WO2018171205A1 - 阵列式激光雷达分光装置及其分光方法 - Google Patents

阵列式激光雷达分光装置及其分光方法 Download PDF

Info

Publication number
WO2018171205A1
WO2018171205A1 PCT/CN2017/109281 CN2017109281W WO2018171205A1 WO 2018171205 A1 WO2018171205 A1 WO 2018171205A1 CN 2017109281 W CN2017109281 W CN 2017109281W WO 2018171205 A1 WO2018171205 A1 WO 2018171205A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber amplifier
signal light
seed source
optical
source
Prior art date
Application number
PCT/CN2017/109281
Other languages
English (en)
French (fr)
Inventor
鲁开源
华一敏
Original Assignee
昂纳信息技术(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昂纳信息技术(深圳)有限公司 filed Critical 昂纳信息技术(深圳)有限公司
Priority to AU2017404912A priority Critical patent/AU2017404912A1/en
Priority to EP17901832.0A priority patent/EP3605171A4/en
Priority to CA3056166A priority patent/CA3056166C/en
Publication of WO2018171205A1 publication Critical patent/WO2018171205A1/zh
Priority to US16/556,256 priority patent/US20190384001A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • G02B6/425Optical features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/1215Splitter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth

Definitions

  • the present invention relates to the field of optical transmission technologies, and in particular to an array type light source spectroscopic device and a spectroscopic method thereof
  • a laser radar is a radar system that emits a laser beam to detect a feature quantity such as a position and a speed of a target.
  • a feature quantity such as a position and a speed of a target.
  • most of the laser radar light sources use semiconductor lasers with a wavelength of 905 nm, but their frequency is low and the human eye safety threshold is low.
  • the scanning xenon light source adopts a non-synchronous working mode.
  • An object of the present invention is to provide an array type light source spectroscopic device and a spectroscopic method thereof that use a synchronous operation mode and output multi-channel signal light output.
  • the present invention provides an array type light source spectroscopic device, comprising: a seed source for inputting signal light, an optical fiber amplifier connected to the seed source, and an optical splitter connected to the optical fiber amplifier, the optical shunt
  • the device is provided with N optical fibers, and N is a natural number.
  • the optical splitter divides the signal light of the seed source into N paths and outputs the signals.
  • the N-way optical fibers are respectively a first optical fiber, a second optical fiber, a third optical fiber, ..., an N-th optical fiber arranged in parallel.
  • the seed source employs a laser having a wavelength of 1550 nm.
  • the fiber amplifier is provided with a rare earth element.
  • the present invention also provides a spectroscopic method for an array type light source spectroscopic device, comprising the following steps:
  • First step the seed source emits signal light to the fiber amplifier
  • the second step the fiber amplifier obtains the signal light of the seed source, and amplifies and amplifies the signal light of the seed source;
  • the third step the fiber amplifier outputs the signal light of the seed source to the optical splitter; [0012] Step 4: The optical splitter splits the signal light of the seed source into N outputs.
  • the present invention also provides an array type light source spectroscopic device, comprising: a seed source for inputting signal light, an optical splitter connected to the seed source, and N optical fiber branches connected to the optical splitter And N is a natural number; wherein, the N fiber splitters divide the signal light of the seed source into N paths and output.
  • the N optical splitters are respectively a first optical fiber amplifier, a second optical fiber amplifier, a third optical fiber amplifier, ..., an Nth optical fiber amplifier arranged in parallel.
