WO2018171640A1 - 一种数据传输方法、终端设备及基站系统 - Google Patents
一种数据传输方法、终端设备及基站系统 Download PDFInfo
- Publication number
- WO2018171640A1 WO2018171640A1 PCT/CN2018/079892 CN2018079892W WO2018171640A1 WO 2018171640 A1 WO2018171640 A1 WO 2018171640A1 CN 2018079892 W CN2018079892 W CN 2018079892W WO 2018171640 A1 WO2018171640 A1 WO 2018171640A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- control
- transmission mode
- terminal device
- base station
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0036—Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
- H04L1/0038—Blind format detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/024—Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0036—Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
- H04L1/0039—Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver other detection of signalling, e.g. detection of TFCI explicit signalling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0032—Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
- H04L5/0035—Resource allocation in a cooperative multipoint environment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/121—Wireless traffic scheduling for groups of terminals or users
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0466—Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
Definitions
- the present application relates to the technical field, and in particular, to a data transmission method, a terminal device, and a base station system.
- the cell can configure one or more control resource sets for each user equipment (English: User Equipment, UE for short) (English: Control Resource Set, referred to as CORESET) ), one of the CORESETs is defined as a number of physical resource blocks in the frequency domain (English: physical resource block, referred to as: PRB).
- the UE listens to the configured one or more CORESETs and blindly detects the downlink control channel therein.
- a long-term evolution (English: Long Term Evolution, LTE for short) also has a similar concept, that is, a cell can configure one or two enhanced physical downlink control channels for the UE to be monitored (English: Enhanced Physical Downlink Control Channel, referred to as: EPDCCH) set, EPDCCH can only be transmitted on these sets.
- One EPDCCH set consists of 2, 4 or 8 PRB pairs. Different EPDCCH sets can be configured with different PRB pair numbers.
- the base station when the base station sends the downlink control channel (Downlink Control Information, DCI) corresponding to the two EPDCCH sets to the UE, the UE blindly detects two DCIs in the first EPDCCH set, when the first EPDCCH is in the first EPDCCH.
- the set does not detect one of the DCIs, or both DCIs are not detected, the undetected DCI is blindly detected in the second EPDCCH set. Therefore, in order to reduce the number of blind detections, two EPDCCH sets are correspondingly selected in the LTE.
- the downlink control channel is set to have the same payload size.
- the present application provides a data transmission method, a terminal device, a base station, and a base station system for providing a method for transmitting and detecting control information in an NR.
- the application provides a data transmission method, the method comprising:
- the terminal device receives the first configuration information and the second configuration information from the base station;
- the first configuration information includes information of a first control resource set, and the second configuration information includes information of a second control resource set;
- the terminal device detects first control information in a first control channel candidate set corresponding to the first control resource set;
- the terminal device detects second control information in a second control channel candidate set corresponding to the second control resource set.
- the sum of the size of the first control channel candidate set and the size of the second control channel candidate set is not greater than a first threshold.
- the base station sends the first configuration information and the second configuration information to the terminal device, where the first configuration information includes information of the first control resource set, and the second configuration information includes information of the second control resource set, and the first
- the sum of the size of the control channel candidate set and the size of the second control channel candidate set is not greater than the first threshold, and the terminal device only needs to detect the first control information in the first control channel candidate set corresponding to the first control resource set, and only The second control information needs to be detected in the second control channel candidate set corresponding to the second control resource set.
- the terminal device when the first control resource set and the second control resource set are configured for the terminal device, the terminal device does not Knowing, in which control resource set, the first control information and the second control information are sent to the terminal device, so it is necessary to detect the first control information and the second control information in the first control resource set, when the first control resource set is not detected.
- the first control information or the second control information is used, the second control information is detected by the second control resource set. Or the first control information. Therefore, in order to reduce the number of blind detections, the downlink control channels corresponding to the two EPDCCH sets are set to the same payload size in LTE, and in this application, the terminal device only needs to be in the first control channel.
- the first control information is detected in the candidate set, and the second control information is only needed to be detected in the second control channel candidate set. Therefore, the present application does not increase even when the first control information and the second control information payload are different in size. The number of blind checks.
- a load payload length of the first control information and the second control information is different.
- the number of blind detections of the terminal device is not increased, and thus the number of blind detections is better.
- the first configuration information further includes a first associated with the first control information Transmit mode information
- the second configuration information further includes second transmission mode information associated with the second control information
- the terminal device Before detecting the first control information in the first control channel candidate set corresponding to the first control resource set, the terminal device further includes:
- the terminal device receives third configuration information from the base station, where the third configuration information includes first transmission mode information associated with the first control information and second transmission mode information associated with the second control information .
- the first transmission mode information is a transmission mode; or the first transmission mode information is a resource mapping One or more of a mode, a demodulation reference signal DMRS scrambling code sequence, and a quasi-coordinate positioning QCL.
- the second transmission mode information is a transmission mode
- the second transmission mode information is one or more of a resource mapping mode, a DMRS scrambling code sequence, and a QCL.
- the first control resource set And the second set of control resources belong to different carriers.
- the data transmission method for reducing the number of blind detections of the terminal device provided by the present application is also applicable.
- the present application provides a terminal device.
- the terminal device includes multiple function modules, and is used to implement any one of the data transmission methods provided by the foregoing first aspect, so that the terminal device receives the base station.
- the first configuration information and the second configuration information are sent, where the first configuration information includes information of the first control resource set, the second configuration information includes information of the second control resource set, and the size of the first control channel candidate set is The sum of the sizes of the second control channel candidate sets is not greater than the first threshold, and the terminal device only needs to detect the first control information in the first control channel candidate set corresponding to the first control resource set, and only needs to be in the second control resource set.
- the second control information is detected in the corresponding second control channel candidate set, and in the LTE system, when the first control resource set and the second control resource set are configured for the terminal device, the terminal device does not know the first control information and the first The second control information is sent to the terminal device under which control resource set, and therefore needs to be in the first control resource set.
- the downlink control channels corresponding to the two EPDCCH sets are set to the same payload size in the LTE, and in this application, the terminal device only needs to detect the first in the first control channel candidate set.
- the control information and the second control information need only be detected in the second control channel candidate set. Therefore, the present application does not increase the number of blind detections even when the first control information and the second control information payload are different in size.
- the structure of the terminal device includes a processor and a transceiver, and the processor is configured to support the terminal device to perform a corresponding function in the data transmission method of the above first aspect.
- the transceiver is configured to support communication between the terminal device and the base station, and receive information or instructions involved in the foregoing data transmission method sent by the base station.
- a memory may also be included in the terminal device for coupling with the processor, which stores program instructions and data necessary for the terminal device.
- a transceiver configured to receive first configuration information and second configuration information from a base station;
- the first configuration information includes information of a first control resource set, and the second configuration information includes information of a second control resource set;
- a processor configured to detect first control information in a first control channel candidate set corresponding to the first control resource set; and detect second control information in a second control channel candidate set corresponding to the second control resource set; And a sum of a size of the first control channel candidate set and a size of the second control channel candidate set is not greater than a first threshold.
- the load payload lengths of the first control information and the second control information are different.
- the first configuration information further includes first transmission mode information associated with the first control information
- the second configuration information further includes second transmission mode information associated with the second control information
- the device is further configured to receive third configuration information from the base station, where the third configuration information includes first transmission mode information associated with the first control information and second associated with the second control information Transfer mode information.
- the first transmission mode information is a transmission mode
- the first transmission mode information is one or more of a resource mapping mode, a demodulation reference signal DMRS scrambling code sequence, and a quasi-coordinate positioning QCL.
- the second transmission mode information is a transmission mode; or the second transmission mode information is one or more of a resource mapping manner, a DMRS scrambling code sequence, and a QCL.
- the first control resource set and the second control resource set belong to different carriers.
- the application provides a data transmission method, where the method includes:
- the terminal device receives the first configuration information and the second configuration information from the base station;
- the first configuration information includes information of a first control resource set, and the second configuration information includes information of a second control resource set;
- the terminal device detects the first control information and the second control information in the first control channel candidate set corresponding to the first control resource set;
- the terminal device successfully detects the first control information, detecting the second control information in the second control channel candidate set corresponding to the second control resource set;
- the terminal device successfully detects the second control information, detecting the first control information in the second control channel candidate set;
- the sum of the size of the first control channel candidate set and the size of the second control channel candidate set is not greater than a first threshold.
- the present application provides a data transmission method.
- a base station sends only one control information in a control channel candidate set corresponding to a control resource set, for example, sends a first control information in a first control channel candidate set.
- the control channel candidate set detects the first control information and the second control information. If the first control information is successfully detected in the first control channel candidate set, only the second control information needs to be detected in the second control channel candidate set. If the first control channel candidate set successfully detects the second control information, only the first control information needs to be detected in the second control channel candidate set.
- the first control information and the second control channel have the same payload length.
- the first control resource set and the second control resource set belong to different carriers .
- the present application provides a terminal device.
- the terminal device includes multiple function modules, and is used to implement any data transmission method provided by the foregoing third aspect, where the base station only Transmitting, by the control channel candidate set corresponding to the control resource set, a piece of control information, for example, transmitting the first control information in the first control channel candidate set, and transmitting the second control information in the second control channel candidate set, or Transmitting the second control information in a control channel candidate set, and transmitting the first control information in the second control channel candidate set.
- the terminal device detects the first control information and the second control information in the first control channel candidate set, if If the first control channel candidate set successfully detects the first control information, only the second control information needs to be detected in the second control channel candidate set, and if the second control information is successfully detected in the first control channel candidate set, Only the first control information needs to be detected in the second control channel candidate set.
- the structure of the terminal device includes a processor and a transceiver, and the processor is configured to support the terminal device to perform a corresponding function in the data transmission method of the above third aspect.
- the transceiver is configured to support communication between the terminal device and the base station, and receive information or instructions involved in the foregoing data transmission method sent by the base station.
- a memory may also be included in the terminal device for coupling with the processor, which stores program instructions and data necessary for the terminal device.
- a transceiver configured to receive first configuration information and second configuration information from a base station;
- the first configuration information includes information of a first control resource set, and the second configuration information includes information of a second control resource set;
- a processor configured to detect first control information and second control information in a first control channel candidate set corresponding to the first control resource set; if the first control information is successfully detected, corresponding to the second control resource set Detecting the second control information in the second control channel candidate set; or detecting the first control information in the second control channel candidate set if the second control information is successfully detected; The sum of the size of the first control channel candidate set and the size of the second control channel candidate set is not greater than a first threshold.
- the first control information and the second control channel have the same payload length.
- the first control resource set and the second control resource set belong to different carriers.
- the application provides a data transmission method, including:
- the first base station sends the first configuration information and the second configuration information to the terminal device;
- the first configuration information includes information of a first control resource set, and the second configuration information includes information of a second control resource set;
- the first base station sends first control information to the terminal device in a first control channel candidate set corresponding to the first control resource set;
- the sum of the size of the first control channel candidate set and the size of the second control channel candidate set is not greater than a first threshold.
- the first configuration information further includes first transmission mode information associated with the first control information, where the second configuration information further includes Second transmission mode information associated with the second control information; or
- the method further includes: the first base station transmitting third configuration information to the terminal device, where the third configuration information includes first transmission mode information associated with the first control information and the second control The second transmission mode information associated with the information.
- the first transmission mode information is a transmission mode
- the first transmission mode information is one or more of a resource mapping manner, a DMRS scrambling code sequence, and a QCL.
- the second transmission mode information is a transmission mode
- the second transmission mode information is one or more of a resource mapping mode, a DMRS scrambling code sequence, and a QCL.
- the application provides a base station system, including: a first base station and a second base station;
- the first base station is configured to send first configuration information and second configuration information to the terminal device;
- the first configuration information includes information of a first control resource set, and the second configuration information includes information of a second control resource set ;
- the first base station is further configured to send first control information to the terminal device in a first control channel candidate set corresponding to the first control resource set;
- the second base station is configured to send second control information to the terminal device in a second control channel candidate set corresponding to the second control resource set, where a size of the first control channel candidate set is The sum of the sizes of the second set of control channel candidates is not greater than the first threshold.
- the first configuration information further includes first transmission mode information associated with the first control information, where the second configuration information is further Include second transmission mode information associated with the second control information; or
- the first base station is further configured to: send, to the terminal device, third configuration information, where the third configuration information includes first transmission mode information associated with the first control information, and is associated with the second control information.
- the second transmission mode information includes first transmission mode information associated with the first control information, and is associated with the second control information.
- the first transmission mode information is a transmission mode
- the first transmission mode information is one or more of a resource mapping manner, a DMRS scrambling code sequence, and a QCL.
- the second transmission mode information is a transmission mode
- the second transmission mode information is one or more of a resource mapping mode, a DMRS scrambling code sequence, and a QCL.
- the first control resource set And the second set of control resources belong to different carriers.
- the application also provides a base station that can perform the method performed by the first base station in the sixth aspect.
- the application also provides a base station that can perform the method performed by the second base station in the sixth aspect.
- the embodiment of the present application provides a computer storage medium for storing the terminal device provided by the foregoing second aspect or the terminal device provided by the fourth aspect or the computer software instruction used by the base station system provided by the sixth aspect, It comprises a program designed to perform the first or third aspect or the fifth aspect described above, respectively.
- the present application also provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of the first aspect or the third aspect or the fifth aspect, respectively.
- FIG. 1 is a schematic diagram of an application scenario provided by the present application
- FIG. 3 is a schematic diagram of resource allocation provided by the present application.
- FIG. 4 is a schematic diagram of another resource allocation provided by the present application.
- FIG. 5 is a schematic diagram of a data transmission method provided by the present application.
- FIG. 6 is a schematic diagram of a data transmission method provided by the present application.
- Figure 7 is a schematic diagram of a base station provided by the present application.
- FIG. 8 is a schematic diagram of a terminal device provided by the present application.
- Figure 9 is a schematic view of the apparatus provided by the present application.
- FIG. 10 is a schematic diagram of a terminal device provided by the present application.
- FIG. 11 is a schematic diagram of a terminal device provided by the present application.
- FIG. 12 is a schematic diagram of a base station system provided by the present application.
- FIG. 13(a) shows a distributed CCE to REG mapping manner provided by the present application
- FIG. 13(b) illustrates a distributed CCE to REG mapping manner provided by the present application.
- the embodiment of the present application can be applied to a 5G (fifth generation mobile communication system) system, such as an access network using a new wireless (English: New Radio, NR for short); a cloud wireless access network (English: Cloud Radio Access Network, Abbreviation: CRAN) and other communication systems, or can also be used for communication systems of more than 5G in the future.
- 5G fifth generation mobile communication system
- NR New Radio
- CRAN Cloud Radio Access Network
- the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
- the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
- FIG. 1 shows a schematic diagram of a possible application scenario of the present application.
- a radio access network English: Radio Access Network, RAN for short.
- the RAN includes at least one base station 20 (English: base station, abbreviated as BS). For the sake of clarity, only one base station and one UE are shown in the figure.
- the RAN is connected to a core network (English: core network, referred to as CN).
- the CN may be coupled to one or more external networks (English: External Network), such as the Internet, public switched telephone network (PSTN).
- PSTN public switched telephone network
- system architecture diagram applicable to this application includes the following network elements:
- Core network element Mainly responsible for signaling processing, that is, control plane functions, including access control, mobility management, attach and detach, session management functions, and gateway selection.
