WO2018171182A1 - 多模三通带滤波器 - Google Patents

多模三通带滤波器 Download PDF

Info

Publication number
WO2018171182A1
WO2018171182A1 PCT/CN2017/107204 CN2017107204W WO2018171182A1 WO 2018171182 A1 WO2018171182 A1 WO 2018171182A1 CN 2017107204 W CN2017107204 W CN 2017107204W WO 2018171182 A1 WO2018171182 A1 WO 2018171182A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
microstrip
slot
slot line
central axis
Prior art date
Application number
PCT/CN2017/107204
Other languages
English (en)
French (fr)
Inventor
彭彪
邓力
李书芳
张贯京
葛新科
高伟明
张红治
Original Assignee
深圳市景程信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市景程信息科技有限公司 filed Critical 深圳市景程信息科技有限公司
Publication of WO2018171182A1 publication Critical patent/WO2018171182A1/zh

Links

Definitions

  • the present invention relates to the field of radio frequency microwave communication technologies, and in particular, to a novel multimode three-way band filter.
  • the bandpass filter In modern microwave communication systems, the bandpass filter (BPF) needs to have good selectivity, out-of-band rejection, wide stopband, and miniaturized structure. Although the conventional multimode BPF based on the loaded resonator has better selectivity, there are many parasitic passbands. Multimode resonators can generate multiple resonant modes through a single resonator. Therefore, designing a microwave device using a multimode resonator can effectively reduce device size. Although multimode resonators have been proposed, they are only used in the design of wideband filters. The band pass filter and the stop band rejection of the prior art band pass filter are not high enough to fully meet the requirements of modern microwave communication systems.
  • the main object of the present invention is to provide a multimode three-way band filter, which is formed by combining a four-mode defective ground resonator and a microstrip stepped impedance resonator, and is capable of generating six transmission zero points, which has a high Passband selectivity also has a high degree of stopband rejection.
  • the present invention provides a multimode three-passband filter, including a PCB dielectric plate, a four-mode defect ground resonator, two microstrip feeders, and a microstrip stepped impedance resonator.
  • the four-mode defect ground resonator is etched on one surface of the PCB dielectric board, and two microstrip feed lines and microstrip step impedance resonators are respectively etched on the other surface of the PCB dielectric board, wherein:
  • the shape of the four-mode defective ground resonator is symmetrical about a first central axis of the four-mode defective ground resonator, and is symmetric about a second central axis of the four-mode defective ground resonator, the first center
  • the axis and the second central axis are perpendicular to each other;
  • the four-mode defective ground resonator includes a first resonant unit and four second resonant units, a first resonant single
  • the element is composed of a first slot line, a second slot line and a third slot line
  • the second resonating unit is composed of a fourth slot line, a fifth slot line and a sixth slot line
  • one ends of the four second resonating units are respectively connected Four ends of a resonating unit, each of the second resonating units extending toward the first central axis and bent toward the center of the four-mode defective ground resonator
  • the two second resonating units located on the same side of the first central axis are spaced apart
  • the shape of the first resonating unit is H-shaped or quasi-H-shaped
  • the shape of the second resonating unit is L-shaped, quasi-L-shaped, U-shaped, or quasi-U-shaped;
  • the front ends of the two microstrip feeders respectively extend to the edge of the PCB dielectric board to form two ports, and the ends of the two microstrip feeders are respectively from the two fourth slot lines on the same side of the first slot line to the first center
  • the axis extends and terminates near the closed end of the second resonant unit, the two microstrip feed lines are symmetric about the first central axis, the spacing between the ends of the two microstrip feed lines is close, and the two microstrip feed lines form a source-loaded feed structure ;
  • the shape of the microstrip stepped impedance resonator is symmetrical about a first central axis, and the microstrip stepped impedance resonator is adjacent to two microstrip feed lines, and the microstrip stepped impedance resonator includes two third resonances a unit and a fourth resonating unit, the shape of the third resonating unit being L-shaped or quasi-L-shaped, the shape of the fourth resonating unit being a convex shape of the mouth, and the spacing of the ends of the two third resonating units being equal to two micro- With the spacing between the ends of the feeder lines, the two ends of the two third resonating units close to the first central axis are respectively connected to the mouth ends of the fourth resonating unit.
  • one end of the first slot line is connected to a middle portion of the second slot line, and the other end of the first slot line is connected to a middle portion of the third slot line, and the second slot line and the third slot line are parallel and both
  • the first slot line is perpendicular;
  • one end of the fourth slot line is connected to the other end of the second slot line or the third slot line, and extends toward the first central axis, and the other end of the fourth slot line is connected to one end of the fifth slot line,
  • the other end of the five-slot line is connected to one end of the sixth slot line and extends toward the second central axis, and the fourth slot line and the sixth slot line are parallel and perpendicular to the fifth slot line.
  • a part of the first slot line, a second slot line or a third slot line on a side of the first slot line, and a fourth slot in the same second resonating unit on a side of the first slot line The PCB dielectric plate surrounded by the wire, the fifth slot line and the sixth slot line forms a first plate, the first plate has an L shape, and the number of the first plates is two, and the two first plates are about The first central axis is axisymmetric.
  • a part of the first slot line, a second slot line or a third slot line located on the other side of the first slot line, and a second slot unit located in the same second resonating unit on the other side of the first slot line The PCB dielectric plate surrounded by the four slot lines, the fifth slot line and the sixth slot line forms a second plate, the second plate has an L shape, and the number of the second plates is two The two second plates are axisymmetric with respect to the first central axis.
  • the length of the first slot line is! ⁇
  • the third resonating unit comprises a first microstrip line and a second microstrip line, one end of the first microstrip line is connected to one end of the second microstrip line, and the length of the first microstrip line is greater than a length of the second microstrip line, the first microstrip line and the second microstrip line having the same width;
  • the fourth resonating unit includes a third microstrip line, two fourth microstrip lines, and two fifth microstrips a line and two sixth microstrip lines, wherein two ends of the third microstrip line are respectively connected to one ends of the two fourth microstrip lines, and the other ends of the two fourth microstrip lines are respectively connected to the two fifth microstrip lines At one end, the other ends of the two fifth microstrip lines are respectively connected to one ends of the two sixth microstrip lines, and one end of the two sixth microstrip lines serves as the mouth end of the fourth resonating unit.
  • the third microstrip line, the fourth microstrip line, the fifth microstrip line, and the sixth microstrip line of the fourth resonating unit have the same width and are smaller than the first of the third resonating unit.
  • the width of the microstrip line and the second microstrip line have the same width and are smaller than the first of the third resonating unit.
  • the two microstrip feeders respectively correspond to positions of two fourth slot lines on the same side of the first slot line and are symmetric about the first central axis, and the width of the microstrip feed line is larger than that of the fourth slot line.
  • the width is wide, the end of the microstrip feed line ends near the fifth slot line, and the distance from the edge of each microstrip feed line near the second central axis to the edge of the fourth slot line away from the second central axis is dl Mn ⁇
  • the impedance of each microstrip feed line is 50 ⁇ . .
  • the multimode three-passband filter of the present invention is based on a combination of a four-mode defect ground resonator and a microstrip stepped impedance resonator, which is not only simple to process, low in cost, but also Three basic transmission passbands are generated to form a three-passband filtering structure, and thus are widely used in broadband and multi-band RF microwave communications. Since the four-mode defective ground resonator is obtained by the groove on the feed level surface, there is no need to add an additional resonator, and the function of reducing the size of the three-pass band filter.
  • the three-passband filter Due to the difference in coupling strength between the two microstrip feeders and the four-mode defective ground resonator and the microstrip stepped impedance resonator, the three-passband filter has a total of six transmission zeros with extremely high passband selectivity. And also has a high degree of stop band suppression.