  • the seed source uses a laser having a wavelength of 1550 nm.
  • each of the N fiber amplifiers is provided with a rare earth element.
  • the present invention also provides a spectroscopic method for an array type light source spectroscopic device, comprising the following steps:
  • Step 1 The seed source sends signal light to the optical splitter
  • Step 2 The optical splitter obtains the signal light of the seed source, and divides the seed source into N paths;
  • the third step the N signal light divided by the optical splitter sequentially enters the first optical fiber amplifier, the second optical fiber amplifier, the third optical fiber amplifier, ..., the Nth optical fiber Amplifier
  • the fourth step the first fiber amplifier, the second fiber amplifier, the third fiber amplifier, ..., the Nth fiber amplifier both amplify and increase the signal light of the seed source, And output the signal light of the seed source separately.
  • the signal light of the seed source of the invention becomes a multi-channel signal light output through the optical splitter, and then the power is amplified by the amplifier of the daily branch to become the multi-channel signal light output; the repetition frequency of the 1550 nm laser It can reach megahertz, and the laser has a high water absorption coefficient.
  • the damage threshold to the human eye is high, so the laser of the band has human eye safety characteristics; Working style, has broad application prospects in the fields of automatic driving and 3D scanning.
  • FIG. 1 is a schematic structural view of a first embodiment of an array type light source spectroscopic device according to the present invention
  • FIG. 2 is a schematic structural view of a first embodiment of an array type light source spectroscopic device according to the present invention.
  • the array type light source spectroscopic device of the present invention includes a seed source 10 as an input signal light, and a seed source. 10 connected fiber amplifiers 20, and an optical splitter 30 connected to the fiber amplifier 20, the optical splitter 30 is provided with N optical fibers, and is a natural number.
  • the winding fibers are respectively a first optical fiber, a second optical fiber, a third optical fiber, ..., a first optical fiber arranged in parallel.
  • the seed source 10 uses a laser having a wavelength of 1550 nm.
  • the fiber amplifier 20 is provided with a rare earth element, that is, the rare earth element in the fiber amplifier 20 realizes 1550 nm signal light amplification.
  • the optical splitter 30 divides the signal light into multiple channels (1, 2, 3, ..., ⁇ ) for output, and realizes the mode of synchronizing the multiple output signals.
  • the seed source 10 as a 1550 nm laser can have a repetition frequency of megahertz, and the laser has a high water absorption coefficient.
  • the damage threshold to the human eye is high, so Band lasers have human eye safety characteristics.
  • the spectroscopic method of the arrayed laser radar spectroscopic device comprises the following steps:
  • the first step the seed source 10 emits a signal light having a wavelength of 1550 nm to the optical fiber amplifier 20;
  • the fiber amplifier 20 obtains the signal light of the seed source 10, and amplifies and amplifies the signal light of the seed source 10;
  • the third step the fiber amplifier 20 outputs the signal light of the seed source 10 to the optical splitter 30;
  • the optical splitter 30 splits the signal light of the seed source 10 into a loop output.
  • the seed source 10 of the present invention serves as a light source for generating continuous or pulsed signal light.
