WO2018171183A1 - 基于四模缺陷地式谐振器的三通带滤波结构 - Google Patents

基于四模缺陷地式谐振器的三通带滤波结构 Download PDF

Info

Publication number
WO2018171183A1
WO2018171183A1 PCT/CN2017/107205 CN2017107205W WO2018171183A1 WO 2018171183 A1 WO2018171183 A1 WO 2018171183A1 CN 2017107205 W CN2017107205 W CN 2017107205W WO 2018171183 A1 WO2018171183 A1 WO 2018171183A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot line
line
slot
central axis
mode
Prior art date
Application number
PCT/CN2017/107205
Other languages
English (en)
French (fr)
Inventor
彭彪
邓力
李书芳
张贯京
葛新科
高伟明
张红治
Original Assignee
深圳市景程信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市景程信息科技有限公司 filed Critical 深圳市景程信息科技有限公司
Publication of WO2018171183A1 publication Critical patent/WO2018171183A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20381Special shape resonators

Definitions

  • the present invention relates to the field of radio frequency microwave communication technologies, and in particular, to a three-pass band filtering structure based on a four-mode defect ground resonator.
  • the bandpass filter In modern microwave communication systems, the bandpass filter (BPF) needs to have good selectivity, out-of-band rejection, wide stopband, and miniaturized structure. Although the conventional multimode BPF based on the loaded resonator has better selectivity, there are many parasitic passbands. Multimode resonators can generate multiple resonant modes through a single resonator. Therefore, designing a microwave device using a multimode resonator can effectively reduce device size.
  • the passband filter of the prior art bandpass filter is not highly selective and cannot fully meet the requirements of modern microwave communication systems. Although multimode resonators have been proposed, they are only used in the design of wideband filters.
  • a primary object of the present invention is to provide a three-pass band filter structure based on a four-mode defect ground resonator, which is not only simple to process, low in cost, but also produces three basic transmission passbands with high passband selectivity. There is no need to add additional resonators, which reduces the size of the structure.
  • the present invention provides a three-pass band filter structure based on a four-mode defect ground resonator, comprising a PCB dielectric plate, a four-mode defect ground resonator, and two microstrip feed lines,
  • the four-mode defective ground resonator is etched on one surface of the PCB dielectric board, and the two microstrip feed lines are respectively disposed on the other surface of the PCB dielectric board, and the shape of the four-mode defective ground resonator is related to the four-mode defect
  • the first central axis of the resonator is symmetrical and symmetrical about a second central axis of the four-mode defective ground resonator, the first central axis being perpendicular to the second central axis;
  • the four-mode defect-type resonator includes a first resonating unit and four second resonating units, and the first resonating unit is composed of a first slot line, a second slot line, and
  • one ends of the four second resonating units are respectively connected to the four ends of the first resonating unit, and each of the second resonating units extends toward the first central axis and is bent toward the center of the four-mode defective ground resonator Folding; two second resonating units located on the same side of the first central axis are spaced apart;
  • the front ends of the two microstrip feeders respectively extend to the edge of the PCB dielectric board to form two ports, and the ends of the two microstrip feed lines are respectively from the two fourth slot lines on the same side of the first slot line to the first center
  • the axis extends and terminates near the closed end of the second resonant unit, the two microstrip feed lines are symmetric about the first central axis, the spacing between the ends of the two microstrip feed lines is close, and the two microstrip feed lines form a source-loaded feed structure
  • the feed structure forms four transmission zeros to form a three-pass band filtering structure.
  • one end of the first slot line is connected to a middle portion of the second slot line, and the other end of the first slot line is connected to a middle portion of the third slot line, and the second slot line and the third slot line are parallel and both
  • the first slot line is perpendicular; one end of the fourth slot line is connected to the other end of the second slot line or the third slot line, and extends toward the first central axis, and the other end of the fourth slot line is connected to one end of the fifth slot line
  • the other end of the fifth slot line is connected to one end of the sixth slot line and extends toward the second central axis.
  • the fourth slot line and the sixth slot line are parallel and perpendicular to the fifth slot line.
  • a part of the first slot line, a second slot line or a third slot line on a side of the first slot line, and a fourth slot in the same second resonating unit on a side of the first slot line
  • the PCB dielectric plate surrounded by the wire, the fifth slot line and the sixth slot line forms a first plate, the first plate has an L shape, and the number of the first plates is two, and the two first plates are about
  • the first central axis is axisymmetric.
  • a part of the first slot line, a second slot line or a third slot line located on the other side of the first slot line, and a second slot unit located in the same second resonating unit on the other side of the first slot line The PCB dielectric plate surrounded by the four slot lines, the fifth slot line and the sixth slot line forms a second plate, the second plate has an L shape, the second plate has two, and the second plate Axis symmetrical about the first central axis.
  • the length of the first slot line is! ⁇
  • a part of the PCB dielectric board between the first slot line and the sixth slot line forms a first inductance L s , and the number of the first inductors L s is four, located on the same side of the first slot line.
  • the PCB dielectric plate between the two fifth slot lines on the same side of the first slot line forms a second inductance L P , and the number of the second inductor L ⁇ scoop is two, which is formed on the same side of the first slot line.
  • the second inductor L PCB dielectric plate communicates with the two PCB dielectric plates respectively forming the two first inductors L s and forms a T-shaped shape.
  • the PCB dielectric board on the periphery of the four-mode defective ground resonator forms a radio frequency ground plane
  • the PCB dielectric board forming the RF ground plane is connected with the second inductor L PCB dielectric board, and is located at the first central axis.
  • the first plate and the second plate of the side form a first capacitance C M
  • a second capacitance C c is formed between the first or second plate and the ground plane of the metal.
  • the PCB dielectric plate between the end spacings of the two microstrip feed lines forms a source-carrying coupling capacitor Cs, and a PCB dielectric plate between each microstrip feed line and the four-mode defect ground resonator
  • the feed coupling capacitor CP is formed, and the number of the feed coupling capacitors C P is two.
  • the PCB dielectric plates located on each of the microstrip feed lines and the lower side of the first slot line form two first inductors L PCB dielectric plates respectively. Connected.
  • the two microstrip feeders respectively correspond to positions of two fourth slot lines on the same side of the first slot line and are symmetric about the first central axis, and the width of the microstrip feed line is larger than that of the fourth slot line.
  • the width is wide, the end of the microstrip feed line ends near the fifth slot line, and the distance from the edge of each microstrip feed line near the second central axis to the edge of the fourth slot line away from the second central axis is dl Mn ⁇
  • the spacing d 2 between the ends of the two microstrip feeders is 1.6 mm, and the width W of each microstrip feed line. Both are 2.34mm, and the impedance of each microstrip feeder is 50 ⁇ .
  • the three-passband filter structure based on the four-mode defect ground resonator is realized by the present invention. It is not only simple to process, low in cost, but also can generate three basic transmission passbands to form a three-pass filter structure, so it is widely used in broadband and multi-band RF microwave communication. Since the four-mode defective ground resonator is obtained by the groove on the feed level surface, there is no need to add an additional resonator, and the function of reducing the size of the three-pass band filter structure based on the four-mode defect-type resonator of the present invention.
  • FIG. 1 is a schematic overall structural view of a three-pass band filter structure based on a four-mode defect ground resonator according to the present invention
  • FIG. 2 is a four-mode defect ground resonator in the three-pass band filter structure of the present invention
  • FIG. 3 is a structural diagram of a first resonating unit in a four-mode defective ground resonator
  • FIG. 4 is a structural diagram of a second resonance unit in a four-mode defective ground resonator