  • FIG. 1 is a schematic view showing the overall structure of a multimode three-pass band filter of the present invention
  • FIG. 2 is a schematic structural view of a four-mode defective ground resonator in a three-passband filter of the present invention etched on a bottom surface of a PCB dielectric plate; [0020] FIG.
  • FIG. 3 is a structural diagram of a first resonating unit in a four-mode defective ground resonator
  • FIG. 4 is a structural diagram of a second resonance unit in a four-mode defective ground resonator
  • FIG. 5 is a schematic structural view showing the etching of two microstrip feed lines and a microstrip stepped impedance resonator in a three-passband filter of the present invention on a surface of a PCB dielectric plate; [0023] FIG.
  • FIG. 6 is a structural diagram of a third resonance unit in a microstrip stepped impedance resonator
  • FIG. 7 is a structural diagram of a fourth resonance unit in a microstrip stepped impedance resonator
  • FIG. 8 is a schematic diagram of PCB simulation and circuit simulation results of the multimode three-passband filter of the present invention.
  • FIG. 8 is a schematic diagram of S parameters of a three-passband filter having a narrower bandwidth first and third passbands; [0027] FIG.
  • FIG. 9 is a schematic diagram of S parameters of a three-passband filter having wider bandwidth first and third passbands; [0028] FIG.
  • FIG. 10 is a schematic diagram showing measurement results and simulation results of S parameters of a three-way band filter of the present invention.
  • FIG. 1 is a schematic overall structural view of a multimode three-passband filter of the present invention.
  • the three-way band filter proposed by the present invention includes a four-mode defective ground resonator (QMDGSR), a radio frequency ground plane 2, two microstrip feed lines 3, and a microstrip stepped impedance resonator (MSIR). 4.
  • QMDGSR four-mode defective ground resonator
  • MSIR microstrip stepped impedance resonator
  • the four-mode defective ground resonator 1 is etched on a surface of the PCB dielectric board 10 (for example, the lower surface, as shown in FIG.
  • the RF ground plane 2 the two microstrip feed lines 3 and the microstrip stepped impedance resonator 4 are respectively etched on the other surface of the PCB dielectric board 10 (for example, the upper surface, as shown in Fig. 5).
  • the PCB dielectric board 10 is a metal dielectric board having a thickness of 0.79 mm and a dielectric constant of 2.34.
  • FIG. 2 is a schematic structural view of a four-mode defect ground resonator in the three-passband filter of the present invention etched on the bottom surface of the PCB dielectric plate.
  • the four-mode defective ground resonator 1 has a structure in which both the upper and lower sides and the left and right sides are symmetrical, so that the four-mode defective ground resonator 1 has four resonance modes, and the resonance frequency of each resonance mode is well adjustable. Sex.
  • the shape and structure of the four-mode defective ground resonator 1 are specifically described as follows: The shape of the four-mode defective ground resonator 1 is symmetrical with respect to the first central axis ab of the four-mode defective ground resonator 1, and The second central axis cd of the four-mode defective ground resonator 1 is symmetrical, and the first central axis ab and the second central axis cd are perpendicular to each other.
  • the four-mode defective ground resonator 1 includes a first resonating unit 11 and four second resonating units 12.
  • the shape of the first resonating unit 11 is H-shaped or quasi-H-shaped, and the quasi-H-shape defined in the embodiment is a shape that approximates an H-shape as a whole.
  • the shape of the second resonating unit 12 is L-shaped, quasi-L-shaped, U-shaped, or quasi-U-shaped.
  • the quasi-L-shape defined in this embodiment is approximately L-shaped as a whole, for example, a free end of the L-shape (ie, The one end that is not connected to the first resonating unit 11 can bend a smaller section whose length is shorter with respect to the length of the side where the free end is located.
  • the quasi-U shape defined in the present embodiment is a free end that is approximately similar to the U shape as a whole (ie, an end that is not connected to the first resonating unit 11) and can be bent at least once again, at the bent end after each bending
  • the length is shorter relative to the length of the side on which the free end is located, so that the shape is still approximately U-shaped as a whole, without significantly affecting the performance of the second resonating unit 12.
  • One ends of the four second resonating units 12 are respectively connected The four ends of the first resonating unit 11.
  • Each of the second resonating units 12 extends toward the first central axis ab and is bent toward the center of the four-mode defective ground resonator 1, the number of times of the bending being two.
  • the L-shaped, quasi-L-shaped, U-shaped or quasi-U-shaped openings of the four second resonating units 12 are all directed toward the periphery of the four-mode defective ground resonator 1.
  • the two second resonating units 12 on the same side of the first central axis a are spaced apart.
  • FIG. 3 is a structural diagram of a first resonating unit in a four-mode defective ground resonator.
  • the first resonating unit 11 is composed of a first slot line 111, a second slot line 112, and a third slot line 113.
  • One end of the first slot line 111 is connected to the middle of the second slot line 112, and the other end of the first slot line 111 is connected to the middle of the third slot line 113.
  • the second slot line 112 and the third slot line 113 are parallel and both perpendicular to the first slot line 111. Therefore, the first slot line 111, the second slot line 112, and the third slot line 113 constitute an H-shape or a quasi-H-shape.
  • FIG. 4 is a structural diagram of a second resonance unit in a four-mode defective ground resonator.
  • the second resonating unit 12 when the second resonating unit 12 is U-shaped or quasi-U-shaped, the second resonating unit 12 is constituted by the fourth slot line 24, the fifth slot line 125, and the sixth slot line 126.
  • One end of the fourth slot line 124 is connected to the other end of the second slot line 112 or the third slot line 113 and extends toward the first central axis ab.
  • the other end of the fourth slot line 124 is connected to one end of the fifth slot line 125.
  • the other end of the five-slot line 125 is connected to one end of the sixth groove line 126 and extends toward the second central axis cd.
  • the fourth slot line 124 and the sixth slot line 126 are parallel and perpendicular to the fifth slot line 125.
  • the length of the sixth slot line 126 is shorter than the length of the fourth slot line 224. Therefore, the fourth groove line 124, the fifth groove line 12 5 and the sixth groove line 126 constitute a U-shape or a quasi-U shape.
  • the second resonating unit 12 is L-shaped and quasi-L-shaped, the second resonating unit 12 can also form an L-shaped or quasi-L-shaped structure through the corresponding groove lines.
  • first slot line 111 a portion of the first slot line 111, a second slot line 112 or a third slot line 113 on the side of the first slot line 111, and a second portion on the side of the first slot line 111.
  • the PCB dielectric plates surrounded by the fourth slot line 124, the fifth slot line 125, and the sixth slot line 126 in the resonance unit 12 form a first plate 31 having an L-shape.
  • the number of the first plates 31 is two (the PCB dielectric plates surrounded by the second groove lines 112 and the PCB dielectric plates surrounded by the third groove lines 113 respectively), and the two first plates 31 are related to the first
  • the central axis ab is axisymmetric.
  • the PCB dielectric plate surrounded by the line 124, the fifth slot line 125, and the sixth slot line 126 forms a second plate 32, and the second plate 32 has an L-shape.
  • the number of the second plates 32 is two (the PCB dielectric plate surrounded by the second groove lines 112 and the PCB dielectric plate surrounded by the third groove lines 113 respectively), and the two second plates 32 are related to the first Center axis ab axis symmetry
  • the two microstrip feeders 3 are respectively disposed on the other surface of the PCB dielectric board 10 with respect to the four-mode defective ground resonator 1, the two microstrip feeders 3 are The four-mode defective ground resonator 1 is fed on the other surface of the PCB dielectric board 10.
  • the front ends of the two microstrip feeders 3 respectively extend to the edges of the PCB dielectric board 10 to form two ports (the first port P and the second port P 2 ), and the ends of the microstrip feeders 3 are respectively located
  • the two fourth slot lines 124 on the same side of the first slot line 111 extend toward the first central axis ab and terminate in an L-shaped, quasi-L-shaped, U-shaped or quasi-U-shaped closed portion adjacent to the second resonating unit 12, two The microstrip feed line 3 is symmetrical about the first central axis ab.
  • the two microstrip feeders 3 are located on the two fourth slot lines 124 on the same upper side of the first slot line 111, or two second slots on the same lower side of the first slot line 111. On line 124, instead of two fourth slot lines 124 on the diagonal of quad-mode defective ground resonator 1.