  • the output end of the seed source 10 is fused to the input end of the optical fiber amplifier 20 through an optical fiber, and the signal light emitted from the seed source 10 passes through the optical fiber amplifier 20. Gain amplification is obtained, and optical power is increased.
  • the output end of the optical fiber amplifier 20 and the input end of the optical splitter 30 are fused by an optical fiber, and the optical splitter 30 is provided with a purlin branch, each of which is outputted in the form of an optical fiber.
  • the signal light of the seed source 10 is amplified by the optical fiber amplifier 20 and then passed through the optical splitter 30 to become a multi-channel signal light output.
  • the array type light source spectroscopic device of the present invention includes a seed source 11 as an input signal light, and a seed source.
  • 11 connected optical splitters 21, and N optical splitters 3N connected to the optical splitter 21, and N optical splitters 3N are respectively a first optical fiber amplifier 31 and a second optical fiber amplifier arranged in parallel 32.
  • the seed source 11 is a 1550 nm laser, and its repetition frequency can reach megahertz, and the laser has a high water absorption coefficient.
  • the damage threshold to the human eye is high, so Band lasers have human eye safety characteristics.
  • the seed source 11 directly divides the signal light into multiple paths through the optical splitter 21, and then amplifies the 1550 nm signal light through the optical fiber amplifying optical path 3N of a plurality of rare earth elements, thereby obtaining multi-channel signal synchronous operation.
  • the spectroscopic method of the arrayed laser radar spectroscopic device comprises the following steps:
  • the first step the seed source 11 emits a signal light having a wavelength of 1550 nm to the optical splitter 21;
  • the optical splitter 21 obtains the signal light of the seed source 11 and divides the seed source 11 into N paths;
  • the third step the N signal lights split by the optical splitter 21 sequentially enter the first optical fiber amplifier 31, the second optical fiber amplifier 32, the third optical fiber amplifier 33, ..., Nth fiber amplifier 3N;
  • the fourth step the first fiber amplifier 31, the second fiber amplifier 32, the third fiber amplifier 33, ...
  • the Nth optical fiber amplifier 3N amplifies and amplifies the signal light of the seed source 11 and outputs the signal light of the seed source 11 respectively.
  • the seed source 11 serves as a light source for generating continuous or pulsed signal light, and the output end of the seed source 11 and the input end of the optical splitter 21 are fused together by an optical fiber; the optical splitter 21 has N branches, each of which The branch circuit takes the form of an optical fiber as an output, and the signal light of each branch passes through the optical fiber amplifier 3N, and gain gain is amplified, and the optical power is increased.
  • the signal light of the seed source of the invention becomes a multi-channel signal light output through the optical splitter, and then the power is amplified by the amplifier of the daily branch to become the multi-channel signal light output; the repetition frequency of the 1550 nm laser It can reach megahertz, and the laser has a high water absorption coefficient.
  • the damage threshold to the human eye is high, so the laser of the band has human eye safety characteristics; Working style, has broad application prospects in the fields of automatic driving and 3D scanning.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种阵列式光源分光装置及其分光方法,其包括:输入信号光的种子源(10)、与种子源(10)连接的光纤放大器(20)、以及与光纤放大器(20)连接的光分路器(30),光分路器(30)设有N路光纤,N为自然数;其中,光分路器(30)将种子源(10)的信号光分成N路并进行输出。种子源(10)的信号光通过光纤放大器(20)将功率放大后再通过光分路器(30)就变成了多路信号光输出;1550纳米激光的重复频率可以达到兆赫兹,而且激光具有较高的水吸收系数,当该波段激光辐射人眼时,对人眼的损伤阈值较高,因而该波段激光具有人眼安全特性;光源可采用同步工作方式,在自动驾驶和3D扫描等领域具备广阔的应用前景。