  • FIG. 5 is a schematic diagram showing the structure of two microstrip feed lines etched on the surface of a PCB dielectric board in the three-pass band filter structure of the present invention
  • FIG. 6 is an equivalent circuit model of a three-pass band filter structure based on a four-mode defect ground resonator of the present invention
  • FIG. 7 is a three-pass band filter structure of a four-mode defect-type ground resonator according to the present invention
  • FIG. 8 is a schematic diagram of PCB simulation and circuit simulation results of the three-pass band filter structure of the four-mode defect ground resonator according to the present invention
  • FIG. 9 is a schematic diagram showing the influence of the distance d2 between two microstrip feed lines on four transmission zero points TZ1, ⁇ 2, ⁇ 3, ⁇ 4;
  • FIG. 12 is a simplified circuit model of a three-pass band filter structure and its corresponding parity mode equivalent circuit diagram.
  • FIG. 1 is a schematic diagram showing the overall structure of a three-pass band filter structure based on a four-mode defect ground resonator of the present invention.
  • the three-pass band filter structure proposed by the present invention comprises a quad-mode defective ground resonator (QMDGSR) 1, a radio frequency ground plane 2, and two microstrip feed lines 3.
  • QMDGSR quad-mode defective ground resonator
  • the four-mode defective ground resonator 1 is etched on a surface of the PCB dielectric board 10 (for example, the lower surface, as shown in FIG.
  • the PCB dielectric board 10 is a metal dielectric board having a thickness of 0.79 mm and a dielectric constant of 2.34.
  • FIG. 2 is a structural schematic view of a four-mode defect ground resonator etched on a bottom surface of a PCB dielectric board.
  • the four-mode defective ground resonator 1 has a structure in which both the upper and lower sides and the left and right sides are symmetrical, so that the four-mode defective ground resonator 1 has four resonance modes, resonance of each resonance mode.
  • the frequency has good adjustability.
  • the shape and structure of the four-mode defective ground resonator 1 are specifically described as follows: The shape of the four-mode defective ground resonator 1 is symmetrical with respect to the first central axis ab of the four-mode defective ground resonator 1, and The second central axis cd of the four-mode defective ground resonator 1 is symmetrical, and the first central axis ab and the second central axis cd are perpendicular to each other.
  • the four-mode defective ground resonator 1 includes a first resonating unit 11 and four second resonating units 12.
  • the shape of the first resonating unit 11 is H-shaped or quasi-H-shaped, and the quasi-H-shape defined in the embodiment is a shape that approximates an H-shape as a whole.
  • the shape of the second resonating unit 12 is L-shaped, quasi-L-shaped, U-shaped, or quasi-U-shaped.
  • the quasi-L-shape defined in this embodiment is approximately L-shaped as a whole, for example, a free end of the L-shape (ie, The one end that is not connected to the first resonating unit 11 can bend a smaller section whose length is shorter with respect to the length of the side where the free end is located.
  • the quasi-U shape defined in the present embodiment is a free end that is approximately similar to the U shape as a whole (ie, an end that is not connected to the first resonating unit 11) and can be bent at least once again, at the bent end after each bending
  • the length is shorter relative to the length of the side on which the free end is located, so that the shape is still approximately U-shaped as a whole, without significantly affecting the performance of the second resonating unit 12.
  • One ends of the four second resonating units 12 are respectively connected to the four ends of the first resonating unit 11 .
  • Each of the second resonating units 12 extends toward the first central axis ab and is bent toward the center of the four-mode defective ground resonator 1, the number of times of the bending being two.
  • L-shaped, quasi-L-shaped, U of four second resonating units 12 The shaped or quasi-U-shaped openings are all directed toward the periphery of the four-mode defective ground resonator 1.
  • the two second resonating units 12 located on the same side of the first central axis ab or the second central axis cd are spaced apart.
  • FIG. 3 is a structural diagram of a first resonating unit in a four-mode defective ground resonator.
  • the first resonating unit 11 is composed of a first slot line 111, a second slot line 112, and a third slot line 113.
  • One end of the first slot line 111 is connected to the middle of the second slot line 112, and the other end of the first slot line 111 is connected to the middle of the third slot line 113.
  • the second slot line 112 and the third slot line 113 are parallel and both perpendicular to the first slot line 111. Therefore, the first slot line 111, the second slot line 112, and the third slot line 113 constitute an H-shape or a quasi-H-shape.
  • FIG. 4 is a structural diagram of a second resonance unit in a four-mode defective ground resonator.
  • the second resonating unit 12 when the second resonating unit 12 is U-shaped or quasi-U-shaped, the second resonating unit 12 is constituted by the fourth slot line 24, the fifth slot line 125, and the sixth slot line 126.
  • One end of the fourth slot line 124 is connected to the other end of the second slot line 112 or the third slot line 113, and extends toward the first central axis toward the ab, and the other end of the fourth slot line 124 is connected to one end of the fifth slot line 125.
  • the other end of the fifth slot line 125 is connected to one end of the sixth slot line 126 and extends toward the second central axis cd.
  • the fourth slot line 124 and the sixth slot line 126 are parallel and perpendicular to the fifth slot line 125.
  • the length of the sixth slot line 126 is shorter than the length of the fourth slot line 224. Therefore, the fourth groove line 124, the fifth groove line 125, and the sixth groove line 126 constitute a U-shape or a quasi-U shape.
  • the second resonating unit 12 is L-shaped and quasi-L-shaped, the second resonating unit 12 can also form an L-shaped or quasi-L-shaped structure through the corresponding groove lines.
  • first slot line 111 a portion of the first slot line 111, a second slot line 112 or a third slot line 113 on the side of the first slot line 111, and a second portion on the side of the first slot line 111.
  • the PCB dielectric plates surrounded by the fourth slot line 124, the fifth slot line 125, and the sixth slot line 126 in the resonance unit 12 form a first plate 31 having an L-shape.
  • the number of the first plates 31 is two (the PCB dielectric plates surrounded by the second groove lines 112 and the PCB dielectric plates surrounded by the third groove lines 113 respectively), and the two first plates 31 are related to the first
  • the central axis ab is axisymmetric.
  • the PCB dielectric plate surrounded by the line 124, the fifth slot line 125, and the sixth slot line 126 forms a second plate 32, and the second plate 32 has an L-shape.
  • the number of the second plates 32 is two (the PCB dielectric plate surrounded by the second groove lines 112 and the PCB dielectric plate surrounded by the third groove lines 113 respectively), and the two second plates 32 are related to the first Center axis ab axis symmetry
  • the two slot lines 112 and the third slot line 113 have the same length, both of which are L 2
  • FIG. 5 is a schematic structural view of two microstrip feed lines etched on the upper surface of a PCB dielectric plate in the three-passband filter structure of the present invention. Since the two microstrip feeders 3 are respectively disposed on the other surface of the PCB dielectric board 10 with respect to the four-mode defective ground resonator 1, the two microstrip feeders 3 are on the other surface of the PCB dielectric board 10. The four-mode defective ground resonator 1 is fed.
  • the front ends of the two microstrip feeders 3 respectively extend to the edges of the PCB dielectric board 10 to form two ports (the first port P1 and the second port P 2), and the ends of the microstrip feeders 3 are respectively located at the
  • the two fourth slot lines 124 on the same side of a slot line 111 extend toward the first central axis ab and terminate in an L-shaped, quasi-L-shaped, U-shaped or quasi-U-shaped closed portion adjacent to the second resonating unit 12, two micros
  • the belt feeder 3 is symmetrical about the first central axis ab.
  • the two microstrip feeders 3 are located on the two fourth slot lines 124 on the same upper side of the first slot line 111, or two on the same lower side of the first slot line 11 11 .
  • the two microstrip feed lines 3 correspond to the positions of the two fourth groove lines 124 on the same side of the first groove line 111, and are symmetric with respect to the first central axis ab.
  • the width of the microstrip feed line 3 is wider than the width of the fourth slot line 124 such that the microstrip feed line 3 covers a portion of the fourth slot line 124.