  • the two microstrip feeders 3 correspond to the positions of the two fourth slot lines 124 on the same side of the first slot line 111, and are symmetric about the first central axis ab.
  • the width of the microstrip feed line 3 is wider than the width of the fourth slot line 124 such that the microstrip feed line 3 covers a portion of the fourth slot line 124.
  • the width W of each microstrip feed line 3. Preferably, it is 2.34 mm, and the other end of the microstrip feeder 3 terminates near the fifth slot line 125 and does not contact the fifth slot line 125.
  • FIG. 5 is a schematic structural view of two microstrip feed lines and a microstrip stepped impedance resonator etched on a surface of a PCB dielectric board in the three-way band filter of the present invention.
  • the shape of the microstrip stepped impedance resonator 4 is symmetrical about the first central axis ab, and the microstrip stepped impedance resonator 4 is adjacent to the two microstrip feed lines 3.
  • the microstrip stepped impedance resonator 4 includes two third resonating units 41 and one fourth resonating unit 42.
  • the shape of the third resonating unit 41 is L-shaped or quasi-L-shaped, and the shape of the fourth resonating unit 42 is a convex shape of the cornice.
  • the two ends of the two third resonating units 41 close to the first central axis ab and the fourth resonating unit 42 respectively) Port connection.
  • FIG. 6 is a structural diagram of a third resonance unit in a microstrip step impedance resonator.
  • the third resonating unit 41 includes a first microstrip line 411 and a second microstrip line 412.
  • One end of the first microstrip line 411 is connected to one end of the second microstrip line 412 to form an L shape or a quasi-L. Shaped shape.
  • the length of the first microstrip line 411 is greater than the length of the second microstrip line 412, and the widths of the first microstrip line 411 and the second microstrip line 412 are the same, and the first microstrip line 411 and the second microstrip line 412 are formed.
  • the impedance is Z.
  • FIG. 7 is a structural diagram of a fourth resonating unit in a microstrip stepped impedance resonator.
  • the fourth resonating unit 42 includes a third microstrip line 421, two fourth microstrip lines 422, two fifth microstrip lines 423, and two sixth microstrip lines 424.
  • the two ends of the third microstrip line 422 are respectively connected to one ends of the two second microstrip lines 422, and the other ends of the two fourth microstrip lines 422 are respectively connected to one ends of the two fifth microstrip lines 4 23 ,
  • the other end of the fifth microstrip line 423 is connected to one end of the two sixth microstrip lines 424, and one end of the two sixth microstrip lines 424 is used as the mouth end of the fourth resonating unit 42, thereby forming a convexity of the mouth. shape.
  • the third microstrip line 421, the fourth microstrip line 422, the fifth microstrip line 423, and the sixth microstrip line 424 constituting the fourth resonating unit 42 have the same width and are smaller than the first constituting the third resonating unit 41.
  • the impedance of the third microstrip line 421, the two fourth microstrip lines 422, the two fifth microstrip lines 42 3, and the two sixth microstrip lines 424 is Z2.
  • the utility model is based on a three-way band filtering structure, and is composed of a microstrip stepped impedance resonator (MSIR) 4 and a four-mode defective ground resonator (QMDGSR) 1 and two microstrip feeders 3 With filtering, it has a high passband selectivity.
  • the microstrip lines of the third resonating unit 41 and the fourth resonating unit 42 constituting the microstrip stepped-resistance resonator 4 have different widths, and the corresponding impedances are Z2 and Z1.
  • the two portions have the same electrical length, that is, ⁇ . .
  • the first resonant mode (ml) of the three-passband filter is in the first passband; the second resonant mode (m2), the three resonant mode (m3) is in the second passband; and the fourth resonant mode (m4) is in The third pass is inside.
  • the frequency of the fifth resonance mode R1 is located at a frequency smaller than the first resonance mode ml
  • the frequency of the sixth fifth resonance mode R2 is greater than the frequency of the fourth resonance mode m4 by tuning the fifth resonance mode R1 and the sixth resonance mode R2
  • the frequency (f R1 , f R2 ) adjusts the resonance frequency spacing of the fifth resonance mode R1 and the first resonance mode ml, and the resonance frequency spacing of the fourth resonance mode m4 and the sixth resonance mode R2, which can effectively change the first pass band And the bandwidth of the third passband, where f R1 and f R2 can be calculated by the following formulas (1) and (2).
  • the present invention can separately design two types of three-passband filters having a narrower bandwidth of the first and third passbands and a wider bandwidth of the first and third passbands.
  • FIG. 8 it is a schematic diagram of S parameters of a three-passband filter having a narrower bandwidth first and third passbands.
  • Figure 9 for comparison Schematic diagram of S-parameters of a three-passband filter with wide bandwidth first and third passbands.
  • S11 represents the reflection coefficient of the two ports P1 and P2
  • S21 represents the transmission coefficient between the two ports P1 and P2.
  • the source-loaded coupling is formed. structure. Due to the formation of the source-load coupling, the feed structure is capable of generating four transmission zeros (TZ1, ⁇ 2, ⁇ 3, ⁇ 4), thereby forming a three-pass band filtering structure. It should be noted that as long as the distance between the ends of the two microstrip feeders 3 is less than 5 mm, a three-pass band characteristic can be formed.
  • the specific embodiment d2 of the present invention is preferably 1.6 mm, and a better three-way belt characteristic can be obtained.
  • the three-passband filter Due to the difference in coupling strength between the two microstrip feeders 3 and the four-mode defective ground resonator 1 and the microstrip stepped impedance resonator 4, the three-passband filter has a cutoff frequency and a third passband at the first passband The upper cutoff frequency again produces two transmission zeros (TZ5, ⁇ 6), which greatly improves the passband selectivity of the three-passband filter.
  • FIG. 10 is a schematic diagram showing measurement results and simulation results of S parameters of the three-passband filter of the present invention.
  • the three-pass band filter has six transmission zeros ( ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6), it has extremely high passband selectivity. Among them, the maximum suppression of the lower stop band exceeds 83.3dB, and the maximum suppression of the upper stop band exceeds 43.9dB, so it also has a high degree of stop band suppression.
  • the multimode three-passband filter of the present invention is based on a combination of a four-mode defect ground resonator and a microstrip stepped impedance resonator, which is not only simple to process, low in cost, but also capable of generating three basic transmission passbands. It forms a three-pass filter structure and is therefore widely used in broadband and multi-band RF microwave communications. Since the four-mode defective ground resonator is obtained by the groove on the feed level surface, there is no need to add an additional resonator, and the function of reducing the size of the three-way band filter.
  • the three-passband filter Due to the difference in coupling strength between the two microstrip feeders and the four-mode defective ground resonator and the microstrip stepped impedance resonator, the three-passband filter has a cutoff frequency at the first passband and a cutoff frequency at the third passband Two transmission zeros are generated, so the three-passband filter has a total of six transmission zeros, has a very high passband selectivity, and also has a high stopband rejection.
  • the multimode three-passband filter of the present invention is based on a combination of a four-mode defect ground resonator and a microstrip stepped impedance resonator, which is not only simple to process, low in cost, but also capable of generating three
  • the basic transmission passband forms a three-pass filter structure and is therefore widely used in broadband and multi-band RF microwave communications. Since the four-mode defective ground resonator is obtained by the groove on the feed level surface, there is no need to add an additional resonator, and the function of reducing the size of the three-pass band filter.
  • the three-passband filter Due to the difference in coupling strength between the two microstrip feeders and the four-mode defective ground resonator and the microstrip stepped impedance resonator, the three-passband filter has a total of six transmission zeros with extremely high passband selectivity. And also has a high degree of stop band suppression.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本实用新型公开一种多模三通带滤波器,包括PCB介质板、四模缺陷地式谐振器、两根微带馈线及微带阶梯阻抗谐振器。四模缺陷地式谐振器包括第一谐振单元和四个第二谐振单元;四个第二谐振单元的一端分别连接第一谐振单元的四端。两根微带馈线的前端分别延伸到PCB介质板的边缘形成两个端口,两根微带馈线关于第一中心轴线对称,两根微带馈线末端之间的间距靠近形成源载耦合的馈电结构。微带阶梯阻抗谐振器包括两个第三谐振单元及一个第四谐振单元,两个第三谐振单元靠近第一中心轴线的两个末端分别与第四谐振单元的开口端连接。本实用新型所述三通带滤波器的结构尺寸小,而且能够产生六个传输零点,具有较高的通带选择性和阻带抑制度。