Description

发明名称:阵列式激光雷达分光装置及其分光方法 技术领域
[0001] 本发明属于光传输技术领域, 具体涉及一种阵列式光源分光装置及其分光方法 背景技术
[0002] 激光雷达是以发射激光束探测目标的位置、 速度等特征量的雷达系统。 目前大 部分激光雷达光源采用波长 905nm的半导体激光器, 但其频率低和人眼安全阈值 低, 扫描吋光源采用非同步的工作方式。
技术问题
[0003] 本发明的目的在于提供一种采用同步工作方式、 输出多路信号光输出的阵列式 光源分光装置及其分光方法。
问题的解决方案
技术解决方案
[0004] 本发明提供一种阵列式光源分光装置, 其包括: 输入信号光的种子源、 与该种 子源连接的光纤放大器、 以及与该光纤放大器连接的光分路器, 所述光分路器 设有 N路光纤, N为自然数; 其中, 所述光分路器将所述种子源的信号光分成 N 路并进行输出。
[0005] 优选地, 所述 N路光纤分别为并列排列的第 1路光纤、 第 2路光纤、 第 3路光纤、 ......、 第 N路光纤。
[0006] 优选地, 所述种子源采用波长为 1550纳米的激光器。
[0007] 优选地, 所述光纤放大器内设有惨稀土元素。
[0008] 本发明还提供一种阵列式光源分光装置的分光方法, 包括如下步骤:
[0009] 第一步: 种子源发出信号光至光纤放大器;
[0010] 第二步: 光纤放大器获得种子源的信号光、 并将种子源的信号光放大和功率增 大;
[0011] 第三步: 光纤放大器将种子源的信号光输出至光分路器; [0012] 第四步: 光分路器将种子源的信号光分成 N路输出。
[0013] 本发明还提供一种阵列式光源分光装置, 其包括: 输入信号光的种子源、 与该 种子源连接的光分路器、 以及与该光分路器连接的 N个光纤分路器, N为自然数 ; 其中, 所述 N个光纤分路器将所述种子源的信号光分成 N路并进行输出。
[0014] 优选地, 所述 N个光分路器分别为并列排列的第 1个光纤放大器、 第 2个光纤放 大器、 第 3个光纤放大器、 ......、 第 N个光纤放大器。
[0015] 优选地, 所述种子源采用波长为 1550纳米的激光器。
[0016] 优选地, 所述 N个光纤放大器内均设有惨稀土元素。
[0017] 本发明还提供一种阵列式光源分光装置的分光方法, 包括如下步骤:
[0018] 第一步: 种子源发出信号光至光分路器;
[0019] 第二步: 光分路器获得种子源的信号光、 并将种子源分成 N路;
[0020] 第三步: 由光分路器分成的 N路信号光依序进入第 1个光纤放大器、 第 2个光纤 放大器、 第 3个光纤放大器、 ......、 第 N个光纤放大器;
[0021] 第四步: 第 1个光纤放大器、 第 2个光纤放大器、 第 3个光纤放大器、 ......、 第 N 个光纤放大器均将种子源的信号光放大和功率增大、 并分别输出种子源的信号 光。
发明的有益效果
有益效果
[0022] 本发明种子源的信号光通过光分路器就变成了多路信号光输出再通过每天支路 的放大器将功率放大就变成了多路信号光输出; 1550纳米激光的重复频率可以 达到兆赫兹, 而且该激光具有较高的水吸收系数, 当该波段激光辐射人眼吋, 对人眼的损伤阈值较高, 因而该波段激光具有人眼安全特性; 本发明光源可采 用同步工作方式, 在自动驾驶和 3D扫描等领域具备广阔的应用前景。
对附图的简要说明
附图说明
[0023] 图 1为本发明阵列式光源分光装置的第一实施例的结构示意图;
[0024] 图 2为本发明阵列式光源分光装置的第一实施例的结构示意图。 实施该发明的最佳实施例
本发明的最佳实施方式
[0025] 具体实施方式
[0026] 如图 1所示为本发明阵列式光源分光装置的第一实施例的结构示意图, 本发明 阵列式光源分光装置, 本分光装置包括作为输入信号光的种子源 10、 与该种子 源 10连接的光纤放大器 20、 以及与该光纤放大器 20连接的光分路器 30, 光分路 器 30设有 N路光纤 ,Ν为自然数。
[0027] Ν路光纤分别为并列排列的第 1路光纤、 第 2路光纤、 第 3路光纤、 ......、 第 Ν路 光纤。