  • the width W0 of each microstrip feed line 3 is preferably 2.34 mm, and the other end of the microstrip feed line 3 terminates near the fifth slot line 125 without contacting the fifth slot line 125.
  • Table 1 is a three-pass band filter structure size parameter based on the four-mode defect ground resonator of the present invention: Table 1: Three-pass band filter structure size parameters based on four-mode defect ground resonator
  • the source-loaded feed structure is formed. . Due to the formation of the source-load coupling, the feed structure is capable of producing four transmission zeros, thereby forming the three-pass band filtering structure of the present invention. It should be noted that as long as the distance between the ends of the two microstrip feeders 3 is less than 5 mm, a three-pass band characteristic can be formed.
  • the specific embodiment d 2 of the present invention is preferably 1.6 mm, and a better three-pass belt characteristic can be obtained.
  • FIG. 6 is an equivalent circuit model of a three-pass band filter structure based on a four-mode defect ground resonator of the present invention.
  • the present invention adopts the parity film theory to extract an equivalent circuit model for the four-mode defective ground resonator 1, and the specific equivalent circuit model of the three-pass filter structure is described as follows:
  • a portion of the PCB dielectric plate between the first slot line 111 and the sixth slot line 126 forms a first inductance L s , and since there are four second resonating units 12, the first inductance! The number of ⁇ is four.
  • Two PCB dielectric plates respectively forming two first inductances L s on the same side of the first slot line 111 are in communication.
  • the first inductive L-PCB dielectric plate on the same side of the first central axis ab is in communication with the PCB dielectric plate forming the first plate.
  • the first inductor L ⁇ PCB dielectric plate on the same side of the first central axis ab is in communication with the PCB dielectric plate forming the second plate 32.
  • the PCB dielectric plate between the two fifth slot lines 125 on the same side of the first slot line 111 forms a second inductance L P .
  • the number of the second inductors L P is two.
  • the PCB dielectric plates forming the second inductance L P on the same side of the first slot line 111 communicate with the two PCB dielectric plates respectively forming the two first inductances L s and form a T-shape.
  • the PCB dielectric plate on the periphery of the four-mode defective ground resonator 1 forms a radio frequency ground plane 2, and the PCB dielectric plate forming the RF ground plane 2 is in communication with the second inductor L PCB dielectric plate.
  • the first plate 31 and the second plate 32 on the same side of the first central axis ab form a first capacitance C M , and a second capacitance C is formed between the first plate 31 or the second plate 32 and the metal ground plane 11 c .
  • the PCB dielectric plate between the end of the two microstrip feed lines 3 forms a source-carrying coupling capacitor C s
  • a PCB dielectric plate between each of the microstrip feed lines 3 and the four-mode defect ground resonator (QMDGSR) 1 A feed coupling capacitor C P is formed . Since there are two microstrip feed lines 3, two feed coupling capacitors C P are formed .
  • the PCB dielectric plates located on each of the microstrip feed lines 3 and the lower sides of the first slot lines 111 respectively form two first inductances! ⁇ Two PCB dielectric plates are connected.
  • FIG. 7 it is a parity mode equivalent circuit of a three-pass band filter structure based on a three-pass band filter structure of the present invention.
  • Figure 7 (a) is the odd-mode equivalent circuit of the three-pass filter structure
  • Figure 7 (b) is the even-mode equivalent circuit of the three-pass filter structure.
  • the first central axis ab is equivalent to a short circuit in the odd mode, and can be regarded as a virtual ground plane.
  • the first central axis ab corresponds to the short-circuit ⁇
  • the current does not pass through the second inductance L P
  • the second inductance L P is invalid.
  • the first central axis ab corresponds to a bypass in the even mode.
  • the PCB dielectric plate forming the second inductance L P is equivalent to being split into two halves. Since the thickness of the metal about the size of the inductor and therefore the first center axis ab twice the size of the passage inch Jian inductance L P of a second, i.e., this second inductance L P inch size is 2L P. Similarly, the second central axis cd short circuit is equivalent to a short circuit in the odd mode and can be regarded as a virtual ground plane. When the second central axis cd is short-circuited, the distance between the two stages of the first capacitor C M is equivalent to a half cut.
  • the distance between the capacitor plates and the size, and therefore corresponds to the size of the second center axis cd capacitance C M of the first short-inch size original is twice the first capacitance C M, i.e. this first inch
  • the size of the capacitor C M is 2C M .
  • FIG. 8 is a schematic diagram of PC B simulation and circuit simulation results of a three-pass band filter structure based on a four-mode defect ground resonator 1 according to the present invention.
  • the reflection coefficient of the two ports , ⁇ 2 , and 8 21 represents the transmission coefficient between the two ports 1 ⁇ and 1 5 2 . It can be seen from FIG. 8 that the PCB simulation and the circuit simulation have a high degree of coincidence, and therefore the equivalent circuit model of the three-pass filter structure of the present invention has high accuracy. Since the feed structure adopts the source-to-load coupling mode, the three-pass filter structure generates four transmission zeros, namely ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, thereby forming three passbands.
  • FIG. 9 is a spacing d2 between two microstrip feeders 3 for four transmission zeros ⁇ 1, ⁇ 2, ⁇ 3.
  • the spacing d2 between the two microstrip feed lines 3 may be 0-5 mm, and d2 in this embodiment uses 1.8 mm, 0.7 mm, and 0.2 mm to verify four transmission zero points T ⁇ 1 , ⁇ ⁇ 2 , respectively. , ⁇ 3, ⁇ 4 influence. It can be seen from Fig.
  • the present invention analyzes the equivalent circuit of the three-pass band filter structure using the odd-even mode theory.
  • the four-mode defective ground resonator 1 has a left-right axisymmetric feed structure and is symmetric with respect to the first central axis ab, so that the even-mode equivalent circuit model of the four-mode defective ground resonator 1 can be obtained.
  • 10 (a) is the odd-mode equivalent circuit model of the four-mode defective ground resonator 1
  • 10 (b) is the even-mode equivalent circuit model of the four-mode defective ground resonator 1.
  • the Y in t table even mode admittance represents an odd mode admittance
  • the resonant frequency f TZ2 of the TZ2 and the resonant frequency f TZ3 of the TZ3 can be obtained, as in the formula (3) Show.
  • the circuit model of the three-pass filter structure can be simplified as shown in Fig. 12 (a), and the corresponding parity mode equivalent circuit is shown in Fig. 12 (b). This odd-even mode equivalent circuit is obtained.
  • you can solve the equation Y ine3 Y in . 3 to obtain the resonant frequency f TZ1 of the TZ1 and the resonant frequency f TZ4 of TZ4 , as shown by the formula (4):
  • Table 2 lists the calculated values of f ⁇ 1 and f ⁇ 4 under different capacitance values C s and the simulated values, and the calculation results and simulation results can be seen. It has a high degree of coincidence, thus verifying the accuracy of f TZ1 and f TZ4 .
  • the three-passband filter structure based on the four-mode defect ground resonator of the invention not only has simple processing and low cost, but also can generate three basic transmission passbands, form a three-passband filter structure, and has a high passband. Selective, therefore widely used in broadband and multi-band RF microwave communications. Since the four-mode defective ground resonator is obtained by the groove on the feed level surface, there is no need to add an additional resonator, and the function of reducing the size of the three-way band filter structure based on the four-mode defect-type resonator of the present invention.
  • the three-passband filter structure based on the four-mode defect ground resonator of the present invention realizes not only simple processing and low cost, but also three basic transmission passbands, and a three-passband filter structure is formed. Therefore, it is widely used in broadband and multi-band RF microwave communication. Since the four-mode defective ground resonator is obtained by the groove on the feed level surface, there is no need to add an additional resonator, and the function of reducing the size of the three-way band filter structure based on the four-mode defect-type resonator of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开一种基于四模缺陷地式谐振器的三通带滤波结构,包括PCB介质板、四模缺陷地式谐振器及两根微带馈线;四模缺陷地式谐振器包括第一谐振单元和四个第二谐振单元;四个第二谐振单元的一端分别连接第一谐振单元的四端;微带馈线的前端分别延伸到PCB介质板的边缘,两根微带馈线的末端分别从位于第一槽线同侧的两条第四槽线向第一中心轴线延伸并终止靠近第二谐振单元的闭口处,两根微带馈线关于第一中心轴线对称,两根微带馈线末端间距靠近,从而形成源载耦合的馈电结构,该馈电结构形成四个传输零点形成三通带滤波结构。本发明的三通带滤波结构产生三个基本传输通带,具有较高的通带选择性,不需要增加额外谐振体,缩小了结构尺寸。