- Base station It is mainly responsible for radio resource management, quality of service (English: Quality of Service, QoS) management, data compression and encryption on the air interface side. To the core network side, the base station is mainly responsible for forwarding the control plane signaling to the MME and forwarding the user plane service data to the S-GW.
- the radio access network (English: Radio Access Network, RAN for short) is a terminal.
- evolved Node B (English: evolved Node B, eNB for short), radio network controller (English: radio network controller, RNC), node B (English: Node B (abbreviation: NB), base station controller (English: Base Station Controller, BSC for short), base transceiver station (English: Base Transceiver Station, BTS for short), home base station, baseband unit (English: BaseBand Unit, short for :BBU), base station (English: g NodeB, abbreviation: gNB), transmission point (English: Transmitting and receiving point, referred to as: TRP), transmission point (English: Transmitting point, referred to as: TP).
- it may also include a Wifi access point (English: Access Point, abbreviation: AP).
- User equipment (English: User Equipment, UE for short): also known as UE, or terminal equipment, is a device that provides voice and/or data connectivity to users, for example, handheld with wireless connectivity. Equipment, vehicle equipment, etc.
- Common terminals include, for example, mobile phones, tablets, notebook computers, PDAs, mobile internet devices (MIDs), wearable devices such as smart watches, smart bracelets, pedometers, and the like.
- Interface between the base station and the core network element for example, an S1 interface.
- An interface between the base station and the base station for example, an X2 interface, for implementing interworking between the base stations.
- Interface between the terminal device and the base station for example, a Uu interface.
- the following carrier aggregation (English: Carrier Aggregation, CA) scenario and non-carrier aggregation scenario respectively describe the search space.
- the non-carrier aggregation scenario is discussed first, that is, the scenario in which the UE has only one carrier.
- the search space defines the starting position and search mode of the UE blind detection downlink control channel.
- the UE will listen to the downlink control channel candidate set in the non-DRX (DRX English: Discontinuous Reception, Chinese translation: discontinuous reception) subframe, which means that the UE needs to try to decode the set according to the DCI format to be monitored.
- This set is the search space of the UE.
- Search space on aggregation level L (eg ⁇ 1, 2, 4, 8 ⁇ ) Defined as a set of downlink control channel candidates.
- the search space is divided into a common search space and a UE-specific search space.
- the common search space is used for transmitting control information (cell level public information) related to paging, random access response (RAR), and broadcast control channel (Broadcast Control Channel, BCCH). This information is the same for all UEs.
- the UE-specific search space is used to transmit control information related to the downlink shared channel (English: Downlink share channel, DL-SCH, and uplink shared channel (English: Uplink share channel, UL-SCH) (UE level). Information).
- the EPDCCH is also taken as an example. It should be noted that only the UE-specific search space is included in the EPDCCH.
- the two EPDCCH sets may have different transmission parameters (centralized). / Distributed resource mapping, DMRS scrambling sequence, quasi co-location (QCL, Quasi Co-Located), etc.).
- the EPDCCH candidate set needs to be split in different EPDCCH sets. For example, when the number of PRB pairs included in the two EPDCCH sets is 4 and 2, respectively, the EPDCCH candidate sets in each EPDCCH set are ⁇ 4, 4, 1, 1 ⁇ and ⁇ 2, 2, 1, 1 ⁇ , respectively. .
- the UE will use all the active carriers on each non-DRX subframe (including one primary carrier (English: Primary Carrier, PCARrier) and numOfActivatedDlSCarrier secondary carriers (English: Secondary Carrier, referred to as: Carrier) )))
- the search space is listening. According to whether the UE is configured for cross-carrier scheduling, it can be divided into the following cases.
- Case 1 The UE is not configured to be scheduled across carriers on all carriers. At this time, the UE will listen to the downlink control channel in each search space on each activated carrier. The downlink control channel of each carrier is transmitted on the carrier, and all downlink control channels do not have a carrier indicator field (English: Carrier Indicator Field, CIF for short) field.
- CIF Carrier Indicator Field
- Case 2 The UE configures cross-carrier scheduling on carrier c. At this time, the downlink control channel on the carrier must not be transmitted on other carriers. The UE will listen to the downlink control channel with the CIF on the search space of the carrier.
- Case 3 If the UE does not configure cross-carrier scheduling on carrier c and is not configured to transmit a downlink control channel on another carrier, the UE will listen to the downlink control channel without the CIF field in the search space of the carrier.
- Case 4 The UE configures cross-carrier scheduling on the PCarrier and configures semi-persistent scheduling (English: Semi-Persistent Scheduling, SPS for short). At this time, the UE monitors the downlink control channel with the CIF in the search space of the PCarrier. It should be noted that: (1) The downlink control channel on the PCarrier will never be transmitted on other carriers (SCARrier); (2) SPS scheduling exists only on the PCarrier.
- SCARrier Semi-Persistent Scheduling
- a certain SCARrier of the UE is configured to send a downlink control channel with a CIF corresponding to the SCARrier on another carrier, and the UE does not listen to the downlink control channel on the SCARrier.
- the UE On another carrier that sends a downlink control channel for the SCARrier, the UE will at least listen to its own downlink control channel.
- the UE For the UE, it does not determine what the value of the CIF field carried by the downlink control channel is, that is, it is not determined which carrier will send the downlink control channel to the UE.
- the UE only knows the set of CIFs that may be carried on the downlink control channel sent by the specific carrier to the UE, so the UE will try all possible CIF values on the carrier to blindly detect the downlink control channel. Therefore, the maximum number of blind detections required by the UE configured with the CA in the UE-specific search space is proportional to the number of activated carriers, that is, 32+32*numOfActivatedDlSCarrier.
- CoMP Coordinated Multiple Points Transmission/Reception
- JP Joint Processing
- CS/CB Coordinated Scheduling/Beamforming
- JP technology can be divided into JT technology and dynamic point selection (English: Dynamic Point Select, DPS for short).
- JT Joint Photographic Point Select
- multiple transmission points transmit data for the same UE on the same time-frequency resource, which converts the inter-cell interference signal into a useful signal to improve the performance of the cell edge user.
- JT can be divided into two types: coherent transmission and non-coherent transmission.
- non-coherent transmission JT each transmission point adopts a separate precoding scheme, and receives signals at the receiving end to implement bit level combining.
- the implementation of CoMP technology is based on an ideal backhaul link. Therefore, when multiple transmission points provide coordinated data transmission for the same UE, the UE will only receive DCI from the service transmission point.
- the DCI includes scheduling information for the serving transmission point and other transmission points that provide cooperative transmission for the UE.
- the UE receives the control information delivered by the service transmission point, and receives the data transmitted by each transmission point according to the scheduling information of each transmission point participating in the coordinated transmission included in the control information.
- the network needs to obtain the channel state information of all the coordinated transmission points (Crystal State: CSI), and adjust the phase of each transmission signal according to the channel information, so that the signals arriving at the receiving end can be combined. together.
- CSI Channel State
- the UE is supported in a 5G NR to cooperatively receive a plurality of different data streams through a plurality of transmission points based on non-ideal backhaul link connections.
- the UE not only needs to receive DCI from the service transmission point, but also needs to receive DCI from one or more coordinated transmission points.
- the DCI information included in each EPDCCH set is the same.
- the UE blindly detects one DCI in the EPDCCH set if the UE successfully detects the DCI blindly in the first EPDCCH set, the second EPDCCH set is not detected; if the UE is not in the first EPDCCH set If the DCI is blindly detected, the second EPDCCH set is further blindly detected.
- the UE blindly detects multiple DCIs in the two EPDCCH sets the UE needs to blindly check the DCI of all formats in the first EPDCCH set. For all DCIs, the second EPDCCH set is not blindly detected.
- the blind check needs to be continued in the second EPDCCH set.
- the plurality of DCIs need to have the same payload size.
- the terminal Based on non-ideal backhaul link non-coherent joint transmission (English: Joint Transmission, JT for short), the terminal needs to receive multiple transmission points from the service transmission point and the coordinated transmission point in multiple CORESETs.
- the transmitted control information is used to schedule data transmission of the same carrier.
- how to perform control information interaction between the base station and the terminal device under non-coherent JT transmission is a problem to be solved.
- the service transmission point TRP1 transmits configuration information through broadcast or higher layer signaling to configure the UE. 1 CORESET.
- the configuration information further includes transmission parameter information of the CORESET, including resource allocation information (distributed/centralized), demodulation reference signal (English: Demodulation Reference Signal, DMRS) scrambling sequence, and quasi-identity positioning. : One or more of the information such as Quasi Co-Located (QCL), or the transmission mode is included in the resource allocation information.
- QCL Quasi Co-Located
- the CORESET uses a centralized resource mapping manner, and the frequency domain occupies 5 MHz bandwidth, and the transmission mode is TM5.
- the UE infers the used transmission mode according to one or more of resource allocation information, DMRS scrambling sequence, and QCL. Or directly obtaining the transmission mode from the configuration information, and the UE determines the DCI format that needs to be blindly checked according to the type of information that is expected to be received and the transmission mode, and blindly checks the DCI in the CORESET, for example, the terminal device is in the CORESET.
- the DC network temporary identifier (English: Radio Network Tempory Identity, RNTI) is used to blindly check the DCI corresponding to the 6, 2, 2, and 2 control channel candidates corresponding to the aggregation levels 1, 2, 4, and 8, respectively.
- the embodiment of the present application describes a case where the UE has two transmission points, one of which is a service transmission point (hereinafter referred to as TRP1, which may also be referred to as a first base station), and the other is a coordinated transmission point (hereinafter referred to as TRP2, also It can be called a second base station), and specifically, it is divided into two cases.
- TRP1 service transmission point
- TRP2 coordinated transmission point
- TRP2 also It can be called a second base station
- the serving transmission point sends the first configuration information and the second configuration information to the UE, where the first configuration information includes information of the first control resource set (CORESET1), and the second configuration information includes Second, the information of the control resource set (CORESET2), specifically, TRP1 can configure CORESET1 and CORESET2 for the UE through broadcast or higher layer signaling.
- TRP1 and TRP2 communicate with the UE in a cooperative manner, and CORESET1 and CORESET2 belong to the same carrier (CC1).
- the TRP1 sends the first configuration information and the second configuration information to the UE, where the first configuration information includes information of the first control resource set (CORESET1), and the second configuration information includes the second control.
- the information of the resource set (CORESET2) specifically, TRP1 can configure CORESET1 and CORESET2 for the UE through broadcast or higher layer signaling.
- TRP1 and TRP2 communicate with the UE in a cooperative manner, and CORESET1 belongs to carrier 1 (CC1), and downlink data in carrier 1 (CC1) is scheduled through the carrier; CORESET2 belongs to carrier 2 (CC2), and carrier 1 is scheduled by cross-carrier ( Downstream data in CC1).
- the sum of the first control channel candidate set size corresponding to the CORESET1 and the size of the second control channel candidate set corresponding to the CORESET2 is not greater than the first threshold, wherein the first threshold may be according to the above table 9.1.
- the corresponding parameters in Table 9.1.4-2b above may be done.
- the size of the specific value of the first threshold in the embodiment of the present application may be adjusted accordingly as the communication system evolves.
- the aggregation levels can be corresponding according to Tables 9.1.4-2b and 9.1.4-4b.
- the following describes the manner in which the UE performs blind detection in two cases.
- the first data transmission method for the situation includes the following steps:
- Step 501 The first base station sends the first configuration information and the second configuration information to the terminal device.
- the first base station is a service transmission point (TRP1)
- the first configuration information includes information of a first control resource set (CORESET1)
- the second configuration information includes information of a second control resource set (CORESET2).
- Step 502 The terminal device receives the first configuration information and the second configuration information.
- Step 503 The first base station sends first control information to the terminal device in the first control channel candidate set, and the second base station sends the second control information to the terminal device in the second control channel candidate set.
- Step 504 The terminal device detects the first control information in the first control channel candidate set, and detects the second control information in the second control channel candidate set.
- the terminal knows in advance that the first control information is sent by the CORESET1, and the second control information is sent by the CORESET2. Therefore, when the terminal device performs the DCI blind check, it is only in the first Detecting the first control information in the control channel candidate set, and detecting the second control information only in the second control channel candidate set, without detecting both the first control information and the second control information in the first control channel candidate set, Thereby, the number of blind inspections can be saved.
- the terminal can learn that the first control information is sent by the CORESET1 and the second control information is sent by the CORESET2 in the following manner:
- the first method is obtained by using the first configuration information and the second configuration information.
- the first configuration information further includes first transmission mode information associated with the first control information
- the second configuration information further includes second transmission mode information associated with the second control information.
- the terminal device when receiving the first transmission mode information, the terminal device can learn that the first control information is sent by the CORESET1 through the first transmission mode information, and the first transmission information is received when the second transmission mode information is received.
- the second transmission mode information is that the second control information is delivered through the CORESET2.
- the first transmission mode information is a transmission mode; or the first transmission mode information is one or more of a resource mapping manner, a DMRS scrambling code sequence, and a QCL.
- the terminal device may infer the transmission mode, and further learn, according to the transmission mode, the first control channel candidate.
- the first control information is sent by the set. If the terminal device obtains the first transmission mode information and is directly in the transmission mode, according to the transmission mode, it is learned that the first control information is sent in the first control channel candidate set.
- the second transmission mode information is a transmission mode; or the second transmission mode information is one or more of a resource mapping manner, a DMRS scrambling code sequence, and a QCL.
- the terminal device may infer the transmission mode, and further learn, according to the transmission mode, the second control channel candidate.
- the second control information is sent by the set. If the second transmission mode information is directly in the transmission mode, the terminal device learns that the second control information is sent in the second control channel candidate set according to the transmission mode.
- the resource mapping method is divided into centralized and distributed.
- the first base station further sends third configuration information to the terminal device, where the third configuration information includes first transmission mode information associated with the first control information and second transmission mode information associated with the second control information.
- the first base station sends the first transmission mode information and the second transmission mode information to the terminal device by sending a single third configuration information, and the first transmission mode information indicates that the first base station sends the message at the CORESET1.
- the first control information, the second transmission mode information instructs the second base station to send the second control information in the CORESET2.
- the terminal device determines, according to the received configuration information, that the DCI1 needs to be blindly detected in the first control channel candidate set corresponding to the CORESET1 sent by the first base station, and the second control channel candidate set corresponding to the CORESET2 that needs to be sent by the second base station.
- the blind detection DCI2, specifically, in the CORESET1, the DCI1 is blindly detected on the 4, 4, 0, and 0 control channel candidate sets corresponding to the aggregation levels 1, 2, 4, and 8, respectively, and corresponds to the aggregation level 1 and 2 in the CORESET2, respectively. 4, 2, 2, 2, 2, 1 control channel candidates blindly check DCI2. That is, the set of control channel candidates is split in CORESET1 and CORESET2.
- the payload lengths of the first control information and the second control information may be the same or different, and the DCI blindness is not increased when the payload lengths of the first control information and the second control information are different. The number of checks.
- a second data transmission method for the situation includes the following steps:
- Step 601 The first base station sends the first configuration information and the second configuration information to the terminal device.
- the first base station is a service transmission point (TRP1)
- the first configuration information includes information of a first control resource set (CORESET1)
- the second configuration information includes information of a second control resource set (CORESET2).
- Step 602 The terminal device receives the first configuration information and the second configuration information.
- Step 603 The first base station sends first control information to the terminal device in the first control channel candidate set, and the second base station sends the second control information to the terminal device in the second control channel candidate set.