Description

模三通带滤波器 技术领域
[0001] 本实用新型涉及射频微波通信技术领域, 尤其涉及一种新型多模三通带滤波器 背景技术
[0002] 在现代微波通信系统中, 带通滤波器 (BPF) 需具有良好的选择性, 带外抑制 度, 宽阻带以及小型化结构。 传统的基于加载式谐振器的多模 BPF虽然具有较好 的选择性, 但是存在很多寄生通带。 多模谐振器通过单一谐振体, 可以产生多 个谐振模式, 因此, 运用多模谐振器设计微波器件可以有效减小器件尺寸。 多 模谐振器虽然已经被提出, 但只是运用于宽带滤波器的设计。 现有技术中的带 通滤波器的通带选择性和阻带抑制度不高, 不能完全满足现代微波通信系统的 需求。
技术问题
[0003] 本实用新型的主要目的提供一种多模三通带滤波器, 通过四模缺陷地式谐振器 和微带阶梯阻抗谐振器组合而成, 能够产生六个传输零点, 具有较高的通带选 择性, 也具有较高的阻带抑制度。
问题的解决方案
技术解决方案
[0004] 为实现上述目的, 本实用新型提供了一种多模三通带滤波器, 包括 PCB介质板 、 四模缺陷地式谐振器、 两根微带馈线及微带阶梯阻抗谐振器, 所述四模缺陷 地式谐振器刻蚀在 PCB介质板的一表面, 两根微带馈线和微带阶梯阻抗谐振器分 别刻蚀在 PCB介质板的另一表面, 其中:
[0005] 所述四模缺陷地式谐振器的形状关于该四模缺陷地式谐振器的第一中心轴线对 称, 并且关于该四模缺陷地式谐振器的第二中心轴线对称, 第一中心轴线与第 二中心轴线相互垂直;
[0006] 所述四模缺陷地式谐振器包括第一谐振单元和四个第二谐振单元, 第一谐振单 元由第一槽线、 第二槽线和第三槽线构成, 第二谐振单元由第四槽线、 第五槽 线和第六槽线构成; 四个第二谐振单元的一端分别连接第一谐振单元的四端, 每一个第二谐振单元向第一中心轴线延伸并向四模缺陷地式谐振器的中心弯折 ; 位于第一中心轴线同侧的两个第二谐振单元之间隔有间隔, 所述第一谐振单 元的形状为 H形、 或者为准 H形, 第二谐振单元的形状为 L形、 准 L形、 U形、 或 者为准 U形;
[0007] 两根微带馈线的前端分别延伸到 PCB介质板的边缘形成两个端口, 两根微带馈 线的末端分别从位于第一槽线同侧的两条第四槽线向第一中心轴线延伸并终止 靠近第二谐振单元的闭口处, 两根微带馈线关于第一中心轴线对称, 两根微带 馈线末端之间的间距靠近, 两根微带馈线形成源载耦合的馈电结构;
[0008] 所述微带阶梯阻抗谐振器的形状关于第一中心轴线对称, 且所述微带阶梯阻抗 谐振器靠近两根微带馈线, 所述微带阶梯阻抗谐振器包括两个第三谐振单元以 及一个第四谐振单元, 所述第三谐振单元的形状为 L形或准 L形, 第四谐振单元 的形状为幵口的凸形, 两个第三谐振单元的末端间距等于两根微带馈线末端之 间的间距, 两个第三谐振单元靠近第一中心轴线的两个末端分别与第四谐振单 元的幵口端连接。
[0009] 优选的, 所述第一槽线的一端连接第二槽线的中部, 第一槽线的另一端连接第 三槽线的中部, 第二槽线和第三槽线平行并均与第一槽线垂直; 第四槽线的一 端连接第二槽线或者第三槽线的另一端, 并向第一中心轴线延伸, 第四槽线的 另一端连接第五槽线的一端, 第五槽线的另一端连接第六槽线的一端并向第二 中心轴线延伸, 第四槽线和第六槽线平行并与第五槽线垂直。
[0010] 优选的, 部分所述第一槽线、 位于第一槽线一侧的第二槽线或者第三槽线、 位 于第一槽线一侧的同一第二谐振单元中的第四槽线、 第五槽线和第六槽线包围 的 PCB介质板形成第一极板, 该第一极板的形状为 L形, 第一极板的数量为两个 , 两个第一极板关于第一中心轴线轴对称。
[0011] 优选的, 部分所述第一槽线、 位于第一槽线另一侧的第二槽线或者第三槽线、 位于第一槽线另一侧的同一第二谐振单元中的第四槽线、 第五槽线和第六槽线 包围的 PCB介质板形成第二极板, 第二极板的形状为 L形, 第二极板的数量为两 个, 两个第二极板关于第一中心轴线轴对称。
[0012] 优选的, 所述第一槽线的长度为!^
Figure imgf000005_0001
第二槽线 和第三槽线的长度均为 L 2=12mm; 第二槽线和第三槽线的宽度均为 W 2=0.3mm ; 第四槽线的长度为 L 3=11.05mm、 宽度为 W 3=0.3mm; 第五槽线的长度为 L 4 =2.8mm、 宽度为 W 3=0.3mm; 第六槽线的长度为 L 5=7.3mm、 宽度为 W 3=0.3mm ; 位于第一槽线同侧的两条第五槽线之间的距离为 S ^O.Smm, 第一槽线与第六 槽线之间的距离为 S 2=2.27mm。
[0013] 优选的, 所述第三谐振单元包括第一微带线和第二微带线, 第一微带线的一端 连接至第二微带线的一端, 第一微带线的长度大于第二微带线的长度, 第一微 带线和第二微带线的宽度相同; 所述第四谐振单元包括第三微带线、 两根第四 微带线、 两根第五微带线以及两根第六微带线, 第三微带线的两端分别连接两 根第四微带线的一端, 两根第四微带线的另一端分别连接两根第五微带线的一 端, 两根第五微带线的另一端分别连接两根第六微带线的一端, 两根第六微带 线的一端作为第四谐振单元的幵口端。
[0014] 优选的, 所述第四谐振单元的第三微带线、 第四微带线、 第五微带线和第六微 带线的宽度均相同, 且小于第三谐振单元的第一微带线和第二微带线的宽度。
[0015] 优选的, 第一微带线的长度 L 6=11.4mm, 第二微带线的长度 L 7=6.4mm, 第一 微带线和第二微带线的宽度 W 6=1.0mm, 第二微带线与两根微带馈线之间的间距 为 g=0.3mm; 第三微带线、 第四微带线、 第五微带线和第六微带线的宽度均为 W 8=0.4mm, 第三微带线的长度 L„=7.6mm, 第四微带线的长度 L 1()=2.58mm, 第五 微带线的长度为 L 9=6.5mm, 第六微带线的长度为 L 8=1.5mm。
[0016] 优选的, 所述两根微带馈线分别和第一槽线同侧的两条第四槽线的位置对应且 关于第一中心轴线对称, 微带馈线的宽度比第四槽线的宽度宽, 所述微带馈线 的末端终止于靠近第五槽线处, 每一根微带馈线的靠近第二中心轴线的边缘到 第四槽线的远离第二中心轴线的边缘的距离为 d l mn^
[0017] 优选的, 所述两根微带馈线末端之间的间距 d 2=1.6mm, 每一根微带馈线的宽 度为 W o=2.34mm, 每一根微带馈线的阻抗均为 50Ω。
发明的有益效果 有益效果
[0018] 相较于现有技术, 本实用新型所述多模三通带滤波器, 基于四模缺陷地式谐振 器和微带阶梯阻抗谐振器组合而成, 不仅加工简单成本低廉, 而且可以产生三 个基本传输通带, 形成三通带滤波结构, 因此被广泛应用于宽带和多频段射频 微波通信中。 由于四模缺陷地式谐振器是在馈电平面上幵槽获得, 因此不需要 增加额外谐振体, 具有缩小三通带滤波器尺寸的功能。 由于两根微带馈线与四 模缺陷地式谐振器和微带阶梯阻抗谐振器之间的耦合强度差别, 因此该三通带 滤波器一共具有六个传输零点, 具有极高的通带选择性, 且也具有较高的阻带 抑制度。
对附图的简要说明
附图说明
[0019] 图 1是本实用新型多模三通带滤波器的整体结构示意图;
[0020] 图 2是本实用新型三通带滤波器中的四模缺陷地式谐振器刻蚀在 PCB介质板下 底面的结构示意图;
[0021] 图 3为四模缺陷地式谐振器中的第一谐振单元的结构图;
[0022] 图 4为四模缺陷地式谐振器中的第二谐振单元的结构图;
[0023] 图 5是本实用新型三通带滤波器中的两根微带馈线和微带阶梯阻抗谐振器刻蚀 在 PCB介质板上表面的结构示意图;
[0024] 图 6为微带阶梯阻抗谐振器中的第三谐振单元的结构图;
[0025] 图 7为微带阶梯阻抗谐振器中的第四谐振单元的结构图;
[0026] 图 8是本实用新型多模三通带滤波器的 PCB仿真与电路仿真结果示意图;
[0027] 图 8为具有较窄带宽第一、 第三通带的三通带滤波器的 S参数示意图;
[0028] 图 9为具有较宽带宽第一、 第三通带的三通带滤波器的 S参数示意图;
[0029] 图 10为本实用新型三通带滤波器的 S参数的测量结果与仿真结果示意图。
