WO2018172993A1 - Dispositivo e método para produção de filamento - Google Patents

Dispositivo e método para produção de filamento Download PDF

Info

Publication number
WO2018172993A1
WO2018172993A1 PCT/IB2018/051989 IB2018051989W WO2018172993A1 WO 2018172993 A1 WO2018172993 A1 WO 2018172993A1 IB 2018051989 W IB2018051989 W IB 2018051989W WO 2018172993 A1 WO2018172993 A1 WO 2018172993A1
Authority
WO
WIPO (PCT)
Prior art keywords
spindle
filament
thermoplastic
diameter
zone
Prior art date
Application number
PCT/IB2018/051989
Other languages
English (en)
French (fr)
Inventor
Martim LIMA DE AGUIAR
Pedro Miguel DE FIGUEIREDO DINIS OLIVEIRA GASPAR
Original Assignee
Universidade Da Beira Interior
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Da Beira Interior filed Critical Universidade Da Beira Interior
Priority to CA3052833A priority Critical patent/CA3052833A1/en
Priority to EP18723055.2A priority patent/EP3603932A1/en
Priority to US16/482,053 priority patent/US20190375142A1/en
Publication of WO2018172993A1 publication Critical patent/WO2018172993A1/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/0026Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/02Small extruding apparatus, e.g. handheld, toy or laboratory extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/397Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using a single screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • B29C48/767Venting, drying means; Degassing means in the extruder apparatus in screw extruders through a degassing opening of a barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92123Diameter or circumference
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92209Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/9238Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/924Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92447Moulded article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/926Flow or feed rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92619Diameter or circumference
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92942Moulded article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/731Filamentary material, i.e. comprised of a single element, e.g. filaments, strands, threads, fibres