- Step 604 The terminal device detects the first control information and the second control information in the first control channel candidate set.
- Step 605 If the terminal device successfully detects the first control information, detecting the second control information in the second control channel candidate set; or, if the terminal device successfully detects the second control information, in the second control channel candidate set The first control information is detected.
- the data transmission method shown in FIG. 6 is mainly applicable to a scenario in which a terminal device has multiple transmission points. Specifically, in the method, the terminal device does not know whether the first control information is sent in CORESET1 or in CORESET2, and does not know. Whether the first control information is sent in CORESET1 or in CORESET2, but the terminal device knows that there is only one control information in CORESET1 and CORESET2, for example, the first control information is included in CORESET1, and the second control information is included in CORESET2, Alternatively, the second control information is included in CORESET1, and the first control information is included in CORESET2.
- the terminal device first detects the first control information and the second control information in the first control channel candidate set, and if the first control information is successfully detected, detects the second control information in the second control channel candidate set, if successful When the second control information is detected, the first control information is detected in the second control channel candidate set.
- the terminal device determines that the control information sent by the first base station and the second base station is DCI1 and DCI2, the terminal device blindly checks DCI1 and DCI2 in CORSET1, and if the terminal device successfully detects DCI1, blindly checks DCI2 in CORESET2. If DCI2 is successfully detected, DCI1 is blindly checked in CORESET2.
- control channel candidate set is divided in different CORESETs, for example, the control channel candidates corresponding to the aggregation levels 1, 2, 4, and 8 in CORESET1 and CORESET2 are respectively 3, 3, 1, and 1, respectively, thereby ensuring the first The sum of the size of the control channel candidate set and the size of the second control channel candidate set does not exceed the first threshold.
- DCI1 and DCI2 have the same payload size.
- the UE performs blind detection of multiple DCIs from multiple transmission points in a non-coherent JT transmission scenario based on a non-ideal backhaul link by using a search space design method, by collecting control channel candidates.
- the segmentation in different CORESET ensures that the number of blind detections of the UE in one carrier does not increase with the increase of the number of configured CORESET sets.
- the data transmission method between the terminal device and the base station is the same as the data transmission method in the first case, and details are not described herein. For details, refer to the related description in the first case.
- the application also provides a method for segmentation of candidate sets, which is specifically:
- the aggregation level used by the UE for blind detection DCI in CORSET1 and CORESET2 is ⁇ L1, L2, ..., Ln ⁇
- the control channel candidate set sizes corresponding to each aggregation level are ⁇ k11, k21, ..., kn1 ⁇ and ⁇ k12, respectively.
- K22,...,kn2 ⁇ It is assumed that the first threshold is K, and thus the sum of the size of the first control channel candidate set and the size of the second control channel candidate set is not greater than the first threshold K.
- the Candidates segmentation is based on the following criteria:
- CORESET1 adopts localized resource allocation mode
- CORESET2 adopts distributed resource allocation mode, which has M1 ⁇ M2.
- a factor is preliminarily selected as the primary factor. Determine the size of ki1 and ki2;
- the resource allocation method is the primary factor, that is, ki1>ki2; for a larger aggregation level, the resource size is the primary factor, that is, ki1 ⁇ ki2.
- the embodiment of the present application further provides a base station 700.
- FIG. 7 it is a schematic structural diagram of a base station 700, and the base station 700 can be applied to perform some actions performed by the base station in FIG. 5 and FIG. 6.
- the base station 700 includes one or more remote radio units (RRUs) 701 and one or more baseband units (BBUs) 702.
- RRUs remote radio units
- BBUs baseband units
- the RRU 701 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 7011 and a radio frequency unit 7012.
- the RRU 701 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting the signaling indications described in the foregoing embodiments to user equipments (ie, terminals).
- the BBU 702 part is mainly used for performing baseband processing, controlling a base station, and the like.
- the RRU 701 and the BBU 702 may be physically disposed together or physically separated, that is, distributed base stations.
- the BBU 702 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spreading, and the like.
- the BBU processing unit
- the BBU may be used to control the base station to perform part of the actions performed by the base station in FIGS. 5 and 6.
- the BBU 702 may be composed of one or more boards, and multiple boards may jointly support a single access standard radio access network (such as an LTE network), or may separately support different access modes of wireless. Access Network.
- the BBU 702 also includes a memory 7021 and a processor 7022.
- the memory 7021 is used to store necessary instructions and data.
- the memory 7021 stores the configuration information in the above embodiment.
- the processor 7022 is configured to control the base station to perform necessary actions, for example, to control a part of actions performed by the base station in FIG. 5 and FIG.
- the memory 7021 and the processor 7022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor.
- the necessary circuits are also provided on each board.
- the embodiment of the present application further provides a terminal device 800, which is a schematic structural diagram of a user equipment UE, as shown in FIG.
- the terminal device 800 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
- the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire terminal device, executing the software program, and processing the data of the software program, for example, for supporting the terminal device to perform the actions described in the parts of FIG. 5 and FIG. .
- the memory is primarily used to store software programs and data, such as the configuration information described in the above embodiments.
- the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
- the control circuit together with the antenna can also be called a transceiver, and is mainly used for transmitting and receiving RF signals in the form of electromagnetic waves.
- the signaling indication and/or the reference signal sent by the base station are received.
- Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
- the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
- the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
- the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
- the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
- FIG. 8 shows only one memory and processor for ease of illustration. In an actual terminal device, there may be multiple processors and memories.
- the memory may also be referred to as a storage medium or a storage device, and the like.
- the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process the communication protocol and the communication data, and the central processing unit is mainly used to control and execute the entire terminal device.
- the processor in FIG. 8 integrates the functions of the baseband processor and the central processing unit.
- the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
- the terminal device may include a plurality of baseband processors to accommodate different network standards, and the terminal device may include a plurality of central processors to enhance its processing capabilities, and various components of the terminal devices may be connected through various buses.
- the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
- the central processing unit can also be expressed as a central processing circuit or a central processing chip.
- the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
- the antenna and control circuit having the transceiving function can be regarded as the transceiving unit 801 of the terminal device 800, and the processor having the processing function is regarded as the processing unit 802 of the terminal device 800.
- the terminal device 800 includes a transceiver unit 801 and a processing unit 802.
- the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
- the device for implementing the receiving function in the transceiver unit 801 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 801 is regarded as a sending unit, that is, the transceiver unit 801 includes a receiving unit and a sending unit.
- the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
- the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit.
- the transceiver unit 801 is configured to receive first configuration information and second configuration information from the base station; the first configuration information includes information of a first control resource set, and the second configuration information includes information of a second control resource set;
- the processing unit 802 is configured to detect first control information in a first control channel candidate set corresponding to the first control resource set; and detect second control information in a second control channel candidate set corresponding to the second control resource set; The sum of the size of the first control channel candidate set and the size of the second control channel candidate set is not greater than a first threshold.
- the load payload lengths of the first control information and the second control information are different.
- the first configuration information further includes first transmission mode information associated with the first control information
- the second configuration information further includes second transmission mode information associated with the second control information
- the transceiver unit 801 is further configured to receive third configuration information from the base station, where the third configuration information includes first transmission mode information associated with the first control information and associated with the second control information. Second transmission mode information.
- the first transmission mode information is a transmission mode
- the first transmission mode information is one or more of a resource mapping mode, a demodulation reference signal DMRS scrambling code sequence, and a quasi-coordinate positioning QCL.
- the second transmission mode information is a transmission mode; or the second transmission mode information is one or more of a resource mapping manner, a DMRS scrambling code sequence, and a QCL.
- the first control resource set and the second control resource set belong to different carriers.
- the transceiver unit 801 is configured to receive first configuration information and second configuration information from the base station; the first configuration information includes information of a first control resource set, and the second configuration information includes information of a second control resource set. ;
- the processing unit 802 is configured to detect first control information and second control information in a first control channel candidate set corresponding to the first control resource set; and if the first control information is successfully detected, in the second control resource set Detecting the second control information in the corresponding second control channel candidate set; or, if the second control information is successfully detected, detecting the first control information in the second control channel candidate set; And a sum of a size of the first control channel candidate set and a size of the second control channel candidate set is not greater than a first threshold.
- the first control information and the second control channel have the same payload length.
- the first control resource set and the second control resource set belong to different carriers.
- the embodiment of the present application further provides an apparatus, which may be a base station or a terminal device.
- the apparatus at least includes a processor 901 and a memory 902, and further includes a transceiver.
- the processor 901, the memory 902, and the transceiver 903 are all connected by a bus 904;
- the memory 902 is configured to store a computer execution instruction
- the processor 901 is configured to execute a computer execution instruction stored by the memory 902;
- the processor 901 executes a computer-executed instruction stored in the memory 902, so that the device 900 performs the steps performed by the base station in the data transmission method provided in FIG. 5 and FIG. 6, or causes the base station to Deploy the functional unit corresponding to this step.
- the processor 901 executes a computer execution instruction stored in the memory 902, so that the device 900 performs the steps performed by the terminal device in the data transmission method provided in FIG. 5 and FIG. 6, or The terminal device is caused to deploy a functional unit corresponding to the step.
- the processor 901 may include different types of processors 901, or include the same type of processor 901; the processor 901 may be any one of the following: a central processing unit (CPU), an ARM processor, and a field. A device with computational processing capability, such as a Field Programmable Gate Array (FPGA) or a dedicated processor. In an alternative embodiment, the processor 901 can also be integrated into a many-core processor.
- processors 901 may be any one of the following: a central processing unit (CPU), an ARM processor, and a field.
- a device with computational processing capability such as a Field Programmable Gate Array (FPGA) or a dedicated processor.
- FPGA Field Programmable Gate Array
- the processor 901 can also be integrated into a many-core processor.
- the memory 902 may be any one or any combination of the following: a random access memory (RAM), a read only memory (ROM), a non-volatile memory (non-volatile memory). , referred to as NVM), Solid State Drives (SSD), mechanical hard disks, disks, disk arrays and other storage media.
- RAM random access memory
- ROM read only memory
- NVM non-volatile memory
- SSD Solid State Drives
- the transceiver 903 is configured to perform data exchange between the device 900 and other devices; for example, if the device 900 is a base station, the base station may perform a part executed by the base station in the method described in FIG. 5 and FIG. 6; the base station passes through the transceiver 903 and the terminal. Performing data interaction; if the device 900 is a terminal, the terminal may perform the part executed by the terminal device in the method described in FIG. 5 and FIG. 6; the terminal device performs data interaction with the base station through the transceiver 903; the transceiver 903 may be the following Either or any combination: a network interface (such as an Ethernet interface), a wireless network card, and the like having a network access function.
- a network interface such as an Ethernet interface
- the bus 904 can include an address bus, a data bus, a control bus, etc., for ease of representation, Figure 9 shows the bus with a thick line.
- the bus 904 can be any one or any combination of the following: an Industry Standard Architecture (ISA) bus, a Peripheral Component Interconnect (PCI) bus, and an extended industry standard structure ( Extended Industry Standard Architecture (EISA) bus and other devices for wired data transmission.
- ISA Industry Standard Architecture
- PCI Peripheral Component Interconnect
- EISA Extended Industry Standard Architecture
- the embodiment of the present application provides a computer readable storage medium.
- the computer readable storage medium stores a computer execution instruction.
- the processor of the base station or the terminal device executes the computer to execute an instruction, so that the base station or the terminal device performs the methods of FIG. 5 and FIG. A step performed by a base station or a terminal, or causing a base station or terminal to deploy a functional unit corresponding to the step.
- Embodiments of the present application provide a computer program product comprising computer executed instructions stored in a computer readable storage medium.
- the processor of the base station or terminal can read the computer execution instructions from the computer readable storage medium; the processor executes the computer to execute the instructions, such that the base station or the terminal performs the steps performed by the base station or the terminal in the methods of FIG. 5 and FIG. 6, or The functional unit corresponding to this step is deployed on behalf of the base station or terminal.
- the computer program product includes one or more computer instructions.
- the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
- the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
- the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes a plurality of available media.
- the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
- a general purpose processor may be a microprocessor.
- the general purpose processor may be any conventional processor, controller, microcontroller, or state machine.
- the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
- the steps of the method or algorithm described in the embodiments of the present application may be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
- the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
- the storage medium can be coupled to the processor such that the processor can read information from the storage medium and can write information to the storage medium.
- the storage medium can also be integrated into the processor.
- the processor and the storage medium may be disposed in the ASIC, and the ASIC may be disposed in the terminal device. Alternatively, the processor and the storage medium may also be disposed in different components in the terminal device.
- the above-described functions described in the embodiments of the present application may be implemented in hardware, software, firmware, or any combination of the three. If implemented in software, these functions may be stored on a computer readable medium or transmitted as one or more instructions or code to a computer readable medium.
- Computer readable media includes computer storage media and communication media that facilitates the transfer of computer programs from one place to another.
- the storage medium can be any available media that any general purpose or special computer can access.
- Such computer-readable media can include, but is not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage or other magnetic storage device, or any other device or data structure that can be used for carrying or storing Other media that can be read by a general purpose or special computer, or a general purpose or special processor.
- any connection can be appropriately defined as a computer readable medium, for example, if the software is from a website site, server or other remote source through a coaxial cable, fiber optic computer, twisted pair, digital subscriber line (DSL) Or wirelessly transmitted in, for example, infrared, wireless, and microwave, is also included in the defined computer readable medium.
- DSL digital subscriber line
- the disks and discs include compact disks, laser disks, optical disks, DVDs, floppy disks, and Blu-ray disks. Disks typically replicate data magnetically, while disks typically optically replicate data with a laser. Combinations of the above may also be included in a computer readable medium.
- the present application further provides a terminal device, as shown in FIG. 10, including a processing unit 1001 and a transceiver unit 1002, which can be used to execute a portion of the method illustrated in FIG. 5 that is executed by the terminal device.
- the transceiver unit 1002 is configured to receive first configuration information and second configuration information from the base station; the first configuration information includes information of a first control resource set, and the second configuration information includes information of a second control resource set;
- the processing unit 1001 is configured to detect first control information in a first control channel candidate set corresponding to the first control resource set; and detect second control information in a second control channel candidate set corresponding to the second control resource set; The sum of the size of the first control channel candidate set and the size of the second control channel candidate set is not greater than a first threshold.
- the load payload lengths of the first control information and the second control information are different.
- the first configuration information further includes first transmission mode information associated with the first control information
- the second configuration information further includes second transmission mode information associated with the second control information
- the transceiver unit 1002 is further configured to receive third configuration information from the base station, where the third configuration information includes first transmission mode information associated with the first control information and associated with the second control information. Second transmission mode information.
- the first transmission mode information is a transmission mode
- the first transmission mode information is one or more of a resource mapping mode, a demodulation reference signal DMRS scrambling code sequence, and a quasi-coordinate positioning QCL.
- the second transmission mode information is a transmission mode; or the second transmission mode information is one or more of a resource mapping manner, a DMRS scrambling code sequence, and a QCL.
- the first control resource set and the second control resource set belong to different carriers.
- the present application further provides a terminal device, as shown in FIG. 11, including a processing unit 1101 and a transceiver unit 1102, which can be used to execute a portion of the method illustrated in FIG. 6 that is executed by the terminal device.