[0028] 其中, 种子源 10采用波长为 1550纳米的激光器。 光纤放大器 20内设有惨稀土元 素, 即: 光纤放大器 20内的惨稀土元素实现 1550纳米信号光放大。 光分路器 30 将信号光分成多路 (1、 2、 3、 ......、 Ν) 进行输出, 实现多路输出信号光同步 工作的方式。
[0029] 种子源 10作为 1550纳米激光, 其重复频率可以达到兆赫兹, 而且该激光具有较 高的水吸收系数, 当该波段激光辐射人眼吋, 对人眼的损伤阈值较高, 因而该 波段激光具有人眼安全特性。
[0030] 阵列式激光雷达分光装置的分光方法, 包括如下步骤:
[0031] 第一步: 种子源 10发出波长 1550纳米的信号光至光纤放大器 20;
[0032] 第二步: 光纤放大器 20获得种子源 10的信号光、 并将种子源 10的信号光放大和 功率增大;
[0033] 第三步: 光纤放大器 20将种子源 10的信号光输出至光分路器 30;
[0034] 第四步: 光分路器 30将种子源 10的信号光分成 Ν路输出。
[0035] 本发明种子源 10作为产生连续或脉冲信号光的光源, 种子源 10的输出端与光纤 放大器 20的输入端通过光纤熔接在一起, 种子源 10发出的信号光通过光纤放大 器 20后, 获得增益放大, 光功率增加, 光纤放大器 20的输出端与光分路器 30的 输入端通过光纤熔接, 光分路器 30设有 Ν条支路, 每条支路以光纤的形式作为输 出。 这样种子源 10的信号光通过光纤放大器 20将功率放大后再通过光分路器 30 就变成了多路信号光输出。 [0036] 如图 2所示为本发明阵列式光源分光装置的第二实施例的结构示意图, 本发明 阵列式光源分光装置, 本分光装置包括作为输入信号光的种子源 11、 与该种子 源 11连接的光分路器 21、 以及与光分路器 21连接的 N个光纤分路器 3N, N个光分 路器 3N分别为并列排列的第 1个光纤放大器 31、 第 2个光纤放大器 32、 第 3个光纤 放大器 33、 ......、 第 N个光纤放大器 3N。
[0037] 种子源 11作为 1550纳米激光, 其重复频率可以达到兆赫兹, 而且该激光具有较 高的水吸收系数, 当该波段激光辐射人眼吋, 对人眼的损伤阈值较高, 因而该 波段激光具有人眼安全特性。
[0038] 种子源 11直接通过光分路器 21将信号光分成多路, 再通过多个惨稀土元素的光 纤放大光路 3N实现 1550纳米信号光放大, 得到多路信号同步工作。
[0039] 阵列式激光雷达分光装置的分光方法, 包括如下步骤:
[0040] 第一步: 种子源 11发出波长 1550纳米的信号光至光分路器 21 ;
[0041] 第二步: 光分路器 21获得种子源 11的信号光、 并将种子源 11分成 N路;
[0042] 第三步: 由光分路器 21分成的 N路信号光依序进入第 1个光纤放大器 31、 第 2个 光纤放大器 32、 第 3个光纤放大器 33、 ......、 第 N个光纤放大器 3N;
[0043] 第四步: 第 1个光纤放大器 31、 第 2个光纤放大器 32、 第 3个光纤放大器 33、 ...
…、 第 N个光纤放大器 3N均将种子源 11的信号光放大和功率增大、 并分别输出种 子源 11的信号光。
[0044] 种子源 11作为产生连续或脉冲信号光的光源, 种子源 11的输出端与光分路器 21 的输入端通过光纤熔接在一起; 光分路器 21有 N条支路, 每条支路以光纤的形式 作为输出, 每条支路的信号光通过光纤放大器 3N后, 获得增益放大, 光功率增 加。
[0045] 本发明种子源的信号光通过光分路器就变成了多路信号光输出再通过每天支路 的放大器将功率放大就变成了多路信号光输出; 1550纳米激光的重复频率可以 达到兆赫兹, 而且该激光具有较高的水吸收系数, 当该波段激光辐射人眼吋, 对人眼的损伤阈值较高, 因而该波段激光具有人眼安全特性; 本发明光源可采 用同步工作方式, 在自动驾驶和 3D扫描等领域具备广阔的应用前景。
[0046] 以上详细描述了本发明的优选实施方式, 但是本发明并不限于上述实施方式中 的具体细节, 在本发明的技术构思范围内, 可以对本发明的技术方案进行多种 等同变换, 这些等同变换均属于本发明的保护范围。