Description

基于四模缺陷地式谐振器的三通带滤波结构 技术领域
[0001] 本发明涉及射频微波通信技术领域, 尤其涉及一种基于四模缺陷地式谐振器的 三通带滤波结构。
背景技术
[0002] 在现代微波通信系统中, 带通滤波器 (BPF) 需具有良好的选择性, 带外抑制 度, 宽阻带以及小型化结构。 传统的基于加载式谐振器的多模 BPF虽然具有较好 的选择性, 但是存在很多寄生通带。 多模谐振器通过单一谐振体, 可以产生多 个谐振模式, 因此, 运用多模谐振器设计微波器件可以有效减小器件尺寸。 现 有技术中的带通滤波器的通带选择性不高, 不能完全满足现代微波通信系统的 需求。 多模谐振器虽然已经被提出, 但只是运用于宽带滤波器的设计。 而本发 明基于 QMDGSR采用了新的源载耦合馈电方法, 首次提出了基于 QMDGSR的尺 寸较小的三通带滤波结构。 同吋还给出并验证了其等效电路模型, 推导出了该 三通带滤波结构的零点计算方法。
技术问题
[0003] 本发明的主要目的提供一种基于四模缺陷地式谐振器的三通带滤波结构, 不仅 加工简单成本低廉, 而且产生三个基本传输通带, 具有较高的通带选择性, 不 需要增加额外谐振体, 缩小了结构尺寸。
问题的解决方案
技术解决方案
[0004] 为实现上述目的, 本发明提供了一种基于四模缺陷地式谐振器的三通带滤波结 构, 包括 PCB介质板、 四模缺陷地式谐振器以及两根微带馈线, 所述四模缺陷地 式谐振器刻蚀在 PCB介质板的一表面, 两根微带馈线分别设置在 PCB介质板的另 一表面, 所述四模缺陷地式谐振器的形状关于该四模缺陷地式谐振器的第一中 心轴线对称, 并且关于该四模缺陷地式谐振器的第二中心轴线对称, 第一中心 轴线与第二中心轴线相互垂直; [0005] 所述四模缺陷地式谐振器包括第一谐振单元和四个第二谐振单元, 第一谐振单 元由第一槽线、 第二槽线和第三槽线构成, 第二谐振单元由第四槽线、 第五槽 线和第六槽线构成, 其中, 第一谐振单元的形状为 H形、 或者为准 H形, 第二谐 振单元的形状为 L形、 准 L形、 U形、 或者为准 U形; 四个第二谐振单元的一端分 别连接第一谐振单元的四端, 每一个第二谐振单元向第一中心轴线延伸并向四 模缺陷地式谐振器的中心弯折; 位于第一中心轴线同侧的两个第二谐振单元之 间隔有间隔;
[0006] 两根微带馈线的前端分别延伸到 PCB介质板的边缘形成两个端口, 两根微带馈 线的末端分别从位于第一槽线同侧的两条第四槽线向第一中心轴线延伸并终止 靠近第二谐振单元的闭口处, 两根微带馈线关于第一中心轴线对称, 两根微带 馈线末端之间的间距靠近, 两根微带馈线形成源载耦合的馈电结构, 该馈电结 构形成四个传输零点形成三通带滤波结构。
[0007] 优选的, 所述第一槽线的一端连接第二槽线的中部, 第一槽线的另一端连接第 三槽线的中部, 第二槽线和第三槽线平行并均与第一槽线垂直; 第四槽线的一 端连接第二槽线或者第三槽线的另一端, 并向第一中心轴线向第延伸, 第四槽 线的另一端连接第五槽线的一端, 第五槽线的另一端连接第六槽线的一端并向 第二中心轴线延伸, 第四槽线和第六槽线平行并与第五槽线垂直。
[0008] 优选的, 部分所述第一槽线、 位于第一槽线一侧的第二槽线或者第三槽线、 位 于第一槽线一侧的同一第二谐振单元中的第四槽线、 第五槽线和第六槽线包围 的 PCB介质板形成第一极板, 该第一极板的形状为 L形, 第一极板的数量为两个 , 两个第一极板关于第一中心轴线轴对称。
[0009] 优选的, 部分所述第一槽线、 位于第一槽线另一侧的第二槽线或者第三槽线、 位于第一槽线另一侧的同一第二谐振单元中的第四槽线、 第五槽线和第六槽线 包围的 PCB介质板形成第二极板, 第二极板的形状为 L形, 第二极板的数量为两 个, 两个第二极板关于第一中心轴线轴对称。
[0010] 优选的, 所述第一槽线的长度为!^
Figure imgf000004_0001
宽度为 W O Smrn; 第二槽线 和第三槽线的长度均为 L 2=12mm; 第二槽线和第三槽线的宽度均为 W 2=0.3mm ; 第四槽线的长度为 L 3=11.05mm、 宽度为 W 3=0.3mm; 第五槽线的长度为 L 4 =2.8mm、 宽度为 W 3=0.3mm; 第六槽线的长度为 L 5=7.3mm、 宽度为 W 3=0.3mm
; 位于第一槽线同侧的两条第五槽线之间的距离为 S ^O.Smm, 第一槽线与第六 槽线之间的距离为 S 2=2.27mm。
[0011] 优选的, 所述第一槽线和第六槽线之间的部分 PCB介质板形成第一电感 L s, 第 一电感 L s的数量为四个, 位于第一槽线同侧的分别形成两个第一电感 L s 的两个 PCB介质板连通, 位于第一中心轴线同侧的形成第一电感 L PCB介质板 和形成第一极板的 PCB介质板连通, 位于第一中心轴线同侧的形成第一电感 L s 的 PCB介质板和形成第二极板的 PCB介质板连通;
[0012] 位于第一槽线同侧的两条第五槽线之间的 PCB介质板形成第二电感 L P, 第二电 感 L ^勺数量为两个, 位于第一槽线同侧的形成第二电感 L PCB介质板和分别 形成两个第一电感 L s的两个 PCB介质板连通并形成 T形的形状。
[0013] 优选的, 所述四模缺陷地式谐振器外围的 PCB介质板形成射频地平面, 形成射 频地平面的 PCB介质板和形成第二电感 L PCB介质板连通, 位于第一中心轴线 同侧的第一极板和第二极板形成第一电容 C M, 第一极板或者第二极板和金属地 平面之间形成第二电容 C c
[0014] 优选的, 所述两根微带馈线的末端间隔之间的 PCB介质板形成源载耦合电容 C s , 每一根微带馈线与四模缺陷地式谐振器之间的 PCB介质板形成馈电耦合电容 C P , 馈电耦合电容 C P的数量为两个, 位于每一根微带馈线的 PCB介质板与位于第 一槽线下侧的分别形成两个第一电感 L PCB介质板连通。
[0015] 优选的, 所述两根微带馈线分别和第一槽线同侧的两条第四槽线的位置对应且 关于第一中心轴线对称, 微带馈线的宽度比第四槽线的宽度宽, 所述微带馈线 的末端终止于靠近第五槽线处, 每一根微带馈线的靠近第二中心轴线的边缘到 第四槽线的远离第二中心轴线的边缘的距离为 d l mn^
[0016] 优选的, 所述两根微带馈线末端之间的间距 d 2为 1.6mm, 每一根微带馈线的宽 度 W。均为 2.34mm, 每一根微带馈线的阻抗均为 50Ω。
发明的有益效果
有益效果