- the transceiver unit 1102 is configured to receive first configuration information and second configuration information from the base station; the first configuration information includes information of a first control resource set, and the second configuration information includes information of a second control resource set;
- the processing unit 1101 is configured to detect first control information and second control information in a first control channel candidate set corresponding to the first control resource set; and if the first control information is successfully detected, in the second control resource set Detecting the second control information in the corresponding second control channel candidate set; or, if the second control information is successfully detected, detecting the first control information in the second control channel candidate set; And a sum of a size of the first control channel candidate set and a size of the second control channel candidate set is not greater than a first threshold.
- the first control information and the second control channel have the same payload length.
- the first control resource set and the second control resource set belong to different carriers.
- the present application further provides a base station system, as shown in FIG. 12, including a first base station 1201 and a second base station 1202, where the first base station 1201 can be used to perform the methods shown in FIG. 5 and FIG.
- the portion of the second base station 1202 that can be used by the first base station to perform the method illustrated in Figures 5 and 6 by the second base station.
- the first base station 1201 is configured to send first configuration information and second configuration information to the terminal device; the first configuration information includes information of a first control resource set, and the second configuration information includes a second control resource set. information;
- the first base station 1201 is further configured to send first control information to the terminal device in a first control channel candidate set corresponding to the first control resource set;
- the second base station 1202 is configured to send second control information to the terminal device in a second control channel candidate set corresponding to the second control resource set, where a size and a size of the first control channel candidate set are The sum of the sizes of the second set of control channel candidates is not greater than the first threshold.
- the first configuration information further includes first transmission mode information associated with the first control information
- the second configuration information further includes second transmission mode information associated with the second control information
- the first base station 1201 is further configured to: send, to the terminal device, third configuration information, where the third configuration information includes first transmission mode information associated with the first control information and the second control information. Associated second transmission mode information.
- the first transmission mode information is a transmission mode
- the first transmission mode information is one or more of a resource mapping manner, a DMRS scrambling code sequence, and a QCL.
- the second transmission mode information is a transmission mode
- the second transmission mode information is one or more of a resource mapping mode, a DMRS scrambling code sequence, and a QCL.
- the first control resource set and the second control resource set belong to different carriers.
- the present application also provides a mapping manner of a distributed control channel unit (English: Control Channel Element, CCE for short) to a resource element group (English: Resource Element Group, REG), as shown in FIG. 13(a) and As shown in FIG. 13(b), the UE calculates a CCE index corresponding to the search space whose aggregation level is L, and determines a virtual REG index corresponding to each CCE.
- CCE Control Channel Element
- REG Resource Element Group
- a square represents a REG, which occupies 1 PRB in the frequency domain, and occupies one OFDM in use, and blocks of the same color form a CCE.
- one CCE contains 4 REGs, but the method can be simply extended to the case where one CCE contains 6, 8 or more REGs.
- mapping process from distributed CCE to REG is mainly divided into two steps:
- Step 1 Interleaving: Map consecutive virtual REG groups in each symbol group to non-contiguous REG groups.
- Each symbol group contains one or more symbols, which is determined by one CCE occupying one or more symbols in the time domain.
- Each (virtual) REG group includes P REGs, and there may be less than P REGs in one REG group.
- the value of N gap may be determined according to the bandwidth of the control resource set, or may be configured based on the network side; the value of P may be based on the control resource.
- the bandwidth and/or aggregation level of the set is determined, or may be based on the network side configuration, and the number of the virtual REG group in each symbol group is from 0 to The formula is as follows
- the interleaving matrix is common Line, 4 columns.
- the virtual REG group is written to the matrix row by row and read out column by column ("horizontal column”).
- the number of elements in the matrix 4N row may be greater than
- the extra elements at this time are filled with null, and the elements filled with null are in the second and fourth columns of the last N null /2 lines.
- column fetch is the process of mapping the virtual REG group to the REG group, in which the null element is ignored. For example, it is necessary to determine the REG group corresponding to the virtual REG group 3, and read the above matrix row by row, and skip it until the element value 15 is read, that is, the order of reading is (0, 4, 8, 12, 14, 16). 1,5,9,2,6,10,13,15,17,3), to the 15th element to get 3, so the virtual REG group 3 corresponds to the REG group 15.
- Step 2 Frequency hopping between symbol groups:
- step 1 On the basis of step 1, on the symbol group i, the offset K i in the REG frequency domain corresponding to the same virtual REG index is as shown in FIG. 13(b).
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种数据传输方法、终端设备及基站系统,基站向终端设备发送第一控制资源集合的信息和第二控制资源集合的信息,终端设备在第一控制信道候选集合中检测第一控制信息,在第二控制信道候选集合中检测第二控制信息,而LTE系统中,由于终端设备不知道第一控制信息和第二控制信息是在哪个控制资源集合发送的,因此需要在第一控制资源集合检测第一控制信息和第二控制信息,当第一控制资源集合未检测到第一控制信息或第二控制信息时,再到第二控制资源集合检测第二控制信息或第一控制信息,相较于LTE的数据传输方法,本申请在第一控制信息和第二控制信息payload大小不同时,也不会增加盲检次数。
Description
本申请要求在2017年3月24日提交中华人民共和国知识产权局、申请号为201710184941.9、发明名称为“一种数据传输方法、终端设备及基站系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及技术领域,尤其涉及一种数据传输方法、终端设备及基站系统。
新无线(英文:New Radio,简称:NR)中,小区可以给每个用户设备(英文:User Equipment,简称:UE)配置1个或多个控制资源集合(英文:Control Resource Set,简称:CORESET),其中一个CORESET定义为频域上的若干物理资源块(英文:physical resource block,简称:PRB)。UE监听所配置的1个或多个CORESET,并在其中盲检下行控制信道。
长期演进(英文:Long Term Evolution,简称:LTE)中也有类似的概念,即小区可以为UE配置需要监听的1个或2个增强的物理下行控制信道(英文:Enhanced Physical Downlink Control Channel,简称:EPDCCH)集合,EPDCCH只可能在这些集合上传输。1个EPDCCH集合由2个、4个或者8个PRB对(pair)组成。不同的EPDCCH集合可以配置不同的PRB pair数。
在LTE中,当基站向UE发送两个EPDCCH集合对应的下行控制信道(英文:Downlink Control Information,简称:DCI)时,UE在第一个EPDCCH集合中盲检两个DCI,当在第一EPDCCH集合未检测出其中一个DCI,或两个DCI都未检测出时,再到第二个EPDCCH集合中盲检未检测出的DCI,因此,为了减少盲检次数,LTE中将两个EPDCCH集合对应的下行控制信道设置成负荷(payload)大小相同。
在NR中,在多点传输的场景下,基站和终端设备之间如何进行控制信息的交互,是一个有待解决的问题。
发明内容
本申请提供一种数据传输方法、终端设备、基站及基站系统,用以提供一种NR中传输及检测控制信息的方法。
第一方面,本申请提供了一种数据传输方法,所述方法包括:
终端设备从基站接收第一配置信息和第二配置信息;所述第一配置信息包括第一控制资源集合的信息,所述第二配置信息包括第二控制资源集合的信息;
所述终端设备在第一控制资源集合对应的第一控制信道候选集合中检测第一控制信息;
所述终端设备在第二控制资源集合对应的第二控制信道候选集合中检测第二控制信息。
可选的,所述第一控制信道候选集合的大小与所述第二控制信道候选集合的大小之和不大于第一阈值。
上述方案中,基站向终端设备发送第一配置信息和第二配置信息,第一配置信息中包含第一控制资源集合的信息,第二配置信息中包含第二控制资源集合的信息,且第一控制 信道候选集合的大小与第二控制信道候选集合的大小之和不大于第一阈值,终端设备只需在第一控制资源集合对应的第一控制信道候选集合中检测第一控制信息,以及只需在第二控制资源集合对应的第二控制信道候选集合中检测第二控制信息,而LTE系统中,当为终端设备配置了第一控制资源集合和第二控制资源集合时,由于终端设备不知道第一控制信息和第二控制信息是在哪个控制资源集合下发送至终端设备,因此需要在第一控制资源集合检测第一控制信息和第二控制信息,当第一控制资源集合未检测到第一控制信息或第二控制信息时,再到第二控制资源集合检测第二控制信息或第一控制信息,因此,为了减少盲检次数,LTE中将两个EPDCCH集合对应的下行控制信道设置成负荷(payload)大小相同,而本申请中,由于终端设备只需在第一控制信道候选集合中检测第一控制信息,以及只需在第二控制信道候选集合中检测第二控制信息,因此,本申请即使在第一控制信息和第二控制信息payload大小不同时,也不会增加盲检次数。
结合第一方面,在第一方面的第一种可能的实现方式中,所述第一控制信息和所述第二控制信息的负荷payload长度不同。
本申请实施例,即使在第一控制信息和第二控制信息的payload长度不相同时,也不会增加终端设备的盲检次数,因而具有较好的控制盲检次数的作用。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述第一配置信息还包括与所述第一控制信息关联的第一传输模式信息,所述第二配置信息还包括与所述第二控制信息关联的第二传输模式信息;或者,
所述终端设备在第一控制资源集合对应的第一控制信道候选集合中检测第一控制信息之前,还包括:
所述终端设备从所述基站接收第三配置信息,所述第三配置信息包括与所述第一控制信息关联的第一传输模式信息及与所述第二控制信息关联的第二传输模式信息。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述第一传输模式信息为传输模式;或者,所述第一传输模式信息为资源映射方式、解调参考信号DMRS扰码序列、准同定位QCL中的一种或多种。
结合第一方面的第二种可能的实现方式或第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述第二传输模式信息为传输模式;或者,
所述第二传输模式信息为资源映射方式、DMRS扰码序列、QCL中的一种或多种。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述第一控制资源集合和所述第二控制资源集合属于不同的载波。
本申请实施例中,当第一控制资源集合和第二控制资源集合分别属于不同的载波时,本申请提供的减少终端设备盲检次数的数据传输方法也是适用的。
第二方面,本申请提供一种终端设备,在一种可能的设计中,该终端设备包括多个功能模块,用于实现上述第一方面提供的任意一种数据传输方法,使得终端设备接收基站发送的第一配置信息和第二配置信息,第一配置信息中包含第一控制资源集合的信息,第二配置信息中包含第二控制资源集合的信息,且第一控制信道候选集合的大小与第二控制信道候选集合的大小之和不大于第一阈值,终端设备只需在第一控制资源集合对应的第一控制信道候选集合中检测第一控制信息,以及只需在第二控制资源集合对应的第二控制信道候选集合中检测第二控制信息,而LTE系统中,当为终端设备配置了第一控制资源集合和 第二控制资源集合时,由于终端设备不知道第一控制信息和第二控制信息是在哪个控制资源集合下发送至终端设备,因此需要在第一控制资源集合检测第一控制信息和第二控制信息,当第一控制资源集合未检测到第一控制信息或第二控制信息时,再到第二控制资源集合检测第二控制信息或第一控制信息,因此,为了减少盲检次数,LTE中将两个EPDCCH集合对应的下行控制信道设置成负荷(payload)大小相同,而本申请中,由于终端设备只需在第一控制信道候选集合中检测第一控制信息,以及只需在第二控制信道候选集合中检测第二控制信息,因此,本申请即使在第一控制信息和第二控制信息payload大小不同时,也不会增加盲检次数。
在一种可能的设计中,终端设备的结构中包括处理器和收发器,所述处理器被配置为支持终端设备执行上述第一方面的数据传输方法中相应的功能。所述收发器用于支持终端设备与基站之间的通信,接收基站发送的上述数据传输方法中所涉及的信息或者指令。终端设备中还可以包括存储器,所述存储器用于与处理器耦合,其保存终端设备必要的程序指令和数据。
收发器,用于从基站接收第一配置信息和第二配置信息;所述第一配置信息包括第一控制资源集合的信息,所述第二配置信息包括第二控制资源集合的信息;
处理器,用于在第一控制资源集合对应的第一控制信道候选集合中检测第一控制信息;以及,在第二控制资源集合对应的第二控制信道候选集合中检测第二控制信息;其中,所述第一控制信道候选集合的大小与所述第二控制信道候选集合的大小之和不大于第一阈值。
可选地,所述第一控制信息和所述第二控制信息的负荷payload长度不同。
可选地,所述第一配置信息还包括与所述第一控制信息关联的第一传输模式信息,所述第二配置信息还包括与所述第二控制信息关联的第二传输模式信息;或者,
所述器,还用于从所述基站接收第三配置信息,所述第三配置信息包括与所述第一控制信息关联的第一传输模式信息及与所述第二控制信息关联的第二传输模式信息。
可选地,所述第一传输模式信息为传输模式;或者,
所述第一传输模式信息为资源映射方式、解调参考信号DMRS扰码序列、准同定位QCL中的一种或多种。
可选地,所述第二传输模式信息为传输模式;或者,所述第二传输模式信息为资源映射方式、DMRS扰码序列、QCL中的一种或多种。
可选地,所述第一控制资源集合和所述第二控制资源集合属于不同的载波。
第三方面,本申请提供一种数据传输方法,所述方法包括:
终端设备从基站接收第一配置信息和第二配置信息;所述第一配置信息包括第一控制资源集合的信息,所述第二配置信息包括第二控制资源集合的信息;
所述终端设备在第一控制资源集合对应的第一控制信道候选集合中检测第一控制信息和第二控制信息;
所述终端设备若成功检测出所述第一控制信息,则在第二控制资源集合对应的第二控制信道候选集合中检测所述第二控制信息;或者,
所述终端设备若成功检测出所述第二控制信息,则在所述第二控制信道候选集合中检测所述第一控制信息;
其中,所述第一控制信道候选集合的大小与所述第二控制信道候选集合的大小之和不 大于第一阈值。
本申请提供一种数据传输方法,基于本申请方法,基站只会在一个控制资源集合对应的控制信道候选集合发送一个控制信息,例如在第一控制信道候选集合中发送第一控制信息,在第二控制信道候选集合中发送第二控制信息,或者是,在第一控制信道候选集合中发送第二控制信息,在第二控制信道候选集合中发送第一控制信息,因此,终端设备在第一控制信道候选集合检测第一控制信息和第二控制信息,若在第一控制信道候选集合成功检测到第一控制信息,则在第二控制信道候选集合中只需要检测第二控制信息,若在第一控制信道候选集合成功检测到第二控制信息,则在第二控制信道候选集合中只需要检测第一控制信息。
结合第三方面,在第三方面的第一种可能的实现方式中,所述第一控制信息和所述第二控制信道的payload长度相同。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述第一控制资源集合和所述第二控制资源集合属于不同的载波。
第四方面,本申请提供一种终端设备,在一种可能的设计中,该终端设备包括多个功能模块,用于实现上述第三方面提供的任意一种数据传输方法,其中,基站只会在一个控制资源集合对应的控制信道候选集合发送一个控制信息,例如在第一控制信道候选集合中发送第一控制信息,在第二控制信道候选集合中发送第二控制信息,或者是,在第一控制信道候选集合中发送第二控制信息,在第二控制信道候选集合中发送第一控制信息,因此,终端设备在第一控制信道候选集合检测第一控制信息和第二控制信息,若在第一控制信道候选集合成功检测到第一控制信息,则在第二控制信道候选集合中只需要检测第二控制信息,若在第一控制信道候选集合成功检测到第二控制信息,则在第二控制信道候选集合中只需要检测第一控制信息。
在一种可能的设计中,终端设备的结构中包括处理器和收发器,所述处理器被配置为支持终端设备执行上述第三方面的数据传输方法中相应的功能。所述收发器用于支持终端设备与基站之间的通信,接收基站发送的上述数据传输方法中所涉及的信息或者指令。终端设备中还可以包括存储器,所述存储器用于与处理器耦合,其保存终端设备必要的程序指令和数据。
收发器,用于从基站接收第一配置信息和第二配置信息;所述第一配置信息包括第一控制资源集合的信息,所述第二配置信息包括第二控制资源集合的信息;
处理器,用于在第一控制资源集合对应的第一控制信道候选集合中检测第一控制信息和第二控制信息;若成功检测出所述第一控制信息,则在第二控制资源集合对应的第二控制信道候选集合中检测所述第二控制信息;或者,若成功检测出所述第二控制信息,则在所述第二控制信道候选集合中检测所述第一控制信息;其中,所述第一控制信道候选集合的大小与所述第二控制信道候选集合的大小之和不大于第一阈值。
可选地,所述第一控制信息和所述第二控制信道的payload长度相同。
可选地,所述第一控制资源集合和所述第二控制资源集合属于不同的载波。
第五方面,本申请提供一种数据传输方法,包括:
第一基站向终端设备发送第一配置信息和第二配置信息;所述第一配置信息包括第一控制资源集合的信息,所述第二配置信息包括第二控制资源集合的信息;
所述第一基站在所述第一控制资源集合对应的第一控制信道候选集合中向所述终端 设备发送第一控制信息;
所述第二基站在所述第二控制资源集合对应的第二控制信道候选集合中向所述终端设备发送第二控制信息;
其中,所述第一控制信道候选集合的大小与所述第二控制信道候选集合的大小之和不大于第一阈值。
结合第五方面,在第五方面的第一种可能的实现方式中,所述第一配置信息还包括与所述第一控制信息关联的第一传输模式信息,所述第二配置信息还包括与所述第二控制信息关联的第二传输模式信息;或者,
所述方法还包括:所述第一基站向所述终端设备发送第三配置信息,所述第三配置信息包括与所述第一控制信息关联的第一传输模式信息及与所述第二控制信息关联的第二传输模式信息。
结合第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,所述第一传输模式信息为传输模式;或者,
所述第一传输模式信息为资源映射方式、DMRS扰码序列、QCL中的一种或多种。
结合第五方面的第一种可能的实现方式或第五方面的第二种可能的实现方式,在第五方面的第三种可能的实现方式中,所述第二传输模式信息为传输模式;或者,
所述第二传输模式信息为资源映射方式、DMRS扰码序列、QCL中的一种或多种。
结合第五方面或第五方面的第一种可能的实现方式至第五方面的第三种可能的实现方式,在第五方面的第四种可能的实现方式中,所述第一控制资源集合和所述第二控制资源集合属于不同的载波。
第六方面,本申请提供一种基站系统,包括:第一基站和第二基站;
所述第一基站用于向终端设备发送第一配置信息和第二配置信息;所述第一配置信息包括第一控制资源集合的信息,所述第二配置信息包括第二控制资源集合的信息;
所述第一基站还用于在所述第一控制资源集合对应的第一控制信道候选集合中向所述终端设备发送第一控制信息;
所述第二基站用于在所述第二控制资源集合对应的第二控制信道候选集合中向所述终端设备发送第二控制信息;其中,所述第一控制信道候选集合的大小与所述第二控制信道候选集合的大小之和不大于第一阈值。
结合第六方面,在第第六面的第一种可能的实现方式中,所述第一配置信息还包括与所述第一控制信息关联的第一传输模式信息,所述第二配置信息还包括与所述第二控制信息关联的第二传输模式信息;或者,
所述第一基站还用于:向所述终端设备发送第三配置信息,所述第三配置信息包括与所述第一控制信息关联的第一传输模式信息及与所述第二控制信息关联的第二传输模式信息。
结合第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,
所述第一传输模式信息为传输模式;或者,
所述第一传输模式信息为资源映射方式、DMRS扰码序列、QCL中的一种或多种。
结合第六方面的第一种可能的实现方式或第六方面的第二种可能的实现方式,在第六方面的第三种可能的实现方式中,所述第二传输模式信息为传输模式;或者,
所述第二传输模式信息为资源映射方式、DMRS扰码序列、QCL中的一种或多种。
结合第六方面或第六方面的第一种可能的实现方式至第五方面的第三种可能的实现方式,在第六方面的第四种可能的实现方式中,所述第一控制资源集合和所述第二控制资源集合属于不同的载波。
本申请还提供一种基站,所述基站可执行由所述第六方面中的第一基站执行的方法。
本申请还提供一种基站,所述基站可执行由所述第六方面中的第二基站执行的方法。
第七方面,本申请实施例提供了一种计算机存储介质,用于储存为上述第二方面提供的终端设备或第四方面提供的终端设备或第六方面提供的基站系统所用的计算机软件指令,其包含分别用于执行上述第一方面或第三方面或第五方面所设计的程序。
第八方面,本申请还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机分别执行上述第一方面或第三方面或第五方面所述的方法。
图1为本申请提供的应用场景示意图;
图2为本申请所适用的系统架构图;
图3为本申请提供的一种资源分配示意图;
图4为本申请提供的另一种资源分配示意图;
图5为本申请提供的数据传输方法示意图;
图6为本申请提供的数据传输方法示意图;
图7为本申请提供的基站示意图;
图8为本申请提供的终端设备示意图;
图9为本申请提供的装置示意图;
图10为本申请提供的终端设备示意图;
图11为本申请提供的终端设备示意图;
图12为本申请提供的基站系统示意图;
图13(a)为本申请提供的分布式的CCE到REG的映射方式;
图13(b)为本申请提供的分布式的CCE到REG的映射方式。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
本申请实施例可以适用于5G(第五代移动通信系统)系统,如采用新无线(英文:New Radio,简称:NR)的接入网;云无线接入网(英文:Cloud Radio Access Network,简称:CRAN)等通信系统,或者还可以用于未来5G以上的通信系统。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图1示出了本申请的一种可能的应用场景示意图。如图1所示,至少一个用户设备UE10与无线接入网(英文:Radio access network,简称:RAN)进行通信。所述RAN包括至少一个基站20(英文:base station,简称:BS),为清楚起见,图中只示出一个基站和一个UE。所述RAN与核心网络(英文:core network,简称:CN)相连。可选的,所述CN可以耦合到一个或者更多的外部网络(英文:External Network), 例如英特网,公共交换电话网(英文:public switched telephone network,简称:PSTN)等。
如图2所示,为本申请所适用的系统架构图,包括以下网元:
核心网网元:主要负责信令处理部分,即控制面功能,包括接入控制、移动性管理、附着与去附着、会话管理功能以及网关选择等功能
基站:主要负责空口侧的无线资源管理、服务质量(英文:Quality of Service,简称:QoS)管理、数据压缩和加密等功能。往核心网侧,基站主要负责向MME转发控制面信令以及向S-GW转发用户面业务数据,又称为无线接入网(英文:Radio Access Network,简称:RAN)设备是一种将终端接入到无线网络的设备,包括但不限于:演进型节点B(英文:evolved Node B,简称:eNB)、无线网络控制器(英文:radio network controller,简称:RNC)、节点B(英文:Node B,简称:NB)、基站控制器(英文:Base Station Controller,简称:BSC)、基站收发台(英文:Base Transceiver Station,简称:BTS)、家庭基站、基带单元(英文:BaseBand Unit,简称:BBU)、基站(英文:g NodeB,简称:gNB),传输点(英文:Transmitting and receiving point,简称:TRP),发射点(英文:Transmitting point,简称:TP)。此外,还可以包括Wifi接入点(英文:Access Point,简称:AP)等。
用户设备(英文:User Equipment,简称:UE):又称之为UE,或称之为终端设备,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。常见的终端例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
基站与核心网网元之间的接口:例如S1接口。
基站与基站之间的接口:例如X2接口,用于实现基站之间的互通。
终端设备与基站之间的接口:例如Uu接口。
下面先对搜索空间和非相干联合传输的概念进行说明。
针对搜索空间,下面分载波聚合(英文:Carrier Aggregation,简称:CA)场景和非载波聚合场景分别对搜索空间进行说明。
先讨论非载波聚合场景,即UE只有一个载波的场景。
搜索空间定义了UE盲检下行控制信道的开始位置和搜索方式。UE会在non-DRX(DRX的英文全称为:Discontinuous Reception,中文翻译为:非连续接收)子帧监听下行控制信道候选集合,这意味着UE需要根据所要监听的DCI格式来尝试解码该集合中的每一个下行控制信道。该集合即该UE的搜索空间。在聚合等级L(如{1,2,4,8})上的搜索空间
定义为下行控制信道候选的集合。
搜索空间分为公共搜索空间(Common search space)和UE特定的搜索空间(UE-specific search space)。公共搜索空间用于传输与Paging、随机接入响应(英文:Random Access Response,RAR)、广播控制信道(英文:Broadcast Control Channel,简称:BCCH)等相关的控制信息(小区级别的公共信息),该信息对所有UE来说都是一样的。UE特定的搜索空间用于传输与下行共享信道(英文:Downlink share channel,简称:DL-SCH)、上行共享信道(英文:Uplink share channel,简称:UL-SCH)等相关的控制信息(UE级别的信息)。
同样以EPDCCH为例。需要注意的是,EPDCCH中只包含UE特定搜索空间。
从表1(来自协议3GPP TS 36.213中的表9.1.4-2b)可以看出,当小区为UE配置了1个EPDCCH集合时,对于某个DCI格式,可能的EPDCCH后选有15(该EPDCCH集合中包含的PRB数为2)或16(该EPDCCH集合中包含的PRB数为4或8)个。因为在某种传输模式或状态下(如随机接入时使用RA-RNTI)解码时,可能的DCI格式最多有2种,因此UE进行EPDCCH盲检的总次数不超过32(16*2)次。而从表2(来自协议3GPP TS 36.213中的表9.1.4-4a)中可以看出,当小区为UE配置了2个EPDCCH集合时,此时2个EPDCCH集合可能具有不同传输参数(集中式/分布式资源映射、DMRS加扰序列、准同定位(QCL,Quasi Co-Located)等)。为了保证UE进行EPDCCH盲检的总次数仍然不超过32次,需要将EPDCCH候选集合在不同的EPDCCH集合中分割。例如,当2个EPDCCH集合中包含的PRB pair数分别为4和2时,在各EPDCCH集合中的EPDCCH候选集合分别为{4,4,1,1}和{2,2,1,1}。
表1 UE监测的EPDCCH候选(一个集中映射的EPDCCH集合–例3)
表2 UE监测的EPDCCH候选(两个集中映射的EPDCCH集合-例3)
接下来,说明载波聚合场景下的搜索空间。
对于CA场景,UE会在每个non-DRX子帧上对所有激活载波(包括1个主载波(英文:Primary Carrier,简称:PCarrier)和numOfActivatedDlSCarrier个的辅载波(英文:Secondary Carrier,简称:SCarrier))的搜索空间进行监听。根据UE是否被配置跨载波调度,可以分为以下几种情况。
情况一:UE在所有载波上都没有配置被跨载波调度,此时UE会在每个激活的载波上监听各自搜索空间上的下行控制信道。每个载波的下行控制信道都在该载波上传输,且所有的下行控制信道都不带载波指示域(英文:Carrier Indicator Field,简称:CIF)字段。
情况二:UE在载波c上配置了跨载波调度,此时该载波上的下行控制信道必定不 会在其它载波上发送。UE会在该载波的搜索空间上监听带CIF的下行控制信道。
情况三:UE在载波c上没有配置跨载波调度且没有配置为在另一个载波上发送下行控制信道,则UE会在该载波的搜索空间上监听不带CIF字段的下行控制信道。
情况四:UE在PCarrier上配置了跨载波调度,且配置了半静态调度(英文:Semi-Persistent Scheduling,简称:SPS)。此时UE会在PCarrier的搜索空间上监听带CIF的下行控制信道。需要说明的是:(1)PCarrier上的下行控制信道永远不会在其它载波(SCarrier)上发送;(2)SPS调度只存在于PCarrier上。
