WO2018171477A1 - 一种信号处理方法及装置 - Google Patents

一种信号处理方法及装置 Download PDF

Info

Publication number
WO2018171477A1
WO2018171477A1 PCT/CN2018/078986 CN2018078986W WO2018171477A1 WO 2018171477 A1 WO2018171477 A1 WO 2018171477A1 CN 2018078986 W CN2018078986 W CN 2018078986W WO 2018171477 A1 WO2018171477 A1 WO 2018171477A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink sounding
sounding pilot
terminal
identifier
resource
Prior art date
Application number
PCT/CN2018/078986
Other languages
English (en)
French (fr)
Inventor
塔玛拉卡⋅拉盖施
高秋彬
苏昕
李辉
黄秋萍
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to KR1020237004263A priority Critical patent/KR102669754B1/ko
Priority to KR1020197030362A priority patent/KR102590209B1/ko
Priority to US16/496,698 priority patent/US11949620B2/en
Priority to EP18772587.4A priority patent/EP3606230A4/en
Priority to JP2019552062A priority patent/JP7096266B2/ja
Publication of WO2018171477A1 publication Critical patent/WO2018171477A1/zh
Priority to JP2022100630A priority patent/JP7417673B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0682Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using phase diversity (e.g. phase sweeping)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a signal processing method and apparatus.
  • the number of transmitting and receiving antennas of the base station and the terminal is very large, and thus the number of antennas is large and the structure thereof is also various.
  • Figure 2 and Figure 2 show two examples of antenna structures for the terminal.
  • the terminal has two antenna modules, each of which can generate independent analog beams, and each antenna module may also correspond to multiple digital ports. For example, if two digital ports are mapped on each antenna module, then the two antenna modules map a total of four digital ports.
  • An analog-digital hybrid antenna can generate an analog beam and a digital beam. An analog beam can only be transmitted in one direction at a time, and an analog beam can contain multiple digital beams (or digital ports). Since the number of antennas is large, the resulting beam is narrow, and the analog beam can only be transmitted in one direction at a time. Therefore, in order to achieve cell coverage, the terminal needs to poll and transmit uplink sounding pilots (that is, beam scanning) in different analog beam directions.
  • uplink sounding pilots that is, beam scanning
  • the ports that the terminal sends the uplink sounding pilots can be configured according to the capabilities of the terminal, and these ports are all digital ports.
  • the configuration and transmission method of the uplink sounding pilot have not been proposed, thereby causing a certain influence on the communication between the terminal and the network side.
  • the embodiments of the present disclosure provide a signal processing method, apparatus, computer readable storage medium, and electronic device, which are used to implement configuration and transmission of uplink sounding pilots in an NR system to ensure normal operation of the terminal and the network side. Communication.
  • an embodiment of the present disclosure provides a signal processing method, including: indicating, to a terminal, a first uplink sounding pilot resource, where the first uplink sounding pilot resource is used for uplink beam scanning; and receiving the terminal.
  • An uplink sounding pilot transmitted by using the first uplink sounding pilot resource determining a target uplink sounding pilot according to the uplink sounding pilot transmitted by the terminal, and transmitting an identifier of the target uplink sounding pilot to the terminal;
  • a second uplink sounding pilot resource configured to enable the terminal to send an uplink sounding pilot for channel measurement according to the identifier of the target uplink sounding pilot and the second uplink sounding pilot resource.
  • the indicating the first uplink sounding pilot resource to the terminal includes: configuring a first uplink sounding pilot resource for the terminal, where the first uplink sounding pilot resource includes M uplinks Detecting a pilot resource, or the first uplink sounding pilot resource includes an uplink sounding pilot resource, where the one uplink sounding pilot resource includes M ports; M is an integer greater than 0; The signaling indicates the first uplink sounding pilot resource to the terminal.
  • the determining, according to the uplink sounding pilot sent by the terminal, the target uplink sounding pilot comprising: selecting one or more signal quality that meets a predetermined requirement according to an uplink sounding pilot sent by the terminal.
  • One uplink sounding pilot; the one or more uplink sounding pilots are used as the target uplink sounding pilot.
  • the indicating the second uplink sounding pilot resource to the terminal includes: configuring a second uplink sounding pilot resource for the terminal, where the second uplink sounding pilot resource quantity N is an integer greater than or equal to 0; the second uplink sounding pilot resource is indicated to the terminal by using signaling or implicit signaling.
  • the method further includes: sending, to the terminal, correspondence indication information, where the corresponding relationship indication information includes the second uplink sounding pilot resource and the target uplink sounding pilot. Corresponding relationship of the identifier; or pre-argues with the terminal, the correspondence between the second uplink sounding pilot resource and the identifier of the target uplink sounding pilot.
  • the method further includes receiving an uplink sounding pilot for channel measurement sent by the terminal, and performing channel measurement according to the uplink sounding pilot used for channel measurement.
  • an embodiment of the present disclosure provides a signal processing method, including: acquiring a first uplink sounding pilot resource indicated by a network side, where the first uplink sounding pilot resource is used for uplink beam scanning; An uplink sounding pilot resource is sent to the network side, and an identifier of the target uplink sounding pilot is sent by the network side; and the second uplink sounding pilot resource indicated by the network side is obtained, and An identifier of the second uplink sounding pilot resource and the target uplink sounding pilot is transmitted, and an uplink sounding pilot for channel measurement is transmitted.
  • the acquiring the first uplink sounding pilot resource indicated by the network side includes: acquiring, according to the network side signaling or a pre-agreed with the network side, the network side indication An uplink sounding pilot resource.
  • the acquiring the second uplink sounding pilot resource indicated by the network side includes: obtaining the network side indication according to the network side signaling or a pre-agreed with the network side The second uplink sounding pilot resource, wherein the number N of the second uplink sounding pilot resources is an integer greater than or equal to zero.
  • the sending according to the identifier of the second uplink sounding pilot resource and the target uplink sounding pilot, an uplink sounding pilot for channel measurement, comprising: determining the target uplink sounding. Corresponding relationship between each identifier in the identifier of the pilot and the N second uplink sounding pilot resources; and selecting, in the N second uplink sounding pilot resources, the target uplink according to the corresponding relationship Transmitting one or more second target uplink sounding pilot resources corresponding to the first identifier in the identifier of the probe; sending the one or more second target uplink sounding guides in a beam direction corresponding to the first identifier Frequency resources.
  • determining the correspondence between each identifier in the identifier of the target uplink sounding pilot and the N second uplink sounding pilot resources includes: receiving a correspondence sent by the network side Correlation indication information, and determining, according to the correspondence indication information, a correspondence between each identifier in the identifier of the target uplink sounding pilot and the N second uplink sounding pilot resources; or, according to the network The pre-agreement of the side determines a correspondence between each identifier in the identifier of the target uplink sounding pilot and the N second uplink sounding pilot resources.
  • an embodiment of the present disclosure provides a signal processing apparatus, including: a first indication module, configured to indicate, to a terminal, a first uplink sounding pilot resource, where the first uplink sounding pilot resource is used for uplink beam scanning a first receiving module, configured to receive an uplink sounding pilot that is sent by the terminal by using the first uplink sounding pilot resource, and a determining module, configured to determine a target uplink sounding pilot according to an uplink sounding pilot sent by the terminal And sending the identifier of the target uplink sounding pilot to the terminal; the second indicating module is configured to indicate, to the terminal, a second uplink sounding pilot resource, where the terminal is configured to enable the terminal to detect the uplink according to the target The frequency identity and the second uplink sounding pilot resource transmit uplink sounding pilots for channel measurements.
  • a first indication module configured to indicate, to a terminal, a first uplink sounding pilot resource, where the first uplink sounding pilot resource is used for uplink beam scanning
  • a first receiving module configured to receive an
  • the first indication module includes: a first configuration submodule, configured to configure, for the terminal, a first uplink sounding pilot resource, where the first uplink sounding pilot resource includes M The uplink detecting pilot resource, or the first uplink sounding pilot resource includes an uplink sounding pilot resource, where the one uplink sounding pilot resource includes M ports; M is an integer greater than 0; and the first indicator submodule And indicating, by using display signaling or implicit signaling, the first uplink sounding pilot resource to the terminal.
  • a first configuration submodule configured to configure, for the terminal, a first uplink sounding pilot resource, where the first uplink sounding pilot resource includes M The uplink detecting pilot resource, or the first uplink sounding pilot resource includes an uplink sounding pilot resource, where the one uplink sounding pilot resource includes M ports; M is an integer greater than 0; and the first indicator submodule And indicating, by using display signaling or implicit signaling, the first uplink sounding pilot resource to the terminal.
  • the determining module includes: a selecting submodule, configured to select one or more uplink sounding pilots whose signal quality meets a predetermined requirement according to an uplink sounding pilot transmitted by the terminal; determining a submodule And using the one or more uplink sounding pilots as the target uplink sounding pilot.
  • the second indication module includes: a second configuration submodule, configured to configure, for the terminal, a second uplink sounding pilot resource, where the number of the second uplink sounding pilot resources is N An integer indicating that the second uplink sounding pilot resource is indicated to the terminal by using display signaling or implicit signaling.
  • the apparatus further includes: a processing module, configured to send corresponding relationship indication information to the terminal, where the corresponding relationship indication information includes the second uplink sounding pilot resource and the target Corresponding relationship between the identifiers of the uplink sounding pilots; or pre-argues with the terminal the correspondence between the identifiers of the second uplink sounding pilot resources and the identifiers of the target uplink sounding pilots.
  • a processing module configured to send corresponding relationship indication information to the terminal, where the corresponding relationship indication information includes the second uplink sounding pilot resource and the target Corresponding relationship between the identifiers of the uplink sounding pilots; or pre-arguing with the terminal the correspondence between the identifiers of the second uplink sounding pilot resources and the identifiers of the target uplink sounding pilots.
  • the apparatus further includes: a channel measurement module, configured to receive an uplink sounding pilot sent by the terminal for channel measurement, and perform according to the uplink sounding pilot used for channel measurement. Channel measurement.
  • a channel measurement module configured to receive an uplink sounding pilot sent by the terminal for channel measurement, and perform according to the uplink sounding pilot used for channel measurement. Channel measurement.
  • an embodiment of the present disclosure provides a signal processing apparatus, including: an acquiring module, configured to acquire a first uplink sounding pilot resource indicated by a network side, where the first uplink sounding pilot resource is used for uplink beam scanning a sending module, configured to send, by using the first uplink sounding pilot resource, an uplink sounding pilot to the network side, and a receiving module, configured to receive an identifier of a target uplink sounding pilot that is sent by the network side, and a processing module, And acquiring, by the network side, the second uplink sounding pilot resource, and sending an uplink sounding pilot for channel measurement according to the second uplink sounding pilot resource and the identifier of the target uplink sounding pilot.
  • the acquiring module is configured to acquire, according to the network side signaling or a pre-agreed with the network side, the first uplink sounding pilot resource indicated by the network side.
  • the processing module includes: an obtaining submodule, configured to acquire a second uplink sounding pilot resource indicated by the network side; and a processing submodule, configured to use, according to the second uplink sounding pilot The resource and the identifier of the target uplink sounding pilot, and the uplink sounding pilot for channel measurement is transmitted.
  • the acquiring sub-module is specifically configured to acquire, according to the network side signaling or a pre-agreed with the network side, the second uplink sounding pilot resource indicated by the network side, where The number N of the second uplink sounding pilot resources is an integer greater than or equal to zero.
  • the processing sub-module includes: a determining unit, configured to determine a correspondence between each identifier in the identifier of the target uplink sounding pilot and the N second uplink sounding pilot resources; a selecting unit, configured to select, according to the correspondence, one or more second targets corresponding to the first identifier in the identifier of the target uplink sounding pilot among the N second uplink sounding pilot resources
  • the uplink detecting pilot resource is configured to send the one or more second target uplink sounding pilot resources in a beam direction corresponding to the first identifier.
  • the determining unit is configured to: receive the corresponding relationship indication information sent by the network side, and determine, according to the correspondence relationship indication information, each of the identifiers of the target uplink sounding pilots. Corresponding relationship between the identifier and the N second uplink sounding pilot resources; or determining, according to a pre-arrangement with the network side, each identifier and N of the second identifiers in the identifier of the target uplink sounding pilot Correspondence of uplink sounding pilot resources.