Definitions

  • the present application describes a device capable of producing thermoplastic filaments, using as raw material thermoplastic flakes (small pieces) obtained from packaging or other discarded thermoplastic waste.
  • the filament produced by the device described herein is intended to be used as feedstock in cast material deposition (FDM) devices.
  • FDM cast material deposition
  • FDM technology uses the layer-by-layer additive manufacturing method to produce three-dimensional objects from a computer-aided design model.
  • this technology is already widely used in design and prototyping processes allowing to simplify the manufacturing of parts and reducing the number of processes and tools for their construction.
  • domestically although it is not yet widely used by the general population, it is expected that more and more households will gradually have one of these devices.
  • FDM equipment uses filaments of a certain thermoplastic as a raw material, with polylactic acid and acrylonitrile-butadiene-styrene being the most used, despite polyethylene terephthalate.
  • polyethylene terephthalate, nylon and polyamide, among others, may also be used.
  • US 2016/0107337 Al discloses a method of obtaining raw material from the recycling of industrial waste and subsequently being used in 3D printers, having as essential feature the crystallization of the thermoplastic after the filament production to improve the quality of the object.
  • the document in question does not mention how the diameter control of said filament or moisture control is carried out during the extrusion process.
  • US 2016/0167254 A1 describes a method of obtaining filaments capable of being used in FDM devices from the recycling of thermoplastic materials, the essential feature being the method of piston extrusion and control of the filament diameter by continuous molding .
  • the filament obtained by continuous molding shows mold marks which, if not removed, can interfere with the correct operation of the FDM machine for to which the filament is produced, and result in its clogging.
  • the diameter of the filament produced can not be modified by changing only the operating parameters of the device, necessitating the exchange of the whole mold that makes up the continuous molding system.
  • US 2015/0209978 A1 discloses a method of obtaining filaments for use in FDM devices from the recycling of thermoplastics, capable of operating in inhospitable environments such as high seas or in space.
  • reference is only made to the use of a temperature throughout the process, and the diameter control of the filament is based on a cooled die, the filament being subsequently calibrated by traction.
  • US 2015 / 0144284A1 Al describes a method of producing metallic parts in non-gravity environments, the essential feature of which is the use of a mold produced with the aid of FDM technology for subsequent production of a part by injection.
  • US 5407624 A relates to a method of obtaining raw material from the recycling of thermoplastics, having as an essential feature the simplified processing of thermoplastic waste for the production of pellets in industrial quantities.
  • US 2016/0271880 A1 relates to a water-cooling method used in FDM machines to prevent clogging when using thermoplastics with high melt temperatures, with the essential feature being the use of a water-cooling system in the preventing the machine-fed filament from surpassing temperatures that significantly alter its plasticity before being desired, resulting in clogging of the machine.
  • the present application describes a device for producing filaments, comprising:
  • spindle driven by an engine, said spindle comprising at least two phases, comprising in a first step a feed zone where the thermoplastic material, a compression zone and a dosing zone are provided; and in a second step a decompression zone, a degassing zone, a compression zone and a dosing zone;
  • Said spindle comprising a sleeve along its length
  • An extrusion head located at the end of the spindle opposite the feed zone;
  • a degassing system comprising a vacuum pump connected to the jacket in the degassing zone of the spindle, causing a pressure decrease;
  • a filament diameter control unit comprising a diameter measuring mechanism, a tractor and its motor
  • microcontroller configured to control: i. the cycle of operation of the heating resistors, by processing data sent by at least one temperature sensor installed adjacent each of the electric heating resistors;
  • the refrigeration unit comprises a cooling tray and a water circulation system.
  • the diameter measuring mechanism is a digital caliper.
  • the diameter measuring mechanism is of the laser type.
  • the diameter control unit further comprises at least two vertically arranged traction rollers which are pressed against one another by an elastic placed in plastic bearings of the upper roller, roller movement controlled by the motor acting on the lower roller.
  • the microcontroller controls the cycle of operation of the resistors electric heating through the Proportional-Integral-Derivative closed-loop control algorithm.
  • the microcontroller controls the operation of the motor through pulse width modulation.
  • the liner is flanked in the spindle feed zone.
  • the present application further describes the method of operating the device for filament production, comprising the following steps:
  • a) microcontroller collects and processes the temperature data from the temperature sensors installed next to each of the electric heating resistors (6), acting until the steady state is reached at the temperature of said zones;
  • microcontroller drives the motor 1 of the spindle 13 which promotes rotation of the spindle 13 by compressing and pushing the flakes of thermoplastic material which are in the spindle feed zone 13 along the sleeve 5, heated by the electric heating resistors (6), resulting in the melting of the thermoplastic;
  • thermoplastic material arrives at the degassing zone, where the pressure decrease caused by the spindle configuration (13) and the connection in the vacuum socket
  • thermoplastic is pressed against the extrusion head
  • thermoplastic passes through the refrigeration unit passing through the cooling tray (9), which by forcing the filament to come into contact with the water coming from a water circulation system (12). ), returns it to the solid state;
  • the microcontroller processes the data sent by the diameter control unit and varies the speed of the motor (15) of the tractor (11) to calibrate the diameter of the filament, increasing the speed of the motor (15) of the tractor (11) to decrease the diameter of the filament, or decrease the motor speed (15) of the tractor (11) to increase the diameter.
  • the present application describes a device for recycling thermoplastics, producing a filament for use in melt deposition molding devices - commonly referred to as 3D printers.
  • a device for recycling thermoplastics producing a filament for use in melt deposition molding devices - commonly referred to as 3D printers.
  • the respective method of operation of the device which leads to the production of said filament, starting from the conversion of flakes (small pieces) of thermoplastic, obtained from post-consumer ground thermoplastic waste.
  • the filament is produced in the device developed by a thermoplastic extrusion process, which is fed in the form of flakes, melted, extruded and calibrated during its cooling.
  • the technology now developed enables the entire filament production process to be more independent in that the user need only place the thermoplastic flakes in a feed hopper and place the tip of the extruded filament in a tractor.
  • the device operates independently and is capable of controlling and monitoring the entire filament production process, namely the temperature values, obtained on the basis of temperature sensors placed next to each electric heating resistor, and of diameter through the values obtained by the diameter control mechanism.
  • the device is capable of calibrating the filament autonomously, and the existence of a vacuum degassing system allows not to be pre-dried to the plastic feeding the device, simplifying the process.
  • thermoplastic is introduced into a feed hopper being driven by a motor driven spindle into a sleeve whose axial force is supported by an axial bearing.
  • the thermoplastic is melted with the aid of electric heating resistors and passes through a degassing zone connected to a vacuum pump.
  • the thermoplastic is then forced through an extrusion head, being cooled using a cooling unit, based on a cooling tray fed by a water circulation system.
  • the diameter of the filament is controlled by a diameter control unit, which comprises a tractor and a diameter measuring mechanism. Based on the filament diameter values collected by the mechanism, the microcontroller drives the tractor so as to pull the filament faster (decrease the diameter) or slower (increase the diameter) in order to obtain the desired filament diameter .
  • the developed device starts by melting the thermoplastic, with the aid of the electric heating resistors, followed by its degassing, with the aid of a vacuum pump, which process, by removing the gases released during the melting of the plastic, namely steam of water, avoids the need to pre-dry the feed material.
  • the molten thermoplastic is pushed against the extrusion head and exits through an orifice located at its end, thereafter to the cooling unit where the thermoplastic, already in the form of filament, is cooled and stretched to the desired diameter while solidifying .
  • a reservoir with a larger water body or other cooling mechanism may be added to the refrigeration unit so that when the device has long operating periods the temperature of the water does not change and consequently jeopardizes the operation of the process.
  • the tractor of the diameter control unit pulls the filament at a set speed so that it reaches the end of the process within the tolerance required by an FDM device.
  • the diameter measurement may be made using a digital caliper to measure the diameter of the filament in the line, but other methods such as laser measurement may be used.