Claims

权利要求书
[权利要求 1] 一种阵列式光源分光装置, 其特征在于, 其包括: 输入信号光的种子 源、 与该种子源连接的光纤放大器、 以及与该光纤放大器连接的光分 路器, 所述光分路器设有 N路光纤, N为自然数; 其中, 所述光分路 器将所述种子源的信号光分成 N路并进行输出。
[权利要求 2] 根据权利要求 1所述的阵列式光源分光装置, 其特征在于: 所述 N路 光纤分别为并列排列的第 1路光纤、 第 2路光纤、 第 3路光纤、 ......、 第 N路光纤。
[权利要求 3] 根据权利要求 1或 2所述的阵列式光源分光装置, 其特征在于: 所述种 子源采用波长为 1550纳米的激光器。
[权利要求 4] 根据权利要求 1或 2所述的阵列式光源分光装置, 其特征在于: 所述光 纤放大器内设有惨稀土元素。
[权利要求 5] 根据权利要求 1-4任一所述的阵列式光源分光装置的分光方法, 其特 征在于: 包括如下步骤:
第一步: 种子源发出信号光至光纤放大器;
第二步: 光纤放大器获得种子源的信号光、 并将种子源的信号光放大 和功率增大;
第三步: 光纤放大器将种子源的信号光输出至光分路器;
第四步: 光分路器将种子源的信号光分成 N路输出。
[权利要求 6] —种阵列式光源分光装置, 其特征在于, 其包括: 输入信号光的种子 源、 与该种子源连接的光分路器、 以及与该光分路器连接的 N个光纤 分路器, N为自然数; 其中, 所述 N个光纤分路器将所述种子源的信 号光分成 N路并进行输出。
[权利要求 7] 根据权利要求 1所述的阵列式光源分光装置, 其特征在于: 所述 N个 光分路器分别为并列排列的第 1个光纤放大器、 第 2个光纤放大器、 第
3个光纤放大器、 ......、 第 N个光纤放大器。
[权利要求 8] 根据权利要求 6或 7所述的阵列式光源分光装置, 其特征在于: 所述种 子源采用波长为 1550纳米的激光器。
[权利要求 9] 根据权利要求 6或 7所述的阵列式光源分光装置, 其特征在于: 所述 N 个光纤放大器内均设有惨稀土元素。
[权利要求 10] 根据权利要求 6-9任一所述的阵列式光源分光装置的分光方法, 其特 征在于: 包括如下步骤:
第一步: 种子源发出信号光至光分路器;
第二步: 光分路器获得种子源的信号光、 并将种子源分成 N路; 第三步: 由光分路器分成的 N路信号光依序进入第 1个光纤放大器、 第 2个光纤放大器、 第 3个光纤放大器、 ......、 第 N个光纤放大器; 第四步: 第 1个光纤放大器、 第 2个光纤放大器、 第 3个光纤放大器、 ......、 第 N个光纤放大器均将种子源的信号光放大和功率增大、 并分 别输出种子源的信号光。
PCT/CN2017/109281 2017-03-24 2017-11-03 阵列式激光雷达分光装置及其分光方法 WO2018171205A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2017404912A AU2017404912A1 (en) 2017-03-24 2017-11-03 Array laser radar light splitting device and light splitting method thereof
EP17901832.0A EP3605171A4 (en) 2017-03-24 2017-11-03 NETWORK RADAR LASER LIGHT DIVISION DEVICE AND LIGHT DIVISION METHOD
CA3056166A CA3056166C (en) 2017-03-24 2017-11-03 Array-type light source light-splitting device, and light-splitting method thereof
US16/556,256 US20190384001A1 (en) 2017-03-24 2019-08-30 Array-type light source light-splitting device, and light-splitting method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710184407.8 2017-03-24
CN201710184407.8A CN107037533A (zh) 2017-03-24 2017-03-24 阵列式激光雷达分光装置及其分光方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/556,256 Continuation US20190384001A1 (en) 2017-03-24 2019-08-30 Array-type light source light-splitting device, and light-splitting method thereof

Publications (1)

Publication Number Publication Date
WO2018171205A1 true WO2018171205A1 (zh) 2018-09-27

Family

ID=59534733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109281 WO2018171205A1 (zh) 2017-03-24 2017-11-03 阵列式激光雷达分光装置及其分光方法

Country Status (6)

Country Link
US (1) US20190384001A1 (zh)
EP (1) EP3605171A4 (zh)
CN (1) CN107037533A (zh)
AU (2) AU2017404912A1 (zh)
CA (1) CA3056166C (zh)
WO (1) WO2018171205A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107037533A (zh) * 2017-03-24 2017-08-11 昂纳信息技术(深圳)有限公司 阵列式激光雷达分光装置及其分光方法
CN108387909A (zh) * 2018-01-23 2018-08-10 国耀量子雷达科技有限公司 基于激光雷达网的区域环境监测系统
CN108562888A (zh) * 2018-06-14 2018-09-21 昂纳信息技术(深圳)有限公司 一种激光雷达的固态光源以及一种激光雷达
CN109061657A (zh) * 2018-08-13 2018-12-21 昂纳信息技术(深圳)有限公司 一种激光雷达的固态光源以及一种激光雷达