  • an embodiment of the present disclosure provides an electronic device, including: a housing, a processor, a memory, a circuit board, and a power supply circuit; wherein the circuit board is disposed inside the space enclosed by the housing, and is processed And a memory disposed on the circuit board; a power supply circuit for powering each circuit or device of the electronic device; a memory for storing executable program code; and the processor operating by reading executable program code stored in the memory A program corresponding to the executable program code for performing the signal processing method as described above.
  • an embodiment of the present disclosure provides a computer readable storage medium for storing a computer program, wherein the computer program is executable by a processor to perform a signal processing method as described above.
  • an embodiment of the present disclosure provides a base station, including: a memory, a processor, and a transceiver, where the processor is configured to read a program in the memory, and perform the following process: instructing the terminal to the first uplink detection guide
  • the first uplink sounding pilot resource is used for uplink beam scanning; the uplink sounding pilot transmitted by the terminal by using the first uplink sounding pilot resource is received; and the uplink sounding pilot transmitted by the terminal is determined.
  • the terminal is configured to enable the terminal to detect the pilot according to the target uplink And identifying, by the second uplink sounding pilot resource, an uplink sounding pilot for channel measurement, the transceiver for receiving and transmitting data.
  • an embodiment of the present disclosure provides a terminal, including: a memory, a processor, and a transceiver, where the processor is configured to read a program in the memory, and perform the following process: acquiring a first uplink indicated by the network side Detecting a pilot resource, the first uplink sounding pilot resource is used for uplink beam scanning; using the first uplink sounding pilot resource to send an uplink sounding pilot to the network side; and receiving the target uplink sent by the network side And detecting, by the network side, a second uplink sounding pilot resource, and sending an uplink for channel measurement according to the second uplink sounding pilot resource and the target uplink sounding pilot identifier Probe pilot, transceiver for receiving and transmitting data.
  • the beneficial effects of the foregoing technical solutions of the present disclosure are as follows:
  • a first uplink sounding pilot resource for uplink beam scanning and a second uplink sounding pilot resource for channel measurement The terminal can perform uplink probe pilot transmission, thereby performing channel measurement, and ensuring normal communication between the terminal and the network side.
  • 1(a) and 1(b) are schematic diagrams showing the structure of an antenna of a terminal in the related art
  • FIG. 2 is a flowchart of a signal processing method according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a signal processing method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a signal processing apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a structural diagram of a signal processing apparatus according to an embodiment of the present disclosure.
  • FIG. 7 is still another schematic diagram of a signal processing apparatus according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a terminal according to an embodiment of the present disclosure.
  • the signal processing method of the embodiment of the present disclosure is applied to a network side device, such as a base station, and the method includes: Step 101: Instruct the terminal to indicate a first uplink sounding pilot resource, and the first uplink sounding pilot resource. Used for upstream beam scanning.
  • the network side device may configure a first uplink sounding pilot resource for the terminal, where the first uplink sounding pilot resource includes M uplink sounding pilot resources, or the first uplink sounding pilot resource.
  • the resource includes an uplink sounding pilot resource, wherein the one uplink sounding pilot resource includes M ports; and M is an integer greater than zero.
  • the first uplink sounding pilot resource may be indicated to the terminal by using display signaling or implicit signaling.
  • Step 102 Receive an uplink sounding pilot that is sent by the terminal by using the first uplink sounding pilot resource.
  • the uplink sounding pilot (SRS) that the receiving terminal separately transmits in the M uplink beam directions is a RS that the receiving terminal separately transmits in the M uplink beam directions.
  • Step 103 Determine a target uplink sounding pilot according to the uplink sounding pilot transmitted by the terminal, and send the identifier of the target uplink sounding pilot to the terminal.
  • the signal quality of each uplink sounding pilot may be separately calculated, and then one or more uplink sounding pilots whose signal quality meets a predetermined requirement are selected as the target uplink sounding pilot.
  • Step 104 Instruct the terminal to indicate a second uplink sounding pilot resource, configured to enable the terminal to send an uplink sounding for channel measurement according to the identifier of the target uplink sounding pilot and the second uplink sounding pilot resource. Pilot.
  • a second uplink sounding pilot resource is configured for the terminal, where the number N of the second uplink sounding pilot resources is an integer greater than or equal to 0.
  • the second uplink sounding pilot resource is indicated to the terminal by using display signaling or implicit signaling.
  • the terminal may perform uplink transmission pilot transmission by indicating to the terminal, the first uplink sounding pilot resource for uplink beam scanning and the second uplink sounding pilot resource for channel measurement. Thereby, channel measurement is performed to ensure normal communication between the terminal and the network side.
  • the signal processing method of the embodiment of the present disclosure is applied to a terminal, including:
  • Step 201 Acquire a first uplink sounding pilot resource indicated by the network side, where the first uplink sounding pilot resource is used for uplink beam scanning.
  • the first uplink sounding pilot resource indicated by the network side may be acquired according to the network side signaling or the pre-agreed with the network side.
  • Step 202 Send, by using the first uplink sounding pilot resource, an uplink sounding pilot to the network side.
  • Step 203 Receive an identifier of a target uplink sounding pilot sent by the network side.
  • Step 204 Acquire a second uplink sounding pilot resource indicated by the network side, and send an uplink sounding pilot for channel measurement according to the second uplink sounding pilot resource and the identifier of the target uplink sounding pilot. .
  • the second uplink sounding pilot resource indicated by the network side is acquired according to the network side signaling or a pre-agreed with the network side, where the second uplink sounding pilot resource is The number N is an integer greater than or equal to zero.
  • the first identifier can be any one of the identifiers.
  • the terminal may perform uplink transmission pilot transmission by indicating to the terminal, the first uplink sounding pilot resource for uplink beam scanning and the second uplink sounding pilot resource for channel measurement. Thereby, channel measurement is performed to ensure normal communication between the terminal and the network side.
  • the base station configures a level 2 uplink sounding pilot (SRS) to the terminal, and the first level uplink sounding pilot (SRS) is used to instruct the terminal to send an uplink sounding pilot (SRS) on different analog beams.
  • the second level uplink sounding pilot (SRS) is used to indicate that channel information is acquired after the terminal is simulated beam, that is, for channel measurement. The following describes in detail how the base station configures the uplink sounding pilot (SRS) and the transmission behavior of the terminal.
  • the signal processing method of the embodiment of the present disclosure includes:
  • Step 301 The base station configures M uplink sounding pilot (SRS) resources or an uplink sounding pilot resource for the terminal, where the one uplink sounding pilot includes M ports for uplink beam scanning.
  • SRS uplink sounding pilot
  • the base station may indicate, by explicit signaling indication or implicit signaling, that the uplink sounding pilot (SRS) is used for uplink beam scanning.
  • the M uplink detection pilot (SRS) resources or the M ports of one uplink sounding pilot resource correspond to M uplink beam directions.
  • Step 302 The terminal separately sends an uplink sounding pilot (SRS) in the M uplink beam directions.
  • SRS uplink sounding pilot
  • the base station receives M uplink sounding pilot (SRS) resources transmitted by the terminal in the M uplink beam directions or an uplink sounding pilot including M ports.
  • SRS uplink sounding pilot
  • Step 303 The base station selects one or more uplink sounding pilots whose signal quality meets a predetermined requirement according to the signal quality, and indicates the identifier (SRI) of the corresponding one or more uplink sounding pilots to the terminal.
  • SRI identifier
  • the base station may select one or more uplink sounding pilots with better signal quality.
  • Step 304 The base station configures N uplink sounding pilot (SRS) resources for channel measurement, and indicates to the terminal the N uplink sounding pilot resources used for channel measurement, where N is an integer greater than or equal to 0.
  • SRS uplink sounding pilot
  • Step 305 The terminal sends an uplink sounding pilot for channel measurement according to the identifier of one or more uplink sounding pilots and the N uplink sounding pilot resources used for channel measurement.
  • the correspondence between the identifier of one or more uplink sounding pilots and the uplink sounding pilot resources used for channel measurement may be indicated by the network side to the terminal by means of signaling, or may be The network side and the terminal pre-agreed. If the network side indicates the corresponding relationship, the terminal may determine, according to the indication of the network side, how to send the uplink sounding pilot for channel measurement; if it is pre-agreed with the network side, the terminal may determine how to send according to the pre-agreed agreement. Upstream pilot pilot for channel measurement.
  • the correspondence may be one-to-one, one-to-many, many-to-one, many-to-many, and the like.
  • the terminal can transmit in the following manner:
  • the terminal transmits the beam direction corresponding to the uplink sounding pilot identifier (SRI). Uplink Probing Pilot (SRS) for channel measurements.
  • SRI uplink sounding pilot identifier
  • SRS uplink sounding pilot
  • the terminal does not transmit an uplink sounding pilot (SRS) for channel measurement.
  • SRS uplink sounding pilot
  • the base station If the base station indicates the identity (SRI) of multiple uplink sounding pilots, the base station configures the uplink sounding pilot (SRS) resources for channel measurement and the uplink sounding pilot (SRS) used by the terminal to transmit channel measurements. .
  • SRS uplink sounding pilot
  • the base station indicates an identifier of the N uplink sounding pilots (SRI) and P uplink sounding pilot (SRS) resources (N ⁇ P) for channel measurement, and the explicit signaling indicates which uplink sounding pilots of the terminal
  • the (SRS) resource terminal can simultaneously transmit (that is, indicate the correspondence between the identifiers of the N uplink sounding pilots and the P uplink sounding pilot resources used for channel measurement), that is, which uplink sounding pilots are identified (SRI).
  • the corresponding uplink beams can be transmitted simultaneously.
  • the terminal may determine, according to the explicit signaling, which uplink probe pilots corresponding to the identifiers of the uplink sounding pilots can be simultaneously transmitted, and then send corresponding uplink sounding pilots in the beam direction corresponding to the identifier.
  • the base station indicates the identifiers of the N uplink sounding pilots (SRI) and one uplink sounding pilot (SRS) resource for channel measurement, that is, the beams corresponding to the identifiers (SRI) of the N uplink sounding pilots can simultaneously send.
  • the terminal may simultaneously transmit the uplink sounding pilots in the beam direction corresponding to the identifiers of the N uplink sounding pilots according to a predetermined agreement.
  • the base station indicates the identification of the N uplink sounding pilots (SRI) and the corresponding N uplink sounding pilot (SRS) resources for channel measurement, implicitly indicating any uplink sounding pilot (SRS) used for channel measurement.
  • the resources cannot be sent at the same time, that is, the beams corresponding to the identifier of any uplink sounding pilot (SRI) cannot be transmitted simultaneously.
  • the terminal determines an uplink sounding pilot for channel measurement corresponding to the identifier of each uplink sounding pilot, and then transmits a corresponding uplink sounding pilot in a corresponding beam direction.
  • the base station indicates 2 SRIs and configures one uplink sounding pilot (SRS) resource for channel measurement.
  • the terminal simultaneously transmits the uplink sounding pilots in the beam directions corresponding to the two SRIs according to the pre-agreed agreement with the base station, and maps the plurality of ports of the uplink sounding pilot (SRS) resources used for channel measurement to the two beam directions. .
  • the base station indicates 2 SRIs and configures one uplink sounding pilot (SRS) resource for channel measurement, and signals the SRI and the uplink sounding pilot (SRS) resource correspondence for channel measurement (such as SRI). 1 corresponds to the uplink sounding pilot resource used for channel measurement).
  • the terminal selects an SRI (such as selecting SRI 1) according to the signaling indication, and sends an uplink sounding pilot (SRS) for channel measurement in a beam direction corresponding to the SRI.
  • the base station indicates 2 SRIs and configures 2 uplink sounding pilot (SRS) resources for channel measurement, and signals the SRI and uplink sounding pilot (SRS) resource correspondences for channel measurement (such as SRI). 1 and SRI 2 respectively correspond to one uplink sounding pilot resource for channel measurement).
  • the terminal selects an SRI at one time according to the signaling indication, and sends a corresponding uplink sounding pilot (SRS) for measurement in the beam direction corresponding to the SRI.
  • SRS uplink sounding pilot
  • the base station indicates 2 SRIs and configures 2 uplink sounding pilot (SRS) resources for channel measurement.
  • the terminal selects an SRI at a time according to a pre-agreed with the base station, and transmits a corresponding uplink sounding pilot (SRS) for measurement in a beam direction corresponding to the SRI.
  • SRS uplink sounding pilot
  • the base station indicates 3 SRIs and configures 2 uplink sounding pilot (SRS) resources for channel measurement
  • the base station signaling indicates that SRI 1 and SRI 2 correspond to the first uplink sounding pilot for channel measurement
  • SRI. 3 corresponds to the second uplink sounding pilot used for channel measurement.