[0030] 本实用新型目的实现、 功能特点及优点将结合实施例, 将在具体实施方式部分 一并参照附图做进一步说明。
实施该发明的最佳实施例
本发明的最佳实施方式 [0031] 为更进一步阐述本实用新型为达成上述目的所采取的技术手段及功效, 以下结 合附图及较佳实施例, 对本实用新型的具体实施方式、 结构、 特征及其功效进 行详细说明。 应当理解, 此处所描述的具体实施例仅仅用以解释本实用新型, 并不用于限定本实用新型。
[0032] 参照图 1所示, 图 1是本实用新型多模三通带滤波器的整体结构示意图。 在本实 施例中, 本实用新型提出的三通带滤波器包括四模缺陷地式谐振器 (QMDGSR ) 1、 射频地平面 2、 两根微带馈线 3以及微带阶梯阻抗谐振器 (MSIR) 4。 所述 四模缺陷地式谐振器 1刻蚀在 PCB介质板 10的一表面 (例如下表面, 参考图 2所示 ) , 该表面没有刻蚀四模缺陷地式谐振器 1的剩余部分称作为射频地平面 2, 两 根微带馈线 3和微带阶梯阻抗谐振器 4分别刻蚀在 PCB介质板 10的另一表面 (例如 上表面, 参考图 5所示) 。 所述 PCB介质板 10为一种金属介质板, 该 PCB介质板 1 0的厚度为 0.79mm, 介电常数为 2.34。
[0033] 参考图 2所示, 图 2是本实用新型三通带滤波器中的四模缺陷地式谐振器刻蚀在 PCB介质板下底面的结构示意图。 所述四模缺陷地式谐振器 1具有上下和左右均 为对称的结构, 使得该四模缺陷地式谐振器 1同吋具有四个谐振模式, 每一谐振 模式的谐振频率具有良好的可调性。 所述四模缺陷地式谐振器 1的形状和结构具 体描述如下: 所述四模缺陷地式谐振器 1的形状关于该四模缺陷地式谐振器 1的 第一中心轴线 ab对称, 并且关于该四模缺陷地式谐振器 1的第二中心轴线 cd对称 , 第一中心轴线 ab与第二中心轴线 cd相互垂直。 在本实施例中, 所述四模缺陷地 式谐振器 1包括第一谐振单元 11和四个第二谐振单元 12。 其中, 第一谐振单元 11 的形状为 H形、 或者为准 H形, 本实施例中定义的准 H形为整体上近似于 H形的形 状。 第二谐振单元 12的形状为 L形、 准 L形、 U形、 或者为准 U形, 本实施例中定 义的准 L形为整体上近似于 L形, 例如 L形的一自由端 (即不与第一谐振单元 11连 接的一端) 可弯折较小的一段, 该非常小的一段的长度相对于该自由端所在边 的长度而言较短。 本实施中定义的准 U形为整体上近似于 U形的一自由端 (即不 与第一谐振单元 11连接的一端) 可再弯折至少一次, 在该每次弯折后的弯折端 的长度相对于该自由端所在边的长度而言较短, 从而使得整体上仍然近似于 U形 , 不会显著影响第二谐振单元 12的性能。 四个第二谐振单元 12的一端分别连接 第一谐振单元 11的四端。 每一个第二谐振单元 12向第一中心轴线 ab延伸并向四模 缺陷地式谐振器 1的中心弯折, 该弯折的次数为两次。 四个第二谐振单元 12的 L 形、 准 L形、 U形或者准 U形的幵口均朝向四模缺陷地式谐振器 1的四周。 位于第 一中心轴线 ab同侧的两个第二谐振单元 12之间隔有间隔。
[0034] 参考如图 3所示, 图 3为四模缺陷地式谐振器中的第一谐振单元的结构图。 在本 实施例中, 所述第一谐振单元 11由第一槽线 111、 第二槽线 112和第三槽线 113构 成。 该第一槽线 111的一端连接第二槽线 112的中部, 第一槽线 111的另一端连接 第三槽线 113的中部。 第二槽线 112和第三槽线 113平行并均与第一槽线 111垂直 , 因此, 第一槽线 111、 第二槽线 112和第三槽线 113构成了 H形或者准 H形。
[0035] 参考如图 4所示, 图 4为四模缺陷地式谐振器中的第二谐振单元的结构图。 在本 实施例中, 当第二谐振单元 12为 U形或者准 U形, 该第二谐振单元 12由第四槽线 1 24、 第五槽线 125和第六槽线 126构成。 第四槽线 124的一端连接第二槽线 112或 者第三槽线 113的另一端, 并向第一中心轴线 ab延伸, 第四槽线 124的另一端连接 第五槽线 125的一端, 第五槽线 125的另一端连接第六槽线 126的一端并向第二中 心轴线 cd延伸。 第四槽线 124和第六槽线 126平行并与第五槽线 125垂直。 其中, 第六槽线 126的长度比第四槽线 224的长度短。 因此, 第四槽线 124、 第五槽线 12 5和第六槽线 126构成了 U形或者准 U形。 当第二谐振单元 12为 L形、 准 L形, 该第 二谐振单元 12也可通过相应的槽线形成 L形或者准 L形的结构。
[0036] 再参考图 2所示, 部分第一槽线 111、 位于第一槽线 111一侧的第二槽线 112或者 第三槽线 113、 位于第一槽线 111一侧的同一第二谐振单元 12中的第四槽线 124、 第五槽线 125和第六槽线 126包围的 PCB介质板形成第一极板 31, 该第一极板 31的 形状为 L形。 第一极板 31的数量为两个 (分别为与第二槽线 112围成的 PCB介质 板和与第三槽线 113围成的 PCB介质板) , 两个第一极板 31关于第一中心轴线 ab 轴对称。 部分第一槽线 111、 位于第一槽线 111另一侧的第二槽线 112或者第三槽 线 113、 位于第一槽线 111另一侧的同一第二谐振单元 12中的第四槽线 124、 第五 槽线 125和第六槽线 126包围的 PCB介质板形成第二极板 32, 第二极板 32的形状为 L形。 第二极板 32的数量为两个 (分别为与第二槽线 112围成的 PCB介质板和与 第三槽线 113围成的 PCB介质板) , 两个第二极板 32关于第一中心轴线 ab轴对称 [0037] 再参考图 1所示, 第一槽线 111的长度为1^=23.51^^ 宽度为 W FO Smm; 第 二槽线 112和第三槽线 113的长度相等, 均为 L 2
= 12mm; 第二槽线 112和第三槽线 113的宽度相等, 均为 W 2
=0.3mm; 第四槽线 124的长度为1^ 3=11.050^1、 宽度为 W 3=0.3mm; 第五槽线 125 的长度为 4=2.81^^ 宽度为 W 3=0.3mm; 第六槽线的长度为 L 5
=7.3mm、 宽度为 W 3=0.3mm; 位于第一槽线 111同侧的两条第五槽线 125之间的 距离为 S !=0.8ιηιη, 第一槽线 111与第六槽线 126之间的距离为 S 2=2.27mm;
[0038] 在本实施例中, 由于所述两根微带馈线 3分别设置在相对于四模缺陷地式谐振 器 1设置在 PCB介质板 10的另一表面, 因此两根微带馈线 3在 PCB介质板 10的另一 表面上对四模缺陷地式谐振器 1进行馈电。 在本实施例中, 两根微带馈线 3的前 端分别延伸到 PCB介质板 10的边缘形成两个端口 (第一端口 P ,和第二端口 P 2) , 微带馈线 3的末端分别从位于第一槽线 111同侧的两条第四槽线 124向第一中心 轴线 ab延伸并终止靠近第二谐振单元 12的 L形、 准 L形、 U形或者准 U形的闭口处 , 两根微带馈线 3关于第一中心轴线 ab对称。 需要强调的是, 两根微带馈线 3同吋 位于第一槽线 111同一上侧的两条第四槽线 124上, 或者同吋位于第一槽线 111同 一下侧的两条第四槽线 124上, 而不是位于四模缺陷地式谐振器 1的对角线上的 两条第四槽线 124上。