  • the spindle should be sized for general use if the objective is to extrude more than one thermoplastic, or may be sized for a specific thermoplastic if only one type of thermoplastic is to be extruded. The general purpose spindle sacrifices some degree of efficiency to the detriment of universality. In any case, the spindle is comprised of at least two phases.
  • the first stage is where the thermoplastic is fed, melted and compressed; in the second stage the thermoplastic is decompressed to be degassed and again compressed so that there is sufficient pressure to push it through the bore of the extrusion head.
  • the spindle is comprised of the first phase (with feed zone - where the thermoplastic is introduced - the compression zone - where the thermoplastic is melted and compressed - and the dosing zone - where the compressed thermoplastic collects pressure) (with decompression zone - the thermoplastic is decompressed resulting in its bubbling and facilitating the release of volatile contaminant gases - degassing zone - placing the molten thermoplastic under vacuum increasing the release and removal of contaminating volatiles - zone of compression and zone of dosage).
  • the zones are characterized by having different channel depths, with the feed and degassing zones being the deepest channel, the lower channel dosing zones and the remaining zones gradually varying the depth of the channel to join the zones with which border.
  • Each zone has an ideal operating temperature and therefore must be heated according to the requirements of the thermoplastic. This requires different heating zones.
  • a barrier spindle can be used, which is capable of separating the thermoplastic in the solid state from the one that is already melted, compressing the thermoplastic still solid against the jacket, thereby increasing the melt efficiency of the thermoplastic.
  • the physical configuration of the spindle may not be limited to that described, the barrier zone may be dispensed with, and even a constant channel spindle may be used.
  • the present technology is useful for the production of consumer goods from thermoplastic waste, which can be crushed again, forming flakes. These flakes are introduced into the device now developed and again form a filament which can be used in FDM devices to produce other consumer goods, thereby giving a certain level of self-sufficiency and independence to the user, and also serves as an incentive for recycling, since the the user directly benefits from the result of the recycling.
  • the developed device was designed to be applied, preferably in a home, office and small business environment, but can also be applied in other scenarios, such as industry and school education.
  • Figure 1 Schematic representation of a perspective view of the developed device, in which (1) represents the motor that drives the spindle; (2) represents the axial bearing; (3) represents the vacuum pump; (4) represents the funnel of food; (5) represents the jacket; (6) represents electrical heating resistances; (7) represents the vacuum outlet of the degassing zone; (8) represents the extrusion head; (9) represents the cooling tray; (10) represents the filament diameter measuring mechanism; (11) represents the tractor; (12) represents the water circulation system.
  • Figure 2 Schematic representation of a cut of the developed device, in which (13) represents the spindle.
  • Figure 3 Schematic representation of the filament diameter control unit in which (14) represents the roll coupling that allows the filament to slide in the measuring zone of the caliper; (15) represents the motor of the tractor; (16) represents the traction rollers; (17) represents the plastic bearings; (18) represents the caliper.
  • the present application describes a device for producing filaments usable in FDM devices from shredded thermoplastic waste and the method of operating the device leading to the production of filaments.
  • the device relates to a thermoplastic extruder, the spindle of which is dimensioned so as to obey the characteristics of the thermoplastics to be extruded.
  • the device operates after the stabilization of the different temperatures in the in respective zones of the device, which allows to obtain an ideal temperature profile for the extrusion of the thermoplastic and that is in accordance with the programmed in the microcontroller. These temperatures are reached and maintained based on Proportional-Integral-Derivative (PID) control.
  • PID Proportional-Integral-Derivative
  • the spindle 13 is driven by the motor 1, the speed can be controlled by Pulse Width Modulation, but, depending on the motor, it can be used other methods of speed control.
  • the motor (1) is coupled to the spindle (13) by means of a gearbox, which allows to decrease or increase the speed of rotation of the spindle and, consequently, to increase or decrease, respectively, the transmitted torque.
  • the spindle (13) pushes the crushed thermoplastic into flakes which are previously washed and placed in the feed hopper (4). These flakes are obtained from the crushing of thermoplastic waste made using external crushers, which are not part of the technology described herein. These devices crush the thermoplastic to the extent that its size allows for a flowing extrusion process.
  • the spindle (13) results in an axial reaction force in the direction opposite to that displacement, which is supported by an axial bearing (2), the load being distributed to the support base of the device, not allowing that the spindle moves in the opposite direction to the flow of the thermoplastic.
  • the thermoplastic is pushed against the jacket 5 which is heated by the heating resistors 6, resulting in its melting.
  • a sudden drop in pressure causes the bubbling of the polymer and its release of moisture, eliminating the need to pre-dry and increase the quality of the product obtained.
  • the molten thermoplastic is compressed against the extruding head 8 having a diameter equal to that of the bore, plus the elastic expansion, which bore may have several diameters, affecting the rate of extrusion, traction and cooling of the filament.
  • the filament is cooled in a cooling tray (9), so that the thermoplastic returns to the solid state rapidly, tray (9) which is constantly being fed with water by a water circulation system (12) consisting of a water pump and a flow limiting valve.
  • This feed induces the water to flow from the smaller tray to the tray where it is placed and is then collected again into the water circulation system, which generates a constant water layer, thus increasing the contact between the water and the water. extruded filaments, increasing the cooling efficiency due to convection.
  • the filament is pulled by a tractor (11), which is only possible if the filament is already in the solid state.
  • the tractor (11) is driven by a motor (15), which operates by rotating the traction rollers (16) having an adhering surface, which may be in a rubber material, to increase grip. These rollers are pressed against one another by an elastic or spring placed in the plastic bearings (17) of the upper roller.
  • the diameter of the filament is measured in the extrusion line immediately before the tractor (11) using a roller coupling which allows the filament to slide in the measuring zone (14) which uses a digital caliper (18) and a spring or elastic to keep the caliper (18) closing on the filament, thereby detecting a possible diameter decrease.
  • the control of the device is based on a microcontroller which acquires the temperature values measured by the sensors next to each of the electrical heating resistors (6) and adapts the power of the electric heating resistors (6) based on that information, using a control which can be done by PID using solid state relays to switch the heating resistors (6) on / off according to the temperature and programming made in the microcontroller.
  • the liner 5 is flanked in the feed zone to prevent premature melting of the flakes, which would result in the clogging of the device. If the fins do not dissipate the required heat, air or water cooling can be added to increase the heat dissipation in the zone.
  • the value measured by the filament diameter control unit is also acquired by the microcontroller, and based on this measurement is made the variation of the motor speed (15) of the tractor (11) thus varying the speed at which it is pulled by the tractor ( 11) through the cooling zone, that is, the greater the speed at which the filament is drawn, the smaller the filament diameter and vice versa.
  • the measurement made in the extrusion line is obtained by the microcontroller and thus the system has the feedback of the diameter, whereby it can adjust the speed of the tractor (11) until it reaches a point where it is within the parameters required by an FDM device .
  • the method of operating the device for producing filament comprises the following steps: (a) introducing thermoplastic flakes into the feed funnel (4) after the steady state has been reached at the temperature of the different spindle heating zones (13);
  • thermoplastic is pressed against the extrusion head (8) through the hole thereof;
  • thermoplastic Being in the form of filaments, but still in the molten state the thermoplastic is drawn by the tractor, passing first by a cooling tray (9) which, by forcing the filament to come into contact with the water thanks to a circulation system of water (12) causes it to return to the solid state, thus allowing it to be grasped and pulled by the tractor (11);
  • the microcontroller decides whether to maintain the speed of the motor (15) of the tractor (11) to maintain the diameter of the filament, increase the speed of the motor (15) of the tractor (11) to decrease the diameter of the filament, or decrease the motor speed (15) of the tractor (11) to increase the diameter;
  • the microcontroller also decides when the electric heating resistors (6) are connected during the operation of the proposed device, so that the temperatures in each of the heated zones are the predefined ones. This is done by comparing the values measured by the temperature sensors (one for each of the electrical heating resistors) to the pre-set temperature values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