  • the terminal can simultaneously transmit two beams corresponding to SRI1 and SRI2 at one time, but cannot simultaneously transmit beams corresponding to SRI3. That is, the terminal simultaneously transmits the first uplink sounding pilot for channel measurement in the beam direction corresponding to SRI1 and SRI2, and transmits the second uplink sounding pilot for channel measurement in the beam direction corresponding to SRI3.
  • the signal processing apparatus of the embodiment of the present disclosure includes:
  • the first indication module 401 is configured to indicate, to the terminal, a first uplink sounding pilot resource, where the first uplink sounding pilot resource is used for uplink beam scanning, and the first receiving module 402 is configured to receive, by the terminal, the first An uplink sounding pilot transmitted by the uplink detecting pilot resource; the determining module 403, configured to determine a target uplink sounding pilot according to the uplink sounding pilot transmitted by the terminal, and send the target uplink sounding pilot to the terminal a second indication module 404, configured to indicate, by the terminal, a second uplink sounding pilot resource, configured to enable the terminal to send according to the identifier of the target uplink sounding pilot and the second uplink sounding pilot resource Uplink probing pilot for channel measurement.
  • the first indication module 401 includes:
  • a first configuration sub-module configured to configure, by the terminal, a first uplink sounding pilot resource, where the first uplink sounding pilot resource includes M uplink sounding pilot resources, or the first uplink sounding pilot resource
  • the method includes an uplink sounding pilot resource, where the one uplink sounding pilot resource includes M ports; M is an integer greater than 0; and the first indicator submodule is configured to display the signaling or the implicit signaling to the terminal. Indicating the first uplink sounding pilot resource.
  • the determining module 403 includes: a selecting submodule, configured to select one or more uplink sounding pilots whose signal quality meets a predetermined requirement according to an uplink sounding pilot transmitted by the terminal; and a determining submodule for using the One or more uplink sounding pilots are described as the target uplink sounding pilot.
  • the second indication module 404 includes: a second configuration sub-module, configured to configure a second uplink sounding pilot resource for the terminal, where the number N of the second uplink sounding pilot resources is greater than or equal to 0.
  • the second indicator submodule is configured to indicate the second uplink sounding pilot resource to the terminal by using display signaling or implicit signaling.
  • the device further includes: a processing module 405, configured to send, to the terminal, correspondence indication information, where the correspondence relationship indication information includes the second uplink sounding pilot resource and the target uplink Corresponding to the identifier of the probe; or pre-argues with the terminal, the correspondence between the second uplink probe resource and the identifier of the target uplink probe.
  • the channel measurement module 406 is configured to receive an uplink sounding pilot for channel measurement sent by the terminal, and perform channel measurement according to the uplink sounding pilot used for channel measurement.
  • the working principle of the apparatus of the present disclosure can be referred to the description of the foregoing method embodiments, and the apparatus can be located in a base station.
  • the terminal may perform uplink transmission pilot transmission by indicating to the terminal, the first uplink sounding pilot resource for uplink beam scanning and the second uplink sounding pilot resource for channel measurement. Thereby, channel measurement is performed to ensure normal communication between the terminal and the network side.
  • the signal processing apparatus of the embodiment of the present disclosure includes:
  • the obtaining module 601 is configured to acquire the first uplink sounding pilot resource indicated by the network side, where the first uplink sounding pilot resource is used for uplink beam scanning, and the sending module 602 is configured to use the first uplink sounding pilot resource.
  • the receiving module 603 is configured to receive an identifier of the target uplink sounding pilot that is sent by the network side, and
  • the processing module 604 is configured to obtain the second uplink sounding indicator that is instructed by the network side Frequency resources, and transmitting uplink sounding pilots for channel measurement according to the second uplink sounding pilot resource and the identifier of the target uplink sounding pilot.
  • the acquiring module 601 is specifically configured to acquire, according to the network side signaling or the pre-agreed with the network side, the first uplink sounding pilot resource indicated by the network side.
  • the processing module 604 includes: an obtaining submodule, configured to acquire a second uplink sounding pilot resource indicated by the network side; and a processing submodule, configured to use, according to the second uplink sounding pilot resource, the target An identifier of the uplink sounding pilot, which transmits an uplink sounding pilot for channel measurement.
  • the acquiring sub-module is specifically configured to acquire, according to the network side signaling or the pre-agreed with the network side, the second uplink sounding pilot resource indicated by the network side, where the second uplink is The number N of probed pilot resources is an integer greater than or equal to zero.
  • the processing sub-module includes: a determining unit, configured to determine a correspondence between each identifier in the identifier of the target uplink sounding pilot and N second uplink sounding pilot resources; and a selecting unit, configured to And the corresponding relationship, in the N second uplink sounding pilot resources, selecting one or more second target uplink sounding pilot resources corresponding to the first identifier in the identifier of the target uplink sounding pilot; And a sending unit, configured to send the one or more second target uplink sounding pilot resources in a beam direction corresponding to the first identifier.
  • the determining unit is specifically configured to: receive the corresponding relationship indication information sent by the network side, and determine, according to the correspondence relationship indication information, each identifier and N in the identifier of the target uplink sounding pilot. Corresponding relationship of the second uplink sounding pilot resource; or determining, according to a pre-agreed with the network side, the correspondence between each identifier in the identifier of the target uplink sounding pilot and the N second uplink sounding pilot resources relationship.
  • the working principle of the device of the present disclosure can be referred to the description of the foregoing method embodiments, and the device can be located in the terminal.
  • the terminal may perform uplink transmission pilot transmission by indicating to the terminal, the first uplink sounding pilot resource for uplink beam scanning and the second uplink sounding pilot resource for channel measurement. Thereby, channel measurement is performed to ensure normal communication between the terminal and the network side.
  • Embodiments of the present disclosure also provide a signal processing apparatus including: a processor; and a memory connected to the processor through a bus interface, the memory for storing a program used by the processor when performing an operation And data, when the processor calls and executes the programs and data stored in the memory, including the following functional modules or units:
  • a first indication module configured to indicate, to the terminal, a first uplink sounding pilot resource, where the first uplink sounding pilot resource is used for uplink beam scanning;
  • a first receiving module configured to receive an uplink sounding pilot that is sent by the terminal by using the first uplink sounding pilot resource
  • a determining module configured to determine a target uplink sounding pilot according to an uplink sounding pilot sent by the terminal, and send an identifier of the target uplink sounding pilot to the terminal;
  • a second indication module configured to indicate, to the terminal, a second uplink sounding pilot resource, configured to enable the terminal to send, according to the identifier of the target uplink sounding pilot, the second uplink sounding pilot resource, for a channel The measured uplink sounding pilot.
  • An embodiment of the present disclosure provides a signal processing apparatus including: a processor; and a memory connected to the processor through a bus interface, the memory is configured to store a program used by the processor when performing an operation, and Data, when the processor calls and executes the programs and data stored in the memory, includes the following functional modules or units:
  • An acquiring module configured to acquire a first uplink sounding pilot resource indicated by the network side, where the first uplink sounding pilot resource is used for uplink beam scanning;
  • a sending module configured to send, by using the first uplink sounding pilot resource, an uplink sounding pilot to the network side;
  • a receiving module configured to receive an identifier of a target uplink sounding pilot sent by the network side
  • a processing module configured to acquire a second uplink sounding pilot resource indicated by the network side, and send an uplink sounding for channel measurement according to the second uplink sounding pilot resource and the identifier of the target uplink sounding pilot Pilot.
  • an embodiment of the present disclosure further provides a base station, including: a memory, a processor, and a transceiver, where the processor 700 is configured to read a program in the memory 720, and perform the following process:
  • a second uplink sounding pilot resource configured to enable the terminal to send an uplink sounding pilot for channel measurement according to the identifier of the target uplink sounding pilot and the second uplink sounding pilot resource.
  • the transceiver 710 is configured to receive and transmit data under the control of the processor 700.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 700 and various circuits of memory represented by memory 720.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 710 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 720 can store data used by the processor 700 in performing operations.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 720 can store data used by the processor 700 in performing operations.
  • the processor 700 is further configured to: configure, by the terminal, a first uplink sounding pilot resource, where the first uplink sounding pilot resource includes M uplink sounding pilot resources, or the first uplink sounding pilot resource includes An uplink sounding pilot resource, wherein the one uplink sounding pilot resource includes M ports; M is an integer greater than 0; and the first uplink sounding pilot is indicated to the terminal by using display signaling or implicit signaling Resources.
  • the processor 700 is further configured to: according to the uplink sounding pilot sent by the terminal, select one or more uplink sounding pilots whose signal quality meets a predetermined requirement; and use the one or more uplink sounding pilots as the target uplink. Probe pilot.
  • the processor 700 is further configured to: configure, by the terminal, a second uplink sounding pilot resource, where the number N of the second uplink sounding pilot resources is an integer greater than or equal to 0; by displaying signaling or implicit signaling And indicating, to the terminal, the second uplink sounding pilot resource.
  • the processor 700 is further configured to send, to the terminal, a correspondence between the second uplink sounding pilot resource and the identifier of the target uplink sounding pilot.
  • the processor 700 is further configured to receive an uplink sounding pilot sent by the terminal for channel measurement, and perform channel measurement according to the uplink sounding pilot used for channel measurement.
  • the terminal may perform uplink transmission pilot transmission by indicating to the terminal, the first uplink sounding pilot resource for uplink beam scanning and the second uplink sounding pilot resource for channel measurement. Thereby, channel measurement is performed to ensure normal communication between the terminal and the network side.
  • the terminal of the embodiment of the present disclosure includes: a processor 800, configured to read a program in the memory 820, and perform the following process:
  • the transceiver 810 is configured to receive and transmit data under the control of the processor 800.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 800 and various circuits of memory represented by memory 820.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 810 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 830 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 820 can store data used by the processor 800 in performing operations.
  • the processor 800 is further configured to acquire, according to the network side signaling or a pre-agreed with the network side, the first uplink sounding pilot resource indicated by the network side.
  • the processor 800 is further configured to: acquire, according to the network side signaling or a pre-agreed with the network side, the second uplink sounding pilot resource indicated by the network side, where the second uplink sounding pilot resource is The number N is an integer greater than or equal to zero.
  • the processor 800 is further configured to: determine a correspondence between each identifier in the identifier of the target uplink sounding pilot and the N second uplink sounding pilot resources; and according to the correspondence, the N second And selecting, by the uplink sounding pilot resource, one or more second target uplink sounding pilot resources corresponding to the first identifier in the identifier of the target uplink sounding pilot; in a beam direction corresponding to the first identifier, And transmitting the one or more second target uplink sounding pilot resources.
  • the processor 800 is further configured to: receive the corresponding relationship indication information sent by the network side, and determine, according to the correspondence relationship indication information, each identifier and the N second uplinks in the identifier of the target uplink sounding pilot. Detecting a corresponding relationship of the pilot resources; or determining a correspondence between each identifier in the identifier of the target uplink sounding pilot and the N second uplink sounding pilot resources according to a pre-agreed with the network side.
  • the terminal may perform uplink transmission pilot transmission by indicating to the terminal, the first uplink sounding pilot resource for uplink beam scanning and the second uplink sounding pilot resource for channel measurement. Thereby, channel measurement is performed to ensure normal communication between the terminal and the network side.
  • the disclosed method and apparatus may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform part of the steps of the transceiving method of the various embodiments of the present disclosure.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种信号处理方法及装置。本公开的信号处理方法包括:向终端指示第一上行探测导频资源,第一上行探测导频资源用于上行波束扫描;接收终端利用第一上行探测导频资源发送的上行探测导频;根据终端发送的上行探测导频确定目标上行探测导频,并向终端发送目标上行探测导频的标识;向终端指示第二上行探测导频资源,用于使得终端根据目标上行探测导频的标识和第二上行探测导频资源发送用于信道测量的上行探测导频。

Description

一种信号处理方法及装置
相关申请的交叉引用
本申请主张在2017年3月22日在中国提交的中国专利申请号No.201710172854.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种信号处理方法及装置。
背景技术
在大规模天线系统中,基站以及终端的收发天线数目非常多,因此天线数目多其结构也有多种。
如图1、2所示为终端的两种天线结构实例。终端有两个天线模块,每个天线模块能够分别产生独立的模拟波束,而且每个天线模块也有可能对应多个数字端口。比如说每个天线模块上映射了2个数字端口,那么两个天线模块总共映射了4个数字端口。模拟数字混合型天线能够产生模拟波束和数字波束,一个模拟波束只能在一个时刻在一个方向上发送,而一个模拟波束可以包含多个数字波束(或者数字端口)。因为天线数目很多,所以所产生的波束较窄,而且模拟波束只能在一个时刻在一个方向上发送。所以为了实现小区覆盖,终端需在不同模拟波束方向上轮询发送上行探测导频(也就是波束扫描)。
在LTE(Long Term Evolution,长期演进)系统中,因为不区分模拟和数字波束,所以可根据终端的能力对终端发送上行探测导频的端口进行配置,这些端口均为数字端口。但是,在NR(New Radio,新空口)系统中,尤其是在大规模天线下,仍未提出关于上行探测导频的配置以及发送方法,从而对终端和网络侧的通信造成了一定的影响。
发明内容
有鉴于此,本公开实施例提供一种信号处理方法、装置、计算机可读存 储介质及电子设备,用以在NR系统中实现上行探测导频的配置以及发送,以保证终端和网络侧的正常通信。
为解决上述技术问题,本公开实施例提供了一种信号处理方法,包括:向终端指示第一上行探测导频资源,所述第一上行探测导频资源用于上行波束扫描;接收所述终端利用所述第一上行探测导频资源发送的上行探测导频;根据所述终端发送的上行探测导频确定目标上行探测导频,并向所述终端发送所述目标上行探测导频的标识;向所述终端指示第二上行探测导频资源,用于使得所述终端根据所述目标上行探测导频的标识和所述第二上行探测导频资源发送用于信道测量的上行探测导频。
在一些可选实施例中,所述向终端指示第一上行探测导频资源,包括:为所述终端配置第一上行探测导频资源,其中所述第一上行探测导频资源包括M个上行探测导频资源,或者所述第一上行探测导频资源包括一个上行探测导频资源,其中所述一个上行探测导频资源包括M个端口;M为大于0的整数;通过显示信令或者隐性信令向所述终端指示所述第一上行探测导频资源。
在一些可选实施例中,所述根据所述终端发送的上行探测导频确定目标上行探测导频,包括:根据所述终端发送的上行探测导频,选择信号质量符合预定要求的一个或多个上行探测导频;将所述一个或多个上行探测导频作为所述目标上行探测导频。
在一些可选实施例中,所述向所述终端指示第二上行探测导频资源,包括:为所述终端配置第二上行探测导频资源,其中所述第二上行探测导频资源的数量N为大于或等于0的整数;通过显示信令或者隐性信令向所述终端指示所述第二上行探测导频资源。
在一些可选实施例中,所述方法还包括:向所述终端发送对应关系指示信息,所述对应关系指示信息中包括所述第二上行探测导频资源和所述目标上行探测导频的标识的对应关系;或者与所述终端预先约定所述第二上行探测导频资源和所述目标上行探测导频的标识的对应关系。
在一些可选实施例中,所述方法还包括:接收所述终端发送的用于信道测量的上行探测导频,并根据所述用于信道测量的上行探测导频进行信道测 量。
第二方面,本公开实施例了提供一种信号处理方法,包括:获取网络侧指示的第一上行探测导频资源,所述第一上行探测导频资源用于上行波束扫描;利用所述第一上行探测导频资源向所述网络侧发送上行探测导频;接收所述网络侧发送的目标上行探测导频的标识;获取所述网络侧指示的第二上行探测导频资源,并根据所述第二上行探测导频资源和所述目标上行探测导频的标识,发送用于信道测量的上行探测导频。
在一些可选实施例中,所述获取网络侧指示的第一上行探测导频资源,包括:根据所述网络侧信令或者与所述网络侧的预先约定,获取所述网络侧指示的第一上行探测导频资源。
在一些可选实施例中,所述获取所述网络侧指示的第二上行探测导频资源,包括:根据所述网络侧信令或者与所述网络侧的预先约定,获取所述网络侧指示的第二上行探测导频资源,其中所述第二上行探测导频资源的数量N为大于或等于0的整数。
在一些可选实施例中,所述根据所述第二上行探测导频资源和所述目标上行探测导频的标识,发送用于信道测量的上行探测导频,包括:确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系;根据所述对应关系,在所述N个第二上行探测导频资源中,选择与所述目标上行探测导频的标识中的第一标识对应的一个或多个第二目标上行探测导频资源;在所述第一标识对应的波束方向上,发送所述一个或多个第二目标上行探测导频资源。
在一些可选实施例中,所述确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系,包括:接收所述网络侧发送的对应关系指示信息,并根据所述对应关系指示信息,确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系;或者,根据与所述网络侧的预先约定,确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系。
第三方面,本公开实施例提供了一种信号处理装置,包括:第一指示模块,用于向终端指示第一上行探测导频资源,所述第一上行探测导频资源用 于上行波束扫描;第一接收模块,用于接收所述终端利用所述第一上行探测导频资源发送的上行探测导频;确定模块,用于根据所述终端发送的上行探测导频确定目标上行探测导频,并向所述终端发送所述目标上行探测导频的标识;第二指示模块,用于向所述终端指示第二上行探测导频资源,用于使得所述终端根据所述目标上行探测导频的标识和所述第二上行探测导频资源发送用于信道测量的上行探测导频。
在一些可选实施例中,所述第一指示模块包括:第一配置子模块,用于为所述终端配置第一上行探测导频资源,其中所述第一上行探测导频资源包括M个上行探测导频资源,或者所述第一上行探测导频资源包括一个上行探测导频资源,其中所述一个上行探测导频资源包括M个端口;M为大于0的整数;第一指示子模块,用于通过显示信令或者隐性信令向所述终端指示所述第一上行探测导频资源。
在一些可选实施例中,所述确定模块包括:选择子模块,用于根据所述终端发送的上行探测导频,选择信号质量符合预定要求的一个或多个上行探测导频;确定子模块,用于将所述一个或多个上行探测导频作为所述目标上行探测导频。
在一些可选实施例中,所述第二指示模块包括:第二配置子模块,用于为所述终端配置第二上行探测导频资源,其中所述第二上行探测导频资源的数量N为大于或等于0的整数;第二指示子模块,用于通过显示信令或者隐性信令向所述终端指示所述第二上行探测导频资源。
在一些可选实施例中,所述装置还包括:处理模块,用于向所述终端发送对应关系指示信息,所述对应关系指示信息中包括所述第二上行探测导频资源和所述目标上行探测导频的标识的对应关系;或者与所述终端预先约定所述第二上行探测导频资源和所述目标上行探测导频的标识的对应关系。
在一些可选实施例中,所述装置还包括:信道测量模块,用于接收所述终端发送的用于信道测量的上行探测导频,并根据所述用于信道测量的上行探测导频进行信道测量。
第四方面,本公开实施例提供了一种信号处理装置,包括:获取模块,用于获取网络侧指示的第一上行探测导频资源,所述第一上行探测导频资源 用于上行波束扫描;发送模块,用于利用所述第一上行探测导频资源向所述网络侧发送上行探测导频;接收模块,用于接收所述网络侧发送的目标上行探测导频的标识;处理模块,用于获取所述网络侧指示的第二上行探测导频资源,并根据所述第二上行探测导频资源和所述目标上行探测导频的标识,发送用于信道测量的上行探测导频。
在一些可选实施例中,所述获取模块具体用于,根据所述网络侧信令或者与所述网络侧的预先约定,获取所述网络侧指示的第一上行探测导频资源。
在一些可选实施例中,所述处理模块包括:获取子模块,用于获取所述网络侧指示的第二上行探测导频资源;处理子模块,用于根据所述第二上行探测导频资源和所述目标上行探测导频的标识,发送用于信道测量的上行探测导频。
在一些可选实施例中,所述获取子模块具体用于,根据所述网络侧信令或者与所述网络侧的预先约定,获取所述网络侧指示的第二上行探测导频资源,其中所述第二上行探测导频资源的数量N为大于或等于0的整数。
在一些可选实施例中,所述处理子模块包括:确定单元,用于确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系;选择单元,用于根据所述对应关系,在所述N个第二上行探测导频资源中,选择与所述目标上行探测导频的标识中的第一标识对应的一个或多个第二目标上行探测导频资源;发送单元,用于在所述第一标识对应的波束方向上,发送所述一个或多个第二目标上行探测导频资源。
在一些可选实施例中,所述确定单元具体用于,接收所述网络侧发送的对应关系指示信息,并根据所述对应关系指示信息,确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系;或者,根据与所述网络侧的预先约定,确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系。
第五方面,本公开实施例提供了一种电子设备,所述电子设备包括:壳体、处理器、存储器、电路板和电源电路;其中,电路板安置在壳体围成的空间内部,处理器和存储器设置在电路板上;电源电路,用于为上述电子设备的各个电路或器件供电;存储器用于存储可执行程序代码;处理器通过读 取存储器中存储的可执行程序代码来运行与可执行程序代码对应的程序,用于执行如前所述的信号处理方法。
第六方面,本公开实施例提供了一种计算机可读存储介质,用于存储计算机程序,其中,所述计算机程序可被处理器执行如前所述的信号处理方法。
第七方面,本公开实施例提供了一种基站,包括:存储器、处理器和收发机,其中,所述处理器用于读取存储器中的程序,执行下列过程:向终端指示第一上行探测导频资源,所述第一上行探测导频资源用于上行波束扫描;接收所述终端利用所述第一上行探测导频资源发送的上行探测导频;根据所述终端发送的上行探测导频确定目标上行探测导频,并向所述终端发送所述目标上行探测导频的标识;向所述终端指示第二上行探测导频资源,用于使得所述终端根据所述目标上行探测导频的标识和所述第二上行探测导频资源发送用于信道测量的上行探测导频,所述收发机,用于接收和发送数据。