[0017] 相较于现有技术, 本发明所述基于四模缺陷地式谐振器的三通带滤波结构实现 了不仅加工简单成本低廉, 而且可以产生三个基本传输通带, 形成三通带滤波 结构, 因此被广泛应用于宽带和多频段射频微波通信中。 由于四模缺陷地式谐 振器是在馈电平面上幵槽获得, 因此不需要增加额外谐振体, 具有缩小本发明 所述基于四模缺陷地式谐振器的三通带滤波结构尺寸的功能。
对附图的简要说明
附图说明
[0018] 图 1是本发明基于四模缺陷地式谐振器的三通带滤波结构的整体结构示意图; [0019] 图 2是本发明三通带滤波结构中的四模缺陷地式谐振器刻蚀在 PCB介质板下底 面的结构示意图;
[0020] 图 3为四模缺陷地式谐振器中的第一谐振单元的结构图;
[0021] 图 4为四模缺陷地式谐振器中的第二谐振单元的结构图;
[0022] 图 5是本发明三通带滤波结构中的两根微带馈线刻蚀在 PCB介质板上表面的结 构示意图;
[0023] 图 6是本发明基于四模缺陷地式谐振器的三通带滤波结构的等效电路模型; [0024] 图 7是本发明基于四模缺陷地式谐振器的三通带滤波结构的奇偶模等效电路; [0025] 图 8是本发明基于四模缺陷地式谐振器的三通带滤波结构的 PCB仿真与电路仿 真结果示意图;
[0026] 图 9是两根微带馈线之间的间距 d2对四个传输零点 TZ1、 ΤΖ2、 ΤΖ3、 ΤΖ4的影 响示意图;
[0027] 图 10是四模缺陷地式谐振器的奇偶模等效电路模型;
[0028] 图 11为第一电容 CM对四个传输零点的影响以及四模缺陷地式谐振器在 fTZl和 f
TZ4频率吋的电流分布;
[0029] 图 12是三通带滤波结构的简化电路模型及其相应奇偶模等效电路图。
[0030] 本发明目的实现、 功能特点及优点将结合实施例, 将在具体实施方式部分一并 参照附图做进一步说明。
实施该发明的最佳实施例
本发明的最佳实施方式
[0031] 为更进一步阐述本发明为达成上述目的所采取的技术手段及功效, 以下结合附 图及较佳实施例, 对本发明的具体实施方式、 结构、 特征及其功效进行详细说 明。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定 本发明。
[0032] 参照图 1所示, 图 1是本发明基于四模缺陷地式谐振器的三通带滤波结构的整体 结构示意图。 在本实施例中, 本发明提出的三通带滤波结构包括四模缺陷地式 谐振器 (QMDGSR) 1、 射频地平面 2以及两根微带馈线 3。 所述四模缺陷地式谐 振器 1刻蚀在 PCB介质板 10的一表面 (例如下表面, 参考图 2所示) , 该表面没有 刻蚀四模缺陷地式谐振器 1的剩余部分称作为射频地平面 2, 两根微带馈线 3分别 设置在 PCB介质板 10的另一表面 (例如上表面, 参考图 5所示) 。 所述 PCB介质 板 10为一种金属介质板, 该 PCB介质板 10的厚度为 0.79mm, 介电常数为 2.34。
[0033] 参考图 2所示, 图 2是四模缺陷地式谐振器刻蚀在 PCB介质板下底面的结构示意 图。 在本实施例中, 所述四模缺陷地式谐振器 1具有上下和左右均为对称的结构 , 使得该四模缺陷地式谐振器 1同吋具有四个谐振模式, 每一谐振模式的谐振频 率具有良好的可调性。 所述四模缺陷地式谐振器 1的形状和结构具体描述如下: 所述四模缺陷地式谐振器 1的形状关于该四模缺陷地式谐振器 1的第一中心轴线 ab 对称, 并且关于该四模缺陷地式谐振器 1的第二中心轴线 cd对称, 第一中心轴线 a b与第二中心轴线 cd相互垂直。 在本实施例中, 所述四模缺陷地式谐振器 1包括第 一谐振单元 11和四个第二谐振单元 12。 其中, 第一谐振单元 11的形状为 H形、 或 者为准 H形, 本实施例中定义的准 H形为整体上近似于 H形的形状。 第二谐振单 元 12的形状为 L形、 准 L形、 U形、 或者为准 U形, 本实施例中定义的准 L形为整 体上近似于 L形, 例如 L形的一自由端 (即不与第一谐振单元 11连接的一端) 可 弯折较小的一段, 该非常小的一段的长度相对于该自由端所在边的长度而言较 短。 本实施中定义的准 U形为整体上近似于 U形的一自由端 (即不与第一谐振单 元 11连接的一端) 可再弯折至少一次, 在该每次弯折后的弯折端的长度相对于 该自由端所在边的长度而言较短, 从而使得整体上仍然近似于 U形, 不会显著影 响第二谐振单元 12的性能。 四个第二谐振单元 12的一端分别连接第一谐振单元 1 1的四端。 每一个第二谐振单元 12向第一中心轴线 ab延伸并向四模缺陷地式谐振 器 1的中心弯折, 该弯折的次数为两次。 四个第二谐振单元 12的 L形、 准 L形、 U 形或者准 U形的幵口均朝向四模缺陷地式谐振器 1的四周。 位于第一中心轴线 ab 或者第二中心轴线 cd同侧的两个第二谐振单元 12之间隔有间隔。
[0034] 参考如图 3所示, 图 3为四模缺陷地式谐振器中的第一谐振单元的结构图。 在本 实施例中, 所述第一谐振单元 11由第一槽线 111、 第二槽线 112和第三槽线 113构 成。 该第一槽线 111的一端连接第二槽线 112的中部, 第一槽线 111的另一端连接 第三槽线 113的中部。 第二槽线 112和第三槽线 113平行并均与第一槽线 111垂直 , 因此, 第一槽线 111、 第二槽线 112和第三槽线 113构成了 H形或者准 H形。
[0035] 参考如图 4所示, 图 4为四模缺陷地式谐振器中的第二谐振单元的结构图。 在本 实施例中, 当第二谐振单元 12为 U形或者准 U形, 该第二谐振单元 12由第四槽线 1 24、 第五槽线 125和第六槽线 126构成。 第四槽线 124的一端连接第二槽线 112或 者第三槽线 113的另一端, 并向第一中心轴线向第 ab延伸, 第四槽线 124的另一端 连接第五槽线 125的一端, 第五槽线 125的另一端连接第六槽线 126的一端并向第 二中心轴线 cd延伸。 第四槽线 124和第六槽线 126平行并与第五槽线 125垂直。 其 中, 第六槽线 126的长度比第四槽线 224的长度短。 因此, 第四槽线 124、 第五槽 线 125和第六槽线 126构成了 U形或者准 U形。 当第二谐振单元 12为 L形、 准 L形, 该第二谐振单元 12也可通过相应的槽线形成 L形或者准 L形的结构。