A presente invenção diz respeito a um dispositivo que recicla termoplásticos para produção de filamento para dispositivos de modelação por deposição de material fundido (FDM) e respetivo método de funcionamento. O termoplástico triturado é introduzido no funil de alimentação (4), empurrado por um fuso acionado pelo motor (1), dentro da camisa (5), cuja força axial é suportada pela chumaceira axial (2). O termoplástico é fundido com o auxílio de resistências elétricas de aquecimento (6) e atravessa uma zona de desgaseificação (7) conectada à bomba de vácuo (3). O termoplástico é forçado a atravessar a cabeça de extrusão (8), sendo arrefecido num tabuleiro de refrigeração (9) com sistema de circulação de água (12). 0 diâmetro do filamento é controlado através do tracionador (11) com base nos dados obtidos no sistema de medição do diâmetro do filamento (10). Todo o processo é controlado por um microcontrolador.

Description

DESCRIÇÃO
DISPOSITIVO E MÉTODO PARA PRODUÇÃO DE FILAMENTO
Domínio técnico
O presente pedido descreve um dispositivo capaz de produzir filamento termoplástico, usando como matéria-prima flocos (pequenos pedaços) de termoplástico obtidos a partir de embalagens ou outros resíduos termoplásticos descartados. O filamento produzido através do dispositivo aqui descrito serve para utilizar como matéria-prima em dispositivos de modelação por deposição de material fundido (FDM) .
Antecedentes
A tecnologia FDM recorre à utilização do método de fabricação aditivo, camada por camada, para produzir objetos tridimensionais a partir de um modelo de desenho assistido por computador. Atualmente, esta tecnologia é já amplamente utilizada em processos de design e prototipagem permitindo simplificar o fabrico de peças e reduzindo o número de processos e de ferramentas para a sua construção. A nível doméstico, apesar de ainda não ter uma utilização muito comum pela população geral, prevê-se que gradualmente hajam cada vez mais habitações a possuir um destes dispositivos.
A maior parte dos equipamentos FDM utilizam filamento de um determinado termoplástico como matéria-prima, sendo o ácido polilático e o acrilonitrilo-butadieno-estireno os mais utilizados, apesar do politereftalato de etileno, o politereftalato de etileno modificado com glicol, o nylon e a poliamida, entre outros, também poderem ser utilizados.
Estes tipos de filamento são produzidos na sua grande maioria em ambiente industrial, onde grandes linhas de extrusão produzem filamento em quantidades industriais. No entanto, algumas extrusoras já foram desenhadas para a extrusão de filamento em ambiente doméstico, tais como a de Lyman, ou a Filastruder que se focam essencialmente na extrusão a partir de pellets termoplásticos, e que calibram o filamento com o diâmetro da cabeça de extrusão. Para além disso, as soluções conhecidas apresentam um processo de produção bastante lento, e requerem que os pellets sejam armazenados em condições de reduzida humidade.
O documento US 2016/0107337 Al descreve um método de obtenção de matéria-prima a partir da reciclagem de resíduos industriais para, posteriormente, ser utilizado em impressoras 3D, apresentando como caraterística essencial a cristalização do termoplástico após a produção do filamento para melhorar a qualidade da impressão do objeto. No entanto, o documento em causa não refere de que forma se processa o controlo do diâmetro do dito filamento nem o controlo da humidade durante o processo de extrusão.
O documento US 2016/0167254 Al descreve um método de obtenção de filamento passível de ser utilizado em dispositivos de FDM, a partir da reciclagem de materiais termoplásticos, apresentando como caraterística essencial o método de extrusão por pistão e controlo do diâmetro do filamento por moldagem contínua. No entanto, o filamento obtido por moldagem contínua apresenta marcas dos moldes que, caso não sejam retiradas, podem interferir no correto funcionamento da máquina FDM para a qual o filamento é produzido, e resultar no seu entupimento. Para além disso ao consistir num método de extrusão continuo, o diâmetro do filamento produzido não pode ser modificado alterando apenas parâmetros de funcionamento do dispositivo, necessitando da troca de todo o molde que compõe o sistema de moldagem continua.
O documento US 2015/0209978 Al descreve um método de obtenção de filamento para utilização em dispositivos de FDM a partir da reciclagem de termoplásticos, capaz de operar em ambientes inóspitos, tais como alto mar ou no espaço. Neste documento é apenas mencionado o uso de uma temperatura ao longo de todo o processo, e o controlo de diâmetro do filamento é feito com base numa matriz arrefecida, sendo o filamento posteriormente calibrado através de tração.
O documento US 2015/0144284A1 Al descreve um método de produção de peças metálicas em ambientes sem gravidade, apresentando como carateristica essencial a utilização de um molde produzido com o auxilio de tecnologia FDM para posteriormente produção de uma peça por injeção.
O documento US 05407624 A refere-se a um método de obtenção de matéria-prima a partir da reciclagem de termoplásticos, apresentando como carateristica essencial o processamento simplificado de resíduos termoplásticos para produção de pellets, em quantidades industriais.
O documento US 2016/0271880 Al refere-se a um método de refrigeração a água utilizado em máquinas FDM para evitar o entupimento quando se utilizam termoplásticos com elevadas temperaturas de fusão, apresentando como carateristica essencial a utilização de um sistema de refrigeração a água na cabeça, prevenindo que o filamento alimentado à máquina ultrapasse temperaturas que alterem significativamente a sua plasticidade antes de ser pretendido, resultando no entupimento da máquina.
Sumário
O presente pedido descreve um dispositivo para produção de filamento, compreendendo:
— um fuso, acionado por um motor, o referido fuso de no mínimo, duas fases, compreendendo numa primeira fase uma zona de alimentação onde se dá a entrada do material termoplástico, uma zona de compressão e uma zona de dosagem; e numa segunda fase uma zona de descompressão, uma zona de desgaseificação, uma zona de compressão e uma zona de dosagem;
— o referido fuso compreendendo uma camisa ao longo do seu comprimento;
— uma cabeça de extrusão, situada na extremidade do fuso oposta à zona de alimentação;
Caracterizado por compreender:
— pelo menos uma resistência elétrica de aquecimento instalada em cada uma das fases do fuso referidas;
— um sistema de desgaseificação compreendendo uma bomba de vácuo conectada à camisa, na zona de desgaseificação do fuso, provocando uma diminuição de pressão ;
— uma unidade de refrigeração;
— uma unidade de controlo de diâmetro de filamento, compreendendo um mecanismo de medição de diâmetro, um tracionador e respetivo motor;
— um microcontrolador configurado para controlar: i. o ciclo de operação das resistências elétricas de aquecimento, através do processamento de dados enviados por pelo menos um sensor de temperatura instalado junto de cada uma das resistências elétricas de aquecimento;
ii. o motor de acionamento do fuso; e
iii. controlar a velocidade do motor de operação do tracionador da unidade de controlo de diâmetro, através do processamento de dados enviados pelo mecanismo de medição de diâmetro.
Num modo particular de realização do dispositivo, a unidade de refrigeração compreende um tabuleiro de refrigeração e um sistema de circulação de água.
Num outro modo particular de realização do dispositivo, o mecanismo de medição de diâmetro é um paquímetro digital.
Num outro modo particular de realização do dispositivo, o mecanismo de medição de diâmetro é do tipo laser.
Ainda num outro modo particular de realização do dispositivo, a unidade de controlo de diâmetro compreende adicionalmente pelo menos dois rolos de tração, dispostos na vertical, que se encontram pressionados um contra o outro por um elástico colocado em chumaceiras plásticas do rolo superior, sendo o movimento dos rolos controlado pelo motor que atua sobre o rolo inferior.
Num outro modo particular de realização do dispositivo, o microcontrolador controla o ciclo de operação das resistências elétricas de aquecimento através do algoritmo de controlo em malha fechada Proporcional-Integral-Derivativo .
Num outro modo particular de realização do dispositivo, o microcontrolador controla a operação do motor através de Modulação por largura de pulso.
Num outro modo particular de realização do dispositivo, a camisa é alhetada na zona de alimentação do fuso.
O presente pedido descreve ainda o método de operação do dispositivo para produção de filamento, compreendendo os seguintes passos:
a) microcontrolador recolhe e processa os dados de temperatura provenientes dos sensores de temperatura instalados junto de cada uma das resistências elétricas de aquecimento (6), atuando até se atingir o regime estacionário na temperatura das referidas zonas;
b) microcontrolador aciona o motor (1) do fuso (13) que promove a rotação do fuso (13) comprimindo e empurrando os flocos de material termoplástico que se encontram na zona de alimentação do fuso (13) ao longo da camisa (5) aquecida pelas resistências elétricas de aquecimento (6), resultando na fusão do termoplástico;
c) material termoplástico fundido chega à zona de desgaseificação, onde a diminuição de pressão causada pela configuração do fuso (13) e pela ligação na tomada de vácuo
