WO2018171355A1 - 一种波束处理方法、基站及终端 - Google Patents

一种波束处理方法、基站及终端 Download PDF

Info

Publication number
WO2018171355A1
WO2018171355A1 PCT/CN2018/075728 CN2018075728W WO2018171355A1 WO 2018171355 A1 WO2018171355 A1 WO 2018171355A1 CN 2018075728 W CN2018075728 W CN 2018075728W WO 2018171355 A1 WO2018171355 A1 WO 2018171355A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset number
transmit
transmit beams
beams
base station
Prior art date
Application number
PCT/CN2018/075728
Other languages
English (en)
French (fr)
Inventor
杨宇
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2018171355A1 publication Critical patent/WO2018171355A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a beam processing method, a base station, and a terminal.
  • Radio access technology standards such as LTE (Long Term Evolution)/LTE-A (LTE-Advanced) are based on MIMO (Multiple-Input Multiple-Output) + OFDM (Orthogonal Frequency). Based on the Division Multiplexing (Orthogonal Frequency Division Multiplexing) technology.
  • MIMO technology utilizes the spatial freedom that multi-antenna systems can achieve to improve peak rate and system spectrum utilization.
  • MIMO Multiple-User MIMO
  • TM Transmission Mode-8 MU-MIMO transmission in TM Transmission Mode-8 can support up to four downlink data layers.
  • the transmission capability of SU-MIMO Single-User MIMO is extended to a maximum of 8 data layers in Rel-10.
  • Massive MIMO Massive MIMO
  • Massive MIMO technology uses large-scale antenna arrays to greatly improve system bandwidth utilization and support a larger number of access users. Therefore, major research organizations regard Massive MIMO technology as one of the most promising physical layer technologies in the next generation of mobile communication systems.
  • Maxist spatial resolution and optimal MU-MIMO performance can be achieved with full digital arrays in Massive MIMO technology, but this architecture requires a large number of AD (Analog-Digital)/DA (Digital-to-Analog) conversion devices.
  • AD Analog-Digital
  • DA Digital-to-Analog
  • digital-analog hybrid beamforming technology emerges, which is based on the traditional digital domain beamforming, adding a first-order beam assignment to the RF signal near the front end of the antenna system. shape.
  • Analog beamforming enables a relatively coarse match between the transmitted signal and the channel in a relatively simple manner.
  • the dimension of the equivalent channel formed after the analog beamforming is smaller than the actual number of antennas, so the required AD/DA conversion device, the number of digital channels, and the corresponding baseband processing complexity can be greatly reduced.
  • the residual interference of the analog beamforming portion can be processed again in the digital domain to ensure the quality of the MU-MIMO transmission.
  • digital-analog hybrid beamforming is a compromise between performance and complexity. It has a high practical prospect in systems with high bandwidth and large antennas.
  • the operating frequency band supported by the system is raised to above 6 GHz, up to about 100 GHz.
  • the high frequency band has a relatively rich idle frequency resource, which can provide greater throughput for data transmission.
  • 3GPP has completed the modeling of high-frequency channels.
  • the wavelength of high-frequency signals is short.
  • more antenna elements can be arranged on the same size panel, and beamforming technology is used to form more directivity.
  • the analog beamforming is transmitted at full bandwidth, and each polarization direction array element on the panel of each high frequency antenna array can only transmit analog beams in a time division multiplex manner.
  • the shaping weight of the analog beam is achieved by adjusting the parameters of the device such as the RF front-end phase shifter.
  • the training of the simulated beamforming vectors is usually performed by means of polling, that is, the array elements of each polarization direction of each antenna panel are sequentially sent and trained in the time-division multiplexing manner at the appointed time.
  • the signal ie, the candidate shape vector
  • the terminal feedbacks the beam report after the measurement
  • the network side uses the training signal to implement the analog beam transmission in the next transmission service.
  • the content of the beam report typically includes an optimal number of transmit beam identifications and the measured received power of each transmit beam.
  • the high-frequency beam of the large-scale antenna is very narrow (that is, the wavelength of the wireless signal is short), and the signal propagation is more likely to be blocked. When blocked, the communication link is broken, which affects the service transmission. .
  • the related technology after determining the failure of the radio link, initiates radio resource control (Radio Resource Control, RRC for short) reconstruction, performs beam training, finds an optimal beam, and recovers data transmission.
  • RRC Radio Resource Control
  • An object of the present disclosure is to provide a beam processing method, a base station, and a terminal, which solve the problem that the time for recovering the link after the communication link is broken in the related art is long and the delay is large.
  • an embodiment of the present disclosure provides a beam processing method, which is applied to a base station, and includes:
  • the terminal Receiving, by the terminal, the first beam report, where the first beam report includes an identifier of the first preset number of transmit beams;
  • an embodiment of the present disclosure further provides a beam processing method, which is applied to a terminal, and includes:
  • a first beam report Reporting, by the base station, a first beam report, where the first beam report includes an identifier of the first preset number of transmit beams;
  • a second preset number of transmit beams selected from the first preset number of transmit beams according to the terminal capability information or the receive beam group identifier corresponding to each of the transmit beams included in the first beam report
  • the information of the first preset number and the second preset number are greater than or equal to 2;
  • an embodiment of the present disclosure further provides a base station, including:
  • a first report receiving module configured to receive a first beam report reported by the terminal, where the first beam report includes an identifier of a first preset number of transmit beams;
  • a first selection module configured to select a second pre-selection from the first preset number of transmit beams according to the terminal capability information or the receive beam group identifier corresponding to each of the transmit beams included in the first beam report Setting a number of transmit beams, the first preset number and the second preset number are both greater than or equal to 2;
  • a channel transmission module configured to send information about the second preset number of transmit beams to the terminal, and transmit the control channel and the data channel by using the second preset number of transmit beams.
  • an embodiment of the present disclosure further provides a terminal, including:
  • a first reporting module configured to report a first beam report to the base station, where the first beam report includes an identifier of the first preset number of transmit beams;
  • a first information receiving module configured to receive, by the base station, the selected one of the first preset number of transmit beams according to the terminal capability information or the received beam group identifier corresponding to each of the transmit beams included in the first beam report.
  • a second preset number of transmit beam information configured to receive, by the base station, the selected one of the first preset number of transmit beams according to the terminal capability information or the received beam group identifier corresponding to each of the transmit beams included in the first beam report.
  • a channel receiving module configured to receive, by using a receive beam corresponding to the second preset number of transmit beams, a control channel and a data channel that are transmitted by the base station by using the second preset number of transmit beams.
  • an embodiment of the present disclosure further provides a base station, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor implementing the computer program The steps in the beam processing method applied to the base station as described above.
  • an embodiment of the present disclosure further provides a terminal, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, when the processor executes the computer program The steps in the beam processing method applied to the terminal as described above.
  • an embodiment of the present disclosure further provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program, and when the computer program is executed by a processor, implements a beam processing method applied to a base station as described above The steps in .
  • an embodiment of the present disclosure further provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program, and when the computer program is executed by a processor, implements a beam processing method applied to a terminal as described above The steps in .
  • the base station determines whether the terminal can simultaneously monitor more by using the terminal capability information or the received beam group identifier corresponding to each of the transmit beams included in the first beam report reported by the terminal. a pair of beam-to-links; and in the case that the terminal can simultaneously monitor multiple beam-pair links, the base station can select a second predetermined number of transmit beams from the first predetermined number of transmit beams, and pass the The second predetermined number of transmit beams transmit the control channel and the data channel, which can improve the link recovery speed, reduce the delay caused by link recovery, and improve the user experience.
  • FIG. 1 is a flow chart showing the steps of a beam processing method for a base station according to some embodiments of the present disclosure
  • FIG. 2 is a flow chart showing the steps of a beam processing method for a terminal provided by some embodiments of the present disclosure
  • FIG. 3 is a schematic structural diagram of a base station according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a terminal provided by some embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram showing another structure of a terminal provided by some embodiments of the present disclosure.
  • FIG. 6 is still another schematic structural diagram of a terminal provided by some embodiments of the present disclosure.
  • FIG. 7 is a schematic diagram showing another structure of a base station according to some embodiments of the present disclosure.
  • FIG. 8 is a block diagram showing still another structure of a base station according to some embodiments of the present disclosure.
  • some embodiments of the present disclosure provide a beam processing method, which is applied to a base station, and includes:
  • Step 101 Receive a first beam report reported by the terminal, where the first beam report includes an identifier of a first preset number of transmit beams.
  • the first preset number reported in the first beam report is used to ensure the stability of the beam pair link and the stability of the data transmission due to the number of beam pair links between the base station and the terminal.
  • the identifier of the transmit beam is not any first predetermined number of transmit beams, but a first preset number of transmit beams satisfying a preset condition; that is, the first preset number included in the first beam report.
  • the received power of the transmit beam is greater than a predetermined value.
  • the received power of the transmit beam is specifically a reference signal received by the transmit beam (Reference Signal Received Power, RSRP for short).
  • the first beam report may be obtained by the terminal performing beam training according to the reference signal, or may be obtained by the terminal monitoring the beam pair link.
  • the reporting of the first beam report by the terminal may be periodic or aperiodic active reporting, or may be passive reporting based on the trigger signaling of the base station.
  • Step 102 Select a second preset number of transmissions from the first preset number of transmit beams according to the terminal capability information or the receive beam group identifier corresponding to each of the transmit beams included in the first beam report.
  • the beam, the first preset number and the second preset number are both greater than or equal to 2.
  • the base station before selecting a second preset number of transmit beams from the first preset number of transmit beams, the base station further needs to receive, according to the terminal capability information or the first transmit beam, the corresponding receive beam
  • the beam group identifies that the terminal can simultaneously monitor multiple beam pair links and initiate a multi-beam monitoring mechanism. Specifically, when the current state of the base station meets a preset start condition, the multi-beam monitoring mechanism is started.
  • the preset start condition is generally a start condition of the multi-beam pair link monitoring mechanism, which may be based on the amount of data to be transmitted in the buffer of the base station. If the data amount is greater than a threshold, it indicates that the base station needs a longer time to perform. In this case, multiple beam pair links need to be established at the same time between the base station and the terminal. That is, the multi-beam monitoring mechanism needs to be started to prevent the high-frequency communication link from being blocked.
  • the base station determines that the terminal cannot monitor multiple beam pair links at the same time according to the terminal capability information or the received beam group identifier corresponding to each of the transmit beams included in the first beam report, In the following case, the subsequent operations are performed according to the related art process, and will not be described in detail herein.
  • the Beam Pair Link includes a base station transmit beam and a terminal receive beam corresponding to the base station transmit beam.
  • Step 103 Send the information of the second preset number of transmit beams to the terminal, and transmit the control channel and the data channel by using the second preset number of transmit beams.
  • the base station transmits the control channel and the data channel on the second preset number of transmit beams determined in step 102; correspondingly, the terminal simultaneously monitors the second preset number of beam pair links (the second preset number of The beam pair link includes a second preset number of transmit beams and a second predetermined number of receive beams respectively corresponding to the respective transmit beams, and obtains control information for control channel transmission from the second preset number of transmit beams. And then receive the data channel according to the indication of the control information.
  • the step of transmitting the information of the second preset number of transmit beams to the terminal in step 103 includes: transmitting information of the second preset number of transmit beams by using beam indication signaling carried by the downlink control channel Sending to the terminal; that is, carrying the information of the second preset number of transmit beams in the beam indication signaling, after the terminal receives the beam indication signaling, parsing the beam indication signaling to determine the second preset The number of transmitted beam information.
  • the information about the second preset number of transmit beams includes: a second preset number of transmit beam identifiers, a second preset number of reference signal resource configuration information on the transmit beam, and a second preset number of transmit beams.
  • the time parameter may be a periodic transmission parameter of the second preset number of transmit beams or a non-periodic transmission parameter of the information of the second preset number of transmit beams, and is not specifically limited herein.
  • the first beam report further includes a received power corresponding to the first preset number of transmit beams; and correspondingly, step 102 includes:
  • the base station selects a second preset number of transmit beams from the first preset number of transmit beams, not only the terminal capability information or the receive beam group identifier but also the received power of the transmit beam needs to be considered; preferably, the base station needs to A second predetermined number of transmit beams with a larger received power are selected as the plurality of transmit beams to be simultaneously used by the base station.
  • the foregoing terminal capability information may be included in the first beam report, or may be reported by the terminal; when the terminal capability information is reported by the terminal, before the step 101, the method further includes: receiving the reported by the terminal The terminal capability information.
  • the terminal may report the terminal capability information to the base station according to the capability reporting mechanism in the related technical standard, for example, the terminal capability information is reported after the terminal accesses the network, and some embodiments of the present disclosure need
  • the information indicating whether the terminal can simultaneously monitor the multi-beam pair link is added to the original terminal capability information, or the original terminal capability information is replaced, and is not specifically limited herein.
  • the terminal capability information includes: the terminal adopts all-digital beamforming reception, or the terminal has only a single analog beamforming at the same time (for example, the analog beamforming receiving capability of the terminal is a single antenna array panel).
  • the base station determines, according to the terminal capability information, that the terminal adopts all-digital beamforming reception, determining that the terminal can simultaneously monitor multiple beam pair links; the base station selects from the first preset number of transmit beams. A second predetermined number of transmit beams of any combination.
  • the content of the first beam report is shown in Table 1.
  • the base station can arbitrarily use multiple BPLs in the report for simultaneous monitoring.
  • the base station determines, according to the terminal capability information, that the terminal has only a single analog beamforming at the same time, it is determined that the terminal cannot simultaneously monitor multiple beam pair links; and the base station performs subsequent steps according to the related art process.
  • the contents of the first beam report are as shown in Table 2.
  • the base station can only use a single BPL transmission, and cannot initiate the multi-BPL listening mechanism of the beam recovery mechanism.
  • the base station is configured to: according to the receive beam group identifier corresponding to each of the transmit beams included in the first beam report, Selecting a second predetermined number of transmit beams from the first predetermined number of transmit beams.
  • the contents of the first beam report are as shown in Table 3.
  • the base station determines the multiple BPLs that are simultaneously monitored according to the terminal receiving the beam group identifier.
  • the default terminal uses the analog beam to receive and measure the downlink beam, and the terminal does not need to add a new signaling or bit.
  • the manner in which the terminal receives the measurement downlink beam is saved, and the signaling resource is saved.
  • the manner in which the terminal adds a signaling or a bit to indicate that the terminal receives the measurement downlink beam is also applicable to the present application.
  • the receive beams in the same receive beam group are from different antenna array panels, select a second preset number of transmit beams corresponding to the same receive beam group identifier from the first preset number of transmit beams.
  • a second predetermined number of transmitting beams respectively corresponding to different receiving beam group identifiers are selected from the first preset number of transmitting beams.
  • the terminal may not be able to simultaneously monitor multiple beam pair links; specifically, when in the same receive beam group
  • the terminal may not be able to simultaneously monitor multiple beam pair links; specifically, when in the same receive beam group
  • the terminal may not be able to simultaneously monitor multiple beam pair links; specifically, when in the same receive beam group
  • each receive beam group contains only one receive beam, it is determined that the terminal cannot simultaneously monitor multiple beam pair links; when all receive beams in the same receive beam group are from In the case of the same antenna array panel, if all the transmit beams in the first beam report correspond to the same receive beam group identifier, it is determined that the terminal cannot simultaneously monitor multiple beam pair links.
  • selecting, by the first preset number of receive beams a receive beam corresponding to the second preset number of transmit beams.
  • the first beam report is shown in Table 4:
  • the first beam report reported by the terminal may be periodic or aperiodic active reporting, or may be passively reported based on the base station's trigger signaling; when the first beam report is based on When the trigger signaling of the base station is passively reported, the beam processing method before step 101 further includes:
  • the terminal Receiving a second beam report reported by the terminal, and initiating a multi-beam monitoring mechanism, and transmitting downlink trigger signaling to the terminal, where the second beam report includes a third preset number of transmit beam identifiers; And when the current state of the base station meets the preset start condition, the multi-beam monitoring mechanism is started.
  • a reference signal is transmitted to the terminal.
  • the base station sends downlink trigger signaling to the terminal, after the base station determines that it meets the preset start condition and starts the multi-beam pair link monitoring mechanism, so that the terminal is based on the terminal.
  • the downlink trigger signaling reports the first beam report.
  • the preset starting condition is generally a starting condition of the multi-beam pair link monitoring mechanism, which may be based on the amount of data to be transmitted in the buffer of the base station. If the data volume is greater than a threshold, the base station needs to be longer. Time to transmit, in this case, multiple beam pair links need to be established at the same time between the base station and the terminal, that is, the multi-beam monitoring mechanism needs to be started at this time to prevent the high-frequency communication link from being blocked.
  • the first beam report or the second beam report may be obtained by the terminal performing beam training based on the reference signal, or may be obtained by the base station based on the channel quality of the channel (control channel or data channel) of the transmission beam transmission, which is not specifically limited herein.
  • step of transmitting, by using the second preset number of transmit beams, the control channel in step 103 in some embodiments of the present disclosure includes:
  • the second predetermined number of transmit beams are set to be master-slave levels, and the control channels are transmitted on the second predetermined number of transmit beams using the same or different periods, respectively.
  • the same information is included in the control channel transmitted on the second preset number of transmit beams;
  • the control channel transmitted on the primary transmit beam contains control information
  • the control channel transmitted from the transmit beam contains the same control information as that transmitted by the primary transmit beam.
  • Information, part of the information of the control information transmitted by the main transmit beam, or a reference signal that is, the control channel of the primary transmit beam contains complete control information, and the control information from the transmit beam can completely replicate the control information on the primary transmit beam, or only part of the control information on the primary transmit beam; or, from the transmit beam Only the reference signal is transmitted for the terminal to measure the quality of the link from the beam pair.
  • step of transmitting, by using the second preset number of transmit beams, the data channel in step 103 in some embodiments of the present disclosure includes:
  • some embodiments of the present disclosure describe the beam processing method from the base station side, specifically, the receiving beam group corresponding to each of the transmitting beams included in the first beam report reported by the base station by the base station.
  • the terminal can quickly switch to the other beam pair to receive the control channel and the data channel, improve the link recovery speed, reduce the delay caused by the link recovery, and improve the user experience.
  • some embodiments of the present disclosure further provide a beam processing method, which is applied to a terminal, and includes:
  • Step 201 Report a first beam report to the base station, where the first beam report includes an identifier of the first preset number of transmit beams.
  • the first preset number reported in the first beam report is used to ensure the stability of the beam pair link and the stability of the data transmission due to the number of beam pair links between the base station and the terminal.
  • the identifier of the transmit beam is not any first predetermined number of transmit beams, but a first preset number of transmit beams satisfying a preset condition; that is, the first preset number included in the first beam report.
  • the received power of the transmit beam is greater than a predetermined value.
  • the receiving power of the transmitting beam is specifically the transmit beam reference signal receiving power RSRP.
  • the first beam report may be obtained by the terminal performing beam training according to the reference signal, or may be obtained by the terminal monitoring the beam pair link.
  • the reporting of the first beam report by the terminal may be periodic or aperiodic active reporting, or may be passive reporting based on the trigger signaling of the base station. When the terminal is passively reported based on the trigger signaling of the base station.
  • Step 202 Receive, by the base station, a second preset quantity selected from the first preset number of transmit beams according to the terminal capability information or the receive beam group identifier corresponding to each of the transmit beams included in the first beam report.
  • the information of the transmit beam; the first preset number and the second preset number are both greater than or equal to 2.
  • the beam pair link includes a base station transmit beam and a terminal receive beam corresponding to the base station transmit beam; the beam pair link may be referred to as BPL for short.
  • Step 203 Receive, by using a receive beam corresponding to a second preset number of transmit beams, a control channel and a data channel that are transmitted by the base station by using the second preset number of transmit beams.
  • the base station transmits the control channel and the data channel on the second preset number of transmit beams determined in step 202; correspondingly, the terminal simultaneously monitors the second preset number of beam pair links (the second preset number of The beam pair link includes a second preset number of transmit beams and a second predetermined number of receive beams respectively corresponding to the respective transmit beams, and obtains control information for control channel transmission from the second preset number of transmit beams. And then receive the data channel according to the indication of the control information.
  • step 203 includes:
  • the first predetermined number of transmit beams are received by the receiving base station according to the terminal capability information or the received beam group identifier corresponding to each of the transmit beams included in the first beam report by using the beam indication signaling carried by the downlink control channel. Selecting a second preset number of transmit beam information, that is, carrying the information of the second preset number of transmit beams in the beam indication signaling, and after the terminal receives the beam indication signaling, the beam indication signal The analysis is performed to determine information of the second predetermined number of transmit beams.
  • the information about the second preset number of transmit beams includes: a second preset number of transmit beam identifiers, a second preset number of reference signal resource configuration information on the transmit beam, and a second preset number of transmit beams.
  • the time parameter may be a periodic transmission parameter of the second preset number of transmit beams or a non-periodic transmission parameter of the information of the second preset number of transmit beams, and is not specifically limited herein.
  • the first beam report further includes a received power corresponding to the first preset number of transmit beams; and correspondingly, step 202 includes:
  • the information of the transmitted beam is
  • the base station selects a second preset number of transmit beams from the first preset number of transmit beams, not only the terminal capability information or the receive beam group identifier but also the received power of the transmit beam needs to be considered; preferably, the base station needs to A second predetermined number of transmit beams with a larger received power are selected as the plurality of transmit beams to be simultaneously used by the base station.
  • the foregoing terminal capability information may be included in the first beam report, or may be reported by the terminal.
  • the method further includes: reporting the terminal to the base station. Capability information.
  • the terminal capability information includes: the terminal adopts all-digital beamforming reception, or the terminal has only a single analog beamforming at the same time (for example, the analog beamforming receiving capability of the terminal is a single antenna array panel).
  • the terminal capability information indicates that the terminal adopts all-digital beamforming reception
  • receiving, by the base station information of a second preset number of transmit beams of any combination selected from the first preset number of transmit beams.
  • the terminal capability information includes: when the terminal has only a single analog beamforming at the same time, the base station performs subsequent operations according to the related technical process, and is not specifically limited herein.
  • the first beam report further includes an identifier of the first preset number of receive beams, and the first preset number of transmit beams and the first preset number of receive Corresponding relationship between the beams; after the corresponding step 201, the beam processing method further includes:
  • the receiving base station selects information of the receiving beam corresponding to the second preset number of transmitting beams from the first preset number of receiving beams.
  • the first beam report reported by the terminal may be periodic or aperiodic active reporting, or may be passively reported based on the base station's trigger signaling; when the first beam report is based on When the trigger signaling of the base station is passively reported, the beam processing method before step 201 further includes:
  • a second beam report Reporting, by the base station, a second beam report, where the second beam report includes a third preset number of transmit beam identifiers, receiving downlink trigger signaling sent by the base station, and reporting the first beam report to the base station based on the downlink trigger signaling ;
  • the base station uses a different transmit beam to transmit the reference signal in a cyclic or aperiodic manner.
  • the period may be configured or preset by higher layer signaling (for example, a reference period of a reference signal is specified in the standard, etc.); the non-period may be actively triggered by the base station, that is, the base station autonomously decides to transmit the reference signal at a certain moment, This is not specifically limited.
  • the base station sends downlink trigger signaling to the terminal, after the base station determines that it meets the preset start condition and starts the multi-beam pair link monitoring mechanism, so that the terminal is based on the terminal.
  • the downlink trigger signaling reports the first beam report.
  • the preset starting condition is generally a starting condition of the multi-beam pair link monitoring mechanism, which may be based on the amount of data to be transmitted in the buffer of the base station. If the data volume is greater than a threshold, the base station needs to be longer. Time to transmit, in this case, multiple beam pair links need to be established at the same time between the base station and the terminal, that is, the multi-beam monitoring mechanism needs to be started at this time to prevent the high-frequency communication link from being blocked.
  • the first beam report or the second beam report may be obtained by the terminal performing beam training based on the reference signal, or may be obtained by the base station based on the channel quality of the channel (control channel or data channel) of the transmission beam transmission, which is not specifically limited herein.
  • the base station is configured to: according to the receive beam group identifier corresponding to each of the transmit beams included in the first beam report, Selecting a second predetermined number of transmit beams from the first predetermined number of transmit beams.
  • the receiving base station selects a second preset number of the same receiving beam group identifier from the first preset number of transmitting beams.
  • the information of the transmit beam when all the receive beams in the same receive beam group are from the same antenna array panel, the receiving base station selects a second pre-selection corresponding to different receive beam group identifiers from the first preset number of transmit beams Set the number of transmit beam information.
  • step 203 includes:
  • the receive channel transmitted by the base station by using the second preset number of transmit beams is received by the receive beam corresponding to the second preset number of transmit beams;
  • the receive beam corresponding to the primary transmit beam, the control channel transmitted by the base station through the primary transmit beam, and the receive base station corresponding to the receive beam from the receive beam A control channel or reference signal that transmits a beam transmission.
  • the control channel transmitted on the primary transmit beam contains control information
  • the control channel transmitted from the transmit beam contains the same control information as that transmitted by the primary transmit beam.
  • step 203 further includes
  • some embodiments of the present disclosure describe the beam processing method from the base station side, specifically, the receiving beam group corresponding to each of the transmitting beams included in the first beam report reported by the base station by the base station.
  • the terminal can quickly switch to the other beam pair to receive the control channel and the data channel, improve the link recovery speed, reduce the delay caused by the link recovery, and improve the user experience.
  • some embodiments of the present disclosure further provide a base station 300, including:
  • the first report receiving module 301 is configured to receive a first beam report reported by the terminal, where the first beam report includes an identifier of a first preset number of transmit beams;
  • the first selection module 302 is configured to select a second one of the first preset number of transmit beams according to the terminal capability information or the receive beam group identifier corresponding to each of the transmit beams included in the first beam report. a preset number of transmit beams, the first preset number and the second preset number are both greater than or equal to 2;
  • the channel transmission module 303 is configured to send information about the second preset number of transmit beams to the terminal, and transmit the control channel and the data channel by using the second preset number of transmit beams.
  • the base station further includes:
  • a first determining module configured to determine, according to the terminal capability information or the received beam group identifier corresponding to each of the transmit beams included in the first beam report, that the terminal can simultaneously monitor multiple beam pair links.
  • the terminal capability information is included in the first beam report.
  • the base station further includes:
  • the capability receiving module is configured to receive the terminal capability information reported by the terminal.
  • the first selection module includes:
  • a first determining submodule configured to determine, according to the terminal capability information, that the terminal adopts all-digital beamforming reception
  • the first selection submodule is configured to select, from the first preset number of transmit beams, a second preset number of transmit beams of any combination.
  • the base station further includes:
  • a second determining module configured to: when determining, according to the terminal capability information, that the terminal has only a single analog beamforming at the same time, determining that the terminal cannot simultaneously monitor multiple beam pair links.
  • the first selection module includes:
  • a second selection sub-module configured to: when all the receiving beams in the same receiving beam group are from different antenna array panels, select a second pre-corresponding to the same receiving beam group identifier from the first preset number of transmitting beams Set a number of transmit beams;
  • a third selection sub-module configured to: when all the receiving beams in the same receiving beam group are from the same antenna array panel, select a second corresponding to different receiving beam group identifiers from the first preset number of transmitting beams A preset number of transmit beams.
  • the base station further includes:
  • a third determining module configured to: when each receiving beam in the same receiving beam group is from different antenna array panels, if each receiving beam group includes only one receiving beam, determining that the terminal cannot simultaneously monitor multiple beam pair chains road;
  • a fourth determining module configured to: when all receiving beams in the same receiving beam group are from the same antenna array panel, if all the transmitting beams in the first beam report correspond to the same receiving beam group identifier, determine the terminal Multiple beam pair links cannot be monitored at the same time.
  • the first beam report further includes an identifier of a first preset number of receive beams, and the first preset number of transmit beams and the first preset number of Corresponding relationship between receiving beams;
  • the base station further includes:
  • a second selection module configured to select, from the first preset number of receive beams, a receive beam corresponding to the second preset number of transmit beams.
  • the base station further includes:
  • a triggering module configured to receive a second beam report reported by the terminal, where the second beam report includes an identifier of a third preset number of transmit beams, and sends downlink trigger signaling to the terminal;
  • a signal sending module configured to transmit a reference signal to the terminal.
  • the base station further includes:
  • a startup module configured to start the multi-beam monitoring mechanism when a current state of the base station meets a preset startup condition.
  • the first beam report further includes a received power corresponding to the first preset number of transmit beams
  • the first selection module includes:
  • a fourth selection submodule configured to select a maximum received power from the first preset number of transmit beams according to the terminal capability information or the receive beam group identifier corresponding to each of the transmit beams included in the first beam report The second predetermined number of transmit beams.
  • the channel transmission module includes:
  • An information sending submodule configured to send, by using the beam indication signaling carried by the downlink control channel, the information of the second preset number of transmit beams to the terminal, where
  • the information of the second preset number of transmit beams includes: a second preset number of transmit beam identifiers, a second preset number of reference signal resource configuration information on the transmit beam, and a second preset number of transmit beam times parameter.
  • the channel transmission module includes:
  • a first channel transmission submodule configured to set the second preset number of transmit beams to be equal levels, and transmit control channels on the second preset number of transmit beams respectively using the same period;
  • the second channel transmission submodule is configured to set the second preset number of transmit beams to be master-slave levels, and transmit control channels on the second preset number of transmit beams respectively using the same or different periods.
  • the same information is included in the control channel transmitted on the second preset number of transmit beams;
  • the control channel transmitted on the primary transmit beam contains control information
  • the control channel transmitted from the transmit beam contains the same control information as that transmitted by the primary transmit beam.
  • the channel transmission module includes:
  • a third channel transmission submodule configured to transmit a data channel on the second preset number of transmit beams by using a distributed multiple input multiple output mode, a multiple stream transmission mode, or an alternate transmission mode;
  • a fourth channel transmission submodule configured to transmit a data channel on one of the second predetermined number of transmit beams or the plurality of transmit beams.
  • the base station determines whether the terminal can simultaneously monitor multiple times by using the terminal capability information or the received beam group identifier corresponding to each of the transmit beams included in the first beam report reported by the terminal.
  • the base station can select a second predetermined number of transmit beams from the first predetermined number of transmit beams, and pass the The second predetermined number of transmit beams transmit the control channel and the data channel, and the corresponding terminal can simultaneously monitor the beam pair link corresponding to the second preset number of transmit beams, and when one of the beam pair links is blocked, the terminal can Fast switching to other beam pair links to receive control channels and data channels, improve link recovery speed, reduce delay caused by link recovery, and improve user experience.
  • the base station provided by some embodiments of the present disclosure is a base station capable of implementing the beam processing method described above, and all embodiments of the foregoing beam processing method are applicable to the base station, and all of the same or similar beneficial effects can be achieved.
  • some embodiments of the present disclosure further provide a terminal 400, including:
  • the first reporting module 401 is configured to report a first beam report to the base station, where the first beam report includes an identifier of the first preset number of transmit beams;
  • the first information receiving module 402 is configured to receive, by the base station, the first preset number of transmit beams according to the terminal capability information or the receive beam group identifier corresponding to each of the transmit beams included in the first beam report.
  • the second predetermined number of transmit beam information; the first preset number and the second preset number are both greater than or equal to 2;
  • the channel receiving module 403 is configured to receive, by using a receive beam corresponding to the second preset number of transmit beams, a control channel and a data channel that are transmitted by the base station by using the second preset number of transmit beams.
  • the terminal capability information in some embodiments of the present disclosure is included in the first beam report.
  • the terminal in some embodiments of the present disclosure further includes:
  • the second reporting module is configured to report the terminal capability information to the base station.
  • the information receiving module includes:
  • a first information receiving submodule configured to: when the terminal capability information indicates that the terminal adopts all-digital beamforming reception, receive a second pre-selection of any combination selected by the base station from the first preset number of transmit beams Set the number of transmit beam information.
  • the first beam report further includes an identifier of the first preset number of receive beams, and the first preset number of transmit beams and the first preset number of receive Correspondence between beams;
  • the terminal further includes:
  • the second information receiving module is configured to receive information that the base station selects a receiving beam corresponding to the second preset number of transmitting beams from the first preset number of receiving beams.
  • the terminal in some embodiments of the present disclosure further includes:
  • a third reporting module configured to report a second beam report to the base station, where the second beam report includes a third preset number of transmit beam identifiers, receive downlink trigger signaling sent by the base station, and based on the downlink trigger signaling Reporting the first beam report to the base station;
  • the reference signal receiving module is configured to receive a reference signal transmitted by the base station.
  • the first beam report further includes a received power corresponding to the first preset number of transmit beams
  • the first information receiving module includes:
  • a first information receiving submodule configured to receive, by the base station, a selected one of the first preset number of transmit beams according to the terminal capability information or the received beam group identifier corresponding to each of the transmit beams included in the first beam report. Receiving information of a second predetermined number of transmit beams with the highest power.
  • the first information receiving module in some embodiments of the present disclosure includes:
  • a second information receiving submodule configured to: when all receiving beams in the same receiving beam group are from different antenna array panels, the receiving base station selects the same receiving beam group identifier from the first preset number of transmitting beams Information of a second predetermined number of transmit beams;
  • a third information receiving submodule configured to: when all receiving beams in the same receiving beam group are from the same antenna array panel, the receiving base station respectively selects different receiving beam group identifiers from the first preset number of transmitting beams The second predetermined number of transmit beam information.
  • the first information receiving module in some embodiments of the present disclosure includes:
  • a fourth information receiving submodule configured to receive, by using the beam indication signaling carried by the downlink control channel, the receiving base station according to the terminal capability information or the receiving beam group identifier corresponding to each of the transmitting beams included in the first beam report Selecting a second predetermined number of transmit beams from the first predetermined number of transmit beams;
  • the information of the second preset number of transmit beams includes: a second preset number of transmit beam identifiers, a second preset number of reference signal resource configuration information on the transmit beam, and a second preset number of transmit beam times parameter.
  • the channel receiving module in some embodiments of the present disclosure includes:
  • a first channel receiving submodule configured to: when the second preset number of transmit beams are equal, the receiving base station passes the second preset number of transmit beams by using a receive beam corresponding to the second preset number of transmit beams Control channel for transmission;
  • a second channel receiving submodule configured to: if a second predetermined number of transmit beams are at a master-slave level, receive a control channel transmitted by the base station through the primary transmit beam, and pass and transmit from the transmit beam by using a receive beam corresponding to the primary transmit beam The corresponding receiving beam receives the control channel or reference signal transmitted by the base station from the transmitting beam.
  • the same information is included in the control channel transmitted on the second preset number of transmit beams;
  • the control channel transmitted on the primary transmit beam contains control information
  • the control channel transmitted from the transmit beam contains the same control information as that transmitted by the primary transmit beam.
  • the channel receiving module in some embodiments of the present disclosure includes:
  • a third channel receiving submodule configured to receive, according to the indication of the control channel, a data channel that is transmitted by the base station by using the second preset number of transmit beams.
  • the base station when the terminal reports the first beam report, uses the terminal capability information or the received beam group identifier corresponding to each of the transmit beams included in the first beam report reported by the terminal. Determining whether the terminal can monitor multiple beam pair links at the same time; and in the case that the terminal can simultaneously monitor multiple beam pair links, the base station can select a second preset number from the first preset number of transmit beams.
  • the terminal can simultaneously monitor the pair of beam pairs corresponding to the second preset number of transmit beams, and then one of the beam pairs When the link is blocked, the terminal can quickly switch to the other beam pair to receive the control channel and the data channel, improve the link recovery speed, reduce the delay caused by the link recovery, and improve the user experience.
  • the terminal provided by some embodiments of the present disclosure is a terminal capable of implementing the beam processing method described above, and all embodiments of the beam processing method are applicable to the terminal, and all of the same or similar beneficial effects can be achieved.
  • FIG. 5 is another block diagram of a terminal provided by some embodiments of the present disclosure.
  • the mobile terminal 500 shown in FIG. 5 includes at least one processor 501, a memory 502, at least one network interface 504, and other user interfaces 503.
  • the various components in mobile terminal 500 are coupled together by a bus system 505.
  • bus system 505 is used to implement connection communication between these components.
  • the bus system 505 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 505 in FIG.
  • the user interface 503 may include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, etc.
  • memory 502 in some embodiments of the present disclosure can be either volatile memory or non-volatile memory, or can include both volatile and nonvolatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • Memory 502 of the systems and methods described herein is intended to comprise, without being limited to, these and any other suitable types of memory.
  • memory 502 stores elements, executable modules or data structures, or a subset thereof, or their extended set: operating system 5021 and application 5022.
  • the operating system 5021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 5022 includes various applications, such as a media player (Media Player), a browser (Browser), etc., for implementing various application services. Programs that implement some of the embodiment methods of the present disclosure may be included in the application 5022.
  • the program or instruction stored in the memory 502 may be a program or an instruction stored in the application 5022, and the processor 501 is configured to report a first beam report to the base station, where the a beam report includes an identifier of a first preset number of transmit beams; the receiving base station according to the terminal capability information or the receive beam group identifier corresponding to each of the transmit beams included in the first beam report, from the first preset Information of a second predetermined number of transmit beams selected from the number of transmit beams; the first preset number and the second preset number are both greater than or equal to 2; by corresponding to a second preset number of transmit beams The receiving beam receives the control channel and the data channel transmitted by the base station through the second preset number of transmit beams.
  • Processor 501 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 501 or an instruction in a form of software.
  • the processor 501 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 502, and the processor 501 reads the information in the memory 502 and completes the steps of the above method in combination with its hardware.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described herein In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the terminal capability information is included in the first beam report.
  • the processor 501 is further configured to report the terminal capability information to the base station.
  • the processor 501 is further configured to, when the terminal capability information indicates that the terminal adopts all-digital beamforming reception, receive a second of any combination selected by the base station from the first preset number of transmit beams. A preset number of transmit beam information.
  • the first beam report further includes an identifier of the first preset number of receive beams, and a correspondence between the first preset number of transmit beams and the first preset number of receive beams
  • the processor 501 is further configured to receive information that the base station selects a receive beam corresponding to the second preset number of transmit beams from the first preset number of receive beams.
  • the processor 501 is further configured to report a second beam report to the base station, where the second beam report includes an identifier of a third preset number of transmit beams, and receives downlink trigger signaling sent by the base station, and is based on the downlink The triggering signaling reports the first beam report to the base station; or receives the reference signal transmitted by the base station.
  • the first beam report further includes a received power corresponding to the first preset number of transmit beams
  • the processor 501 is further configured to receive, by the base station, the terminal capability information or the And a received beam group identifier corresponding to the transmit beam, and information of a second preset number of transmit beams with the highest received power selected from the first preset number of transmit beams.
  • the processor 501 is further configured to: when all the receiving beams in the same receiving beam group are from different antenna array panels, the receiving base station selects the same receiving beam group identifier from the first preset number of transmitting beams. Information of a second predetermined number of transmit beams;
  • the receiving base station selects, from the first preset number of transmitting beams, a second preset number of transmitting beams respectively corresponding to different receiving beam group identifiers. Information.
  • the processor 501 is further configured to: receive, by using the beam indication signaling carried by the downlink control channel, the receiving base station according to the terminal capability information or the received beam group identifier corresponding to each of the transmit beams included in the first beam report.
  • the information of the second preset number of transmit beams is selected by the first preset number of transmit beams, where the information of the second preset number of transmit beams includes: a second preset number of transmit beam identifiers, a reference signal resource configuration information on the second predetermined number of transmit beams and a time parameter of the second predetermined number of transmit beams.
  • the processor 501 is further configured to: when the second preset number of transmit beams are equal, the receiving base station passes the second preset number of transmissions by using a receive beam corresponding to the second preset number of transmit beams. a control channel for beam transmission; if the second predetermined number of transmit beams are at a master-slave level, the receive beam transmitted by the base station through the primary transmit beam is received through the receive beam corresponding to the primary transmit beam, and received through the corresponding transmit beam A beam that receives a control channel or reference signal transmitted by the base station from the transmit beam.
  • the control channel transmitted on the second preset number of transmit beams has the same information; if the second preset number of transmit The beam is at the master-slave level, and the control channel transmitted on the primary transmit beam contains control information, and the control channel transmitted from the transmit beam contains the same information as the control information transmitted by the primary transmit beam, and the control information of the primary transmit beam transmission. Part of the information, or, the reference signal.
  • the processor 501 is further configured to receive, according to the indication of the control channel, a data channel that is transmitted by the base station by using the second preset number of transmit beams.
  • the mobile terminal 500 can implement various processes implemented by the mobile terminal in some embodiments of the present disclosure. To avoid repetition, details are not described herein again.
  • the base station when the terminal reports the first beam report, uses the terminal capability information or the received beam group identifier corresponding to each of the transmit beams included in the first beam report reported by the terminal. Determining whether the terminal can monitor multiple beam pair links at the same time; and in the case that the terminal can simultaneously monitor multiple beam pair links, the base station can select a second preset number from the first preset number of transmit beams.
  • the terminal can simultaneously monitor the pair of beam pairs corresponding to the second preset number of transmit beams, and then one of the beam pairs When the link is blocked, the terminal can quickly switch to the other beam pair to receive the control channel and the data channel, improve the link recovery speed, reduce the delay caused by the link recovery, and improve the user experience.
  • the terminal provided by some embodiments of the present disclosure is capable of implementing the foregoing terminal applied to the beam processing method, and some embodiments of the foregoing application to the beam processing method are applicable to the terminal, and both can achieve the same or similar.
  • the benefits are described in detail below.
  • FIG. 6 is another schematic structural diagram of a terminal provided by some embodiments of the present disclosure.
  • the mobile terminal 600 in FIG. 6 may be a mobile phone, a tablet computer, a personal digital assistant (PDA), or an on-board computer.
  • PDA personal digital assistant
  • the mobile terminal 600 in FIG. 6 includes a radio frequency (RF) circuit 610, a memory 620, an input unit 630, a display unit 640, a processor 660, an audio circuit 670, a WiFi (Wireless Fidelity) module 680, and a power supply 690.
  • RF radio frequency
  • the input unit 630 can be configured to receive numeric or character information input by the user, and generate signal input related to user settings and function control of the mobile terminal 600.
  • the input unit 630 may include a touch panel 631.
  • the touch panel 631 also referred to as a touch screen, can collect touch operations on or near the user (such as the operation of the user using a finger, a stylus, or the like on any suitable object or accessory on the touch panel 631), and according to the preset The programmed program drives the corresponding connection device.
  • the touch panel 631 can include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 660 is provided and can receive commands from the processor 660 and execute them.
  • the touch panel 631 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 630 may further include other input devices 632, which may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like. One or more of them.
  • the display unit 640 can be used to display information input by the user or information provided to the user and various menu interfaces of the mobile terminal 600.
  • the display unit 640 can include a display panel 641.
  • the display panel 641 can be configured in the form of an LCD or an Organic Light-Emitting Diode (OLED).
  • the touch panel 631 can cover the display panel 641 to form a touch display screen, and when the touch display screen detects a touch operation on or near it, it is transmitted to the processor 660 to determine the type of the touch event, and then the processor The 660 provides a corresponding visual output on the touch display depending on the type of touch event.
  • the touch display includes an application interface display area and a common control display area.
  • the arrangement manner of the application interface display area and the display area of the common control is not limited, and the arrangement manner of the two display areas can be distinguished by up-and-down arrangement, left-right arrangement, and the like.
  • the application interface display area can be used to display the interface of the application. Each interface can contain interface elements such as at least one application's icon and/or widget desktop control.
  • the application interface display area can also be an empty interface that does not contain any content.
  • the common control display area is used to display controls with high usage, such as setting buttons, interface numbers, scroll bars, phone book icons, and the like.
  • the processor 660 is a control center of the mobile terminal 600, and connects various parts of the entire mobile phone by using various interfaces and lines, by running or executing software programs and/or modules stored in the first memory 621, and calling the second storage.
  • the data in the memory 622 performs various functions and processing data of the mobile terminal 600, thereby performing overall monitoring of the mobile terminal 600.
  • processor 660 can include one or more processing units.
  • the processor 660 is configured to report the first beam report to the base station by calling a software program and/or a module stored in the first memory 621 and/or data in the second memory 622.
  • the first beam report includes an identifier of a first preset number of transmit beams
  • the receiving base station is configured according to the terminal capability information or the receive beam group identifier corresponding to each of the transmit beams included in the first beam report.
  • the first preset number and the second preset number are both greater than or equal to 2; and the second preset number And receiving a receive beam corresponding to the transmit beam, and receiving a control channel and a data channel that are transmitted by the base station by using the second preset number of transmit beams.
  • the terminal capability information is included in the first beam report.
  • the processor 660 is further configured to report the terminal capability information to the base station.
  • the processor 660 is further configured to: when the terminal capability information indicates that the terminal adopts all-digital beamforming reception, receive a second of any combination selected by the base station from the first preset number of transmit beams. A preset number of transmit beam information.
  • the first beam report further includes an identifier of the first preset number of receive beams, and a correspondence between the first preset number of transmit beams and the first preset number of receive beams
  • the processor 660 is further configured to receive information that the base station selects a receive beam corresponding to the second preset number of transmit beams from the first preset number of receive beams.
  • the processor 660 is further configured to report a second beam report to the base station, where the second beam report includes an identifier of a third preset number of transmit beams, and receives downlink trigger signaling sent by the base station, and is based on the downlink The triggering signaling reports the first beam report to the base station; or receives the reference signal transmitted by the base station.
  • the first beam report further includes a received power corresponding to the first preset number of transmit beams
  • the processor 660 is further configured to receive, by the base station, the terminal capability information or the And a received beam group identifier corresponding to the transmit beam, and information of a second preset number of transmit beams with the highest received power selected from the first preset number of transmit beams.
  • the processor 660 is further configured to: when all the receiving beams in the same receiving beam group are from different antenna array panels, the receiving base station selects the same receiving beam group identifier from the first preset number of transmitting beams. Information of a second predetermined number of transmit beams;
  • the receiving base station selects, from the first preset number of transmitting beams, a second preset number of transmitting beams respectively corresponding to different receiving beam group identifiers. Information.
  • the processor 660 is further configured to: receive, by using the beam indication signaling carried by the downlink control channel, the receiving base station according to the terminal capability information or the received beam group identifier corresponding to each of the transmit beams included in the first beam report.
  • the information of the second preset number of transmit beams is selected by the first preset number of transmit beams, where the information of the second preset number of transmit beams includes: a second preset number of transmit beam identifiers, a reference signal resource configuration information on the second predetermined number of transmit beams and a time parameter of the second predetermined number of transmit beams.
  • the processor 660 is further configured to: if the second preset number of transmit beams are equal, the receiving base station passes the second preset number of transmissions by using a receive beam corresponding to the second preset number of transmit beams. a control channel for beam transmission; if the second predetermined number of transmit beams are at a master-slave level, the receive beam transmitted by the base station through the primary transmit beam is received through the receive beam corresponding to the primary transmit beam, and received through the corresponding transmit beam A beam that receives a control channel or reference signal transmitted by the base station from the transmit beam.
  • the control channel transmitted on the second preset number of transmit beams has the same information; if the second preset number of transmit The beam is at the master-slave level, and the control channel transmitted on the primary transmit beam contains control information, and the control channel transmitted from the transmit beam contains the same information as the control information transmitted by the primary transmit beam, and the control information of the primary transmit beam transmission. Part of the information, or, the reference signal.
  • the processor 660 is further configured to receive, according to the indication of the control channel, a data channel that is transmitted by the base station by using the second preset number of transmit beams.
  • the base station when the terminal reports the first beam report, uses the terminal capability information or the received beam group identifier corresponding to each of the transmit beams included in the first beam report reported by the terminal. Determining whether the terminal can monitor multiple beam pair links at the same time; and in the case that the terminal can simultaneously monitor multiple beam pair links, the base station can select a second preset number from the first preset number of transmit beams.
  • the terminal can simultaneously monitor the pair of beam pairs corresponding to the second preset number of transmit beams, and then one of the beam pairs When the link is blocked, the terminal can quickly switch to the other beam pair to receive the control channel and the data channel, improve the link recovery speed, reduce the delay caused by the link recovery, and improve the user experience.
  • the terminal provided by some embodiments of the present disclosure is a terminal capable of implementing the beam processing method applied to the terminal, and some embodiments of the beam processing method applied to the terminal are applicable to the terminal, and both can be used. Achieve the same or similar benefits.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the technical solution of the present disclosure that contributes in essence or to the related art or a part of the technical solution may be embodied in the form of a software product stored in a storage medium, including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the base station 700 shown in FIG. 7 includes at least one processor 701, a memory 702, at least one network interface 704, and other user interfaces 703.
  • the various components in base station 700 are coupled together by a bus system 707. It will be appreciated that the bus system 707 is used to implement connection communication between these components.
  • the bus system 707 includes a power bus, a control bus, and a status signal bus in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 707 in FIG.
  • the user interface 703 may include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, etc.
  • memory 702 in some embodiments of the present disclosure can be either volatile memory or nonvolatile memory, or can include both volatile and nonvolatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • Memory 702 of the systems and methods described herein is intended to comprise, without being limited to, these and any other suitable types of memory.
  • memory 702 stores elements, executable modules or data structures, or a subset thereof, or their extended set: operating system 7021 and application 7022.
  • the operating system 7021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 7022 includes various applications, such as a media player (Media Player), a browser, and the like, for implementing various application services. Programs that implement some of the embodiment methods of the present disclosure may be included in the application 7022.
  • the processor 701 is configured to receive a first beam report reported by the terminal, where
  • the first beam report includes an identifier of the first preset number of transmit beams, and the first preset is received according to the terminal capability information or the receive beam group identifier corresponding to each of the transmit beams included in the first beam report.
  • Processor 701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 701 or an instruction in a form of software.
  • the processor 701 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in some embodiments of the present disclosure may be implemented or performed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with some embodiments of the present disclosure may be directly embodied by the hardware decoding processor, or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 702, and the processor 701 reads the information in the memory 702 and completes the steps of the above method in combination with its hardware.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described herein In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the terminal capability information is included in the first beam report.
  • the processor 701 is further configured to determine, according to the terminal capability information or the received beam group identifier corresponding to each of the transmit beams included in the first beam report, that the terminal is capable of Simultaneously monitor multiple beam pair links and initiate a multi-beam monitoring mechanism.
  • the terminal capability information is included in the first beam report.
  • the processor 701 is further configured to receive the terminal capability information reported by the terminal.
  • the processor 701 is further configured to determine, according to the terminal capability information, that the terminal adopts all-digital beamforming reception; and select, from the first preset number of transmit beams, a second preset of any combination. The number of transmit beams.
  • the processor 701 is further configured to: when determining, according to the terminal capability information, that the terminal has only a single analog beamforming at the same time, determining that the terminal cannot simultaneously monitor multiple beam pair links.
  • the processor 701 is further configured to: when all the receiving beams in the same receiving beam group are from different antenna array panels, select the first receiving beam group identifier from the first preset number of transmitting beams. And a second predetermined number of transmit beams; when all the receive beams in the same receive beam group are from the same antenna array panel, select a second corresponding to different receive beam group identifiers from the first preset number of transmit beams A preset number of transmit beams.
  • the processor 701 is further configured to: when all the receiving beams in the same receiving beam group are from different antenna array panels, the receiving base station selects the same receiving beam group identifier from the first preset number of transmitting beams. Information of a second predetermined number of transmit beams; when all receive beams in the same receive beam group are from the same antenna array panel, the receiving base station selects different ones from the first preset number of transmit beams respectively The information of the second predetermined number of transmit beams identified by the beam group.
  • each receive beam group includes only one receive beam, it is determined that the terminal cannot simultaneously monitor multiple beam pair links; If all the receive beams in the same receive beam group are from the same antenna array panel, if all the transmit beams in the first beam report correspond to the same receive beam group identifier, it is determined that the terminal cannot simultaneously monitor multiple beam pair chains. road.
  • the first beam report further includes an identifier of the first preset number of receive beams, and a correspondence between the first preset number of transmit beams and the first preset number of receive beams
  • the processor 701 is further configured to select, from the first preset number of receive beams, a receive beam corresponding to the second preset number of transmit beams.
  • the processor 701 is further configured to receive the second beam report reported by the terminal, and start a multi-beam monitoring mechanism, and send downlink trigger signaling to the terminal, where the second beam report includes The identifier of three preset number of transmit beams; or, the reference signal is transmitted to the terminal.
  • the processor 701 is further configured to start the multi-beam monitoring mechanism when a current state of the base station meets a preset start condition.
  • the first beam report further includes a received power corresponding to the first preset number of transmit beams; the processor 701 is further configured to use, according to the terminal capability information or the first beam report, The receiving beam group identifier corresponding to the transmitting beam, and selecting, from the first preset number of transmitting beams, a second preset number of transmitting beams with the largest receiving power.
  • the processor 701 is further configured to send information about the second preset number of transmit beams to the terminal by using beam indication signaling carried by the downlink control channel, where the second preset number of transmit beams
  • the information includes: a second preset number of transmit beam identifiers, a second predetermined number of reference signal resource configuration information on the transmit beam, and a second preset number of transmit beam time parameters.
  • the processor 701 is further configured to set the second preset number of transmit beams to be equal levels, and transmit the control channels on the second preset number of transmit beams respectively by using the same period; or
  • the second predetermined number of transmit beams are set to be master-slave levels, and the control channels are transmitted on the second predetermined number of transmit beams respectively using the same or different periods.
  • the control channel transmitted on the second preset number of transmit beams has the same information; if the second preset number of transmit The beam is at the master-slave level, and the control channel transmitted on the primary transmit beam contains control information, and the control channel transmitted from the transmit beam contains the same information as the control information transmitted by the primary transmit beam, and the control information of the primary transmit beam transmission. Part of the information, or, the reference signal.
  • the processor 701 is further configured to transmit, by using the distributed multiple input multiple output mode, the multiple stream transmission mode, or the alternate transmission mode, the data channel on the second preset number of transmit beams; or Transmitting a data channel on one of the second predetermined number of transmit beams or on the plurality of transmit beams.
  • the mobile terminal 700 can implement various processes implemented by the mobile terminal in some embodiments of the present disclosure. To avoid repetition, details are not described herein again.
  • the base station determines whether the terminal can simultaneously monitor multiple times by using the terminal capability information or the received beam group identifier corresponding to each of the transmit beams included in the first beam report reported by the terminal.
  • the base station can select a second predetermined number of transmit beams from the first predetermined number of transmit beams, and pass the The second predetermined number of transmit beams transmit the control channel and the data channel, and the corresponding terminal can simultaneously monitor the beam pair link corresponding to the second preset number of transmit beams, and when one of the beam pair links is blocked, the terminal can Fast switching to other beam pair links to receive control channels and data channels, improve link recovery speed, reduce delay caused by link recovery, and improve user experience.
  • the base station provided by some embodiments of the present disclosure is a base station capable of implementing the beam processing method described above, and all embodiments of the foregoing beam processing method are applicable to the base station, and all of the same or similar beneficial effects can be achieved.
  • FIG. 8 is another schematic structural diagram of a base station according to some embodiments of the present disclosure.
  • the base station 800 in FIG. 8 includes a radio frequency (RF) circuit 810, a memory 820, an input unit 830, a display unit 840, a processor 870, a WiFi (Wireless Fidelity) module 880, and a power supply 890.
  • RF radio frequency
  • the input unit 830 can be used to receive digital or character information input by the user, and generate signal input related to user setting and function control of the mobile terminal 800.
  • the input unit 830 may include a touch panel 831.
  • the touch panel 831 also referred to as a touch screen, can collect touch operations on or near the user (such as the operation of the user using any suitable object or accessory such as a finger or a stylus on the touch panel 831), and according to the preset
  • the programmed program drives the corresponding connection device.
  • the touch panel 831 can include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 870 is provided and can receive commands from the processor 870 and execute them.
  • the touch panel 831 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 830 may further include other input devices 832, which may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like. One or more of them.
  • the display unit 840 can be used to display information input by the user or information provided to the user and various menu interfaces of the base station 800.
  • the display unit 840 can include a display panel 841.
  • the display panel 841 can be configured in the form of an LCD or an Organic Light-Emitting Diode (OLED).
  • the touch panel 831 can cover the display panel 841 to form a touch display screen, and when the touch display screen detects a touch operation on or near it, it is transmitted to the processor 870 to determine the type of the touch event, and then the processor The 870 provides a corresponding visual output on the touch display depending on the type of touch event.
  • the touch display includes an application interface display area and a common control display area.
  • the arrangement manner of the application interface display area and the display area of the common control is not limited, and the arrangement manner of the two display areas can be distinguished by up-and-down arrangement, left-right arrangement, and the like.
  • the application interface display area can be used to display the interface of the application. Each interface can contain interface elements such as at least one application's icon and/or widget desktop control.
  • the application interface display area can also be an empty interface that does not contain any content.
  • the common control display area is used to display controls with high usage, such as setting buttons, interface numbers, scroll bars, phone book icons, and the like.
  • the processor 870 is a control center of the mobile terminal 800, and connects various parts of the entire mobile phone by using various interfaces and lines, by running or executing software programs and/or modules stored in the first memory 821, and calling the second storage.
  • the data in the memory 822 performs various functions and processing data of the mobile terminal 800, thereby performing overall monitoring of the mobile terminal 800.
  • processor 880 can include one or more processing units.
  • the processor 870 is configured to receive the first beam report reported by the terminal by calling a software program and/or a module stored in the first memory 821 and/or data in the second memory 822.
  • the first beam report includes an identifier of a first preset number of transmit beams, and the received beam group identifier corresponding to each of the transmit beams included in the first beam report, according to the terminal capability information, Selecting a second predetermined number of transmit beams from a predetermined number of transmit beams, the first preset number and the second preset number being greater than or equal to 2; and the second preset number of transmit beams
  • the information is sent to the terminal, and the control channel and the data channel are transmitted through the second predetermined number of transmit beams.
  • the terminal capability information is included in the first beam report.
  • the processor 870 is further configured to determine, according to the terminal capability information or the received beam group identifier corresponding to each of the transmit beams included in the first beam report, that the terminal is capable of Simultaneously monitor multiple beam pair links and initiate a multi-beam monitoring mechanism.
  • the terminal capability information is included in the first beam report.
  • the processor 870 is further configured to receive the terminal capability information reported by the terminal.
  • the processor 870 is further configured to determine, according to the terminal capability information, that the terminal adopts all-digital beamforming reception; and select, from the first preset number of transmit beams, a second preset of any combination. The number of transmit beams.
  • the processor 870 is further configured to: when determining, according to the terminal capability information, that the terminal has only a single analog beamforming at the same time, determining that the terminal cannot simultaneously monitor multiple beam pair links.
  • the processor 870 is further configured to: when all the receive beams in the same receive beam group are from different antenna array panels, select the first receive beam group identifier from the first preset number of transmit beams. And a second predetermined number of transmit beams; when all the receive beams in the same receive beam group are from the same antenna array panel, select a second corresponding to different receive beam group identifiers from the first preset number of transmit beams A preset number of transmit beams.
  • the processor 870 is further configured to: when all the receiving beams in the same receiving beam group are from different antenna array panels, the receiving base station selects the same receiving beam group identifier from the first preset number of transmitting beams. Information of a second predetermined number of transmit beams; when all receive beams in the same receive beam group are from the same antenna array panel, the receiving base station selects different ones from the first preset number of transmit beams respectively The information of the second predetermined number of transmit beams identified by the beam group.
  • each receive beam group includes only one receive beam, it is determined that the terminal cannot simultaneously monitor multiple beam pair links; If all the receive beams in the same receive beam group are from the same antenna array panel, if all the transmit beams in the first beam report correspond to the same receive beam group identifier, it is determined that the terminal cannot simultaneously monitor multiple beam pair chains. road.
  • the first beam report further includes an identifier of the first preset number of receive beams, and a correspondence between the first preset number of transmit beams and the first preset number of receive beams
  • the processor 870 is further configured to select, from the first preset number of receive beams, a receive beam corresponding to the second preset number of transmit beams.
  • the processor 870 is further configured to receive the second beam report reported by the terminal, and start a multi-beam monitoring mechanism, and send downlink trigger signaling to the terminal, where the second beam report includes The identifier of three preset number of transmit beams; or, the reference signal is transmitted to the terminal.
  • the first beam report further includes a received power corresponding to the first preset number of transmit beams; the processor 870 is further configured to use, according to the terminal capability information or the first beam report, The receiving beam group identifier corresponding to the transmitting beam, and selecting, from the first preset number of transmitting beams, a second preset number of transmitting beams with the largest receiving power.
  • the processor 870 is further configured to send information about the second preset number of transmit beams to the terminal by using beam indication signaling carried by the downlink control channel, where the second preset number of transmit beams
  • the information includes: a second preset number of transmit beam identifiers, a second predetermined number of reference signal resource configuration information on the transmit beam, and a second preset number of transmit beam time parameters.
  • the processor 870 is further configured to set the second preset number of transmit beams to be equal levels, and transmit control channels on the second preset number of transmit beams respectively using the same period; or
  • the second predetermined number of transmit beams are set to be master-slave levels, and the control channels are transmitted on the second predetermined number of transmit beams respectively using the same or different periods.
  • the control channel transmitted on the second preset number of transmit beams has the same information; if the second preset number of transmit The beam is at the master-slave level, and the control channel transmitted on the primary transmit beam contains control information, and the control channel transmitted from the transmit beam contains the same information as the control information transmitted by the primary transmit beam, and the control information of the primary transmit beam transmission. Part of the information, or, the reference signal.
  • the processor 870 is further configured to transmit, by using the distributed multiple input multiple output mode, the multiple stream transmission mode, or the alternate transmission mode, the data channel on the second preset number of transmit beams; or Transmitting a data channel on one of the second predetermined number of transmit beams or on the plurality of transmit beams.
  • the base station determines whether the terminal can simultaneously monitor multiple times by using the terminal capability information or the received beam group identifier corresponding to each of the transmit beams included in the first beam report reported by the terminal.
  • the base station can select a second predetermined number of transmit beams from the first predetermined number of transmit beams, and pass the The second predetermined number of transmit beams transmit the control channel and the data channel, and the corresponding terminal can simultaneously monitor the beam pair link corresponding to the second preset number of transmit beams, and when one of the beam pair links is blocked, the terminal can Fast switching to other beam pair links to receive control channels and data channels, improve link recovery speed, reduce delay caused by link recovery, and improve user experience.
  • the base station provided by some embodiments of the present disclosure is a base station capable of implementing the beam processing method described above, and all embodiments of the foregoing beam processing method are applicable to the base station, and all of the same or similar beneficial effects can be achieved.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the technical solution of the present disclosure that contributes in essence or to the related art or a part of the technical solution may be embodied in the form of a software product stored in a storage medium, including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种波束处理方法、基站及终端,该方法包括:接收终端上报的第一波束报告,第一波束报告包括第一预设数量的发射波束的标识;根据终端能力信息或第一波束报告中包括的与各个发射波束对应的接收波束组标识,从第一预设数量的发射波束中选择第二预设数量的发射波束,第一预设数量和第二预设数量均大于或者等于2;将第二预设数量的发射波束的信息发送给终端,并通过第二预设数量的发射波束传输控制信道和数据信道。

Description

一种波束处理方法、基站及终端
相关申请的交叉引用
本申请主张在2017年3月24日在中国提交的中国专利申请号No.201710184080.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别是指一种波束处理方法、基站及终端。
背景技术
LTE(Long Term Evolution,长期演进)/LTE-A(LTE-Advanced,LTE的演进)等无线接入技术标准都是以MIMO(Multiple-Input Multiple-Output,多入多出)+OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)技术为基础构建起来的。其中,MIMO技术利用多天线系统所能获得的空间自由度,来提高峰值速率与系统频谱利用率。
在标准化发展过程中MIMO技术的维度不断扩展。在LTE Rel-8中,最多可以支持4层的MIMO传输。在Rel-9中增强MU-MIMO(Multiple-User MIMO,多用户MIMO)技术,TM传输模式8(Transmission Mode-8)的MU-MIMO传输中最多可以支持4个下行数据层。在Rel-10中将SU-MIMO(Single-User MIMO,单用户MIMO)的传输能力扩展至最多8个数据层。
产业界正在进一步地将MIMO技术向着三维化和大规模化的方向推进。目前,3GPP已经完成了3D信道建模的研究项目,并且正在开展eFD-MIMO和NR MIMO的研究和标准化工作。可以预见,在未来的5G移动通信系统中,更大规模、更多天线端口的MIMO技术将被引入。
大规模MIMO(Massive MIMO)技术使用大规模天线阵列,能够极大地提升系统频带利用效率,支持更大数量的接入用户。因此各大研究组织均将Massive MIMO技术视为下一代移动通信系统中最有潜力的物理层技术之一。
在Massive MIMO技术中如果采用全数字阵列,可以实现最大化的空间分辨率以及最优MU-MIMO性能,但是这种结构需要大量的AD(模拟-数字)/DA (数字-模拟)转换器件以及大量完整的射频-基带处理通道,无论是设备成本还是基带处理复杂度都将是巨大的负担。
为了避免上述的实现成本与设备复杂度,数模混合波束赋形技术应运而生,即在传统的数字域波束赋形基础上,在靠近天线系统的前端,在射频信号上增加一级波束赋形。模拟波束赋形能够通过较为简单的方式,使发送信号与信道实现较为粗略的匹配。模拟波束赋形后形成的等效信道的维度小于实际的天线数量,因此其后所需的AD/DA转换器件、数字通道数以及相应的基带处理复杂度都可以大为降低。模拟波束赋形部分残余的干扰可以在数字域再进行一次处理,从而保证MU-MIMO传输的质量。相对于全数字波束赋形而言,数模混合波束赋形是性能与复杂度的一种折中方案,在高频段大带宽或天线数量很大的系统中具有较高的实用前景。
在对4G以后的下一代通信系统研究中,将系统支持的工作频段提升至6GHz以上,最高约达100GHz。高频段具有较为丰富的空闲频率资源,可以为数据传输提供更大的吞吐量。目前3GPP已经完成了高频信道建模工作,高频信号的波长短,同低频段相比,能够在同样大小的面板上布置更多的天线阵元,利用波束赋形技术形成指向性更强、波瓣更窄的波束。因此,将大规模天线和高频通信相结合,也我未来的趋势之一。
而模拟波束赋形是全带宽发射的,并且每个高频天线阵列的面板上每个极化方向阵元仅能以时分复用的方式发送模拟波束。模拟波束的赋形权值是通过调整射频前端移相器等设备的参数来实现。
目前,在学术界和工业界,通常是使用轮询的方式进行模拟波束赋形向量的训练,即每个天线面板每个极化方向的阵元以时分复用方式依次在约定时间依次发送训练信号(即候选的赋形向量),终端经过测量后反馈波束报告,供网络侧在下一次传输业务时采用该训练信号来实现模拟波束发射。波束报告的内容通常包括最优的若干个发射波束标识以及测量出的每个发射波束的接收功率。
在高频段通信系统中,大规模天线的高频波束很窄(即无线信号的波长较短),较容易发生信号传播被阻挡等情况,当受到阻挡时会断掉通信链路,影响业务传输。而相关的技术在判断无线链路失败后,发起无线资源控制 (Radio Resource Control,简称:RRC)重建,再进行波束训练,找到最优波束,恢复数据传输,上述过程具有较长时延,影响用户体验。
发明内容
本公开的目的在于提供一种波束处理方法、基站及终端,解决了相关技术中通信链路断掉之后恢复链路的时间较长导致时延较大的问题。
为了达到上述目的,一方面,本公开实施例提供一种波束处理方法,应用于基站,包括:
接收终端上报的第一波束报告,所述第一波束报告包括第一预设数量的发射波束的标识;
根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从所述第一预设数量的发射波束中选择第二预设数量的发射波束,所述第一预设数量和所述第二预设数量均大于或者等于2;
将所述第二预设数量的发射波束的信息发送给终端,并通过所述第二预设数量的发射波束传输控制信道和数据信道。
另一方面,本公开实施例还提供一种波束处理方法,应用于终端,包括:
向基站上报第一波束报告,所述第一波束报告包括第一预设数量的发射波束的标识;
接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识从所述第一预设数量的发射波束中选择的第二预设数量的发射波束的信息;所述第一预设数量和所述第二预设数量均大于或者等于2;
通过与第二预设数量的发射波束对应的接收波束,接收基站通过所述第二预设数量的发射波束传输的控制信道和数据信道。
另一方面,本公开实施例还提供一种基站,包括:
第一报告接收模块,用于接收终端上报的第一波束报告,所述第一波束报告包括第一预设数量的发射波束的标识;
第一选择模块,用于根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从所述第一预设数量的发射波束 中选择第二预设数量的发射波束,所述第一预设数量和所述第二预设数量均大于或者等于2;
信道传输模块,用于将所述第二预设数量的发射波束的信息发送给终端,并通过所述第二预设数量的发射波束传输控制信道和数据信道。
另一方面,本公开实施例还提供一种终端,包括:
第一上报模块,用于向基站上报第一波束报告,所述第一波束报告包括第一预设数量的发射波束的标识;
第一信息接收模块,用于接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识从所述第一预设数量的发射波束中选择的第二预设数量的发射波束的信息;所述第一预设数量和所述第二预设数量均大于或者等于2;
信道接收模块,用于通过与第二预设数量的发射波束对应的接收波束,接收基站通过所述第二预设数量的发射波束传输的控制信道和数据信道。
另一方面,本公开实施例还一种基站,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述应用于基站的波束处理方法中的步骤。
另一方面,本公开实施例还一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述应用于终端的波束处理方法中的步骤。
另一方面,本公开实施例还一种计算机可读存储介质,其中,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上述应用于基站的波束处理方法中的步骤。
另一方面,本公开实施例还一种计算机可读存储介质,其中,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上述应用于终端的波束处理方法中的步骤。
本公开的上述技术方案至少具有如下有益效果:
本公开实施例的波束处理方法、基站及终端中,基站通过终端能力信息或者终端上报的第一波束报告中包括的与各个所述发射波束对应的接收波束组标识来确定终端是否能够同时监听多个波束对链路;且在终端能够同时监 听多个波束对链路的情况下基站能够从所述第一预设数量的发射波束中选择第二预设数量的发射波束,并通过所述第二预设数量的发射波束传输控制信道和数据信道,能够提升链路恢复速度,降低链路恢复导致的时延,提升用户体验。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开的一些实施例提供的用于基站的波束处理方法的步骤流程图;
图2表示本公开的一些实施例提供的用于终端的波束处理方法的步骤流程图;
图3表示本公开的一些实施例提供的基站的结构示意图;
图4表示本公开的一些实施例提供的终端的结构示意图;
图5表示本公开的一些实施例提供的终端的另一结构示意图;
图6表示本公开的一些实施例提供的终端的又一结构示意图;
图7表示本公开的一些实施例提供的基站的另一结构示意图;
图8表示本公开的一些实施例提供的基站的又一结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图1所示,本公开的一些实施例提供一种波束处理方法,应用于基站,包括:
步骤101,接收终端上报的第一波束报告,所述第一波束报告包括第一 预设数量的发射波束的标识。
本公开的一些实施例中由于基站与终端之间的波束对链路较多,则为了保证波束对链路的稳定性以及数据传输的稳定性,第一波束报告中上报的第一预设数量的发射波束的标识不是任意的第一预设数量的发射波束,而是满足一预设条件的第一预设数量的发射波束;即所述第一波束报告中包括的第一预设数量的发射波束的接收功率均大于一预设值。其中,发射波束的接收功率具体为发射波束参考信号接收功率(Reference Signal Received Power,简称:RSRP)。
本步骤中,第一波束报告可以是终端根据参考信号进行波束训练得到,也可以是终端对波束对链路进行监听测量得到。较佳的,终端上报第一波束报告可以是周期性或非周期性的主动上报,也可以是基于基站的触发信令被动上报。
步骤102,根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从所述第一预设数量的发射波束中选择第二预设数量的发射波束,所述第一预设数量和所述第二预设数量均大于或者等于2。
进一步的,从第一预设数量的发射波束中选择第二预设数量的发射波束之前,基站还需根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,确定所述终端能够同时监听多个波束对链路,并启动多波束监听机制。具体的,当基站的当前状态满足预设启动条件时,启动所述多波束监听机制。预设启动条件一般为多波束对链路监听机制的启动条件,可以是根据基站的缓存中的待传输的数据量,若数据量大于一门限值,则表示基站需要较长的时间来进行传输,此时需要在基站和终端之间同时建立多个波束对链路,即此时需要启动多波束监听机制,以防止高频通信链路被阻挡等情况。
需要说明的是,若基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,确定所述终端不能够同时监听多个波束对链路,此种情况下按照相关技术的流程进行后续操作,在此不作详细描述。
其中,波束对链路(Beam Pair Link,简称:BPL)包括一个基站发射波束以及一个与该基站发射波束对应的终端接收波束。
步骤103,将所述第二预设数量的发射波束的信息发送给终端,并通过所述第二预设数量的发射波束传输控制信道和数据信道。
本步骤中,基站在步骤102确定的第二预设数量的发射波束上传输控制信道和数据信道;相应的,终端同时监测第二预设数量的波束对链路(该第二预设数量的波束对链路包括第二预设数量的发射波束,以及与各个发射波束分别对应的第二预设数量的接收波束),从上述第二预设数量的发射波束中获取控制信道传输的控制信息,再根据控制信息的指示接收数据信道。
具体的,步骤103中将所述第二预设数量的发射波束的信息发送给终端的步骤包括:通过下行控制信道承载的波束指示信令来将所述第二预设数量的发射波束的信息发送给终端;即在所述波束指示信令中携带所述第二预设数量发射波束的信息,终端接收到上述波束指示信令之后的,对波束指示信令进行解析来确定第二预设数量发射波束的信息。
其中,所述第二预设数量的发射波束的信息包括:第二预设数量的发射波束的标识、第二预设数量的发射波束上的参考信号资源配置信息以及第二预设数量发射波束的时间参数。该时间参数可以为第二预设数量发射波束的周期发射参数或者第二预设数量发射波束的信息的非周期发射参数等,在此不作具体限定。
需要说明的是,本公开的一些实施例中,所述第一波束报告中还包括第一预设数量的发射波束对应的接收功率;则相应的,步骤102包括:
根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从第一预设数量的发射波束中,选择接收功率最大的第二预设数量的发射波束。
即基站从第一预设数量的发射波束中选择第二预设数量的发射波束时,不仅需要考虑终端能力信息或接收波束组标识,还需要考虑发射波束的接收功率;较佳的,基站需选择接收功率较大的第二预设数量的发射波束作为待基站同时使用的多个发射波束。
需要说明的是,上述终端能力信息可以包含在所述第一波束报告中,也 可以由终端上报;当终端能力信息由终端上报时,步骤101之前,该方法还包括:接收所述终端上报的所述终端能力信息。
进一步需要说明的是,终端向基站上报终端能力信息时可以是基于相关技术的标准中的能力上报机制进行,例如终端接入网络之后上报终端能力信息,本公开的一些实施例中将本申请需要的能够标识终端是否能够同时监听多波束对链路的信息增加到原有的终端能力信息中,或替换原有的终端能力信息,在此不作具体限定。
进一步的,终端能力信息包括:终端采用全数字波束赋形接收,或者终端在同一时刻只有单个模拟波束赋形(例如终端的模拟波束赋形接收能力为单个天线阵列面板)。
当基站根据所述终端能力信息,确定所述终端采用全数字波束赋形接收时,确定终端能够同时监听多个波束对链路;则基站从所述第一预设数量的发射波束中,选择任意组合的第二预设数量的发射波束。
例如,当终端全数字波束赋形接收时,第一波束报告的内容表1所示。此时基站可以任意使用报告中的多个BPL,供同时监听。
表1
发射波束标识 Index 1 Index 2 …… Index N
接收功率 RSRP 1 RSRP 2 …… RSRP N
当基站根据所述终端能力信息,确定所述终端在同一时刻只有单个模拟波束赋形时,确定所述终端不能同时监听多个波束对链路;则基站按照相关技术的流程执行后续步骤。
例如当终端无法支持同时监听多BPL时(如终端能力只有一个面板,或者终端需要省电而只开启一个面板工作),第一波束报告的内容如表2所示。此时基站只能使用单个BPL传输,不能启动波束恢复机制的多BPL监听机制。
表2
发射波束标识 Index 1 Index 2 …… Index N
接收功率 RSRP 1 RSRP 2 …… RSRP N
进一步的,当第一波束报告中包括与各个所述发射波束对应的接收波束组标识时,基站能够根据所述第一波束报告中包括的与各个所述发射波束对 应的接收波束组标识,从所述第一预设数量的发射波束中选择第二预设数量的发射波束。
例如,当终端可以同时监听多BPL时,第一波束报告的内容如表3所示。基站根据终端接收波束组标识,来确定同时监听的多BPL。
表3
发射波束标识 Index 1 Index 2 …… Index N
接收功率 RSRP 1 RSRP 2 …… RSRP N
终端接收波束组标识 Group id 1 Group id 2 …… Group id N
需要说明的是,若第一波束报告中包括与各个所述发射波束对应的接收波束组标识,则此时默认终端采用模拟波束来接收并测量下行波束,终端无需再新增一个信令或bit来指示终端接收测量下行波束的方式,节省了信令资源;但是终端仍新增一个信令或bit来指示终端接收测量下行波束的方式也同样适用于本申请。
具体的,当同一接收波束组中的所有接收波束分别来自不同天线阵列面板时,从所述第一预设数量的发射波束中,选择对应同一接收波束组标识的第二预设数量的发射波束;当同一接收波束组中的所有接收波束均来自相同天线阵列面板时,从所述第一预设数量的发射波束中,选择分别对应不同接收波束组标识的第二预设数量的发射波束。
需要说明的是,当第一波束报告中包括的与各个所述发射波束对应的接收波束组标识时,终端也可能不能同时监听多个波束对链路;具体的,当同一接收波束组中的所有接收波束分别来自不同天线阵列面板时,若每个接收波束组仅包含一个接收波束,则确定所述终端不能同时监听多个波束对链路;当同一接收波束组中的所有接收波束均来自相同天线阵列面板时,若所述第一波束报告中的所有发射波束均对应同一接收波束组标识,则确定所述终端不能同时监听多个波束对链路。从所述第一预设数量的接收波束中选择与所述第二预设数量的发射波束对应的接收波束。
例如第一波束报告如表4所示:
表4
发射波束标识 Index 11 Index 12 …… Index P
接收功率 RSRP 1 RSRP 2 …… RSRP N
接收波束标识 Index 21 Index 22 …… Index N
承接上例,本公开的一些实施例中,由于终端上报第一波束报告可以是周期性或非周期性的主动上报,也可以是基于基站的触发信令被动上报;当第一波束报告是基于基站的触发信令被动上报时,步骤101之前该波束处理方法还包括:
接收所述终端上报的第二波束报告,并启动多波束监听机制,并向所述终端发送下行触发信令;其中,所述第二波束报告中包括第三预设数量的发射波束的标识;且当基站的当前状态满足预设启动条件时,启动多波束监听机制。
或者,
向所述终端发射参考信号。
需要说明的是,上述向终端发送下行触发信令是基于基站确定其自身满足预设启动条件并启动多波束对链路监听机制之后基站向所述终端发送下行触发信令,使得所述终端基于所述下行触发信令上报所述第一波束报告。
具体的,预设启动条件一般为多波束对链路监听机制的启动条件,可以是根据基站的缓存中的待传输的数据量,若数据量大于一门限值,则表示基站需要较长的时间来进行传输,此时需要在基站和终端之间同时建立多个波束对链路,即此时需要启动多波束监听机制,以防止高频通信链路被阻挡等情况。
第一波束报告或第二波束报告可以是终端基于参考信号进行波束训练得到,也可以是基站基于发送波束传输的信道(控制信道或数据信道)的信道质量得到,在此不作具体限定。
进一步的,本公开的一些实施例中步骤103中通过所述第二预设数量的发射波束传输控制信道的步骤包括:
将所述第二预设数量的发射波束设置为同等级别,使用相同的周期在分别在所述第二预设数量的发射波束上传输控制信道;
或者,
将所述第二预设数量的发射波束设置为主从级别,使用相同或不同的周 期分别在第二预设数量的发射波束上传输控制信道。
具体的,若所述第二预设数量的发射波束为同等级别,则第二预设数量的发射波束上传输的控制信道内均含有相同的信息;
若所述第二预设数量的发射波束为主从级别,则主发射波束上传输的控制信道内含有控制信息,从发射波束上传输的控制信道内含有与主发射波束传输的控制信息相同的信息、主发射波束传输的控制信息的部分信息,或者,参考信号。即主发射波束的控制信道含有完整的控制信息,从发射波束的控制信息可以完全复制主发射波束上的控制信息,或者,仅为主发射波束上的控制信息的一部分;或者,从发射波束上仅传输参考信号供终端测量从波束对链路的质量。
进一步的,本公开的一些实施例中步骤103中通过所述第二预设数量的发射波束传输数据信道的步骤包括:
采用分布式多入多出方式、多流传输方式,或者交替传输方式,在所述第二预设数量的发射波束上传输数据信道;
或者,在所述第二预设数量的发射波束中的一个发射波束或多个发射波束上传输数据信道。
综上,本公开的一些实施例从基站侧对波束处理方法进行了详细描述,具体为基站通过终端能力信息或者终端上报的第一波束报告中包括的与各个所述发射波束对应的接收波束组标识来确定终端是否能够同时监听多个波束对链路;且在终端能够同时监听多个波束对链路的情况下基站能够从所述第一预设数量的发射波束中选择第二预设数量的发射波束,并通过所述第二预设数量的发射波束传输控制信道和数据信道,相应的终端能够同时监听该第二预设数量的发射波束对应的波束对链路,则当其中一个波束对链路被阻挡时,终端能够快速切换到其他波束对链路上接收控制信道和数据信道,提升链路恢复速度,降低链路恢复导致的时延,提升用户体验。
如图2所示,本公开的一些实施例还提供一种波束处理方法,应用于终端,包括:
步骤201,向基站上报第一波束报告,所述第一波束报告包括第一预设数量的发射波束的标识。
本公开的一些实施例中由于基站与终端之间的波束对链路较多,则为了保证波束对链路的稳定性以及数据传输的稳定性,第一波束报告中上报的第一预设数量的发射波束的标识不是任意的第一预设数量的发射波束,而是满足一预设条件的第一预设数量的发射波束;即所述第一波束报告中包括的第一预设数量的发射波束的接收功率均大于一预设值。其中,发射波束的接收功率具体为发射波束参考信号接收功率RSRP。
本步骤中,第一波束报告可以是终端根据参考信号进行波束训练得到,也可以是终端对波束对链路进行监听测量得到。较佳的,终端上报第一波束报告可以是周期性或非周期性的主动上报,也可以是基于基站的触发信令被动上报。当终端是基于基站的触发信令被动上报时。
步骤202,接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识从所述第一预设数量的发射波束中选择的第二预设数量的发射波束的信息;所述第一预设数量和所述第二预设数量均大于或者等于2。
其中,波束对链路包括一个基站发射波束以及一个与该基站发射波束对应的终端接收波束;波束对链路可简称为BPL。
步骤203,通过与第二预设数量的发射波束对应的接收波束,接收基站通过所述第二预设数量的发射波束传输的控制信道和数据信道。
本步骤中,基站在步骤202确定的第二预设数量的发射波束上传输控制信道和数据信道;相应的,终端同时监测第二预设数量的波束对链路(该第二预设数量的波束对链路包括第二预设数量的发射波束,以及与各个发射波束分别对应的第二预设数量的接收波束),从上述第二预设数量的发射波束中获取控制信道传输的控制信息,再根据控制信息的指示接收数据信道。
具体的,步骤203包括:
通过下行控制信道承载的波束指示信令,接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识从所述第一预设数量的发射波束中选择第二预设数量的发射波束的信息;即在所述波束指示信令中携带所述第二预设数量发射波束的信息,终端接收到上述波束指示信令之后的,对波束指示信令进行解析来确定第二预设数量发射波 束的信息。
其中,所述第二预设数量的发射波束的信息包括:第二预设数量的发射波束的标识、第二预设数量的发射波束上的参考信号资源配置信息以及第二预设数量发射波束的时间参数。该时间参数可以为第二预设数量发射波束的周期发射参数或者第二预设数量发射波束的信息的非周期发射参数等,在此不作具体限定。
需要说明的是,本公开的一些实施例中,所述第一波束报告中还包括第一预设数量的发射波束对应的接收功率;则相应的,步骤202包括:
接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从第一预设数量的发射波束中选择的接收功率最大的第二预设数量的发射波束的信息。
即基站从第一预设数量的发射波束中选择第二预设数量的发射波束时,不仅需要考虑终端能力信息或接收波束组标识,还需要考虑发射波束的接收功率;较佳的,基站需选择接收功率较大的第二预设数量的发射波束作为待基站同时使用的多个发射波束。
需要说明的是,上述终端能力信息可以包含在所述第一波束报告中,也可以由终端上报;当终端能力信息由终端上报时,步骤201之前,该方法还包括:向基站上报所述终端能力信息。
进一步的,终端能力信息包括:终端采用全数字波束赋形接收,或者终端在同一时刻只有单个模拟波束赋形(例如终端的模拟波束赋形接收能力为单个天线阵列面板)。
当所述终端能力信息指示所述终端采用全数字波束赋形接收时,接收基站从所述第一预设数量的发射波束中选择的任意组合的第二预设数量的发射波束的信息。
终端能力信息包括:终端在同一时刻只有单个模拟波束赋形则基站按照相关技术的流程进行后续操作,在此不作具体限定。
进一步的,本公开的一些实施例中所述第一波束报告还包括第一预设数量的接收波束的标识,以及所述第一预设数量的发射波束与所述第一预设数量的接收波束之间的对应关系;相应的步骤201之后,该波束处理方法还包 括:
接收基站从所述第一预设数量的接收波束中选择与所述第二预设数量的发射波束对应的接收波束的信息。
承接上例,本公开的一些实施例中,由于终端上报第一波束报告可以是周期性或非周期性的主动上报,也可以是基于基站的触发信令被动上报;当第一波束报告是基于基站的触发信令被动上报时,步骤201之前该波束处理方法还包括:
向基站上报第二波束报告,所述第二波束报告包括第三预设数量的发射波束的标识,接收基站下发的下行触发信令并基于所述下行触发信令向基站上报第一波束报告;
或者,
接收基站发射的参考信号。本步骤,基站采用周期或者非周期的方式,轮流使用不同发射波束来发射参考信号。其中,周期可以由高层信令进行配置或者预先设定(例如在标准里规定参考信号的发射周期等);而非周期可以为基站主动触发,即基站自主决定在某一时刻发射参考信号,在此不作具体限定。
需要说明的是,上述向终端发送下行触发信令是基于基站确定其自身满足预设启动条件并启动多波束对链路监听机制之后基站向所述终端发送下行触发信令,使得所述终端基于所述下行触发信令上报所述第一波束报告。
具体的,预设启动条件一般为多波束对链路监听机制的启动条件,可以是根据基站的缓存中的待传输的数据量,若数据量大于一门限值,则表示基站需要较长的时间来进行传输,此时需要在基站和终端之间同时建立多个波束对链路,即此时需要启动多波束监听机制,以防止高频通信链路被阻挡等情况。
第一波束报告或第二波束报告可以是终端基于参考信号进行波束训练得到,也可以是基站基于发送波束传输的信道(控制信道或数据信道)的信道质量得到,在此不作具体限定。
进一步的,当第一波束报告中包括与各个所述发射波束对应的接收波束组标识时,基站能够根据所述第一波束报告中包括的与各个所述发射波束对 应的接收波束组标识,从所述第一预设数量的发射波束中选择第二预设数量的发射波束。
具体的,当同一接收波束组中的所有接收波束分别来自不同天线阵列面板时,接收基站从所述第一预设数量的发射波束中选择的对应同一接收波束组标识的第二预设数量的发射波束的信息;当同一接收波束组中的所有接收波束均来自相同天线阵列面板时,接收基站从所述第一预设数量的发射波束中选择的分别对应不同接收波束组标识的第二预设数量的发射波束的信息。
进一步的,本公开的一些实施例中,步骤203包括:
若第二预设数量的发射波束为同等级别,通过与第二预设数量的发射波束对应的接收波束,接收基站通过所述第二预设数量的发射波束传输的控制信道;
若第二预设数量的发射波束为主从级别,通过与主发射波束对应的接收波束,接收基站通过主发射波束传输的控制信道,并通过与从发射波束对应的接收波束,接收基站通过从发射波束传输的控制信道或参考信号。
且若所述第二预设数量的发射波束为同等级别,则第二预设数量的发射波束上传输的控制信道内均含有相同的信息;
若所述第二预设数量的发射波束为主从级别,则主发射波束上传输的控制信道内含有控制信息,从发射波束上传输的控制信道内含有与主发射波束传输的控制信息相同的信息、主发射波束传输的控制信息的部分信息,或者,参考信号。
进一步的,本公开的一些实施例中,步骤203还包括
根据所述控制信道的指示,接收基站通过所述第二预设数量的发射波束传输的数据信道。
综上,本公开的一些实施例从基站侧对波束处理方法进行了详细描述,具体为基站通过终端能力信息或者终端上报的第一波束报告中包括的与各个所述发射波束对应的接收波束组标识来确定终端是否能够同时监听多个波束对链路;且在终端能够同时监听多个波束对链路的情况下基站能够从所述第一预设数量的发射波束中选择第二预设数量的发射波束,并通过所述第二预设数量的发射波束传输控制信道和数据信道,相应的终端能够同时监听该第 二预设数量的发射波束对应的波束对链路,则当其中一个波束对链路被阻挡时,终端能够快速切换到其他波束对链路上接收控制信道和数据信道,提升链路恢复速度,降低链路恢复导致的时延,提升用户体验。
如图3所示,本公开的一些实施例还提供一种基站300,包括:
第一报告接收模块301,用于接收终端上报的第一波束报告,所述第一波束报告包括第一预设数量的发射波束的标识;
第一选择模块302,用于根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从所述第一预设数量的发射波束中选择第二预设数量的发射波束,所述第一预设数量和所述第二预设数量均大于或者等于2;
信道传输模块303,用于将所述第二预设数量的发射波束的信息发送给终端,并通过所述第二预设数量的发射波束传输控制信道和数据信道。
具体的,本公开的一些实施例中,所述基站还包括:
第一确定模块,用于根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,确定所述终端能够同时监听多个波束对链路。
具体的,本公开的一些实施例中,所述终端能力信息包含在所述第一波束报告中。
具体的,本公开的一些实施例中,所述基站还包括:
能力接收模块,用于接收所述终端上报的所述终端能力信息。
具体的,本公开的一些实施例中,所述第一选择模块包括:
第一确定子模块,用于根据所述终端能力信息,确定所述终端采用全数字波束赋形接收;
第一选择子模块,用于从所述第一预设数量的发射波束中,选择任意组合的第二预设数量的发射波束。
具体的,本公开的一些实施例中,所述基站还包括:
第二确定模块,用于当根据所述终端能力信息,确定所述终端在同一时刻只有单个模拟波束赋形时,确定所述终端不能同时监听多个波束对链路。
具体的,本公开的一些实施例中,所述第一选择模块包括:
第二选择子模块,用于当同一接收波束组中的所有接收波束分别来自不同天线阵列面板时,从所述第一预设数量的发射波束中,选择对应同一接收波束组标识的第二预设数量的发射波束;
第三选择子模块,用于当同一接收波束组中的所有接收波束均来自相同天线阵列面板时,从所述第一预设数量的发射波束中,选择分别对应不同接收波束组标识的第二预设数量的发射波束。
具体的,本公开的一些实施例中,所述基站还包括:
第三确定模块,用于当同一接收波束组中的所有接收波束分别来自不同天线阵列面板时,若每个接收波束组仅包含一个接收波束,则确定所述终端不能同时监听多个波束对链路;
第四确定模块,用于当同一接收波束组中的所有接收波束均来自相同天线阵列面板时,若所述第一波束报告中的所有发射波束均对应同一接收波束组标识,则确定所述终端不能同时监听多个波束对链路。
具体的,本公开的一些实施例中,所述第一波束报告还包括第一预设数量的接收波束的标识,以及所述第一预设数量的发射波束与所述第一预设数量的接收波束之间的对应关系;
所述基站还包括:
第二选择模块,用于从所述第一预设数量的接收波束中选择与所述第二预设数量的发射波束对应的接收波束。
具体的,本公开的一些实施例中,所述基站还包括:
触发模块,用于接收所述终端上报的第二波束报告,所述第二波束报告中包括第三预设数量的发射波束的标识,向所述终端发送下行触发信令;
或者,
信号发送模块,用于向所述终端发射参考信号。
具体的,本公开的一些实施例中,所述基站还包括:
启动模块,用于当基站的当前状态满足预设启动条件时,启动所述多波束监听机制。
具体的,本公开的一些实施例中,所述第一波束报告中还包括第一预设数量的发射波束对应的接收功率;
所述第一选择模块包括:
第四选择子模块,用于根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从第一预设数量的发射波束中,选择接收功率最大的第二预设数量的发射波束。
具体的,本公开的一些实施例中,所述信道传输模块包括:
信息发送子模块,用于通过下行控制信道承载的波束指示信令来将所述第二预设数量的发射波束的信息发送给终端;其中,
所述第二预设数量的发射波束的信息包括:第二预设数量的发射波束的标识、第二预设数量的发射波束上的参考信号资源配置信息以及第二预设数量发射波束的时间参数。
具体的,本公开的一些实施例中,所述信道传输模块包括:
第一信道传输子模块,用于将所述第二预设数量的发射波束设置为同等级别,使用相同的周期在分别在所述第二预设数量的发射波束上传输控制信道;
或者,
第二信道传输子模块,用于将所述第二预设数量的发射波束设置为主从级别,使用相同或不同的周期分别在第二预设数量的发射波束上传输控制信道。
具体的,本公开的一些实施例中,若所述第二预设数量的发射波束为同等级别,则第二预设数量的发射波束上传输的控制信道内均含有相同的信息;
若所述第二预设数量的发射波束为主从级别,则主发射波束上传输的控制信道内含有控制信息,从发射波束上传输的控制信道内含有与主发射波束传输的控制信息相同的信息、主发射波束传输的控制信息的部分信息,或者,参考信号。
具体的,本公开的一些实施例中,所述信道传输模块包括:
第三信道传输子模块,用于采用分布式多入多出方式、多流传输方式,或者交替传输方式,在所述第二预设数量的发射波束上传输数据信道;
或者,
第四信道传输子模块,用于在所述第二预设数量的发射波束中的一个发 射波束或多个发射波束上传输数据信道。
综上,本公开的一些实施例提供的基站中,基站通过终端能力信息或者终端上报的第一波束报告中包括的与各个所述发射波束对应的接收波束组标识来确定终端是否能够同时监听多个波束对链路;且在终端能够同时监听多个波束对链路的情况下基站能够从所述第一预设数量的发射波束中选择第二预设数量的发射波束,并通过所述第二预设数量的发射波束传输控制信道和数据信道,相应的终端能够同时监听该第二预设数量的发射波束对应的波束对链路,则当其中一个波束对链路被阻挡时,终端能够快速切换到其他波束对链路上接收控制信道和数据信道,提升链路恢复速度,降低链路恢复导致的时延,提升用户体验。
需要说明的是,本公开的一些实施例提供的基站是能够实现上述波束处理方法的基站,则上述波束处理方法的所有实施例均适用于该基站,且均能达到相同或相似的有益效果。
如图4所示,本公开的一些实施例还提供一种终端400,包括:
第一上报模块401,用于向基站上报第一波束报告,所述第一波束报告包括第一预设数量的发射波束的标识;
第一信息接收模块402,用于接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识从所述第一预设数量的发射波束中选择的第二预设数量的发射波束的信息;所述第一预设数量和所述第二预设数量均大于或者等于2;
信道接收模块403,用于通过与第二预设数量的发射波束对应的接收波束,接收基站通过所述第二预设数量的发射波束传输的控制信道和数据信道。
具体的,本公开的一些实施例中所述终端能力信息包含在所述第一波束报告中。
具体的,本公开的一些实施例中所述终端还包括:
第二上报模块,用于向基站上报所述终端能力信息。
具体的本公开的一些实施例中,所述信息接收模块包括:
第一信息接收子模块,用于当所述终端能力信息指示所述终端采用全数字波束赋形接收时,接收基站从所述第一预设数量的发射波束中选择的任意 组合的第二预设数量的发射波束的信息。
具体的,本公开的一些实施例中所述第一波束报告还包括第一预设数量的接收波束的标识,以及所述第一预设数量的发射波束与所述第一预设数量的接收波束之间的对应关系;
所述终端还包括:
第二信息接收模块,用于接收基站从所述第一预设数量的接收波束中选择与所述第二预设数量的发射波束对应的接收波束的信息。
具体的,本公开的一些实施例中所述终端还包括:
第三上报模块,用于向基站上报第二波束报告,所述第二波束报告包括第三预设数量的发射波束的标识,接收基站下发的下行触发信令并基于所述下行触发信令向基站上报第一波束报告;
或者,
参考信号接收模块,用于接收基站发射的参考信号。
具体的,本公开的一些实施例中所述第一波束报告中还包括第一预设数量的发射波束对应的接收功率;
所述第一信息接收模块包括:
第一信息接收子模块,用于接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从第一预设数量的发射波束中选择的接收功率最大的第二预设数量的发射波束的信息。
具体的,本公开的一些实施例中所述第一信息接收模块包括:
第二信息接收子模块,用于当同一接收波束组中的所有接收波束分别来自不同天线阵列面板时,接收基站从所述第一预设数量的发射波束中选择的对应同一接收波束组标识的第二预设数量的发射波束的信息;
第三信息接收子模块,用于当同一接收波束组中的所有接收波束均来自相同天线阵列面板时,接收基站从所述第一预设数量的发射波束中选择的分别对应不同接收波束组标识的第二预设数量的发射波束的信息。
具体的,本公开的一些实施例中所述第一信息接收模块包括:
第四信息接收子模块,用于通过下行控制信道承载的波束指示信令,接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束 对应的接收波束组标识从所述第一预设数量的发射波束中选择第二预设数量的发射波束的信息;其中,
所述第二预设数量的发射波束的信息包括:第二预设数量的发射波束的标识、第二预设数量的发射波束上的参考信号资源配置信息以及第二预设数量发射波束的时间参数。
具体的,本公开的一些实施例中所述信道接收模块包括:
第一信道接收子模块,用于若第二预设数量的发射波束为同等级别,通过与第二预设数量的发射波束对应的接收波束,接收基站通过所述第二预设数量的发射波束传输的控制信道;
第二信道接收子模块,用于若第二预设数量的发射波束为主从级别,通过与主发射波束对应的接收波束,接收基站通过主发射波束传输的控制信道,并通过与从发射波束对应的接收波束,接收基站通过从发射波束传输的控制信道或参考信号。
具体的,本公开的一些实施例中若所述第二预设数量的发射波束为同等级别,则第二预设数量的发射波束上传输的控制信道内均含有相同的信息;
若所述第二预设数量的发射波束为主从级别,则主发射波束上传输的控制信道内含有控制信息,从发射波束上传输的控制信道内含有与主发射波束传输的控制信息相同的信息、主发射波束传输的控制信息的部分信息,或者,参考信号。
具体的,本公开的一些实施例中所述信道接收模块包括:
第三信道接收子模块,用于根据所述控制信道的指示,接收基站通过所述第二预设数量的发射波束传输的数据信道。
综上,本公开的一些实施例提供的终端中,终端上报第一波束报告,则基站通过终端能力信息或者终端上报的第一波束报告中包括的与各个所述发射波束对应的接收波束组标识来确定终端是否能够同时监听多个波束对链路;且在终端能够同时监听多个波束对链路的情况下基站能够从所述第一预设数量的发射波束中选择第二预设数量的发射波束,并通过所述第二预设数量的发射波束传输控制信道和数据信道,相应的终端能够同时监听该第二预设数量的发射波束对应的波束对链路,则当其中一个波束对链路被阻挡时,终端 能够快速切换到其他波束对链路上接收控制信道和数据信道,提升链路恢复速度,降低链路恢复导致的时延,提升用户体验。
需要说明的是,本公开的一些实施例提供的终端是能够实现上述波束处理方法的终端,则上述波束处理方法的所有实施例均适用于该终端,且均能达到相同或相似的有益效果。
图5是本公开的一些实施例提供的终端的另一框图。图5所示的移动终端500包括:至少一个处理器501、存储器502、至少一个网络接口504和其他用户接口503。移动终端500中的各个组件通过总线系统505耦合在一起。可理解,总线系统505用于实现这些组件之间的连接通信。总线系统505除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图5中将各种总线都标为总线系统505。
其中,用户接口503可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开的一些实施例中的存储器502可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Ram bus RAM,DRRAM)。本文描述的系统和方法的存储器502旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器502存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统5021和应用程序 5022。
其中,操作系统5021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序5022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开的一些实施例方法的程序可以包含在应用程序5022中。
在本公开的一些实施例中,通过调用存储器502存储的程序或指令,具体的,可以是应用程序5022中存储的程序或指令,处理器501用于向基站上报第一波束报告,所述第一波束报告包括第一预设数量的发射波束的标识;接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识从所述第一预设数量的发射波束中选择的第二预设数量的发射波束的信息;所述第一预设数量和所述第二预设数量均大于或者等于2;通过与第二预设数量的发射波束对应的接收波束,接收基站通过所述第二预设数量的发射波束传输的控制信道和数据信道。
上述本公开的一些实施例揭示的方法可以应用于处理器501中,或者由处理器501实现。处理器501可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器501中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器501可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器502,处理器501读取存储器502中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选地,本公开的一些实施例中,所述终端能力信息包含在所述第一波束报告中。
可选地,本公开的一些实施例中,处理器501还用于向基站上报所述终端能力信息。
可选地,处理器501还用于当所述终端能力信息指示所述终端采用全数字波束赋形接收时,接收基站从所述第一预设数量的发射波束中选择的任意组合的第二预设数量的发射波束的信息。
可选地,所述第一波束报告还包括第一预设数量的接收波束的标识,以及所述第一预设数量的发射波束与所述第一预设数量的接收波束之间的对应关系;处理器501还用于接收基站从所述第一预设数量的接收波束中选择与所述第二预设数量的发射波束对应的接收波束的信息。
可选地,处理器501还用于向基站上报第二波束报告,所述第二波束报告包括第三预设数量的发射波束的标识,接收基站下发的下行触发信令并基于所述下行触发信令向基站上报第一波束报告;或者,接收基站发射的参考信号。
可选地,所述第一波束报告中还包括第一预设数量的发射波束对应的接收功率;处理器501还用于接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从第一预设数量的发 射波束中选择的接收功率最大的第二预设数量的发射波束的信息。
可选地,处理器501还用于当同一接收波束组中的所有接收波束分别来自不同天线阵列面板时,接收基站从所述第一预设数量的发射波束中选择的对应同一接收波束组标识的第二预设数量的发射波束的信息;
当同一接收波束组中的所有接收波束均来自相同天线阵列面板时,接收基站从所述第一预设数量的发射波束中选择的分别对应不同接收波束组标识的第二预设数量的发射波束的信息。
可选地,处理器501还用于通过下行控制信道承载的波束指示信令,接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识从所述第一预设数量的发射波束中选择第二预设数量的发射波束的信息;其中,所述第二预设数量的发射波束的信息包括:第二预设数量的发射波束的标识、第二预设数量的发射波束上的参考信号资源配置信息以及第二预设数量发射波束的时间参数。
可选地,处理器501还用于若第二预设数量的发射波束为同等级别,通过与第二预设数量的发射波束对应的接收波束,接收基站通过所述第二预设数量的发射波束传输的控制信道;若第二预设数量的发射波束为主从级别,通过与主发射波束对应的接收波束,接收基站通过主发射波束传输的控制信道,并通过与从发射波束对应的接收波束,接收基站通过从发射波束传输的控制信道或参考信号。
可选地,若所述第二预设数量的发射波束为同等级别,则第二预设数量的发射波束上传输的控制信道内均含有相同的信息;若所述第二预设数量的发射波束为主从级别,则主发射波束上传输的控制信道内含有控制信息,从发射波束上传输的控制信道内含有与主发射波束传输的控制信息相同的信息、主发射波束传输的控制信息的部分信息,或者,参考信号。
可选地,处理器501还用于根据所述控制信道的指示,接收基站通过所述第二预设数量的发射波束传输的数据信道。
移动终端500能够实现本公开的一些实施例中移动终端实现的各个过程,为避免重复,这里不再赘述。
综上,本公开的一些实施例提供的终端中,终端上报第一波束报告,则 基站通过终端能力信息或者终端上报的第一波束报告中包括的与各个所述发射波束对应的接收波束组标识来确定终端是否能够同时监听多个波束对链路;且在终端能够同时监听多个波束对链路的情况下基站能够从所述第一预设数量的发射波束中选择第二预设数量的发射波束,并通过所述第二预设数量的发射波束传输控制信道和数据信道,相应的终端能够同时监听该第二预设数量的发射波束对应的波束对链路,则当其中一个波束对链路被阻挡时,终端能够快速切换到其他波束对链路上接收控制信道和数据信道,提升链路恢复速度,降低链路恢复导致的时延,提升用户体验。
需要说明的是,本公开的一些实施例提供的终端是能够实现上述应用于波束处理方法的终端,则上述应用于波束处理方法的一些实施例均适用于该终端,且均能达到相同或相似的有益效果。
图6是本公开的一些实施例提供的终端的另一结构示意图。具体地,图6中的移动终端600可以为手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、或车载电脑等。
图6中的移动终端600包括射频(Radio Frequency,RF)电路610、存储器620、输入单元630、显示单元640、处理器660、音频电路670、WiFi(Wireless Fidelity)模块680和电源690。
其中,输入单元630可用于接收用户输入的数字或字符信息,以及产生与移动终端600的用户设置以及功能控制有关的信号输入。具体地,本公开的一些实施例中,该输入单元630可以包括触控面板631。触控面板631,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板631上的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板631可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器660,并能接收处理器660发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板631。除了触控面板631,输入单元630还可以包括其他输入设备632,其他输入设备632可以包括但不限于物理键 盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
其中,显示单元640可用于显示由用户输入的信息或提供给用户的信息以及移动终端600的各种菜单界面。显示单元640可包括显示面板641,可选的,可以采用LCD或有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板641。
应注意,触控面板631可以覆盖显示面板641,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器660以确定触摸事件的类型,随后处理器660根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
触摸显示屏包括应用程序界面显示区及常用控件显示区。该应用程序界面显示区及该常用控件显示区的排列方式并不限定,可以为上下排列、左右排列等可以区分两个显示区的排列方式。该应用程序界面显示区可以用于显示应用程序的界面。每一个界面可以包含至少一个应用程序的图标和/或widget桌面控件等界面元素。该应用程序界面显示区也可以为不包含任何内容的空界面。该常用控件显示区用于显示使用率较高的控件,例如,设置按钮、界面编号、滚动条、电话本图标等应用程序图标等。
其中处理器660是移动终端600的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在第一存储器621内的软件程序和/或模块,以及调用存储在第二存储器622内的数据,执行移动终端600的各种功能和处理数据,从而对移动终端600进行整体监控。可选的,处理器660可包括一个或多个处理单元。
在本公开的一些实施例中,通过调用存储该第一存储器621内的软件程序和/或模块和/或该第二存储器622内的数据,处理器660用于向基站上报第一波束报告,所述第一波束报告包括第一预设数量的发射波束的标识;接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识从所述第一预设数量的发射波束中选择的第二预设数量的发射波束的信息;所述第一预设数量和所述第二预设数量均大于或者等于2;通过与第二预设数量的发射波束对应的接收波束,接收基站通过所述 第二预设数量的发射波束传输的控制信道和数据信道。
可选地,本公开的一些实施例中,所述终端能力信息包含在所述第一波束报告中。
可选地,本公开的一些实施例中,处理器660还用于向基站上报所述终端能力信息。
可选地,处理器660还用于当所述终端能力信息指示所述终端采用全数字波束赋形接收时,接收基站从所述第一预设数量的发射波束中选择的任意组合的第二预设数量的发射波束的信息。
可选地,所述第一波束报告还包括第一预设数量的接收波束的标识,以及所述第一预设数量的发射波束与所述第一预设数量的接收波束之间的对应关系;处理器660还用于接收基站从所述第一预设数量的接收波束中选择与所述第二预设数量的发射波束对应的接收波束的信息。
可选地,处理器660还用于向基站上报第二波束报告,所述第二波束报告包括第三预设数量的发射波束的标识,接收基站下发的下行触发信令并基于所述下行触发信令向基站上报第一波束报告;或者,接收基站发射的参考信号。
可选地,所述第一波束报告中还包括第一预设数量的发射波束对应的接收功率;处理器660还用于接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从第一预设数量的发射波束中选择的接收功率最大的第二预设数量的发射波束的信息。
可选地,处理器660还用于当同一接收波束组中的所有接收波束分别来自不同天线阵列面板时,接收基站从所述第一预设数量的发射波束中选择的对应同一接收波束组标识的第二预设数量的发射波束的信息;
当同一接收波束组中的所有接收波束均来自相同天线阵列面板时,接收基站从所述第一预设数量的发射波束中选择的分别对应不同接收波束组标识的第二预设数量的发射波束的信息。
可选地,处理器660还用于通过下行控制信道承载的波束指示信令,接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识从所述第一预设数量的发射波束中选择第二预设数量 的发射波束的信息;其中,所述第二预设数量的发射波束的信息包括:第二预设数量的发射波束的标识、第二预设数量的发射波束上的参考信号资源配置信息以及第二预设数量发射波束的时间参数。
可选地,处理器660还用于若第二预设数量的发射波束为同等级别,通过与第二预设数量的发射波束对应的接收波束,接收基站通过所述第二预设数量的发射波束传输的控制信道;若第二预设数量的发射波束为主从级别,通过与主发射波束对应的接收波束,接收基站通过主发射波束传输的控制信道,并通过与从发射波束对应的接收波束,接收基站通过从发射波束传输的控制信道或参考信号。
可选地,若所述第二预设数量的发射波束为同等级别,则第二预设数量的发射波束上传输的控制信道内均含有相同的信息;若所述第二预设数量的发射波束为主从级别,则主发射波束上传输的控制信道内含有控制信息,从发射波束上传输的控制信道内含有与主发射波束传输的控制信息相同的信息、主发射波束传输的控制信息的部分信息,或者,参考信号。
可选地,处理器660还用于根据所述控制信道的指示,接收基站通过所述第二预设数量的发射波束传输的数据信道。
综上,本公开的一些实施例提供的终端中,终端上报第一波束报告,则基站通过终端能力信息或者终端上报的第一波束报告中包括的与各个所述发射波束对应的接收波束组标识来确定终端是否能够同时监听多个波束对链路;且在终端能够同时监听多个波束对链路的情况下基站能够从所述第一预设数量的发射波束中选择第二预设数量的发射波束,并通过所述第二预设数量的发射波束传输控制信道和数据信道,相应的终端能够同时监听该第二预设数量的发射波束对应的波束对链路,则当其中一个波束对链路被阻挡时,终端能够快速切换到其他波束对链路上接收控制信道和数据信道,提升链路恢复速度,降低链路恢复导致的时延,提升用户体验。
需要说明的是,本公开的一些实施例提供的终端是能够实现上述应用于终端的波束处理方法的终端,则上述应用于终端的波束处理方法的一些实施例均适用于该终端,且均能达到相同或相似的有益效果。
本领域普通技术人员可以意识到,结合本文中所公开的一些实施例描述 的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
图7是本公开的一些实施例提供的基站的另一框图。图7所示的基站700包括:至少一个处理器701、存储器702、至少一个网络接口704和其他用户接口703。基站700中的各个组件通过总线系统707耦合在一起。可理解,总线系统707用于实现这些组件之间的连接通信。总线系统707除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为总线系统707。
其中,用户接口703可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开的一些实施例中的存储器702可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Ram bus RAM,DRRAM)。本文描述的系统和方法的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器702存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统7021和应用程序7022。
其中,操作系统7021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序7022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开的一些实施例方法的程序可以包含在应 用程序7022中。
在本公开的一些实施例中,通过调用存储器702存储的程序或指令,具体的,可以是应用程序7022中存储的程序或指令,处理器701用于接收终端上报的第一波束报告,所述第一波束报告包括第一预设数量的发射波束的标识;根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从所述第一预设数量的发射波束中选择第二预设数量的发射波束,所述第一预设数量和所述第二预设数量均大于或者等于2;将所述第二预设数量的发射波束的信息发送给终端,并通过所述第二预设数量的发射波束传输控制信道和数据信道。
上述本公开的一些实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开的一些实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开的一些实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场 可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选地,本公开的一些实施例中,所述终端能力信息包含在所述第一波束报告中。
可选地,本公开的一些实施例中,处理器701还用于根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,确定所述终端能够同时监听多个波束对链路,并启动多波束监听机制。
可选地,所述终端能力信息包含在所述第一波束报告中。
可选地,处理器701还用于接收所述终端上报的所述终端能力信息。
可选地,处理器701还用于根据所述终端能力信息,确定所述终端采用全数字波束赋形接收;从所述第一预设数量的发射波束中,选择任意组合的第二预设数量的发射波束。
可选地,处理器701还用于当根据所述终端能力信息,确定所述终端在同一时刻只有单个模拟波束赋形时,确定所述终端不能同时监听多个波束对链路。
可选地,处理器701还用于当同一接收波束组中的所有接收波束分别来自不同天线阵列面板时,从所述第一预设数量的发射波束中,选择对应同一接收波束组标识的第二预设数量的发射波束;当同一接收波束组中的所有接收波束均来自相同天线阵列面板时,从所述第一预设数量的发射波束中,选择分别对应不同接收波束组标识的第二预设数量的发射波束。
可选地,处理器701还用于当同一接收波束组中的所有接收波束分别来自不同天线阵列面板时,接收基站从所述第一预设数量的发射波束中选择的对应同一接收波束组标识的第二预设数量的发射波束的信息;当同一接收波束组中的所有接收波束均来自相同天线阵列面板时,接收基站从所述第一预设数量的发射波束中选择的分别对应不同接收波束组标识的第二预设数量的 发射波束的信息。
可选地,当同一接收波束组中的所有接收波束分别来自不同天线阵列面板时,若每个接收波束组仅包含一个接收波束,则确定所述终端不能同时监听多个波束对链路;当同一接收波束组中的所有接收波束均来自相同天线阵列面板时,若所述第一波束报告中的所有发射波束均对应同一接收波束组标识,则确定所述终端不能同时监听多个波束对链路。
可选地,所述第一波束报告还包括第一预设数量的接收波束的标识,以及所述第一预设数量的发射波束与所述第一预设数量的接收波束之间的对应关系;处理器701还用于从所述第一预设数量的接收波束中选择与所述第二预设数量的发射波束对应的接收波束。
可选地,处理器701还用于接收所述终端上报的第二波束报告,并启动多波束监听机制,并向所述终端发送下行触发信令;其中,所述第二波束报告中包括第三预设数量的发射波束的标识;或者,向所述终端发射参考信号。
可选地,处理器701还用于当基站的当前状态满足预设启动条件时,启动所述多波束监听机制。
可选地,所述第一波束报告中还包括第一预设数量的发射波束对应的接收功率;处理器701还用于根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从第一预设数量的发射波束中,选择接收功率最大的第二预设数量的发射波束。
可选地,处理器701还用于通过下行控制信道承载的波束指示信令来将所述第二预设数量的发射波束的信息发送给终端;其中,所述第二预设数量的发射波束的信息包括:第二预设数量的发射波束的标识、第二预设数量的发射波束上的参考信号资源配置信息以及第二预设数量发射波束的时间参数。
可选地,处理器701还用于将所述第二预设数量的发射波束设置为同等级别,使用相同的周期在分别在所述第二预设数量的发射波束上传输控制信道;或者,将所述第二预设数量的发射波束设置为主从级别,使用相同或不同的周期分别在第二预设数量的发射波束上传输控制信道。
可选地,若所述第二预设数量的发射波束为同等级别,则第二预设数量的发射波束上传输的控制信道内均含有相同的信息;若所述第二预设数量的 发射波束为主从级别,则主发射波束上传输的控制信道内含有控制信息,从发射波束上传输的控制信道内含有与主发射波束传输的控制信息相同的信息、主发射波束传输的控制信息的部分信息,或者,参考信号。
可选地,处理器701还用于采用分布式多入多出方式、多流传输方式,或者交替传输方式,在所述第二预设数量的发射波束上传输数据信道;或者,在所述第二预设数量的发射波束中的一个发射波束或多个发射波束上传输数据信道。
移动终端700能够实现本公开的一些实施例中移动终端实现的各个过程,为避免重复,这里不再赘述。
综上,本公开的一些实施例提供的基站中,基站通过终端能力信息或者终端上报的第一波束报告中包括的与各个所述发射波束对应的接收波束组标识来确定终端是否能够同时监听多个波束对链路;且在终端能够同时监听多个波束对链路的情况下基站能够从所述第一预设数量的发射波束中选择第二预设数量的发射波束,并通过所述第二预设数量的发射波束传输控制信道和数据信道,相应的终端能够同时监听该第二预设数量的发射波束对应的波束对链路,则当其中一个波束对链路被阻挡时,终端能够快速切换到其他波束对链路上接收控制信道和数据信道,提升链路恢复速度,降低链路恢复导致的时延,提升用户体验。
需要说明的是,本公开的一些实施例提供的基站是能够实现上述波束处理方法的基站,则上述波束处理方法的所有实施例均适用于该基站,且均能达到相同或相似的有益效果。
图8是本公开的一些实施例提供的基站的另一结构示意图。图8中的基站800包括射频(Radio Frequency,RF)电路810、存储器820、输入单元830、显示单元840、处理器870、WiFi(Wireless Fidelity)模块880和电源890。
其中,输入单元830可用于接收用户输入的数字或字符信息,以及产生与移动终端800的用户设置以及功能控制有关的信号输入。具体地,本公开的一些实施例中,该输入单元830可以包括触控面板831。触控面板831,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板831上的操作),并根据预先设定的程式 驱动相应的连接装置。可选的,触控面板831可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器870,并能接收处理器870发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板831。除了触控面板831,输入单元830还可以包括其他输入设备832,其他输入设备832可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
其中,显示单元840可用于显示由用户输入的信息或提供给用户的信息以及基站800的各种菜单界面。显示单元840可包括显示面板841,可选的,可以采用LCD或有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板841。
应注意,触控面板831可以覆盖显示面板841,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器870以确定触摸事件的类型,随后处理器870根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
触摸显示屏包括应用程序界面显示区及常用控件显示区。该应用程序界面显示区及该常用控件显示区的排列方式并不限定,可以为上下排列、左右排列等可以区分两个显示区的排列方式。该应用程序界面显示区可以用于显示应用程序的界面。每一个界面可以包含至少一个应用程序的图标和/或widget桌面控件等界面元素。该应用程序界面显示区也可以为不包含任何内容的空界面。该常用控件显示区用于显示使用率较高的控件,例如,设置按钮、界面编号、滚动条、电话本图标等应用程序图标等。
其中处理器870是移动终端800的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在第一存储器821内的软件程序和/或模块,以及调用存储在第二存储器822内的数据,执行移动终端800的各种功能和处理数据,从而对移动终端800进行整体监控。可选的,处理器880可包括一个或多个处理单元。
在本公开的一些实施例中,通过调用存储该第一存储器821内的软件程序和/或模块和/或该第二存储器822内的数据,处理器870用于接收终端上报的第一波束报告,所述第一波束报告包括第一预设数量的发射波束的标识;根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从所述第一预设数量的发射波束中选择第二预设数量的发射波束,所述第一预设数量和所述第二预设数量均大于或者等于2;将所述第二预设数量的发射波束的信息发送给终端,并通过所述第二预设数量的发射波束传输控制信道和数据信道。
可选地,本公开的一些实施例中,所述终端能力信息包含在所述第一波束报告中。
可选地,本公开的一些实施例中,处理器870还用于根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,确定所述终端能够同时监听多个波束对链路,并启动多波束监听机制。
可选地,所述终端能力信息包含在所述第一波束报告中。
可选地,处理器870还用于接收所述终端上报的所述终端能力信息。
可选地,处理器870还用于根据所述终端能力信息,确定所述终端采用全数字波束赋形接收;从所述第一预设数量的发射波束中,选择任意组合的第二预设数量的发射波束。
可选地,处理器870还用于当根据所述终端能力信息,确定所述终端在同一时刻只有单个模拟波束赋形时,确定所述终端不能同时监听多个波束对链路。
可选地,处理器870还用于当同一接收波束组中的所有接收波束分别来自不同天线阵列面板时,从所述第一预设数量的发射波束中,选择对应同一接收波束组标识的第二预设数量的发射波束;当同一接收波束组中的所有接收波束均来自相同天线阵列面板时,从所述第一预设数量的发射波束中,选择分别对应不同接收波束组标识的第二预设数量的发射波束。
可选地,处理器870还用于当同一接收波束组中的所有接收波束分别来自不同天线阵列面板时,接收基站从所述第一预设数量的发射波束中选择的对应同一接收波束组标识的第二预设数量的发射波束的信息;当同一接收波 束组中的所有接收波束均来自相同天线阵列面板时,接收基站从所述第一预设数量的发射波束中选择的分别对应不同接收波束组标识的第二预设数量的发射波束的信息。
可选地,当同一接收波束组中的所有接收波束分别来自不同天线阵列面板时,若每个接收波束组仅包含一个接收波束,则确定所述终端不能同时监听多个波束对链路;当同一接收波束组中的所有接收波束均来自相同天线阵列面板时,若所述第一波束报告中的所有发射波束均对应同一接收波束组标识,则确定所述终端不能同时监听多个波束对链路。
可选地,所述第一波束报告还包括第一预设数量的接收波束的标识,以及所述第一预设数量的发射波束与所述第一预设数量的接收波束之间的对应关系;处理器870还用于从所述第一预设数量的接收波束中选择与所述第二预设数量的发射波束对应的接收波束。
可选地,处理器870还用于接收所述终端上报的第二波束报告,并启动多波束监听机制,并向所述终端发送下行触发信令;其中,所述第二波束报告中包括第三预设数量的发射波束的标识;或者,向所述终端发射参考信号。
可选地,所述第一波束报告中还包括第一预设数量的发射波束对应的接收功率;处理器870还用于根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从第一预设数量的发射波束中,选择接收功率最大的第二预设数量的发射波束。
可选地,处理器870还用于通过下行控制信道承载的波束指示信令来将所述第二预设数量的发射波束的信息发送给终端;其中,所述第二预设数量的发射波束的信息包括:第二预设数量的发射波束的标识、第二预设数量的发射波束上的参考信号资源配置信息以及第二预设数量发射波束的时间参数。
可选地,处理器870还用于将所述第二预设数量的发射波束设置为同等级别,使用相同的周期在分别在所述第二预设数量的发射波束上传输控制信道;或者,将所述第二预设数量的发射波束设置为主从级别,使用相同或不同的周期分别在第二预设数量的发射波束上传输控制信道。
可选地,若所述第二预设数量的发射波束为同等级别,则第二预设数量的发射波束上传输的控制信道内均含有相同的信息;若所述第二预设数量的 发射波束为主从级别,则主发射波束上传输的控制信道内含有控制信息,从发射波束上传输的控制信道内含有与主发射波束传输的控制信息相同的信息、主发射波束传输的控制信息的部分信息,或者,参考信号。
可选地,处理器870还用于采用分布式多入多出方式、多流传输方式,或者交替传输方式,在所述第二预设数量的发射波束上传输数据信道;或者,在所述第二预设数量的发射波束中的一个发射波束或多个发射波束上传输数据信道。
综上,本公开的一些实施例提供的基站中,基站通过终端能力信息或者终端上报的第一波束报告中包括的与各个所述发射波束对应的接收波束组标识来确定终端是否能够同时监听多个波束对链路;且在终端能够同时监听多个波束对链路的情况下基站能够从所述第一预设数量的发射波束中选择第二预设数量的发射波束,并通过所述第二预设数量的发射波束传输控制信道和数据信道,相应的终端能够同时监听该第二预设数量的发射波束对应的波束对链路,则当其中一个波束对链路被阻挡时,终端能够快速切换到其他波束对链路上接收控制信道和数据信道,提升链路恢复速度,降低链路恢复导致的时延,提升用户体验。
需要说明的是,本公开的一些实施例提供的基站是能够实现上述波束处理方法的基站,则上述波束处理方法的所有实施例均适用于该基站,且均能达到相同或相似的有益效果。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例 如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (60)

  1. 一种波束处理方法,应用于基站,包括:
    接收终端上报的第一波束报告,所述第一波束报告包括第一预设数量的发射波束的标识;
    根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从所述第一预设数量的发射波束中选择第二预设数量的发射波束,所述第一预设数量和所述第二预设数量均大于或者等于2;
    将所述第二预设数量的发射波束的信息发送给终端,并通过所述第二预设数量的发射波束传输控制信道和数据信道。
  2. 根据权利要求1所述的方法,其中,根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从所述第一预设数量的发射波束中选择第二预设数量的发射波束的步骤之前,还包括:
    根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,确定所述终端能够同时监听多个波束对链路,并启动多波束监听机制。
  3. 根据权利要求1所述的方法,其中,所述终端能力信息包含在所述第一波束报告中。
  4. 根据权利要求1所述的方法,其中,所述接收终端上报的第一波束报告之前,还包括:
    接收所述终端上报的所述终端能力信息。
  5. 根据权利要求1所述的方法,其中,根据终端能力信息,从所述第一预设数量的发射波束中选择第二预设数量的发射波束,包括:
    根据所述终端能力信息,确定所述终端采用全数字波束赋形接收;
    从所述第一预设数量的发射波束中,选择任意组合的第二预设数量的发射波束。
  6. 根据权利要求5所述的方法,还包括:
    当根据所述终端能力信息,确定所述终端在同一时刻只有单个模拟波束赋形时,确定所述终端不能同时监听多个波束对链路。
  7. 根据权利要求1所述的方法,其中,所述根据所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从所述第一预设数量的发射波束中选择第二预设数量的发射波束的步骤,包括:
    当同一接收波束组中的所有接收波束分别来自不同天线阵列面板时,从所述第一预设数量的发射波束中,选择对应同一接收波束组标识的第二预设数量的发射波束;
    当同一接收波束组中的所有接收波束均来自相同天线阵列面板时,从所述第一预设数量的发射波束中,选择分别对应不同接收波束组标识的第二预设数量的发射波束。
  8. 根据权利要求7所述的方法,还包括:
    当同一接收波束组中的所有接收波束分别来自不同天线阵列面板时,若每个接收波束组仅包含一个接收波束,则确定所述终端不能同时监听多个波束对链路;
    当同一接收波束组中的所有接收波束均来自相同天线阵列面板时,若所述第一波束报告中的所有发射波束均对应同一接收波束组标识,则确定所述终端不能同时监听多个波束对链路。
  9. 根据权利要求1所述的方法,其中,所述第一波束报告还包括第一预设数量的接收波束的标识,以及所述第一预设数量的发射波束与所述第一预设数量的接收波束之间的对应关系;
    所述接收终端上报的第一波束报告之后,所述方法还包括:
    从所述第一预设数量的接收波束中选择与所述第二预设数量的发射波束对应的接收波束。
  10. 根据权利要求1所述的方法,其中,所述接收终端上报的第一波束报告之前,还包括:
    接收所述终端上报的第二波束报告,并启动多波束监听机制,并向所述终端发送下行触发信令;其中,所述第二波束报告中包括第三预设数量的发射波束的标识;
    或者,
    向所述终端发射参考信号。
  11. 根据权利要求2或10所述的方法,其中,所述启动多波束监听机制的步骤,包括:
    当基站的当前状态满足预设启动条件时,启动所述多波束监听机制。
  12. 根据权利要求1所述的方法,其中,所述第一波束报告中还包括第一预设数量的发射波束对应的接收功率;
    所述根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从所述第一预设数量的发射波束中选择第二预设数量的发射波束的步骤,包括:
    根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从第一预设数量的发射波束中,选择接收功率最大的第二预设数量的发射波束。
  13. 根据权利要求1所述的方法,其中,所述将所述第二预设数量的发射波束的信息发送给终端的步骤,包括:
    通过下行控制信道承载的波束指示信令来将所述第二预设数量的发射波束的信息发送给终端;其中,
    所述第二预设数量的发射波束的信息包括:第二预设数量的发射波束的标识、第二预设数量的发射波束上的参考信号资源配置信息以及第二预设数量发射波束的时间参数。
  14. 根据权利要求1所述的方法,其中,通过所述第二预设数量的发射波束传输控制信道,包括:
    将所述第二预设数量的发射波束设置为同等级别,使用相同的周期在分别在所述第二预设数量的发射波束上传输控制信道;
    或者,
    将所述第二预设数量的发射波束设置为主从级别,使用相同或不同的周期分别在第二预设数量的发射波束上传输控制信道。
  15. 根据权利要求14所述的方法,其中,若所述第二预设数量的发射波束为同等级别,则第二预设数量的发射波束上传输的控制信道内均含有相同的信息;
    若所述第二预设数量的发射波束为主从级别,则主发射波束上传输的控 制信道内含有控制信息,从发射波束上传输的控制信道内含有与主发射波束传输的控制信息相同的信息、主发射波束传输的控制信息的部分信息,或者,参考信号。
  16. 根据权利要求1所述的方法,其中,通过所述第二预设数量的发射波束传输数据信道,包括:
    采用分布式多入多出方式、多流传输方式,或者交替传输方式,在所述第二预设数量的发射波束上传输数据信道;
    或者,
    在所述第二预设数量的发射波束中的一个发射波束或多个发射波束上传输数据信道。
  17. 一种波束处理方法,应用于终端,包括:
    向基站上报第一波束报告,所述第一波束报告包括第一预设数量的发射波束的标识;
    接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识从所述第一预设数量的发射波束中选择的第二预设数量的发射波束的信息;所述第一预设数量和所述第二预设数量均大于或者等于2;
    通过与第二预设数量的发射波束对应的接收波束,接收基站通过所述第二预设数量的发射波束传输的控制信道和数据信道。
  18. 根据权利要求17所述的方法,其中,所述终端能力信息包含在所述第一波束报告中。
  19. 根据权利要求17所述的方法,其中,向基站上报第一波束报告之前,所述方法还包括:
    向基站上报所述终端能力信息。
  20. 根据权利要求17所述的方法,其中,所述接收基站根据终端能力信息从所述第一预设数量的发射波束中选择的第二预设数量的发射波束的信息,包括:
    当所述终端能力信息指示所述终端采用全数字波束赋形接收时,接收基站从所述第一预设数量的发射波束中选择的任意组合的第二预设数量的发射 波束的信息。
  21. 根据权利要求17所述的方法,其中,所述第一波束报告还包括第一预设数量的接收波束的标识,以及所述第一预设数量的发射波束与所述第一预设数量的接收波束之间的对应关系;
    所述向基站上报第一波束报告之后,所述方法还包括:
    接收基站从所述第一预设数量的接收波束中选择与所述第二预设数量的发射波束对应的接收波束的信息。
  22. 根据权利要求17所述的方法,其中,所述向基站上报第一波束报告之前,包括:
    向基站上报第二波束报告,所述第二波束报告包括第三预设数量的发射波束的标识,接收基站下发的下行触发信令并基于所述下行触发信令向基站上报第一波束报告;
    或者,
    接收基站发射的参考信号。
  23. 根据权利要求要求17所述的方法,其中,所述第一波束报告中还包括第一预设数量的发射波束对应的接收功率;
    所述接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识从所述第一预设数量的发射波束中选择第二预设数量的发射波束的信息的步骤,包括:
    接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从第一预设数量的发射波束中选择的接收功率最大的第二预设数量的发射波束的信息。
  24. 根据权利要求17所述的方法,其中,所述接收基站根据所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识从所述第一预设数量的发射波束中选择第二预设数量的发射波束的信息的步骤,包括:
    当同一接收波束组中的所有接收波束分别来自不同天线阵列面板时,接收基站从所述第一预设数量的发射波束中选择的对应同一接收波束组标识的第二预设数量的发射波束的信息;
    当同一接收波束组中的所有接收波束均来自相同天线阵列面板时,接收 基站从所述第一预设数量的发射波束中选择的分别对应不同接收波束组标识的第二预设数量的发射波束的信息。
  25. 根据权利要求17所述的方法,其中,所述接收基站根据终端能力信息或所述第一波束报告中包括的接收波束组标识从所述第一预设数量的发射波束中选择第二预设数量的发射波束的信息的步骤,包括:
    通过下行控制信道承载的波束指示信令,接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识从所述第一预设数量的发射波束中选择第二预设数量的发射波束的信息;其中,
    所述第二预设数量的发射波束的信息包括:第二预设数量的发射波束的标识、第二预设数量的发射波束上的参考信号资源配置信息以及第二预设数量发射波束的时间参数。
  26. 根据权利要求17所述的方法,其中,通过与第二预设数量的发射波束对应的接收波束,接收基站通过所述第二预设数量的发射波束传输的控制信道,包括:
    若第二预设数量的发射波束为同等级别,通过与第二预设数量的发射波束对应的接收波束,接收基站通过所述第二预设数量的发射波束传输的控制信道;
    若第二预设数量的发射波束为主从级别,通过与主发射波束对应的接收波束,接收基站通过主发射波束传输的控制信道,并通过与从发射波束对应的接收波束,接收基站通过从发射波束传输的控制信道或参考信号。
  27. 根据权利要求26所述的方法,其中,若所述第二预设数量的发射波束为同等级别,则第二预设数量的发射波束上传输的控制信道内均含有相同的信息;
    若所述第二预设数量的发射波束为主从级别,则主发射波束上传输的控制信道内含有控制信息,从发射波束上传输的控制信道内含有与主发射波束传输的控制信息相同的信息、主发射波束传输的控制信息的部分信息,或者,参考信号。
  28. 根据权利要求17所述的方法,其中,通过与第二预设数量的发射波束对应的接收波束,接收基站通过所述第二预设数量的发射波束传输的数据 信道,包括:
    根据所述控制信道的指示,接收基站通过所述第二预设数量的发射波束传输的数据信道。
  29. 一种基站,包括:
    第一报告接收模块,用于接收终端上报的第一波束报告,所述第一波束报告包括第一预设数量的发射波束的标识;
    第一选择模块,用于根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从所述第一预设数量的发射波束中选择第二预设数量的发射波束,所述第一预设数量和所述第二预设数量均大于或者等于2;
    信道传输模块,用于将所述第二预设数量的发射波束的信息发送给终端,并通过所述第二预设数量的发射波束传输控制信道和数据信道。
  30. 根据权利要求29所述的基站,还包括:
    第一确定模块,用于根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,确定所述终端能够同时监听多个波束对链路,并启动多波束监听机制。
  31. 根据权利要求29所述的基站,其中,所述终端能力信息包含在所述第一波束报告中。
  32. 根据权利要求29所述的基站,还包括:
    能力接收模块,用于接收所述终端上报的所述终端能力信息。
  33. 根据权利要求29所述的基站,其中,所述第一选择模块包括:
    第一确定子模块,用于根据所述终端能力信息,确定所述终端采用全数字波束赋形接收;
    第一选择子模块,用于从所述第一预设数量的发射波束中,选择任意组合的第二预设数量的发射波束。
  34. 根据权利要求33所述的基站,还包括:
    第二确定模块,用于当根据所述终端能力信息,确定所述终端在同一时刻只有单个模拟波束赋形时,确定所述终端不能同时监听多个波束对链路。
  35. 根据权利要求29所述的基站,其中,所述第一选择模块包括:
    第二选择子模块,用于当同一接收波束组中的所有接收波束分别来自不同天线阵列面板时,从所述第一预设数量的发射波束中,选择对应同一接收波束组标识的第二预设数量的发射波束;
    第三选择子模块,用于当同一接收波束组中的所有接收波束均来自相同天线阵列面板时,从所述第一预设数量的发射波束中,选择分别对应不同接收波束组标识的第二预设数量的发射波束。
  36. 根据权利要求35所述的基站,还包括:
    第三确定模块,用于当同一接收波束组中的所有接收波束分别来自不同天线阵列面板时,若每个接收波束组仅包含一个接收波束,则确定所述终端不能同时监听多个波束对链路;
    第四确定模块,用于当同一接收波束组中的所有接收波束均来自相同天线阵列面板时,若所述第一波束报告中的所有发射波束均对应同一接收波束组标识,则确定所述终端不能同时监听多个波束对链路。
  37. 根据权利要求29所述的基站,其中,所述第一波束报告还包括第一预设数量的接收波束的标识,以及所述第一预设数量的发射波束与所述第一预设数量的接收波束之间的对应关系;
    所述基站还包括:
    第二选择模块,用于从所述第一预设数量的接收波束中选择与所述第二预设数量的发射波束对应的接收波束。
  38. 根据权利要求29所述的基站,还包括:
    触发模块,用于接收所述终端上报的第二波束报告,并启动多波束监听机制,并向所述终端发送下行触发信令;其中,所述第二波束报告中包括第三预设数量的发射波束的标识;
    或者,
    信号发送模块,用于向所述终端发射参考信号。
  39. 根据权利要求30或38所述的基站,还包括:
    启动模块,用于当基站的当前状态满足预设启动条件时,启动所述多波束监听机制。
  40. 根据权利要求29所述的基站,其中,所述第一波束报告中还包括第 一预设数量的发射波束对应的接收功率;
    所述第一选择模块包括:
    第四选择子模块,用于根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从第一预设数量的发射波束中,选择接收功率最大的第二预设数量的发射波束。
  41. 根据权利要求29所述的基站,其中,所述信道传输模块包括:
    信息发送子模块,用于通过下行控制信道承载的波束指示信令来将所述第二预设数量的发射波束的信息发送给终端;其中,
    所述第二预设数量的发射波束的信息包括:第二预设数量的发射波束的标识、第二预设数量的发射波束上的参考信号资源配置信息以及第二预设数量发射波束的时间参数。
  42. 根据权利要求29所述的基站,其中,所述信道传输模块包括:
    第一信道传输子模块,用于将所述第二预设数量的发射波束设置为同等级别,使用相同的周期在分别在所述第二预设数量的发射波束上传输控制信道;
    或者,
    第二信道传输子模块,用于将所述第二预设数量的发射波束设置为主从级别,使用相同或不同的周期分别在第二预设数量的发射波束上传输控制信道。
  43. 根据权利要求42所述的基站,其中,若所述第二预设数量的发射波束为同等级别,则第二预设数量的发射波束上传输的控制信道内均含有相同的信息;
    若所述第二预设数量的发射波束为主从级别,则主发射波束上传输的控制信道内含有控制信息,从发射波束上传输的控制信道内含有与主发射波束传输的控制信息相同的信息、主发射波束传输的控制信息的部分信息,或者,参考信号。
  44. 根据权利要求29所述的基站,其中,所述信道传输模块包括:
    第三信道传输子模块,用于采用分布式多入多出方式、多流传输方式,或者交替传输方式,在所述第二预设数量的发射波束上传输数据信道;
    或者,
    第四信道传输子模块,用于在所述第二预设数量的发射波束中的一个发射波束或多个发射波束上传输数据信道。
  45. 一种终端,包括:
    第一上报模块,用于向基站上报第一波束报告,所述第一波束报告包括第一预设数量的发射波束的标识;
    第一信息接收模块,用于接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识从所述第一预设数量的发射波束中选择的第二预设数量的发射波束的信息;所述第一预设数量和所述第二预设数量均大于或者等于2;
    信道接收模块,用于通过与第二预设数量的发射波束对应的接收波束,接收基站通过所述第二预设数量的发射波束传输的控制信道和数据信道。
  46. 根据权利要求45所述的终端,其中,所述终端能力信息包含在所述第一波束报告中。
  47. 根据权利要求45所述的终端,还包括:
    第二上报模块,用于向基站上报所述终端能力信息。
  48. 根据权利要求45所述的终端,其中,所述信息接收模块包括:
    第一信息接收子模块,用于当所述终端能力信息指示所述终端采用全数字波束赋形接收时,接收基站从所述第一预设数量的发射波束中选择的任意组合的第二预设数量的发射波束的信息。
  49. 根据权利要求45所述的终端,其中,所述第一波束报告还包括第一预设数量的接收波束的标识,以及所述第一预设数量的发射波束与所述第一预设数量的接收波束之间的对应关系;
    所述终端还包括:
    第二信息接收模块,用于接收基站从所述第一预设数量的接收波束中选择与所述第二预设数量的发射波束对应的接收波束的信息。
  50. 根据权利要求45所述的终端,还包括:
    第三上报模块,用于向基站上报第二波束报告,所述第二波束报告包括第三预设数量的发射波束的标识,接收基站下发的下行触发信令并基于所述 下行触发信令向基站上报第一波束报告;
    或者,
    参考信号接收模块,用于接收基站发射的参考信号。
  51. 根据权利要求45所述的终端,其中,所述第一波束报告中还包括第一预设数量的发射波束对应的接收功率;
    所述第一信息接收模块包括:
    第一信息接收子模块,用于接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识,从第一预设数量的发射波束中选择的接收功率最大的第二预设数量的发射波束的信息。
  52. 根据权利要求45所述的终端,其中,所述第一信息接收模块包括:
    第二信息接收子模块,用于当同一接收波束组中的所有接收波束分别来自不同天线阵列面板时,接收基站从所述第一预设数量的发射波束中选择的对应同一接收波束组标识的第二预设数量的发射波束的信息;
    第三信息接收子模块,用于当同一接收波束组中的所有接收波束均来自相同天线阵列面板时,接收基站从所述第一预设数量的发射波束中选择的分别对应不同接收波束组标识的第二预设数量的发射波束的信息。
  53. 根据权利要求45所述的终端,其中,所述第一信息接收模块包括:
    第四信息接收子模块,用于通过下行控制信道承载的波束指示信令,接收基站根据终端能力信息或所述第一波束报告中包括的与各个所述发射波束对应的接收波束组标识从所述第一预设数量的发射波束中选择第二预设数量的发射波束的信息;其中,
    所述第二预设数量的发射波束的信息包括:第二预设数量的发射波束的标识、第二预设数量的发射波束上的参考信号资源配置信息以及第二预设数量发射波束的时间参数。
  54. 根据权利要求45所述的终端,其中,所述信道接收模块包括:
    第一信道接收子模块,用于若第二预设数量的发射波束为同等级别,通过与第二预设数量的发射波束对应的接收波束,接收基站通过所述第二预设数量的发射波束传输的控制信道;
    第二信道接收子模块,用于若第二预设数量的发射波束为主从级别,通 过与主发射波束对应的接收波束,接收基站通过主发射波束传输的控制信道,并通过与从发射波束对应的接收波束,接收基站通过从发射波束传输的控制信道或参考信号。
  55. 根据权利要求54所述的终端,其中,若所述第二预设数量的发射波束为同等级别,则第二预设数量的发射波束上传输的控制信道内均含有相同的信息;
    若所述第二预设数量的发射波束为主从级别,则主发射波束上传输的控制信道内含有控制信息,从发射波束上传输的控制信道内含有与主发射波束传输的控制信息相同的信息、主发射波束传输的控制信息的部分信息,或者,参考信号。
  56. 根据权利要求45所述的终端,其中,所述信道接收模块包括:
    第三信道接收子模块,用于根据所述控制信道的指示,接收基站通过所述第二预设数量的发射波束传输的数据信道。
  57. 一种基站,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至16中任一项所述的波束处理方法中的步骤。
  58. 一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求17至28中任一项所述的波束处理方法中的步骤。
  59. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至16中任一项所述的波束处理方法中的步骤。
  60. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求17至28中任一项所述的波束处理方法中的步骤。
PCT/CN2018/075728 2017-03-24 2018-02-08 一种波束处理方法、基站及终端 WO2018171355A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710184080.4 2017-03-24
CN201710184080.4A CN108632839B (zh) 2017-03-24 2017-03-24 一种波束处理方法、基站及终端

Publications (1)

Publication Number Publication Date
WO2018171355A1 true WO2018171355A1 (zh) 2018-09-27

Family

ID=63586289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075728 WO2018171355A1 (zh) 2017-03-24 2018-02-08 一种波束处理方法、基站及终端

Country Status (2)

Country Link
CN (2) CN108632839B (zh)
WO (1) WO2018171355A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113454920A (zh) * 2019-02-15 2021-09-28 索尼集团公司 用于极化报告的方法、相关无线设备和相关网络节点
CN113727422A (zh) * 2019-01-08 2021-11-30 维沃移动通信有限公司 一种天线面板控制方法、终端设备及网络侧设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109417717B (zh) * 2018-09-27 2022-06-24 北京小米移动软件有限公司 测量配置方法、装置、设备、系统及存储介质
CN111328048B (zh) * 2018-12-17 2021-09-14 华为技术有限公司 一种通信方法及装置
CN113412582A (zh) * 2019-02-14 2021-09-17 索尼集团公司 用于波束对应信号通知的方法、相关无线设备和相关网络节点
CN111918416B (zh) * 2019-05-10 2023-10-10 华为技术有限公司 通信方法和通信装置
CN112086750B (zh) * 2019-06-13 2022-02-08 中国电信股份有限公司 终端天线面板工作状态的方法、系统以及存储介质
CN117354930A (zh) * 2020-05-11 2024-01-05 富士通株式会社 波束管理装置
CN112788614B (zh) * 2021-01-13 2023-04-07 上海闻泰信息技术有限公司 波束赋形的方法和装置、波束赋形系统和计算机存储介质
CN116998176A (zh) * 2021-03-23 2023-11-03 高通股份有限公司 针对非服务小区进行基于组的波束报告
CN116567691A (zh) * 2022-01-29 2023-08-08 维沃移动通信有限公司 信息传输方法、装置、终端及网络侧设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159466A (zh) * 2007-11-20 2008-04-09 华中科技大学 一种自适应随机波束成形传输方法
CN101674273A (zh) * 2008-09-08 2010-03-17 上海交通大学 多用户调度方法、多用户调度装置、信息反馈装置、基站和移动台
US20140120926A1 (en) * 2012-10-29 2014-05-01 Electronics And Telecommunications Research Institute Method of operating base station and terminal in cellular telecommunication system for operating multiple beams
CN106374984A (zh) * 2015-07-20 2017-02-01 中兴通讯股份有限公司 一种波束更新的方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9319124B2 (en) * 2011-08-16 2016-04-19 Samsung Electronics Co., Ltd Apparatus and method for supporting multi-antenna transmission in beamformed wireless communication system
US9780928B2 (en) * 2011-10-17 2017-10-03 Golba Llc Method and system for providing diversity in a network that utilizes distributed transceivers and array processing
WO2014175926A1 (en) * 2013-04-26 2014-10-30 Intel IP Corporation Wireless transmission precoding
US9014311B1 (en) * 2013-10-15 2015-04-21 Nokia Solutions And Networks Oy Interleaved multi-beam acquisition waveform providing concurrent beam selection, automatic gain control (AGC) and automatic frequency correction (AFC)
JP2015185953A (ja) * 2014-03-20 2015-10-22 株式会社Nttドコモ ビーム選択方法、基地局、およびユーザ装置
US9363683B2 (en) * 2014-07-15 2016-06-07 Qualcomm Incorporated Asymmetric capability-driven methods for beam tracking in mm-wave access systems
US9853707B2 (en) * 2014-09-16 2017-12-26 Mediatek Inc Channel state information collection for wireless communication system with beamforming
CN106304120A (zh) * 2015-06-08 2017-01-04 中兴通讯股份有限公司 一种波束识别方法、系统和网络节点

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159466A (zh) * 2007-11-20 2008-04-09 华中科技大学 一种自适应随机波束成形传输方法
CN101674273A (zh) * 2008-09-08 2010-03-17 上海交通大学 多用户调度方法、多用户调度装置、信息反馈装置、基站和移动台
US20140120926A1 (en) * 2012-10-29 2014-05-01 Electronics And Telecommunications Research Institute Method of operating base station and terminal in cellular telecommunication system for operating multiple beams
CN106374984A (zh) * 2015-07-20 2017-02-01 中兴通讯股份有限公司 一种波束更新的方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113727422A (zh) * 2019-01-08 2021-11-30 维沃移动通信有限公司 一种天线面板控制方法、终端设备及网络侧设备
CN113454920A (zh) * 2019-02-15 2021-09-28 索尼集团公司 用于极化报告的方法、相关无线设备和相关网络节点
US11974360B2 (en) 2019-02-15 2024-04-30 Sony Group Corporation Methods for polarization reporting; related wireless devices and related network nodes

Also Published As

Publication number Publication date
CN112260732A (zh) 2021-01-22
CN112260732B (zh) 2022-08-16
CN108632839B (zh) 2020-11-10
CN108632839A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
WO2018171355A1 (zh) 一种波束处理方法、基站及终端
US11589278B2 (en) Beam switching method, mobile terminal and computer readable storage medium
US11722205B2 (en) Method and device for selecting the beam indication information from a network node when receiving
US10707935B2 (en) Method for reporting terminal information, method for acquiring terminal information, terminal and base station
KR102602135B1 (ko) 업링크 채널의 구성 방법, 전송 방법, 네트워크측 장치 및 단말
WO2018121342A1 (zh) 一种波束测量上报的方法、网络侧设备及移动终端
CN110474667B (zh) 一种信息处理方法、装置、终端及通信设备
JP7222066B2 (ja) ビーム障害回復のための方法、端末機器及びネットワーク側機器
JP2021522747A (ja) 処理方法、ユーザ機器及びネットワーク側機器
CN109548192B (zh) 一种波束失败恢复的处理方法及终端
WO2019223634A1 (zh) 信息处理方法、装置、终端及通信设备
WO2019029562A1 (zh) 波束失败恢复方法和用户终端
WO2021013007A1 (zh) 测量方法、资源配置方法、终端和网络侧设备
JP2022518198A (ja) チャネル・干渉測定方法、及び機器
US12063086B2 (en) Uplink beam training method, terminal device, and network side device
JP2023527056A (ja) チャネル情報の処理方法及び装置
CN109391295B (zh) 一种波束指示的处理方法、移动终端及网络侧设备
JP2022506380A (ja) 信号品質パラメータ測定方法及び機器
JP7043517B2 (ja) 端末及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771574

Country of ref document: EP

Kind code of ref document: A1