[0039] 优选的, 两根微带馈线 3和第一槽线 111同侧的两条第四槽线 124的位置对应, 且关于第一中心轴线 ab对称。 微带馈线 3的宽度比第四槽线 124的宽度宽, 使得微 带馈线 3覆盖部分的第四槽线 124。 每根微带馈线 3的宽度 W。优选为 2.34mm, 微 带馈线 3的另一端终止于靠近第五槽线 125处, 并未接触到第五槽线 125。 优选的 , 每一根微带馈线 3的阻抗均为 50Ω, 每一根微带馈线 3的靠近第二中心轴线 cd的 边缘到第四槽线 124的远离第二中心轴线 cd的边缘的距离为 d ,, 两根微带馈线 3 之间的间距靠近, 定义两根微带馈线 3末端之间的间距为 d 2, 该间距为 d 2 为小于 5mm (即 0-5mm之间的任意值) , 本实施例中优选为 d 2=1.6mm; 由于两 根微带馈线 3之间的间距为 d 2确定, 一旦 PCB介质板 10的长度确定 (例如 L。) , 因此每一根微带馈线 3的长度则为 d。= (L 0-d 2) /2。 [0040] 参考图 5所示, 图 5是本实用新型三通带滤波器中的两根微带馈线和微带阶梯阻 抗谐振器刻蚀在 PCB介质板上表面的结构示意图。 在本实施例中, 所述微带阶梯 阻抗谐振器 4的形状关于第一中心轴线 ab对称, 且所述微带阶梯阻抗谐振器 4靠近 两根微带馈线 3。 所述微带阶梯阻抗谐振器 4与两根微带馈线 3之间的间距优选为 g=0.3mm。 所述微带阶梯阻抗谐振器 4包括两个第三谐振单元 41以及一个第四谐 振单元 42。 第三谐振单元 41的形状为 L形或准 L形, 第四谐振单元 42的形状为幵 口的凸形。 第三谐振单元 41关于第一中心轴线 ab对称, 因此第三谐振单元 41的数 量为两个, 两个第三谐振单元 41的末端间距等于两根微带馈线 3末端之间的间距 , 均为 d 2, 该间距为(1 2小于 5mm, 本实施例优选为(1 2=1.6mm。 两个第三谐振单 元 41靠近第一中心轴线 ab的两个末端分别与第四谐振单元 42的幵口端连接。
[0041] 参考图 6所示, 图 6为微带阶梯阻抗谐振器中的第三谐振单元的结构图。 在本实 施例中, 第三谐振单元 41包括第一微带线 411和第二微带线 412, 第一微带线 411 的一端连接至第二微带线 412的一端形成 L形或准 L形的形状。 第一微带线 411的 长度大于第二微带线 412的长度, 第一微带线 411和第二微带线 412的宽度相同, 第一微带线 411和第二微带线 412构成的阻抗为 Z ,。 优选地, 第一微带线 411的长 度为 L 6=11.4mm, 第二微带线 412的长度为!^ 7=6.4mm, 第一微带线 411和第二微 带线 412的宽度 W 6
= 1.0mm。 第二微带线 412与两根微带馈线 3之间的间距优选为 g=0.3mm。
[0042] 参考图 7所示, 图 7为微带阶梯阻抗谐振器中的第四谐振单元的结构图。 在本实 施例中, 第四谐振单元 42包括第三微带线 421、 两根第四微带线 422、 两根第五 微带线 423以及两根第六微带线 424。 其中, 第三微带线 421的两端分别连接两根 第四微带线 422的一端, 两根第四微带线 422的另一端分别连接两根第五微带线 4 23的一端, 两根第五微带线 423的另一端分别连接两根第六微带线 424的一端, 两根第六微带线 424的一端作为第四谐振单元 42的幵口端, 从而形成幵口的凸形 。 构成第四谐振单元 42的第三微带线 421、 第四微带线 422、 第五微带线 423和第 六微带线 424的宽度均相同, 且小于构成第三谐振单元 41的第一微带线 411和第 二微带线 412的宽度。 第三微带线 421、 两根第四微带线 422、 两根第五微带线 42 3和两根第六微带线 424构成的阻抗为 Z2。 在本实施例中, 第三微带线 421、 第四 微带线 422、 第五微带线 423和第六微带线 424的宽度优选为 W 8=0.4mm。 第三微 带线 421的长度优选为 L„=7.6mm, 第四微带线 422的长度优选为 L 10=2.58mm, 第五微带线 423的长度优选为 L 9=6.5mm, 第六微带线 424的长度优选为 L 8 = 1.5mm。
[0043] 本实用新型基于三通带滤波结构, 由微带阶梯阻抗谐振器 (MSIR) 4与四模缺 陷地式谐振器 (QMDGSR) 1、 两根微带馈线 3组合的方式构成的三通带滤波, 具有很高的通带选择性。 构成微带阶梯阻抗谐振器 4的第三谐振单元 41和第四谐 振单元 42的微带线的宽度不同, 对应阻抗为 Z2和 Zl, 为了简化设计, 这两部分 具有相同的电长度, 即 θ。。 该三通带滤波器的第一谐振模式 (ml) 在第一通带 内; 第二谐振模式 (m2) 、 三谐振模式 (m3) 在第二通带内; 第四谐振模式 ( m4) 在第三通带内。 通过调节微带阶梯阻抗谐振器 4的基次谐振模式和一阶谐振 频率, 可以产生另外两个谐振模式, 即第五谐振模式 (R1) 和第六五谐振模式
(R2) , 并分别位于第一通带和第三通带内。 其中, 第五谐振模式 R1的频率位 于小于第一谐振模式 ml的频率, 第六五谐振模式 R2的频率大于第四谐振模式 m4 的频率, 通过调谐第五谐振模式 R1和第六谐振模式 R2的频率 (f R1, f R2) 来调节 第五谐振模式 R1与第一谐振模式 ml的谐振频率间距, 以及第四谐振模式 m4与第 六谐振模式 R2的谐振频率间距, 可以有效改变第一通带和第三通带的带宽, 其 中 f R1和 f R2可由如下公式 (1) 和 (2) 计算获得。
Figure imgf000011_0001
(1)
[0045]
½2 霄 爱 ί 2匪 "3
(2)
[0046] 本实用新型通过调节 fRl和 fR2, 可以分别设计出具有较窄带宽的第一、 第三通 带以及较宽带宽的第一、 第三通带的两类三通带滤波器。 如图 8所示, 为具有较 窄带宽第一、 第三通带的三通带滤波器的 S参数示意图。 如图 9所示, 为具有较 宽带宽第一、 第三通带的三通带滤波器的 S参数示意图。 其中, S11表示两端口 P 1和 P2的反射系数, S21表示两端口 P1和 P2之间的传输系数。
[0047] 在本实用新型中, 由于两根微带馈线 3的末端距离靠的很近 (两根微带馈线 3之 间的间距 d2为 0-5mm) , 因此形成了源载耦合的馈电结构。 由于该源载耦合的形 成, 该馈电结构能够产生四个传输零点 (TZ1、 ΤΖ2、 ΤΖ3、 ΤΖ4) , 从而形成了 三通带滤波结构。 需要说明的是, 只要两根微带馈线 3的末端距离小于 5mm, 均 可形成三通带特性。 本实用新型的具体实施例 d2优选为 1.6mm, 可以获得较好的 三通带特性。 由于两根微带馈线 3与四模缺陷地式谐振器 1和微带阶梯阻抗谐振 器 4之间的耦合强度差别, 该三通带滤波器在第一通带下截止频率和第三通带上 截止频率又产生了两个传输零点 (TZ5, ΤΖ6) , 从而大大提高了该三通带滤波 器的通带选择性。
[0048] 如图 10所示, 图 10为本实用新型三通带滤波器的 S参数的测量结果与仿真结果 示意图。 从图 10中可以看出, 由于该三通带滤波器具有六个传输零点 (ΤΖ1、 ΤΖ 2、 ΤΖ3、 ΤΖ4、 ΤΖ5、 ΤΖ6) , 因此具有极高的通带选择性。 其中, 下阻带最大 抑制度超过 83.3dB, 上阻带最大抑制度超过 43.9dB, 因此也具有较高的阻带抑制 度。
[0049] 本实用新型所述多模三通带滤波器, 基于四模缺陷地式谐振器和微带阶梯阻抗 谐振器组合而成, 不仅加工简单成本低廉, 而且可以产生三个基本传输通带, 形成三通带滤波结构, 因此被广泛应用于宽带和多频段射频微波通信中。 由于 四模缺陷地式谐振器是在馈电平面上幵槽获得, 因此不需要增加额外谐振体, 具有缩小三通带滤波器尺寸的功能。 由于两根微带馈线与四模缺陷地式谐振器 和微带阶梯阻抗谐振器之间的耦合强度差别, 该三通带滤波器在第一通带下截 止频率和第三通带上截止频率又产生了两个传输零点, 因此该三通带滤波器一 共具有六个传输零点, 具有极高的通带选择性, 且也具有较高的阻带抑制度。
[0050] 以上仅为本实用新型的优选实施例, 并非因此限制本实用新型的专利范围, 凡 是利用本实用新型说明书及附图内容所作的等效结构或等效功能变换, 或直接 或间接运用在其他相关的技术领域, 均同理包括在本实用新型的专利保护范围 内。 工业实用性
相较于现有技术, 本实用新型所述多模三通带滤波器, 基于四模缺陷地式谐振 器和微带阶梯阻抗谐振器组合而成, 不仅加工简单成本低廉, 而且可以产生三 个基本传输通带, 形成三通带滤波结构, 因此被广泛应用于宽带和多频段射频 微波通信中。 由于四模缺陷地式谐振器是在馈电平面上幵槽获得, 因此不需要 增加额外谐振体, 具有缩小三通带滤波器尺寸的功能。 由于两根微带馈线与四 模缺陷地式谐振器和微带阶梯阻抗谐振器之间的耦合强度差别, 因此该三通带 滤波器一共具有六个传输零点, 具有极高的通带选择性, 且也具有较高的阻带 抑制度。

