)噴出部と排気部とは、窓部材の一面に接する空間を挟んで互いに対向するように配置されてもよい。この場合、噴出部から噴出される不活性ガスが窓部材の一面に沿って窓部材の全体を通過した後、排気部により排出される。これにより、窓部材の一面の全体に沿った不活性ガスの流れを容易にかつ効率よく形成することができる。 (8) The ejection part and the exhaust part may be arranged to face each other across a space in contact with one surface of the window member. In this case, the inert gas ejected from the ejection portion passes through the entire window member along one surface of the window member, and is then discharged by the exhaust portion. Thereby, the flow of the inert gas along the whole one surface of the window member can be formed easily and efficiently.
 (9)噴出部は、窓部材の一面に接する空間を挟んで互いに対向するように配置される第1および第2の噴出部を含み、排気部は、第1および第2の噴出部に重ならないように配置されてもよい。この構成によれば、窓部材が大型である場合でも、互いに対向する第1および第2の噴出部により窓部材の一面の全体に沿った不活性ガスの流れを形成することができる。そのため、より大きい寸法を有する基板の露光処理の精度および効率を容易に維持することができる。 (9) The ejection part includes first and second ejection parts arranged to face each other across a space in contact with one surface of the window member, and the exhaust part overlaps the first and second ejection parts. You may arrange | position so that it may not become. According to this configuration, even when the window member is large, the flow of inert gas along the entire surface of the window member can be formed by the first and second jetting portions facing each other. Therefore, it is possible to easily maintain the accuracy and efficiency of exposure processing of a substrate having a larger dimension.
 (10)気流形成部は、窓部材の一面に沿った不活性ガスの層流を形成してもよい。この場合、窓部材の一面に沿った不活性ガスの層流により窓部材に発生する熱を放散することができる。 (10) The airflow forming unit may form a laminar flow of inert gas along one surface of the window member. In this case, heat generated in the window member can be dissipated by the laminar flow of the inert gas along one surface of the window member.
 (11)光源部は、面状の断面を有する真空紫外線を出射するように構成されてもよい。この場合、窓部材を通して広範囲に真空紫外線が出射される。そのため、基板の露光処理を短時間で終了することができる。また、窓部材の全体から発生する熱が不活性ガスの流れにより放散されるので、窓部材の広範囲に真空紫外線が照射される場合でも、窓部材の温度が上昇することが防止される。これにより、露光処理の精度を維持しつつ効率を向上させることができる。 (11) The light source unit may be configured to emit vacuum ultraviolet rays having a planar cross section. In this case, vacuum ultraviolet rays are emitted in a wide range through the window member. Therefore, the substrate exposure process can be completed in a short time. Moreover, since the heat generated from the entire window member is dissipated by the flow of the inert gas, it is possible to prevent the temperature of the window member from rising even when vacuum ultraviolet rays are irradiated over a wide range of the window member. Thereby, the efficiency can be improved while maintaining the accuracy of the exposure process.
 (12)光源部による真空紫外線の出射面積は、基板の面積よりも大きくてもよい。この場合、基板の全面露光を行うことができるので、基板の露光をより短時間で終了することができる。これにより、露光処理の効率をより向上させることができる。 (12) The emission area of the vacuum ultraviolet rays by the light source unit may be larger than the area of the substrate. In this case, since the entire surface of the substrate can be exposed, the exposure of the substrate can be completed in a shorter time. Thereby, the efficiency of the exposure process can be further improved.
 (13)本発明の他の局面に従う基板処理装置は、基板に処理液を塗布することにより基板に膜を形成する塗布処理部と、塗布処理部により膜が形成された基板を熱処理する熱処理部と、熱処理部により熱処理された基板を露光する本発明の一局面に従う露光装置と、露光装置により露光された基板に溶剤を供給することにより基板の膜を現像する現像処理部とを備える。 (13) A substrate processing apparatus according to another aspect of the present invention includes a coating processing unit that forms a film on a substrate by applying a processing liquid to the substrate, and a thermal processing unit that heat-treats the substrate on which the film is formed by the coating processing unit. And an exposure apparatus according to one aspect of the present invention that exposes the substrate heat-treated by the heat treatment unit, and a development processing unit that develops a film on the substrate by supplying a solvent to the substrate exposed by the exposure device.
 この基板処理装置においては、塗布処理部により基板に処理液が塗布されることにより基板に膜が形成される。塗布処理部により膜が形成された基板が熱処理部により熱処理される。熱処理部により熱処理された基板が上記の露光装置により露光される。露光装置により露光された基板に現像処理部により溶剤が供給されることにより基板の膜が現像される。 In this substrate processing apparatus, a film is formed on the substrate by applying the processing liquid to the substrate by the coating processing unit. The substrate on which the film is formed by the coating processing unit is heat-treated by the heat treatment unit. The substrate heat-treated by the heat treatment unit is exposed by the exposure apparatus. The film on the substrate is developed by supplying a solvent to the substrate exposed by the exposure apparatus by the development processing unit.
 露光装置においては、窓部材に発生する熱が不活性ガスの流れにより放散される。そのため、基板の露光効率を低下させることなく窓部材の温度が上昇することを防止することができる。これにより、窓部材を透過して基板に照射される真空紫外線の照度が低下することを防止することができる。また、窓部材の温度上昇による昇華物の生成が防止される。その結果、露光処理の精度および効率を維持することができる。 In the exposure apparatus, heat generated in the window member is dissipated by the flow of the inert gas. Therefore, it is possible to prevent the temperature of the window member from rising without reducing the exposure efficiency of the substrate. Thereby, it can prevent that the illumination intensity of the vacuum ultraviolet-ray which permeate | transmits a window member and is irradiated to a board | substrate falls. Moreover, the production | generation of the sublimation by the temperature rise of a window member is prevented. As a result, the accuracy and efficiency of the exposure process can be maintained.
 (14)処理液は、誘導自己組織化材料を含んでもよい。この場合、誘導自己組織化材料を含む処理液が塗布された基板が熱処理されることにより、基板の一面上でミクロ相分離が生じる。また、ミクロ相分離により2種類の重合体のパターンが形成された基板が露光および現像される。これにより、2種類の重合体のうちの一方が除去され、微細化されたパターンを形成することができる。 (14) The treatment liquid may contain an induction self-organizing material. In this case, microphase separation occurs on one surface of the substrate by heat-treating the substrate coated with the treatment liquid containing the induced self-organizing material. Further, the substrate on which two types of polymer patterns are formed by microphase separation is exposed and developed. Thereby, one of the two types of polymers is removed, and a fine pattern can be formed.
 (15)本発明のさらに他の局面に従う露光方法は、処理室の開口に取り付けられた透光性の窓部材を通して、光源部により処理室内に収容された基板に真空紫外線を照射するステップと、気流形成部により窓部材の一面に沿った不活性ガスの流れを形成するステップとを含む。 (15) An exposure method according to still another aspect of the present invention includes a step of irradiating a substrate accommodated in a processing chamber by a light source unit with vacuum ultraviolet light through a translucent window member attached to an opening of the processing chamber; Forming a flow of an inert gas along one surface of the window member by the airflow forming unit.
 この露光方法によれば、窓部材に発生する熱が不活性ガスの流れにより放散される。そのため、基板の露光効率を低下させることなく窓部材の温度が上昇することを防止することができる。これにより、窓部材を透過して基板に照射される真空紫外線の照度が低下することを防止することができる。また、窓部材の温度上昇による昇華物の生成が防止される。その結果、露光処理の精度および効率を維持することができる。 According to this exposure method, heat generated in the window member is dissipated by the flow of the inert gas. Therefore, it is possible to prevent the temperature of the window member from rising without reducing the exposure efficiency of the substrate. Thereby, it can prevent that the illumination intensity of the vacuum ultraviolet-ray which permeate | transmits a window member and is irradiated to a board | substrate falls. Moreover, the production | generation of the sublimation by the temperature rise of a window member is prevented. As a result, the accuracy and efficiency of the exposure process can be maintained.
 (16)本発明のさらに他の局面に従う基板処理方法は、塗布処理部により基板の被処理面に処理液を塗布することにより基板に膜を形成するステップと、塗布処理部により膜が形成された基板を熱処理部により熱処理するステップと、熱処理部により熱処理された基板を露光装置により露光する本発明のさらに他の局面に従う露光方法と、露光装置により露光された基板の被処理面に現像処理部により溶剤を供給することにより基板の膜を現像するステップとを含む。 (16) In the substrate processing method according to still another aspect of the present invention, a film is formed on the substrate by applying a processing liquid to the surface to be processed of the substrate by the coating processing unit and the coating processing unit. A step of heat-treating the substrate processed by the heat treatment unit, an exposure method according to still another aspect of the present invention in which the substrate heat-treated by the heat treatment unit is exposed by an exposure device, and a processing surface of the substrate exposed by the exposure device is developed. Developing a film on the substrate by supplying a solvent through the section.
 この基板処理方法によれば、膜の形成後でかつ現像前の基板が真空紫外線により露光される。露光方法においては、窓部材に発生する熱が不活性ガスの流れにより放散される。そのため、基板の露光効率を低下させることなく窓部材の温度が上昇することを防止することができる。これにより、窓部材を透過して基板に照射される真空紫外線の照度が低下することを防止することができる。また、窓部材の温度上昇による昇華物の生成が防止される。その結果、露光処理の精度および効率を維持することができる。 According to this substrate processing method, the substrate after film formation and before development is exposed to vacuum ultraviolet rays. In the exposure method, heat generated in the window member is dissipated by the flow of the inert gas. Therefore, it is possible to prevent the temperature of the window member from rising without reducing the exposure efficiency of the substrate. Thereby, it can prevent that the illumination intensity of the vacuum ultraviolet-ray which permeate | transmits a window member and is irradiated to a board | substrate falls. Moreover, the production | generation of the sublimation by the temperature rise of a window member is prevented. As a result, the accuracy and efficiency of the exposure process can be maintained.
 本発明によれば、露光処理の精度および効率を維持することができる。 According to the present invention, the accuracy and efficiency of the exposure process can be maintained.
図1は本発明の実施の形態に係る露光装置の構成を示す模式的断面図である。FIG. 1 is a schematic sectional view showing the arrangement of an exposure apparatus according to an embodiment of the present invention. 図2は図1の露光装置の内部を載置板の下方の位置から見た場合の模式的底面図である。FIG. 2 is a schematic bottom view when the inside of the exposure apparatus of FIG. 1 is viewed from a position below the mounting plate. 図3は図2の露光装置のA-A線断面図である。3 is a cross-sectional view of the exposure apparatus of FIG. 2 along the line AA. 図4は図2の露光装置のB-B線断面図である。4 is a cross-sectional view of the exposure apparatus of FIG. 2 taken along the line BB. 図5は図2~図4の噴出部の構成を示す斜視図である。FIG. 5 is a perspective view showing the configuration of the ejection part of FIGS. 図6は図5の噴出部および噴出管の構成を示す側面図である。FIG. 6 is a side view showing the configuration of the ejection part and the ejection pipe of FIG. 図7は図6(b)の噴出部のC-C線断面図である。FIG. 7 is a cross-sectional view taken along the line CC of the ejection part of FIG. 図8は図1の制御部の構成を示す機能ブロック図である。FIG. 8 is a functional block diagram showing the configuration of the control unit of FIG. 図9は露光装置の動作を説明するための模式図である。FIG. 9 is a schematic diagram for explaining the operation of the exposure apparatus. 図10は露光装置の動作を説明するための模式図である。FIG. 10 is a schematic diagram for explaining the operation of the exposure apparatus. 図11は露光装置の動作を説明するための模式図である。FIG. 11 is a schematic diagram for explaining the operation of the exposure apparatus. 図12は露光装置の動作を説明するための模式図である。FIG. 12 is a schematic diagram for explaining the operation of the exposure apparatus. 図13は図8の制御部により行われる露光処理の一例を示すフローチャートである。FIG. 13 is a flowchart showing an example of an exposure process performed by the control unit of FIG. 図14は図8の制御部により行われる露光処理の一例を示すフローチャートである。FIG. 14 is a flowchart showing an example of an exposure process performed by the control unit of FIG. 図15は図1の露光装置を備えた基板処理装置の全体構成を示す模式的ブロック図である。FIG. 15 is a schematic block diagram showing the overall configuration of a substrate processing apparatus provided with the exposure apparatus of FIG. 図16は図15の基板処理装置による基板の処理の一例を示す模式図である。FIG. 16 is a schematic view showing an example of substrate processing by the substrate processing apparatus of FIG. 図17は他の実施の形態における噴出管の構成を示す側面図である。FIG. 17 is a side view showing the configuration of the ejection pipe in another embodiment. 図18は噴出部および排気部の配置の他の例を示す模式的底面図である。FIG. 18 is a schematic bottom view showing another example of the arrangement of the ejection part and the exhaust part. 図19は噴出部および排気部の配置のさらに他の例を示す模式的底面図である。FIG. 19 is a schematic bottom view showing still another example of the arrangement of the ejection part and the exhaust part.
 (1)露光装置の構成
 以下、本発明の実施の形態に係る露光装置、基板処理装置、露光方法および基板処理方法について図面を用いて説明する。なお、以下の説明において、基板とは、半導体基板、液晶表示装置もしくは有機EL(Electro Luminescence)表示装置等のFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板または太陽電池用基板等をいう。
(1) Configuration of Exposure Apparatus Hereinafter, an exposure apparatus, a substrate processing apparatus, an exposure method, and a substrate processing method according to an embodiment of the present invention will be described with reference to the drawings. In the following description, the term “substrate” refers to a semiconductor substrate, an FPD (Flat Panel Display) substrate such as a liquid crystal display device or an organic EL (Electro Luminescence) display device, an optical disk substrate, a magnetic disk substrate, and a magneto-optical disk. It refers to a substrate, a photomask substrate, a solar cell substrate, or the like.
 図1は、本発明の実施の形態に係る露光装置の構成を示す模式的断面図である。図1に示すように、露光装置100は、制御部110、処理室120、閉塞部130、受渡部140、昇降部150、投光部160、置換部170、計測部180および気流形成部190を含む。制御部110は、計測部180から計測値を取得するとともに、閉塞部130、昇降部150、投光部160、置換部170および気流形成部190の動作を制御する。制御部110の機能については後述する。 FIG. 1 is a schematic cross-sectional view showing the configuration of an exposure apparatus according to an embodiment of the present invention. As shown in FIG. 1, the exposure apparatus 100 includes a control unit 110, a processing chamber 120, a closing unit 130, a delivery unit 140, an elevating unit 150, a light projecting unit 160, a replacement unit 170, a measuring unit 180, and an airflow forming unit 190. Including. The control unit 110 acquires measurement values from the measurement unit 180 and controls operations of the blocking unit 130, the lifting unit 150, the light projecting unit 160, the replacement unit 170, and the airflow forming unit 190. The function of the control unit 110 will be described later.
 処理室120は、上部開口121および内部空間V1を有する。処理室120の側面には、処理室120の内部と外部との間で処理対象の基板Wを搬送するための搬送開口122が形成される。なお、本実施の形態においては、処理対象の基板Wには、誘導自己組織化材料を含む膜(以下、DSA(Directed Self Assembly)膜と呼ぶ。)が形成されている。また、処理室120の底面には、後述する昇降部150の連結部材152が通過する開口部123が形成される。後述する投光部160のハウジング161が処理室120の上部に配置されることにより、処理室120の上部開口121が閉塞される。 The processing chamber 120 has an upper opening 121 and an internal space V1. On the side surface of the processing chamber 120, a transfer opening 122 for transferring the substrate W to be processed is formed between the inside and the outside of the processing chamber 120. In the present embodiment, a film containing an induced self-organizing material (hereinafter referred to as a DSA (Directed Self Assembly) film) is formed on the substrate W to be processed. Further, an opening 123 through which a connecting member 152 of an elevating unit 150 described later passes is formed on the bottom surface of the processing chamber 120. By disposing a housing 161 of a light projecting unit 160 described later on the upper portion of the processing chamber 120, the upper opening 121 of the processing chamber 120 is closed.
 閉塞部130は、シャッタ131、棒形状の連結部材132および駆動装置133を含む。連結部材132は、シャッタ131と駆動装置133とを連結する。駆動装置133は、例えばステッピングモータである。駆動装置133は、シャッタ131が搬送開口122を開放する開放位置と、シャッタ131が搬送開口122を閉塞する閉塞位置との間でシャッタ131を移動させる。 The closing part 130 includes a shutter 131, a rod-shaped connecting member 132, and a driving device 133. The connecting member 132 connects the shutter 131 and the driving device 133. The drive device 133 is a stepping motor, for example. The driving device 133 moves the shutter 131 between an open position where the shutter 131 opens the transport opening 122 and a closed position where the shutter 131 closes the transport opening 122.
 シャッタ131には、シール部材131aが取り付けられる。シャッタ131が閉塞位置にある状態においては、シール部材131aが処理室120における搬送開口122を取り囲む部分に密着することにより処理室120の内部が密閉される。なお、シール部材131aと処理室120との摩擦を防止するため、駆動装置133は、シャッタ131を開放位置と閉塞位置との間で移動させる際には、シャッタ131を処理室120から離間させた状態で上下方向に移動させる。 A seal member 131 a is attached to the shutter 131. In a state where the shutter 131 is in the closed position, the inside of the processing chamber 120 is hermetically sealed by the seal member 131 a being in close contact with the portion surrounding the transfer opening 122 in the processing chamber 120. In order to prevent friction between the seal member 131a and the processing chamber 120, the driving device 133 moves the shutter 131 away from the processing chamber 120 when moving the shutter 131 between the open position and the closed position. Move up and down in the state.
 駆動装置133には、シャッタ131の上限位置および下限位置をそれぞれ検出する位置センサ133a,133bが取り付けられる。位置センサ133a,133bは、検出結果を制御部110に与える。本実施の形態においては、駆動装置133および後述する駆動装置153は、処理室120の外に設けられる。そのため、駆動装置133,153の駆動により塵埃が発生する場合でも、処理室120内に塵埃が直接侵入することが防止される。 Position sensors 133a and 133b for detecting the upper limit position and the lower limit position of the shutter 131 are attached to the driving device 133. The position sensors 133a and 133b give the detection result to the control unit 110. In the present embodiment, the driving device 133 and a driving device 153 described later are provided outside the processing chamber 120. Therefore, even when dust is generated by driving the driving devices 133 and 153, the dust is prevented from directly entering the processing chamber 120.
 受渡部140は、例えば円板形状の支持板141および複数(本例では3個)の支持ピン142を含む。支持板141は、処理室120内に水平姿勢で配置される。支持板141の中央部には、後述する昇降部150の連結部材152が通過する開口部141aが形成される。複数の支持ピン142は、開口部141aを取り囲むように支持板141の上面から上方に延びる。複数の支持ピン142の上端部に、処理対象の基板Wを載置することができる。 The delivery unit 140 includes, for example, a disk-shaped support plate 141 and a plurality (three in this example) of support pins 142. The support plate 141 is disposed in the processing chamber 120 in a horizontal posture. In the central portion of the support plate 141, an opening 141a is formed through which a connecting member 152 of an elevating unit 150 described later passes. The plurality of support pins 142 extend upward from the upper surface of the support plate 141 so as to surround the opening 141a. The substrate W to be processed can be placed on the upper ends of the plurality of support pins 142.
 昇降部150は、平板形状の載置板151、棒形状の連結部材152および駆動装置153を含む。載置板151は、処理室120内において、受渡部140の支持板141の上方に水平姿勢で配置される。載置板151には、支持板141の複数の支持ピン142にそれぞれ対応する複数の貫通孔151aが形成される。 The elevating unit 150 includes a plate-shaped mounting plate 151, a rod-shaped connecting member 152, and a driving device 153. The mounting plate 151 is arranged in a horizontal posture above the support plate 141 of the delivery unit 140 in the processing chamber 120. A plurality of through holes 151 a corresponding to the plurality of support pins 142 of the support plate 141 are formed in the mounting plate 151.
 連結部材152は処理室120の開口部123および支持板141の開口部141aを通して上下に延びるように配置され、駆動装置153は処理室120の下方に配置される。連結部材152は、載置板151と駆動装置153とを連結する。連結部材152の外周面と開口部123の内周面との間には、連結部材152が上下方向に摺動可能にシール部材154が配置される。 The connecting member 152 is disposed so as to extend vertically through the opening 123 of the processing chamber 120 and the opening 141 a of the support plate 141, and the driving device 153 is disposed below the processing chamber 120. The connecting member 152 connects the mounting plate 151 and the driving device 153. A seal member 154 is disposed between the outer peripheral surface of the connecting member 152 and the inner peripheral surface of the opening 123 so that the connecting member 152 can slide in the vertical direction.
 駆動装置153は、例えばステッピングモータであり、複数の支持ピン142の上端部よりも上方の処理位置と、複数の支持ピン142の上端部よりも下方の待機位置との間で載置板151を上下方向に移動させる。載置板151が待機位置にある状態においては、複数の支持ピン142が複数の貫通孔151aにそれぞれ挿通される。駆動装置153には、載置板151の上限位置および下限位置をそれぞれ検出する位置センサ153a,153bが取り付けられる。位置センサ153a,153bは、検出結果を制御部110に与える。 The driving device 153 is, for example, a stepping motor, and moves the mounting plate 151 between a processing position above the upper ends of the plurality of support pins 142 and a standby position below the upper ends of the plurality of support pins 142. Move up and down. In the state where the mounting plate 151 is in the standby position, the plurality of support pins 142 are inserted through the plurality of through holes 151a, respectively. Position sensors 153 a and 153 b for detecting the upper limit position and the lower limit position of the mounting plate 151 are attached to the driving device 153. The position sensors 153a and 153b give the detection result to the control unit 110.
 投光部160は、下部開口161aおよび内部空間V2を有するハウジング161、透光板162、面状の光源部163および電源装置164を含む。本実施の形態では、透光板162は石英ガラス板である。透光板162の材料として、後述する真空紫外線を透過する他の材料が用いられてもよい。上記のように、ハウジング161は、処理室120の上部開口121を閉塞するように処理室120の上部に配置される。透光板162は、ハウジング161の下部開口161aを閉塞するようにハウジング161に取り付けられる。処理室120の内部空間V1とハウジング161の内部空間V2とは、透光板162により光学的にアクセス可能に隔てられる。 The light projecting unit 160 includes a housing 161 having a lower opening 161a and an internal space V2, a translucent plate 162, a planar light source unit 163, and a power supply device 164. In the present embodiment, translucent plate 162 is a quartz glass plate. As the material of the light transmitting plate 162, other materials that transmit vacuum ultraviolet rays described later may be used. As described above, the housing 161 is disposed above the processing chamber 120 so as to close the upper opening 121 of the processing chamber 120. The translucent plate 162 is attached to the housing 161 so as to close the lower opening 161 a of the housing 161. The internal space V <b> 1 of the processing chamber 120 and the internal space V <b> 2 of the housing 161 are optically accessible by a translucent plate 162.
 光源部163および電源装置164は、ハウジング161内に収容される。本実施の形態においては、波長約120nm以上約230nm以下の真空紫外線を出射する複数の棒形状の光源素子163aが所定の間隔で水平に配列されることにより光源部163が構成される。各光源素子163aは、例えばキセノンエキシマランプであってもよいし、他のエキシマランプまたは重水素ランプ等であってもよい。光源部163は、透光板162を通して処理室120内に略均一な光量分布を有する真空紫外線を出射する。光源部163における真空紫外線の出射面の面積は、基板Wの被処理面の面積よりも大きい。電源装置164は、光源部163に電力を供給する。 The light source unit 163 and the power supply device 164 are accommodated in the housing 161. In the present embodiment, the light source unit 163 is configured by horizontally arranging a plurality of rod-shaped light source elements 163a that emit vacuum ultraviolet rays having a wavelength of about 120 nm or more and about 230 nm or less at predetermined intervals. Each light source element 163a may be, for example, a xenon excimer lamp, or another excimer lamp or a deuterium lamp. The light source unit 163 emits vacuum ultraviolet rays having a substantially uniform light amount distribution into the processing chamber 120 through the translucent plate 162. The area of the emission surface of the vacuum ultraviolet ray in the light source unit 163 is larger than the area of the surface to be processed of the substrate W. The power supply device 164 supplies power to the light source unit 163.
 気流形成部190は、投光部160の透光板162の下方の空間を挟んで対向するように配置された噴出部191および排気部192を含む。噴出部191は、透光板162の下面に沿って不活性ガスを噴出することにより、透光板162の下面に沿った不活性ガスの層流を形成する。排気部192は、噴出部191により噴出された不活性ガスを処理室120から排出する。本実施の形態では、不活性ガスとして窒素ガスが用いられる。気流形成部190の構成の詳細については後述する。 The airflow forming unit 190 includes an ejection unit 191 and an exhaust unit 192 that are arranged to face each other with a space below the light transmitting plate 162 of the light projecting unit 160 interposed therebetween. The ejection part 191 ejects an inert gas along the lower surface of the translucent plate 162, thereby forming a laminar flow of the inert gas along the lower surface of the translucent plate 162. The exhaust unit 192 exhausts the inert gas ejected by the ejection unit 191 from the processing chamber 120. In the present embodiment, nitrogen gas is used as the inert gas. Details of the configuration of the airflow forming unit 190 will be described later.
 置換部170は、配管171p,172p,173p、バルブ171v,172vおよび吸引装置173を含む。配管171p,172pは処理室120の給気口と不活性ガス供給源との間に接続される。本実施の形態では、不活性ガスは例えば窒素ガスである。配管171p,172pにはバルブ171v,172vが介挿される。なお、配管171p,172pが接続される不活性ガス供給源は、後述する図4の不活性ガス供給源193であってもよいし、他の不活性ガス供給源であってもよい。 The replacement unit 170 includes pipes 171p, 172p, 173p, valves 171v, 172v, and a suction device 173. The pipes 171p and 172p are connected between the air supply port of the processing chamber 120 and the inert gas supply source. In the present embodiment, the inert gas is, for example, nitrogen gas. Valves 171v and 172v are inserted in the pipes 171p and 172p. In addition, the inert gas supply source to which the pipes 171p and 172p are connected may be an inert gas supply source 193 in FIG. 4 described later, or may be another inert gas supply source.
 配管171pを通して支持板141の側方から処理室120内に不活性ガスが供給される。配管172pを通して支持板141の下方から処理室120内に不活性ガスが供給される。不活性ガスの流量は、バルブ171v,172vにより調整される。本実施の形態では、不活性ガスとして窒素ガスが用いられる。 An inert gas is supplied into the processing chamber 120 from the side of the support plate 141 through the pipe 171p. An inert gas is supplied into the processing chamber 120 from below the support plate 141 through the pipe 172p. The flow rate of the inert gas is adjusted by valves 171v and 172v. In the present embodiment, nitrogen gas is used as the inert gas.
 配管173pは、枝管173aと枝管173bとに分岐する。枝管173aは処理室120の排気口に接続され、枝管173bの端部は処理室120とシャッタ131との間に配置される。配管173pには、吸引装置173が介挿される。枝管173bにはバルブ173vが介挿される。吸引装置173は、例えばエジェクタである。配管173pは、排気設備に接続される。なお、配管173pが接続される排気設備は、後述する図4の排気設備194であってもよいし、他の排気設備であってもよい。 The pipe 173p branches into a branch pipe 173a and a branch pipe 173b. The branch pipe 173 a is connected to the exhaust port of the processing chamber 120, and the end of the branch pipe 173 b is disposed between the processing chamber 120 and the shutter 131. A suction device 173 is inserted in the pipe 173p. A valve 173v is inserted in the branch pipe 173b. The suction device 173 is, for example, an ejector. The pipe 173p is connected to the exhaust facility. The exhaust equipment to which the pipe 173p is connected may be the exhaust equipment 194 in FIG. 4 described later, or other exhaust equipment.
 吸引装置173は、処理室120内の雰囲気を枝管173aおよび配管173pを通して排出する。また、吸引装置173は、処理室120とシャッタ131との間の雰囲気をシャッタ131の移動により発生する塵埃等とともに枝管173bおよび配管173pを通して排出する。吸引装置173により排出された気体は、排気設備により無害化される。 The suction device 173 discharges the atmosphere in the processing chamber 120 through the branch pipe 173a and the pipe 173p. The suction device 173 discharges the atmosphere between the processing chamber 120 and the shutter 131 through the branch pipe 173b and the pipe 173p together with dust generated by the movement of the shutter 131. The gas discharged by the suction device 173 is rendered harmless by the exhaust facility.
 計測部180は、酸素濃度計181、オゾン濃度計182および照度計183を含む。酸素濃度計181、オゾン濃度計182および照度計183は、処理室120に設けられた接続ポートp1,p2,p3をそれぞれ通して制御部110に接続される。酸素濃度計181は、例えばガルバニ電池式酸素センサまたはジルコニア式酸素センサであり、処理室120内の酸素濃度を計測する。 The measuring unit 180 includes an oxygen concentration meter 181, an ozone concentration meter 182, and an illuminance meter 183. The oxygen concentration meter 181, the ozone concentration meter 182 and the illuminance meter 183 are connected to the control unit 110 through connection ports p1, p2 and p3 provided in the processing chamber 120, respectively. The oxygen concentration meter 181 is, for example, a galvanic cell type oxygen sensor or a zirconia type oxygen sensor, and measures the oxygen concentration in the processing chamber 120.
 オゾン濃度計182は、処理室120内のオゾン濃度を計測する。照度計183は、フォトダイオード等の受光素子を含み、受光素子の受光面に照射される光源部163からの真空紫外線の照度を計測する。ここで、照度とは、受光面の単位面積当たりに照射される真空紫外線の仕事率である。照度の単位は、例えば「W/m」で表される。 The ozone concentration meter 182 measures the ozone concentration in the processing chamber 120. The illuminance meter 183 includes a light receiving element such as a photodiode, and measures the illuminance of vacuum ultraviolet rays from the light source unit 163 irradiated on the light receiving surface of the light receiving element. Here, the illuminance is a work rate of vacuum ultraviolet rays irradiated per unit area of the light receiving surface. The unit of illuminance is represented by “W / m 2 ”, for example.
 (2)露光装置の概略動作
 露光装置100においては、透光板162を通して光源部163から基板Wに真空紫外線が照射されることにより露光処理が行われる。しかしながら、処理室120内の酸素濃度が高い場合、酸素分子が真空紫外線を吸収して酸素原子に分離するとともに、分離した酸素原子が他の酸素分子と再結合することによりオゾンが発生する。この場合、基板Wに到達する真空紫外線が減衰する。真空紫外線の減衰は、約230nmよりも長い波長の紫外線の減衰に比べて大きい。
(2) Schematic operation of exposure apparatus In the exposure apparatus 100, exposure processing is performed by irradiating the substrate W with vacuum ultraviolet rays from the light source unit 163 through the light transmitting plate 162. However, when the oxygen concentration in the process chamber 120 is high, oxygen molecules absorb vacuum ultraviolet rays and are separated into oxygen atoms, and ozone is generated by the recombination of the separated oxygen atoms with other oxygen molecules. In this case, the vacuum ultraviolet rays that reach the substrate W are attenuated. The attenuation of vacuum ultraviolet rays is greater than the attenuation of ultraviolet rays with wavelengths longer than about 230 nm.
 そこで、露光処理においては、処理室120内の雰囲気が置換部170により不活性ガスに置換される。これにより、処理室120内の酸素濃度が低減する。酸素濃度計181により計測される酸素濃度が予め定められた濃度まで低減した場合に、光源部163から基板Wに真空紫外線が照射される。ここで、予め定められた濃度は、光源部163により出射される真空紫外線によってはオゾンが発生しない酸素濃度(例えば1%)であることが好ましい。 Therefore, in the exposure process, the atmosphere in the processing chamber 120 is replaced with an inert gas by the replacement unit 170. Thereby, the oxygen concentration in the processing chamber 120 is reduced. When the oxygen concentration measured by the oxygen concentration meter 181 is reduced to a predetermined concentration, the substrate W is irradiated with vacuum ultraviolet rays from the light source unit 163. Here, the predetermined concentration is preferably an oxygen concentration (for example, 1%) at which ozone is not generated by the vacuum ultraviolet rays emitted from the light source unit 163.
 基板Wに照射される真空紫外線の露光量が予め定められた設定露光量に到達した場合、真空紫外線の照射が停止され、露光処理が終了する。ここで、露光量とは、露光処理時に基板Wの被処理面の単位面積当たりに照射される真空紫外線のエネルギーである。露光量の単位は、例えば「J/m」で表される。したがって、真空紫外線の露光量は、照度計183により計測される真空紫外線の照度の積算により取得される。 When the exposure amount of the vacuum ultraviolet rays applied to the substrate W reaches a predetermined set exposure amount, the irradiation of the vacuum ultraviolet rays is stopped and the exposure process is ended. Here, the exposure amount is the energy of vacuum ultraviolet rays irradiated per unit area of the surface to be processed of the substrate W during the exposure process. The unit of the exposure amount is represented by “J / m 2 ”, for example. Therefore, the exposure amount of vacuum ultraviolet rays is acquired by integrating the illuminance of vacuum ultraviolet rays measured by the illuminance meter 183.
 上記の露光処理において、長時間にわたって透光板162に真空紫外線が照射されると、透光板162の温度が上昇する。この場合、透光板162を透過して基板Wに照射される真空紫外線の照度が低下する。これを防止するために、露光装置100には、透光板162の温度の上昇を抑制する気流形成部190が設けられる。以下、気流形成部190の構成を説明する。 In the above-described exposure process, when the light transmitting plate 162 is irradiated with vacuum ultraviolet rays for a long time, the temperature of the light transmitting plate 162 rises. In this case, the illuminance of the vacuum ultraviolet rays that are transmitted through the translucent plate 162 and applied to the substrate W decreases. In order to prevent this, the exposure apparatus 100 is provided with an airflow forming unit 190 that suppresses an increase in the temperature of the translucent plate 162. Hereinafter, the configuration of the airflow forming unit 190 will be described.
 図2は、図1の露光装置100の内部を載置板151の下方の位置から見た場合の模式的底面図である。図3は、図2の露光装置100のA-A線断面図である。図4は、図2の露光装置100のB-B線断面図である。図2~図4においては、露光装置100の内部構成の理解を容易にするため、一部の構成要素の図示を省略している。図2に示すように、透光板162は略矩形状を有する。透光板162の互いに平行な一組の側辺をそれぞれ側辺162a,162bと呼ぶ。 FIG. 2 is a schematic bottom view when the inside of the exposure apparatus 100 of FIG. 1 is viewed from a position below the mounting plate 151. FIG. 3 is a cross-sectional view of the exposure apparatus 100 of FIG. 2 along the line AA. 4 is a cross-sectional view of the exposure apparatus 100 of FIG. 2 taken along line BB. 2 to 4, some components are not shown in order to facilitate understanding of the internal configuration of the exposure apparatus 100. As shown in FIG. 2, the translucent plate 162 has a substantially rectangular shape. A pair of side edges of the translucent plate 162 that are parallel to each other are referred to as side edges 162a and 162b, respectively.
 図2~図4に示すように、気流形成部190の噴出部191は、透光板162の側辺162aの下方でかつ外方において水平に設けられる。同様に、図2および図4に示すように、気流形成部190の排気部192は、透光板162の側辺162bの下方でかつ外方において水平に設けられる。本実施の形態では、噴出部191は透光板162の側辺162aに平行に延び、排気部192は透光板162の側辺162bに平行に延びる。これにより、噴出部191と排気部192とが、透光板162の下方の空間を挟んで対向する。 As shown in FIGS. 2 to 4, the ejection portion 191 of the airflow forming portion 190 is provided horizontally below and on the outer side 162a of the translucent plate 162. Similarly, as shown in FIGS. 2 and 4, the exhaust part 192 of the airflow forming part 190 is provided horizontally below and on the outer side 162 b of the translucent plate 162. In the present embodiment, the ejection portion 191 extends in parallel to the side 162a of the light transmitting plate 162, and the exhaust portion 192 extends in parallel to the side 162b of the light transmitting plate 162. Thereby, the ejection part 191 and the exhaust part 192 face each other with the space below the translucent plate 162 interposed therebetween.
 図5は、図2~図4の噴出部191の構成を示す斜視図である。図6(a),(b)は、それぞれ図5の噴出管191aおよび噴出部191の構成を示す側面図である。図7(a)~(d)は、図6(b)の噴出部191のC-C線断面図である。図5に示すように、噴出部191は、噴出管191a、複数(本例では3個)の供給管191bおよび保持部材191cを含む。 FIG. 5 is a perspective view showing the configuration of the ejection portion 191 shown in FIGS. FIGS. 6A and 6B are side views showing the configurations of the ejection pipe 191a and the ejection portion 191 in FIG. 5, respectively. FIGS. 7A to 7D are cross-sectional views taken along the line CC of the ejection portion 191 in FIG. 6B. As shown in FIG. 5, the ejection part 191 includes an ejection pipe 191a, a plurality (three in this example) of supply pipes 191b and a holding member 191c.
 図5および図6(a)に示すように、噴出管191aは、一方向に延びる円筒形状を有する。噴出管191aの両端は閉塞されている。また、噴出管191aの外周面には、噴出管191aの軸方向に平行に所定の間隔で並ぶ複数の噴出孔191hが形成される。複数の噴出孔191hを通して噴出管191aの内部と外部とが連通する。 As shown in FIGS. 5 and 6 (a), the ejection pipe 191a has a cylindrical shape extending in one direction. Both ends of the ejection pipe 191a are closed. In addition, a plurality of ejection holes 191h are formed on the outer peripheral surface of the ejection pipe 191a in parallel to the axial direction of the ejection pipe 191a at a predetermined interval. The inside and the outside of the ejection pipe 191a communicate with each other through the plurality of ejection holes 191h.
 図6(b)に示すように、複数の供給管191bは、噴出管191aと不活性ガス供給源193との間に接続される。具体的には、複数の供給管191bの一端が、所定の間隔で並ぶように、保持部材191cを貫通して噴出管191aの外周面に取り付けられる。噴出管191aの内部と各供給管191bの内部とは連通する。複数の供給管191bの他端が、不活性ガス供給源193に取り付けられる。各供給管191bには、バルブ191vが介挿される。 As shown in FIG. 6B, the plurality of supply pipes 191b are connected between the ejection pipe 191a and the inert gas supply source 193. Specifically, one end of the plurality of supply pipes 191b is attached to the outer peripheral surface of the ejection pipe 191a through the holding member 191c so as to be arranged at a predetermined interval. The inside of the ejection pipe 191a communicates with the inside of each supply pipe 191b. The other ends of the plurality of supply pipes 191b are attached to an inert gas supply source 193. A valve 191v is inserted in each supply pipe 191b.
 図5および図6(b)に示すように、保持部材191cは、一方向に延びる断面略多角形状を有する筒部材である。保持部材191cには、一方向に延びるスリット191sが形成される。保持部材191cの両端は開放されている。保持部材191c内に噴出管191aが保持される。保持部材191cは、スリット191sが処理室120の内方を向くように、図1の処理室120内に取り付けられる。スリット191sを通して保持部材191cの内部と外部とが連通する。 5 and 6B, the holding member 191c is a cylindrical member having a substantially polygonal cross section extending in one direction. A slit 191s extending in one direction is formed in the holding member 191c. Both ends of the holding member 191c are open. The ejection pipe 191a is held in the holding member 191c. The holding member 191c is attached in the processing chamber 120 of FIG. 1 so that the slit 191s faces inward of the processing chamber 120. The inside and the outside of the holding member 191c communicate with each other through the slit 191s.
 本実施の形態では、保持部材191cのスリット191sを通して不活性ガスが透光板162の下面に沿って噴出される。そのため、噴出管191aは、複数の噴出孔191hがいずれの方向を向いた状態で保持部材191cにより保持されてもよい。図7(a)の例では、複数の噴出孔191hが水平を向く状態で配置される。図7(b)の例では、複数の噴出孔191hが斜め上45度を向く状態で配置される。図7(c)の例では、複数の噴出孔191hが斜め上25度を向く状態で配置される。図7(d)の例では、複数の噴出孔191hが斜め下10度を向く状態で配置される。 In the present embodiment, an inert gas is jetted along the lower surface of the translucent plate 162 through the slit 191s of the holding member 191c. Therefore, the ejection pipe 191a may be held by the holding member 191c with the plurality of ejection holes 191h facing in any direction. In the example of Fig.7 (a), the several ejection hole 191h is arrange | positioned in the state which faces the horizontal. In the example of FIG. 7B, the plurality of ejection holes 191h are arranged in a state of facing obliquely upward 45 degrees. In the example of FIG. 7C, the plurality of ejection holes 191h are arranged in a state of facing obliquely upward 25 degrees. In the example of FIG. 7D, the plurality of ejection holes 191h are arranged in a state of facing obliquely downward 10 degrees.
 本実施の形態では、図4の排気部192は、排気管192a、複数(本例では3個)の回収管192bおよび保持部材192cを含む。排気管192aおよび保持部材192cは、噴出管191aおよび保持部材191cとそれぞれ同様の構成を有する。したがって、排気管192aには、噴出孔191hと同様の図示しない複数の排気孔が形成される。保持部材192cには、スリット191sと同様のスリット192sが形成される。各回収管192bは、不活性ガス供給源193ではなく排気設備194に接続される点を除き、各供給管191bと同様の構成を有する。 In the present embodiment, the exhaust part 192 of FIG. 4 includes an exhaust pipe 192a, a plurality (three in this example) of recovery pipes 192b and a holding member 192c. The exhaust pipe 192a and the holding member 192c have the same configuration as the ejection pipe 191a and the holding member 191c, respectively. Accordingly, a plurality of exhaust holes (not shown) similar to the ejection holes 191h are formed in the exhaust pipe 192a. A slit 192s similar to the slit 191s is formed in the holding member 192c. Each recovery pipe 192b has the same configuration as each supply pipe 191b except that it is connected to the exhaust facility 194 instead of the inert gas supply source 193.
 なお、排気部192は、噴出部191と異なる構成を有していてもよい。例えば、排気口としてスリットを有する単一の部材が用いられてもよく、または排気口として複数の排気孔を有する単一の部材が用いられてもよい。 In addition, the exhaust part 192 may have a configuration different from the ejection part 191. For example, a single member having a slit as the exhaust port may be used, or a single member having a plurality of exhaust holes as the exhaust port may be used.
 不活性ガス供給源193から供給される不活性ガスは、複数の供給管191bを通して噴出管191a内に導かれる。さらに、不活性ガスは、噴出管191aの複数の噴出孔191h(図3)および保持部材191cのスリット191sを通して噴出される。これにより、不活性ガスは、図4に矢印で示すように、透光板162と基板Wとの間で透光板162の下面に沿って排気部192の方向に導かれる。それにより、透光板162の下面に沿った不活性ガスの流れが形成される。不活性ガスの流れは、透光板162の下面に全体に接する断面帯状を有する層流となる。 The inert gas supplied from the inert gas supply source 193 is guided into the ejection pipe 191a through the plurality of supply pipes 191b. Further, the inert gas is ejected through the plurality of ejection holes 191h (FIG. 3) of the ejection pipe 191a and the slit 191s of the holding member 191c. As a result, the inert gas is guided between the light transmitting plate 162 and the substrate W in the direction of the exhaust portion 192 along the lower surface of the light transmitting plate 162 as indicated by an arrow in FIG. Thereby, a flow of an inert gas along the lower surface of the translucent plate 162 is formed. The flow of the inert gas is a laminar flow having a cross-sectional band shape that is in contact with the entire lower surface of the light-transmitting plate 162.
 透光板162の下方を通過した不活性ガスは、保持部材192cのスリット192sおよび排気部192の複数の図示しない排気孔を通して排気管192a内に流入される。その後、不活性ガスは、複数の回収管192bを通して排気設備194に回収される。この場合、透光板162からの熱を含む不活性ガスが処理室120の外部に排出されるので、透光板162の温度上昇が効率的に防止される。 The inert gas that has passed under the translucent plate 162 flows into the exhaust pipe 192a through the slit 192s of the holding member 192c and a plurality of exhaust holes (not shown) of the exhaust part 192. Thereafter, the inert gas is recovered to the exhaust facility 194 through a plurality of recovery pipes 192b. In this case, since the inert gas containing the heat from the translucent plate 162 is discharged to the outside of the processing chamber 120, the temperature rise of the translucent plate 162 is efficiently prevented.
 (3)制御部
 図8は、図1の制御部110の構成を示す機能ブロック図である。図8に示すように、制御部110は、閉塞制御部1、昇降制御部2、排気制御部3、給気制御部4、濃度取得部5、濃度比較部6、気流制御部7、照度取得部8、露光量算出部9、露光量比較部10および投光制御部11を含む。
(3) Control Unit FIG. 8 is a functional block diagram showing the configuration of the control unit 110 in FIG. As shown in FIG. 8, the control unit 110 includes a blockage control unit 1, a lift control unit 2, an exhaust control unit 3, an air supply control unit 4, a concentration acquisition unit 5, a concentration comparison unit 6, an airflow control unit 7, and illuminance acquisition. Unit 8, an exposure amount calculation unit 9, an exposure amount comparison unit 10, and a light projection control unit 11.
 制御部110は、例えばCPU(中央演算処理装置)およびメモリにより構成される。制御部110のメモリには、制御プログラムが予め記憶されている。制御部110のCPUがメモリに記憶された制御プログラムを実行することにより、制御部110の各部の機能が実現される。 The control unit 110 includes, for example, a CPU (Central Processing Unit) and a memory. A control program is stored in advance in the memory of the control unit 110. The function of each unit of the control unit 110 is realized by the CPU of the control unit 110 executing the control program stored in the memory.
 閉塞制御部1は、図1の位置センサ133a,133bの検出結果に基づいて、シャッタ131が閉塞位置と開放位置との間で移動するように駆動装置133を制御する。昇降制御部2は、図1の位置センサ153a,153bの検出結果に基づいて、載置板151が待機位置と処理位置との間で移動するように駆動装置153を制御する。 The closing control unit 1 controls the driving device 133 so that the shutter 131 moves between the closing position and the opening position based on the detection results of the position sensors 133a and 133b in FIG. The elevation control unit 2 controls the driving device 153 so that the mounting plate 151 moves between the standby position and the processing position based on the detection results of the position sensors 153a and 153b in FIG.
 排気制御部3は、図1の処理室120内の雰囲気および処理室120とシャッタ131との間の雰囲気を排気するように吸引装置173およびバルブ173vを制御する。給気制御部4は、処理室120内に不活性ガスを供給するように図1のバルブ171v,172vを制御する。 The exhaust control unit 3 controls the suction device 173 and the valve 173v so as to exhaust the atmosphere in the processing chamber 120 and the atmosphere between the processing chamber 120 and the shutter 131 in FIG. The air supply control unit 4 controls the valves 171v and 172v in FIG. 1 so as to supply an inert gas into the processing chamber 120.
 濃度取得部5は、図1の酸素濃度計181により計測された酸素濃度の値を取得する。濃度比較部6は、濃度取得部5により計測された酸素濃度と、予め定められた濃度とを比較する。気流制御部7は、投光制御部11により光源部163から基板Wへ真空紫外線が照射される期間に、図4の噴出部191から不活性ガスが噴出されかつ排気部192により不活性ガスが排出されるように気流形成部190を制御する。 The concentration acquisition unit 5 acquires the value of the oxygen concentration measured by the oxygen concentration meter 181 of FIG. The concentration comparison unit 6 compares the oxygen concentration measured by the concentration acquisition unit 5 with a predetermined concentration. The airflow control unit 7 emits an inert gas from the ejection unit 191 in FIG. 4 and emits an inert gas by the exhaust unit 192 in a period in which the ultraviolet light is irradiated from the light source unit 163 to the substrate W by the light projection control unit 11. The airflow forming unit 190 is controlled so as to be discharged.
 照度取得部8は、図1の照度計183により計測された真空紫外線の照度の値を取得する。露光量算出部9は、照度取得部8により取得された真空紫外線の照度と、図1の光源部163から基板Wへの真空紫外線の照射時間とに基づいて基板Wに照射される真空紫外線の露光量を算出する。露光量比較部10は、露光量算出部9により算出された露光量と予め定められた設定露光量とを比較する。 The illuminance acquisition unit 8 acquires the value of the illuminance of vacuum ultraviolet rays measured by the illuminometer 183 in FIG. The exposure amount calculation unit 9 applies the vacuum ultraviolet rays irradiated to the substrate W based on the illuminance of the vacuum ultraviolet rays acquired by the illuminance acquisition unit 8 and the irradiation time of the vacuum ultraviolet rays from the light source unit 163 in FIG. The exposure amount is calculated. The exposure amount comparison unit 10 compares the exposure amount calculated by the exposure amount calculation unit 9 with a predetermined set exposure amount.
 投光制御部11は、濃度比較部6による比較結果に基づいて光源部163が真空紫外線を出射するように図1の電源装置164から光源部163への電力の供給を制御する。また、投光制御部11は、電源装置164から光源部163への電力の供給時間を光源部163から基板Wへの真空紫外線の照射時間として露光量算出部9に与える。さらに、投光制御部11は、露光量比較部10による比較結果に基づいて光源部163が真空紫外線の出射を停止するように電源装置164を制御する。 The light projection control unit 11 controls the supply of power from the power supply device 164 of FIG. 1 to the light source unit 163 so that the light source unit 163 emits vacuum ultraviolet rays based on the comparison result by the concentration comparison unit 6. Further, the light projection control unit 11 supplies the exposure amount calculation unit 9 with the power supply time from the power supply device 164 to the light source unit 163 as the irradiation time of vacuum ultraviolet rays from the light source unit 163 to the substrate W. Further, the light projection control unit 11 controls the power supply device 164 so that the light source unit 163 stops the emission of the vacuum ultraviolet rays based on the comparison result by the exposure amount comparison unit 10.
 (4)露光処理
 図9~図12は、露光装置100の動作を説明するための模式図である。図9~図12においては、処理室120内およびハウジング161内の構成の理解を容易にするために、一部の構成要素の図示が省略されるとともに、処理室120およびハウジング161の輪郭が一点鎖線で示される。図13および図14は、図8の制御部110により行われる露光処理の一例を示すフローチャートである。以下、図9~図12を参照しながら制御部110による露光処理を説明する。
(4) Exposure Processing FIGS. 9 to 12 are schematic diagrams for explaining the operation of the exposure apparatus 100. 9 to 12, in order to facilitate understanding of the configuration inside the processing chamber 120 and the housing 161, some components are not shown, and the outlines of the processing chamber 120 and the housing 161 are only one point. Indicated by a chain line. 13 and 14 are flowcharts showing an example of exposure processing performed by the control unit 110 in FIG. Hereinafter, the exposure processing by the control unit 110 will be described with reference to FIGS.
 図9に示すように、露光処理の初期状態においては、シャッタ131が閉塞位置にあり、載置板151が待機位置にある。また、処理室120内の酸素濃度は、酸素濃度計181により常時または定期的に計測され、濃度取得部5により取得されている。この時点においては、酸素濃度計181により計測される処理室120内の酸素濃度は大気中の酸素濃度に等しい。 As shown in FIG. 9, in the initial state of the exposure process, the shutter 131 is in the closed position and the mounting plate 151 is in the standby position. Further, the oxygen concentration in the processing chamber 120 is measured constantly or periodically by the oxygen concentration meter 181 and acquired by the concentration acquisition unit 5. At this time, the oxygen concentration in the processing chamber 120 measured by the oxygen concentration meter 181 is equal to the oxygen concentration in the atmosphere.
 まず、閉塞制御部1は、図10に示すように、シャッタ131を開放位置に移動させる(ステップS1)。これにより、搬送開口122を通して処理対象の基板Wを複数の支持ピン142の上端部に載置することができる。本例では、後述する図15の搬送装置220により基板Wが複数の支持ピン142の上端部に載置される。 First, as shown in FIG. 10, the closing control unit 1 moves the shutter 131 to the open position (step S1). Thereby, the substrate W to be processed can be placed on the upper ends of the plurality of support pins 142 through the transport opening 122. In this example, the substrate W is placed on the upper ends of the plurality of support pins 142 by the transfer device 220 shown in FIG.
 次に、昇降制御部2は、基板Wが複数の支持ピン142の上端部に載置されたか否かを判定する(ステップS2)。基板Wが載置されていない場合、昇降制御部2は、基板Wが複数の支持ピン142の上端部に載置されるまで待機する。基板Wが載置された場合、昇降制御部2は、図11に示すように、シャッタ131を閉塞位置に移動させる(ステップS3)。 Next, the elevation controller 2 determines whether or not the substrate W is placed on the upper ends of the plurality of support pins 142 (step S2). When the substrate W is not placed, the elevation control unit 2 waits until the substrate W is placed on the upper ends of the plurality of support pins 142. When the substrate W is placed, the elevation control unit 2 moves the shutter 131 to the closed position as shown in FIG. 11 (step S3).
 続いて、排気制御部3は、図1の吸引装置173により処理室120内の雰囲気を排出させる(ステップS4)。また、給気制御部4は、図1の配管171p,172pを通して処理室120内に不活性ガスを供給させる(ステップS5)。ステップS4,S5の処理は、いずれが先に開始されてもよいし、同時に開始されてもよい。その後、昇降制御部2は、図12に示すように、載置板151を処理位置に移動させる(ステップS6)。これにより、基板Wが複数の支持ピン142から載置板151に受け渡され、透光板162に近接される。 Subsequently, the exhaust control unit 3 discharges the atmosphere in the processing chamber 120 by the suction device 173 of FIG. 1 (step S4). Further, the air supply control unit 4 supplies an inert gas into the processing chamber 120 through the pipes 171p and 172p in FIG. 1 (step S5). Either of the processes of steps S4 and S5 may be started first, or may be started simultaneously. Thereafter, as shown in FIG. 12, the elevation controller 2 moves the placement plate 151 to the processing position (step S6). As a result, the substrate W is transferred from the plurality of support pins 142 to the mounting plate 151 and is brought close to the translucent plate 162.
 次に、濃度比較部6は、処理室120内の酸素濃度が所定濃度まで低下したか否かを判定する(ステップS7)。酸素濃度が所定濃度まで低下していない場合、濃度比較部6は、酸素濃度が所定濃度まで低下するまで待機する。酸素濃度が所定濃度まで低下した場合、投光制御部11は、光源部163により真空紫外線を出射させる(ステップS8)。これにより、光源部163から透光板162を通して真空紫外線が基板Wに照射され、被処理面に形成されたDSA膜が露光される。 Next, the concentration comparison unit 6 determines whether or not the oxygen concentration in the processing chamber 120 has decreased to a predetermined concentration (step S7). When the oxygen concentration has not decreased to the predetermined concentration, the concentration comparison unit 6 stands by until the oxygen concentration decreases to the predetermined concentration. When the oxygen concentration decreases to a predetermined concentration, the light projection control unit 11 causes the light source unit 163 to emit vacuum ultraviolet rays (step S8). Thereby, vacuum ultraviolet rays are irradiated onto the substrate W from the light source unit 163 through the light transmitting plate 162, and the DSA film formed on the surface to be processed is exposed.
 また、気流制御部7は、噴出部191により不活性ガスを噴出させるとともに、排気部192により不活性ガスを排出させる(ステップS9)。さらに、照度取得部8は、照度計183に真空紫外線の照度の計測を開始させ、計測された照度を照度計183から取得する(ステップS10)。ステップS8~S10の処理は、略同時に開始される。露光量算出部9は、照度取得部8により取得される真空紫外線の照度を積算することにより基板Wに照射される真空紫外線の露光量を算出する(ステップS11)。 In addition, the airflow control unit 7 causes the ejection unit 191 to eject the inert gas and causes the exhaust unit 192 to discharge the inert gas (step S9). Furthermore, the illuminance acquisition unit 8 causes the illuminance meter 183 to start measuring the illuminance of vacuum ultraviolet rays, and acquires the measured illuminance from the illuminance meter 183 (step S10). The processes in steps S8 to S10 are started almost simultaneously. The exposure amount calculation unit 9 calculates the exposure amount of the vacuum ultraviolet ray irradiated to the substrate W by integrating the illuminance of the vacuum ultraviolet ray acquired by the illuminance acquisition unit 8 (step S11).
 続いて、露光量比較部10は、露光量算出部9により算出された露光量が設定露光量に到達したか否かを判定する(ステップS12)。露光量が設定露光量に到達していない場合、露光量比較部10は、露光量が設定露光量に到達するまで待機する。 Subsequently, the exposure amount comparison unit 10 determines whether or not the exposure amount calculated by the exposure amount calculation unit 9 has reached the set exposure amount (step S12). When the exposure amount has not reached the set exposure amount, the exposure amount comparison unit 10 stands by until the exposure amount reaches the set exposure amount.
 露光量が設定露光量に到達した場合、投光制御部11は、光源部163からの真空紫外線の出射を停止させる(ステップS13)。また、気流制御部7は、噴出部191による不活性ガスの噴出および排気部192による不活性ガスの排出を停止させる(ステップS14)。さらに、照度取得部8は、照度計183による照度の計測を停止させる(ステップS15)。ステップS13~S15の処理は、略同時に開始される。 When the exposure amount reaches the set exposure amount, the light projection control unit 11 stops the emission of the vacuum ultraviolet rays from the light source unit 163 (step S13). Moreover, the airflow control unit 7 stops the ejection of the inert gas by the ejection unit 191 and the discharge of the inert gas by the exhaust unit 192 (step S14). Furthermore, the illuminance acquisition unit 8 stops the illuminance measurement by the illuminometer 183 (step S15). The processes in steps S13 to S15 are started almost simultaneously.
 次に、昇降制御部2は、図11に示すように、載置板151を待機位置に下降させる(ステップS16)。これにより、基板Wが載置板151から複数の支持ピン142に受け渡される。続いて、排気制御部3は、吸引装置173による処理室120内の雰囲気の排出を停止させる(ステップS17)。また、給気制御部4は、配管171p,172pからの処理室120内への不活性ガスの供給を停止させる(ステップS18)。ステップS17~S22の処理は、いずれが先に開始されてもよいし、同時に開始されてもよい。 Next, as shown in FIG. 11, the elevation controller 2 lowers the placement plate 151 to the standby position (step S16). As a result, the substrate W is transferred from the placement plate 151 to the plurality of support pins 142. Subsequently, the exhaust control unit 3 stops the discharge of the atmosphere in the processing chamber 120 by the suction device 173 (step S17). Further, the air supply control unit 4 stops the supply of the inert gas from the pipes 171p and 172p into the processing chamber 120 (step S18). Any of the processes in steps S17 to S22 may be started first, or may be started simultaneously.
 その後、閉塞制御部1は、図10に示すように、シャッタ131を開放位置に移動させる(ステップS19)。これにより、搬送開口122を通して露光後の基板Wを複数の支持ピン142上から処理室120の外部へ搬出することができる。本例では、後述する図15の搬送装置220により基板Wが複数の支持ピン142上から処理室120の外部へ搬出される。 Thereafter, the closing control unit 1 moves the shutter 131 to the open position as shown in FIG. 10 (step S19). Accordingly, the exposed substrate W can be carried out from the plurality of support pins 142 to the outside of the processing chamber 120 through the transfer opening 122. In this example, the substrate W is unloaded from the plurality of support pins 142 to the outside of the processing chamber 120 by the transfer device 220 shown in FIG.
 次に、閉塞制御部1は、基板Wが複数の支持ピン142上から搬出されたか否かを判定する(ステップS20)。基板Wが搬出されていない場合、閉塞制御部1は、基板Wが複数の支持ピン142上から搬出されるまで待機する。基板Wが搬出された場合、閉塞制御部1は、図9に示すように、シャッタ131を閉塞位置に移動させ(ステップS21)、露光処理を終了する。上記の動作が繰り返されることにより、複数の基板Wに露光処理を順次行うことができる。 Next, the closing control unit 1 determines whether or not the substrate W has been unloaded from the plurality of support pins 142 (step S20). When the substrate W has not been unloaded, the closing control unit 1 stands by until the substrate W is unloaded from the plurality of support pins 142. When the substrate W is carried out, the closing control unit 1 moves the shutter 131 to the closing position as shown in FIG. 9 (step S21), and the exposure process is ended. By repeating the above operation, exposure processing can be sequentially performed on the plurality of substrates W.
 上記の露光処理においては、噴出部191による不活性ガスの噴出および排気部192による不活性ガスの排出は、光源部163から基板Wへの真空紫外線の照射と同一の期間に行われるが、本発明はこれに限定されない。不活性ガスの噴出および不活性ガスの排出は、基板Wへの真空紫外線の照射開始よりも先に行われてもよいし、後に行われてもよい。また、不活性ガスの噴出の停止および不活性ガスの排出の停止は、基板Wへの真空紫外線の照射の停止よりも先に行われてもよいし、後に行われてもよい。 In the above exposure processing, the ejection of the inert gas by the ejection unit 191 and the discharge of the inert gas by the exhaust unit 192 are performed in the same period as the irradiation of the vacuum ultraviolet rays from the light source unit 163 to the substrate W. The invention is not limited to this. The ejection of the inert gas and the discharge of the inert gas may be performed before or after the start of the irradiation of the vacuum ultraviolet rays onto the substrate W. Further, the stop of the ejection of the inert gas and the stop of the discharge of the inert gas may be performed before or after the stop of the irradiation of the vacuum ultraviolet rays onto the substrate W.
 あるいは、噴出部191による不活性ガスの噴出および排気部192による不活性ガスの排出は、シャッタ131が閉塞位置にあるときに常時行われてもよい。したがって、ステップS9の処理は、ステップS4またはステップS5の処理と略同時に行われてもよい。また、ステップS14の処理は、ステップS17またはステップS18の処理と略同時に行われてもよい。 Alternatively, the ejection of the inert gas by the ejection unit 191 and the discharge of the inert gas by the exhaust unit 192 may be performed constantly when the shutter 131 is in the closed position. Therefore, the process of step S9 may be performed substantially simultaneously with the process of step S4 or step S5. Moreover, the process of step S14 may be performed substantially simultaneously with the process of step S17 or step S18.
 (5)基板処理装置
 図15は、図1の露光装置100を備えた基板処理装置の全体構成を示す模式的ブロック図である。以下に説明する基板処理装置200においては、ブロック共重合体の誘導自己組織化(DSA)を利用した処理が行われる。具体的には、基板Wの被処理面上に誘導自己組織化材料を含む処理液が塗布される。その後、誘導自己組織化材料に生じるミクロ相分離により基板Wの被処理面上に2種類の重合体のパターンが形成される。2種類の重合体のうち一方のパターンが溶剤により除去される。
(5) Substrate Processing Apparatus FIG. 15 is a schematic block diagram showing the overall configuration of a substrate processing apparatus provided with the exposure apparatus 100 of FIG. In the substrate processing apparatus 200 described below, processing using block copolymer induced self-assembly (DSA) is performed. Specifically, a processing liquid containing an induction self-organizing material is applied on the surface of the substrate W to be processed. Thereafter, two types of polymer patterns are formed on the surface to be processed of the substrate W by microphase separation that occurs in the induced self-assembled material. One of the two types of polymers is removed by the solvent.
 誘導自己組織化材料を含む処理液をDSA液と呼ぶ。また、ミクロ相分離により基板Wの被処理面上に形成される2種類の重合体のパターンのうち一方を除去する処理を現像処理と呼び、現像処理に用いられる溶剤を現像液と呼ぶ。 The treatment liquid containing the induced self-organizing material is called DSA liquid. In addition, a process for removing one of the two types of polymer patterns formed on the surface to be processed of the substrate W by microphase separation is called a development process, and a solvent used for the development process is called a developer.
 図15に示すように、基板処理装置200は、露光装置100に加えて、制御装置210、搬送装置220、熱処理装置230、塗布装置240および現像装置250を備える。制御装置210は、例えばCPUおよびメモリ、またはマイクロコンピュータを含み、搬送装置220、熱処理装置230、塗布装置240および現像装置250の動作を制御する。また、制御装置210は、図1の露光装置100の閉塞部130、昇降部150、投光部160、置換部170および気流形成部190の動作を制御するための指令を制御部110に与える。 As shown in FIG. 15, the substrate processing apparatus 200 includes a control device 210, a transport device 220, a heat treatment device 230, a coating device 240, and a developing device 250 in addition to the exposure device 100. The control device 210 includes, for example, a CPU and a memory or a microcomputer, and controls operations of the transport device 220, the heat treatment device 230, the coating device 240, and the developing device 250. In addition, the control device 210 gives a command for controlling the operation of the closing unit 130, the lifting unit 150, the light projecting unit 160, the replacement unit 170, and the airflow forming unit 190 of the exposure apparatus 100 of FIG.
 搬送装置220は、処理対象の基板Wを保持しつつその基板Wを露光装置100、熱処理装置230、塗布装置240および現像装置250の間で搬送する。熱処理装置230は、塗布装置240による塗布処理および現像装置250による現像処理の前後に基板Wの熱処理を行う。 The transport apparatus 220 transports the substrate W between the exposure apparatus 100, the heat treatment apparatus 230, the coating apparatus 240, and the development apparatus 250 while holding the substrate W to be processed. The heat treatment apparatus 230 heat-treats the substrate W before and after the coating process by the coating apparatus 240 and the development process by the developing apparatus 250.
 塗布装置240は、基板Wの被処理面にDSA液を供給することにより、膜の塗布処理を行う。本実施の形態では、DSA液として、2種類の重合体から構成されるブロック共重合体が用いられる。2種類の重合体の組み合わせとして、例えば、ポリスチレン-ポリメチルメタクリレート(PS-PMMA)、ポリスチレン-ポリジメチルシロキサン(PS-PDMS)、ポリスチレン-ポリフェロセニルジメチルシラン(PS-PFS)、ポリスチレン-ポリエチレンオキシド(PS-PEO)、ポリスチレン-ポリビニルピリジン(PS-PVP)、ポリスチレン-ポリヒドロキシスチレン(PS-PHOST)、およびポリメチルメタクリレート-ポリメタクリレートポリヘドラルオリゴメリックシルセスキオキサン(PMMA-PMAPOSS)等が挙げられる。 The coating apparatus 240 performs a film coating process by supplying a DSA liquid to the surface of the substrate W to be processed. In this embodiment, a block copolymer composed of two types of polymers is used as the DSA liquid. Examples of combinations of two types of polymers include polystyrene-polymethyl methacrylate (PS-PMMA), polystyrene-polydimethylsiloxane (PS-PDMS), polystyrene-polyferrocenyldimethylsilane (PS-PFS), and polystyrene-polyethylene oxide. (PS-PEO), polystyrene-polyvinylpyridine (PS-PVP), polystyrene-polyhydroxystyrene (PS-PHOST), and polymethyl methacrylate-polymethacrylate polyhedral oligomeric silsesquioxane (PMMA-PMAPOSS). Can be mentioned.
 現像装置250は、基板Wの被処理面に現像液を供給することにより、膜の現像処理を行う。現像液の溶媒として、例えば、トルエン、ヘプタン、アセトン、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン、酢酸、テトラヒドロフラン、イソプロピルアルコール(IPA)または水酸化テトラメチルアンモニウム(TMAH)等が挙げられる。 The developing device 250 supplies the developer to the surface to be processed of the substrate W, thereby developing the film. As a solvent for the developer, for example, toluene, heptane, acetone, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), cyclohexanone, acetic acid, tetrahydrofuran, isopropyl alcohol (IPA) or tetramethylammonium hydroxide (TMAH) ) And the like.
 図16は、図15の基板処理装置200による基板Wの処理の一例を示す模式図である。図16では、処理が行われるごとに変化する基板Wの状態が断面図で示される。本例では、基板Wが基板処理装置200に搬入される前の初期状態として、図16(a)に示すように、基板Wの被処理面を覆うように下地層L1が形成され、下地層L1上に例えばフォトレジストからなるガイドパターンL2が形成されている。以下、図15および図16を用いて基板処理装置200の動作を説明する。 FIG. 16 is a schematic diagram showing an example of processing of the substrate W by the substrate processing apparatus 200 of FIG. In FIG. 16, the state of the substrate W that changes each time processing is performed is shown in a cross-sectional view. In this example, as an initial state before the substrate W is carried into the substrate processing apparatus 200, the base layer L1 is formed so as to cover the surface to be processed of the substrate W as shown in FIG. A guide pattern L2 made of, for example, a photoresist is formed on L1. Hereinafter, the operation of the substrate processing apparatus 200 will be described with reference to FIGS. 15 and 16.
 搬送装置220は、処理対象の基板Wを、熱処理装置230および塗布装置240に順に搬送する。この場合、熱処理装置230において、基板Wの温度がDSA膜の形成に適した温度に調整される。また、塗布装置240において、基板Wの被処理面にDSA液が供給され、塗布処理が行われる。それにより、図16(b)に示すように、ガイドパターンL2が形成されていない下地層L1上の領域に、2種類の重合体から構成されるDSA膜L3が形成される。 The transfer device 220 sequentially transfers the substrate W to be processed to the heat treatment device 230 and the coating device 240. In this case, in the heat treatment apparatus 230, the temperature of the substrate W is adjusted to a temperature suitable for forming the DSA film. Further, in the coating apparatus 240, the DSA liquid is supplied to the surface to be processed of the substrate W, and the coating process is performed. Accordingly, as shown in FIG. 16B, a DSA film L3 composed of two types of polymers is formed in a region on the base layer L1 where the guide pattern L2 is not formed.
 次に、搬送装置220は、DSA膜L3が形成された基板Wを、熱処理装置230および露光装置100に順に搬送する。この場合、熱処理装置230において、基板Wの加熱処理が行われることにより、DSA膜L3にミクロ相分離が生じる。これにより、図16(c)に示すように、一方の重合体からなるパターンQ1および他方の重合体からなるパターンQ2が形成される。本例では、ガイドパターンL2に沿うように、線状のパターンQ1および線状のパターンQ2が指向的に形成される。 Next, the transfer device 220 sequentially transfers the substrate W on which the DSA film L3 is formed to the heat treatment device 230 and the exposure device 100. In this case, the heat treatment apparatus 230 performs the heat treatment of the substrate W, thereby causing microphase separation in the DSA film L3. As a result, as shown in FIG. 16C, a pattern Q1 made of one polymer and a pattern Q2 made of the other polymer are formed. In this example, the linear pattern Q1 and the linear pattern Q2 are directionally formed along the guide pattern L2.
 その後、熱処理装置230において、基板Wが冷却される。また、露光装置100において、ミクロ相分離後のDSA膜L3の全体にDSA膜L3を改質させるための真空紫外線が照射され、露光処理が行われる。これにより、一方の重合体と他方の重合体との間の結合が切断され、パターンQ1とパターンQ2とが分離される。 Thereafter, the substrate W is cooled in the heat treatment apparatus 230. Further, in the exposure apparatus 100, the entire DSA film L3 after microphase separation is irradiated with vacuum ultraviolet rays for modifying the DSA film L3, and exposure processing is performed. Thereby, the bond between one polymer and the other polymer is cut, and the pattern Q1 and the pattern Q2 are separated.
 続いて、搬送装置220は、露光装置100による露光処理後の基板Wを、熱処理装置230および現像装置250に順に搬送する。この場合、熱処理装置230において、基板Wが冷却される。また、現像装置250において、基板W上のDSA膜L3に現像液が供給され、現像処理が行われる。これにより、図16(d)に示すように、パターンQ1が除去され、最終的に、基板W上にパターンQ2が残存する。最後に、搬送装置220は、現像処理後の基板Wを現像装置250から回収する。 Subsequently, the transport device 220 sequentially transports the substrate W after the exposure processing by the exposure device 100 to the heat treatment device 230 and the developing device 250. In this case, the substrate W is cooled in the heat treatment apparatus 230. Further, in the developing device 250, a developer is supplied to the DSA film L3 on the substrate W, and development processing is performed. Thereby, as shown in FIG. 16D, the pattern Q1 is removed, and finally the pattern Q2 remains on the substrate W. Finally, the transport device 220 collects the substrate W after the development processing from the development device 250.
 (6)効果
 本発明に係る露光装置100においては、処理室120の上部開口121に取り付けられた透光板162を通して、光源部163により処理室120内に収容された基板Wに真空紫外線が照射される。また、噴出部191および排気部192により透光板162の一面に沿った不活性ガスの流れが層流として形成される。
(6) Effect In the exposure apparatus 100 according to the present invention, vacuum ultraviolet rays are irradiated to the substrate W accommodated in the processing chamber 120 by the light source unit 163 through the light transmitting plate 162 attached to the upper opening 121 of the processing chamber 120. Is done. Moreover, the flow of the inert gas along one surface of the translucent plate 162 is formed as a laminar flow by the ejection part 191 and the exhaust part 192.
 この構成によれば、長時間にわたって真空紫外線が透光板162に照射される場合でも、透光板162に発生する熱が不活性ガスの流れにより放散される。また、不活性ガスは、基板Wに照射される真空紫外線をほとんど吸収しない。そのため、基板Wの露光効率を低下させることなく透光板162の温度が上昇することを防止することができる。これにより、透光板162を透過して基板Wに照射される真空紫外線の照度が低下することを防止することができる。 According to this configuration, even when the vacuum ultraviolet rays are irradiated to the light transmitting plate 162 for a long time, the heat generated in the light transmitting plate 162 is dissipated by the flow of the inert gas. Further, the inert gas hardly absorbs the vacuum ultraviolet rays applied to the substrate W. Therefore, it is possible to prevent the temperature of the translucent plate 162 from rising without reducing the exposure efficiency of the substrate W. Thereby, it can prevent that the illumination intensity of the vacuum ultraviolet-ray which permeate | transmits the translucent board 162 and is irradiated to the board | substrate W falls.
 また、処理室120の内部空間V1に接する透光板162の下面の温度上昇が防止されるので、処理室120内で昇華物が生成されることが防止される。それにより、昇華物の付着による透光板162の透過率の低下が防止される。その結果、露光処理の精度および効率を維持することができる。また、昇華物による処理室120内の汚染を防止することができる。 In addition, since the temperature rise of the lower surface of the translucent plate 162 in contact with the internal space V1 of the processing chamber 120 is prevented, it is possible to prevent the generation of sublimates in the processing chamber 120. Thereby, the fall of the transmittance | permeability of the translucent board 162 by adhesion of a sublimate is prevented. As a result, the accuracy and efficiency of the exposure process can be maintained. In addition, contamination of the processing chamber 120 due to the sublimation product can be prevented.
 (7)他の実施の形態
 (a)上記実施の形態において、噴出管191aに一方向に沿って並ぶ複数の噴出孔191hが形成されるが、本発明はこれに限定されない。図17は、他の実施の形態における噴出管191aの構成を示す側面図である。図17に示すように、他の実施の形態においては、図6(a)の複数の噴出孔191hに代えて、一方向に沿って延びるスリット191tが噴出管191aに形成される。この場合においても、スリット191tを通して噴出管191aの内部と外部とが連通する。これにより、スリット191tから断面帯状の不活性ガスを噴出することができる。
(7) Other Embodiments (a) In the above embodiment, a plurality of ejection holes 191h are formed in the ejection pipe 191a along one direction, but the present invention is not limited to this. FIG. 17 is a side view showing the configuration of the ejection pipe 191a in another embodiment. As shown in FIG. 17, in another embodiment, slits 191t extending in one direction are formed in the ejection pipe 191a instead of the plurality of ejection holes 191h in FIG. 6 (a). Also in this case, the inside and the outside of the ejection pipe 191a communicate with each other through the slit 191t. As a result, the inert gas having a strip-shaped cross section can be ejected from the slit 191t.
 (b)上記実施の形態において、露光装置100は1つの噴出部191および1つの排気部192を含むが、本発明はこれに限定されない。露光装置100は複数の噴出部191を含んでもよい。また、露光装置100は複数の排気部192を含んでもよい。 (B) In the above embodiment, the exposure apparatus 100 includes one ejection part 191 and one exhaust part 192, but the present invention is not limited to this. The exposure apparatus 100 may include a plurality of ejection portions 191. The exposure apparatus 100 may include a plurality of exhaust units 192.
 図18は、噴出部および排気部の配置の他の例を示す模式的底面図である。図18の例では、第1の噴出部191Aが透光板162の側辺162aの下方でかつ外方において水平に設けられ、第2の噴出部191Bが透光板162の側辺162bの下方でかつ外方において水平に設けられる。排気部192は、透光板162の側辺162a,162bに直交する一対の側辺162c,162dのうち一方の側辺162cの下方かつ外方において水平に設けられる。 FIG. 18 is a schematic bottom view showing another example of the arrangement of the ejection part and the exhaust part. In the example of FIG. 18, the first ejection portion 191 </ b> A is provided horizontally below and on the outer side 162 a of the translucent plate 162, and the second ejection portion 191 </ b> B is disposed below the side 162 b of the translucent plate 162. And is provided horizontally outside. The exhaust portion 192 is provided horizontally below and outside one side 162c of the pair of sides 162c and 162d orthogonal to the sides 162a and 162b of the translucent plate 162.
 この配置によれば、第1の噴出部191Aにより、透光板162の下面に沿って側辺162aから側辺162bに向かう方向に不活性ガスが噴出される。また、第2の噴出部191Bにより、透光板162の下面に沿って側辺162bから側辺162aに向かう方向に不活性ガスが噴出される。噴出された不活性ガスは、排気部192に近づくように曲がりつつ進行し、排気部192に到達する。それにより、第1および第2の噴出部191A,191Bにより噴出された不活性ガスにより透光板162の下面に沿った層流が形成される。 According to this arrangement, the inert gas is jetted in the direction from the side 162a toward the side 162b along the lower surface of the translucent plate 162 by the first jet 191A. In addition, the inert gas is ejected in the direction from the side 162b toward the side 162a along the lower surface of the translucent plate 162 by the second ejection portion 191B. The ejected inert gas travels while being bent so as to approach the exhaust part 192, and reaches the exhaust part 192. Thereby, a laminar flow along the lower surface of the translucent plate 162 is formed by the inert gas ejected by the first and second ejection portions 191A and 191B.
 図19は、噴出部および排気部の配置のさらに他の例を示す模式的底面図である。図19の例が図18の例と異なるのは、第1の排気部192Aが透光板162の一方の側辺162cの下方かつ外方において水平に設けられ、かつ第2の排気部192Bが透光板162の他方の側辺162dの下方かつ外方において水平に設けられる点である。 FIG. 19 is a schematic bottom view showing still another example of the arrangement of the ejection part and the exhaust part. The example of FIG. 19 is different from the example of FIG. 18 in that the first exhaust part 192A is provided horizontally below and outside one side 162c of the translucent plate 162, and the second exhaust part 192B is This is a point provided horizontally below and outside the other side 162d of the light transmitting plate 162.
 この配置によれば、第1の噴出部191Aにより噴出された不活性ガスは、第1および第2の排気部192A,192Bに近づくように曲がりつつ進行し、第1および第2の排気部192A,192Bに到達する。同様に、第2の噴出部191Bにより噴出された不活性ガスは、第1および第2の排気部192A,192Bに近づくように曲がりつつ進行し、第1および第2の排気部192A,192Bに到達する。それにより、第1および第2の噴出部191A,191Bにより噴出された不活性ガスにより透光板162の下面に沿った層流が形成される。 According to this arrangement, the inert gas ejected by the first ejection part 191A proceeds while bending so as to approach the first and second exhaust parts 192A, 192B, and the first and second exhaust parts 192A. , 192B. Similarly, the inert gas ejected by the second ejection part 191B travels while being bent so as to approach the first and second exhaust parts 192A, 192B, and enters the first and second exhaust parts 192A, 192B. To reach. Thereby, a laminar flow along the lower surface of the translucent plate 162 is formed by the inert gas ejected by the first and second ejection portions 191A and 191B.
 図18および図19の例では、透光板162が大型である場合でも、透光板162の全体から放熱し、透光板162の温度の上昇を抑制することができる。したがって、より大きい寸法を有する基板Wに照射される真空紫外線の照度が低下することを防止することができる。 In the example of FIGS. 18 and 19, even when the light transmitting plate 162 is large, heat can be radiated from the entire light transmitting plate 162, and an increase in the temperature of the light transmitting plate 162 can be suppressed. Therefore, it is possible to prevent the illuminance of the vacuum ultraviolet rays applied to the substrate W having a larger dimension from decreasing.
 (c)上記実施の形態において、排気部192は透光板162の下方の空間を挟んで噴出部191と対向する位置に配置されるが、本発明はこれに限定されない。排気部192は、他の位置に配置されてもよい。また、気流形成部190は排気部192を含むが、本発明はこれに限定されない。噴出部191により噴出された不活性ガスが枝管173a、配管173pおよび吸引装置173を通して処理室120から排出されるため、気流形成部190は排気部192を含まなくてもよい。 (C) In the above embodiment, the exhaust part 192 is disposed at a position facing the ejection part 191 with the space below the translucent plate 162 interposed therebetween, but the present invention is not limited to this. The exhaust part 192 may be disposed at another position. Moreover, although the airflow formation part 190 contains the exhaust part 192, this invention is not limited to this. Since the inert gas ejected by the ejection part 191 is exhausted from the processing chamber 120 through the branch pipe 173a, the pipe 173p, and the suction device 173, the airflow formation part 190 may not include the exhaust part 192.
 (d)上記実施の形態において、処理液としてDSA液が用いられるが、本発明はこれに限定されない。DSA液とは異なる他の処理液が用いられてもよい。 (D) In the above embodiment, the DSA liquid is used as the processing liquid, but the present invention is not limited to this. Other processing liquids different from the DSA liquid may be used.
 (e)上記実施の形態において、真空紫外線の出射面は基板Wの被処理面よりも大きく、基板Wの全面露光が行われるが、本発明はこれに限定されない。真空紫外線の出射面は基板Wの被処理面よりも小さくてもよいし、面状の断面を有さずに線状の断面を有する真空紫外線が出射されてもよい。この場合、真空紫外線の出射面と基板Wの被処理面とが相対的に移動されることにより基板Wの被処理面の全体に真空紫外線が照射される。 (E) In the above-described embodiment, the exit surface of the vacuum ultraviolet ray is larger than the surface to be processed of the substrate W, and the entire surface of the substrate W is exposed. However, the present invention is not limited to this. The emission surface of the vacuum ultraviolet ray may be smaller than the surface to be processed of the substrate W, or the vacuum ultraviolet ray having a linear cross section may be emitted without having a planar cross section. In this case, the vacuum ultraviolet ray is irradiated on the entire surface of the substrate W to be processed by relatively moving the vacuum ultraviolet ray emitting surface and the surface of the substrate W to be processed.
 (f)上記実施の形態において、露光処理時に処理室120内に不活性ガスが供給されるが、本発明はこれに限定されない。露光処理時に処理室120内の酸素濃度が十分に低減可能である場合には、処理室120内に不活性ガスが供給されなくてもよい。 (F) In the above embodiment, an inert gas is supplied into the processing chamber 120 during the exposure process, but the present invention is not limited to this. If the oxygen concentration in the processing chamber 120 can be sufficiently reduced during the exposure processing, the inert gas may not be supplied into the processing chamber 120.
 (8)請求項の各構成要素と実施の形態の各部との対応関係
 以下、請求項の各構成要素と実施の形態の各構成要素との対応の例について説明するが、本発明は下記の例に限定されない。
(8) Correspondence between each constituent element of claim and each part of the embodiment Hereinafter, an example of correspondence between each constituent element of the claim and each constituent element of the embodiment will be described. It is not limited to examples.
 上記実施の形態においては、上部開口121が開口の例であり、基板Wが基板の例であり、処理室120が処理室の例であり、透光板162が窓部材の例であり、光源部163が光源部の例であり、気流形成部190が気流形成部の例である。露光装置100が露光装置の例であり、内部空間V1が内部空間の例であり、噴出部191が噴出部の例であり、排気部192が排気部の例であり、噴出管191aが噴出管の例であり、噴出孔191hまたはスリット191tが噴出口の例である。 In the above embodiment, the upper opening 121 is an example of an opening, the substrate W is an example of a substrate, the processing chamber 120 is an example of a processing chamber, the translucent plate 162 is an example of a window member, The part 163 is an example of a light source part, and the airflow formation part 190 is an example of an airflow formation part. The exposure apparatus 100 is an example of an exposure apparatus, the internal space V1 is an example of an internal space, the ejection part 191 is an example of an ejection part, the exhaust part 192 is an example of an exhaust part, and the ejection pipe 191a is an ejection pipe. The ejection hole 191h or the slit 191t is an example of the ejection port.
 保持部材191cが保持部材の例であり、スリット191s,191tがそれぞれ第1および第2のスリットの例であり、噴出孔191hが噴出孔の例であり、第1および第2の噴出部191A,191Bがそれぞれ第1および第2の噴出部の例である。塗布装置240が塗布処理部の例であり、熱処理装置230が熱処理部の例であり、現像装置250が現像処理部の例であり、基板処理装置200が基板処理装置の例である。 The holding member 191c is an example of the holding member, the slits 191s and 191t are examples of the first and second slits, the ejection hole 191h is an example of the ejection hole, and the first and second ejection portions 191A, 191B is an example of the 1st and 2nd ejection part, respectively. The coating device 240 is an example of a coating processing unit, the thermal processing device 230 is an example of a thermal processing unit, the developing device 250 is an example of a developing processing unit, and the substrate processing device 200 is an example of a substrate processing device.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の構成要素を用いることもできる。 As each constituent element in the claims, various other constituent elements having configurations or functions described in the claims can be used.

Claims (16)

  1. 開口を有し、基板を収容する処理室と、
     前記処理室の前記開口に取り付けられた透光性の窓部材と、
     前記窓部材を通して前記処理室内の基板に真空紫外線を照射する光源部と、
     前記窓部材の一面に沿った不活性ガスの流れを形成する気流形成部とを備える、露光装置。
    A processing chamber having an opening and containing a substrate;
    A translucent window member attached to the opening of the processing chamber;
    A light source unit that irradiates the substrate in the processing chamber with vacuum ultraviolet rays through the window member;
    An exposure apparatus comprising: an airflow forming unit that forms a flow of an inert gas along one surface of the window member.
  2. 前記窓部材の前記一面は、前記処理室の内部空間に面し、
     前記気流形成部は、前記処理室内において前記窓部材の前記一面に沿った不活性ガスの流れを形成する、請求項1記載の露光装置。
    The one surface of the window member faces the internal space of the processing chamber,
    The exposure apparatus according to claim 1, wherein the airflow forming unit forms a flow of an inert gas along the one surface of the window member in the processing chamber.
  3. 前記気流形成部は、
     前記処理室内に前記窓部材の前記一面に沿うように不活性ガスを噴出する噴出部と、
     前記処理室内の不活性ガスを排出する排気部とを含む、請求項2記載の露光装置。
    The airflow forming part is
    A jetting part that jets an inert gas along the one surface of the window member into the processing chamber;
    The exposure apparatus according to claim 2, further comprising an exhaust unit that exhausts the inert gas in the processing chamber.
  4. 前記噴出部は、前記窓部材の前記一面に平行に延びかつ不活性ガスを噴出する噴出口を有する噴出管を含む、請求項3記載の露光装置。 4. The exposure apparatus according to claim 3, wherein the ejection portion includes an ejection pipe that extends in parallel with the one surface of the window member and has an ejection port that ejects an inert gas.
  5. 前記噴出部は、前記噴出管の外周を囲むように設けられる保持部材をさらに含み、
     前記保持部材は、前記窓部材の前記一面に平行に延びる第1のスリットを有し、前記噴出管の前記噴出口から噴出される不活性ガスが前記保持部材の前記第1のスリットを通して前記窓部材の前記一面に沿って噴出される、請求項4記載の露光装置。
    The ejection part further includes a holding member provided so as to surround an outer periphery of the ejection pipe,
    The holding member has a first slit extending in parallel with the one surface of the window member, and the inert gas ejected from the ejection port of the ejection pipe passes through the first slit of the retaining member and the window. The exposure apparatus according to claim 4, wherein the exposure apparatus is ejected along the one surface of the member.
  6. 前記噴出管は、前記噴出口として前記窓部材の前記一面に平行に並びかつ不活性ガスを噴出する複数の噴出孔を有する、請求項4または5記載の露光装置。 The exposure apparatus according to claim 4, wherein the ejection pipe has a plurality of ejection holes that are arranged in parallel to the one surface of the window member and eject an inert gas as the ejection outlet.
  7. 前記噴出管は、前記噴出口として前記窓部材の前記一面に平行に延びかつ不活性ガスを噴出する第2のスリットを有する、請求項4または5記載の露光装置。 The exposure apparatus according to claim 4, wherein the ejection pipe has a second slit that extends parallel to the one surface of the window member and ejects an inert gas as the ejection port.
  8. 前記噴出部と前記排気部とは、前記窓部材の前記一面に接する空間を挟んで互いに対向するように配置される、請求項3~7のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 3 to 7, wherein the ejection part and the exhaust part are arranged to face each other across a space in contact with the one surface of the window member.
  9. 前記噴出部は、前記窓部材の前記一面に接する空間を挟んで互いに対向するように配置される第1および第2の噴出部を含み、
     前記排気部は、前記第1および第2の噴出部に重ならないように配置される、請求項3~7のいずれか一項に記載の露光装置。
    The ejection part includes first and second ejection parts arranged to face each other across a space in contact with the one surface of the window member,
    The exposure apparatus according to any one of claims 3 to 7, wherein the exhaust unit is disposed so as not to overlap the first and second ejection units.
  10. 前記気流形成部は、前記窓部材の前記一面に沿った不活性ガスの層流を形成する、請求項1~9のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 9, wherein the air flow forming unit forms a laminar flow of an inert gas along the one surface of the window member.
  11. 前記光源部は、面状の断面を有する真空紫外線を出射するように構成される、請求項1~10のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 10, wherein the light source unit is configured to emit vacuum ultraviolet rays having a planar cross section.
  12. 前記光源部による真空紫外線の出射面積は、基板の面積よりも大きい、請求項11記載の露光装置。 The exposure apparatus according to claim 11, wherein an emission area of the vacuum ultraviolet rays by the light source unit is larger than an area of the substrate.
  13. 基板に処理液を塗布することにより基板に膜を形成する塗布処理部と、
     前記塗布処理部により膜が形成された基板を熱処理する熱処理部と、
     前記熱処理部により熱処理された基板を露光する請求項1~12のいずれか一項に記載の露光装置と、
     前記露光装置により露光された基板に溶剤を供給することにより基板の膜を現像する現像処理部とを備える、基板処理装置。
    A coating processing unit that forms a film on the substrate by applying a processing liquid to the substrate;
    A heat treatment part for heat treating the substrate on which the film is formed by the coating treatment part;
    The exposure apparatus according to any one of claims 1 to 12, which exposes a substrate heat-treated by the heat treatment unit;
    A substrate processing apparatus comprising: a development processing unit that develops a film on the substrate by supplying a solvent to the substrate exposed by the exposure apparatus.
  14. 処理液は、誘導自己組織化材料を含む、請求項13記載の基板処理装置。 The substrate processing apparatus according to claim 13, wherein the processing liquid includes an induced self-organizing material.
  15. 処理室の開口に取り付けられた透光性の窓部材を通して、光源部により前記処理室内に収容された基板に真空紫外線を照射するステップと、
     気流形成部により前記窓部材の一面に沿った不活性ガスの流れを形成するステップとを含む、露光方法。
    Irradiating the substrate accommodated in the processing chamber by a light source through a light-transmitting window member attached to the opening of the processing chamber;
    Forming a flow of an inert gas along one surface of the window member by an air flow forming unit.
  16. 塗布処理部により基板の被処理面に処理液を塗布することにより基板に膜を形成するステップと、
     前記塗布処理部により膜が形成された基板を熱処理部により熱処理するステップと、
     前記熱処理部により熱処理された基板を露光装置により露光する請求項15記載の露光方法と、
     前記露光装置により露光された基板の被処理面に現像処理部により溶剤を供給することにより基板の膜を現像するステップとを含む、基板処理方法。
    Forming a film on the substrate by applying a treatment liquid to the surface to be processed of the substrate by the application processing unit;
    Heat-treating the substrate on which the film has been formed by the coating treatment unit with a heat treatment unit;
    The exposure method according to claim 15, wherein the substrate heat-treated by the heat treatment unit is exposed by an exposure apparatus;
    And developing a film on the substrate by supplying a solvent to a surface to be processed of the substrate exposed by the exposure apparatus by means of a development processing unit.
PCT/JP2017/037053 2017-03-23 2017-10-12 Exposure device, substrate treatment device, substrate exposure method, and substrate treatment method WO2018173344A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017057225A JP6845058B2 (en) 2017-03-23 2017-03-23 Exposure equipment, substrate processing equipment, substrate exposure method and substrate processing method
JP2017-057225 2017-03-23

Publications (1)

Publication Number Publication Date
WO2018173344A1 true WO2018173344A1 (en) 2018-09-27

Family

ID=63586444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037053 WO2018173344A1 (en) 2017-03-23 2017-10-12 Exposure device, substrate treatment device, substrate exposure method, and substrate treatment method

Country Status (3)

Country Link
JP (1) JP6845058B2 (en)
TW (1) TWI661276B (en)
WO (1) WO2018173344A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7295754B2 (en) * 2019-09-19 2023-06-21 株式会社Screenホールディングス Exposure device
TWI747490B (en) * 2019-09-19 2021-11-21 日商斯庫林集團股份有限公司 Exposure device
JP2023020664A (en) * 2021-07-30 2023-02-09 株式会社Screenホールディングス Substrate processing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792317A (en) * 1993-09-27 1995-04-07 Toppan Printing Co Ltd Pattern exposure method and exposure device
JPH104064A (en) * 1996-06-17 1998-01-06 Toshiba Mach Co Ltd Single wafer processing low pressure cvd apparatus
JP2015126044A (en) * 2013-12-26 2015-07-06 ウシオ電機株式会社 Vacuum-ultraviolet light irradiation processing apparatus
JP2015207621A (en) * 2014-04-18 2015-11-19 東京エレクトロン株式会社 substrate processing apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2888353B2 (en) * 1989-10-13 1999-05-10 東京エレクトロン株式会社 Exposure equipment
JPH06104169A (en) * 1992-09-21 1994-04-15 Fujitsu Ltd Semiconductor manufacturing device
JP4006235B2 (en) * 2002-02-05 2007-11-14 キヤノン株式会社 Inert gas replacement method and apparatus, reticle storage, reticle inspection apparatus, reticle transport box, and device manufacturing method
JP2005197349A (en) * 2004-01-05 2005-07-21 Semiconductor Leading Edge Technologies Inc Fine patterning method and fabrication process of semiconductor device
US7789965B2 (en) * 2006-09-19 2010-09-07 Asm Japan K.K. Method of cleaning UV irradiation chamber
JP2012049305A (en) * 2010-08-26 2012-03-08 Hitachi High-Technologies Corp Vacuum ultraviolet light processor
JP6543064B2 (en) * 2015-03-25 2019-07-10 株式会社Screenホールディングス Exposure apparatus, substrate processing apparatus, substrate exposure method and substrate processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792317A (en) * 1993-09-27 1995-04-07 Toppan Printing Co Ltd Pattern exposure method and exposure device
JPH104064A (en) * 1996-06-17 1998-01-06 Toshiba Mach Co Ltd Single wafer processing low pressure cvd apparatus
JP2015126044A (en) * 2013-12-26 2015-07-06 ウシオ電機株式会社 Vacuum-ultraviolet light irradiation processing apparatus
JP2015207621A (en) * 2014-04-18 2015-11-19 東京エレクトロン株式会社 substrate processing apparatus

Also Published As

Publication number Publication date
JP2018159828A (en) 2018-10-11
TW201835686A (en) 2018-10-01
TWI661276B (en) 2019-06-01
JP6845058B2 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
US9972516B2 (en) Exposure device, substrate processing apparatus, exposure method for substrate and substrate processing method
US10955745B2 (en) Exposure device, substrate processing apparatus, exposure method and substrate processing method
WO2018173344A1 (en) Exposure device, substrate treatment device, substrate exposure method, and substrate treatment method
TWI659275B (en) Exposure device, substrate processing apparatus, exposure method and substrate processing method
TWI706226B (en) Exposure device, substrate processing apparatus, exposure method of substrate and substrate processing method
WO2018159006A1 (en) Exposure device, substrate treatment device, substrate exposure method, and substrate treatment method
WO2018190273A1 (en) Exposure device, substrate treatment device, substrate exposure method, and substrate treatment method
JP6924661B2 (en) Exposure equipment, substrate processing equipment, exposure method and substrate processing method
JP6768561B2 (en) Exposure equipment, substrate processing equipment, substrate exposure method and substrate processing method
JP7002262B2 (en) Exposure equipment, substrate processing equipment, exposure method and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901498

Country of ref document: EP

Kind code of ref document: A1