情况五:UE的某个SCarrier被配置为在另一个载波上发送对应该SCarrier的带CIF的下行控制信道,此时UE不会在该SCarrier上监听下行控制信道。而在替该SCarrier发送下行控制信道的另一个载波上,UE至少会监听其自身的下行控制信道。
对于UE来说,它并不确定下行控制信道携带的CIF字段的值是什么,即不确定哪个载波会给该UE发送下行控制信道。UE只知道每个特定的载波给该UE发送的下行控制信道上可能携带的CIF的集合,因此UE会在该载波上尝试所有可能的CIF值去盲检下行控制信道。因此,配置了CA的UE需要进行UE特定搜索空间的最大盲检次数与激活载波的个数成正比,即为32+32*numOfActivatedDlSCarrier。
接下来说明非相干联合传输。
多点协作传输(英文:Coordinated Multiple Points Transmission/Reception,简称:CoMP)技术旨在实现不同地理位置的各传输点之间的协同传输。CoMP通过传输点之间的信息交互来避免相互间的干扰,提高用户的服务质量和吞吐量。目前主流的CoMP技术实现方式可以分为协同处理(英文:Joint Processing,简称:JP)技术和协同调度/协同波束(英文:Coordinated Scheduling/Beamforming,简称:CS/CB)技术。
JP技术的核心思想是协同小区簇中的各个传输点在同一资源块上共享用于某个UE传输的数据,也即UE的数据在多个传输点上可用。根据用户传输数据是否同时来自于不同的传输点,JP技术又可以分为JT技术与动态传输点选择(英文:Dynamic Point Select,简称:DPS)两类。在JT传输模式下,多个传输点在同一时频资源上为同一个UE发送数据,它将之前小区间的干扰信号转换为有用信号来提升小区边缘用户的性能。根据接收端对来自多个传输点的信息的组合方式的不同,JT可以分为相干传输和非相干传输两类。在非相干传输JT中,各个传输点采用各自独立的预编码方案,在接收端接收信号实现比特级合并。
目前,CoMP技术的实现是基于理想回传链路的。因此,多个传输点为同一个UE提供协作数据传输时,该UE只会从服务传输点接收DCI。该DCI包括该服务传输点以及其它为该UE提供协作传输的传输点的调度信息。该UE接收到服务传输点下发的控制信息,根据该控制信息中包含的参与协作传输的各传输点的调度信息,接收各传输点传输的数据。相干JT传输中网络需要获得所有协同传输点的信道状态信息(英文:Channel State Information,简称:CSI),根据这些信道信息调整各个传输信号的相位,这样,到达接收端的各路信号就可以结合在一起。
在5G NR中支持UE通过多个基于非理想回传链路连接的传输点以协作方式接收多个不同的数据流。
不同于以往的技术,在这种场景下,UE不仅需要从服务传输点接收DCI,还需要从1个或多个协作传输点接收DCI。
在以往的技术中,当小区为UE配置了2个EPDCCH集合时,各EPDCCH集合中包含的DCI信息相同。当UE在所述EPDCCH集合中盲检1个DCI时,如果UE在第1个EPDCCH集合中成功盲检出DCI,则不再检测第2个EPDCCH集合;如果UE在第1个EPDCCH集合中未盲检出DCI,则进一步盲检第2个EPDCCH集合;当UE在2个EPDCCH集合中盲检多个DCI时,UE需要在第一个EPDCCH集合盲检所有格式的DCI,若成功盲检出所有DCI,则不再盲检第二个EPDCCH集合,若有DCI未盲检出,则需要在第二个EPDCCH集合中继续盲检。在这种情况下,为保证不增加UE在1个载波内的盲检次数,所述多个DCI需要具有相同的有效载荷大小(payload size)。
基于非理想回传链路的非相干联合传输(英文:Joint Transmission,简称:JT)传输下,终端需要在多个CORESET内分别接收来自包括服务传输点和协作传输点在内的多个传输点发送来的控制信息,用于调度同一载波的数据传输。此时,非相干JT传输下,基站和终端设备之间如何进行控制信息的交互,则是一个有待解决的问题。
下面结合附图对本申请提供的数据传输方法做详细说明,需要说明的是,本申请以非相干传输为例进行说明,但本申请的方案并不限制在非相关的场景下。
首先,当终端设备(下文称为UE)只有一个服务传输点(下文称为TRP1),而没有协作传输点时,此时,服务传输点TRP1通过广播或高层信令发送配置信息,为UE配置1个CORESET。所述配置信息还包括该CORESET的传输参数信息,包括资源分配信息(分布式/集中式)、所用解调参考信号(英文:Demodulation Reference Signal,简称:DMRS)加扰序列、准同定位(英文:Quasi Co-Located,简称:QCL)等信息中的一种或多种,或者是资源分配信息中包含传输模式。例如,该CORESET使用集中式资源映射方式,频域上占用5 MHz带宽,传输模式为TM5,UE根据资源分配信息、DMRS加扰序列、QCL中的一种或多种推断出所使用的传输模式,或者是直接从配置信息中获取传输模式,进而UE根据期望接收的信息类型以及传输模式确定需要盲检的DCI格式,并在所述CORESET盲检DCI,举例来说,终端设备在所述CORESET中分别对应聚合等级1、2、4、8的6、6、2、2个控制信道候选上使用该DCI格式对应的无线网络临时标识(英文:Radio Network Tempory Identity,简称:RNTI)盲检DCI。
本申请实施例针对UE具有两个传输点的情形进行说明,其中一个为服务传输点(下文称为TRP1,也可以称为第一基站),另一个为协作传输点(下文称为TRP2,也可以称为第二基站),具体地,又分为两种情形。
第一种情形下,如图3所示,服务传输点向UE发送第一配置信息和第二配置信息,第一配置信息包含第一控制资源集合(CORESET1)的信息,第二配置信息包含第二控制资源集合(CORESET2)的信息,具体地,TRP1可通过广播或高层信令为UE配置CORESET1和CORESET2。TRP1和TRP2以协作的方式与UE通信,并且,CORESET1和CORESET2属于相同载波(CC1)。
第二种情形下,如图4所示,TRP1向UE发送第一配置信息和第二配置信息,第一配置信息包含第一控制资源集合(CORESET1)的信息,第二配置信息包含第二控制资源集合(CORESET2)的信息,具体地,TRP1可通过广播或高层信令为UE配置CORESET1和CORESET2。TRP1和TRP2以协作的方式与UE通信,并且,CORESET1属于载波1(CC1),通过本载波调度载波1(CC1)中的下行数据;CORESET2 属于载波2(CC2),通过跨载波调度载波1(CC1)中的下行数据。
从图3和图4可看出,两种情形的区别主要在于:CORESET1和CORESET2是否来自于同一载波,本申请中,适用于CORESET1和CORESET2属于同一载波的情形,也适用于CORESET1和CORESET2属于不同载波的情形,并且,当CORESET1和CORESET2属于不同载波时,这两个不同的载波可以是来自同一载波,也可以来自不同载波。
可选的,本申请中,CORESET1对应的第一控制信道候选集合大小和CORESET2对应的第二控制信道候选集合的大小的总和,不大于第一阈值,其中,第一阈值可根据上述表9.1.4-2b来设置,具体地,将上述9.1.4-2b中的一个控制资源集合对应的控制信道候选集合的最大数量作为第一阈值,即可以第一阈值设置为16(8+4+2+1=15,6+6+2+2=16,因此最大值为16),当然,随着通信制式的发展,未来5G通信中,上述表9.1.4-2b中的相应参数可能会做改变,因而,本申请实施例中的第一阈值的具体值的大小可随通信制式的发展而做相应调整。
参照上述表1和表2,假设CORESET1中包含的PRB pair数为4,CORESET2中包含的PRB pair数为8,则可以根据表9.1.4-2b和9.1.4-4b,将各聚合等级对应的控制信道候选集合的数量进行划分,例如,将聚合等级L=1,L=2,L=4,L=8分别对应的6,6,2,2个控制信道候选集合划分为(3,3,1,1)和(3,3,1,1),从而,使得CORESET1对应的第一控制信道候选集合大小为3+3+1+1=8,使得CORESET2对应的第二控制信道候选集合大小为3+3+1+1=8,因而CORESET1对应的第一控制信道候选集合的大小与CORESET2对应的第二控制信道候选集合的大小之和为16,不超过第一阈值16。
下面对两种情形下,UE进行盲检的方式分别说明。
情形一、CORESET1和CORESET2属于相同的载波
参考图5,为情形一下的第一种数据传输方法,包含以下步骤:
步骤501、第一基站向终端设备发送第一配置信息和第二配置信息。
其中,第一基站即服务传输点(TRP1),第一配置信息包含第一控制资源集合(CORESET1)的信息,第二配置信息包括第二控制资源集合(CORESET2)的信息。
步骤502、终端设备接收第一配置信息和第二配置信息。
步骤503、第一基站在第一控制信道候选集合中向终端设备发送第一控制信息,以及第二基站在第二控制信道候选集合中向终端设备发送第二控制信息。
步骤504、终端设备在第一控制信道候选集合中检测第一控制信息,以及在第二控制信道候选集合中检测第二控制信息。
上述步骤504中,该实施例中,终端事先知道第一控制信息是通过CORESET1下发,第二控制信息是通过CORESET2下发,因此,终端设备在做DCI盲检的时候,只会在第一控制信道候选集合中检测第一控制信息,以及只会在第二控制信道候选集合中检测第二控制信息,无需在第一控制信道候选集合中既检测第一控制信息又检测第二控制信息,从而可以节约盲检次数。
可选地,终端可通过下列方式得知第一控制信息通过CORESET1下发以及第二控制信息是通过CORESET2下发:
方式一、通过第一配置信息和第二配置信息得知
具体地,第一配置信息还包括与第一控制信息关联的第一传输模式信息,第二配置信息还包括与第二控制信息关联的第二传输模式信息。
从而,终端设备在接收到第一传输模式信息时,即可通过第一传输模式信息得知通过CORESET1下发的是第一控制信息,以及在接收到第二传输模式信息时,即可通过第二传输模式信息得知通过CORESET2下发的是第二控制信息。
可选地,第一传输模式信息为传输模式;或者,第一传输模式信息为资源映射方式、DMRS扰码序列、QCL中的一种或多种。
即,终端设备若获取第一传输模式信息为资源映射方式、DMRS扰码序列、QCL中的一种或多种,则可以推断出传输模式,进而根据传输模式,得知在第一控制信道候选集合下发的是第一控制信息。终端设备若获取第一传输模式信息直接是传输模式,则根据传输模式,得知在第一控制信道候选集合下发的是第一控制信息。
可选地,第二传输模式信息为传输模式;或者,第二传输模式信息为资源映射方式、DMRS扰码序列、QCL中的一种或多种。
即,终端设备若获取第二传输模式信息为资源映射方式、DMRS扰码序列、QCL中的一种或多种,则可以推断出传输模式,进而根据传输模式,得知在第二控制信道候选集合下发的是第二控制信息。终端设备若获取第二传输模式信息直接是传输模式,则根据传输模式,得知在第二控制信道候选集合下发的是第二控制信息。
其中,资源映射方式分为集中式和分布式。
方式二、通过第三配置信息得知
具体地,第一基站还向终端设备发送第三配置信息,所述第三配置信息包括与第一控制信息关联的第一传输模式信息及与第二控制信息关联的第二传输模式信息。
该方式二中,第一基站是通过下发一个单独的第三配置信息,向终端设备发送第一传输模式信息和第二传输模式信息,且第一传输模式信息指示第一基站在CORESET1下发第一控制信息,第二传输模式信息指示第二基站在CORESET2下发第二控制信息。
下面结合一个具体的例子进行说明。假设终端设备根据接收到的配置信息,确定需要在第一基站下发的CORESET1对应的第一控制信道候选集合中盲检DCI1,需要在第二基站下发的CORESET2对应的第二控制信道候选集合中盲检DCI2,具体地,在CORESET1中分别对应聚合等级1、2、4、8的4、4、0、0个控制信道候选集合上盲检DCI1,在CORESET2中分别对应聚合等级1、2、4、8的2、3、2、1个控制信道候选上盲检DCI2。也即,控制信道候选集合在CORESET1和CORESET2中分割。
在该实施例中,第一控制信息和第二控制信息的payload长度可以相同,也可以不同,并且,在第一控制信息和第二控制信息的payload长度不相同时,也不会增加DCI盲检次数。
参考图6,为情形一下的第二种数据传输方法,包含以下步骤:
步骤601、第一基站向终端设备发送第一配置信息和第二配置信息。
其中,第一基站即服务传输点(TRP1),第一配置信息包含第一控制资源集合(CORESET1)的信息,第二配置信息包括第二控制资源集合(CORESET2)的信息。
步骤602、终端设备接收第一配置信息和第二配置信息。
步骤603、第一基站在第一控制信道候选集合中向终端设备发送第一控制信息, 以及第二基站在第二控制信道候选集合中向终端设备发送第二控制信息。
步骤604、终端设备在第一控制信道候选集合中检测第一控制信息和第二控制信息。
步骤605、终端设备若成功检测出第一控制信息,则在第二控制信道候选集合中检测第二控制信息;或者,终端设备若成功检测出第二控制信息,则在第二控制信道候选集合中检测第一控制信息。
图6所示的数据传输方法主要适用于终端设备有多个传输点的场景,具体地,该方法中,终端设备并不知道第一控制信息是在CORESET1发送,还是在CORESET2发送,也不知道第一控制信息是在CORESET1发送,还是在CORESET2发送,但是,终端设备知道在CORESET1和CORESET2中分别只有一个控制信息,例如,在CORESET1中包含第一控制信息,在CORESET2中包含第二控制信息,或者是在CORESET1中包含第二控制信息,在CORESET2中包含第一控制信息。
因此,终端设备首先在第一控制信道候选集合中检测第一控制信息和第二控制信息,若成功检测出第一控制信息,则在第二控制信道候选集合中检测第二控制信息,若成功检测出第二控制信息,则在第二控制信道候选集合中检测第一控制信息。
从而,在每个控制信道候选集合中检测到一个控制信息。
下面结合一个具体的例子进行说明。假设终端设备确定第一基站和第二基站下发的控制信息为DCI1和DCI2,则终端设备在CORSET1中分别盲检DCI1和DCI2,若终端设备成功检出DCI1,则在CORESET2中盲检DCI2,若成功检出DCI2,则在CORESET2中盲检DCI1。并且,假设控制信道候选集合在不同的CORESET中分割,例如在CORESET1和CORESET2中对应聚合等级1、2、4、8的控制信道候选均分别为3、3、1、1个,从而保证第一控制信道候选集合的大小和第二控制信道候选集合的大小之和不超过第一阈值。
可选地,DCI1和DCI2具有相同的payload大小。
本申请实施例,通过一种搜索空间设计方法,使能基于非理想回传链路的非相干JT传输场景下,UE盲检来自多个传输点的多个DCI,通过将控制信道候选集合在不同CORESET中的分割,保证UE在1个载波内的盲检次数不随配置CORESET集合个数的增加而增加。
情形二、CORESET1和CORESET2属于不同的载波
对于CORESET1和CORESET2属于不同的载波的情形,终端设备与基站之间的数据传输方法与上述情形一中的数据传输方法相同,不再赘述,具体可参考上述情形一中相关描述。
本申请还给出一种候选集合的分割方法,具体为:
设网络侧配置CORESET1和CORESET2,其中CORESET1频域对应M1个PRB,CORESET2频域对应M2个PRB。UE在CORSET1和CORESET2中盲检DCI使用的聚合等级均为{L1,L2,…,Ln},对应各聚合等级的控制信道候选集合大小分别为{k11,k21,…,kn1}和{k12,k22,…,kn2}。设第一阈值为K,因而所述第一控制信道候选集合的大小与所述第二控制信道候选集合的大小之和不大于第一阈值K。
候选集合(Candidates)分割基于如下几个准则:
1)若两个CORESET大小相同,且使用相同的资源分配(localized/distributed)方式,则candidates在这两个CORESET中平分;
例如:CORESET1和CORESET2均为localized(distributed)资源分配方式,且M1=M2,则有ki1=ki2,i=1,…,n。
2)相同资源分配方式情况下,较大的CORESET中的candidates数较多;
例如:CORESET1和CORESET2采用相同的资源分配方式,且有M1>M2,则有ki1≥ki2,i=1,…,n。
3)相同大小情况下,使用localized资源分配方式的CORESET中candidates数较多;
例如:CORESET1和CORESET2频域上对应的PRB数相同,即有M1=M2,其中CORESET1采用localized资源分配方式,CORESET2采用distributed资源分配方式,则有ki1≥ki2,i=1,…,n。
4)对于某些特殊的情况,如CORESET1采用localized资源分配方式,CORESET2采用distributed资源分配方式,其有M1<M2,此时对于给定聚合等级i,预定义地选择一种因素作为首要因素,确定ki1和ki2的大小;
例如:对于较小聚合等级,以资源分配方式为首要因素,即有ki1>ki2;对于较大聚合等级,以资源大小为首要因素,即有ki1<ki2。
基于相同的发明构思,本申请实施例还提供一种基站700,如图7所示,为基站700的结构示意图,该基站700可应用于执行图5、图6中由基站执行的部分动作。基站700包括一个或多个远端射频单元(英文:remote radio unit,简称:RRU)701和一个或多个基带单元(英文:baseband unit,简称:BBU)702。所述RRU701可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线7011和射频单元7012。所述RRU701分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向用户设备(即终端)发送上述实施例中所述的信令指示。所述BBU702部分主要用于进行基带处理,对基站进行控制等。所述RRU701与BBU702可以是可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU702为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行图5、图6中由基站执行的部分动作。
在一个示例中,所述BBU702可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网。所述BBU702还包括存储器7021和处理器7022。所述存储器7021用以存储必要的指令和数据。例如存储器7021存储上述实施例中的配置信息。所述处理器7022用于控制基站进行必要的动作,例如用于控制基站如图5、图6中由基站执行的部分动作。所述存储器7021和处理器7022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板公用相同的存储器和处理器。此外每个单板上还设置有必要的电路。