Claims

权利要求书
[权利要求 1] 一种多模三通带滤波器, 包括 PCB介质板, 其特征在于, 该三通带滤 波器还包括四模缺陷地式谐振器、 两根微带馈线及微带阶梯阻抗谐振 器, 所述四模缺陷地式谐振器刻蚀在 PCB介质板的一表面, 两根微带 馈线和微带阶梯阻抗谐振器分别刻蚀在 PCB介质板的另一表面, 其中 : 所述四模缺陷地式谐振器的形状关于该四模缺陷地式谐振器的第一 中心轴线对称, 并且关于该四模缺陷地式谐振器的第二中心轴线对称 , 第一中心轴线与第二中心轴线相互垂直; 所述四模缺陷地式谐振器 包括第一谐振单元和四个第二谐振单元, 第一谐振单元由第一槽线、 第二槽线和第三槽线构成, 第二谐振单元由第四槽线、 第五槽线和第 六槽线构成; 四个第二谐振单元的一端分别连接第一谐振单元的四端 , 每一个第二谐振单元向第一中心轴线延伸并向四模缺陷地式谐振器 的中心弯折; 位于第一中心轴线同侧的两个第二谐振单元之间隔有间 隔, 所述第一谐振单元的形状为 H形、 或者为准 H形, 第二谐振单元 的形状为 L形、 准 L形、 U形、 或者为准 U形; 两根微带馈线的前端分 别延伸到 PCB介质板的边缘形成两个端口, 两根微带馈线的末端分别 从位于第一槽线同侧的两条第四槽线向第一中心轴线延伸并终止靠近 第二谐振单元的闭口处, 两根微带馈线关于第一中心轴线对称, 两根 微带馈线末端之间的间距靠近, 两根微带馈线形成源载耦合的馈电结 构; 所述微带阶梯阻抗谐振器的形状关于第一中心轴线对称, 且所述 微带阶梯阻抗谐振器靠近两根微带馈线, 所述微带阶梯阻抗谐振器包 括两个第三谐振单元以及一个第四谐振单元, 所述第三谐振单元的形 状为 L形或准 L形, 第四谐振单元的形状为幵口的凸形, 两个第三谐 振单元的末端间距等于两根微带馈线末端之间的间距, 两个第三谐振 单元靠近第一中心轴线的两个末端分别与第四谐振单元的幵口端连接
[权利要求 2] 如权利要求 1所述的多模三通带滤波器, 其特征在于, 所述第一槽线 的一端连接第二槽线的中部, 第一槽线的另一端连接第三槽线的中部 , 第二槽线和第三槽线平行并均与第一槽线垂直; 第四槽线的一端连 接第二槽线或者第三槽线的另一端, 并向第一中心轴线延伸, 第四槽 线的另一端连接第五槽线的一端, 第五槽线的另一端连接第六槽线的 一端并向第二中心轴线延伸, 第四槽线和第六槽线平行并与第五槽线 垂直。
如权利要求 1所述的多模三通带滤波器, 其特征在于, 部分所述第一 槽线、 位于第一槽线一侧的第二槽线或者第三槽线、 位于第一槽线一 侧的同一第二谐振单元中的第四槽线、 第五槽线和第六槽线包围的 P CB介质板形成第一极板, 该第一极板的形状为 L形, 第一极板的数量 为两个, 两个第一极板关于第一中心轴线轴对称。
如权利要求 1所述的多模三通带滤波器, 其特征在于, 部分所述第一 槽线、 位于第一槽线另一侧的第二槽线或者第三槽线、 位于第一槽线 另一侧的同一第二谐振单元中的第四槽线、 第五槽线和第六槽线包围 的 PCB介质板形成第二极板, 第二极板的形状为 L形, 第二极板的数 量为两个, 两个第二极板关于第一中心轴线轴对称。
如权利要求 1所述的多模三通带滤波器, 其特征在于, 所述第一槽线 的长度为 L
Figure imgf000015_0001
第二槽线和第三槽线的 长度均为 L 2=12mm; 第二槽线和第三槽线的宽度均为 W 2=0.3mm; 第四槽线的长度为 L 3=11.05mm、 宽度为 W 3=0.3mm; 第五槽线的长 度为 L 4=2.8mm、 宽度为 W 3=0.3mm; 第六槽线的长度为 L 5=7.3mm、 宽度为 W 3
=0.3mm; 位于第一槽线同侧的两条第五槽线之间的距离为 S 1=0.8mm , 第一槽线与第六槽线之间的距离为 S 2=2.27mm。
如权利要求 1所述的多模三通带滤波器, 其特征在于, 所述第三谐振 单元包括第一微带线和第二微带线, 第一微带线的一端连接至第二微 带线的一端, 第一微带线的长度大于第二微带线的长度, 第一微带线 和第二微带线的宽度相同; 所述第四谐振单元包括第三微带线、 两根 第四微带线、 两根第五微带线以及两根第六微带线, 第三微带线的两 端分别连接两根第四微带线的一端, 两根第四微带线的另一端分别连 接两根第五微带线的一端, 两根第五微带线的另一端分别连接两根第 六微带线的一端, 两根第六微带线的一端作为第四谐振单元的幵口端 如权利要求 6所述的多模三通带滤波器, 其特征在于, 所述第四谐振 单元的第三微带线、 第四微带线、 第五微带线和第六微带线的宽度均 相同, 且小于第三谐振单元的第一微带线和第二微带线的宽度。 如权利要求 6所述的多模三通带滤波器, 其特征在于, 所述第一微带 线的长度1^ 6=11.41^^ 第二微带线的长度 L 7=6.4mm, 第一微带线和 第二微带线的宽度 W 6=1.0mm, 第二微带线与两根微带馈线之间的间 距为 g=0.3mm; 所述第三微带线、 第四微带线、 第五微带线和第六微 带线的宽度均为W 8=0.4mm, 第三微带线的长度 L„=7.6mm, 第四微 带线的长度 L 1()=2.58mm, 第五微带线的长度为 L 9=6.5mm, 第六微带 线的长度为 L 8=1.5mm。
如权利要求 1所述的多模三通带滤波器, 其特征在于, 所述两根微带 馈线分别和第一槽线同侧的两条第四槽线的位置对应且关于第一中心 轴线对称, 微带馈线的宽度比第四槽线的宽度宽, 所述微带馈线的末 端终止于靠近第五槽线处, 每一根微带馈线的靠近第二中心轴线的边 缘到第四槽线的远离第二中心轴线的边缘的距离为(1
Figure imgf000016_0001
如权利要求 9所述的多模三通带滤波器, 其特征在于, 所述两根微带 馈线末端之间的间距 d 2=1.6mm, 每一根微带馈线的宽度为 W Q =2.34mm, 每一根微带馈线的阻抗均为 50Ω。
PCT/CN2017/107204 2017-03-18 2017-10-21 多模三通带滤波器 WO2018171182A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720265179.2U CN206602159U (zh) 2017-03-18 2017-03-18 多模三通带滤波器
CN201720265179.2 2017-03-18