(7) entre a camisa (5) e a bomba de vácuo (3) causa o borbulhar do termoplástico e consequente libertação de gases voláteis ;
d) o termoplástico é comprimido contra a cabeça de extrusão
(8) atravessando o orifício desta; e) sob a forma de filamento mas ainda no estado fundido, o termoplástico atravessa a unidade de refrigeração passando pelo tabuleiro de refrigeração (9) que ao forçar o filamento a entrar em contacto com a água oriunda de um sistema de circulação de água (12), fá-lo voltar ao estado sólido;
f) filamento no estado solido é puxado pelos rolos (16) do tracionador (11) da unidade de controlo de diâmetro;
g) calibração da espessura do filamento, através do mecanismo de medição de diâmetro (10), que envia esses dados para o microcontrolador;
h) O microcontrolador processa os dados enviados pela unidade de controlo de diâmetro e varia a velocidade do motor (15) do tracionador (11) para calibrar o diâmetro do filamento, aumentando a velocidade do motor (15) do tracionador (11) para diminuir o diâmetro do filamento, ou diminuir a velocidade do motor (15) do tracionador (11) para aumentar o diâmetro.
Descrição geral
O presente pedido descreve um dispositivo para reciclagem de termoplásticos, produzindo um filamento para utilização em dispositivos de modelação por deposição de material fundido - normalmente designados por impressoras 3D. Para além disso, é igualmente descrito o respetivo método de funcionamento do dispositivo que conduz à produção do dito filamento, partindo da conversão de flocos (pequenos pedaços) de termoplástico, obtidos a partir de resíduos termoplásticos pós-consumo triturados .
O filamento é produzido no dispositivo desenvolvido através de um processo de extrusão de termoplástico, que é alimentado sob a forma de flocos, fundido, extrudido e calibrado durante o seu arrefecimento. Desta forma, a tecnologia agora desenvolvida permite que todo o processo de produção de filamento seja mais independente, na medida em que o utilizador apenas necessita de colocar os flocos de termoplástico num funil de alimentação e colocar a ponta do filamento extrudido num tracionador. A partir dai, o dispositivo funciona de forma independente e é capaz de controlar e monitorizar todo o processo de produção de filamento, nomeadamente os valores de temperatura, obtidos com base em sensores de temperatura colocados junto a cada resistência elétrica de aquecimento, e de diâmetro de filamento, através dos valores obtidos pelo mecanismo de controlo de diâmetro. Para além disso, o dispositivo é capaz de calibrar o filamento autonomamente, e a existência de um sistema de desgaseificação a vácuo permite que não se tenha que fazer uma secagem prévia ao plástico que alimenta o dispositivo, simplificando o processo.
Todo o funcionamento do dispositivo agora proposto é controlado por ação de um microcontrolador . O termoplástico triturado é introduzido num funil de alimentação sendo empurrado por um fuso, acionado por um motor, dentro de uma camisa cuja força axial é suportada por uma chumaceira axial. O termoplástico é fundido com o auxilio de resistências elétricas de aquecimento e atravessa uma zona de desgaseificação conectada a uma bomba de vácuo. O termoplástico é depois forçado a atravessar uma cabeça de extrusão, sendo arrefecido com recurso a uma unidade de refrigeração, baseada num tabuleiro de refrigeração alimentado por um sistema de circulação de água.
O diâmetro do filamento é controlado por uma unidade de controlo de diâmetro, que compreende um tracionador e um mecanismo de medição de diâmetro. Com base nos valores de diâmetro de filamento recolhidos pelo mecanismo, o microcontrolador aciona o tracionador de forma a este puxar o filamento mais rápido (diminuir o diâmetro) ou mais lentamente (aumentar o diâmetro) , de forma a se obter o diâmetro de filamento pretendido.
O dispositivo desenvolvido começa por fundir o termoplástico, com auxilio das resistências elétricas de aquecimento, seguindo-se a sua desgaseificação, com auxilio de uma bomba de vácuo, processo este que, ao remover os gases libertos durante a fusão do plástico, nomeadamente vapor de água, evita a necessidade de pré-secagem do material alimentado. O termoplástico fundido é empurrado contra a cabeça de extrusão e sai por um orifício localizado na sua extremidade, passando daí para a unidade de refrigeração onde o termoplástico, já sob a forma de filamento, é arrefecido e esticado até possuir o diâmetro desejado, enquanto solidifica. À unidade de refrigeração pode ser acrescentado um reservatório com uma massa de água maior, ou um outro mecanismo de refrigeração, para que quando o dispositivo tenha períodos de funcionamento longos, a temperatura da água não varie e, consequentemente, comprometa o funcionamento do processo. Caso a situação não permita que se faça uso da refrigeração a água, poderá ser utilizado outro tipo de refrigeração, como por exemplo refrigeração a ar. Por último, o tracionador da unidade de controlo de diâmetro puxa o filamento a uma velocidade determinada para que este chegue ao fim do processo dentro da tolerância exigida por um dispositivo de FDM. A medição do diâmetro poderá ser feita com recurso a um paquímetro digital, para fazer a medição do diâmetro do filamento na linha, mas pode utilizar-se outros métodos tais como medição a laser. O fuso deve ser dimensionado para um uso geral se o objetivo for extrudir mais do que um termoplástico, ou pode ainda ser dimensionado para um termoplástico especifico, caso apenas se pretenda extrudir um tipo de termoplástico. 0 fuso de uso geral sacrifica algum grau de eficiência em detrimento de universalidade. Em qualquer dos casos, o fuso é compreendido no mínimo por duas fases. A primeira fase é onde o termoplástico é alimentado, fundido e comprimido; na segunda fase o termoplástico é descomprimido para ser desgaseifiçado e novamente comprimido para que haja pressão suficiente para o empurrar através do orifício da cabeça de extrusão. Resumindo, o fuso é compreendido pela primeira fase (com zona de alimentação - onde é introduzido o termoplástico -, zona de compressão - onde o termoplástico é fundido e comprimido - e zona de dosagem - onde o termoplástico comprimido acumula pressão -) e pela segunda fase (com zona de descompressão - o termoplástico é descomprimido resultando no seu borbulhar e facilitando a libertação de gases voláteis contaminantes - , zona de desgaseificação - colocando o termoplástico fundido sob vácuo aumentando a libertação e remoção de voláteis contaminantes -, zona de compressão e zona de dosagem) . As zonas são caracterizadas por possuírem diferentes profundidades de canal, sendo as zonas de alimentação e desgaseificação as de canal mais fundo, as zonas de dosagem as de canal menos fundo e as restantes zonas variam gradualmente a profundidade do canal para unir as zonas com as quais fazem fronteira. Cada uma das zonas possui uma temperatura ideal de funcionamento, e por isso devem ser aquecidas de acordo com os requisitos do termoplástico. Para tal são necessárias zonas de aquecimento distintas. Na primeira zona de compressão (zona de compressão da primeira fase) pode ser utilizado um fuso de barreira, que é capaz de separar o termoplástico no estado sólido do que já se encontra fundido, comprimindo o termoplástico ainda sólido contra a camisa, aumentando assim a eficiência da fusão do termoplástico. A configuração física do fuso pode não estar limitada à descrita, podendo ser dispensada a zona de barreira, e até utilizado um fuso de canal constante.
A presente tecnologia é útil para a produção de bens de consumo a partir de resíduos termoplásticos, bens estes que podem novamente ser triturados, formando flocos. Estes flocos são introduzidos no dispositivo agora desenvolvido e formam novamente um filamento que pode ser utilizado em dispositivos FDM para produzir outros bens de consumo, conferindo assim um certo nível de autossuficiência e independência ao utilizador, servindo igualmente de incentivo à reciclagem, uma vez que o utilizador é quem beneficia diretamente com o resultado da reciclagem.
Desta forma, o dispositivo desenvolvido foi pensado para ser aplicado, preferencialmente, em ambiente doméstico, de escritório e de pequenos negócios, mas pode ser também aplicado em outros cenários, como a indústria e o ensino escolar .
Descrição das Figuras
Para uma mais fácil compreensão do presente pedido juntam-se em anexo figuras, as quais, representam realizações preferenciais que, contudo, não pretendem limitar a técnica aqui divulgada.
Figura 1: Representação esquemática de uma vista em perspetiva do dispositivo desenvolvido, no qual (1) representa o motor que aciona o fuso; (2) representa a chumaceira axial; (3) representa a bomba de vácuo; (4) representa o funil de alimentação; (5) representa a camisa; (6) representa resistências elétricas de aquecimento; (7) representa a tomada de vácuo da zona de desgaseificação ; (8) representa a cabeça de extrusão; (9) representa o tabuleiro de refrigeração; (10) representa o mecanismo de medição de diâmetro de filamento; (11) representa o tracionador; (12) representa o sistema de circulação de água.
Figura 2: Representação esquemática de um corte do dispositivo desenvolvido, no qual (13) representa o fuso.