基于相同的发明构思,本申请实施例还提供一种终端设备800,如图8所示,为用户设备UE的结构示意图。为了便于说明,图8仅示出了用户设备的主要部件。如 图8所示,终端设备800包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行附图5、图6部分所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的配置信息。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。接收基站发送的信令指示和/或参考信号,具体可参照上面相关部分的描述。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图8仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图8中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备800的收发单元801,将具有处理功能的处理器视为终端设备800的处理单元802。如图8所示,终端设备800包括收发单元801和处理单元802。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元801中用于实现接收功能的器件视为接收单元,将收发单元801中用于实现发送功能的器件视为发送单元,即收发单元801包括接收单元和发送单元示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
收发单元801,用于从基站接收第一配置信息和第二配置信息;所述第一配置信息包括第一控制资源集合的信息,所述第二配置信息包括第二控制资源集合的信息;
处理单元802,用于在第一控制资源集合对应的第一控制信道候选集合中检测第一控制信息;以及,在第二控制资源集合对应的第二控制信道候选集合中检测第二控制信息;其中,所述第一控制信道候选集合的大小与所述第二控制信道候选集合的大 小之和不大于第一阈值。
可选地,所述第一控制信息和所述第二控制信息的负荷payload长度不同。
可选地,所述第一配置信息还包括与所述第一控制信息关联的第一传输模式信息,所述第二配置信息还包括与所述第二控制信息关联的第二传输模式信息;或者,
所述收发单元801,还用于从所述基站接收第三配置信息,所述第三配置信息包括与所述第一控制信息关联的第一传输模式信息及与所述第二控制信息关联的第二传输模式信息。
可选地,所述第一传输模式信息为传输模式;或者,
所述第一传输模式信息为资源映射方式、解调参考信号DMRS扰码序列、准同定位QCL中的一种或多种。
可选地,所述第二传输模式信息为传输模式;或者,所述第二传输模式信息为资源映射方式、DMRS扰码序列、QCL中的一种或多种。
可选地,所述第一控制资源集合和所述第二控制资源集合属于不同的载波。
以及,收发单元801,用于从基站接收第一配置信息和第二配置信息;所述第一配置信息包括第一控制资源集合的信息,所述第二配置信息包括第二控制资源集合的信息;
处理单元802,用于在第一控制资源集合对应的第一控制信道候选集合中检测第一控制信息和第二控制信息;若成功检测出所述第一控制信息,则在第二控制资源集合对应的第二控制信道候选集合中检测所述第二控制信息;或者,若成功检测出所述第二控制信息,则在所述第二控制信道候选集合中检测所述第一控制信息;其中,所述第一控制信道候选集合的大小与所述第二控制信道候选集合的大小之和不大于第一阈值。
可选地,所述第一控制信息和所述第二控制信道的payload长度相同。
可选地,所述第一控制资源集合和所述第二控制资源集合属于不同的载波。
基于相同的发明构思,本申请实施例还提供一种装置,该装置可以基站,也可以为终端设备,如图9所示,该装置至少包含包括处理器901和存储器902,进一步还可以包括收发器903,以及还可以包括总线904。
所述处理器901、所述存储器902和所述收发器903均通过总线904连接;
所述存储器902,用于存储计算机执行指令;
所述处理器901,用于执行所述存储器902存储的计算机执行指令;
所述装置900为基站时,所述处理器901执行所述存储器902存储的计算机执行指令,使得所述装置900执行图5、图6提供的数据传输方法中由基站执行的步骤,或者使得基站部署与该步骤对应的功能单元。
所述装置900为终端设备时,所述处理器901执行所述存储器902存储的计算机执行指令,使得所述装置900执行图5、图6提供的数据传输方法中由终端设备执行的步骤,或者使得终端设备部署与该步骤对应的功能单元。
处理器901,可以包括不同类型的处理器901,或者包括相同类型的处理器901;处理器901可以是以下的任一种:中央处理器(Central Processing Unit,简称CPU)、ARM处理器、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)、专用处理器等具有计算处理能力的器件。一种可选实施方式,所述处理器901还可以集 成为众核处理器。
存储器902可以是以下的任一种或任一种组合:随机存取存储器(Random Access Memory,简称RAM)、只读存储器(read only memory,简称ROM)、非易失性存储器(non-volatile memory,简称NVM)、固态硬盘(Solid State Drives,简称SSD)、机械硬盘、磁盘、磁盘整列等存储介质。
收发器903用于装置900与其他设备进行数据交互;例如,如果装置900为基站,则基站可以执行图5、图6所述的方法中由基站执行的部分;该基站通过收发器903与终端进行数据交互;如果装置900为终端,则终端可以执行图5、图6所述的方法中由终端设备执行的部分;该终端设备通过收发器903与基站进行数据交互;收发器903可以是以下的任一种或任一种组合:网络接口(例如以太网接口)、无线网卡等具有网络接入功能的器件。
该总线904可以包括地址总线、数据总线、控制总线等,为便于表示,图9用一条粗线表示该总线。总线904可以是以下的任一种或任一种组合:工业标准体系结构(Industry Standard Architecture,简称ISA)总线、外设组件互连标准(Peripheral Component Interconnect,简称PCI)总线、扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等有线数据传输的器件。
本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令;基站或终端设备的处理器执行该计算机执行指令,使得基站或终端设备执行图5、图6方法中由基站或终端执行的步骤,或者使得基站或终端部署与该步骤对应的功能单元。
本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中。基站或终端的处理器可以从计算机可读存储介质读取该计算机执行指令;处理器执行该计算机执行指令,使得基站或终端执行图5、图6方法中由基站或终端执行的步骤,或者使得代基站或终端部署与该步骤对应的功能单元。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。 这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
在一个或多个示例性的设计中,本申请实施例所描述的上述功能可以在硬件、软件、固件或这三者的任意组合来实现。如果在软件中实现,这些功能可以存储与电脑可读的媒介上,或以一个或多个指令或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑存储媒介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存储媒介可以是任何通用或特殊电脑可以接入访问的可用媒体。例如,这样的电脑可读媒体可以包括但不限于RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁性存储装置,或其它任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊电脑、或通用或特殊处理器读取形式的程序代码的媒介。此外,任何连接都可以被适当地定义为电脑可读媒介,例如,如果软件是从一个网站站点、服务器或其它远程资源通过一个同轴电缆、光纤电脑、双绞线、数字用户线(DSL)或以例如红外、无线和微波等无线方式传输的也被包含在所定义的电脑可读媒介中。所述的碟片(disk)和磁盘(disc)包括压缩磁盘、镭射盘、光盘、DVD、软盘和蓝光光盘,磁盘通常以磁性复制数据,而碟片通常以激光进行光学复制数据。上述的组合也可以包含在电脑可读媒介中。
基于相同的发明构思,本申请还提供一种终端设备,如图10所示,包括处理单元1001和收发单元1002,所述终端设备可用于执行图5所示的方法由终端设备执行的部分。
收发单元1002,用于从基站接收第一配置信息和第二配置信息;所述第一配置信息包括第一控制资源集合的信息,所述第二配置信息包括第二控制资源集合的信息;
处理单元1001,用于在第一控制资源集合对应的第一控制信道候选集合中检测第一控制信息;以及,在第二控制资源集合对应的第二控制信道候选集合中检测第二控制信息;其中,所述第一控制信道候选集合的大小与所述第二控制信道候选集合的大小之和不大于第一阈值。
可选地,所述第一控制信息和所述第二控制信息的负荷payload长度不同。
可选地,所述第一配置信息还包括与所述第一控制信息关联的第一传输模式信息,所述第二配置信息还包括与所述第二控制信息关联的第二传输模式信息;或者,
所述收发单元1002,还用于从所述基站接收第三配置信息,所述第三配置信息包括与所述第一控制信息关联的第一传输模式信息及与所述第二控制信息关联的第二传输模式信息。
可选地,所述第一传输模式信息为传输模式;或者,
所述第一传输模式信息为资源映射方式、解调参考信号DMRS扰码序列、准同定位QCL中的一种或多种。
可选地,所述第二传输模式信息为传输模式;或者,所述第二传输模式信息为资源映射方式、DMRS扰码序列、QCL中的一种或多种。
可选地,所述第一控制资源集合和所述第二控制资源集合属于不同的载波。
基于相同的发明构思,本申请还提供一种终端设备,如图11所示,包括处理单元1101和收发单元1102,所述终端设备可用于执行图6所示的方法由终端设备执行的部分。
收发单元1102,用于从基站接收第一配置信息和第二配置信息;所述第一配置信息包括第一控制资源集合的信息,所述第二配置信息包括第二控制资源集合的信息;
处理单元1101,用于在第一控制资源集合对应的第一控制信道候选集合中检测第一控制信息和第二控制信息;若成功检测出所述第一控制信息,则在第二控制资源集合对应的第二控制信道候选集合中检测所述第二控制信息;或者,若成功检测出所述第二控制信息,则在所述第二控制信道候选集合中检测所述第一控制信息;其中,所述第一控制信道候选集合的大小与所述第二控制信道候选集合的大小之和不大于第一阈值。
可选地,所述第一控制信息和所述第二控制信道的payload长度相同。
可选地,所述第一控制资源集合和所述第二控制资源集合属于不同的载波。
基于相同的发明构思,本申请还提供一种基站系统,如图12所示,包括第一基站1201和第二基站1202,所述第一基站1201可用于执行图5和图6所示的方法由第一基站执行的部分,所述第二基站1202可用于执行图5和图6所示的方法由第二基站执行的部分。
所述第一基站1201用于向终端设备发送第一配置信息和第二配置信息;所述第一配置信息包括第一控制资源集合的信息,所述第二配置信息包括第二控制资源集合的信息;
所述第一基站1201还用于在所述第一控制资源集合对应的第一控制信道候选集合中向所述终端设备发送第一控制信息;
所述第二基站1202用于在所述第二控制资源集合对应的第二控制信道候选集合中向所述终端设备发送第二控制信息;其中,所述第一控制信道候选集合的大小与所述第二控制信道候选集合的大小之和不大于第一阈值。
可选地,所述第一配置信息还包括与所述第一控制信息关联的第一传输模式信息,所述第二配置信息还包括与所述第二控制信息关联的第二传输模式信息;或者,
所述第一基站1201还用于:向所述终端设备发送第三配置信息,所述第三配置信 息包括与所述第一控制信息关联的第一传输模式信息及与所述第二控制信息关联的第二传输模式信息。
可选地,所述第一传输模式信息为传输模式;或者,
所述第一传输模式信息为资源映射方式、DMRS扰码序列、QCL中的一种或多种。
可选地,所述第二传输模式信息为传输模式;或者,
所述第二传输模式信息为资源映射方式、DMRS扰码序列、QCL中的一种或多种。
可选地,所述第一控制资源集合和所述第二控制资源集合属于不同的载波。
本申请还提供一种分布式的控制信道单元(英文:Control Channel Element,简称:CCE)到资源单元组(英文:Resource Element Group,简称:REG)的映射方式,如图13(a)和图13(b)所示,UE计算聚合等级为L的搜索空间对应的CCE索引,确定各CCE对应的虚拟REG索引。
一个方块表示一个REG,频域上占1个PRB,使用上占一个OFDM,相同颜色的方块组成一个CCE。图中1个CCE包含4个REG,但所述方法可以简单推广到1个CCE包含6个、8个或更多REG的情况。
分布式CCE到REG的映射过程主要分为2个步骤:
步骤1:交织:将每个符号组内连续的虚拟REG组映射到非连续的REG组上。每个符号组包含1个或多个符号,这是由一个CCE在时域上占1个或多个符号决定的。每个(虚拟)REG组中包括P个REG,可能会存在一个REG组中的REG个数不足P个。虚拟REG组i由编号PXi~PXi+PX-1共PX个虚拟REG构成的,其中X为一个符号组中包含的符号数(如图13(a)中X=2,图13(b)中X=1),REG组在频域占P个PRB(如图13(a)中P=1,图13(b)中P=2),时域上占一个符号组。
将交织细化为如下几个子步骤:
(1)确定N
gap、P值以及虚拟REG的个数:N
gap的取值可以是根据控制资源集合的带宽确定的,也可以是基于网络侧配置的;P的取值可以是根据控制资源集合的带宽和/或聚合等级确定的,也可以是基于网络侧配置的,每个符号组内虚拟REG组的编号从0到
的计算公式如下
(2)确定虚拟REG组交织矩阵(“横放”):交织矩阵共有
行,4列。虚拟REG组会逐行写入矩阵,并逐列读出(“横放列取”)。矩阵包含的元素个数4N
row可能大于
此时多出来的元素会填充为null,且填充为null的元素位于最后N
null/2行的第2列和第4列。填充为null的元素个数为
以
N
gap=9、P=3为例。可以计算出
N
row=6、N
null=6,则生成的交织矩阵为:
(3)确定虚拟REG对应的REG(“列取”):“列取”是将虚拟REG组映射 到REG组的过程,该过程中,null元素会被忽略。例如需要确定虚拟REG组3对应的REG组,逐行读取上述矩阵,遇*则跳过,直到读到元素值15,即读取的顺序为(0,4,8,12,14,16,1,5,9,2,6,10,13,15,17,3),到第15个元素得到3的,所以虚拟REG组3对应REG组15。
步骤2:符号组间跳频:
在步骤1的基础上,符号组i上,对应同一虚拟REG索引的REG频域上偏移K
i,如图13(b)所示。
本申请说明书的上述描述可以使得本领域技术任何可以利用或实现本申请的内容,任何基于所公开内容的修改都应该被认为是本领域显而易见的,本申请所描述的基本原则可以应用到其它变形中而不偏离本申请的申请本质和范围。因此,本申请所公开的内容不仅仅局限于所描述的实施例和设计,还可以扩展到与本申请原则和所公开的新特征一致的最大范围。
Claims (28)
- 一种数据传输方法,其特征在于,所述方法包括:终端设备从基站接收第一配置信息和第二配置信息;所述第一配置信息包括第一控制资源集合的信息,所述第二配置信息包括第二控制资源集合的信息;所述终端设备在第一控制资源集合对应的第一控制信道候选集合中检测第一控制信息;所述终端设备在第二控制资源集合对应的第二控制信道候选集合中检测第二控制信息;其中,所述第一控制信道候选集合的大小与所述第二控制信道候选集合的大小之和不大于第一阈值。
- 根据权利要求1所述的方法,其特征在于,所述第一控制信息和所述第二控制信息的负荷payload长度不同。
- 一种数据传输方法,其特征在于,所述方法包括:终端设备从基站接收第一配置信息和第二配置信息;所述第一配置信息包括第一控制资源集合的信息,所述第二配置信息包括第二控制资源集合的信息;所述终端设备在第一控制资源集合对应的第一控制信道候选集合中检测第一控制信息和第二控制信息;所述终端设备若成功检测出所述第一控制信息,则在第二控制资源集合对应的第二控制信道候选集合中检测所述第二控制信息;或者,所述终端设备若成功检测出所述第二控制信息,则在所述第二控制信道候选集合中检测所述第一控制信息;其中,所述第一控制信道候选集合的大小与所述第二控制信道候选集合的大小之和不大于第一阈值。
- 根据权利要求3所述的方法,其特征在于,所述第一控制信息和所述第二控制信道的payload长度相同。
- 根据权利要求1或2所述的方法,其特征在于,所述第一配置信息还包括与所述第一控制信息关联的第一传输模式信息,所述第二配置信息还包括与所述第二控制信息关联的第二传输模式信息;或者,所述终端设备在第一控制资源集合对应的第一控制信道候选集合中检测第一控制信息之前,还包括:所述终端设备从所述基站接收第三配置信息,所述第三配置信息包括与所述第一控制信息关联的第一传输模式信息及与所述第二控制信息关联的第二传输模式信息。
- 根据权利要求5所述的方法,其特征在于,所述第一传输模式信息为传输模式;或者,所述第一传输模式信息为资源映射方式、解调参考信号DMRS扰码序列、准同定位QCL中的一种或多种。
- 根据权利要求5或6所述的方法,其特征在于,包括:所述第二传输模式信息为传输模式;或者,所述第二传输模式信息为资源映射方式、DMRS扰码序列、QCL中的一种或多种。
- 根据权利要求1至7任一所述的方法,其特征在于,所述第一控制资源集合和 所述第二控制资源集合属于不同的载波。
- 一种数据传输方法,其特征在于,包括:第一基站向终端设备发送第一配置信息和第二配置信息;所述第一配置信息包括第一控制资源集合的信息,所述第二配置信息包括第二控制资源集合的信息;所述第一基站在所述第一控制资源集合对应的第一控制信道候选集合中向所述终端设备发送第一控制信息;所述第二基站在所述第二控制资源集合对应的第二控制信道候选集合中向所述终端设备发送第二控制信息;其中,所述第一控制信道候选集合的大小与所述第二控制信道候选集合的大小之和不大于第一阈值。
- 根据权利要求9所述的方法,其特征在于,包括:所述第一配置信息还包括与所述第一控制信息关联的第一传输模式信息,所述第二配置信息还包括与所述第二控制信息关联的第二传输模式信息;或者,所述方法还包括:所述第一基站向所述终端设备发送第三配置信息,所述第三配置信息包括与所述第一控制信息关联的第一传输模式信息及与所述第二控制信息关联的第二传输模式信息。
- 根据权利要求10所述的方法,其特征在于,所述第一传输模式信息为传输模式;或者,所述第一传输模式信息为资源映射方式、DMRS扰码序列、QCL中的一种或多种。
- 根据权利要求10或11所述的方法,其特征在于,包括:所述第二传输模式信息为传输模式;或者,所述第二传输模式信息为资源映射方式、DMRS扰码序列、QCL中的一种或多种。
- 根据权利要求9至12任一所述的方法,其特征在于,所述第一控制资源集合和所述第二控制资源集合属于不同的载波。
- 一种终端设备,其特征在于,包括:收发器,用于从基站接收第一配置信息和第二配置信息;所述第一配置信息包括第一控制资源集合的信息,所述第二配置信息包括第二控制资源集合的信息;处理器,用于在第一控制资源集合对应的第一控制信道候选集合中检测第一控制信息;以及,在第二控制资源集合对应的第二控制信道候选集合中检测第二控制信息;其中,所述第一控制信道候选集合的大小与所述第二控制信道候选集合的大小之和不大于第一阈值。
- 根据权利要求14所述的终端设备,其特征在于,所述第一控制信息和所述第二控制信息的负荷payload长度不同。
- 一种终端设备,其特征在于,包括:收发器,用于从基站接收第一配置信息和第二配置信息;所述第一配置信息包括第一控制资源集合的信息,所述第二配置信息包括第二控制资源集合的信息;处理器,用于在第一控制资源集合对应的第一控制信道候选集合中检测第一控制信息和第二控制信息;若成功检测出所述第一控制信息,则在第二控制资源集合对应的第二控制信道候选集合中检测所述第二控制信息;或者,若成功检测出所述第二控 制信息,则在所述第二控制信道候选集合中检测所述第一控制信息;其中,所述第一控制信道候选集合的大小与所述第二控制信道候选集合的大小之和不大于第一阈值。