Publications (1)

Publication Number Publication Date
WO2018171182A1 true WO2018171182A1 (zh) 2018-09-27

Family

ID=60144977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107204 WO2018171182A1 (zh) 2017-03-18 2017-10-21 多模三通带滤波器

Country Status (2)

Country Link
CN (1) CN206602159U (zh)
WO (1) WO2018171182A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11228077B2 (en) 2019-06-17 2022-01-18 Carrier Corporation Microstrip DC block

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106953146B (zh) * 2017-03-18 2019-03-26 深圳市景程信息科技有限公司 基于四模缺陷地式谐振器的三通带滤波器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070194864A1 (en) * 2006-02-03 2007-08-23 Samsung Electronics Co., Ltd. DC block with band-notch characteristics using DGS
CN101867074A (zh) * 2010-05-04 2010-10-20 华东交通大学 基于缺陷地平面集成波导(dgw)结构的宽带滤波器
CN202094255U (zh) * 2011-06-10 2011-12-28 河海大学常州校区 基于发夹型谐振器的三频带带通滤波器
CN202550040U (zh) * 2011-12-10 2012-11-21 哈尔滨飞羽科技有限公司 用于无线局域网的双频带微带滤波器
CN203180023U (zh) * 2012-12-13 2013-09-04 哈尔滨网腾科技开发有限公司 一种可用于无线局域网的三通带WiMAX微带滤波器
CN105742768A (zh) * 2014-11-28 2016-07-06 青岛海尔电子有限公司 一种带通滤波器及高阶带通滤波器及性能分析方法
CN105990632A (zh) * 2015-01-28 2016-10-05 青岛海尔电子有限公司 一种三通带滤波器
CN106953146A (zh) * 2017-03-18 2017-07-14 深圳市景程信息科技有限公司 基于四模缺陷地式谐振器的三通带滤波器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070194864A1 (en) * 2006-02-03 2007-08-23 Samsung Electronics Co., Ltd. DC block with band-notch characteristics using DGS
CN101867074A (zh) * 2010-05-04 2010-10-20 华东交通大学 基于缺陷地平面集成波导(dgw)结构的宽带滤波器
CN202094255U (zh) * 2011-06-10 2011-12-28 河海大学常州校区 基于发夹型谐振器的三频带带通滤波器
CN202550040U (zh) * 2011-12-10 2012-11-21 哈尔滨飞羽科技有限公司 用于无线局域网的双频带微带滤波器
CN203180023U (zh) * 2012-12-13 2013-09-04 哈尔滨网腾科技开发有限公司 一种可用于无线局域网的三通带WiMAX微带滤波器
CN105742768A (zh) * 2014-11-28 2016-07-06 青岛海尔电子有限公司 一种带通滤波器及高阶带通滤波器及性能分析方法
CN105990632A (zh) * 2015-01-28 2016-10-05 青岛海尔电子有限公司 一种三通带滤波器
CN106953146A (zh) * 2017-03-18 2017-07-14 深圳市景程信息科技有限公司 基于四模缺陷地式谐振器的三通带滤波器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11228077B2 (en) 2019-06-17 2022-01-18 Carrier Corporation Microstrip DC block

Also Published As

Publication number Publication date
CN206602159U (zh) 2017-10-31

Similar Documents

Publication Publication Date Title
WO2018171184A1 (zh) 基于四模缺陷地式谐振器的三通带滤波器
CN106935948A (zh) 一种功分滤波器
SG189992A1 (en) Multiple-mode filter for radio frequency integrated circuits
CN102064786A (zh) 带通滤波器
CN105006613A (zh) 一种椭圆缺陷结构四分之一模基片集成波导带通滤波器
WO2018171181A1 (zh) 多模三通带滤波结构
CN108598632A (zh) 一种具有双零点宽阻带的siw-cpw超宽带滤波器
CN101667671B (zh) 具有宽阻带和低杂散特性的微带双模滤波器
JP4807456B2 (ja) マイクロストリップラインフィルタおよびその製造方法
WO2018171182A1 (zh) 多模三通带滤波器
WO2018171185A1 (zh) 具有四个传输零点的三通带滤波结构
WO2018171183A1 (zh) 基于四模缺陷地式谐振器的三通带滤波结构
CN111403861B (zh) 一种uir加载的三阶双通带基片集成波导滤波器
CN112072242A (zh) 滤波结构和滤波器
CN112768854A (zh) 基于阶梯阻抗谐振器的高选择性差分双通带微带滤波器
Zayniyev et al. Dual-band microstrip antenna filter for wireless communications
CN111725596A (zh) 一种高性能三模滤波功分器及其设计方法
US10673111B2 (en) Filtering unit and filter
CN107732381B (zh) 基于十字型谐振器的可重构带宽的宽带带通滤波器
CN114156618B (zh) 一种单腔三模陶瓷波导谐振器及滤波器
CN212434808U (zh) 滤波结构和滤波器
CN107293831B (zh) 谐振器及滤波器
TWI581495B (zh) 步階式阻抗諧振濾波器
JP2003304103A (ja) バンドパスフィルタ
JP2000244206A (ja) 誘電体フィルタ、誘電体デュプレクサ及び通信機装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901621

Country of ref document: EP

Kind code of ref document: A1