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100110535A1 (en) * 2008-10-31 2010-05-06 Pyrophotonics Lasers Inc. Laser systems with doped fiber components
CN203012249U (zh) * 2012-12-04 2013-06-19 广东汉唐量子光电科技有限公司 脉冲激光器偏振合束装置
CN203242910U (zh) * 2013-03-06 2013-10-16 昂纳信息技术(深圳)有限公司 一种多端输出的大功率光纤激光器
CN203690697U (zh) * 2014-02-28 2014-07-02 福州高意光学有限公司 一种高功率光纤激光器
CN204065562U (zh) * 2014-09-26 2014-12-31 中国工程物理研究院流体物理研究所 一种基于自适应偏振与相位控制的光纤激光阵列组束系统
CN107037533A (zh) * 2017-03-24 2017-08-11 昂纳信息技术(深圳)有限公司 阵列式激光雷达分光装置及其分光方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5832006A (en) * 1997-02-13 1998-11-03 Mcdonnell Douglas Corporation Phased array Raman laser amplifier and operating method therefor
US20090285247A1 (en) * 2006-07-05 2009-11-19 Yoav Sintov Optical apparatus comprising a pump-light-guiding fiber
CN102244362A (zh) * 2011-06-14 2011-11-16 西北大学 三级多路主振荡—功率放大相干合成万瓦级光纤激光器
CN106961065A (zh) * 2017-03-24 2017-07-18 昂纳信息技术(深圳)有限公司 掺杂光纤放大器以及工作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100110535A1 (en) * 2008-10-31 2010-05-06 Pyrophotonics Lasers Inc. Laser systems with doped fiber components
CN203012249U (zh) * 2012-12-04 2013-06-19 广东汉唐量子光电科技有限公司 脉冲激光器偏振合束装置
CN203242910U (zh) * 2013-03-06 2013-10-16 昂纳信息技术(深圳)有限公司 一种多端输出的大功率光纤激光器
CN203690697U (zh) * 2014-02-28 2014-07-02 福州高意光学有限公司 一种高功率光纤激光器
CN204065562U (zh) * 2014-09-26 2014-12-31 中国工程物理研究院流体物理研究所 一种基于自适应偏振与相位控制的光纤激光阵列组束系统
CN107037533A (zh) * 2017-03-24 2017-08-11 昂纳信息技术(深圳)有限公司 阵列式激光雷达分光装置及其分光方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605171A4 *

Also Published As

Publication number Publication date
CA3056166C (en) 2021-12-14
AU2017101905A4 (en) 2021-07-29
CN107037533A (zh) 2017-08-11
US20190384001A1 (en) 2019-12-19
EP3605171A4 (en) 2020-03-04
AU2017404912A1 (en) 2019-10-24
AU2017404912A2 (en) 2021-05-20
CA3056166A1 (en) 2018-09-27
EP3605171A1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
WO2018171205A1 (zh) 阵列式激光雷达分光装置及其分光方法
JP5738436B2 (ja) レーザレーダ装置
US7502395B2 (en) Pulsed coherent fiber array and method
US11424591B2 (en) Laser device and method for controlling waveform
EP2805179B1 (en) Optical system for range finding
JP6140216B2 (ja) 光増幅器
WO2007124213A3 (en) Laser apparatus having multiple synchronous amplifiers tied to one master oscillator
CN108494115B (zh) 一种激光无线传能装置及方法
GB2607534A8 (en) Reconfigurable spectroscopy system
CN108448374B (zh) 基于空芯光纤空间相干组束的周期量级激光系统
US7848014B2 (en) Erbium and Erbium/Ytterbium cladding pumped hybrid optical amplifier
WO2006111684A3 (fr) Dispositif de generation d'impulsions laser amplifiees par fibres optiques a couches photoniques
US20180323567A1 (en) Laser beam generation apparatus, laser machining device, and laser machining method
RU2011116919A (ru) Оптическая система для многочастотной лазерной локации и способ ее осуществления
CN112652940B (zh) 一种多路输出的激光器
US10811834B2 (en) Laser beam generation apparatus, laser machining device, and laser machining method
WO2020171865A3 (en) Wavelength-controlled beam stabilizer for spectrally beam combined laser sources
JP2017168742A (ja) レーザー光発生装置
Klenke et al. 170 W multicore fiber based femtosecond CPA system
WO2017090497A1 (en) Laser beam generation apparatus, laser machining device, and laser machining method
WO2022256090A3 (en) Single pump, multiple stage power amplifier in lidar application
Klenke et al. W Multicore Fiber based Femtosecond CPA System
CN114336257A (zh) 全光纤激光相控阵系统的精确相位控制方法
KR20140095949A (ko) 광원 출력 장치 및 그에 따른 광원 출력 방법
CN114754855A (zh) 一种单光源泵浦的动态遥泵分布式光纤振动监测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017404912

Country of ref document: AU

Date of ref document: 20171103

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017901832

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017901832

Country of ref document: EP

Effective date: 20191024