- 根据权利要求16所述的终端设备,其特征在于,所述第一控制信息和所述第二控制信道的payload长度相同。
- 根据权利要求14或15所述的终端设备,其特征在于,所述第一配置信息还包括与所述第一控制信息关联的第一传输模式信息,所述第二配置信息还包括与所述第二控制信息关联的第二传输模式信息;或者,所述收发器,还用于从所述基站接收第三配置信息,所述第三配置信息包括与所述第一控制信息关联的第一传输模式信息及与所述第二控制信息关联的第二传输模式信息。
- 根据权利要求18所述的终端设备,其特征在于,所述第一传输模式信息为传输模式;或者,所述第一传输模式信息为资源映射方式、解调参考信号DMRS扰码序列、准同定位QCL中的一种或多种。
- 根据权利要求18或19所述的终端设备,其特征在于,包括:所述第二传输模式信息为传输模式;或者,所述第二传输模式信息为资源映射方式、DMRS扰码序列、QCL中的一种或多种。
- 根据权利要求14至20任一所述的终端设备,其特征在于,所述第一控制资源集合和所述第二控制资源集合属于不同的载波。
- 一种基站系统,其特征在于,包括:第一基站和第二基站;所述第一基站用于向终端设备发送第一配置信息和第二配置信息;所述第一配置信息包括第一控制资源集合的信息,所述第二配置信息包括第二控制资源集合的信息;所述第一基站还用于在所述第一控制资源集合对应的第一控制信道候选集合中向所述终端设备发送第一控制信息;所述第二基站用于在所述第二控制资源集合对应的第二控制信道候选集合中向所述终端设备发送第二控制信息;其中,所述第一控制信道候选集合的大小与所述第二控制信道候选集合的大小之和不大于第一阈值。
- 根据权利要求22所述的基站系统,其特征在于,所述第一配置信息还包括与所述第一控制信息关联的第一传输模式信息,所述第二配置信息还包括与所述第二控制信息关联的第二传输模式信息;或者,所述第一基站还用于:向所述终端设备发送第三配置信息,所述第三配置信息包括与所述第一控制信息关联的第一传输模式信息及与所述第二控制信息关联的第二传输模式信息。
- 根据权利要求23所述的基站系统,其特征在于,所述第一传输模式信息为传输模式;或者,所述第一传输模式信息为资源映射方式、DMRS扰码序列、QCL中的一种或多种。
- 根据权利要求23或24所述的基站系统,其特征在于,所述第二传输模式信息为传输模式;或者,所述第二传输模式信息为资源映射方式、DMRS扰码序列、QCL中的一种或多种。
- 根据权利要求22至25任一所述的基站系统,其特征在于,所述第一控制资 源集合和所述第二控制资源集合属于不同的载波。
- 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-8任一所述的方法。
- 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求9-13任一所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18770577.7A EP3576326A4 (en) | 2017-03-24 | 2018-03-21 | DATA TRANSFER METHOD, TERMINAL DEVICE AND BASE STATION SYSTEM |
US16/580,700 US11122555B2 (en) | 2017-03-24 | 2019-09-24 | Data transmission method, terminal device, and base station system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710184941.9 | 2017-03-24 | ||
CN201710184941.9A CN108631934B (zh) | 2017-03-24 | 2017-03-24 | 一种数据传输方法、终端设备及基站系统 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/580,700 Continuation US11122555B2 (en) | 2017-03-24 | 2019-09-24 | Data transmission method, terminal device, and base station system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018171640A1 true WO2018171640A1 (zh) | 2018-09-27 |
Family
ID=63584159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/079892 WO2018171640A1 (zh) | 2017-03-24 | 2018-03-21 | 一种数据传输方法、终端设备及基站系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11122555B2 (zh) |
EP (1) | EP3576326A4 (zh) |
CN (1) | CN108631934B (zh) |
WO (1) | WO2018171640A1 (zh) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11032808B2 (en) * | 2017-03-30 | 2021-06-08 | Qualcomm Incorporated | Frequency hopping for control resource set with single carrier waveform |
CN108809505B (zh) * | 2017-05-05 | 2019-12-24 | 维沃移动通信有限公司 | 下行控制信息的传输方法、终端及网络侧设备 |
EP4184853B1 (en) | 2017-08-06 | 2024-07-10 | LG Electronics, Inc. | Method and device for receiving signal in wireless communication system |
US11470593B2 (en) * | 2017-09-28 | 2022-10-11 | Lg Electronics Inc. | Method for transmitting/receiving downlink control information and device therefor |
EP3738238B1 (en) * | 2018-01-12 | 2022-09-21 | Telefonaktiebolaget LM Ericsson (publ) | Wireless communication block interleaving |
EP3820219A4 (en) * | 2018-07-27 | 2021-09-08 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | METHOD AND DEVICE FOR DETERMINING TRANSMISSION RESOURCES AND TERMINAL DEVICE |
AU2018447232B2 (en) | 2018-11-02 | 2024-09-05 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Wireless communication method, network device, and terminal device |
CN115175356A (zh) | 2018-12-29 | 2022-10-11 | 华为技术有限公司 | 用于确定控制资源集合的频域位置的方法及相关设备 |
CN111277359A (zh) * | 2019-01-04 | 2020-06-12 | 维沃移动通信有限公司 | 处理方法及设备 |
CN111182636B (zh) * | 2019-01-11 | 2023-06-06 | 维沃移动通信有限公司 | 下行控制信息检测方法、网络侧设备及终端设备 |
CN111510873B (zh) * | 2019-01-11 | 2022-02-25 | 中国信息通信研究院 | 一种用于多点发送的下行控制方法和信令 |
CN112399436A (zh) * | 2019-08-15 | 2021-02-23 | 华为技术有限公司 | 接收、发送下行控制信息的方法和装置 |
CN114175775B (zh) * | 2019-08-23 | 2023-07-14 | 华为技术有限公司 | 收发控制信息的方法、装置和系统 |
WO2021097648A1 (zh) * | 2019-11-19 | 2021-05-27 | 华为技术有限公司 | 检测物理下行控制信道pdcch的方法以及装置 |
CN115336357A (zh) * | 2020-03-31 | 2022-11-11 | 株式会社Ntt都科摩 | 终端 |
CN114980217A (zh) * | 2021-02-22 | 2022-08-30 | 中兴通讯股份有限公司 | 协同通信实现方法、设备及存储介质 |
CN114968903B (zh) * | 2022-04-21 | 2024-04-19 | 清华大学 | 一种众核芯片的外部控制电路 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103716121A (zh) * | 2012-09-28 | 2014-04-09 | 上海贝尔股份有限公司 | 一种用于确定基于ePDCCH的下行控制信息的方法和设备 |
CN103781177A (zh) * | 2012-10-19 | 2014-05-07 | 株式会社Ntt都科摩 | 一种信息传输方法、装置及基站 |
CN105391517A (zh) * | 2011-07-28 | 2016-03-09 | 华为技术有限公司 | 控制信道的接收和发送方法和装置 |
CN105846983A (zh) * | 2011-11-04 | 2016-08-10 | 华为技术有限公司 | 接收和发送控制信道的方法、用户设备和基站 |
WO2017025484A1 (en) * | 2015-08-11 | 2017-02-16 | Panasonic Intellectual Property Corporation Of America | Improved blind decoding of (e)pdcch for partial subframes |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101448309B1 (ko) * | 2007-09-28 | 2014-10-08 | 엘지전자 주식회사 | 무선통신 시스템에서 하향링크 제어채널 모니터링 방법 |
EP2353327B1 (en) | 2008-11-04 | 2019-03-27 | Apple Inc. | Providing a downlink control structure in a first carrier to indicate control information in a second, different carrier |
CN102792601B (zh) * | 2010-01-11 | 2015-04-08 | 黑莓有限公司 | 接入节点和用于操作接入节点的方法 |
CN102111884B (zh) * | 2010-12-15 | 2014-04-02 | 大唐移动通信设备有限公司 | 载波聚合场景下的r-pdcch传输方法和设备 |
CN103532688B (zh) * | 2012-07-04 | 2016-11-02 | 电信科学技术研究院 | 一种跨频带载波聚合下的dci传输方法及装置 |
WO2014051293A1 (ko) * | 2012-09-28 | 2014-04-03 | 주식회사 케이티 | 하향링크 제어채널에서의 블라인드 디코딩을 조절하는 방법 및 장치 |
JP6413181B2 (ja) * | 2013-01-22 | 2018-10-31 | シャープ株式会社 | 端末装置、基地局装置、および無線通信方法 |
CN104869578A (zh) * | 2014-02-26 | 2015-08-26 | 中国电信股份有限公司 | 物理下行控制信道盲检测方法、装置和用户设备 |
US20180146455A1 (en) * | 2015-04-09 | 2018-05-24 | Ntt Docomo, Inc. | User terminal, radio base station, radio communication system and radio communication method |
-
2017
- 2017-03-24 CN CN201710184941.9A patent/CN108631934B/zh active Active
-
2018
- 2018-03-21 EP EP18770577.7A patent/EP3576326A4/en active Pending
- 2018-03-21 WO PCT/CN2018/079892 patent/WO2018171640A1/zh unknown
-
2019
- 2019-09-24 US US16/580,700 patent/US11122555B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105391517A (zh) * | 2011-07-28 | 2016-03-09 | 华为技术有限公司 | 控制信道的接收和发送方法和装置 |
CN105846983A (zh) * | 2011-11-04 | 2016-08-10 | 华为技术有限公司 | 接收和发送控制信道的方法、用户设备和基站 |
CN103716121A (zh) * | 2012-09-28 | 2014-04-09 | 上海贝尔股份有限公司 | 一种用于确定基于ePDCCH的下行控制信息的方法和设备 |
CN103781177A (zh) * | 2012-10-19 | 2014-05-07 | 株式会社Ntt都科摩 | 一种信息传输方法、装置及基站 |
WO2017025484A1 (en) * | 2015-08-11 | 2017-02-16 | Panasonic Intellectual Property Corporation Of America | Improved blind decoding of (e)pdcch for partial subframes |
Non-Patent Citations (1)
Title |
---|
See also references of EP3576326A4 |
Also Published As
Publication number | Publication date |
---|---|
US20200022121A1 (en) | 2020-01-16 |
EP3576326A1 (en) | 2019-12-04 |
EP3576326A4 (en) | 2020-03-11 |
CN108631934A (zh) | 2018-10-09 |
CN108631934B (zh) | 2021-04-09 |
US11122555B2 (en) | 2021-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018171640A1 (zh) | 一种数据传输方法、终端设备及基站系统 | |
US10931407B2 (en) | User terminal and radio communication method | |
JP5933128B2 (ja) | コンポーネント・キャリア設定の方法、基地局、およびユーザ装置 | |
US10904903B2 (en) | Scheduling UEs with mixed TTI length | |
WO2018210243A1 (zh) | 一种通信方法和装置 | |
JP2020526996A (ja) | 伝送方法及びその装置 | |
JP2023078303A (ja) | V2xトラフィックに対応するための制御チャネル構造設計 | |
WO2018228586A1 (zh) | 一种通信方法、网络设备及用户设备 | |
WO2019137401A1 (en) | Terminal device, base station and method for control resource set control channel element to resource element group mapping | |
WO2018137700A1 (zh) | 一种通信方法,装置及系统 | |
AU2017418048B2 (en) | Communication apparatus, method and computer program | |
US9491725B2 (en) | User equipment and methods for device-to-device communication over an LTE air interface | |
WO2018127180A1 (zh) | 一种参考信号传输方法及装置 | |
WO2019024556A1 (zh) | 一种指示及信息确定方法和装置 | |
CN107615794B (zh) | 用户装置 | |
WO2018059014A1 (zh) | 一种确定时序的方法和设备 | |
US10939360B2 (en) | Method, network device and terminal device for remaining minimum system information | |
CN111756509B (zh) | 一种传输公共信号块的方法和装置 | |
JP7145861B2 (ja) | 端末、無線通信方法及び基地局 | |
WO2020194264A1 (en) | Methods and nodes for downlink intra-ue pre-emption | |
CN108633058B (zh) | 一种资源分配方法及基站、ue | |
WO2019157715A1 (zh) | 一种资源分配方法和装置 | |
WO2019029464A1 (zh) | 用于灵活双工系统的数据传输方法及设备 | |
WO2018014297A1 (zh) | 信息传输装置、方法以及无线通信系统 | |
WO2024011632A1 (zh) | 资源配置方法、装置、设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18770577 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018770577 Country of ref document: EP Effective date: 20190827 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |