WO2018171340A1 - 波束恢复的处理方法及装置 - Google Patents

波束恢复的处理方法及装置 Download PDF

Info

Publication number
WO2018171340A1
WO2018171340A1 PCT/CN2018/074993 CN2018074993W WO2018171340A1 WO 2018171340 A1 WO2018171340 A1 WO 2018171340A1 CN 2018074993 W CN2018074993 W CN 2018074993W WO 2018171340 A1 WO2018171340 A1 WO 2018171340A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication node
signaling
type
reference signal
configuration
Prior art date
Application number
PCT/CN2018/074993
Other languages
English (en)
French (fr)
Inventor
高波
李儒岳
陈艺戬
鲁照华
袁弋非
王欣晖
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020197031058A priority Critical patent/KR102288390B1/ko
Priority to EP18771123.9A priority patent/EP3606220A4/en
Priority to JP2019552115A priority patent/JP7105798B2/ja
Publication of WO2018171340A1 publication Critical patent/WO2018171340A1/zh
Priority to US16/581,616 priority patent/US11291007B2/en
Priority to US17/656,861 priority patent/US20220338185A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06966Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using beam correspondence; using channel reciprocity, e.g. downlink beam training based on uplink sounding reference signal [SRS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0866Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access

Definitions

  • the present disclosure relates to the field of communications, and in particular to a method and apparatus for processing beam recovery.
  • the ultra-wide bandwidth high frequency band in the related art has become an important direction for the development of mobile communication in the future, and has attracted the attention of academic and industrial circles around the world.
  • the advantages of millimeter waves have become more and more attractive when the increasingly congested spectrum resources and physical networks are heavily accessed.
  • standards organizations such as IEEE and 3GPP, corresponding standardization work has begun.
  • high-band communication will become an important innovation point of 5G New Radio Access Technology (New RAT) with its significant advantages of large bandwidth.
  • New RAT 5G New Radio Access Technology
  • high-band communication also faces the challenge of link attenuation, including large loss of propagation path, greater absorption of air (especially oxygen), and heavy rain attenuation. Faced with these challenges, high-band communication systems can take advantage of the high frequency band and short antenna integration, and achieve high antenna gain and signal transmission loss through multi-antenna array and beamforming schemes to ensure link margin. And improve communication robustness.
  • the high frequency band sends a training pilot, and the terminal receives the channel and performs channel estimation. Then, the high-band receiver needs to feed back the channel state information to the training initiator, so that the transceiver can select the weights of multiple groups of transceiver antennas that can be used for multi-channel data transmission. Overall spectral efficiency.
  • directional beam communication reduces the diversity of signals in space propagation while obtaining the current link gain, which may affect the user's movement and channel occlusion, resulting in the relative nature of directional communication. Poor.
  • the reliability of wireless communication may not be guaranteed when communicating again.
  • the above technical problem does not provide a beam reconstruction method after a beam link failure in the related art, and implements a solution for accelerating beam link recovery.
  • Embodiments of the present disclosure provide a method and apparatus for processing beam restoration to solve at least beam re-establishment after a beam link failure in a millimeter wave communication system, and fail to actively initiate beam and channel state information reporting or beam and channel state information. Report the technical issue of the request.
  • a method for processing beam restoration comprising: generating a first type of signaling according to a trigger threshold of K elements in a beam related parameter set; and transmitting the The first type of signaling; wherein the set of beam correlation parameters comprises Q elements, where Q and K are both positive integers and K is less than or equal to Q.
  • the first type of signaling includes at least one of: one or a group of beam report information, a scheduling request, where the beam report information is sent by the first communication node or the second communication node by at least one of The information is represented by: a reference signal port index, a reference signal resource index, a reference signal resource set index, a resource configuration index of the reference signal, an element index of the search space set, and an element index of the agreed beam set.
  • the beam report information is represented by a time-frequency resource location occupied by the first type of signaling.
  • the scheduling request includes signaling that the first communication node sends a beam report request to the second communication node.
  • the method further includes: receiving a scheduling request response of the second communication node to the scheduling request; performing a beam report on the allocated resource of the scheduling request response; wherein the allocated resource includes: An uplink control channel, or an uplink data channel, when the allocated resource is an uplink control channel, the beam report is carried by the uplink control information UCI, and when the allocated resource is an uplink data channel, the beam report is accessed through the medium.
  • the beam report includes at least one of the following information: a reference signal type, a reference signal resource set index, a reference signal resource index, a reference signal port index, an element index of a search space, an element index of an agreed beam, and a beam grouping. Index, receive beam packet index, antenna packet index.
  • the resource configuration index associated with the reference signal refers to satisfying a quasi co-location QCL hypothesis with the resource configuration index.
  • the method before the sending the first type of signaling to the second communication node, the method further includes: receiving a channel set that the first type of signaling indicated by the second communication node configuration can bear, where the The channel set includes one or a combination of the following: a dedicated channel, a physical random access channel (PRACH) channel, an unlicensed channel, and a scheduling request resource; the dedicated channel is used to carry the first type of signaling, and is occupied by the PRACH channel and the unlicensed channel.
  • PRACH physical random access channel
  • the scheduling request resource refers to a scheduling request specific to the second communication node allocated by the first communication node to the second communication node.
  • the resource appears once every D subframes, where D is an integer greater than or equal to 1.
  • the first communication node selects the subset bearer from the set of channels to send the first type of signaling.
  • the plurality of dedicated channels form a dedicated channel set.
  • the first type of signaling is repeatedly sent in a dedicated channel in the dedicated channel set for performing beam scanning, measurement, and decision of the first communication node to the second communication node.
  • the structure of the dedicated channel set is indicated by a configuration signaling of the PRACH.
  • the method further includes: receiving, by using the beam indicated in the beam reporting information, the second type sent by the second communications node Signaling; wherein the second type of signaling is used to indicate that the second communication node confirms the first type of signaling of the first communication node.
  • the second type of signaling includes: one or a group of beam indication information, where the beam report information is represented by at least one of the following information sent by the first communication node or the second communication node: a reference signal Port index, reference signal resource index, reference signal resource set index, resource configuration index of the reference signal, element index of the search space set, element index of the agreed beam set.
  • the beam report information is represented by at least one of the following information sent by the first communication node or the second communication node: a reference signal Port index, reference signal resource index, reference signal resource set index, resource configuration index of the reference signal, element index of the search space set, element index of the agreed beam set.
  • the beam indication information is represented by a time-frequency resource location occupied by the second type of signaling.
  • the first type of signaling does not include beam report information when a beam association between the uplink and downlink of the first communication node satisfies a condition.
  • the first type of signaling is used for at least one of: for initial initiated beam reporting; applying for scheduling resources; initiating beam link reconstruction; initiating beam link establishment.
  • the set of beam correlation parameters includes one of: quality of N first type beam links; quality of N first type beam links and quality of K second type beam links Difference or ratio; correlation of time-frequency channel responses of N first-type beam links with K second-type beam links, or correlation of frequency-domain channel responses, spatial correlation; N first classes The difference or ratio of the azimuth of the beam link to the azimuth of the K second type of beam links; the K beam quality of the second type; the beam quality of all the second types; the distance from the last uplink Time accumulated for successful reception of the control channel or the data channel; cumulative number of times of unsuccessful reception; adjustment information of the beam packet; weighting value or weighted correlation value of each parameter included in the beam related parameter set; wherein the second type Beam link refers to the set of S configured beam links, or from the set of S1 activated beam links activated; the first type of beam link means not from S Configuring a beam link set, or Not from the S1 sets that have been activated in the set of configured beam links; the configured beam link refer
  • the configured beam link comprises: a beam link indicated by the second communication node to the first communication node, or a beam link reported by the first communication node to the second communication node.
  • the beam link corresponds to one of: a transmit beam, a receive beam, a transmit and receive beam pair, a beam set, a receive beam set, a transmit beam set, a receive mode, an antenna combination, and a control channel.
  • the beam link quality includes one of the following: BLER, received signal power, RSRP, RSRQ, channel capacity, signal-to-noise ratio at the receiving end, and signal-to-noise ratio at the receiving end.
  • the first type of signaling is an element of a configured or predefined set of signaling.
  • the element of the signaling set is a sequence, or a sequence and a frequency domain resource occupied by it, or a sequence and a time domain resource in which it is used, or a set of sequence numbers and occupied by it Time-frequency resources, or a set of sequence numbers and the time-frequency resources they occupy that are hopped by a particular function.
  • the elements of the signaling set are unique to the first communication node or shared by the B first communication nodes; wherein B is an integer greater than one.
  • the signaling set is configured by one of: a first communication node configuration; a first communication node sends a configuration request, a second communication node performs configuration; a second communication node configuration; a first communication node configuration, and The second communication node is selected to be active; the second communication node is configured, and the first communication node is selected to take effect.
  • the condition that the first communication node configures or sends the configuration request includes at least one of: entering the discontinuous reception DRX mode; the K second type of beam link quality is worse than the first threshold; all the second type of beams The link quality is worse than the second threshold; the time from the last control channel/data channel successfully received is greater than the third threshold; the cumulative number of unsuccessful reception is greater than the fourth threshold; the weighting value of the above partial parameters, or the weighted correlation value, Meet the requirements of the fifth threshold.
  • the element of the first type of signaling set relates to a configuration parameter of at least one of: an identity indication of the first communication node; O time-frequency resources carrying the first type of signaling, and a first type of signaling.
  • the second communication node Corresponding relationship between the transmitted time-frequency resource location and the reference signal indicated by the first communication node; after the first type of signaling is sent, the second communication node sends a control signaling transmission mode to the first communication node; after the first type of signaling is sent, The second communication node sends the time-frequency resource or the time-frequency resource range that the control signaling can occupy to the first communication node; after the first type of signaling is sent, the second communication node sends a blind detection criterion of the control signaling to the first communication node; a transmission configuration of a reference signal transmitted by the first communication node to the second communication node; a measurement configuration of the reference signal transmitted by the first communication node to the second communication node; a report configuration of the reference signal transmitted by the
  • the element of the signaling set further includes: a dedicated contention-free sequence when the PRACH is accessed.
  • the sending configuration of the reference signal includes at least one of the following parameters: a reference signal type, an antenna port, a reference signal resource, a time-frequency resource occupied by the reference signal resource, or a time-frequency resource range.
  • some or all of the parameters indicated by the first type of signaling are jointly coded and/or jointly labeled.
  • the first type of signaling further includes backup beam measurement signaling, where the backup beam measurement signaling refers to the second communication node using a pre-configured beam set with the first communication node.
  • the medium element transmits a reference signal, a control channel, or a data channel.
  • the identity identifier of the first communication node includes one of the following: an identity symbol unique to the first communication node; a shared identity symbol configured by the plurality of first communication nodes; and an identity sequence number obtained by the competition.
  • the configured signaling set has a valid time window, and the configuration signaling set after the valid time window is invalid.
  • the valid time window is one or more, respectively for signaling in a signaling set, and/or oriented to parameters in a signaling set.
  • the configuration of the valid time window includes one or a combination of: starting from the current configuration and failing after the next reconfiguration; starting from the current configuration, failing after T time units; starting from the current configuration, In the Y1th first type signaling, or the Y2th first type signaling is successfully received, or after the Y3th second type signaling is sent, or the Y4th second type signaling is successfully received;
  • the T time units are invalidated; after the last time the first communication node feeds back the ACK/NACK to the second communication node, the T time units are invalidated; the last time the first communication node receives the second communication node After the ACK/NACK is fed back, the T time units are invalidated; the last time the second communication node sends the ACK/NACK to the first communication node, the T time units are invalidated; the last time the second communication node sends the ACK to the first communication node.
  • T time units After /NACK, T time units fail; the T, Y1, Y2, Y3 and Y4 are integers greater than or equal to 1, and T, Y1, Y2, Y3 and Y4 can be predefined or by the first communication Node or second communication section Configuration.
  • the first communication node sends the first type of signaling to the second communication node, or the cumulative waiting time, or a combination.
  • the physical layer of the first communication node sends a link failure to the upper layer. request.
  • the sending power of sending the first type of signaling to the second communications node meets one of: a power transmission rule obeying a random access channel PRACH; using full power transmission; using the weighted value of the foregoing power to send .
  • the method further includes: performing any one or more of a reference signal, a downlink control channel, or a downlink data channel that is sent by the second communications node to the first communications node.
  • the first type of information indicates that the reference signal of the beam defaults to the quasi co-location QCL hypothesis.
  • the method further includes: performing any one or more of a reference signal, an uplink control channel, and an uplink data channel that are sent by the first communications node to the second communications node.
  • the second type of information indicates that the reference signal of the beam defaults to the quasi co-location QCL hypothesis.
  • the second type of signaling includes identity indication information of the first communication node.
  • the second type of signaling further includes at least one of the following: a sending configuration of the reference signal sent by the first communications node to the second communications node; and a reference signal sent by the first communications node to the second communications node. a measurement configuration; a report configuration of the reference signal transmitted by the first communication node to the second communication node; a transmission configuration of the reference signal transmitted by the second communication node to the first communication node; and a reference signal transmitted by the second communication node to the first communication node a measurement configuration; a report configuration of a reference signal transmitted by the second communication node to the first communication node.
  • the first communications node when the first type of signaling cannot uniquely indicate the identity indication of the first communications node, after receiving the second type of signaling, the first communications node sends a third class to the second communications node. Signaling, wherein the third type of signaling includes a unique identity of the first communication node.
  • the method further comprises: the first communication node attempts to receive the fourth type of signaling from the second communication node, wherein the fourth type of signaling
  • the first type of signaling indicates the first communication node and the first identifier of the first communication node, or the first type of signaling indicates that the fourth type of signaling can be successfully received according to the unique identity representation of the first communication node.
  • the beam link of the two communication nodes is established.
  • Applying a second communication node includes: receiving a first type of signaling, wherein the first type of signaling is a first communication node according to a beam.
  • a triggering threshold generated by K elements in the related parameter set is generated; when the beam link of the first communication node to the second communication node is interrupted, the K elements are used for beam link reconstruction;
  • the set of beam related parameters includes Q elements, where Q and K are both positive integers and K is less than or equal to Q.
  • the first type of signaling is used for at least one of: for initial initiated beam reporting; applying for scheduling resources; initiating beam link reconstruction; initiating beam link establishment.
  • a beam recovery processing apparatus applying a first communication node, comprising: a generating module configured to generate a first type of letter according to a trigger threshold of K elements in a beam related parameter set And a sending module, configured to send the first type of signaling to the second communication node, where the beam related parameter set includes Q elements, where Q and K are both positive integers, and K is less than or equal to Q.
  • the first type of signaling includes at least one of: one or a group of beam report information, a scheduling request; wherein the beam report information is sent by the first communication node or the second communication node by at least The information is represented by: a reference signal port index, a reference signal resource index, a reference signal resource set index, a resource configuration index of the reference signal, an element index of the search space set, and an element index of the agreed beam set.
  • the first type of signaling is used for at least one of: for initial initiated beam reporting; applying for scheduling resources; initiating beam link reconstruction; initiating beam link establishment.
  • another beam recovery processing apparatus applying a second communication node, comprising: a receiving module, configured to receive a first type of signaling, wherein the first type of signaling is The first communication node is generated according to a trigger threshold of K elements in the beam-related parameter set; and the processing module is configured to use the K when the beam link of the first communication node to the second communication node is interrupted
  • the elements perform beam link reconstruction; wherein the beam related parameter set includes Q elements, where Q and K are both positive integers, and K is less than or equal to Q.
  • the first type of signaling is used for at least one of: for initial initiated beam reporting; applying for scheduling resources; initiating beam link reconstruction; initiating beam link establishment.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the steps of: generating a first type of signaling based on a triggering threshold of K elements in a beam-related parameter set; transmitting the first type of signaling to the second communication node .
  • generating first type signaling according to a trigger threshold of K elements in a beam related parameter set transmitting the first type signaling to the second communication node; wherein the beam related parameter set includes Q elements, where Q and K are both positive integers, and K is less than or equal to Q, which solves the problem that beam reconstruction cannot be performed after beam link failure in millimeter wave communication system, and beam and channel state information report or beam and channel cannot be actively initiated. Status information reports the technical issue of the request.
  • FIG. 1 is a flow chart of a method of processing beam restoration in accordance with an embodiment of the present disclosure
  • FIG. 2 is a flow chart of another method of processing beam restoration in accordance with an embodiment of the present disclosure
  • FIG. 3 is a structural block diagram of a processing apparatus for beam recovery according to an embodiment of the present disclosure
  • FIG. 4 is a structural block diagram of another processing device for beam recovery according to an embodiment of the present disclosure.
  • hybrid precoding hybrid analog digital beamforming
  • FIG. 6 is a beam recovery configuration and startup procedure for a CSI-RS reference signal according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a beam recovery dedicated channel (hereinafter referred to as a dedicated channel) according to an embodiment of the present disclosure
  • FIG. 8 is a flowchart of a beam recovery process for an SS block according to an embodiment of the present disclosure
  • FIG. 10 is a schematic diagram of a signaling interaction mode according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of relationship between a first type of signaling set and a UE ID according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of using PRACH random access after a beam recovery failure according to an embodiment of the present disclosure
  • FIG. 13 is an embodiment of a beam request based on a scheduling request in accordance with an embodiment of the present disclosure.
  • FIG. 1 is a flowchart of a method for processing beam recovery according to an embodiment of the present disclosure. As shown in FIG. 1, the process includes The following steps are as follows: Step S102: Generate a first type of signaling according to a trigger threshold of K elements in a beam-related parameter set; K elements trigger a threshold, and each trigger threshold may be the same or different; and step S104, to the second communication
  • the node transmits a first type of signaling; wherein the set of beam related parameters comprises Q elements, where Q and K are both positive integers and K is less than or equal to Q.
  • the first type of signaling is generated according to the trigger threshold of the K elements in the beam-related parameter set, and the first type of signaling is sent to the second communication node, where the beam-related parameter set includes Q elements, where Q and K are both positive integers, and K is less than or equal to Q, which solves the problem that beam reconstruction cannot be performed after beam link failure in millimeter wave communication system, and beam and channel state information report or beam and channel cannot be actively initiated.
  • the status information reports technical issues of the request, such as when the beam link quality is degraded or a new, better link is discovered.
  • FIG. 2 is a flowchart of another method for processing beam recovery according to an embodiment of the present disclosure.
  • the method includes the following steps: Step S202, receiving a first type of signaling, where the first type of signaling is generated by the first communications node according to a trigger threshold of K elements in the beam related parameter set; and step S204, at the first communications node
  • the K-elements are used for beam link reconstruction; wherein the beam-related parameter set contains Q elements, where Q and K are both positive integers and K is less than or equal to Q.
  • the first communication node of the execution entity of the foregoing step is a terminal, and the second communication node may be a base station, but is not limited thereto.
  • the first type of signaling includes at least one of: one or a group of beam report information, a scheduling request, where the beam report information is represented by at least one of the following information sent by the first communication node or the second communication node. : reference signal port index, reference signal resource index, reference signal resource set index, resource configuration index of the reference signal, element index of the search space set, element index of the agreed beam set.
  • the beam report information is represented by a time-frequency resource location occupied by the first type of signaling.
  • the scheduling request includes signaling that the first communication node sends a beam report request to the second communication node.
  • the solution of this embodiment further includes: S11, receiving a scheduling request response of the second communication node to the scheduling request; and S12, performing beam reporting on the resource allocated by the scheduling request response;
  • the allocated resources include: an uplink control channel, or an uplink data channel.
  • the beam report is carried by the uplink control information UCI, and when the allocated resource is an uplink data channel, the beam report is performed.
  • the RRC signaling bearer is controlled by the medium access control layer control unit MAC-CE or radio resource.
  • the beam report includes at least one of the following information: a reference signal type, a reference signal resource set index, a reference signal resource index, a reference signal port index, an element index of the search space, an element index of the agreed beam, a beam packet index, Receive beam packet index, antenna packet index.
  • the reference to the resource configuration index of the reference signal refers to satisfying the quasi-co-location QCL hypothesis with the resource configuration index.
  • the method further includes: S21, receiving a channel set that the first type of signaling indicated by the second communications node configuration can bear
  • the channel set includes one or a combination of the following: a dedicated channel, a physical random access channel (Physical Random Access Channel, PRACH), an unlicensed channel, and a scheduling request resource; the dedicated channel is used to carry the first type of signaling, and The time domain resource that is the same as or different from the PRACH channel and the unlicensed channel is orthogonal to the PRACH channel and the unlicensed channel, and the scheduling request resource refers to the second communication node that is allocated by the first communication node to the second communication node.
  • the scheduling request resource appears once every D subframes, where D is an integer greater than or equal to 1.
  • the first communication node selects the subset bearer from the set of channels to send the first type of signaling.
  • a plurality of dedicated channels may constitute a dedicated channel set.
  • the first type of signaling is repeatedly sent in a dedicated channel in the dedicated channel set, and is used to perform beam scanning, measurement, and determination of the first communication node to the second communication node.
  • the structure of the dedicated channel set is indicated by the configuration signaling of the PRACH.
  • the method further includes: S31, using the beam indicated in the beam reporting information, receiving the second sending by the second communications node
  • the second type of signaling is used to indicate that the second communication node confirms the first type of signaling of the first communication node.
  • the second type of signaling includes: one or a group of beam indication information, where the beam report information is represented by at least one of the following information sent by the first communication node or the second communication node: reference signal port index, reference The signal resource index, the reference signal resource set index, the resource configuration index of the reference signal, the element index of the search space set, and the element index of the agreed beam set.
  • the beam indication information is represented by a time-frequency resource location occupied by the second type of signaling.
  • the first type of signaling does not include beam report information.
  • the first type of signaling is used in at least one of: for actively initiating beam reporting; applying for scheduling resources; initiating beam link reconstruction; initiating beam link establishment.
  • the first type of signaling is used for link re-establishment, beam and channel state information reports initiated by the first communication node, or beam and channel state information reporting requests.
  • the set of beam correlation parameters includes one of: quality of N first type beam links; quality difference of N first type beam links and K second type beam link quality sums Or ratio; correlation of time-frequency channel responses of N first-type beam links with K second-type beam links, or correlation of frequency-domain channel responses, spatial correlation; N first-type beam chains The difference or ratio of the azimuth of the road to the azimuth of the K second type of beam links; the K beam quality of the second type; the beam quality of all the second types; the distance from the last uplink control channel Or the cumulative time of successful reception of the data channel; the cumulative number of unsuccessfully received; the adjustment information of the beam packet; the weighted value or the weighted correlation value of each parameter included in the beam-related parameter set; wherein the second type of beam link refers to From S configured beam link sets, or from activated S1 sets in S configured beam link sets; the first type of beam links means not from S configured beam link sets, or not From S configured The set of S1 activated in the bundle of links; the configured beam link
  • the quality of the first type of beam link may refer to the quality of the unlabeled beam link
  • the quality of the second type of beam link may refer to the quality of the labeled beam link
  • the configured beam link comprises: a beam link indicated by the second communication node to the first communication node, or a beam link reported by the first communication node to the second communication node.
  • the beam link corresponds to one of the following: a transmit beam, a receive beam, a transmit and receive beam pair, a beam set, a receive beam set, a transmit beam set, a receive mode, an antenna combination, and a control channel.
  • the beam link quality includes one of the following: a block error ratio (BLER), a received signal power, a reference signal receiving power (RSRP), and a reference signal receiving quality ( Reference Signal Receiving Quality (referred to as RSRQ), channel capacity, receiver-side signal-to-noise ratio, and receiver-to-noise ratio.
  • BLER block error ratio
  • RSRP reference signal receiving power
  • RSRQ Reference Signal Receiving Quality
  • the first type of signaling is an element of a configured or predefined set of signaling.
  • the element of the signaling set is a sequence, or a sequence and a frequency domain resource occupied by it, or a sequence and a time domain resource in which it is used, or a set of sequence numbers and the time it occupies A frequency resource, or a set of sequence numbers and time-frequency resources that it occupies by a particular function hopping.
  • the elements of the signaling set are unique to the first communication node or shared by the B first communication nodes; wherein B is an integer greater than one.
  • the signaling set is configured by one of: a first communication node configuration; the first communication node sends a configuration request, the second communication node performs configuration; the second communication node is configured; the first communication node is configured, and The second communication node is selected to be active; the second communication node is configured, and the first communication node is selected to take effect.
  • the condition that the first communication node configures or sends the configuration request includes at least one of: entering the discontinuous reception DRX mode; the K second type of beam link quality is worse than the first threshold; all the second classes The beam link quality is worse than the second threshold; the time from the last control channel/data channel successfully received is greater than the third threshold; the cumulative number of unsuccessful reception is greater than the fourth threshold; the weighting value of the above partial parameters, or weighted correlation Value, meeting the requirements of the fifth threshold.
  • the elements of the first type of signaling set relate to at least one of the following configuration parameters: an identity indication of the first communication node; O time-frequency resources carrying the first type of signaling; and the first type of signaling Corresponding relationship between the transmitted time-frequency resource location and the reference signal indicated by the first communication node; after the first type of signaling is sent, the second communication node sends a control signaling transmission mode to the first communication node; after the first type of signaling is sent, The second communication node sends the time-frequency resource or the time-frequency resource range that the control signaling can occupy to the first communication node; after the first type of signaling is sent, the second communication node sends a blind detection criterion of the control signaling to the first communication node; a transmission configuration of a reference signal transmitted by the first communication node to the second communication node; a measurement configuration of the reference signal transmitted by the first communication node to the second communication node; a report configuration of the reference signal transmitted by the first communication node to the second communication
  • the elements of the signaling set further include: a dedicated contention-free sequence when the PRACH is accessed.
  • the sending configuration of the reference signal includes at least one of the following parameters: a reference signal type, an antenna port, a reference signal resource, a time-frequency resource occupied by the reference signal resource, or a time-frequency resource range.
  • some or all of the parameters indicated by the first type of signaling are jointly coded and/or jointly labeled.
  • the first type of signaling further includes backup beam measurement signaling, where the backup beam measurement signaling refers to the second communication node transmitting the reference signal and the control channel by using a pre-configured element in the beam set of the first communication node. Or data channel.
  • the identity identifier of the first communication node includes one of the following: an identity symbol unique to the first communication node; a shared identity symbol configured by the plurality of first communication nodes; and an identity sequence number obtained by the competition.
  • the configured signaling set when the signaling set is the configured signaling set, the configured signaling set has a valid time window, and the configuration signaling set after the valid time window is invalid.
  • the valid time window is one or more, respectively for signaling in the signaling set, and/or for parameters in the signaling set.
  • the configuration of the valid time window includes one or a combination of: starting from the current configuration and failing after the next reconfiguration; starting from the current configuration, failing after T time units; starting from the current configuration, in the first Y1 times the first type of signaling, or the Y2th first type of signaling is successfully received, or after the Y3th second type of signaling, or the Y4th second type of signaling is successfully received; the trigger threshold
  • T time units fail
  • the last time the first communication node feeds back ACK/NACK to the second communication node, T time unit expires; the last time the first communication node receives the second communication node feedback ACK/NACK After that, T time units are invalidated; after the last time the second communication node sends an ACK/NACK to the first communication node, T time units are invalidated; after the last time the second communication node sends an ACK/NACK to the first communication node, T time unit failure; T, Y1, Y2, Y3 and Y
  • the first communication node sends the first type of signaling to the second communication node, or the cumulative waiting time, or a combination.
  • the physical layer of the first communication node sends a link failure to the upper layer. request.
  • the sending power of the first type of signaling sent to the second communications node meets one of the following: a power transmission rule obeying the random access channel PRACH; transmitting using full power; and transmitting using the weighted value of the power.
  • the method in this embodiment further includes: using the one of the reference signal, the downlink control channel, or the downlink data channel that is sent by the second communications node to the first communications node.
  • the first type of information indicates that the reference signal of the beam defaults to the quasi co-location QCL hypothesis.
  • the method further includes: one or more of the reference signal, the uplink control channel, and the uplink data channel sent by the first communications node to the second communications node, and the second type of information.
  • the reference signal of the indicator beam defaults to the quasi co-address QCL hypothesis.
  • the second type of signaling includes identity indication information of the first communication node.
  • the second type of signaling further includes at least one of the following: a sending configuration of the reference signal sent by the first communications node to the second communications node; and a reference signal sent by the first communications node to the second communications node. a measurement configuration; a report configuration of the reference signal transmitted by the first communication node to the second communication node; a transmission configuration of the reference signal transmitted by the second communication node to the first communication node; and a reference signal transmitted by the second communication node to the first communication node a measurement configuration; a report configuration of a reference signal transmitted by the second communication node to the first communication node.
  • the first communication node when the first type of signaling cannot uniquely indicate the identity indication of the first communication node, after receiving the second type of signaling, the first communication node sends a third type of signaling to the second communication node, where The three types of signaling contain a unique identity of the first communication node.
  • the method in this embodiment further includes: the first communications node attempts to receive the fourth type of signaling from the second communications node, where the fourth type of signaling is included
  • the fourth type of signaling indicates the beam chain of the first communication node and the second communication node, if the first communication node is uniquely identified, or the first type of signaling can successfully receive and decode the fourth type of signaling according to the unique identity of the first communication node. Road establishment.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present disclosure which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present disclosure.
  • a processing device for beam recovery is also provided in this embodiment.
  • the device is configured to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module" may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the apparatus includes: a generating module 30 configured to generate a trigger threshold according to K elements in a beam-related parameter set.
  • the first type of signaling the sending module 32 is configured to send the first type of signaling to the second communication node; wherein the beam related parameter set includes Q elements, where Q and K are both positive integers, and K is less than or equal to Q .
  • FIG. 4 is a structural block diagram of another apparatus for processing beam recovery according to an embodiment of the present disclosure.
  • the apparatus includes: a receiving module 40 configured to receive a first type of signaling, wherein the first type of signaling Let the first communication node generate according to the trigger threshold of the K elements in the beam-related parameter set; the processing module 42 is configured to use the K elements when the beam link of the first communication node to the second communication node is interrupted Beam link reconstruction; wherein the beam-related parameter set contains Q elements, where Q and K are both positive integers and K is less than or equal to Q.
  • the first type of signaling includes at least one of: one or a group of beam report information, a scheduling request, where the beam report information is represented by at least one of the following information sent by the first communication node or the second communication node. : reference signal port index, reference signal resource index, reference signal resource set index, resource configuration index of the reference signal, element index of the search space set, element index of the agreed beam set.
  • the first type of signaling is used in at least one of: for actively initiating beam reporting; applying for scheduling resources; initiating beam link reconstruction; initiating beam link establishment.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • the embodiment relates to a method and a device for implementing a beam recovery configuration in a high-band 5G mobile communication or millimeter wave communication scenario.
  • directional beam communication reduces the diversity of signals in spatial propagation while obtaining the current link gain, and may face the influence of user movement and channel occlusion, resulting in directional communication.
  • the robustness is relatively poor.
  • the reliability of wireless communication may not be guaranteed when communicating again.
  • the base station configures one or a set of symbols/sequences for the user, and the user selects a symbol/sequence from the selectable set to perform beam recovery, after indicating that the user beam link has failed and indicates the recommended beam recovery. method. Then, through the QCL-based beam indication or beam fallback method, the user can inform the base station of the available beam information to facilitate fast beam link reconstruction. On the one hand, the user can quickly inform the base station after the beam link fails to avoid unnecessary signal transmission; on the other hand, based on the configured beam recovery method and the indication of the potential new beam link, the new beam link can be accelerated.
  • the establishment process is one or a set of symbols/sequences for the user, and the user selects a symbol/sequence from the selectable set to perform beam recovery, after indicating that the user beam link has failed and indicates the recommended beam recovery. method. Then, through the QCL-based beam indication or beam fallback method, the user can inform the base station of the available beam information to facilitate fast beam
  • CRS Cell reference signal
  • CSI-RS Channel state information reference signal
  • CSI-IM Channel state information interference measurement signal
  • DMRS Demodulation reference signal
  • SRS Channel sounding reference signal
  • Phase tracking reference signal (PT-RS)
  • MRS Mobile related reference signal
  • BRS Beam reference signal
  • BRRS Beam refinement reference signal
  • Random access channel signal RACH
  • Synchronization signal (SS) SS Synchronization signal
  • Synchronization signal block (SS block);
  • PSS Primary synchronization signal
  • SSS Secondary Synchronization Signal
  • the identity indication includes, but is not limited to, a MAC address, a Cell Radio Network Temporary Indication (C-RNTI), a Temporary C-RNTI (TC-RNTI), or a dedicated ID assigned by the base station to the UE.
  • C-RNTI Cell Radio Network Temporary Indication
  • TC-RNTI Temporary C-RNTI
  • the grouping of beam-related information refers to dividing a beam and associated channel state information having the same channel characteristics and/or transmission scheme into a set, and the criteria of the grouping include any one of the following and any combination mode:
  • TA timing advance
  • the number of beams per packet is 1.
  • the channel characteristics include physical propagation channel characteristics, such as horizontal transmission azimuth, vertical transmission azimuth, horizontal reception azimuth, vertical reception azimuth, etc., and also features of radio frequency and baseband circuits, such as antenna pattern features. ), antenna placement, and baseband skew, frequency offset and phase noise.
  • the grouping of this embodiment may also be referred to as a collection.
  • the channel characteristics that is, including physical propagation channel characteristics, such as horizontal transmission azimuth, vertical transmission azimuth, horizontal reception azimuth, vertical reception azimuth, etc., also include characteristics of radio frequency and baseband circuits, such as antenna pattern features (element pattern) ), antenna group, sky plane board, antenna subarray, transceiver unit (TXRU), receive beam set, antenna placement, and baseband time offset, frequency offset and phase noise.
  • antenna pattern features element pattern
  • TXRU transceiver unit
  • the beam may be a resource (eg, originating precoding, terminating precoding, antenna port, antenna weight vector, antenna weight matrix, etc.), and the beam symbol may be replaced with a resource index because the beam may be associated with some time-frequency code resources. Binding on the transport.
  • the beam may also be a transmission (transmit/receive) mode; the transmission mode may include space division multiplexing, frequency domain/time domain diversity, and the like.
  • the beam indication means that the transmitting end can indicate by using the current reference signal and the antenna port, the base station scanning or the reference signal (or reference reference signal) reported by the UE feedback, and the antenna port satisfying the quasi co-location (QCL) assumption.
  • QCL quasi co-location
  • the receiving beam refers to a beam of the receiving end that does not need to be indicated, or the transmitting end can scan the reference signal (or reference reference signal) and the quasi-co-location of the antenna port through the current reference signal and the antenna port, and the base station scans or the UE feedback report. (QCL) indicates the beam resource at the receiving end.
  • the parameters involved in the quasi-co-location include at least Doppler spread, Doppler shift, delay spread, average delay and average gain; and may also include, spatial parameter information, such as angle of arrival, receive beam Spatial correlation, average delay, correlation of time-frequency channel response (including phase information).
  • FIG. 5 is a schematic structural diagram of a hybrid precoding (hybrid analog digital beamforming) transceiver for an embodiment of the present disclosure.
  • the system transmitting end and receiving end configure multiple antenna units and multiple radio frequency links.
  • each RF link is interconnected with the antenna array unit (not including part of the connection scenario), and each antenna unit has a digital keyed phase shifter.
  • the high-band system implements beamforming on the analog side by applying different phase shift amounts to the signals on the respective antenna elements. For example, in a hybrid beamforming transceiver, there are multiple RF signal streams.
  • Each signal stream is loaded into the AWV through a digitally keyed phase shifter, and transmitted from the multi-antenna unit to the high-band physical propagation channel; at the receiving end, the RF signal streams received by the multi-antenna unit are weighted and combined into a single signal stream.
  • the radio frequency demodulation the receiver finally obtains multiple received signal streams, and is sampled and received by the digital baseband.
  • a hybrid precoding (hybrid analog digital beamforming) transceiver can simultaneously generate radio frequency beams directed in multiple directions.
  • the trigger conditions, measurement pilots, possible configurations, and transmission methods (which channels) of the first type of signaling are as follows.
  • the CQI quality of the user feedback is too low, or the NACK performance is poor, or the DRX phase needs to be entered, and the beam link quality of the K in use is worse than the threshold, or the time accumulated from the last control channel/data channel successfully received.
  • the threshold is greater than the threshold, the base station performs beam restoration configuration on the user. Or, after the user accesses the system, the system will start beam recovery configuration for it.
  • the beam recovery configuration one or more user-specific sequences are assigned to each user. If based on multiple user-specific sequence signaling, it can be used to indicate different beam recovery schemes.
  • the parameters that may be involved are as follows:
  • the second communication node After the first type of signaling is sent, the second communication node sends a transmission mode of the control signaling to the first communication node;
  • the second communication node After the first type of signaling is sent, the second communication node sends a time-frequency resource or a time-frequency resource range that the control signaling can occupy to the first communication node;
  • the second communication node After the first type of signaling is sent, the second communication node sends a blind detection criterion of the control signaling to the first communication node;
  • the reference signal configuration may be used before the UE initiates beam recovery of the first signaling for accelerating the discovery of the potential available beam set or the first signaling for subsequent beam refinement.
  • the user After satisfying the following trigger conditions or combination conditions, the user will attempt to initiate a beam recovery procedure, send the first type of signaling (beam recovery signaling) on the dedicated channel, and attempt to pass one or more available downlink transmit beam information through the display.
  • the method of, and/or implicitly occupying, the location of the time-frequency resource is communicated to the base station.
  • Correlation of the time-frequency channel response of the N first-class beam links with the K second-class beam links, the correlation of the frequency-domain channel response, or the spatial correlation is lower than a common threshold or a threshold of two ;
  • Weighted values of some of the above parameters, or weighted correlation values are Weighted values of some of the above parameters, or weighted correlation values
  • the user can initiate the following beam recovery procedure. It is emphasized that if channel heterogeneity or beam correspondence is supported, the user can quickly transmit the first type of signaling (beam recovery signaling) on a particular beam recovery channel. If the channel dissimilarity or beam association is not supported in the uplink or downlink. Considering that only the downlink beam is directed, and the uplink beam is unknown, the first type of signaling (beam recovery signaling) needs to be repeatedly transmitted on multiple time-frequency resources, or the necessary uplink beam scanning. As an example, the quality of the first type of beam link may refer to the quality of the unlabeled beam link, and the quality of the second type of beam link may refer to the quality of the labeled beam link.
  • the beam recovery process includes: 1) the condition satisfies the triggered user behavior; 2) the user discovers the potential available beam; 3) sends the first type signaling to notify the TRP, and informs the event sending; 4) the TRP feeds the second type signaling to perform the beam Recovering the response; 5) The UE sends the third type of signaling, and reports the detailed identity information (optional, facing the contention and the UE-group scenario); 6) The TRP sends the fourth type of signaling, and the UE confirms the identity information of the UE.
  • FIG. 6 is a beam recovery configuration and startup procedure for a CSI-RS reference signal according to an embodiment of the present disclosure.
  • the base station/TRP performs beam recovery configuration to the user, and the user has a dedicated sequence/symbol or resource location that can be used to indicate the user ID and/or the predefined beam recovery configuration.
  • the beam recovery procedure is started, and the UE attempts to search for CSI-RS signaling sent periodically. If the available downlink beam link is found, the user sends a first type of signaling to the user through the beam recovery channel to indicate the beam link failure and indicate a potential downlink beam.
  • the UE needs to send the first type of signaling to the base station to perform uplink beam scanning.
  • the first type of signaling in addition to indicating the downlink transmit beam, may indicate a subset, including the user identity ID, how to restart the beam training pilot configuration, the time-frequency window, the blind control criterion for transmitting control signaling, and the control channel. Transmission method, etc.
  • the identity ID here may be a user-specific ID or a shared identity ID after the UE is combined.
  • FIG. 7 is a schematic structural diagram of a beam recovery dedicated channel (hereinafter referred to as a dedicated channel) according to an embodiment of the present disclosure, wherein FIG. 7a shows that the duration or length occupied by CP+SEQ is configurable and includes a guard interval; and FIG. 7b indicates that it is still used. Normal OFDM symbol, but using normal or growing CP. It should be noted that FIG. 7a can be applied to the scene of uplink synchronization failure by adjusting the sampling window, and FIG. 7b is more suitable for the scene where uplink synchronization is still effective, and the cost is smaller than the method described in FIG. 7a.
  • a plurality of dedicated channels may constitute a dedicated channel set, and a dedicated channel set corresponds to a full-space/exclusive space scan of the uplink receive beam, and the receive beam under each dedicated channel is unchanged, but the location of the time-frequency resource is
  • the previously transmitted reference channel is purely in a binding relationship, that is, the first type of signaling is sent at the location to invisibly indicate the downlink transmit beam.
  • the previous CSI-RS or SS block are respectively associated with each other.
  • the beam recovery dedicated channel set is composed of X beam-recovery dedicated channels (two-two periods are T) to achieve training for uplink beams. Therefore, the blind detection window of the second signaling may be described based on the U-th beam recovery dedicated channel, where U is an integer greater than or equal to 1. This means that between multiple beam recovery dedicated channels, the user needs to perform blind detection for the second type of channel.
  • FIG. 8 is a flowchart of a beam recovery process for an SS block according to an embodiment of the present disclosure.
  • the base station needs to specify the type of reference signal that is allowed to perform beam recovery.
  • the exclusive sequence is divided into a dedicated channel by the PRACH channel.
  • the dedicated sequence is configured in the parameter set of the first type of signaling configuration, and can also be considered as the first type of signaling.
  • the QCL association indication may correspond to a DMRS channel of the SSS, the PSS, or the PBCH in the SS block.
  • FIG. 9 is a beam recovery procedure of a second type of signaling according to an embodiment of the present disclosure.
  • the second type of signaling is carried on the downlink control channel, but can also be carried on the downlink data channel. Since the blind detection window user uses the downlink reception beam indicated by it according to the first type of signaling, the base station uses the downlink transmission beam indicated by the base station. In the second type of signaling, the user's identity indicator ID and joint beam scanning are needed to determine the UE-specific beam scanning indication and Timing advance (TA).
  • TA Timing advance
  • the second type of signaling needs to carry a beam indication about the optimal uplink transmission beam.
  • the indication index of the second type of signaling comes from the index number corresponding to the dedicated channel. In order to save costs, it is possible to encode only the adjacent N dedicated channels.
  • a joint uplink and downlink beam scan can be configured. Since the beam may be a wide beam with the beam recovery indicator in order to reduce cost, for subsequent data transmission, a refined beam is required for better data transmission. Therefore, downlink beam scanning and uplink beam scanning can accelerate the progress of the entire beam recovery. It should be noted that if the first type of signaling uses a dedicated UE ID, the uplink and downlink beam training can be triggered at the same time. However, if the UE group ID used in the first type of signaling is used, downlink beam training can be performed here, and the uplink beam training needs to wait for the UE to determine. Otherwise, multiple UEs may initiate uplink beam training at the same time, which may result in meaningless uplink beam training.
  • the user needs to perform beam training again after the user sends a unique ID in the subsequent PUCCH.
  • beam training the beam indicated by the downlink transmit beam and the beam recovery first type of signaling satisfies the QCL hypothesis, and the beam indicated by the uplink transmit beam and the second type of signaling satisfies the QCL hypothesis.
  • the length of the blind check window and the resource location of the blind check, the set of parameters from the beam recovery configuration, can be configured.
  • the content of the third type of signaling and the fourth type of signaling (the UE ID for the group) are described below.
  • FIG. 10 is a schematic diagram of a signaling interaction mode according to an embodiment of the present disclosure.
  • 10a and 10b respectively, correspond to two scenarios including first and second types of signaling (two-step mode), including from the first type of signaling to the fourth type of signaling (four-step mode).
  • the former corresponds to the first type of signaling already includes a unique UE ID
  • the latter corresponds to the second type of signaling including the UE group ID or the contention based on the contention number.
  • the first type of signaling indicates that the user is sent to the base station (uplink), and the beam recovery application is reported;
  • the second type of signaling indicates that the signal is transmitted from the base station to the user (downlink), and the beam recovery response;
  • the order indicates that the user identity information is sent from the user to the base station (uplink), and the fourth type of signaling indicates that the base station transmits the information to the user (downlink), and the base station confirms the user identity information.
  • the third type and the fourth type of signaling are applicable to the case where the first type of signaling fails to indicate its own information.
  • different IDs may be assigned to UEs of different priorities according to the characteristics of the UE, that is, exclusive, or group-based or completely competitive.
  • the three configurations described herein can be implemented simultaneously for one base station.
  • FIG. 11 is a schematic diagram of relationship between a first type of signaling set and a UE ID according to an embodiment of the present disclosure.
  • the UE ID is a dedicated ID, but since the first type of signaling may correspond to multiple UE IDs, the beam ID cannot be directly determined by the first type of signaling at this time.
  • the third type of signaling in order to save costs, only the UE ID encoded by the first type of signaling design may be fed back. For example, (4) involves four UE IDs, and the third type of signaling carries the re-encoded sequence number, requiring only two bits (00, 01, 10, 11). After transmitting the third type of signaling, the user attempts to receive a fourth type of signaling from the TRP.
  • the fourth type of signaling includes the unique identity of the first communication node, or according to the unique identity representation of the first communication node, the fourth type of signaling can be successfully received, indicating the beam chain of the first communication node and the second communication node. Road establishment.
  • the user will indicate to the upper layer that the beam recovery is successful.
  • the RLF declares and uses PRACH access (including no-competition time).
  • FIG. 12 is a schematic diagram of using PRACH random access after a beam recovery failure according to an embodiment of the present disclosure. If the second type of signaling from the base station is not successfully received under the blind check window, the UE needs to send a radio link failure (Radio link failure). At this time, the UE will try to use the basic PRACH for wireless access.
  • Radio link failure Radio link failure
  • the beam reporting method based on the scheduling request in this embodiment is described as follows.
  • the scheduling request is a simple representation sent by the terminal to the uplink scheduler requesting the uplink resource, where the beam report request signaling needs to be included.
  • the user will be assigned a transmission request for the scheduling request (SR).
  • SR scheduling request
  • the scheduling request is triggered, and at the adjacent SR transmission timing, the SR transmission including the beam request report is performed.
  • the user After receiving the scheduling request response of the TRP facing the scheduling request, the user performs beam reporting on the resources allocated by the scheduling request response.
  • the reporting resource is the uplink control channel (PUCCH)
  • the beam report is carried by the uplink control information (UCI); and if the reporting resource is the uplink data channel (PDCCH), the beam report passes through the MAC-CE or RRC signaling bearer.
  • the beam report includes at least one of the following: a reference signal type indicated, a reference signal resource set index, a reference signal resource index, and a reference signal port index. For example, the indication is from the beam report for the reference signal SSS.
  • the base station configures one or a group of symbols/sequences for the user, and the user selects a symbol/sequence from the selectable set to perform beam recovery, and is used to mark the user beam link after the user.
  • the recommended beam recovery method has been disabled and indicated.
  • the user can inform the base station of the available beam information to facilitate fast beam link reconstruction.
  • the user can quickly inform the base station after the beam link fails to avoid unnecessary signal transmission; on the other hand, based on the configured beam recovery method and the indication of the potential new beam link, the new one can be accelerated.
  • Beam link establishment process on the one hand, the user can quickly inform the base station after the beam link fails to avoid unnecessary signal transmission; on the other hand, based on the configured beam recovery method and the indication of the potential new beam link, the new one can be accelerated.
  • Embodiments of the present disclosure also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps: S1, generating first type signaling according to a trigger threshold of K elements in the beam related parameter set; S2 Sending a first type of signaling to the second communication node.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor generates the first type of signaling according to the trigger threshold of the K elements in the beam-related parameter set according to the stored program code in the storage medium.
  • the processor performs sending the first type of signaling to the second communication node according to the stored program code in the storage medium.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.

Abstract

本公开提供了一种波束恢复的处理方法及装置,其中,该方法包括:根据波束相关参数集合中的K个元素的触发门限生成第一类信令;向第二通信节点发送所述第一类信令;其中,所述的波束相关参数集合包含Q个元素,其中Q和K均是正整数,并且K小于或等于Q。通过本公开,解决了在毫米波通信系统中在波束链路失败后不能波束重建以及不能主动发起波束和信道状态信息报告或者波束和信道状态信息报告请求的技术问题。

Description

波束恢复的处理方法及装置 技术领域
本公开涉及通信领域,具体而言,涉及一种波束恢复的处理方法及装置。
背景技术
相关技术中的超宽带宽的高频段(即毫米波通信),成为未来移动通信发展的重要方向,吸引了全球的学术界和产业界的目光。特别是,在当下日益拥塞的频谱资源和物理网大量接入时,毫米波的优势变得越来越有吸引力,在很多标准组织,例如IEEE、3GPP都开始展开相应的标准化工作。例如,在3GPP标准组,高频段通信凭借着其大带宽的显著优势将会成为5G New Radio Access Technology(New RAT)的重要创新点。
然而,高频段通信也面临着链路衰减的挑战,包括传播路径损失大、空气吸收(尤其是氧气)吸收更大、雨衰影响较重等。面对这些挑战,高频段通信系统可以利用高频段波长较短和易于天线集成等特点,通过多天线阵列和波束赋形方案来获取高天线增益和对抗信号传输损耗,进而以确保链路余量和提升通信鲁棒性。
在天线权重(也称为,预编码、波束)训练过程中,高频段发端发送训练导频,接端接收信道并执行信道估计。然后,高频段接收端需要向训练发端反馈信道状态信息,便于实现收发端从可选的收发端天线权重对中,找到可以用于多路数据传输所需要的多组收发端天线权重对,提升整体的频谱效率。
在毫米波通信系统中,定向波束通信在获得现在的链路增益的同时,也降低了信号在空间传播的分集,进而可能会面临用户移动和信道遮挡的影响,导致定向通信的鲁博性相对较差。特别是,在于UE快速移动的场景,或者对于不连续接收(DRX)时,可能导致再次通信时无线通信可靠性无法保证。
上述技术问题在相关技术中并没有给出在波束链路失败后的波束重建方法,实现加速波束链接恢复的解决方案。
针对相关技术中存在的上述问题,目前尚未发现有效的解决方案。
发明内容
本公开实施例提供了一种波束恢复的处理方法及装置,以至少解决在毫米波通信系统中在波束链路失败后不能波束重建以及不能主动发起波束和信道状态信息报告或者波束和信道状态信息报告请求的技术问题。
根据本公开的一个实施例,提供了一种波束恢复的处理方法,包括:根据波束相关参数集合中的K个元素的触发门限生成第一类信令;向第二通信节点所述发送所述第一类信令;其中,所述的波束相关参数集合包含Q个元素,其中Q和K均是正整数,并且K小于或等于Q。
可选地,所述第一类信令包括以下至少之一:一个或者一组波束报告信息,调度请求; 其中,所述波束报告信息通过第一通信节点或者第二通信节点发送的以下至少之一信息进行表示:参考信号端口索引、参考信号资源索引、参考信号资源集合索引、参考信号的资源配置索引,搜索空间集合的元素索引,约定的波束集合的元素索引。
可选地,所述波束报告信息通过所述第一类信令所占用的时频资源位置来表示。
可选地,所述调度请求包含第一通信节点向第二通信节点发送波束报告请求的信令。
可选地,所述方法还包括:接收所述第二通信节点对所述调度请求的调度请求响应;在调度请求响应所分配的资源上执行波束报告;其中,所述所分配的资源包括:上行控制信道,或者上行数据信道,在所述所分配的资源为上行控制信道时,波束报告通过上行控制信息UCI承载,在所述所分配的资源为上行数据信道时,波束报告通过媒体接入控制层控制单元MAC-CE或者无线资源控制RRC信令承载。
可选地,所述波束报告至少包含如下信息之一:参考信号类型,参考信号资源集合索引,参考信号资源索引,参考信号端口索引,搜索空间的元素索引,约定的波束的元素索引,波束分组索引,接收波束分组索引,天线分组索引。
可选地,所述参考信号的资源配置索引相关联是指与所述资源配置索引满足准共址QCL假设。
可选地,在向第二通信节点所述发送所述第一类信令之前,所述方法还包括:接收第二通信节点配置指示的第一类信令可以承载的信道集合,其中所述信道集合包括如下之一或组合:专属信道、物理随机接入信道PRACH信道、免授权信道、调度请求资源;所述专属信道用来承载第一类信令,且与PRACH信道、免授权信道占用相同或者不同的时域资源但与所述PRACH信道和所述免授权信道均正交,所述调度请求资源,是指第一通信节点向第二通信节点分配的第二通信节点专属的调度请求资源,每D个子帧出现一次,其中D是大于等于1的整数。
可选地,第一通信节点从所述信道集合中选择子集承载发送所述第一类信令。
可选地,所述多个专属信道构成一个专属信道集合。
可选地,在所述专属信道集合中的专属信道中重复发送第一类信令,用于执行第一通信节点到第二通信节点的波束扫描,测量和决定。
可选地,所述专属信道集合的结构由PRACH的配置信令来进行绑定指示。
可选地,在向第二通信节点发送所述第一类信令之后,所述方法还包括:使用所述波束报告信息中指示的波束,接收所述第二通信节点所发送的第二类信令;其中,第二类信令用于标示所述第二通信节点确认所述第一通信节点的第一类信令。
可选地,所述第二类信令包括:一个或者一组波束指示信息,其中,所述波束报告信息通过第一通信节点或者第二通信节点发送的以下至少之一信息进行表示:参考信号端口索引、参考信号资源索引、参考信号资源集合索引、参考信号的资源配置索引,搜索空间集合的元素索引,约定的波束集合的元素索引。
可选地,所述波束指示信息通过所述第二类信令所占用的时频资源位置来表示。
可选地,在所述第一通信节点的上下行之间波束关联满足条件时,所述第一类信令不包 含波束报告信息。
可选地,所述第一类信令用于以下至少之一:用于主动发起的波束报告;申请调度资源;发起波束链路重建;发起波束链路建立。
可选地,所述的波束相关参数集合包括以下之一:N个第一类波束链路的质量;N个第一类波束链路的质量与K个第二类的波束链路质量和的差值或者比值;N个第一类波束链路与K个第二类的波束链路的时频信道响应的相关性、或者频域信道响应的相关性,空域相关性;N个第一类波束链路的方位角与K个第二类的波束链路的方位角的差值或者比值;K个第二类的波束链路质量;全部第二类的波束链路质量;距离上次上行控制信道或数据信道成功接收的时间累计;未成功接收的累计次数;波束分组的调整信息;所述波束相关参数集合所包括的各个参数的加权值或者加权相关值;其中,所述第二类的波束链路是指来自S个已配置波束链路集合,或者来自S个已配置波束链路集合中已激活的S1个集合;所述第一类的波束链路是指不来自S个已配置波束链路集合,或者不来自S个已配置波束链路集合中已激活的S1个集合;所述已配置波束链路,是指第一通信节点报告给第二通信节点的波束链路,或者第二通信节点指示给第一通信节点的波束链路;其中N,K,S,S1是大于等于1的整数,并且S1小于等于S。
可选地,所述已配置波束链路包括:通过第二通信节点向第一通信节点指示的波束链路,或者第一通信节点报告给第二通信节点的波束链路。
可选地,所述波束链路对应于以下之一:发送波束、接收波束、收发波束对、波束组、接收波束组、发送波束组、接收模式、天线组合,控制信道。
可选地,所述波束链路质量包括以下之一:BLER,接收信号功率,RSRP,RSRQ,信道容量,接收端信干噪比,接收端信噪比。
可选地,所述第一类信令是已配置或者预定义的信令集合的一个元素。
可选地,所述信令集合的元素,是由一个序列,或者,一个序列和它所占用的频域资源,或者一个序列和它所在用的时域资源,或者一组序号和它所占用的时频资源,或者一组序号和它所占用的按特定函数跳变的时频资源来构成。
可选地,所述信令集合的元素,是第一通信节点独有的,或者由B个第一通信节点共享;其中,B是一个大于1的整数。
可选地,所述信令集合由以下方式之一配置:第一通信节点配置;第一通信节点发送配置请求,第二通信节点进行配置;第二通信节点配置;第一通信节点配置,而第二通信节点选择生效;第二通信节点配置,而第一通信节点选择生效。
可选地,第一通信节点配置或者发送配置请求的条件包括如下至少之一:进入非连续接收DRX模式;K个第二类的波束链路质量差于第一门限;全部第二类的波束链路质量差于第二门限;距离上次控制信道/数据信道成功接收的时间累计大于第三门限;未成功接收的累计次数大于第四门限;以上部分参数的加权值,或者加权相关值,满足第五门限的要求。
可选地,所述第一类信令集合的元素涉及如下至少之一的配置参数:第一通信节点的身份标示;承载第一类信令发送的O个时频资源;第一类信令发送的时频资源位置与其所指示 的参考信号的对应关系;第一类信令发送以后,第二通信节点向第一通信节点发送控制信令的传输方式;第一类信令发送以后,第二通信节点向第一通信节点发送控制信令可以占用的时频资源或者时频资源范围;第一类信令发送以后,第二通信节点向第一通信节点发送控制信令的盲检准则;第一通信节点向第二通信节点发送的参考信号的发送配置;第一通信节点向第二通信节点发送的参考信号的测量配置;第一通信节点向第二通信节点发送的参考信号的报告配置;第二通信节点向第一通信节点发送的参考信号的发送配置;第二通信节点向第一通信节点发送的参考信号的测量配置;第二通信节点向第一通信节点发送的参考信号的报告配置;其中,O是大于等于1的整数。
可选地,所述信令集合的元素还包括:PRACH接入时的专属免竞争序列。
可选地,所述参考信号的发送配置至少包括如下参数之一:参考信号类型;天线端口;参考信号资源;参考信号资源所占的时频资源或者时频资源范围。
可选地,所述第一类信令所指示的部分或全部参数进行联合编码和/或联合标示。
可选地,所述第一类信令还包括备份波束测量信令,其中,所述备份波束测量信令是指所述第二通信节点使用预配置的与所述第一通信节点的波束集合中元素发送参考信号、控制信道或者数据信道。
可选地,所述第一通信节点的身份标示包括以下之一:第一通信节点独有的身份符号;多个第一通信节点被配置的共享身份符号;竞争获得的身份序号。
可选地,在所述信令集合是已配置的信令集合时,所述已配置的信令集合存在有效时间窗口,在所述有效时间窗口之后的配置信令集合无效。
可选地,所述有效时间窗口为一个或者多个,分别面向信令集合中的信令,和/或,面向信令集合中的参数。
可选地,所述有效时间窗口的配置,包括如下之一或者组合:从当前配置开始,直到下次重新配置后失效;从当前配置开始,在T个时间单元后失效;从当前配置开始,在第Y1次第一类信令发送,或第Y2次第一类信令成功接收,或在第Y3次第二类信令发送,或第Y4次第二类信令成功接收后失效;在所述触发门限满足条件时,T个时间单位后失效;最近一次第一通信节点向第二通信节点反馈ACK/NACK后,T个时间单位后失效;最近一次第一通信节点接收第二通信节点反馈ACK/NACK后,T个时间单位后失效;最近一次第二通信节点向第一通信节点发送ACK/NACK后,T个时间单位后失效;最近一次第二通信节点向第一通信节点发送ACK/NACK后,T个时间单位后失效;所述的T,Y1,Y2,Y3和Y4是大于等于1的整数,T,Y1,Y2,Y3和Y4可以是预定义的,或者由第一通信节点或第二通信节点配置。
可选地,第一通信节点在向第二通信节点发送第一类信令的次数,或者累计等待时间,或者组合,超过第六门限后,第一通信节点的物理层向高层发送链路失效请求。
可选地,向第二通信节点所述发送所述第一类信令的发送功率满足如下之一:服从随机接入信道PRACH的功率发送规则;使用满功率发送;使用上述功率的加权值发送。
可选地,在发送所述第一类信令之后,所述方法还包括:第二通信节点向第一通信节点 发送的参考信号、下行控制信道或者下行数据信道中的任意一个或多个与第一类信息指示波束的参考信号默认满足准共址QCL假设。
可选地,在发送所述第二类信令之后,所述方法还包括:第一通信节点向第二通信节点发送的参考信号、上行控制信道、上行数据信道中的任意一个或多个与第二类信息指示波束的参考信号默认满足准共址QCL假设。
可选地,第二类信令中包含第一通信节点的身份标示信息。
可选地,在第二类信令中还包含以下信息至少之一:第一通信节点向第二通信节点发送的参考信号的发送配置;第一通信节点向第二通信节点发送的参考信号的测量配置;第一通信节点向第二通信节点发送的参考信号的报告配置;第二通信节点向第一通信节点发送的参考信号的发送配置;第二通信节点向第一通信节点发送的参考信号的测量配置;第二通信节点向第一通信节点发送的参考信号的报告配置。
可选地,在所述第一类信令不能唯一指示所述第一通信节点的身份标示时,在接收所述第二类信令之后,第一通信节点向第二通信节点发送第三类信令,其中,所述第三类信令包含第一通信节点的唯一身份标示。
可选地,在发送第三类信令之后,所述方法还包括:第一通信节点尝试收到来自所述第二通信节点的第四类信令,其中,在所述第四类信令中包含第一通信节点的唯一身份标示,或者依据第一通信节点的唯一身份表示可以成功接收解码所述第四类信令的情况下,所述第四类信令表示第一通信节点和第二通信节点的波束链路建立。
根据本公开的一个实施例,提供了另一种波束恢复的处理方法,应用第二通信节点,包括:接收第一类信令,其中,所述第一类信令是第一通信节点根据波束相关参数集合中的K个元素的触发门限生成的;在所述第一通信节点到所述第二通信节点的波束链路中断时,使用所述K个元素进行波束链路重建;其中,所述的波束相关参数集合包含Q个元素,其中Q和K均是正整数,并且K小于或等于Q。
可选地,所述第一类信令用于以下至少之一:用于主动发起的波束报告;申请调度资源;发起波束链路重建;发起波束链路建立。
根据本公开的另一个实施例,提供了一种波束恢复的处理装置,应用第一通信节点,包括:生成模块,设置为根据波束相关参数集合中的K个元素的触发门限生成第一类信令;发送模块,设置为向第二通信节点所述发送所述第一类信令;其中,所述的波束相关参数集合包含Q个元素,其中Q和K均是正整数,并且K小于或等于Q。
可选地,所述第一类信令包括以下至少之一:一个或者一组波束报告信息,调度请求;其中,所述波束报告信息通过第一通信节点或者第二通信节点发送的以下至少之一信息进行表示:参考信号端口索引、参考信号资源索引、参考信号资源集合索引、参考信号的资源配置索引,搜索空间集合的元素索引,约定的波束集合的元素索引。
可选地,所述第一类信令用于以下至少之一:用于主动发起的波束报告;申请调度资源;发起波束链路重建;发起波束链路建立。
根据本公开的另一个实施例,提供了另一种波束恢复的处理装置,应用第二通信节点, 包括:接收模块,设置为接收第一类信令,其中,所述第一类信令是第一通信节点根据波束相关参数集合中的K个元素的触发门限生成的;处理模块,设置为在所述第一通信节点到所述第二通信节点的波束链路中断时,使用所述K个元素进行波束链路重建;其中,所述的波束相关参数集合包含Q个元素,其中Q和K均是正整数,并且K小于或等于Q。
可选地,所述第一类信令用于以下至少之一:用于主动发起的波束报告;申请调度资源;发起波束链路重建;发起波束链路建立。
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:根据波束相关参数集合中的K个元素的触发门限生成第一类信令;向第二通信节点所述发送所述第一类信令。
通过本公开,根据波束相关参数集合中的K个元素的触发门限生成第一类信令;向第二通信节点所述发送所述第一类信令;其中,所述的波束相关参数集合包含Q个元素,其中Q和K均是正整数,并且K小于或等于Q,解决了在毫米波通信系统中在波束链路失败后不能波束重建以及不能主动发起波束和信道状态信息报告或者波束和信道状态信息报告请求的技术问题。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开实施例的一种波束恢复的处理方法的流程图;
图2是根据本公开实施例的另一种波束恢复的处理方法的流程图;
图3是根据本公开实施例的一种波束恢复的处理装置的结构框图;
图4是根据本公开实施例的另一种波束恢复的处理装置的结构框图;
图5为本公开实施例面向的混合预编码(混合模拟数字波束赋型)收发机结构示意图;
图6为本公开实施例面向CSI-RS参考信号的波束恢复配置和启动流程;
图7为本公开实施例的波束恢复专属信道(下面简称专属信道)结构示意图;
图8为本公开实施例的面向SS block的波束恢复流程;
图9为本公开实施例的第二类信令的波束恢复流程;
图10为本公开实施例的信令交互模式示意图;
图11为本公开实施例的第一类信令集合和UE ID关系示意图;
图12为本公开实施例的波束恢复失败后使用PRACH随机接入示意图;
图13为本公开实施例的基于调度请求的波束报告的实施例。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二” 等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种波束恢复的处理方法,应用第一通信节点,图1是根据本公开实施例的一种波束恢复的处理方法的流程图,如图1所示,该流程包括如下步骤:步骤S102,根据波束相关参数集合中的K个元素的触发门限生成第一类信令;K个元素触发了门限,各个触发门限可以相同或者各不相同;步骤S104,向第二通信节点发送第一类信令;其中,的波束相关参数集合包含Q个元素,其中Q和K均是正整数,并且K小于或等于Q。
通过上述步骤,根据波束相关参数集合中的K个元素的触发门限生成第一类信令;向第二通信节点所述发送所述第一类信令;其中,所述的波束相关参数集合包含Q个元素,其中Q和K均是正整数,并且K小于或等于Q,解决了在毫米波通信系统中在波束链路失败后不能波束重建以及不能主动发起波束和信道状态信息报告或者波束和信道状态信息报告请求的技术问题,具体如波束链路质量下降或者发现新的更优链路时。
在本实施例中提供了一种波束恢复的处理方法,应用第一通信节点,图2是根据本公开实施例的另一种波束恢复的处理方法的流程图,如图2所示,该流程包括如下步骤:步骤S202,接收第一类信令,其中,第一类信令是第一通信节点根据波束相关参数集合中的K个元素的触发门限生成的;步骤S204,在第一通信节点到第二通信节点的波束链路中断时,使用K个元素进行波束链路重建;其中,的波束相关参数集合包含Q个元素,其中Q和K均是正整数,并且K小于或等于Q。
可选地,上述步骤的执行主体第一通信节点为终端,第二通信节点可以为基站,但不限于此。
可选的,第一类信令包括以下至少之一:一个或者一组波束报告信息,调度请求;其中,波束报告信息通过第一通信节点或者第二通信节点发送的以下至少之一信息进行表示:参考信号端口索引、参考信号资源索引、参考信号资源集合索引、参考信号的资源配置索引,搜索空间集合的元素索引,约定的波束集合的元素索引。
可选的,波束报告信息通过第一类信令所占用的时频资源位置来表示。
可选的,调度请求包含第一通信节点向第二通信节点发送波束报告请求的信令。
在根据本实施例的可选实施方式中,本实施例的方案还包括:S11,接收第二通信节点对调度请求的调度请求响应;S12,在调度请求响应所分配的资源上执行波束报告;其中,所分配的资源包括:上行控制信道,或者上行数据信道,在所分配的资源为上行控制信道时,波束报告通过上行控制信息UCI承载,在所分配的资源为上行数据信道时,波束报告通过媒体接入控制层控制单元MAC-CE或者无线资源控制RRC信令承载。可选的,波束报告至少包含如下信息之一:参考信号类型,参考信号资源集合索引,参考信号资源索引,参考信号端口索引,搜索空间的元素索引,约定的波束的元素索引,波束分组索引,接收波束分组索引,天线分组索引。
可选的,参考信号的资源配置索引相关联是指与资源配置索引满足准共址QCL假设。
在根据本实施例的可选实施方式中,在向第二通信节点发送第一类信令之后,方法还包 括:S21,接收第二通信节点配置指示的第一类信令可以承载的信道集合,其中信道集合包括如下之一或组合:专属信道、物理随机接入信道(Physical Random Access Channel,简称为PRACH)、免授权信道、调度请求资源;专属信道用来承载第一类信令,且与PRACH信道、免授权信道占用相同或者不同的时域资源但与PRACH信道和免授权信道均正交,调度请求资源,是指第一通信节点向第二通信节点分配的第二通信节点专属的调度请求资源,每D个子帧出现一次,其中D是大于等于1的整数。
可选的,第一通信节点从信道集合中选择子集承载发送第一类信令。
在本实施例中,多个专属信道可以构成一个专属信道集合。
可选的,在专属信道集合中的专属信道中重复发送第一类信令,用于执行第一通信节点到第二通信节点的波束扫描,测量和决定。
可选的,专属信道集合的结构由PRACH的配置信令来进行绑定指示。
在根据本实施例的可选实施方式中,在向第二通信节点发送第一类信令之后,方法还包括:S31,使用波束报告信息中指示的波束,接收第二通信节点所发送的第二类信令;其中,第二类信令用于标示第二通信节点确认第一通信节点的第一类信令。
可选的,第二类信令包括:一个或者一组波束指示信息,其中,波束报告信息通过第一通信节点或者第二通信节点发送的以下至少之一信息进行表示:参考信号端口索引、参考信号资源索引、参考信号资源集合索引、参考信号的资源配置索引,搜索空间集合的元素索引,约定的波束集合的元素索引。
可选的,波束指示信息通过第二类信令所占用的时频资源位置来表示。
可选的,在第一通信节点的上下行之间波束关联满足条件时,第一类信令不包含波束报告信息。
可选的,第一类信令用于以下至少之一:用于主动发起的波束报告;申请调度资源;发起波束链路重建;发起波束链路建立。第一类信令用于链路重建,第一通信节点发起的波束和信道状态信息报告或者波束和信道状态信息报告请求。
可选的,的波束相关参数集合包括以下之一:N个第一类波束链路的质量;N个第一类波束链路的质量与K个第二类的波束链路质量和的差值或者比值;N个第一类波束链路与K个第二类的波束链路的时频信道响应的相关性、或者频域信道响应的相关性,空域相关性;N个第一类波束链路的方位角与K个第二类的波束链路的方位角的差值或者比值;K个第二类的波束链路质量;全部第二类的波束链路质量;距离上次上行控制信道或数据信道成功接收的时间累计;未成功接收的累计次数;波束分组的调整信息;波束相关参数集合所包括的各个参数的加权值或者加权相关值;其中,第二类的波束链路是指来自S个已配置波束链路集合,或者来自S个已配置波束链路集合中已激活的S1个集合;第一类的波束链路是指不来自S个已配置波束链路集合,或者不来自S个已配置波束链路集合中已激活的S1个集合;已配置波束链路,是指第一通信节点报告给第二通信节点的波束链路,或者第二通信节点指示给第一通信节点的波束链路;其中N,K,S,S1是大于等于1的整数,并且S1小于等于S。
作为例子,第一类波束链路的质量可以指未标示波束链路的质量,第二类波束链路的质量可以指已标示波束链路的质量。
可选的,已配置波束链路包括:通过第二通信节点向第一通信节点指示的波束链路,或者第一通信节点报告给第二通信节点的波束链路。
可选的,波束链路对应于以下之一:发送波束、接收波束、收发波束对、波束组、接收波束组、发送波束组、接收模式、天线组合,控制信道。
可选的,波束链路质量包括以下之一:块差错率(Block Error Ratio,简称为BLER),接收信号功率,接收信号参考功率(Reference Signal Receiving Power,简称为RSRP),参考信号接收质量(Reference Signal Receiving Quality,简称为RSRQ),信道容量,接收端信干噪比,接收端信噪比。
可选的,第一类信令是已配置或者预定义的信令集合的一个元素。
可选的,信令集合的元素,是由一个序列,或者,一个序列和它所占用的频域资源,或者一个序列和它所在用的时域资源,或者一组序号和它所占用的时频资源,或者一组序号和它所占用的按特定函数跳变的时频资源来构成。
可选的,信令集合的元素,是第一通信节点独有的,或者由B个第一通信节点共享;其中,B是一个大于1的整数。
在本实施例中,信令集合由以下方式之一配置:第一通信节点配置;第一通信节点发送配置请求,第二通信节点进行配置;第二通信节点配置;第一通信节点配置,而第二通信节点选择生效;第二通信节点配置,而第一通信节点选择生效。
在本实施例中,第一通信节点配置或者发送配置请求的条件包括如下至少之一:进入非连续接收DRX模式;K个第二类的波束链路质量差于第一门限;全部第二类的波束链路质量差于第二门限;距离上次控制信道/数据信道成功接收的时间累计大于第三门限;未成功接收的累计次数大于第四门限;以上部分参数的加权值,或者加权相关值,满足第五门限的要求。
在本实施例中,第一类信令集合的元素涉及如下至少之一的配置参数:第一通信节点的身份标示;承载第一类信令发送的O个时频资源;第一类信令发送的时频资源位置与其所指示的参考信号的对应关系;第一类信令发送以后,第二通信节点向第一通信节点发送控制信令的传输方式;第一类信令发送以后,第二通信节点向第一通信节点发送控制信令可以占用的时频资源或者时频资源范围;第一类信令发送以后,第二通信节点向第一通信节点发送控制信令的盲检准则;第一通信节点向第二通信节点发送的参考信号的发送配置;第一通信节点向第二通信节点发送的参考信号的测量配置;第一通信节点向第二通信节点发送的参考信号的报告配置;第二通信节点向第一通信节点发送的参考信号的发送配置;第二通信节点向第一通信节点发送的参考信号的测量配置;第二通信节点向第一通信节点发送的参考信号的报告配置;其中,O是大于等于1的整数。
可选的,信令集合的元素还包括:PRACH接入时的专属免竞争序列。
可选的,参考信号的发送配置至少包括如下参数之一:参考信号类型;天线端口;参考 信号资源;参考信号资源所占的时频资源或者时频资源范围。
可选的,第一类信令所指示的部分或全部参数进行联合编码和/或联合标示。
可选的,第一类信令还包括备份波束测量信令,其中,备份波束测量信令是指第二通信节点使用预配置的与第一通信节点的波束集合中元素发送参考信号、控制信道或者数据信道。
可选的,第一通信节点的身份标示包括以下之一:第一通信节点独有的身份符号;多个第一通信节点被配置的共享身份符号;竞争获得的身份序号。
可选的,在信令集合是已配置的信令集合时,已配置的信令集合存在有效时间窗口,在有效时间窗口之后的配置信令集合无效。
可选的,有效时间窗口为一个或者多个,分别面向信令集合中的信令,和/或,面向信令集合中的参数。
可选的,有效时间窗口的配置,包括如下之一或者组合:从当前配置开始,直到下次重新配置后失效;从当前配置开始,在T个时间单元后失效;从当前配置开始,在第Y1次第一类信令发送,或第Y2次第一类信令成功接收,或在第Y3次第二类信令发送,或第Y4次第二类信令成功接收后失效;在触发门限满足条件时,T个时间单位后失效;最近一次第一通信节点向第二通信节点反馈ACK/NACK后,T个时间单位后失效;最近一次第一通信节点接收第二通信节点反馈ACK/NACK后,T个时间单位后失效;最近一次第二通信节点向第一通信节点发送ACK/NACK后,T个时间单位后失效;最近一次第二通信节点向第一通信节点发送ACK/NACK后,T个时间单位后失效;的T,Y1,Y2,Y3和Y4是大于等于1的整数,T,Y1,Y2,Y3和Y4可以是预定义的,或者由第一通信节点或第二通信节点配置。
可选的,第一通信节点在向第二通信节点发送第一类信令的次数,或者累计等待时间,或者组合,超过第六门限后,第一通信节点的物理层向高层发送链路失效请求。
可选的,向第二通信节点发送第一类信令的发送功率满足如下之一:服从随机接入信道PRACH的功率发送规则;使用满功率发送;使用上述功率的加权值发送。
可选的,在发送第一类信令之后,本实施例的方法还包括:第二通信节点向第一通信节点发送的参考信号、下行控制信道或者下行数据信道中的任意一个或多个与第一类信息指示波束的参考信号默认满足准共址QCL假设。
可选的,在发送第二类信令之后,方法还包括:第一通信节点向第二通信节点发送的参考信号、上行控制信道、上行数据信道中的任意一个或多个与第二类信息指示波束的参考信号默认满足准共址QCL假设。
可选的,第二类信令中包含第一通信节点的身份标示信息。
可选的,在第二类信令中还包含以下信息至少之一:第一通信节点向第二通信节点发送的参考信号的发送配置;第一通信节点向第二通信节点发送的参考信号的测量配置;第一通信节点向第二通信节点发送的参考信号的报告配置;第二通信节点向第一通信节点发送的参考信号的发送配置;第二通信节点向第一通信节点发送的参考信号的测量配置;第二通信节点向第一通信节点发送的参考信号的报告配置。
可选的,在第一类信令不能唯一指示第一通信节点的身份标示时,在接收第二类信令之后,第一通信节点向第二通信节点发送第三类信令,其中,第三类信令包含第一通信节点的唯一身份标示。
可选的,在发送第三类信令之后,本实施例的方法还包括:第一通信节点尝试收到来自第二通信节点的第四类信令,其中,在第四类信令中包含第一通信节点的唯一身份标示,或者依据第一通信节点的唯一身份表示可以成功接收解码第四类信令的情况下,第四类信令表示第一通信节点和第二通信节点的波束链路建立。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
实施例2
在本实施例中还提供了一种波束恢复的处理装置,该装置设置为实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本公开实施例的一种波束恢复的处理装置的结构框图,如图3所示,该装置包括:生成模块30,设置为根据波束相关参数集合中的K个元素的触发门限生成第一类信令;发送模块32,设置为向第二通信节点发送第一类信令;其中,的波束相关参数集合包含Q个元素,其中Q和K均是正整数,并且K小于或等于Q。
图4是根据本公开实施例的另一种波束恢复的处理装置的结构框图,如图4所示,该装置包括:接收模块40,设置为接收第一类信令,其中,第一类信令是第一通信节点根据波束相关参数集合中的K个元素的触发门限生成的;处理模块42,设置为在第一通信节点到第二通信节点的波束链路中断时,使用K个元素进行波束链路重建;其中,的波束相关参数集合包含Q个元素,其中Q和K均是正整数,并且K小于或等于Q。
可选的,第一类信令包括以下至少之一:一个或者一组波束报告信息,调度请求;其中,波束报告信息通过第一通信节点或者第二通信节点发送的以下至少之一信息进行表示:参考信号端口索引、参考信号资源索引、参考信号资源集合索引、参考信号的资源配置索引,搜索空间集合的元素索引,约定的波束集合的元素索引。
可选的,第一类信令用于以下至少之一:用于主动发起的波束报告;申请调度资源;发起波束链路重建;发起波束链路建立。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本实施例涉及一种高频段5G移动通信或毫米波通信场景下的波束恢复配置的实现方法及装置。
在相关技术中的毫米波通信系统中,定向波束通信在获得现在的链路增益的同时,也降低了信号在空间传播的分集,进而可能会面临用户移动和信道遮挡的影响,导致定向通信的鲁棒性相对较差。特别是,在于UE快速移动的场景,或者对于不连续接收(DRX)时,可能导致再次通信时无线通信可靠性无法保证。
通过本公开实施例,基站对用户配置一个或者一组符号/序列,用户从可选集合中选择符号/序列执行波束恢复,用于标示之后该用户波束链路已经失效和指示所推荐的波束恢复方法。而后,通过基于QCL的波束指示或者波束回退方法,用户可以告知基站潜在的可用波束信息,以便于实现快速的波束链路重建。一方面,用户可以在波束链路失效后快速的告知基站,避免不必要的信号传输;另一方面,基于配置的波束恢复方法和对于潜在新波束链路的指示,可以加速新的波束链路建立过程。
本实施例的参考信号至少包括如下之一:
小区参考信号(CRS);
信道状态信息参考信号(CSI-RS);
波束管理的信道状态信息参考信号;
信道状态信息干扰测量信号(CSI-IM);
解调参考信号(DMRS);
下行解调参考信号;
上行解调参考信号;
信道探测参考信号(SRS);
相位追踪参考信号(PT-RS);
移动相关参考信号(MRS);
波束参考信号(BRS);
波束细化参考信号(BRRS);
随机接入信道信号(RACH);
同步信号(SS);
同步信号块(SS block);
主同步信号(PSS);
副同步信号(SSS)。
所述的身份标示,包括但不限于:MAC地址,小区无线网络临时标示(C-RNTI),临时C-RNTI(TC-RNTI),或基站分配给UE的专属ID。
波束相关信息的分组是指将具有相同信道特性和/或传输方案的波束和相关的信道状态信息划分成一个集合,分组的准则包括以下任意一种以及任意几种的组合模式:
根据接收方式进行分组;
根据接收波束组合进行分组;
根据天线组进行分组;
根据接收信号功率进行分组;
根据水平发送方位角进行分组;
根据垂直发送方位角进行分组;
根据水平接收方位角进行分组;
根据垂直接收方位角进行分组;
根据平均到达时间进行分组;
根据簇到达时间进行分组;
根据资源对应的接收资源进行分组;
根据预定复用方式进行分组;
根据定时提前(TA)参数进行分组;
根据循环前缀(CP)长度进行分组;
根据空分复用方式进行分组;
根据准共位置关系进行分组。
所述的波束分组的极端情况,即每个分组的波束个数均为1。
所述信道特征,既包括物理传播信道特征,例如水平发送方位角,垂直发送方位角,水平接收方位角,垂直接收方位角等,也包括射频和基带电路的特征,例如天线阵子特征(element pattern),天线摆放,以及基带时偏,频偏和相位噪声等。
本实施例的分组也可以被称为集合。
所述信道特征,即包括物理传播信道特征,例如水平发送方位角,垂直发送方位角,水平接收方位角,垂直接收方位角等,也包括射频和基带电路的特征,例如天线阵子特征(element pattern),天线组,天平面板,天线子阵列(antenna subarray),收发单元(TXRU),接收波束集合,天线摆放,以及基带时偏,频偏和相位噪声等。
所述波束可以为一种资源(例如发端预编码,收端预编码、天线端口,天线权重矢量,天线权重矩阵等),波束符号可以被替换为资源索引,因为波束可以与一些时频码资源进行传输上的绑定。波束也可以为一种传输(发送/接收)方式;所述的传输方式可以包括空分复用、频域/时域分集等。
所述的波束指示是指,发送端可以通过当前参考信号和天线端口,与基站扫描或者UE反馈报告的参考信号(或基准参考信号)和天线端口满足准共址(QCL)假设来进行指示。
所述的接收波束是指,无需指示的接收端的波束,或者发送端可以通过当前参考信号和天线端口,与基站扫描或者UE反馈报告的参考信号(或基准参考信号)和天线端口的准共址(QCL)指示下的接收端的波束资源。
所述的准共址(QCL)涉及的参数至少包括,多普勒扩展,多普勒平移,时延拓展,平均时延和平均增益;可能也包括,空间参数信息,例如到达角,接收波束的空间相关性,平均时延,时频信道响应的相关性(包括相位信息)。
框架性实施例
图5为本公开实施例面向的混合预编码(混合模拟数字波束赋型)收发机结构示意图。系统发送端和接收端配置多天线单元和多个射频链路。其中,每个射频链路与天线阵列单元的相互连接(不排斥部分连接场景),每个天线单元拥有一个数字键控移相器。通过各个天线单元上的信号加载不同相移量的办法,高频段系统实现模拟端的波束赋形(Beamforming)。举例而言,在混合波束赋形收发机中,存在多条射频信号流。每条信号流通过数字键控移相器加载AWV,从多天线单元发送到高频段物理传播信道;在接收端,由多天线单元所接收到的射频信号流被加权合并成单一信号流,经过接收端射频解调,接收机最终获得多条接收信号流,并被数字基带采样和接收。因此,混合预编码(混合模拟数字波束赋型)收发机可以同时产生指向多个方向的射频波束。
第一类信令的触发条件、测量导频、可能配置和发送方式(何种信道)如下。
在用户反馈的CQI质量过低,或者NACK性能较差,或者需要进入DRX阶段,以及其中K个使用中的波束链路质量差于门限,或者距离上次控制信道/数据信道成功接收的时间累计大于门限时,基站对于用户进行波束恢复配置。或者,在用户接入系统后,系统就会启动对于它进行波束恢复配置。需要说明,波束恢复配置时,会对于每个用户分配一个或者多个用户专属的序列。如果基于多个用户专属的序列信令,可以用于指示不同的波束恢复方案,可能涉及的参数如下:
第一通信节点的身份标示;
第一信令发送的O个时频资源位置;
第一信令发送的时频资源位置与其所指示的参考信号的对应关系;
第一类信令发送以后,第二通信节点向第一通信节点发送控制信令的传输方式;
第一类信令发送以后,第二通信节点向第一通信节点发送控制信令可以占用的时频资源或者时频资源范围;
第一类信令发送以后,第二通信节点向第一通信节点发送控制信令的盲检准则;
第一通信节点向第二通信节点发送的参考信号的发送配置;
第一通信节点向第二通信节点发送的参考信号的测量配置;
第一通信节点向第二通信节点发送的参考信号的报告配置;
第二通信节点向第一通信节点发送的参考信号的发送配置;
第二通信节点向第一通信节点发送的参考信号的测量配置;
第二通信节点向第一通信节点发送的参考信号的报告配置。
其中O是大于等于1的整数。所述的参考信号配置,可以作用于UE发起波束恢复第一信令前用于加速发现潜在可用波束集合或者第一信令之后用于之后的波束细化。当满足如下触发条件或者组合条件后,用户将会尝试发起波束恢复流程,在专属信道发送第一类信令(波束恢复信令),并且尝试将一个或者多个可用的下行发送波束信息通过显式,和/或隐式所占用时频资源的位置的方法告知给基站。
N个第一类波束链路的质量大于等于一个公共门限或者各自门限时;
N个第一类波束链路的质量与K个第二类的波束链路质量和的差值或者比值大于等于一个公共门限或者各自门限时;
N个第一类波束链路与K个第二类的波束链路的时频信道响应的相关性、频域信道响应的相关性,或者空域相关性低于一个公共门限或者两两分别门限时;
N个第一类波束链路的方位角与与K个第二类的波束链路的方位角的差值或者比值大于一个公共门限或者两两分别门限时;
K个第二类的波束链路质量小于一个公共门限或者各自门限时;
全部第二类的波束链路质量小于一个公共门限或者各自门限时;
距离上次控制信道/数据信道成功接收的时间累计大于一个公共门限或者各自门限时;
未成功接收的累计次数大于一个公共门限或者各自门限时;
波束分组的调整信息;
以上部分参数的加权值,或者加权相关值;
例如,一类组合条件,当K个第二类的波束链路质量小于一个公共门限,同时发现了一个第一类波束可以高于门限的接收信号功率时,用户可以发起如下波束恢复流程。需要强调,如果支持信道互异性或者波束关联(beam correspondence),用户可以快速的在特定的波束恢复信道上发送所述的第一类信令(波束恢复信令)。如果在上行或者下行不支持信道互异性或者波束关联的情况时。考虑仅仅指导下行波束,而上行波束未知,所述的第一类信令(波束恢复信令)需要在多个时频资源上重复发送,或者说进行必要的上行波束的扫描。作为例子,上述的第一类波束链路的质量可以指未标示波束链路的质量,第二类波束链路的质量可以指已标示波束链路的质量。
所述的波束恢复流程,包括1)条件满足触发用户行为;2)用户发现潜在可用波束;3)发送第一类信令通知TRP,告知事件发送;4)TRP反馈第二类信令进行波束恢复响应;5)UE发送第三类信令,上报详细身份信息(可选,面对竞争和UE-group场景);6)TRP发送第四类信令,反馈确认UE身份信息。
图6为本公开实施例面向CSI-RS参考信号的波束恢复配置和启动流程。基站/TRP向用户进行波束恢复配置,用户有一个专属的序列/符号或者资源位置,可以用于指示用户ID和/或预定义的波束恢复配置。一旦UE发现当前通信链路质量不足,开启波束恢复流程,UE会尝试搜索周期发送的CSI-RS信令。若发现了可用的下行波束链路后,用户通过波束恢复信道,向用户发送第一类信令,用于标示波束链路失效和指示一个潜在的下行波束。这里考虑不具备信道互异性或者波束关联(beam correspondence)的场景,UE需要多次向基站端发送第一类信令的方法进行上行的波束扫描。第一类信令,除了指示了下行发送波束外,可以指示一个子集,包括用户身份ID、如何来重新启动波束训练的导频配置及时频窗口、发送控制信令的盲检准则和控制信道的传输方式等。这里的身份ID可以是用户专属的ID,也可以是UE组合后的共享的身份ID。
图7为本公开实施例的波束恢复专属信道(下面简称专属信道)结构示意图,其中图7a表示CP+SEQ占用的时长或者长度是可以配置的,并且包含一个保护间隔;而图7b表示依 然使用正常的OFDM symbol,但是使用普通或者增长的CP。需要说明的,图7a通过对于采样窗口的调整,可以应用于上行同步失效的场景,而图7b更加适合于上行同步依然有效的场景,其的花销要小于图7a所述的方法。多个专属信道可以构成一个专属信道集合,而一个专属信道集合对应于上行接收波束的全空间/专属空间的扫描,而每个专属信道下的接收波束不变,但是其时频资源的位置与之前发送的参考信道纯在绑定关系,即在该位置发送第一类信令隐形指示下行的发送波束。例如,按照先频率后时域的办法,分别与之前的CSI-RS或者SS block依次进行关联。
波束恢复专属信道集合是由X个波束恢复专属信道构成(两两周期为T),以实现对于上行波束训练。因此,之后的第二信令的盲检窗口可以基于第U个波束恢复专属信道开始描述,其中U是大于等于1的整数。这意味着,在多个波束恢复专属信道之间,用户需要进行对于第二类信道的盲检测。
图8为本公开实施例的面向SS block的波束恢复流程。考虑多种参考信号类型,因此基站需要规定允许进行波束恢复的参考信号类型。而专属序列,是通过PRACH信道中划分出一个专属信道中承载。专属序列是在第一类信令配置的参数集合中配置,也可以认为是第一类信令。其中,QCL关联指示,可以对应于SS block中的SSS、PSS或者PBCH的DMRS信道。
下面介绍第二类信令的发送内容和联合波束训练。
图9为本公开实施例的第二类信令的波束恢复流程。第二类信令承载在下行控制信道,但也可以承载在下行数据信道。由于根据第一类信令,盲检窗口用户默认使用其所指示的下行接收波束,基站使用其所指示的下行发送波束。而在第二类信令,需要包含用户的身份标示ID、联合波束扫描来确定UE专属的波束扫描指示和时间提前量(Timing advance,TA)。
在第一类信令需要进行波束扫描发送时,在第二类信令中需要携带关于最优上行发送波束的波束指示。第二类信令的指示索引来自对应于专属信道的索引序号。为了节省花销,可以来仅对于相邻的N个专属信道进行编码。
在第二类信令中,可以配置一个联合的上行和下行的波束扫描。由于为了减少花销,与波束恢复指示波束可能是一种宽波束,但是为了随后的数据传输,需要细化的波束进行更好的数据传输。所以,下行波束扫描和上行波束扫描可以加速整个波束恢复的进程。需要说明的是,如果第一类信令使用的专属UE ID,因此,这里上行和下行的波束训练可以同时触发。但是如果第一类信令使用的UE group ID,这里可以进行下行波束训练,而上行的波束训练需要等待UE确定后进行。否则,多个UE可能同时发起上行波束训练,这样可能进行无意义的上行波束训练。而对于UE ID不确定时,需要在用户在之后的PUCCH发送唯一的ID之后,再次进行波束训练。在波束训练中,下行发送波束与波束恢复第一类信令所指示的波束满足QCL假设,而上行发送波束与第二类信令所指示的波束满足QCL假设。
盲检窗口的长度以及盲检的资源位置,来自波束恢复配置的参数集合,可以进行配置。
第三类信令和第四类信令的发送内容(面向group下的UE ID)描述如下。
图10为本公开实施例的信令交互模式示意图。其中图10a和图10b,分别对应于包含第 一和二类信令(两步模式),包含从第一类信令到第四类信令(四步模式)的两种场景。其中,前者对应于第一类信令中已经包含了唯一的UE ID,而后者对应于第二类信令中包含UE group ID或者基于竞争ID序号。在一个例子中,第一类信令,表示从用户发送到基站(上行),波束恢复申请上报;第二类信令,表示从基站发送到用户(下行),波束恢复响应;第三类信令,表示从用户发送给基站(上行),用户身份信息上报;第四类信令,表示从基站发送到用户(下行),基站确认用户身份信息。
其中,第三类和第四类信令,适用于第一类信令中未能指示自身信息的情况。对于基站而言,可以根据UE的特征,对于不同的优先级的UE分配不同的ID,即是专属,还是group-based还是完全竞争。这里所述的三种配置,是可以对于一个基站同时实现。
图11为本公开实施例的第一类信令集合和UE ID关系示意图。图中,UE ID为专属ID,但是由于对于第一类信令可能对应于多个UE ID,所以此时仅通过第一类信令是无法直接确定波束ID。对于第三类信令中,为了节省花销,可以仅对于第一类信令设计的UE ID编码后的,序号进行反馈。例如(4)涉及四个UE ID中,第三类信令,承载重新编码后的序号,仅需要两个比特(00,01,10,11)。在发送第三类信令之后,用户尝试收到来自TRP的第四类信令。若第四类信令中包含第一通信节点的唯一身份标示,或者依据第一通信节点的唯一身份表示可以成功接收解码第四类信令,表示第一通信节点和第二通信节点的波束链路建立。
对于两步和四步模式成功后,用户会向高层指示波束恢复成功。
失败后,RLF声明和使用PRACH接入(包含免竞争时间)。
图12为本公开实施例的波束恢复失败后使用PRACH随机接入示意图。如果在盲检窗口下,没有成功接收来自基站端的第二类信令,则UE需要想高层发送无线链路失败(Radio link failure)。这时,UE会尝试采用基本的PRACH进行无线接入。
本实施例中基于调度请求的波束报告办法描述如下。
图13为本公开实施例的基于调度请求的波束报告的实施例。调度请求是终端向上行调度器请求上行资源而发出的一个简单表示,其中需要包含波束报告请求信令。在预配置的SR间隔,用户将会被分配调度请求(SR)的发送机会。在波束相关触发条件满足时,触发调度请求发送,在临近的SR发送时机上,将会执行包含波束请求报告的SR发送。在收到TRP面对调度请求的调度请求响应之后,用户会在调度请求响应所分配的资源上执行波束报告。这里包含两种配置,其一,上报资源为上行控制信道(PUCCH),波束报告通过上行控制信息(UCI)承载;而,若上报资源为上行数据信道(PDCCH),波束报告通过MAC-CE或者RRC信令承载。所述的波束报告,至少包含如下信息之一:所指示参考信号类型,参考信号资源集合索引,参考信号资源索引,参考信号端口索引。例如,通过标示是来自对于参考信号SSS的波束报告。
综上所述,基于本公开实施例提供的技术方案,基站对用户配置一个或者一组符号/序列,用户从可选集合中选择符号/序列执行波束恢复,用于标示之后该用户波束链路已经失效和指示所推荐的波束恢复方法。而后,通过基于QCL的波束指示或者波束回退方法,用户可以告知基站潜在的可用波束信息,以便于实现快速的波束链路重建。该方案,一方面,用户可 以在波束链路失效后快速的告知基站,避免不必要的信号传输;另一方面,基于配置的波束恢复方法和对于潜在新波束链路的指示,可以加速新的波束链路建立过程。
实施例4
本公开的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:S1,根据波束相关参数集合中的K个元素的触发门限生成第一类信令;S2,向第二通信节点发送第一类信令。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行根据波束相关参数集合中的K个元素的触发门限生成第一类信令。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行向第二通信节点发送第一类信令。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (50)

  1. 一种波束恢复的处理方法,应用第一通信节点,其中,包括:
    根据波束相关参数集合中的K个元素的触发门限生成第一类信令;
    向第二通信节点所述发送所述第一类信令;
    其中,所述的波束相关参数集合包含Q个元素,其中Q和K均是正整数,并且K小于或等于Q。
  2. 根据权利要求1所述的方法,其中,所述第一类信令包括以下至少之一:一个或者一组波束报告信息,调度请求;其中,所述波束报告信息通过第一通信节点或者第二通信节点发送的以下至少之一信息进行表示:参考信号端口索引、参考信号资源索引、参考信号资源集合索引、参考信号的资源配置索引,搜索空间集合的元素索引,约定的波束集合的元素索引。
  3. 根据权利要求2所述的方法,其中,所述波束报告信息通过所述第一类信令所占用的时频资源位置来表示。
  4. 根据权利要求2所述的方法,其中,所述调度请求包含第一通信节点向第二通信节点发送波束报告请求的信令。
  5. 根据权利要求2所述的方法,其中,所述方法还包括:
    接收所述第二通信节点对所述调度请求的调度请求响应;
    在调度请求响应所分配的资源上执行波束报告;
    其中,所述所分配的资源包括:上行控制信道,或者上行数据信道,在所述所分配的资源为上行控制信道时,波束报告通过上行控制信息UCI承载,在所述所分配的资源为上行数据信道时,波束报告通过媒体接入控制层控制单元MAC-CE或者无线资源控制RRC信令承载。
  6. 根据权利要求5所述的方法,其中,所述波束报告至少包含如下信息之一:参考信号类型,参考信号资源集合索引,参考信号资源索引,参考信号端口索引,搜索空间的元素索引,约定的波束的元素索引,波束分组索引,接收波束分组索引,天线分组索引。
  7. 根据权利要求2所述的方法,其中,所述参考信号的资源配置索引相关联是指与所述资源配置索引满足准共址QCL假设。
  8. 根据权利要求1所述的方法,其中,在向第二通信节点所述发送所述第一类信令之前,所述方法还包括:
    接收第二通信节点配置指示的第一类信令可以承载的信道集合,其中所述信道集合包括如下之一或组合:专属信道、物理随机接入信道PRACH信道、免授权信道、调度请求资源;所述专属信道用来承载第一类信令,且与PRACH信道、免授权信道占用相同或者不同的时域资源但与所述PRACH信道和所述免授权信道均正交,所述调度请求资源,是指第一通信节点向第二通信节点分配的第二通信节点专属的调度请求资源,每D个子帧出现一次,其中D是大于等于1的整数。
  9. 根据权利要求8所述的方法,其中,第一通信节点从所述信道集合中选择子集承载发送所述第一类信令。
  10. 根据权利要求8所述的方法,其中,多个专属信道构成一个专属信道集合。
  11. 根据权利要求10所述的方法,其中,在所述专属信道集合中的专属信道中重复发送第一类信令,设置为执行第一通信节点到第二通信节点的波束扫描,测量和决定。
  12. 根据权利要求10所述的方法,其中,所述专属信道集合的结构由PRACH的配置信令来进行绑定指示。
  13. 根据权利要求2所述的方法,其中,在向第二通信节点发送所述第一类信令之后,所述方法还包括:
    使用所述波束报告信息中指示的波束,接收所述第二通信节点所发送的第二类信令;其中,第二类信令设置为标示所述第二通信节点确认所述第一通信节点的第一类信令。
  14. 根据权利要求13所述的方法,其中,所述第二类信令包括:一个或者一组波束指示信息,其中,所述波束报告信息通过第一通信节点或者第二通信节点发送的以下至少之一信息进行表示:参考信号端口索引、参考信号资源索引、参考信号资源集合索引、参考信号的资源配置索引,搜索空间集合的元素索引,约定的波束集合的元素索引。
  15. 根据权利要求14所述的方法,其中,所述波束指示信息通过所述第二类信令所占用的时频资源位置来表示。
  16. 根据权利要求1所述的方法,其中,在所述第一通信节点的上下行之间波束关联满足条件时,所述第一类信令不包含波束报告信息。
  17. 根据权利要求1所述的方法,其中,所述第一类信令用于以下至少之一:
    主动发起的波束报告;
    申请调度资源;
    发起波束链路重建;
    发起波束链路建立。
  18. 根据权利要求1所述的方法,其中,所述的波束相关参数集合包括以下之一:
    N个第一类波束链路的质量;
    N个第一类波束链路的质量与K个第二类的波束链路质量和的差值或者比值;
    N个第一类波束链路与K个第二类的波束链路的时频信道响应的相关性、或者频域信道响应的相关性,空域相关性;
    N个第一类波束链路的方位角与K个第二类的波束链路的方位角的差值或者比值;
    K个第二类的波束链路质量;
    全部第二类的波束链路质量;
    距离上次上行控制信道或数据信道成功接收的时间累计;
    未成功接收的累计次数;
    波束分组的调整信息;
    所述波束相关参数集合所包括的各个参数的加权值或者加权相关值;
    其中,所述第二类的波束链路是指来自S个已配置波束链路集合,或者来自S个已配置波束链路集合中已激活的S1个集合;
    所述第一类的波束链路是指不来自S个已配置波束链路集合,或者不来自S个已配置波束链路集合中已激活的S1个集合;
    所述已配置波束链路,是指第一通信节点报告给第二通信节点的波束链路,或者第二通信节点指示给第一通信节点的波束链路;
    其中N,K,S,S1是大于等于1的整数,并且S1小于等于S。
  19. 根据权利要求18所述的方法,其中,所述已配置波束链路包括:通过第二通信节点向第一通信节点指示的波束链路,或者第一通信节点报告给第二通信节点的波束链路。
  20. 根据权利要求18所述的方法,其中,所述波束链路对应于以下之一:发送波束、接收波束、收发波束对、波束组、接收波束组、发送波束组、接收模式、天线组合,控制信道。
  21. 根据权利要求18所述的方法,其中,所述波束链路质量包括以下之一:BLER,接收信号功率,RSRP,RSRQ,信道容量,接收端信干噪比,接收端信噪比。
  22. 根据权利要求1所述的方法,其中,所述第一类信令是已配置或者预定义的信令集合的一个元素。
  23. 根据权利要求22所述的方法,其中,所述信令集合的元素,是由一个序列,或者,一个序列和它所占用的频域资源,或者一个序列和它所在用的时域资源,或者一组序号和它所占用的时频资源,或者一组序号和它所占用的按特定函数跳变的时频资源来构成。
  24. 根据权利要求22所述的方法,其中,所述信令集合的元素,是第一通信节点独有的,或者由B个第一通信节点共享;其中,B是一个大于1的整数。
  25. 根据权利要求22所述的方法,其中,所述信令集合由以下方式之一配置:
    第一通信节点配置;
    第一通信节点发送配置请求,第二通信节点进行配置;
    第二通信节点配置;
    第一通信节点配置,而第二通信节点选择生效;
    第二通信节点配置,而第一通信节点选择生效。
  26. 根据权利要求25所述的方法,其中,第一通信节点配置或者发送配置请求的条件包括如下至少之一:
    进入非连续接收DRX模式;
    K个第二类的波束链路质量差于第一门限;
    全部第二类的波束链路质量差于第二门限;
    距离上次控制信道/数据信道成功接收的时间累计大于第三门限;
    未成功接收的累计次数大于第四门限;
    参数的加权值,或者加权相关值,满足第五门限的要求。
  27. 根据权利要求22所述的方法,其中,所述第一类信令集合的元素涉及如下至少之一的配置参数:
    第一通信节点的身份标示;
    承载第一类信令发送的O个时频资源;
    第一类信令发送的时频资源位置与其所指示的参考信号的对应关系;
    第一类信令发送以后,第二通信节点向第一通信节点发送控制信令的传输方式;
    第一类信令发送以后,第二通信节点向第一通信节点发送控制信令可以占用的时频资源或者时频资源范围;
    第一类信令发送以后,第二通信节点向第一通信节点发送控制信令的盲检准则;
    第一通信节点向第二通信节点发送的参考信号的发送配置;
    第一通信节点向第二通信节点发送的参考信号的测量配置;
    第一通信节点向第二通信节点发送的参考信号的报告配置;
    第二通信节点向第一通信节点发送的参考信号的发送配置;
    第二通信节点向第一通信节点发送的参考信号的测量配置;
    第二通信节点向第一通信节点发送的参考信号的报告配置;
    其中,O是大于等于1的整数。
  28. 根据权利要求22所述的方法,其中,所述信令集合的元素还包括:PRACH接入时的专属免竞争序列。
  29. 根据权利要求27所述的方法,其中,所述参考信号的发送配置至少包括如下参数之一:参考信号类型;天线端口;参考信号资源;参考信号资源所占的时频资源或者时频资源范围。
  30. 根据权利要求27所述的方法,其中,所述第一类信令所指示的部分或全部参数进行联合编码和/或联合标示。
  31. 根据权利要求1所述的方法,其中,所述第一类信令还包括备份波束测量信令,其中,所述备份波束测量信令是指所述第二通信节点使用预配置的与所述第一通信节点的波束集合中元素发送参考信号、控制信道或者数据信道。
  32. 根据权利要求27所述的方法,其中,所述第一通信节点的身份标示包括以下之一:第一通信节点独有的身份符号;多个第一通信节点被配置的共享身份符号;竞争获得的身份序号。
  33. 根据权利要求27所述的方法,其中,在所述信令集合是已配置的信令集合时,所述已配置的信令集合存在有效时间窗口,在所述有效时间窗口之后的配置信令集合无效。
  34. 根据权利要求33所述的方法,其中,所述有效时间窗口为一个或者多个,分别面向信令集合中的信令,和/或,面向信令集合中的参数。
  35. 根据权利要求33或34所述的方法,其中,所述有效时间窗口的配置,包括如下 之一或者组合:
    从当前配置开始,直到下次重新配置后失效;
    从当前配置开始,在T个时间单元后失效;
    从当前配置开始,在第Y1次第一类信令发送,或第Y2次第一类信令成功接收,或在第Y3次第二类信令发送,或第Y4次第二类信令成功接收后失效;
    在所述触发门限满足条件时,T个时间单位后失效;
    最近一次第一通信节点向第二通信节点反馈ACK/NACK后,T个时间单位后失效;
    最近一次第一通信节点接收第二通信节点反馈ACK/NACK后,T个时间单位后失效;
    最近一次第二通信节点向第一通信节点发送ACK/NACK后,T个时间单位后失效;
    最近一次第二通信节点向第一通信节点发送ACK/NACK后,T个时间单位后失效;
    所述的T,Y1,Y2,Y3和Y4是大于等于1的整数,T,Y1,Y2,Y3和Y4可以是预定义的,或者由第一通信节点或第二通信节点配置。
  36. 根据权利要求1所述的方法,其中,第一通信节点在向第二通信节点发送第一类信令的次数,或者累计等待时间,或者组合,超过第六门限后,第一通信节点的物理层向高层发送链路失效请求。
  37. 根据权利要求1所述的方法,其中,向第二通信节点所述发送所述第一类信令的发送功率满足如下之一:服从随机接入信道PRACH的功率发送规则;使用满功率发送;使用上述功率的加权值发送。
  38. 根据权利要求1所述的方法,其中,在发送所述第一类信令之后,所述方法还包括:
    第二通信节点向第一通信节点发送的参考信号、下行控制信道或者下行数据信道中的任意一个或多个与第一类信息指示波束的参考信号默认满足准共址QCL假设。
  39. 根据权利要求1所述的方法,其中,在发送所述第一类信令之后,所述方法还包括:
    第一通信节点向第二通信节点发送的参考信号、上行控制信道、上行数据信道中的任意一个或多个与第二类信息指示波束的参考信号默认满足准共址QCL假设。
  40. 根据权利要求13或27所述的方法,其中,第二类信令中包含第一通信节点的身份标示信息。
  41. 根据权利要求13所述的方法,其中,在第二类信令中还包含以下信息至少之一:
    第一通信节点向第二通信节点发送的参考信号的发送配置;
    第一通信节点向第二通信节点发送的参考信号的测量配置;
    第一通信节点向第二通信节点发送的参考信号的报告配置;
    第二通信节点向第一通信节点发送的参考信号的发送配置;
    第二通信节点向第一通信节点发送的参考信号的测量配置;
    第二通信节点向第一通信节点发送的参考信号的报告配置。
  42. 根据权利要求13所述的方法,其中,在所述第一类信令不能唯一指示所述第一通信节点的身份标示时,在接收所述第二类信令之后,第一通信节点向第二通信节点发送第三类信令,其中,所述第三类信令包含第一通信节点的唯一身份标示。
  43. 根据权利要求42所述的方法,其中,在发送第三类信令之后,所述方法还包括:
    第一通信节点尝试收到来自所述第二通信节点的第四类信令,其中,在所述第四类信令中包含第一通信节点的唯一身份标示,或者依据第一通信节点的唯一身份表示可以成功接收解码所述第四类信令的情况下,所述第四类信令表示第一通信节点和第二通信节点的波束链路建立。
  44. 一种波束恢复的处理方法,应用第二通信节点,其中,包括:
    接收第一类信令,其中,所述第一类信令是第一通信节点根据波束相关参数集合中的K个元素的触发门限生成的;
    在所述第一通信节点到所述第二通信节点的波束链路中断时,使用所述K个元素进行波束链路重建;
    其中,所述的波束相关参数集合包含Q个元素,其中Q和K均是正整数,并且K小于或等于Q。
  45. 根据权利要求44所述的方法,其中,所述第一类信令设置为指示以下至少之一:
    设置为主动发起的波束报告;
    申请调度资源;
    发起波束链路重建;
    发起波束链路建立。
  46. 一种波束恢复的处理装置,应用第一通信节点,其中,包括:
    生成模块,设置为根据波束相关参数集合中的K个元素的触发门限生成第一类信令;
    发送模块,设置为向第二通信节点所述发送所述第一类信令;
    其中,所述的波束相关参数集合包含Q个元素,其中Q和K均是正整数,并且K小于或等于Q。
  47. 根据权利要求46所述的装置,其中,所述第一类信令包括以下至少之一:一个或者一组波束报告信息,调度请求;其中,所述波束报告信息通过第一通信节点或者第二通信节点发送的以下至少之一信息进行表示:参考信号端口索引、参考信号资源索引、参考信号资源集合索引、参考信号的资源配置索引,搜索空间集合的元素索引,约定的波束集合的元素索引。
  48. 根据权利要求46所述的装置,其中,所述第一类信令用于指示以下至少之一:
    主动发起的波束报告;
    申请调度资源;
    发起波束链路重建;
    发起波束链路建立。
  49. 一种波束恢复的处理装置,应用第二通信节点,其中,包括:
    接收模块,设置为接收第一类信令,其中,所述第一类信令是第一通信节点根据波束相关参数集合中的K个元素的触发门限生成的;
    处理模块,设置为在所述第一通信节点到所述第二通信节点的波束链路中断时,使用所述K个元素进行波束链路重建;
    其中,所述的波束相关参数集合包含Q个元素,其中Q和K均是正整数,并且K小于或等于Q。
  50. 根据权利要求49所述的装置,其中,所述第一类信令用于以下至少之一:
    主动发起的波束报告;
    申请调度资源;
    发起波束链路重建;
    发起波束链路建立。
PCT/CN2018/074993 2017-03-24 2018-02-01 波束恢复的处理方法及装置 WO2018171340A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197031058A KR102288390B1 (ko) 2017-03-24 2018-02-01 빔을 복원하기 위한 프로세싱 방법 및 장치
EP18771123.9A EP3606220A4 (en) 2017-03-24 2018-02-01 PROCESSING METHOD AND APPARATUS FOR RECOVERING A BEAM
JP2019552115A JP7105798B2 (ja) 2017-03-24 2018-02-01 ビームを復元する処理方法および装置
US16/581,616 US11291007B2 (en) 2017-03-24 2019-09-24 Processing method and apparatus for recovering beam
US17/656,861 US20220338185A1 (en) 2017-03-24 2022-03-28 Processing method and apparatus for recovering beam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710184628.5A CN108633043B (zh) 2017-03-24 2017-03-24 波束恢复的处理方法及装置
CN201710184628.5 2017-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/581,616 Continuation US11291007B2 (en) 2017-03-24 2019-09-24 Processing method and apparatus for recovering beam

Publications (1)

Publication Number Publication Date
WO2018171340A1 true WO2018171340A1 (zh) 2018-09-27

Family

ID=63584076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074993 WO2018171340A1 (zh) 2017-03-24 2018-02-01 波束恢复的处理方法及装置

Country Status (6)

Country Link
US (2) US11291007B2 (zh)
EP (1) EP3606220A4 (zh)
JP (1) JP7105798B2 (zh)
KR (1) KR102288390B1 (zh)
CN (2) CN113395779A (zh)
WO (1) WO2018171340A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175796A1 (ko) * 2019-02-28 2020-09-03 엘지전자 주식회사 사이드링크를 지원하는 무선통신시스템에서 단말이 빔 스위핑을 수행하는 방법 및 이를 위한 장치

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109004366B (zh) * 2017-06-06 2021-07-16 华为技术有限公司 一种天线装置以及波束调整的方法
EP3836717A1 (en) * 2018-08-09 2021-06-16 Ntt Docomo, Inc. User device and signal monitoring method
CN112673681A (zh) * 2018-10-11 2021-04-16 联想(新加坡)私人有限公司 确定波束故障恢复后使用的物理上行链路信道功率控制参数值的方法和装置
CN111132204B (zh) * 2018-10-31 2021-08-03 成都华为技术有限公司 检测波束失败的方法和装置
WO2020102481A1 (en) * 2018-11-15 2020-05-22 Intel Corporation System and method for timing aware beam management
CN109787671B (zh) * 2019-03-07 2021-09-03 西安电子科技大学 一种混合波束成形装置及方法
US11664871B2 (en) * 2019-06-10 2023-05-30 Qualcomm Incorporated Methods and apparatus for UE initiated beam reporting
CN115065394A (zh) 2019-08-26 2022-09-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US11601925B2 (en) * 2020-04-17 2023-03-07 Qualcomm Incorporated Quasi co-location relationship reporting
US11902002B2 (en) * 2020-07-31 2024-02-13 Qualcomm Incorporated Beam measurement reporting
US11374796B2 (en) 2020-10-15 2022-06-28 Samsung Electronics Co., Ltd. Compressive sensing based channel recovery considering time variation of the channel
CN114189852B (zh) * 2021-12-01 2024-02-02 浙江大学 毫米波隐蔽通信的下行多用户波束对准和数据传输方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103856894A (zh) * 2012-12-06 2014-06-11 北京三星通信技术研究有限公司 基于波束的定位方法及设备
CN103945541A (zh) * 2010-02-11 2014-07-23 电信科学技术研究院 触发srs信号发送的方法以及设备
CN104202073A (zh) * 2014-03-04 2014-12-10 中兴通讯股份有限公司 信道信息的反馈方法、导频及波束发送方法、系统及装置
CN106465375A (zh) * 2015-04-28 2017-02-22 联发科技股份有限公司 波束成形的通信系统中空间分集的方案

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8295243B2 (en) * 2006-08-21 2012-10-23 Qualcomm Incorporated Method and apparatus for random access in an orthogonal multiple-access communication system
US8014359B2 (en) * 2006-10-27 2011-09-06 Interdigital Technology Corporation Method and apparatus for assigning radio resources and controlling transmission parameters on a random access channel
US9071310B2 (en) 2009-01-12 2015-06-30 Qualcomm Incorporated Method and apparatus for enabling multiple transmission modes in a wireless communication system
KR101839386B1 (ko) * 2011-08-12 2018-03-16 삼성전자주식회사 무선 통신 시스템에서의 적응적 빔포밍 장치 및 방법
KR102140298B1 (ko) * 2012-03-27 2020-07-31 삼성전자주식회사 무선 통신 시스템에서 빔 정보 송신 방법 및 장치
CN103580739B (zh) * 2012-07-20 2016-11-16 电信科学技术研究院 信道质量指示信息上报及确定方法和设备
CN103582108B (zh) * 2012-07-23 2017-04-19 京信通信系统(中国)有限公司 一种时间同步方法、装置及系统
CN103634037B (zh) * 2012-08-28 2020-01-14 中兴通讯股份有限公司 波束成形方法及装置
JP2015536097A (ja) * 2012-09-26 2015-12-17 インターデイジタル パテント ホールディングス インコーポレイテッド ロングタームエボリューション(lte)システムにおける動作のための方法、システムおよび装置
US9521664B2 (en) * 2012-11-02 2016-12-13 Qualcomm Incorporated EPDCCH resource and quasi-co-location management in LTE
WO2014112841A1 (ko) * 2013-01-18 2014-07-24 엘지전자 주식회사 무선접속시스템에서 유사 코로케이션을 수행하는 방법 및 장치
US9900872B2 (en) * 2013-04-17 2018-02-20 Futurewei Technologies, Inc. Systems and methods for adaptive transmissions in wireless network
CN105144768B (zh) * 2013-04-26 2019-05-21 英特尔Ip公司 频谱共享情境中的共享频谱重新分配
KR102165452B1 (ko) * 2013-05-15 2020-10-14 엘지전자 주식회사 무선 통신 시스템에서 다중 안테나 기반 빔포밍를 위하여 참조 신호를 구성하는 방법 및 이를 위한 장치
JP6198361B2 (ja) * 2013-06-25 2017-09-20 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて部分アンテナアレイに基づくビームフォーミング実行方法及びそのための装置
WO2015032101A1 (zh) * 2013-09-09 2015-03-12 华为技术有限公司 一种波束追踪的方法、装置和系统
EP3050232B1 (en) * 2013-09-27 2020-04-01 Samsung Electronics Co., Ltd. Method and apparatus for discovery signals for lte advanced
CN104602219A (zh) * 2013-11-01 2015-05-06 上海贝尔股份有限公司 多点协作中的信令信息交换装置与方法
US20150189574A1 (en) * 2013-12-26 2015-07-02 Samsung Electronics Co., Ltd. Methods for dormant cell signaling for advanced cellular network
US10256855B2 (en) * 2014-01-31 2019-04-09 Qualcomm Incorporated Interference management information signaling
US20150365178A1 (en) * 2014-06-12 2015-12-17 Broadcom Corporation System, method, and apparatus for signaling intefering cell information
US10153878B2 (en) * 2014-08-29 2018-12-11 Lg Electronics Inc. Method and apparatus for handling zero power channel state information reference signal configurations for discovery signals in wireless communication system
US9832719B2 (en) * 2014-10-17 2017-11-28 Qualcomm Incorporated Selection of a serving node in a wireless communication system
US9882662B2 (en) * 2014-11-11 2018-01-30 Sharp Kabushiki Kaisha Systems and methods for license assisted access
US10225055B2 (en) * 2014-11-26 2019-03-05 Qualcomm Incorporated Network identification based on discovery reference signals in wireless communications
WO2016127403A1 (en) * 2015-02-13 2016-08-18 Mediatek Singapore Pte. Ltd. Handling of intermittent disconnection in a millimeter wave (mmw) system
WO2017022870A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system
CN105093191B (zh) * 2015-08-14 2017-05-03 河海大学 外辐射源雷达直达波恢复方法
WO2017029213A1 (en) * 2015-08-14 2017-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Facilitated positioning of wireless communication devices
US10326514B2 (en) * 2015-09-11 2019-06-18 Intel IP Corporation Reference signals for initial acquisition in 5G systems
CN105554780B (zh) * 2015-12-23 2019-03-12 哈尔滨工业大学 毫米波下Massive MIMO多小区协作波束分配方法
WO2017123060A1 (en) * 2016-01-14 2017-07-20 Samsung Electronics Co., Ltd. System, method, and apparatus of beam-tracking and beam feedback operation in a beam-forming based system
US11245456B2 (en) * 2016-05-11 2022-02-08 Idac Holdings, Inc. Systems and methods for beamformed uplink transmission
US10367677B2 (en) * 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
WO2017209417A1 (ko) * 2016-06-03 2017-12-07 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 이를 위한 장치
CN117177257A (zh) * 2016-07-20 2023-12-05 艾普拉控股有限公司 使用波束成形和选择的无线电设备的移动性
WO2018016921A1 (ko) * 2016-07-21 2018-01-25 엘지전자 주식회사 무선 통신 시스템에서 기지국과 단말 간 하향링크 제어 정보를 송수신하는 방법 및 이를 지원하는 장치
KR102399395B1 (ko) * 2016-07-29 2022-05-17 엘지전자 주식회사 무선 통신 시스템에서 단말의 채널 상태 정보 보고 방법 및 이를 지원하는 장치
US11012882B2 (en) * 2016-09-28 2021-05-18 Lg Electronics Inc. Method for interference measurement in wireless communication system and device therefor
US10848232B2 (en) * 2016-11-02 2020-11-24 Idac Holdings, Inc. Group-based beam management
EP3535856B1 (en) * 2016-11-04 2020-01-08 Telefonaktiebolaget LM Ericsson (PUBL) Methods and systems for beam tracking process management and indices
US20190349915A1 (en) * 2017-01-03 2019-11-14 Lg Electronics Inc. Method for transmitting/receiving signals by using beams in wireless communication system, and device for same
EP3567781B1 (en) * 2017-01-05 2022-08-17 LG Electronics Inc. Method for transmitting physical uplink control channel in wireless communication system, and device therefor
EP3567783B1 (en) * 2017-01-05 2022-04-27 LG Electronics Inc. Method for transmitting/receiving uplink channel in wireless communication system, and device therefor
US11044739B2 (en) * 2017-01-06 2021-06-22 Convida Wireless Mechanisms for efficient access and transmission in NR
WO2018128520A1 (ko) * 2017-01-09 2018-07-12 엘지전자 주식회사 무선 통신 시스템에서 빔 관리를 위한 csi-rs 설정 방법 및 장치
WO2018128522A1 (ko) * 2017-01-09 2018-07-12 엘지전자 주식회사 무선 통신 시스템에서 빔 관리를 위한 csi-rs 설정 방법 및 장치
US10148337B2 (en) * 2017-02-01 2018-12-04 Samsung Electronics Co., Ltd. Beam management of downlink data channel and downlink control channel for 5G next radio systems
US11121799B2 (en) * 2017-02-05 2021-09-14 Lg Electronics Inc. Method for determining modulation and coding scheme in wireless communication system, and device therefor
US10542445B2 (en) * 2017-02-06 2020-01-21 Lg Electronics Inc. Method and device for performing radio link monitoring by user equipment in wireless communication system
CN114900867A (zh) * 2017-02-27 2022-08-12 苹果公司 用于估计用户设备移动性状态的用户设备和计算机介质
WO2018164332A1 (ko) * 2017-03-09 2018-09-13 엘지전자(주) 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치
US20200119839A1 (en) * 2017-03-15 2020-04-16 Lg Electronics Inc. Method for transmitting or receiving signal in wireless communication system and apparatus therefor
WO2018174586A1 (ko) * 2017-03-22 2018-09-27 엘지전자 주식회사 빔 회복 과정 수행 방법과 사용자기기, 및 빔 회복 과정 지원 방법 및 기지국
BR112019019697A2 (pt) * 2017-03-23 2020-04-14 Ntt Docomo Inc terminal de usuário e método de radiocomunicação
CN110463260B (zh) * 2017-03-23 2022-03-08 康维达无线有限责任公司 新无线电中的下行链路测量设计
EP3602826A1 (en) * 2017-03-23 2020-02-05 Convida Wireless, LLC Beam training and initial access
US10873911B2 (en) * 2017-03-23 2020-12-22 Ofinno, LCC Uplink transmission power adjustment
BR112019019620A2 (pt) * 2017-03-23 2020-04-22 Ntt Docomo Inc terminal e método de radiocomunicação
WO2020030970A1 (en) * 2018-08-08 2020-02-13 Lenovo (Singapore) Pte. Ltd. Tb size mismatch during a random-access procedure
EP4106219A4 (en) * 2020-02-13 2024-03-06 Lg Electronics Inc METHOD AND APPARATUS FOR TRANSMITTING AND RECEIVING CHANNEL STATE INFORMATION IN A WIRELESS COMMUNICATION SYSTEM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945541A (zh) * 2010-02-11 2014-07-23 电信科学技术研究院 触发srs信号发送的方法以及设备
CN103856894A (zh) * 2012-12-06 2014-06-11 北京三星通信技术研究有限公司 基于波束的定位方法及设备
CN104202073A (zh) * 2014-03-04 2014-12-10 中兴通讯股份有限公司 信道信息的反馈方法、导频及波束发送方法、系统及装置
CN106465375A (zh) * 2015-04-28 2017-02-22 联发科技股份有限公司 波束成形的通信系统中空间分集的方案

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3606220A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175796A1 (ko) * 2019-02-28 2020-09-03 엘지전자 주식회사 사이드링크를 지원하는 무선통신시스템에서 단말이 빔 스위핑을 수행하는 방법 및 이를 위한 장치
US11831385B2 (en) 2019-02-28 2023-11-28 Lg Electronics Inc. Method by which terminal performs beam sweeping in wireless communication system for supporting sidelink, and device therefor

Also Published As

Publication number Publication date
CN108633043B (zh) 2021-06-29
EP3606220A1 (en) 2020-02-05
CN113395779A (zh) 2021-09-14
US11291007B2 (en) 2022-03-29
KR102288390B1 (ko) 2021-08-10
CN108633043A (zh) 2018-10-09
US20220338185A1 (en) 2022-10-20
KR20190133025A (ko) 2019-11-29
US20200163071A1 (en) 2020-05-21
JP2020515180A (ja) 2020-05-21
JP7105798B2 (ja) 2022-07-25
EP3606220A4 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
WO2018171340A1 (zh) 波束恢复的处理方法及装置
US11082103B2 (en) Apparatus and method for beam management in wireless communication system
US11844113B2 (en) Initial access in high frequency wireless systems
US11271632B2 (en) Apparatus and method for transmitting or receiving signal using beamforming in wireless communication system
US20210168787A1 (en) Beam Selection and Resource Allocation for Beam-Formed Random Access Procedure
US11206689B2 (en) Method and device for performing a random access in wireless communication system
WO2018228187A1 (en) Method for Response to Beam Failure Recovery Request
WO2019095723A1 (zh) 信息发送、接收方法及装置、存储介质、处理器
US11943642B2 (en) Apparatus and method for beam failure recovery in wireless communication system
WO2018201913A1 (zh) 信息的上报、接收方法、装置及计算机可读存储介质
TW201922026A (zh) 用於選擇用於傳輸波束故障恢復請求的資源的系統和方法
JP2019521548A (ja) ビームフォーミングされたアップリンク送信のためのシステムおよび方法
JP7459217B2 (ja) ワイヤレス通信におけるリンク回復
KR20210026866A (ko) 무선 통신 시스템에서 비동기적 신호를 송신 및 수신하기 위한 장치 및 방법
US20230060540A1 (en) Beam management during initial access
KR20180030389A (ko) 무선 통신 시스템에서의 랜덤 액세스를 위한 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197031058

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018771123

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018771123

Country of ref document: EP

Effective date: 20191024