第八方面,本公开实施例提供了一种终端,包括:存储器、处理器和收发机,其中,处理器,用于读取存储器中的程序,执行下列过程:获取网络侧指示的第一上行探测导频资源,所述第一上行探测导频资源用于上行波束扫描;利用所述第一上行探测导频资源向所述网络侧发送上行探测导频;接收所述网络侧发送的目标上行探测导频的标识;获取所述网络侧指示的第二上行探测导频资源,并根据所述第二上行探测导频资源和所述目标上行探测导频的标识,发送用于信道测量的上行探测导频,收发机,用于接收和发送数据。
本公开的上述技术方案的有益效果如下:在本公开实施例中,通过向终端指示用于上行波束扫描的第一上行探测导频资源和指示用于信道测量的第二上行探测导频资源,使得终端可以进行上行探测导频的发送,从而进行信道的测量,保证了终端和网络侧的正常通信。
附图说明
图1(a)和1(b)为相关技术中终端的天线结构示意图;
图2为本公开实施例的信号处理方法的流程图;
图3为本公开实施例的信号处理方法的流程图;
图4为本公开实施例的信号处理方法的流程图;
图5为本公开实施例的信号处理装置的示意图;
图6为本公开实施例的信号处理装置的结构图;
图7为本公开实施例的信号处理装置的又一示意图;
图8为本公开实施例的基站的示意图;
图9为本公开实施例的终端的示意图。
具体实施方式
下面将结合附图和实施例,对本公开的具体实施方式作进一步详细描述。以下实施例用于说明本公开,但不用来限制本公开的范围。
如图2所示,本公开实施例的信号处理方法,应用于网络侧设备,如基站等,包括:步骤101、向终端指示第一上行探测导频资源,所述第一上行探测导频资源用于上行波束扫描。
在此步骤中,网络侧设备可为所述终端配置第一上行探测导频资源,其中所述第一上行探测导频资源包括M个上行探测导频资源,或者所述第一上行探测导频资源包括一个上行探测导频资源,其中所述一个上行探测导频资源包括M个端口;M为大于0的整数。在配置好第一上行探测导频资源后,可通过显示信令或者隐性信令向所述终端指示所述第一上行探测导频资源。
步骤102、接收所述终端利用所述第一上行探测导频资源发送的上行探测导频。
具体的,接收终端在M个上行波束方向上分别发送的上行探测导频(SRS)。
步骤103、根据所述终端发送的上行探测导频确定目标上行探测导频,并向所述终端发送所述目标上行探测导频的标识。
在此步骤中,可分别计算各个上行探测导频的信号质量,然后选择信号质量符合预定要求的一个或多个上行探测导频作为所述目标上行探测导频。
步骤104、向所述终端指示第二上行探测导频资源,用于使得所述终端根据所述目标上行探测导频的标识和所述第二上行探测导频资源发送用于信道测量的上行探测导频。
在此步骤中,为所述终端配置第二上行探测导频资源,其中所述第二上行探测导频资源的数量N为大于或等于0的整数。在配置好第二上行探测导频资源后,通过显示信令或者隐性信令向所述终端指示所述第二上行探测导频资源。
在本公开实施例中,通过向终端指示用于上行波束扫描的第一上行探测导频资源和指示用于信道测量的第二上行探测导频资源,使得终端可以进行上行探测导频的发送,从而进行信道的测量,保证了终端和网络侧的正常通信。
如图3所示,本公开实施例的信号处理方法,应用于终端,包括:
步骤201、获取网络侧指示的第一上行探测导频资源,所述第一上行探测导频资源用于上行波束扫描。
在本公开实施例中,可根据所述网络侧信令或者与所述网络侧的预先约定,获取所述网络侧指示的第一上行探测导频资源。
步骤202、利用所述第一上行探测导频资源向所述网络侧发送上行探测导频。
步骤203、接收所述网络侧发送的目标上行探测导频的标识。
步骤204、获取所述网络侧指示的第二上行探测导频资源,并根据所述第二上行探测导频资源和所述目标上行探测导频的标识,发送用于信道测量的上行探测导频。
在本公开实施例中,根据所述网络侧信令或者与所述网络侧的预先约定,获取所述网络侧指示的第二上行探测导频资源,其中所述第二上行探测导频资源的数量N为大于或等于0的整数。
具体的,在发送用于信道测量的上行探测导频时,根据网络侧指示或者根据与网络侧的预先约定,确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系。根据所述对应关系,在所述N个第二上行探测导频资源中,选择与所述目标上行探测导频的标识中的第一标识对应的一个或多个第二目标上行探测导频资源;在所述第一标识对应的波束方向上,发送所述一个或多个第二目标上行探测导频资源。其中该第一标识可以是其中的任一标识。
在本公开实施例中,通过向终端指示用于上行波束扫描的第一上行探测导频资源和指示用于信道测量的第二上行探测导频资源,使得终端可以进行上行探测导频的发送,从而进行信道的测量,保证了终端和网络侧的正常通信。
在本公开实施例中,基站向终端配置2级上行探测导频(SRS),第一级上行探测导频(SRS)用于指示终端在不同的模拟波束上发送上行探测导频(SRS),第二级上行探测导频(SRS)用于指示在终端模拟波束确定之后获取信道信息,即用于信道测量。以下具体描述基站如何配置上行探测导频(SRS)以及终端的发送行为。
如图4所示,本公开实施例的信号处理方法,包括:
步骤301、基站为终端配置M个上行探测导频(SRS)资源或一个上行探测导频资源,该一个上行探测导频包括M个端口,用于上行波束扫描。
在配置完成后,基站可以通过显性信令指示或者隐性信令指示终端该上行探测导频(SRS)是用于上行波束扫描的。其中,M个上行探测导频(SRS)资源或一个上行探测导频资源的M个端口对应M个上行波束方向。
步骤302、终端在M个上行波束方向上分别发送上行探测导频(SRS)。
相应的,基站接收终端在M个上行波束方向上发送的M个上行探测导频(SRS)资源或包括M个端口的一个上行探测导频。
步骤303、基站根据信号质量选择信号质量符合预定要求的1个或多个上行探测导频,并且向终端指示对应的1个或多个上行探测导频的标识(SRI)。
例如,基站可选择信号质量较好的一个或者多个上行探测导频。
步骤304、基站配置N个用于信道测量的上行探测导频(SRS)资源,并向终端指示该N个用于信道测量的上行探测导频资源,N为大于或等于0的整数。
步骤305、终端根据1个或多个上行探测导频的标识和N个用于信道测量的上行探测导频资源,发送用于信道测量的上行探测导频。
在本公开实施例中,1个或多个上行探测导频的标识和N个用于信道测量的上行探测导频资源的对应关系,可以由网络侧通过信令的方式向终端指示,也可由网络侧和终端预先约定。如果网络侧指示了该对应关系,那么终 端可根据网络侧的指示确定如何发送用于信道测量的上行探测导频;如果是与网络侧预先约定好的,那么终端可根据预先约定确定如何发送用于信道测量的上行探测导频。其中,该对应关系可以是一对一、一对多、多对一、多对多等形式。
在此步骤中,根据步骤304和305中基站发送的信息,终端可按照下述方式进行发送:
如果基站指示一个上行探测导频的标识(SRI)和对应的用于信道测量的一个上行探测导频(SRS)资源,终端在该上行探测导频的标识(SRI)对应的波束方向上发送用于信道测量的上行探测导频(SRS)。
如果基站未配置用于信道测量的上行探测导频(SRS)(N=0),终端不发送用于信道测量的上行探测导频(SRS)。
如果基站指示多个上行探测导频的标识(SRI),基站配置用于信道测量的上行探测导频(SRS)资源和终端发送用于信道测量的上行探测导频(SRS)有如下几种情况。
(1)基站指示N个上行探测导频的标识(SRI)和P个用于信道测量的上行探测导频(SRS)资源(N≠P),而且显性信令指示终端哪些上行探测导频(SRS)资源终端可以同时发送(也即指示N个上行探测导频的标识和P个用于信道测量的上行探测导频资源的对应关系),也就是哪些上行探测导频的标识(SRI)对应的上行波束可以同时发送。
在这种情况下,终端可根据该显性信令确定哪些上行探测导频的标识对应的上行探测导频可以同时发送,而后在该标识对应的波束方向上发送对应的上行探测导频。
(2)基站指示N个上行探测导频的标识(SRI)和一个用于信道测量的上行探测导频(SRS)资源,也就是N个上行探测导频的标识(SRI)对应的波束可以同时发送。
在这种情况下,终端可根据预先约定,在N个上行探测导频的标识对应的波束方向上,同时发送上行探测导频。
(3)基站指示N个上行探测导频的标识(SRI)和对应的N个用于信道测量的上行探测导频(SRS)资源,隐含说明任何用于信道测量的上行探测 导频(SRS)资源不能同时发送,也就是任何上行探测导频的标识(SRI)对应的波束不能同时发送。
在这种情况下,终端确定每个上行探测导频的标识对应的用于信道测量的上行探测导频,然后在对应的波束方向上发送对应的上行探测导频。
例如,基站指示2个SRI而且配置1个用于信道测量的上行探测导频(SRS)资源。终端根据与基站的预先约定,在两个SRI对应的波束方向上同时发送上行探测导频,而且把用于信道测量的上行探测导频(SRS)资源的多个端口映射到两个波束方向上。
又例如,基站指示2个SRI而且配置1个用于信道测量的上行探测导频(SRS)资源,而且信令通知SRI和用于信道测量的上行探测导频(SRS)资源对应关系(如SRI 1对应用于信道测量的上行探测导频资源)。终端根据信令指示,选择一个SRI(如选择SRI 1),在该SRI对应的波束方向上发送用于信道测量的上行探测导频(SRS)。
又例如,基站指示2个SRI而且配置2个用于信道测量的上行探测导频(SRS)资源,而且信令通知SRI和用于信道测量的上行探测导频(SRS)资源对应关系(如SRI 1和SRI 2分别对应一个用于信道测量的上行探测导频资源)。终端根据信令指示,在一个时刻选择一个SRI,并且在该SRI对应的波束方向上发送对应的用于测量的上行探测导频(SRS)。
又例如,基站指示2个SRI而且配置2个用于信道测量的上行探测导频(SRS)资源。终端根据与基站的预先约定,在一个时刻选择一个SRI,并且在该SRI对应的波束方向上发送对应的用于测量的上行探测导频(SRS)。
又例如,基站指示3个SRI而且配置2个用于信道测量的上行探测导频(SRS)资源,基站信令指示SRI 1和SRI 2对应第一个用于信道测量的上行探测导频、SRI 3对应第二个用于信道测量的上行探测导频。终端在一个时刻可以同时发送SRI1和SRI2对应的两个波束,但不能同时发送SRI3对应的波束。也即终端在SRI1和SRI2对应的波束方向上同时发送第一个用于信道测量的上行探测导频,在SRI3对应的波束方向上发送第二个用于信道测量的上行探测导频。
如图5所示,本公开实施例的信号处理装置,包括:
第一指示模块401,用于向终端指示第一上行探测导频资源,所述第一上行探测导频资源用于上行波束扫描;第一接收模块402,用于接收所述终端利用所述第一上行探测导频资源发送的上行探测导频;确定模块403,用于根据所述终端发送的上行探测导频确定目标上行探测导频,并向所述终端发送所述目标上行探测导频的标识;第二指示模块404,用于向所述终端指示第二上行探测导频资源,用于使得所述终端根据所述目标上行探测导频的标识和所述第二上行探测导频资源发送用于信道测量的上行探测导频。
其中,所述第一指示模块401包括:
第一配置子模块,用于为所述终端配置第一上行探测导频资源,其中所述第一上行探测导频资源包括M个上行探测导频资源,或者所述第一上行探测导频资源包括一个上行探测导频资源,其中所述一个上行探测导频资源包括M个端口;M为大于0的整数;第一指示子模块,用于通过显示信令或者隐性信令向所述终端指示所述第一上行探测导频资源。
其中,所述确定模块403包括:选择子模块,用于根据所述终端发送的上行探测导频,选择信号质量符合预定要求的一个或多个上行探测导频;确定子模块,用于将所述一个或多个上行探测导频作为所述目标上行探测导频。
其中,所述第二指示模块404包括:第二配置子模块,用于为所述终端配置第二上行探测导频资源,其中所述第二上行探测导频资源的数量N为大于或等于0的整数;第二指示子模块,用于通过显示信令或者隐性信令向所述终端指示所述第二上行探测导频资源。
如图6所示,所述装置还包括:处理模块405,用于向所述终端发送对应关系指示信息,所述对应关系指示信息中包括所述第二上行探测导频资源和所述目标上行探测导频的标识的对应关系;或者与所述终端预先约定所述第二上行探测导频资源和所述目标上行探测导频的标识的对应关系。信道测量模块406,用于接收所述终端发送的用于信道测量的上行探测导频,并根据所述用于信道测量的上行探测导频进行信道测量。
本公开所述装置的工作原理可参照前述方法实施例的描述,且所述装置可位于基站中。
在本公开实施例中,通过向终端指示用于上行波束扫描的第一上行探测 导频资源和指示用于信道测量的第二上行探测导频资源,使得终端可以进行上行探测导频的发送,从而进行信道的测量,保证了终端和网络侧的正常通信。
如图7所示,本公开实施例的信号处理装置,包括:
获取模块601,用于获取网络侧指示的第一上行探测导频资源,所述第一上行探测导频资源用于上行波束扫描;发送模块602,用于利用所述第一上行探测导频资源向所述网络侧发送上行探测导频;接收模块603,用于接收所述网络侧发送的目标上行探测导频的标识;处理模块604,用于获取所述网络侧指示的第二上行探测导频资源,并根据所述第二上行探测导频资源和所述目标上行探测导频的标识,发送用于信道测量的上行探测导频。
其中,所述获取模块601具体用于,根据所述网络侧信令或者与所述网络侧的预先约定,获取所述网络侧指示的第一上行探测导频资源。
其中,所述处理模块604包括:获取子模块,用于获取所述网络侧指示的第二上行探测导频资源;处理子模块,用于根据所述第二上行探测导频资源和所述目标上行探测导频的标识,发送用于信道测量的上行探测导频。
具体的,所述获取子模块具体用于,根据所述网络侧信令或者与所述网络侧的预先约定,获取所述网络侧指示的第二上行探测导频资源,其中所述第二上行探测导频资源的数量N为大于或等于0的整数。
其中,所述处理子模块包括:确定单元,用于确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系;选择单元,用于根据所述对应关系,在所述N个第二上行探测导频资源中,选择与所述目标上行探测导频的标识中的第一标识对应的一个或多个第二目标上行探测导频资源;发送单元,用于在所述第一标识对应的波束方向上,发送所述一个或多个第二目标上行探测导频资源。
其中,所述确定单元具体用于,接收所述网络侧发送的对应关系指示信息,并根据所述对应关系指示信息,确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系;或者根据与所述网络侧的预先约定,确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系。
本公开所述装置的工作原理可参照前述方法实施例的描述,且所述装置可位于终端中。
在本公开实施例中,通过向终端指示用于上行波束扫描的第一上行探测导频资源和指示用于信道测量的第二上行探测导频资源,使得终端可以进行上行探测导频的发送,从而进行信道的测量,保证了终端和网络侧的正常通信。
本公开的实施例还提供一种信号处理装置,包括:处理器;以及通过总线接口与所述处理器相连接的存储器,所述存储器用于存储所述处理器在执行操作时所使用的程序和数据,当处理器调用并执行所述存储器中所存储的程序和数据时,包括实现如下的功能模块或单元:
第一指示模块,用于向终端指示第一上行探测导频资源,所述第一上行探测导频资源用于上行波束扫描;
第一接收模块,用于接收所述终端利用所述第一上行探测导频资源发送的上行探测导频;
确定模块,用于根据所述终端发送的上行探测导频确定目标上行探测导频,并向所述终端发送所述目标上行探测导频的标识;
第二指示模块,用于向所述终端指示第二上行探测导频资源,用于使得所述终端根据所述目标上行探测导频的标识和所述第二上行探测导频资源发送用于信道测量的上行探测导频。
本公开的实施例提供一种信号处理装置,包括:处理器;以及通过总线接口与所述处理器相连接的存储器,所述存储器用于存储所述处理器在执行操作时所使用的程序和数据,当处理器调用并执行所述存储器中所存储的程序和数据时,包括实现如下的功能模块或单元:
获取模块,用于获取网络侧指示的第一上行探测导频资源,所述第一上行探测导频资源用于上行波束扫描;
发送模块,用于利用所述第一上行探测导频资源向所述网络侧发送上行探测导频;
接收模块,用于接收所述网络侧发送的目标上行探测导频的标识;
处理模块,用于获取所述网络侧指示的第二上行探测导频资源,并根据 所述第二上行探测导频资源和所述目标上行探测导频的标识,发送用于信道测量的上行探测导频。
如图8所示,本公开实施例还提供一种基站,包括:存储器、处理器和收发机,其中处理器700,用于读取存储器720中的程序,执行下列过程:
向终端指示第一上行探测导频资源,所述第一上行探测导频资源用于上行波束扫描;
接收所述终端利用所述第一上行探测导频资源发送的上行探测导频;
根据所述终端发送的上行探测导频确定目标上行探测导频,并向所述终端发送所述目标上行探测导频的标识;
向所述终端指示第二上行探测导频资源,用于使得所述终端根据所述目标上行探测导频的标识和所述第二上行探测导频资源发送用于信道测量的上行探测导频。
收发机710,用于在处理器700的控制下接收和发送数据。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器700代表的一个或多个处理器和存储器720代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机710可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器700负责管理总线架构和通常的处理,存储器720可以存储处理器700在执行操作时所使用的数据。
处理器700负责管理总线架构和通常的处理,存储器720可以存储处理器700在执行操作时所使用的数据。
处理器700还用于,为所述终端配置第一上行探测导频资源,其中所述第一上行探测导频资源包括M个上行探测导频资源,或者所述第一上行探测导频资源包括一个上行探测导频资源,其中所述一个上行探测导频资源包括M个端口;M为大于0的整数;通过显示信令或者隐性信令向所述终端指示所述第一上行探测导频资源。
处理器700还用于,根据所述终端发送的上行探测导频,选择信号质量 符合预定要求的一个或多个上行探测导频;将所述一个或多个上行探测导频作为所述目标上行探测导频。
处理器700还用于,为所述终端配置第二上行探测导频资源,其中所述第二上行探测导频资源的数量N为大于或等于0的整数;通过显示信令或者隐性信令向所述终端指示所述第二上行探测导频资源。
处理器700还用于,向所述终端发送所述第二上行探测导频资源和所述目标上行探测导频的标识的对应关系。
处理器700还用于,接收所述终端发送的用于信道测量的上行探测导频,并根据所述用于信道测量的上行探测导频进行信道测量。
在本公开实施例中,通过向终端指示用于上行波束扫描的第一上行探测导频资源和指示用于信道测量的第二上行探测导频资源,使得终端可以进行上行探测导频的发送,从而进行信道的测量,保证了终端和网络侧的正常通信。
如图9所示,本公开实施例的终端,包括:处理器800,用于读取存储器820中的程序,执行下列过程:
获取网络侧指示的第一上行探测导频资源,所述第一上行探测导频资源用于上行波束扫描;
利用所述第一上行探测导频资源向所述网络侧发送上行探测导频;
接收所述网络侧发送的目标上行探测导频的标识;
获取所述网络侧指示的第二上行探测导频资源,并根据所述第二上行探测导频资源和所述目标上行探测导频的标识,发送用于信道测量的上行探测导频。
收发机810,用于在处理器800的控制下接收和发送数据。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器800代表的一个或多个处理器和存储器820代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机810可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。 针对不同的用户设备,用户接口830还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器800负责管理总线架构和通常的处理,存储器820可以存储处理器800在执行操作时所使用的数据。
处理器800还用于,根据所述网络侧信令或者与所述网络侧的预先约定,获取所述网络侧指示的第一上行探测导频资源。
处理器800还用于,根据所述网络侧信令或者与所述网络侧的预先约定,获取所述网络侧指示的第二上行探测导频资源,其中所述第二上行探测导频资源的数量N为大于或等于0的整数。
处理器800还用于,确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系;根据所述对应关系,在所述N个第二上行探测导频资源中,选择与所述目标上行探测导频的标识中的第一标识对应的一个或多个第二目标上行探测导频资源;在所述第一标识对应的波束方向上,发送所述一个或多个第二目标上行探测导频资源。
处理器800还用于,接收所述网络侧发送的对应关系指示信息,并根据所述对应关系指示信息,确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系;或者根据与所述网络侧的预先约定,确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系。
在本公开实施例中,通过向终端指示用于上行波束扫描的第一上行探测导频资源和指示用于信道测量的第二上行探测导频资源,使得终端可以进行上行探测导频的发送,从而进行信道的测量,保证了终端和网络侧的正常通信。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连 接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述收发方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (25)

  1. 一种信号处理方法,包括:
    向终端指示第一上行探测导频资源,所述第一上行探测导频资源用于上行波束扫描;
    接收所述终端利用所述第一上行探测导频资源发送的上行探测导频;
    根据所述终端发送的上行探测导频确定目标上行探测导频,并向所述终端发送所述目标上行探测导频的标识;
    向所述终端指示第二上行探测导频资源,用于使得所述终端根据所述目标上行探测导频的标识和所述第二上行探测导频资源发送用于信道测量的上行探测导频。
  2. 根据权利要求1所述的方法,其中,所述向终端指示第一上行探测导频资源,包括:
    为所述终端配置第一上行探测导频资源,其中所述第一上行探测导频资源包括M个上行探测导频资源,或者所述第一上行探测导频资源包括一个上行探测导频资源,其中所述一个上行探测导频资源包括M个端口;M为大于0的整数;
    通过显示信令或者隐性信令向所述终端指示所述第一上行探测导频资源。
  3. 根据权利要求1所述的方法,其中,所述根据所述终端发送的上行探测导频确定目标上行探测导频,包括:
    根据所述终端发送的上行探测导频,选择信号质量符合预定要求的一个或多个上行探测导频;
    将所述一个或多个上行探测导频作为所述目标上行探测导频。
  4. 根据权利要求1所述的方法,其中,所述向所述终端指示第二上行探测导频资源,包括:
    为所述终端配置第二上行探测导频资源,其中所述第二上行探测导频资源的数量N为大于或等于0的整数;
    通过显示信令或者隐性信令向所述终端指示所述第二上行探测导频资源。
  5. 根据权利要求1所述的方法,其中,所述方法还包括:
    向所述终端发送对应关系指示信息,所述对应关系指示信息中包括所述第二上行探测导频资源和所述目标上行探测导频的标识的对应关系;或者
    与所述终端预先约定所述第二上行探测导频资源和所述目标上行探测导频的标识的对应关系。
  6. 根据权利要求1-5任一项所述的方法,还包括:
    接收所述终端发送的用于信道测量的上行探测导频,并根据所述用于信道测量的上行探测导频进行信道测量。
  7. 一种信号处理方法,包括:
    获取网络侧指示的第一上行探测导频资源,所述第一上行探测导频资源用于上行波束扫描;
    利用所述第一上行探测导频资源向所述网络侧发送上行探测导频;
    接收所述网络侧发送的目标上行探测导频的标识;
    获取所述网络侧指示的第二上行探测导频资源,并根据所述第二上行探测导频资源和所述目标上行探测导频的标识,发送用于信道测量的上行探测导频。
  8. 根据权利要求7所述的方法,其中,所述获取网络侧指示的第一上行探测导频资源,包括:
    根据所述网络侧信令或者与所述网络侧的预先约定,获取所述网络侧指示的第一上行探测导频资源。
  9. 根据权利要求7所述的方法,其中,所述获取所述网络侧指示的第二上行探测导频资源,包括:
    根据所述网络侧信令或者与所述网络侧的预先约定,获取所述网络侧指示的第二上行探测导频资源,其中所述第二上行探测导频资源的数量N为大于或等于0的整数。
  10. 根据权利要求7所述的方法,其中,所述根据所述第二上行探测导频资源和所述目标上行探测导频的标识,发送用于信道测量的上行探测导频,包括:
    确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系;
    根据所述对应关系,在所述N个第二上行探测导频资源中,选择与所述目标上行探测导频的标识中的第一标识对应的一个或多个第二目标上行探测导频资源;
    在所述第一标识对应的波束方向上,发送所述一个或多个第二目标上行探测导频资源。
  11. 根据权利要求10所述的方法,其中,所述确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系,包括:
    接收所述网络侧发送的对应关系指示信息,并根据所述对应关系指示信息,确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系;或者
    根据与所述网络侧的预先约定,确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系。
  12. 一种信号处理装置,包括:
    第一指示模块,用于向终端指示第一上行探测导频资源,所述第一上行探测导频资源用于上行波束扫描;
    第一接收模块,用于接收所述终端利用所述第一上行探测导频资源发送的上行探测导频;
    确定模块,用于根据所述终端发送的上行探测导频确定目标上行探测导频,并向所述终端发送所述目标上行探测导频的标识;
    第二指示模块,用于向所述终端指示第二上行探测导频资源,用于使得所述终端根据所述目标上行探测导频的标识和所述第二上行探测导频资源发送用于信道测量的上行探测导频。
  13. 根据权利要求12所述的装置,其中,所述第一指示模块包括:
    第一配置子模块,用于为所述终端配置第一上行探测导频资源,其中所述第一上行探测导频资源包括M个上行探测导频资源,或者所述第一上行探测导频资源包括一个上行探测导频资源,其中所述一个上行探测导频资源包括M个端口;M为大于0的整数;
    第一指示子模块,用于通过显示信令或者隐性信令向所述终端指示所述第一上行探测导频资源。
  14. 根据权利要求12所述的装置,其中,所述确定模块包括:
    选择子模块,用于根据所述终端发送的上行探测导频,选择信号质量符合预定要求的一个或多个上行探测导频;
    确定子模块,用于将所述一个或多个上行探测导频作为所述目标上行探测导频。
  15. 根据权利要求12所述的装置,其中,所述第二指示模块包括:
    第二配置子模块,用于为所述终端配置第二上行探测导频资源,其中所述第二上行探测导频资源的数量N为大于或等于0的整数;
    第二指示子模块,用于通过显示信令或者隐性信令向所述终端指示所述第二上行探测导频资源。
  16. 根据权利要求12所述的装置,其中,所述装置还包括:
    处理模块,用于向所述终端发送对应关系指示信息,所述对应关系指示信息中包括所述第二上行探测导频资源和所述目标上行探测导频的标识的对应关系;或者,用于与所述终端预先约定所述第二上行探测导频资源和所述目标上行探测导频的标识的对应关系。
  17. 根据权利要求12-16任一项所述的装置,其中,所述装置还包括:
    信道测量模块,用于接收所述终端发送的用于信道测量的上行探测导频,并根据所述用于信道测量的上行探测导频进行信道测量。
  18. 一种信号处理装置,包括:
    获取模块,用于获取网络侧指示的第一上行探测导频资源,所述第一上行探测导频资源用于上行波束扫描;
    发送模块,用于利用所述第一上行探测导频资源向所述网络侧发送上行探测导频;
    接收模块,用于接收所述网络侧发送的目标上行探测导频的标识;
    处理模块,用于获取所述网络侧指示的第二上行探测导频资源,并根据所述第二上行探测导频资源和所述目标上行探测导频的标识,发送用于信道测量的上行探测导频。
  19. 根据权利要求18所述的装置,其中,所述获取模块具体用于,根据所述网络侧信令或者与所述网络侧的预先约定,获取所述网络侧指示的第一 上行探测导频资源。
  20. 根据权利要求18所述的装置,其中,所述处理模块包括:
    获取子模块,用于获取所述网络侧指示的第二上行探测导频资源;
    处理子模块,用于根据所述第二上行探测导频资源和所述目标上行探测导频的标识,发送用于信道测量的上行探测导频。
  21. 根据权利要求20所述的装置,其中,所述获取子模块具体用于,根据所述网络侧信令或者与所述网络侧的预先约定,获取所述网络侧指示的第二上行探测导频资源,其中所述第二上行探测导频资源的数量N为大于或等于0的整数。
  22. 根据权利要求20所述的装置,其中,所述处理子模块包括:
    确定单元,用于确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系;
    选择单元,用于根据所述对应关系,在所述N个第二上行探测导频资源中,选择与所述目标上行探测导频的标识中的第一标识对应的一个或多个第二目标上行探测导频资源;
    发送单元,用于在所述第一标识对应的波束方向上,发送所述一个或多个第二目标上行探测导频资源。
  23. 根据权利要求22所述的装置,其中,所述确定单元具体用于,
    接收所述网络侧发送的对应关系指示信息,并根据所述对应关系指示信息,确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系;或者
    根据与所述网络侧的预先约定,确定所述目标上行探测导频的标识中的各标识和N个所述第二上行探测导频资源的对应关系。
  24. 一种基站,包括:存储器、处理器和收发机,其中,
    所述处理器用于读取存储器中的程序,执行下列过程:
    向终端指示第一上行探测导频资源,所述第一上行探测导频资源用于上行波束扫描;
    接收所述终端利用所述第一上行探测导频资源发送的上行探测导频;
    根据所述终端发送的上行探测导频确定目标上行探测导频,并向所 述终端发送所述目标上行探测导频的标识;
    向所述终端指示第二上行探测导频资源,用于使得所述终端根据所述目标上行探测导频的标识和所述第二上行探测导频资源发送用于信道测量的上行探测导频,
    所述收发机,用于接收和发送数据。
  25. 一种终端,包括:存储器、处理器和收发机,其中,
    处理器,用于读取存储器中的程序,执行下列过程:
    获取网络侧指示的第一上行探测导频资源,所述第一上行探测导频资源用于上行波束扫描;
    利用所述第一上行探测导频资源向所述网络侧发送上行探测导频;
    接收所述网络侧发送的目标上行探测导频的标识;
    获取所述网络侧指示的第二上行探测导频资源,并根据所述第二上行探测导频资源和所述目标上行探测导频的标识,发送用于信道测量的上行探测导频,
    收发机,用于接收和发送数据。
PCT/CN2018/078986 2017-03-22 2018-03-14 一种信号处理方法及装置 WO2018171477A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237004263A KR102669754B1 (ko) 2017-03-22 2018-03-14 신호 처리 방법 및 장치
KR1020197030362A KR102590209B1 (ko) 2017-03-22 2018-03-14 신호 처리 방법 및 장치
US16/496,698 US11949620B2 (en) 2017-03-22 2018-03-14 Signal processing method and device
EP18772587.4A EP3606230A4 (en) 2017-03-22 2018-03-14 SIGNAL PROCESSING METHOD AND DEVICE
JP2019552062A JP7096266B2 (ja) 2017-03-22 2018-03-14 信号処理方法および装置
JP2022100630A JP7417673B2 (ja) 2017-03-22 2022-06-22 信号処理方法および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710172854.1A CN108631970B (zh) 2017-03-22 2017-03-22 一种信号处理方法及装置
CN201710172854.1 2017-03-22

Publications (1)

Publication Number Publication Date
WO2018171477A1 true WO2018171477A1 (zh) 2018-09-27

Family

ID=63586296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078986 WO2018171477A1 (zh) 2017-03-22 2018-03-14 一种信号处理方法及装置

Country Status (7)

Country Link
US (1) US11949620B2 (zh)
EP (1) EP3606230A4 (zh)
JP (2) JP7096266B2 (zh)
KR (1) KR102590209B1 (zh)
CN (1) CN108631970B (zh)
TW (1) TWI667906B (zh)
WO (1) WO2018171477A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572896A (zh) * 2008-04-29 2009-11-04 大唐移动通信设备有限公司 一种配置上行探测参考信号的方法和装置
CN103036663A (zh) * 2012-12-06 2013-04-10 北京北方烽火科技有限公司 一种lte系统中分配srs资源的方法、装置和基站
CN104955061A (zh) * 2014-03-28 2015-09-30 华为技术有限公司 波束选择方法及基站
CN105103261A (zh) * 2013-02-27 2015-11-25 三星电子株式会社 在波束形成的大规模mimo系统中的信道探测的方法和装置
US20160127919A1 (en) * 2014-11-03 2016-05-05 Telefonaktiebolaget L M Ericsson (Publ) Efficient beam scanning for high-frequency wireless networks

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4106461B1 (en) * 2008-03-19 2024-01-17 NEC Corporation Wireless communication system, wireless communication setting method, base station, mobile station, and program
US20120281582A1 (en) * 2010-01-08 2012-11-08 Tao Yang Method and apparatus for controlling a user equipment to measure inactive downlink component carrier
CN103974315B (zh) 2013-02-05 2018-01-19 电信科学技术研究院 三维信道测量资源配置和质量测量方法及设备
US9497047B2 (en) 2013-07-02 2016-11-15 Samsung Electronics Co., Ltd. Methods and apparatus for sounding channel operation in millimeter wave communication systems
US20150280796A1 (en) 2014-03-27 2015-10-01 Acer Incorporated Method of Handling Transmissions via Beam Sectors and Related Communication Device
WO2016153405A1 (en) 2015-03-25 2016-09-29 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for handling and assigning uplink pilots
US10848223B2 (en) * 2015-09-01 2020-11-24 Lg Electronics Inc. Method for reporting channel state and apparatus therefor
US11522743B2 (en) * 2016-04-27 2022-12-06 Futurewei Technologies, Inc. Sounding reference signal (SRS) design for cellular time division duplex (TDD) mmWave systems
JP6891419B2 (ja) * 2016-07-29 2021-06-18 ソニーグループ株式会社 端末装置、基地局、方法及び記録媒体
US11050480B2 (en) * 2016-10-06 2021-06-29 Lg Electronics Inc. Method for transmitting SRS in wireless communication system and terminal therefor
CN110431786B (zh) * 2017-01-02 2022-06-03 Lg 电子株式会社 用于上行链路波束校正的srs传输方法及其终端
US11197276B2 (en) * 2017-01-03 2021-12-07 Lg Electronics Inc. Method for transmitting and receiving uplink control channel and sounding reference symbol, and apparatus therefor
KR102271083B1 (ko) * 2017-01-08 2021-07-01 엘지전자 주식회사 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
US10560851B2 (en) * 2017-01-13 2020-02-11 Samsung Electronics Co., Ltd. Method and apparatus for uplink beam management in next generation wireless systems
US10863494B2 (en) * 2018-01-22 2020-12-08 Apple Inc. Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572896A (zh) * 2008-04-29 2009-11-04 大唐移动通信设备有限公司 一种配置上行探测参考信号的方法和装置
CN103036663A (zh) * 2012-12-06 2013-04-10 北京北方烽火科技有限公司 一种lte系统中分配srs资源的方法、装置和基站
CN105103261A (zh) * 2013-02-27 2015-11-25 三星电子株式会社 在波束形成的大规模mimo系统中的信道探测的方法和装置
CN104955061A (zh) * 2014-03-28 2015-09-30 华为技术有限公司 波束选择方法及基站
US20160127919A1 (en) * 2014-11-03 2016-05-05 Telefonaktiebolaget L M Ericsson (Publ) Efficient beam scanning for high-frequency wireless networks

Also Published As

Publication number Publication date
EP3606230A1 (en) 2020-02-05
KR20190129939A (ko) 2019-11-20
US11949620B2 (en) 2024-04-02
KR102590209B1 (ko) 2023-10-16
TWI667906B (zh) 2019-08-01
JP2022130526A (ja) 2022-09-06
CN108631970B (zh) 2020-01-31
EP3606230A4 (en) 2020-03-11
US20200036495A1 (en) 2020-01-30
JP7417673B2 (ja) 2024-01-18
KR20230025497A (ko) 2023-02-21
JP7096266B2 (ja) 2022-07-05
JP2020515177A (ja) 2020-05-21
TW201836311A (zh) 2018-10-01
CN108631970A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
CN110012536B (zh) 用于终端设备的定位方法、装置及系统
US11412400B2 (en) Method for positioning reference design
CN110958686B (zh) 信息处理方法、通信设备及存储介质
US20210112508A1 (en) Communications Method and Apparatus
KR20220046634A (ko) 측정 보고 및 수신 방법, 장치 및 기기
CN111656711B (zh) 用于测试能够确定多个射频信号的相对到达时间或到达角的待测设备(dut)的系统和方法
US20220353715A1 (en) Signal measurement method, terminal, and network side device
CN108259074B (zh) 确定预编码的方法及装置
CN113518302B (zh) 一种定位参考信号配置方法、lmf、基站及终端
US11316634B2 (en) Signal processing method and device
US20230345407A1 (en) Measurement reporting method, measurement reporting device, and positioning server
US11895613B2 (en) Positioning with multiple access points
WO2018171477A1 (zh) 一种信号处理方法及装置
KR102669754B1 (ko) 신호 처리 방법 및 장치
CN111212478A (zh) 确定通信资源的方法、装置、存储介质及电子设备
EP4280719A1 (en) Positioning method and apparatus, device, and storage medium
US20230421995A1 (en) Angle-based positioning improvements in presence of non line of sight reference signals
CN115460535A (zh) 用于定位的通信方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772587

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552062

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197030362

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018772587

Country of ref document: EP

Effective date: 20191022