[0036] 再参考图 2所示, 部分第一槽线 111、 位于第一槽线 111一侧的第二槽线 112或者 第三槽线 113、 位于第一槽线 111一侧的同一第二谐振单元 12中的第四槽线 124、 第五槽线 125和第六槽线 126包围的 PCB介质板形成第一极板 31, 该第一极板 31的 形状为 L形。 第一极板 31的数量为两个 (分别为与第二槽线 112围成的 PCB介质 板和与第三槽线 113围成的 PCB介质板) , 两个第一极板 31关于第一中心轴线 ab 轴对称。 部分第一槽线 111、 位于第一槽线 111另一侧的第二槽线 112或者第三槽 线 113、 位于第一槽线 111另一侧的同一第二谐振单元 12中的第四槽线 124、 第五 槽线 125和第六槽线 126包围的 PCB介质板形成第二极板 32, 第二极板 32的形状为 L形。 第二极板 32的数量为两个 (分别为与第二槽线 112围成的 PCB介质板和与 第三槽线 113围成的 PCB介质板) , 两个第二极板 32关于第一中心轴线 ab轴对称
[0037] 再参考图 1所示, 第一槽线 111的长度为1^=23.51^^ 宽度为 W ^O Smm; 第 二槽线 112和第三槽线 113的长度相等, 均为 L 2
= 12mm; 第二槽线 112和第三槽线 113的宽度相等, 均为 W 2
=0.3mm; 第四槽线 124的长度为1^ 3=11.050^1、 宽度为 W 3=0.3mm; 第五槽线 125 的长度为 4=2.81^^ 宽度为 W 3=0.3mm; 第六槽线的长度为 L 5
=7.3mm、 宽度为 W 3=0.3mm; 位于第一槽线 111同侧的两条第五槽线 125之间的 距离为 S !=0.8ιηιη, 第一槽线 111与第六槽线 126之间的距离为 S 2=2.27mm;
[0038] 如图 5所示, 图 5是本发明三通带滤波结构中的两根微带馈线刻蚀在 PCB介质板 上表面的结构示意图。 由于所述两根微带馈线 3分别设置在相对于四模缺陷地式 谐振器 1设置在 PCB介质板 10的另一表面, 因此两根微带馈线 3在 PCB介质板 10的 另一表面上对四模缺陷地式谐振器 1进行馈电。 在本实施例中, 两根微带馈线 3 的前端分别延伸到 PCB介质板 10的边缘形成两个端口 (第一端口 P1和第二端口 P 2) , 微带馈线 3的末端分别从位于第一槽线 111同侧的两条第四槽线 124向第一 中心轴线 ab延伸并终止靠近第二谐振单元 12的 L形、 准 L形、 U形或者准 U形的闭 口处, 两根微带馈线 3关于第一中心轴线 ab对称。 需要强调的是, 两根微带馈线 3 同吋位于第一槽线 111同一上侧的两条第四槽线 124上, 或者同吋位于第一槽线 1 11同一下侧的两条第四槽线 124上, 而不是位于四模缺陷地式谐振器 1的对角线 上的两条第四槽线 124上。
[0039] 在本实施例中, 两根微带馈线 3和第一槽线 111同侧的两条第四槽线 124的位置 对应, 且关于第一中心轴线 ab对称。 微带馈线 3的宽度比第四槽线 124的宽度宽, 使得微带馈线 3覆盖部分的第四槽线 124。 每根微带馈线 3的宽度 W0优选为 2.34m m, 微带馈线 3的另一端终止于靠近第五槽线 125处, 并未接触到第五槽线 125。 优选的, 每一根微带馈线 3的阻抗均为 50Ω, 每一根微带馈线 3的靠近第二中心轴 线 cd的边缘到第四槽线 124的远离第二中心轴线 cd的边缘的距离为 d ,, 两根微带 馈线 3之间的间距靠近, 定义两根微带馈线 3之间的间距为 d 2, 该间距为 d 2 小于 5mm (即 0-5mm范围内的值) , 本实施例中优选为 d 2=1.6mm; 由于两根微 带馈线 3之间的间距为 d 2确定, 一旦 PCB介质板 10的长度确定 (例如 L。) , 因此 每一根微带馈线 3的长度则为 d。= (L 0-d 2) II。 在本实施例中, 下表 1为本发明基 于四模缺陷地式谐振器的三通带滤波结构尺寸参数: [0040] 表 1 : 基于四模缺陷地式谐振器的三通带滤波结构尺寸参数
[] [表 1]
Figure imgf000010_0001
[0041]
[0042] 在本发明中, 由于两根微带馈线 3的末端距离靠的很近 (两根微带馈线 3之间的 间距 d 2 0-5mm) , 因此形成了源载耦合的馈电结构。 由于该源载耦合的形成, 该馈电结构能够产生四个传输零点, 从而形成了本发明所述的三通带滤波结构 。 需要说明的是, 只要两根微带馈线 3的末端距离小于 5mm, 均可形成三通带特 性。 本发明的具体实施例 d 2优选为 1.6mm, 可以获得较好的三通带特性。
[0043] 如图 6所示, 图 6是本发明基于四模缺陷地式谐振器的三通带滤波结构的等效电 路模型。 通过上述的结构设计, 本发明采用奇偶膜理论来为四模缺陷地式谐振 器 1提取出等效电路模型, 三通带滤波结构具体的等效电路模型描述如下:
[0044] 第一槽线 111和第六槽线 126之间的部分 PCB介质板形成第一电感 L s, 由于有四 个第二谐振单元 12, 因此第一电感!^的数量为四个。 位于第一槽线 111同侧的分 别形成两个第一电感 L s的两个 PCB介质板连通。 位于第一中心轴线 ab同侧的形 成第一电感 L PCB介质板和形成第一极板的 PCB介质板连通。 位于第一中心轴 线 ab同侧的形成第一电感 L ^ PCB介质板和形成第二极板 32的 PCB介质板连通。
[0045] 位于第一槽线 111同侧的两条第五槽线 125之间的 PCB介质板形成第二电感 L P
由于第一槽线 111的两侧各有两条第五槽线 125, 因此第二电感 L P的数量为两个 。 位于第一槽线 111同侧的形成第二电感 L P的 PCB介质板和分别形成两个第一电 感 L s的两个 PCB介质板连通并形成 T形的形状。
[0046] 所述四模缺陷地式谐振器 1外围的 PCB介质板形成射频地平面 2, 形成射频地平 面 2的 PCB介质板和形成第二电感 L PCB介质板连通。 位于第一中心轴线 ab同 侧的第一极板 31和第二极板 32形成第一电容 C M, 第一极板 31或者第二极板 32和 金属地平面 11之间形成第二电容 C c。 [0047] 两根微带馈线 3末端间隔之间的 PCB介质板形成源载耦合电容 C s, 每一根微带 馈线 3与四模缺陷地式谐振器 (QMDGSR) 1之间的 PCB介质板形成馈电耦合电 容 CP。 由于有两根微带馈线 3, 因此形成两个馈电耦合电容 CP。 位于每一根微 带馈线 3的 PCB介质板与位于第一槽线 111下侧的分别形成两个第一电感!^的两 个 PCB介质板连通。
[0048] 如图 7所示, 为本发明基于三通带滤波结构的三通带滤波结构的奇偶模等效电 路。 其中, 图 7 (a) 为三通带滤波结构的奇模等效电路, 图 7 (b) 为三通带滤波 结构的偶模等效电路。 其中, 第一中心轴线 ab在奇模中相当于短路, 可以看作是 一个虚拟的接地面。 当第一中心轴线 ab相当于短路吋, 则电流不会通过第二电感 LP, 则第二电感 LP无效。 第一中心轴线 ab在偶模中相当于幵路。 当第一中心轴 线 ab相当于幵路吋, 则形成第二电感 LP的 PCB介质板相当于被剖成了两半。 由 于电感的大小和金属的粗细有关, 因此第一中心轴线 ab相当于幵路吋的第二电感 LP的大小的两倍, 即此吋第二电感 LP的大小为 2LP。 同样的, 第二中心轴线 cd 短路在奇模中相当于短路, 可以看作是一个虚拟的接地面。 当第二中心轴线 cd短 路吋, 则第一电容 CM的两级板之间的距离相当于缩短了一半。 由于电容的大小 和极板之间的距离有关, 因此第二中心轴线 cd相当于短路吋的第一电容 CM的大 小是原来的第一电容 CM的大小的两倍, 即此吋第一电容 CM的大小为 2CM。 当第 二中心轴线 Cd在偶模中相当于幵路吋, 则第一电容 CM中没有电荷, 第一电容 CM
=0。
[0049] 参考图 8所示, 图 8为本发明基于四模缺陷地式谐振器 1的三通带滤波结构的 PC B仿真与电路仿真结果示意图。 其中, 电路仿真原器件值为 CM=0.6pF, Cc = 1.62pF, CP=1.5pF, Cs=0.2pF, LP=l.lnH, Ls=1.27nH。 其中 S„
表示两个端口 Ρ^ΠΡ2的反射系数, 821表示两个端口1\和15 2之间的传输系数。 从 图 8中可以看出, PCB仿真与电路仿真具有很高的重合度, 因此本发明三通带滤 波结构的等效电路模型具有较高的准确性。 由于馈电结构采用源载耦合方式, 该三通带滤波结构产生了四个传输零点, 即 ΤΖ1、 ΤΖ2、 ΤΖ3、 ΤΖ4, 从而形成三 个通带。
[0050] 如图 9所示, 图 9为两根微带馈线 3之间的间距 d2对四个传输零点 ΤΖ1、 ΤΖ2、 ΤΖ 3、 TZ4的影响示意图。 在本实施例中, 采用两根微带馈线 3之间的间距 d2可以为 0-5mm, 本实施例中的 d2采用 1.8mm、 0.7mm和 0.2mm来分别验证四个传输零点 T Ζ1、 τΖ2、 ΤΖ3、 ΤΖ4的影响。 从图 9中可以看出, 两根微带馈线 3之间的间距 d2 只影响 TZ1和 TZ4, 而不影响 ΤΖ2和 ΤΖ3, 因此可以确定 TZ1和 ΤΖ4是由源载耦合 产生, 而 ΤΖ2和 ΤΖ3是由三通带滤波结构的内部电路产生。
为了计算 ΤΖ2和 ΤΖ3, 本发明运用奇偶模理论分析了该三通带滤波结构的等效 电路。 由图 1可知, 四模缺陷地式谐振器 1具有左右轴对称的馈电结构, 并关于 第一中心轴线 ab对称, 因此可获得四模缺陷地式谐振器 1的奇偶模等效电路模型 , 如图 10 (a) 和 (b) 所示。 其中, 10 (a) 为四模缺陷地式谐振器 1的奇模等效 电路模型; 10 (b) 为四模缺陷地式谐振器 1的偶模等效电路模型。 从四模缺陷 地式谐振器 1的电流分布可以看出, 在 f TZ2频率吋, 电流可由四模缺陷地式谐振 器 1上端流入射频地平面 2, 形成一个接地通路, 导致电流不能流入另一端口, 从而产生 TZ2。 在 f TZ3频率吋, 在四模缺陷地式谐振器 1的上方形成了第二个左右 传输的射频通路, 而本结构在四模缺陷地式谐振器 1的下半部分本身具有一个射 频传输通路, 因此这两个通路形成了信号抵消, 从而产生 TZ3。 该结构在偶模和 奇模条件下的导纳计算公式 (Υ ^,Υ ^) 分别如 (1) 和 (2) 公式所示:
Figure imgf000013_0001
(1)
Figure imgf000013_0002
(2)
[0054]
[0055] 其中, Yin t表偶模导纳, 代表奇模导纳, 通过解方程 Y^FY^, 可以 获得 TZ2的谐振频率 fTZ2和 TZ3的谐振频率 fTZ3, 如 (3) 公式所示。
[0056]
[0057]
Figure imgf000014_0001
(3)
[0058]
[0059] 为了计算 TZl和 TZ4的谐振频率 fTZl和 fTZ4, 本发明三通带滤波器在奇偶模条 件下的等效电路如图 7 (a) 和 (b) 所示, 同理, 可以通过解方程 Y i 2 = Y in2来 获得相应的谐振频率。 但此吋电路很复杂, 因此本发明提出了一个高效的计算 方法。 如图 11所示为第一电容 C M对四个传输零点的影响以及四模缺陷地式谐振 器 1在 f TZ1和 f TZ4频率吋的电流分布。 可以看出第一电容 C Μ几乎不影响 f TZ1和 f TZ4
, 并且在 f TZ1和 f TZ4频率吋电流主要分布在四模缺陷地式谐振器 1的下半部分。 因 此, 在 f TZ1和 f TZ4频率吋, 该三通带滤波结构的电路模型可以简化为如图 12 (a) 所示, 其相应奇偶模等效电路如图 12 (b) 所示。 此吋的奇偶模等效电路得到了 大大简化, 可以通过解方程 Y ine3 = Y in3来获得 TZ1的谐振频率 f TZ1和 TZ4的谐振 频率 fTZ4, 如 (4) 公式所示:
Figure imgf000015_0001
(4)
[0061] 为了验证 f TZ1和 f TZ4的准确性, 下表 2列出了 f ΤΖ1和 f τζ4计算值在不同电容值 C s 条件下与仿真值的对比, 可以看出计算结果与仿真结果具有很高的重合度, 从 而验证了 fTZ1和 fTZ4的准确性。
[0062] 表 2 fTZ1和 fTZ4的仿真结果与计算结果对比表
[]
Figure imgf000016_0001
[0063]
[0064] 其中, Sim.fTZ1表示 fTZ1的仿真结果, Cal.fTZ1表示 fTZ1的计算结果, Sim.fTZ4表 示 f TZ4的仿真结果, Cal. f TZ4表示 f TZ4的计算结果。
[0065] 本发明所述基于四模缺陷地式谐振器的三通带滤波结构不仅加工简单成本低廉 , 而且可以产生三个基本传输通带, 形成三通带滤波结构, 具有较高的通带选 择性, 因此被广泛应用于宽带和多频段射频微波通信中。 由于四模缺陷地式谐 振器是在馈电平面上幵槽获得, 因此不需要增加额外谐振体, 具有缩小本发明 所述基于四模缺陷地式谐振器的三通带滤波结构尺寸的功能。
[0066] 以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等效结构或等效功能变换, 或直接或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。
工业实用性
相较于现有技术, 本发明所述基于四模缺陷地式谐振器的三通带滤波结构实现 了不仅加工简单成本低廉, 而且可以产生三个基本传输通带, 形成三通带滤波 结构, 因此被广泛应用于宽带和多频段射频微波通信中。 由于四模缺陷地式谐 振器是在馈电平面上幵槽获得, 因此不需要增加额外谐振体, 具有缩小本发明 所述基于四模缺陷地式谐振器的三通带滤波结构尺寸的功能。