Figura 3: Representação esquemática da unidade de controlo do diâmetro de filamento no qual (14) representa o acoplamento com rolos que permite ao filamento deslizar na zona de medição do paquímetro; (15) representa o motor do tracionador; (16) representa os rolos de tração; (17) representa as chumaceiras plásticas; (18) representa o paquímetro.
Descrição de formas de realização
Fazendo referência às figuras, algumas formas de realização são agora descritas de forma mais pormenorizada, as quais não pretendem, contudo, limitar o âmbito do presente pedido.
O presente pedido descreve um dispositivo para produção de filamento utilizável em dispositivos FDM, a partir de resíduos de termoplásticos triturados, e respetivo método de funcionamento do dispositivo, que conduz à produção de filamento .
O dispositivo diz respeito a uma extrusora de termoplásticos, cujo fuso é dimensionado de modo a obedecer às características dos termoplásticos que se pretendem extrudir. O dispositivo opera após a estabilização das diferentes temperaturas nas respetivas zonas do dispositivo, o que permite obter um perfil de temperatura ideal à extrusão do termoplástico e que está de acordo com o programado no microcontrolador . Estas temperaturas são alcançadas e mantidas com base no controlo Proporcional-Integral-Derivativo (PID) . Após ser alcançada a estabilidade térmica, o fuso (13) é acionado pelo motor (1), cu a velocidade pode ser controlada através de Modulação por largura de pulso (Pulse-Width Modulation) , mas, dependendo do motor, pode utilizar-se outros métodos de controlo da velocidade .
O motor (1) está acoplado ao fuso (13) por intermédio de uma caixa de velocidades, que permite diminuir ou aumentar a velocidade de rotação do fuso e, consequentemente, aumentar ou diminuir, respetivamente o binário transmitido. Ao rodar, o fuso (13) empurra o termoplástico triturado em flocos que são previamente lavados e colocados no funil de alimentação (4) . Estes flocos são obtidos a partir da trituração de resíduos termoplásticos feita com recurso a trituradores externos, que não são parte integrante da tecnologia aqui descrita. Estes dispositivos trituram o termoplástico até ao ponto em que sua dimensão permita um processo de extrusão com fluidez.
À ação de empurrar o plástico, resulta no fuso (13) uma força axial de reação no sentido oposto a esse deslocamento, que é suportada por uma chumaceira axial (2), sendo a carga distribuída para a base de suporte do dispositivo, não permitindo que o fuso se desloque no sentido oposto ao do fluxo do termoplástico. O termoplástico é empurrado contra a camisa (5) que é aquecida pelas resistências elétricas de aquecimento (6), resultando na sua fusão. Chegando à zona de desgaseificação (7) uma queda brusca na pressão causa o borbulhar do polímero e a sua libertação de humidade, eliminando assim a necessidade de fazer pré-secagem e aumentando a qualidade do produto obtido. Posteriormente o termoplástico fundido é comprimido contra a cabeça de extrusão (8) saindo com um diâmetro igual ao do furo, acrescido da expansão elástica, furo que pode ter vários diâmetros, afetando a velocidade de extrusão, tração e arrefecimento do filamento. Quanto maior o diâmetro do furo e a velocidade de extrusão, maior deverá ser a velocidade do tracionador (11) relativamente à velocidade com que o termoplástico é extrudido pelo dispositivo, e quanto maior o caudal, menor será a eficiência do arrefecimento. O filamento é arrefecido num tabuleiro de refrigeração (9), para que o termoplástico volte ao estado sólido rapidamente, tabuleiro (9) que está constantemente a ser alimentado com água por um sistema de circulação de água (12) constituído por uma bomba de água e uma torneira limitadora de caudal. Esta alimentação induz o transbordar da água do tabuleiro mais pequeno para o tabuleiro onde este se encontra pousado, sendo aí novamente recolhida para o sistema de circulação de água, o que gera uma camada de água constante, aumentando assim o contacto entre a água e o filamento extrudido, aumentando a eficiência do arrefecimento devido à convecção. Por fim, após ser arrefecido, o filamento é puxado por um tracionador (11), o que apenas é possível se o filamento já se encontrar no estado sólido. O tracionador (11) é acionado por um motor (15), que funciona através da rotação dos rolos de tração (16) que possuem uma superfície aderente, que pode ser num material de borracha, para aumentar a aderência. Estes rolos estão pressionados um contra o outro graças a um elástico ou mola colocada nas chumaceiras plásticas (17) do rolo superior. O diâmetro do filamento é medido na linha de extrusão, imediatamente antes do tracionador (11) utilizando um acoplamento com rolos que permite ao filamento deslizar na zona de medição (14) que utiliza um paquímetro digital (18) e uma mola ou elástico para manter o paquímetro (18) a fechar sobre o filamento, detetando assim uma possível diminuição do diâmetro.
O controlo do dispositivo é feito com base num microcontrolador que adquire os valores de temperatura medidos pelos sensores junto de cada uma das resistências elétricas de aquecimento (6) e adequa a potência das resistências elétricas de aquecimento (6) com base nessa informação, utilizando um controlo que pode ser feito por PID utilizando relés de estado sólido a ligar/desligar as resistências elétricas de aquecimento (6) de acordo com a temperatura e programação feita no microcontrolador. A camisa (5) é alhetada na zona de alimentação para prevenir a fusão prematura dos flocos, o que iria resultar no entupimento do dispositivo. Caso as alhetas não dissipem o calor necessário, pode ser adicionado arrefecimento a ar ou a água para aumentar a dissipação de calor na zona. O valor medido pela unidade de controlo de diâmetro de filamento também é adquirido pelo microcontrolador, e com base nessa medição é feita a variação da velocidade do motor (15) do tracionador (11) variando assim a velocidade com que este é puxado pelo tracionador (11) através da zona de refrigeração, ou seja, quanto maior a velocidade com que se puxa o filamento, menor será o diâmetro do filamento e vice-versa. A medição feita na linha de extrusão é obtida pelo microcontrolador e assim o sistema tem o feedback do diâmetro conseguindo a partir daí ajustar a velocidade do tracionador (11) até atingir um ponto em que este se encontre dentro dos parâmetros exigidos por um dispositivo de FDM.
Em termos concretos, o método de funcionamento do dispositivo para produção de filamento compreende as seguintes etapas: a) Introdução de flocos de termoplástico no funil de alimentação (4) após ter sido atingido o regime estacionário na temperatura das diferentes zonas de aquecimento do fuso (13);
b) Ligar o motor (1) que aciona o fuso (13), estando este conectado ao fuso (13) por uma caixa de velocidades;
c) Ao rodar o fuso (13) comprime e empurra os flocos ao longo da camisa (5) aquecida pelas resistências elétricas de aquecimento (6), resultando na fusão do termoplástico;
d) Chegando à zona de desgaseificação (7) uma diminuição drástica de pressão causada pela configuração do fuso (13) - ao aprofundar o canal faz com que haja um maior volume para a mesma quantidade de termoplástico, resultando na sua "descompressão" e consequente contribuição para a queda de pressão na zona - e por uma tomada de vácuo (7) introduzida a partir de um orifício na camisa (5) conectado a uma bomba de vácuo (3) causa o borbulhar do termoplástico e consequente libertação de gases voláteis como o vapor de água, que iriam diminuir a qualidade do filamento ;
e) O termoplástico é comprimido contra a cabeça de extrusão (8) atravessando o orifício desta;
f) Já sob a forma de filamento, mas ainda no estado fundido o termoplástico é puxado pelo tracionador, passando antes por um tabuleiro de refrigeração (9) que ao forçar o filamento a entrar em contacto com a água graças a um sistema de circulação de água (12) faz este voltar ao estado sólido, permitindo assim que este seja agarrado e puxado pelo tracionador (11);
g) Para que a espessura do filamento possa ser calibrada, este é medido junto ao tracionador (11), e o seu diâmetro é enviado ao microcontrolador ; h) O microcontrolador decide se tem que manter a velocidade do motor (15) do tracionador (11) para manter o diâmetro do filamento, aumentar a velocidade do motor (15) do tracionador (11) para diminuir o diâmetro do filamento, ou diminuir a velocidade do motor (15) do tracionador (11) para aumentar o diâmetro;
i) O microcontrolador decide também quando se encontram ligadas as resistências elétricas de aquecimento (6) durante o funcionamento do dispositivo proposto, para que as temperaturas em cada uma das zonas aquecidas seja a predefinida. Isto é feito comparando os valores medidos pelos sensores de temperatura (um por cada uma das resistências elétricas de aquecimento) com os valores de temperatura pré-definidos .
A presente descrição não é, naturalmente, de modo algum restrita às realizações apresentadas neste documento e uma pessoa com conhecimentos médios da área poderá prever muitas possibilidades de modificação da mesma sem se afastar da ideia geral, tal como definido nas reivindicações. As realizações preferenciais acima descritas são obviamente combináveis entre si. As seguintes reivindicações definem adicionalmente realizações preferenciais.

Claims

REIVINDICAÇÕES
Dispositivo para produção de filamento, compreendendo:
— um fuso (13), acionado por um motor (1), o referido fuso de no mínimo, duas fases, compreendendo numa primeira fase uma zona de alimentação onde se dá a entrada do material termoplástico, uma zona de compressão e uma zona de dosagem; e numa segunda fase uma zona de descompressão, uma zona de desgaseificação, uma zona de compressão e uma zona de dosagem;
— o referido fuso compreendendo uma camisa (5) ao longo do seu comprimento;
— uma cabeça de extrusão (8), situada na extremidade do fuso (13) oposta à zona de alimentação;
Caracterizado por compreender:
— pelo menos uma resistência elétrica de aquecimento (6) instalada em cada uma das fases do fuso (13) referidas ;
— um sistema de desgaseificação compreendendo uma bomba de vácuo (3) conectada à camisa (5), na zona de desgaseificação do fuso (13), provocando uma diminuição de pressão;
— uma unidade de refrigeração;
— uma unidade de controlo de diâmetro de filamento, compreendendo um mecanismo de medição de diâmetro, um tracionador (11) e respetivo motor (15);
— um microcontrolador configurado para controlar:
iv. o ciclo de operação das resistências elétricas de aquecimento (6), através do processamento de dados enviados por pelo menos um sensor de temperatura instalado junto de cada uma das resistências elétricas de aquecimento; v. o motor (1) de acionamento do fuso (13); e vi. controlar a velocidade do motor (15) de operação do tracionador (11) da unidade de controlo de diâmetro, através do processamento de dados enviados pelo mecanismo de medição de diâmetro (10) .
2. Dispositivo de acordo com a reivindicação 1, caracterizado por a unidade de refrigeração compreender um tabuleiro de refrigeração (9) e um sistema de circulação de água ( 12 ) .
3. Dispositivo de acordo com as reivindicações 1 ou 2, caracterizado por o mecanismo de medição de diâmetro ser um paquímetro digital (18) .
4 . Dispositivo de acordo com as reivindicações 1 ou 2, caracterizado por o mecanismo de medição de diâmetro ser a laser .
5. Dispositivo de acordo com qualquer uma das reivindicações anteriores, caracterizado por a unidade de controlo de diâmetro compreender adicionalmente pelo menos dois rolos de tração (16), dispostos na vertical, que se encontram pressionados um contra o outro por um elástico colocado em chumaceiras plásticas (17) do rolo superior, sendo o movimento dos rolos controlado pelo motor (15) que atua sobre o rolo inferior .
6 . Dispositivo de acordo com qualquer uma das reivindicações anteriores, caracterizado por o microcontrolador controlar o ciclo de operação das resistências elétricas de aquecimento
(6) através do algoritmo de controlo em malha fechada Proporcional-Integral-Derivativo .
7. Dispositivo de acordo com qualquer uma das reivindicações anteriores, caracterizado por o microcontrolador controlar a operação do motor (1) através de Modulação por largura de pulso .
8. Dispositivo de acordo com qualquer uma das reivindicações anteriores, caracterizado por a camisa (5) ser alhetada na zona de alimentação do fuso (13) .
9. Método de operação do Dispositivo para produção de filamento das reivindicações 1 a 8, caracterizado por compreender os seguintes passos:
a) microcontrolador recolhe e processa os dados de temperatura provenientes dos sensores de temperatura instalados junto de cada uma das resistências elétricas de aquecimento (6), atuando até se atingir o regime estacionário na temperatura das referidas zonas;
b) microcontrolador aciona o motor (1) do fuso (13) que promove a rotação do fuso (13) comprimindo e empurrando os flocos de material termoplástico que se encontram na zona de alimentação do fuso (13) ao longo da camisa (5) aquecida pelas resistências elétricas de aquecimento (6), resultando na fusão do termoplástico;
c) material termoplástico fundido chega à zona de desgaseificação, onde a diminuição de pressão causada pela configuração do fuso (13) e pela ligação na tomada de vácuo
(7) entre a camisa (5) e a bomba de vácuo (3) causa o borbulhar do termoplástico e consequente libertação de gases voláteis ;
d) o termoplástico é comprimido contra a cabeça de extrusão (8) atravessando o orifício desta;
e) sob a forma de filamento mas ainda no estado fundido, o termoplástico atravessa a unidade de refrigeração passando pelo tabuleiro de refrigeração (9) que ao forçar o filamento a entrar em contacto com a água oriunda de um sistema de circulação de água (12), fá-lo voltar ao estado sólido;
f) filamento no estado solido é puxado pelos rolos (16) do tracionador (11) da unidade de controlo de diâmetro;
g) calibração da espessura do filamento, através do mecanismo de medição de diâmetro (10), que envia esses dados para o microcontrolador;
h) O microcontrolador processa os dados enviados pela unidade de controlo de diâmetro e varia a velocidade do motor (15) do tracionador (11) para calibrar o diâmetro do filamento, aumentando a velocidade do motor (15) do tracionador (11) para diminuir o diâmetro do filamento, ou diminuir a velocidade do motor (15) do tracionador (11) para aumentar o diâmetro.
PCT/IB2018/051989 2017-03-24 2018-03-23 Dispositivo e método para produção de filamento WO2018172993A1 (pt)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3052833A CA3052833A1 (en) 2017-03-24 2018-03-23 Device for producing a filament and respective operating method
EP18723055.2A EP3603932A1 (en) 2017-03-24 2018-03-23 Filament production device and method
US16/482,053 US20190375142A1 (en) 2017-03-24 2018-03-23 Filament production device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PT10999017 2017-03-24
PT109990 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018172993A1 true WO2018172993A1 (pt) 2018-09-27

Family

ID=62116910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/051989 WO2018172993A1 (pt) 2017-03-24 2018-03-23 Dispositivo e método para produção de filamento

Country Status (4)

Country Link
US (1) US20190375142A1 (pt)
EP (1) EP3603932A1 (pt)
CA (1) CA3052833A1 (pt)
WO (1) WO2018172993A1 (pt)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109382991A (zh) * 2018-11-02 2019-02-26 山东科技大学 一种3d打印用丝材挤出成型装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112223576A (zh) * 2020-09-07 2021-01-15 金旸(厦门)新材料科技有限公司 一种高产量导热尼龙制备方法
PL243610B1 (pl) * 2020-10-06 2023-09-18 Pisz Tomasz Jaskom Software Linia technologiczna do wytwarzania filamentu i sposób wytwarzania filamentu
CN112553781B (zh) * 2020-11-03 2022-07-29 广西德福莱医疗器械有限公司 熔喷布挤出方法
CN114147934A (zh) * 2021-06-03 2022-03-08 西安交通大学 一种介电功能梯度3d打印丝材制造装置及方法
CN114103118B (zh) * 2021-11-30 2023-05-23 浙江机电职业技术学院 一种3d打印机用耗材预处理装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB927501A (en) * 1960-11-15 1963-05-29 Ici Ltd Extrusion apparatus and processes
US5407624A (en) 1993-06-09 1995-04-18 North American Plastics Corporation Method and apparatus for processing of raw plastics for reuse
US20150144284A1 (en) 2013-11-26 2015-05-28 Made In Space, Inc. Metal Casting Methods in Microgravity and Other Environments
US20150209978A1 (en) 2014-01-25 2015-07-30 Made In Space, Inc. Recycling Materials In Various Environments Including Reduced Gravity Environments
US20160107337A1 (en) 2014-10-21 2016-04-21 Enye Tech S.A. Method for producing a supply obtained from the recycling of plastic material of industrial and post-consumer residues, to be used by 3d printers
US20160167254A1 (en) 2014-12-16 2016-06-16 Tethers Unlimited, Inc. Apparatus and Method for Creating Additive Manufacturing Filament from Recycled Materials
US20160271880A1 (en) 2015-03-16 2016-09-22 Arevo, Inc. Fused filament fabrication using liquid cooling

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB927501A (en) * 1960-11-15 1963-05-29 Ici Ltd Extrusion apparatus and processes
US5407624A (en) 1993-06-09 1995-04-18 North American Plastics Corporation Method and apparatus for processing of raw plastics for reuse
US20150144284A1 (en) 2013-11-26 2015-05-28 Made In Space, Inc. Metal Casting Methods in Microgravity and Other Environments
US20150209978A1 (en) 2014-01-25 2015-07-30 Made In Space, Inc. Recycling Materials In Various Environments Including Reduced Gravity Environments
US20160107337A1 (en) 2014-10-21 2016-04-21 Enye Tech S.A. Method for producing a supply obtained from the recycling of plastic material of industrial and post-consumer residues, to be used by 3d printers
US20160167254A1 (en) 2014-12-16 2016-06-16 Tethers Unlimited, Inc. Apparatus and Method for Creating Additive Manufacturing Filament from Recycled Materials
US20160271880A1 (en) 2015-03-16 2016-09-22 Arevo, Inc. Fused filament fabrication using liquid cooling

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUGH LYMAN: "LYMAN MULIER FILAMENT EXTRUDER V5 video 1", 11 June 2014 (2014-06-11), XP054978495, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=vL9zDOdRqBo> [retrieved on 20180705] *
MAKING STUFF: "Filament Extruder #8 - Water Bath Update and Test Run", 5 September 2016 (2016-09-05), XP054978492, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=RigJNWbyzhQ> [retrieved on 20180705] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109382991A (zh) * 2018-11-02 2019-02-26 山东科技大学 一种3d打印用丝材挤出成型装置

Also Published As

Publication number Publication date
CA3052833A1 (en) 2018-09-27
EP3603932A1 (en) 2020-02-05
US20190375142A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
WO2018172993A1 (pt) Dispositivo e método para produção de filamento
US10684603B2 (en) Dynamically controlled screw-driven extrusion
KR102301593B1 (ko) 사출 몰딩 시스템 및 구성요소를 제조하는 방법
RU2005116306A (ru) Экструдирование фасонных деталей из пластмассы, сшиваемой пероксидными связями
Nassar et al. Design of 3D filament extruder for Fused Deposition Modeling (FDM) additive manufacturing
CN105856473B (zh) 高频电场与振动力场协同低温加工高分子材料的方法及装置
CN108312540B (zh) 一种立式3d打印废料回收装置
RU190068U1 (ru) Портативный шнековый экструдер для производства древесно-полимерной нити
CN106426620A (zh) 自动调整的新型切粒装置
CN203171995U (zh) 一种用于双螺杆挤出机的筒体
CN207207071U (zh) 管材成型设备用挤压模具
CN105745057A (zh) 成型机
CN205661010U (zh) 一种高效塑料牛奶瓶挤出机
JP2008095099A5 (pt)
CN208133570U (zh) 挤出热流道系统
KR20180094519A (ko) 폴리케톤 바 제작방법
KR20170112731A (ko) 내열성이 향상된 폴리유산 용기 제조방법, 상기 제조방법에 의해 제작된 폴리유산 용기 및 상기 폴리유산 용기 제조장치
CN206242470U (zh) 一种塑料光纤生产用辅料挤出机
CN110552075A (zh) 一种采用导热油的纺丝生产线及其使用方法
CN214820693U (zh) 一种节约能源的模具加工装置
CN210733201U (zh) 一种押出机的进料装置
CN213675083U (zh) 一种保温板生产用挤塑压出成型设备
RU208684U1 (ru) Экструдер для изготовления продукции методом FDM-печати
CN212331798U (zh) 一种吹塑机
CN220923228U (zh) 一种注射成型机的出料管加热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18723055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3052833

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018723055

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018723055

Country of ref document: EP

Effective date: 20191024