Claims

权利要求书
[权利要求 1] 一种基于四模缺陷地式谐振器的三通带滤波结构, 包括 PCB介质板、 四模缺陷地式谐振器以及两根微带馈线, 所述四模缺陷地式谐振器刻 蚀在 PCB介质板的一表面, 两根微带馈线分别设置在 PCB介质板的另 一表面, 其特征在于, 所述四模缺陷地式谐振器的形状关于该四模缺 陷地式谐振器的第一中心轴线对称, 并且关于该四模缺陷地式谐振器 的第二中心轴线对称, 第一中心轴线与第二中心轴线相互垂直; 所述 四模缺陷地式谐振器包括第一谐振单元和四个第二谐振单元, 第一谐 振单元由第一槽线、 第二槽线和第三槽线构成, 第二谐振单元由第四 槽线、 第五槽线和第六槽线构成, 其中, 第一谐振单元的形状为 H形 、 或者为准 H形, 第二谐振单元的形状为 L形、 准 L形、 U形、 或者为 准 U形; 四个第二谐振单元的一端分别连接第一谐振单元的四端, 每 一个第二谐振单元向第一中心轴线延伸并向四模缺陷地式谐振器的中 心弯折; 位于第一中心轴线同侧的两个第二谐振单元之间隔有间隔; 两根微带馈线的前端分别延伸到 PCB介质板的边缘形成两个端口, 两 根微带馈线的末端分别从位于第一槽线同侧的两条第四槽线向第一中 心轴线延伸并终止靠近第二谐振单元的闭口处, 两根微带馈线关于第 一中心轴线对称, 两根微带馈线末端之间的间距靠近, 两根微带馈线 形成源载耦合的馈电结构, 该馈电结构形成四个传输零点的三通带滤 波结构。
[权利要求 2] 如权利要求 1所述的基于四模缺陷地式谐振器的三通带滤波结构, 其 特征在于: 所述第一槽线的一端连接第二槽线的中部, 第一槽线的另 一端连接第三槽线的中部, 第二槽线和第三槽线平行并均与第一槽线 垂直; 所述第四槽线的一端连接第二槽线或者第三槽线的另一端, 并 向第一中心轴线向第延伸, 第四槽线的另一端连接第五槽线的一端, 第五槽线的另一端连接第六槽线的一端并向第二中心轴线延伸, 第四 槽线和第六槽线平行并与第五槽线垂直。
[权利要求 3] 如权利要求 1所述的基于四模缺陷地式谐振器的三通带滤波结构, 其 特征在于: 部分所述第一槽线、 位于第一槽线一侧的第二槽线或者第 三槽线、 位于第一槽线一侧的同一第二谐振单元中的第四槽线、 第五 槽线和第六槽线包围的 PCB介质板形成第一极板, 该第一极板的形状 为 L形, 第一极板的数量为两个, 两个第一极板关于第一中心轴线轴 对称。
[权利要求 4] 如权利要求 1所述的基于四模缺陷地式谐振器的三通带滤波结构, 其 特征在于, 部分所述第一槽线、 位于第一槽线另一侧的第二槽线或者 第三槽线、 位于第一槽线另一侧的同一第二谐振单元中的第四槽线、 第五槽线和第六槽线包围的 PCB介质板形成第二极板, 第二极板的形 状为 L形, 第二极板的数量为两个, 两个第二极板关于第一中心轴线 轴对称。
[权利要求 5] 如权利要求 1所述的基于四模缺陷地式谐振器的三通带滤波结构, 其 特征在于, 所述第一槽线的长度为!^
Figure imgf000019_0001
; 第二槽线和第三槽线的长度均为 L 2=12mm; 第二槽线和第三槽线 的宽度均为 W 2=0.3mm; 第四槽线的长度为 L 3=11.05mm、 宽度为 W 3 =0.3mm; 第五槽线的长度为 L 4=2.8mm、 宽度为 W 3=0.3mm; 第六槽 线的长度为 L 5=7.3mm、 宽度为 W 3=0.3mm; 位于第一槽线同侧的两 条第五槽线之间的距离为 S fO.Smm, 第一槽线与第六槽线之间的距 离为 S 2=2.27mm。
[权利要求 6] 如权利要求 1所述的基于四模缺陷地式谐振器的三通带滤波结构, 其 特征在于, 所述第一槽线和第六槽线之间的部分 PCB介质板形成第一 电感 L s, 第一电感!^的数量为四个, 位于第一槽线同侧的分别形成 两个第一电感 L s的两个 PCB介质板连通, 位于第一中心轴线同侧的形 成第一电感 L PCB介质板和形成第一极板的 PCB介质板连通, 位于 第一中心轴线同侧的形成第一电感 L s
的 PCB介质板和形成第二极板的 PCB介质板连通; 位于第一槽线同侧 的两条第五槽线之间的 PCB介质板形成第二电感 L P, 第二电感 L ^勺 数量为两个, 位于第一槽线同侧的形成第二电感 L PCB介质板和分 别形成两个第一电感 L s的两个 PCB介质板连通并形成 T形的形状。 如权利要求 6所述的基于四模缺陷地式谐振器的三通带滤波结构, 其 特征在于, 所述四模缺陷地式谐振器外围的 PCB介质板形成射频地平 面, 形成射频地平面的 PCB介质板和形成第二电感 L PCB介质板连 通, 位于第一中心轴线同侧的第一极板和第二极板形成第一电容 C M
, 第一极板或者第二极板和金属地平面之间形成第二电容 C c
如权利要求 6所述的基于四模缺陷地式谐振器的三通带滤波结构, 其 特征在于, 所述两根微带馈线的末端间隔之间的 PCB介质板形成源载 耦合电容 C s, 每一根微带馈线与四模缺陷地式谐振器之间的 PCB介 质板形成馈电耦合电容 C P, 馈电耦合电容 C P的数量为两个, 位于每 一根微带馈线的 PCB介质板与位于第一槽线下侧的分别形成两个第一 电感 L PCB介质板连通。
如权利要求 1所述的基于四模缺陷地式谐振器的三通带滤波结构, 其 特征在于, 所述两根微带馈线分别和第一槽线同侧的两条第四槽线的 位置对应且关于第一中心轴线对称, 微带馈线的宽度比第四槽线的宽 度宽, 所述微带馈线的末端终止于靠近第五槽线处, 每一根微带馈线 的靠近第二中心轴线的边缘到第四槽线的远离第二中心轴线的边缘的 距离为 d 1.350^1。
如权利要求 9所述的基于四模缺陷地式谐振器的三通带滤波结构, 其 特征在于, 所述两根微带馈线末端之间的间距 d 2为 1.6mm, 每一根微 带馈线的宽度 W。均为 2.34mm, 每一根微带馈线的阻抗均为 50Ω。
PCT/CN2017/107205 2017-03-18 2017-10-21 基于四模缺陷地式谐振器的三通带滤波结构 WO2018171183A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710162719.9 2017-03-18
CN201710162719.9A CN106953145A (zh) 2017-03-18 2017-03-18 基于四模缺陷地式谐振器的三通带滤波结构

Publications (1)

Publication Number Publication Date
WO2018171183A1 true WO2018171183A1 (zh) 2018-09-27

Family

ID=59473168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107205 WO2018171183A1 (zh) 2017-03-18 2017-10-21 基于四模缺陷地式谐振器的三通带滤波结构

Country Status (2)

Country Link
CN (1) CN106953145A (zh)
WO (1) WO2018171183A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106953145A (zh) * 2017-03-18 2017-07-14 深圳市景程信息科技有限公司 基于四模缺陷地式谐振器的三通带滤波结构
CN107026302A (zh) * 2017-03-18 2017-08-08 深圳市景程信息科技有限公司 具有四个传输零点的三通带滤波结构
JP6839692B2 (ja) * 2018-10-19 2021-03-10 双信電機株式会社 フィルタ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901274A (zh) * 2006-07-27 2007-01-24 上海交通大学 超宽带平面微带滤波器
CN105742768A (zh) * 2014-11-28 2016-07-06 青岛海尔电子有限公司 一种带通滤波器及高阶带通滤波器及性能分析方法
CN105990632A (zh) * 2015-01-28 2016-10-05 青岛海尔电子有限公司 一种三通带滤波器
CN106953145A (zh) * 2017-03-18 2017-07-14 深圳市景程信息科技有限公司 基于四模缺陷地式谐振器的三通带滤波结构
CN107086338A (zh) * 2016-02-16 2017-08-22 青岛海尔电子有限公司 四模缺陷地式滤波器
CN107086347A (zh) * 2016-02-16 2017-08-22 青岛海尔电子有限公司 四模缺陷地式谐振器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206673066U (zh) * 2017-03-18 2017-11-24 深圳市景程信息科技有限公司 多模三通带滤波结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901274A (zh) * 2006-07-27 2007-01-24 上海交通大学 超宽带平面微带滤波器
CN105742768A (zh) * 2014-11-28 2016-07-06 青岛海尔电子有限公司 一种带通滤波器及高阶带通滤波器及性能分析方法
CN105990632A (zh) * 2015-01-28 2016-10-05 青岛海尔电子有限公司 一种三通带滤波器
CN107086338A (zh) * 2016-02-16 2017-08-22 青岛海尔电子有限公司 四模缺陷地式滤波器
CN107086347A (zh) * 2016-02-16 2017-08-22 青岛海尔电子有限公司 四模缺陷地式谐振器
CN106953145A (zh) * 2017-03-18 2017-07-14 深圳市景程信息科技有限公司 基于四模缺陷地式谐振器的三通带滤波结构

Also Published As

Publication number Publication date
CN106953145A (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
WO2018171184A1 (zh) 基于四模缺陷地式谐振器的三通带滤波器
WO2021164198A1 (zh) 微带低通滤波器
US9373876B2 (en) Multiple-mode filter for radio frequency integrated circuits
EP3203633B1 (en) Multiresonator non-adjacent coupling
WO2018171181A1 (zh) 多模三通带滤波结构
CN106935948A (zh) 一种功分滤波器
WO2018171183A1 (zh) 基于四模缺陷地式谐振器的三通带滤波结构
JP4197032B2 (ja) 2ポート型非可逆回路素子及び通信装置
JP4629571B2 (ja) マイクロ波回路
WO2018171185A1 (zh) 具有四个传输零点的三通带滤波结构
US9124237B2 (en) Electronic component
CN105006613A (zh) 一种椭圆缺陷结构四分之一模基片集成波导带通滤波器
WO2008038443A1 (fr) Filtre diélectrique, élément de circuit intégré et procédé de fabrication d'élément de circuit intégré
CN109088134B (zh) 一种微带带通滤波器
JP5804076B2 (ja) Lcフィルタ回路及び高周波モジュール
CN112928411B (zh) 双模介质滤波器及其零点调节方法
US9178484B2 (en) Filter
JP4345680B2 (ja) 2ポート型非可逆回路素子及び通信装置
WO2018171182A1 (zh) 多模三通带滤波器
US20160277002A1 (en) Filter apparatus
US10673111B2 (en) Filtering unit and filter
JP4051307B2 (ja) 積層型バンドパスフィルタ
US10110192B2 (en) Electronic component
CN110856339B (zh) 一种信号交叉传输的平面型电路
KR20110113340A (ko) Crlh 구조 공진기 기반의 대역 통과 필터 및 이를 이용한 듀플렉서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901821

Country of ref document: EP

Kind code of ref document: A1